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SERIES PREFACE

Theoretical chemistry is one of the most rapidly advancing and exciting fields in
the natural sciences today. This series is designed to show how the results of theo-
retical chemistry permeate and enlighten the whole of chemistry together with
the multifarious applications of chemistry in modern technology. This is a series
designed for those who are engaged in practical research. it will provide the foun-
dation for all subjects which have their roots in the field of theoretical chemistry.

How does the materials scientist interpret the properties of the novel doped-
fullerene superconductor or a solid-state semiconductor? How do we model a
peptide and understand how it docks? How does an astrophysicist explain the
components of the interstellar medium? Where does the industrial chemist turn
when he wants to understand the catalytic properties of a zeolite or a surface
iayer? Whai is the meaning of ‘far-from-equilibrium’ and what is iis significance
in chemistry and in natural systems? How can we design the reaction pathway
leading to the synthesis of a pharmaceutical compound? How does our modelling
of intermolecular forces and potential energy surfaces yield a powerful under-
standing of natural systems at the molecular and ionic level? All these questions
will be answered within our series which covers the broad range of endeavour
referred to as ‘theoreitcal chemistry’.

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

chemists, lecturers and students across the breadth of the subject, reaching into the
various applications of theoretical techniques and modelling. The series concen-
trates on teaching the fundamentals of chemical structure, symmetry, bonding,
reactivity, reaction mechanism, solid-state chemistry and applications in mole-
cular modelling. It will emphasize the transfer of theoretical ideas and results
1o practical situations so as to demonstrate the role of theory in the solution of

chemical problems in the laboratory and in industry.

111 111Gu

D. Clary, A. Hinchliffe, D. S. Urch and M. Springborg
June 1994






PREFACE TO THE FIRST
EDITION

In the beginning, quantum chemists had pencils, paper, slide rules and log tables.
It is amazing that so much could have been done by so few, with so little.

My little book Computational Quantum Chemistry was published in 1988. In
the Preface, I wrote the following:

As a chemistry undergraduate in the 1960s . .. I learned quantum chemistry
as a very ‘theoretical’ subject. In order to get to grips with the colour of
carrots, I knew that I had to somehow understand

‘/WZZ_I_‘,-\I‘()dT

bui 1 reaily didn’t know how to caiculate the quaniity, or have the slighiest
idea as to what the answer ought to be ...

2

and I also drew attention to the new confidence of the late 1980s by quoting

Today we live in a world where everything from the chairs we sit in to the
cars we drive are firstly designed by computer simulation and then built.
There is no reason why chemistry should not be part of such a world,
and why it should not be seen to be part of such a world by chemistry
undergraduates.

The book seemed to capture the spirit of the 1980s, and it became accepted as a
teaching text in many universities throughout the world. In those days, computing
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was done on mainframes, scientific programs were written in FORTRAN, and
the phrase ‘Graphical User Interface’ (GUI) was unknown.

Personal computing had already begun in the 1980s with those tiny boxes
called (for example) Commodore PETSs, Apples, Apricots, Acorns, Dragons and
so on. Most of my friends ignored the fact that PET was an acronym, and took
one home in the belief that it would somehow change their life for the better and
also become a family friend. Very few of them could have written a 1024 word
essay describing the uses of a home computer. They probably still can’t.

What they got was an ‘entry level’ machine with a simple operating system and
the manufacturer’s own version of BASIC. There were no application packages
to speak of, and there was no industry standard in software. Anyone who wrote
software in those days would have nightmares about printers and disk files.

IBM (the big blue giant) slowly woke up to the world of personal computing,
and gave us the following famous screen, in collaboration with MICROSOFT.

C\>

The DOS prompt

Not very user-friendly!
Then came the games, and most older readers will recognize the Space Invaders
screen shown below ...
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The Graphical User Interface was then born, courtesy of the the ‘A’ manufac-
turers such as Apple, Apricot, Amiga and Atari. Perhaps that is why so many of
them went down the Games path. But they certainly left IBM behind.

These days we have Lemmings, Theme Park and SimCity. Many of them are
modelling packages dressed up as games.

In the world of serious software, we soon saw the introduction of packages
reflecting the three legs of the information technology trilogy
e word processing
o databases
o spreadsheets
and IT is now a well-established part of secondary education.

I don’t want to bore you. As time went on, molecular modelling packages
began to appear. Many ran under DOS (with the famous prompt screen above),
but the more popular ran with GUIs on Apple Macs. Well, what happened is that
MICROSOFT introduced WINDOWS, the famous graphical interface designed to
protect users from DOS. There are now said to be more users of WINDOWS on
IBM compatible PC’s worldwide than all the other operating systems combined.
But has all this actually changed out ability to understand molecules? Cynics
will still argue that there have been no new major discoveries about molecular
electronic structure theory since the heady days of the 1920s when Schrodinger,
Pauli, Heisenberg and Dirac were active. Dirac said it all, in his oft-quoted
statement.

Dirac’s famous statement

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that exact application of these laws leads
to equations much too complicated to be soluble.

But computers and computing have moved along apace. This is especially
true for personal computing, whereby powerful modelling packages are now
available for everyday use. Most of these packages use molecular mechanics, and
these come with brilliant graphics and excellent user-interfaces. Conformational
problems involving protein strands that have been tackled using these packages

are becoming common-place in the primary literature.

It is interesting to note that all the simple theories (such as Hiickel w-electron
theory) have now reappeared as options in these very same packages! Thus,
Very many scientists now routinely use computational quantum chemistry as a
futuristic tool for modelling the properties of pharmaceutical molecules, dyestuffs

and biopolymers. I wrote the original Computational Quantum Chemistry text as
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an introduction for senior undergraduates and beginning postgraduates. True, the

orioinal edition had come flawe: reviewere nointed ont that there wac no need for »
original €aition nad some Haws; reviewers pointed out tnat (n€re was no need 1or g

revision of the principles of quantum mechanics, however ‘brief” and breakneck’
(and I quote).

It seemed to me that the time was ripe for a new text that would focus on
recent applications, especially those reflected in current modelling packages for
PCs. Hence this book!

Alan Hinchliffe
Aian mincniifte

UMIST,
Manchester, 1995



PREFACE TO THE SECOND
EDITION

Molecular structure theory is a fast-moving subject, and a lot has happened since
the First Edition was published in 1995. Chapters 3 (The Hydrogen Molecule-
ion) and 4 (The Hydrogen Molecule) are pretty much as they were in the First
Edition, but I have made changes to just about everything else in order to reflect
current trends and the recent literature. I have also taken account of the many
comments from friends and colleagues who read the First Edition.

Chapter O has been enhanced with a little background material on vector
fields and vector calculus. I have significantly expanded Chapter 1 on molec-
ular mechanics, and added a new chapter on molecular dynamics. The last ten
years have seen the growth and growth of density functional theory, and I have
therefore made significant improvements to my treatment. A 1976 paper in the
(obscure) Journal of Molecular Biology has given us the cottage industry of
‘Combined QM/MM methods’ reflected in Chapter 15, and there has been expo-
nential growth in derivative methods (reflected through the text).

A few topics have disappeared, and of course there are many gaps. One only
has a finite number of pages and any text will naturally reflect the author’s
own experiences and preferences. Scattering theory and graph theory are both
conspicuous by their absence, but there are several good texts on these subjects.

I have tried to remain true to my original brief, and produce a readable text
for the more advanced consumer of molecular structure theory. The companion
book ‘Chemical Modelling: from Atoms to Liguids’ (John Wiley & Sons Ltd,
Chichester, 1999) is more suitable for beginners.

Everyone has his or her favourite packages, and I have used a number for illus-

inn Tha Annmmmanaial cnflarnes manlbacac manmtimmnd o oall lan ancile: Taansad
tration. The comimercial software packages mentioned can all be easily located
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on the Internet. I have made extensive use of screen grabs in order to illustrate

. .
oints made in the text.

I welcome comments and suggestions, and can be reached at:

o3

Alan.Hinchliffe @umist.ac.uk
UMIST
Manchester, 2000
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must admit from the outset that this book is not quite as comprehensive as the title
might suggest. You won’t meet every model of molecular structure that has ever
been tried, and you won’t meet every molecule known to the chemical literature.
I want to bring you up to speed on current molecular modelling techniques and
applications, but I only have 300 pages in which to do it. My treatment of
chemical reaction theories is skimpy, and we won’t spend too much time on the
solid state. Time dependence appears only briefly. But there are still an awful lot
of exciting problems to be tackled and techniques to be learned.

The word ‘model’ has a special technical meaning: it implies that we have a set
of mathematical equations that are capable of representing reasonably accurately
the phenomenon under study. Thus, we can have a model of the UK economy
just as we can have a model of a GM motor car, the Humber Road Bridge and
a naphthalene molecule.

In the early days of chemical modelling, people did indeed construct models
from plastic atoms and bonds, a ruler and a pair of scissors. The tendency now
is to reach for the PC, and one aim of this book is to give you an insight into
the bewitching acronyms that lie behind the keystrokes and mouse clicks of a
sophisticated modeliing package.

Why do we want to model molecules and chemical reactions? Chemists are
interested in the distribution of electrons around the nuclei, and how these
electrons rearrange in a chemical reaction; this is what chemistry is all about.
Thomson tried to develop an electronic theory of valence in 1897. He was quickly
followed by Lewis, Langmuir and Késsel, but their models all suffered from the
same defect in that they tried to treat the electrons as classical pomt electric
uucusca dl LCbL

The problem with moving charges is this: an accelerating electric charge gener-
ates electromagnetic radiation and so loses energy. According to all the theories
of classical electromagnetism, a hydrogen atom should therefore be unstable.
Bohr in 1916 solved the problem by postulating the existence of stable orbits
(the so-called ‘Bohr orbits’) for the electron in a hydrogen atom. He was aware
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of de Broglie’s hypothesis relating wave and particle properties, and he suggested
that the electron’s de Broglie waves had to fit precisely round circular orbits.

Bohr’s treatment gave spectacularly good agreement with the observed fact that
a h‘vdrnopn atom is stable, and also with the values of the cppnfrq] lines. This fhpnry

145 L

gave a single quantum number n. Bohr’s treatment failed nuserably when it came
to predictions of the intensities of the observed spectral lines, and more 1o the
point, the stability (or otherwise) of a many-electron system such as He.

1 should also mention Sommerfeld, who extended Bohr’s theory to try and
account for the extra quantum numbers observed experimentally. Sommerféld
allowed the electrons to have an elliptic orbit rather than a circular one.

The year 1926 was an exciting one. Schridinger, Heisenberg and Dirac, all

worklng independently, solved the hydrogen atom problem Schrodmger S treat-
ment, which we refer to as wave mechanics, is the version that you will be familiar
with. The only cloud on the horizon was summarized by Dirac, in his famous

statement:

The underlying physical laws necessary for the mathematical description
of a large part of physics and the whole of chemistry are thus completely
known, and the only difficulty is that the exact application of these laws
leads to equations much too difficult to be soluble.

If Dirac was warning us that solution of the equations of quantum mechanics
was going to be horrendous for everyday chemical problems, then history has
proved him right. Fifty years on from there, Enrico Clementi (1973) saw things
differently:

We can calculate everything

It has thus been established that the only difﬁculty which exists in the

evaluation of the energy and wavefunction of any molecule . . . is the amount
of computing necessary.

The kinds of problems that people could tackle successfully in the early days
ativ

ve. For example:

were very simple and semi- -qt nllt_ nple:

SApEC a1l sl wal I

e Why is the H atom stable, and what are its allowed energy levels?
e Why is the hydrogen molecule ion H,™ stable, and what should its bond
length be?
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. Why is methane tetrahedral?
o Why is the bond angle in water smalier than tetrahedrai?

These days, even the simplest problems discussed in the primary journals are
much more sophisticated, and I will give you a flavour as we progress through

the text.

01 WHAT IS A CHAPTER 0?

Let me tell you how things were in the heady days of the late 1960s, when
scientists (like me) and engineers first got their hands on computers. Computers
were very large beasts, and they consumed very many kilojoules (kilocalories in
those days, or if you are a North American reader) per unit time. If you believe
in the law of conservation of energy, you will understand why such machines
had a refrigeration plant, where the three resident engineers kept the milk for
their coffee.

In those days, you wrote your own code or perished. There were no pack-
ages such as GAUSSIAN, all we had were rudimentary program libraries which
contained procedures for matrix dlagona]watlon minimization of a function of
many variables and the like. By ‘we’, I include the electrical and electronic engi-
neers, the crystallographers and the weather forecasters who spent so many happy
nights and weekends together watching our output being produced on five-track
paper tape.

1 wrote my first lines of code in Mercury Autocode; the problem was to find
the Hiickel bond orders in [18]-annulene, a fascinating compound that shows very
unusual bond-length alternation. Mercury Autocode was originally developed for
the Ferranti Mercury computer, which is how things were done in the late 1960s.
The programming language was specific to a particular machine. FORTRAN 11
was just on the horizon. What you would recognize today as random-access
memory was extremely limited on the early machines, and programs had to be
segmented into units called ‘chapters’.

Operating systems were still a gleam in computer scientists’ eyes; you put
your program into the paper-tape reader and pressed the Initial Transfer Button
on the Engineers’ Console. Compilation errors were indicated in binary on two
cathode-ray tubes, and once you were past the stage of compilation errors, the
first section of code to be executed was Chapter 0. If you know about program
segmentation and overlays, then you will understand about Chapter 0. We used
Chapter 0 to set up arrays, set constants and limits and generally prepare for the
work ahead.

I hope you will regard this Chapter 0 in the same way. You really ought to
read the entirety of this chapter before you begin the book in earnest, because it
is a preparation for the work ahead. The reason is quite simple. I am going to
have to assume some prerequisite knowledge, especially in mechanics, which is

the branch of maths that deale with maovemean
+Qiivil Ul 1LaAauid uiat ucaild Wilil IJJ.UVUIIICIIL
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0.2 BRANCHES OF MECHANICS

There are three branches of mechanics. Classical mechanics normally dealg
with things in the everyday world: accelerating sports cars, bodies sliding down
inclined planes and other related phenomena.

Relativistic mechanics "1(‘11’111&11_)' deals with situations where one
ing with respect to another one. If this relative motion is one of uniform VClOClty
then the subject is referred to as special relativity. Special relativity is well under-
stood and has stood the test of experiment. If accelerations are involved, thep
we enter the realm of general relativity. It is fair comment to say that general
relativity is still an active research field.

Finally we have quantum mechanics, which normally has to be invoked when

h ag ala

i i i i all i suc ot nraotong A
alino wnth citnatinne whara narti such as electrons, protons and

dealing with situations where small partic
neutrons) are involved.

in the following sections, I have tried to pick out some of the more familiar
techniques and concepts that will form recurring themes throughout the text.

0.3 VECTORS, VECTOR FIELDS AND VECTOR
CALCULUS

e that you are familiar with the elementary ideas of vectors and vector

T assum
algebra. Thus if a point P has position vector r (I will use bold letters to denote
vectors) then we can write r in terms of the unit Cartesian vectors e, e, and
e, as:

r = xe, + ye, -+ ze, 0.1

The scalars Xy and z are called the Cartesian components (or coordinates) of
point P.

z-axis

Point P

-

Origin O

y .
/ y-axis
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We normally solve problems in science by taking advantage of the symmetry
¢ - given problem. In the case of spherical symmetry, it is advantageous to use

P a p*v
the sphencal polar coordinates r, 6 and ¢ rather than Cartesian coordinates. The

(PPN tha dictanca af tha noint D feam tha arigin ) Tha angla
r coorummc m uiC Gistanive U1 dic polill © Iroi miC Ofigin u. 1nc auglc U lb

the angle that the line OP makes with the positive z-axis system. The angle ¢ is
the azimuthal angle measured in the x—y plane from the positive x-axis.

The unit vectors in this system are e,, €y and e4. The unit vector e, is directed
outwards from the cootdinate origin O to point P, the unit vector e, is normal
to the line OP in the plane containing the z-axis and OP, and in the direction of

increasing 6. The unit vector e, is tangential to the circle shown in Figure 0.2

—~inte in the direction of increacine A
aﬁu POILIIS 11 UIC WELLUDIR VL ibivasiilg .

The coordinates (r, 6, ¢) are related to Cartesian coordinates by

x=rsinfcos¢
y =rsinfsin¢

z=rcosb

The values of r, 6 and ¢ are restricted as follows:

r=90
0<6<n
0<¢<2n

0.3.1 The Dot (or Scalar) Product
The dot product of two vectors u and v is

u-v=[ul|v|cosé 0.2)

z-axis

]
\




6 * MODELLING MOLECULAR STRUCTURES

where 8 is the angle between u and v, and |u], |v| are the magnitudes of the
vectors. If u . v = 0 and neither of u and v is a zero vector, then we say that y
and v are orthogonal.

PP T

Dot products obey the rules:
u-vy=v-u
u-{v4+w=u-v+u.-w
and the Cartesian unit vectors satisfy
e -e =¢, e, =¢€ -¢ =1
e.-e,=e,-e,=¢e;,-¢=0
It follows that the dot product of u and v can be written
UV = UyUy + Uyy + U0,
and the modulus of vector v is
V=02 = (o + 02 +42) -

It also follows that the angle between the vectors u and v is given by

Uy + UyVy + U0,

cosf = (0.3)
172 72
(@+u2+u2) " (2402 + )
0.3.2 The Cross (or Vector) Product
The cross product of itwo vectors u and v is
u X v=|u||v|sinfn . 0.4)

sxirlanan N ~in o e P R |

where 6 is the angle between u and v and n a unit vector normal to the plane
containing the vectors u and v. The direction of this unit normal is given by the
direction in which a screw would advance if rotated from the direction of u to
the direction of v.
The cross product obeys the laws:
uxv=-vxu
cux(v+w)=uxv+uxw

The Cartesian unit vectors satisfy

— e —a wa —0
x X €& =%, Xe, =€ Xe =V

e Xey=¢€;,e, Xe =¢€,&e xe =¢e,
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and in terms of Cartesian components

u x V= (uyv, — uzvy)ex + (Uvy — uzvr)ey + (Urvy — uyvy)e, 0.5)
Fuxv= 0 and neither u not v is a zero vector, then u and v are either parallel
or antiparallel.

lar and Vector Fields

A field is a function that describes a physical property at points in space. In a
scalar ﬁeld this physical property is completely described by a single value for

temperature, densgity, electrostatic notential). For vector field
eacn puuu \y 5 WCHpliaie TSIy, powiiiayy Jnopuu,

both a direction and a magmtude are required for each point (e.g. gravitation,
electrostatic field intensity).

0.4 VECTOR CALCULUS
0.4.1 Differentiation of Fields

Suppose that the vector field u(¢) is a continuous function of the scalar variable
t. As t varies, so does u and if u denotes the position vector of a point P, then P
moves along a continuous curve in space as ¢ varies. For most of this book we
will identify the variable ¢ as time and so we will be interested in the trajectory
of particles along curves in space.

By analogy with ordinary differential calculus, the ratio du/d¢ is defined as
the limit of the ratio du/8t as the interval 8¢ becomes progressively smaller.

du — lim su
dt 8t
. ! Sut, Suy Su, 0.6
= 1im L-(gex -+ yey -+ —3761) ( . )

Figure 0.3 Movement along a curve in space
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The derivative of a vector is the vector sum of the derivatives of its components,
The usual rules for differentiation apply:

——(u+v) §E+ﬂ
dr
du
d df du
_t(f) E“‘Ffa?

0.4.2 The Gradient

Suppose that f(x, y, z) is a scalar field, and we wish to investigate how f changes
between the points r and r + dr. Here

dr=e,dr+e,dy+e,dz
We know from elementary calculus that
af = (N aey (2N ay 4 () e
Vax ) " \ay) 7 " Nz )
so we write df as a scalar product,
of of of .

df = (——ex+ &t 3

5 )-(exdx+eydy+ezdz)

The first vector on the right-hand side is called the gradient of f, and it is written
‘grad f’ in this text.
af af af
df=-— - — 0.7
grad f 8xeerayeerdZez 0.7
An alternative notation involves the use of the so-called gradient operator V
(pronounced ‘del’),

0 0 ) i~ o
V=—¢ — V.8
ax <t ('Jyey+ BzeZ R
and so the gradient of fis V f
In spherical polar coordinates, the corresponding expression for grad f is
af 10f 1 af
d f=— —e —e 0.9
grad f = e 5% T sing 0 ©9

grad f is a vector field whose direction at any point is the direction in which
f is increasing most rapidly and whose magnitude is the rate of change of f in
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that direction. The spatial rate of change of the scalar field f in the direction of
an arbitrary unit vector e is given by e - grad f.

0.4.3 The Laplacian

It is worth noting at this point that the Laplacian operator V? = V - V plays an

. tant vnla in ﬂ'\is text; In Cﬁﬂesian Coordinates_
important 10:C 11 12 7

Pf  Pf  ¥f
2p
=(V-Vf=-5+-5+-% 0.10
V=0 =5 ot s 0.10)
and in spherical polar coordinates
Vif = _l_i)_ rzy\ + 55— Sin@—f\ + — ]: 0.11)
: r2or \\ or/ r?sinf36 \ 30 ) ' r2sin®6 o¢?

0.4.4 The Divergence

The divergence of a vector field u, written div u, is given in Cartesian coordi-
nates by
divu=s —+ 24+ 2 0.12)

It is often written in terms of the V operator as V - u.

0.4.5 The Curl

The curl of a vector field u, written curl u, is given in Cartesian coordinates by

\ N\ N\

/0. n. . / L. L2 7/ A, ..

ou ou. ou ou ou. ou
crlu= [ —2 — —%e —~_Ze —i——y)e 0.13
(81 8y) t ax 0z ¥ ay ax )" ( )

It is often written in terms of the V operator as V x u.

04.6 Flux

Figure 0.4 shows a vector field u on which I have drawn a surface S. The surface
could correspond to a real physical boundary (such as a metallic surface, or the
boundary between air and water), or it could just be an abstract entity. Lines of u
cross the surface, and we speak colloquially of the flux of u through the surface.

Again speaking colloquially, the more lines through S, the greater the flux. I will
ﬁave cause to mention flux in this volume, so we need to investigate the concept
in more detail.

Depending on u and its relation to the surface, the lines of u will not necessarily
all have the same orientation with the surface, and the modulus of u will not
necessarily be the same at all points on the surface. What I do is to divide the
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////r

Figure 0.4 Flux of vector field through surface

surface S into small elements 8Si, 8S,, ... as shown. On each of these smaj]
elements such as 6S; I draw an outward normal as illustrated in Figure 0.5.
The flux of u through 8S; is defined as u - n S, that is the projection of the
vector field along the unit normal for §S; multiplied by the area of 8S;. It s
usual to define a surface element 8S = n éS.
If we calculate the sum of all such contributions

Z u; - 5S,'
and let the 8S; become infinitesimally small, then we get the flux of u through S:

<I>=/u-dS (0.14)

I have used the accepted symbol @& for flux. Obviously the evaluation of such

integrals is no easy matter; it is discussed in all the advanced calculus texts.
There are a couple of interesting points. First of all, if the surface is a closed

surface (an ellipsoid rather than the ellipse shown in Figure 0.4), then we often

'//',’-Vn

88,

Figure 0.5 Construct needed to discuss flux
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write the expression
¢=7{u-ds (0.15)

If the closed surface is such that it encloses neither sources nor sinks of u, then
the fux of u entering the surface is exactly equal to the flux of u leaving the

surface and sO ;
?5 u-dS=0

=y Yooy AXETLN AT A s 7% S

0.5 NEWTON’S LAWS OF MOTION

=B

Problems in classical mechanics can be solved by the application of Newton’s

three laws, which can be stated as follows.

1 Any body remains in a state of rest or of uniform motion unless an unbal-
anced force acts upon it.

arats favraa I 3

1 ie
T nrdar tn make a hadv af mace 20 1 r\d O an acceicration a’ a force I is

ﬁ 1 OIGCI WU IlianT a UVUy Ul Lidos 17t unk

required that is equal to the product of the mass times the acceleration. In

symbols
F = ma. 0.16)

I When two bodies A and B interact with each other, the force exerted by
body A on body B, F4 on B, is equal and opposite to the force exerted by
body B on body A, Fg on A

Bodies move under the influence of forces; we often use the term statrics when
dealing with situations where the resultant force on a body is zero.
0.5.1 The Force and the Potential

According to Newton’s second law, a force F acts on a body of mass m to
produce acceleration a according to the law

F =ma
which we can also write in terms of the position vector r of the body as

d’r
F= mos 0.17)
'You are probably au fait with the principle of conservation of energy, which
introduces the idea of the potential energy U. The kinetic energy and the potential
energy of the body can each vary, but their sum is a constant that T will write .

Im* +U =¢ (0.18)
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The problem now is to relate U to the force F. Suppose to start with that we g,
dealing with motion in the x direction, so that v = dx/dr. We then write

1 7/ A\2
m(=)+U=5s
2m(dt)

Differentiating either side with respect to time, we find

d (1 [dx\?

and so
dx d2x n dUu 0
m—— e
de dr2 ~ dr
This can be rewritten
dxd®x dUdx —0

"adr T axar

dx (12_x+d_U _()
a\"ar T )T

and so

This means that dx/df =0 or

d’x dU
m—+—=0
dr“ ax

Using Newton’s second law, we see that

au
dx

which is the fundamental equation relating the force F and the potential energy U.
Forces are vector guantities and the potential energy IJ is a scalar quantity.

For a three-dimensional problem, the link between the force F and the potential
U can be found exactly as above. We have

F = (0.19)

d2
m— +grad U=10
dr?
which gives the more general link between force and mutual potential energy.
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0.6 BASIC ELECTROSTATICS

At various points throughout the text, I will have to refer to some of the basic
ncepts and results of classical electrostatics. This is the field of human endea-
e?m that deals with the forces between electric charges at rest, the fields and

clectrostatic potentials produced by such charges, and the mutual potential energy

¢ an array of such charges. To get us going, consider two point charges Q4 and
o

g as shown in Figure O 6.
?amt charge Qa is located at vector position ra and point charge Qp is at

vector posmon rg. The vector joining Qa to Op is also shown: rg — ra points

in the direction from Qa to Op.
The basic law of electrostatics is Coulomb’s law, which relates the force

between these point charges

0.21)

F(Qa on Q) =

Here €, is a fundamental constant called the permittivity of free space. To three

decimal places,
€0 =8.854 x 1072C* N1 m™? 0.22)

According to Newton’s third law, this force should be exactly equal and opposite
to the force exerted by Op on Qa, and this is seen to be true from the elementary
theory of vectors; (ry —rg = —rp + ) and so

1
F(QOp on Op) = e OAQs

0.6.1 Pairwise Additivity

If we add more and more pomt charges QOc, Op, . - . then the forces between the

At

An nn A thhn £~
uv 1ivt b 50, ana So e LULal 101ce aciliyg on gA lb glVCll

r,—r

QA.\ B Ta

Figure 0.6 -Construct needed to discuss the force between two point charges
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by the principle of superposition:

F(All point charges on Q) = ——QA Z 1 T | 3 (023}

0.6.2 The Mutual Potential Energy

Provided that the charge distribution does not change with time, then the dema./
tion given above that links the force to the mutual potential energy also applies

We can therefore define a mutual potential energy U for two point charges Q&
and Qp given by

F(Qp on Qa) = — grad U

where the differentiation is with respect to the coordinates of Qa. Algebraj
manipulation shows that U is also given by

(Qa on Qp) = —grad U
where the differentiation on the right-hand side is now with respect to the coor-
dinates of Op and so U is truly the mutual potential energy of the point charges
Oa and QOp. It is often written as Uyg, for that reason.
For a pair of point charges, Upp is given by
1 1
Uap = ——0n0p——— (0.24)
4mep [ra — rp|

The physical significance of Uap is that it represents the work done in bringing
up QOp from infinity to the point whose position vector is rg, under the influence
of Oa which is fixed at ry. Because of the symmetry of the expression, it also
represents the work done in bringing up point charge Qa from infinity to the
point with vector position ra, under the influence of point charge Qp which is
fixed in space at position rg.

0.6.3 The Electrostatic Field

The electrostatic force exerted by Qs on Op (as discussed above) is
1 I'p —ra
F(Qa on Op) = ——QaQp—— 2
4rey [rg —ral

We can give this equation a different interpretation if we divide left- and right-
hand sides by Qg,

F(Qa on Og) 1 rg—ra .
= Oa 3 (0.25)
Op dmey~ |rp —ral
The right-hand side does not involve Qp, and we say that Qo generates an
electrostatic field E at all points in space. The field is present at points in space
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O =Ty

P

Point in
space

%gin

.ro 0.7 Electrostatic field

oye
122

s

irrespective of the presence or absence of Qp. For that reason, we define the
ratio on the left-hand side of the equation as the electrostatic field, and remove
all mention of Qp according to Figure 0.7.

The point in space has position vector r, and the field exists because of the
presence of Qa. In order to measure the field at that point, we introduce a point

caes pharae On and measure the force exerted on it bv O, . The ratio F/Or givec
LUB*« \,u‘u&v P~ » B e s ~ TN OTARVEMYRS ML AV V) XA AUV iuuvy AT XD BAYVY

the field.

0.6.4 The Electrostatic Potential

Just as it is useful to replace the force between two point charges by their mutual
potential energy U, so we can replace the electric field by a more general quantity
called the electrostatic potential ¢. This is related to E in the same way that U

isrelated to F

(0.26)

For a set of point charges O at ra, Op at I'p, . .. the expression generalizes to

0.27)

1
47[60 ir,- —I‘i

1
)= —> 0Oa
J

0.6.5 Charge Distributions

When we have to deal with charge distributions rather than point charges, the
definitions have to be generalized. What we do is to divide continuous charge
distributions into differential charge elements p(r)dr, and then apply the basic
formula for the electrostatic field, and so on. Here, dt is a differential volume
element. Finally, we would have to integrate over the coordinates of the charge
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Point in
space

Origin
Figure 0.8 Field due to charge distribution

distribution in order to find the total electrostatic field, and so on.

1 (r—ra)
E@r)=— /pA(r)-——-g dr (0.28)
47‘[60 II‘A - r|
T ikewice tn find the mutiial natential enerav of twa charae dictrihitione o, (v, }
ikewise to find the mutual potential energy of two charge distributions pa(ra)
and pg(rg) we would have to evaluate the integral
1 // 1
U(pa, pB) = — pa(ra)pp(rp)—— dradrp (0.29)
a7€y JJ ITA — I'B|

The integration has to be done over the volumes of the charge distributions A
and B.

0.7 THE SCHRODINGER EQUATION

If we have a single particle of mass m moving under the influence of a potential
U, then we concern ourselves in quantum chemistry with solutions of the time-
dependent Schrodinger equation

h? (32\1: Pw a2\p) v JhoY

— = 0.30
+ + T 0.30)

8n2m \ ax2 ' 8y2 = a2

In this equation, the wavefunction W(x, y, z, t) depends on the spatial and time
variables x, y, z and ¢. (I will use the symbol j for the square root of —1,
j% = —1, throughout the text.)

In cases where the potential is time-independent, we find that the wavefunction

can ha factorized into genace- and time-denendeant narte
Cadll OC 1aCiOIILCU RO S5pace- aiil uiiC-Glpeniliit pains

W(x, y,z, 1) = ¥(x, y, 2)T(t) (0.31)
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which individually satisfy the time-independent Schrédinger equation

>y 32 32
- ‘”\ L UY =y
m \ 0x?
and also Chodr
' A, ET
ZJt Ul

In the theory of differential equations, the quantity ¢ is called a separation
wnstant Here it is equal to the energy of the system. The latter equation can be

oiva

instanily solved to give

T =Tyexp (—jg—;—rﬁ> . 0.32)
Wavefunctions are often complex quantities, and we have to be careful to distin-
guish a wavefunction W from its complex conjugate W*. For most of this text,
wavefunctions will be real quantities and so we can drop the complex conjugate
sign without lack of mathematical rigour.

Schrodinger’s equations are usually written in a more succinct manner by
invoking the Hamiltonian operator H, so for example the time-dependent equation

far a sinole narticle
for a single particle

®oPv P Pu h 3¥
——<—+3 T )+U\p—’——

8m2m \ 9x2 az2 27 ot
becomes —
HY = Jho¥
2w Ot

and the time-independent equation for a single particle

h2 821// 32 32,(//
~ 5 o2 + P 3 + Uy =¢y
becomes X
Hy =¢y

For almost this entire book, we will be concerned with cases where there is a
discrete number of solutions to the equation above, when the equation is then
usefully rewritten

Hy; = e (0.33)

The number of solutions can be finite or infinite. Other situations arise where the
solutions form a continuum of values.

The Hamiltonian operator is the quantum-mechanical analogue of the energy,
and we say that the allowed values of the energy, the ¢; above, are the eigenvalues



,_a
[o%)
-
h
@]
|}

of the operator. The y; are called the eigenvectors or eigenfunctions of the
operator.

In order to determine the operator, we first write down the classical energy
expression in terms of the coordinates and momenta. For the electron in a
hydrogen atom, the classical energy is the sum of the kinetic energy and the
mutual potential energy of the electron and the nucleus (a proton)

p2 e2

2m.  4megr

(0.34)

We then replace the square of the momentum, now treated as an operator, as
follows

h2
n2 oy __ 2 (0 .25\
1.’ td 2 \U-JJ}
8m12m,
giving the Hamiltonian operator
n? e
H= 5— V2 (0.36)
8m2me, Aegr
0.7.1 The Variation Principle

One of the great difficulties in molecular quantum mechanics is that of actually
finding solutions to the Schrodinger time-independent equation. So whilst we
might want to soive

Hy; = ey

in order to find all the energies ¢; and wavefunctions i, mother nature very
often prevents us finding these solutions especially where three or more bodies
are involved.

Suppose that v is the lowest energy solution to the Schrédinger time-indepen-

dent eauation for the nroblem in hand. That ig to cav
aent equation Ior the proo 1 hand. 1nat 1s {0 sa

AN iid AL J

Yo Yo = eo¥i v

and integration over all of space (represented as [ ---dr) gives

[ virmar =z [vipoce
This equation can be rearranged to give

_ J¥tHYodr

[k dr
J TogTVY

€0 ©.37)
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which is at first sight an alternative formula for finding the eigenvalue &;. It isn’t

a tn the n1nnnnq|nn hecange an inteoration ig invalved hut if
a Vefy pl'd(-«l.lbdl route to ne Siglivaiud, ooeaust an uuvsnuuvu 15 INVOLIVCG, OuUt 11

we have an approximation 1//0 to the correct wavefunction v then the variation
principle says that the variational integral

J Ilfoﬂ Yo dr
f Iﬂo‘/’o dr

is always greater than or equal to the true energy. The two wavefunctions v
and o have to satisfy the same boundary conditions, and have to correspond to

the lowest-energy solution for any given symmetry.
So, for example, you probably know that the lowest-energy solution for a

hydrogen atom is
[ 1 r
TTay ap

This satisfies the electronic Schrodinger equation exactly, giving

Ay, = — (1" Wls

\ 8e3h2

(0.38)

(The symbol ap is the first Bohr radius, approximately 52.9 pm, and ¢, is the
permittivity of free space.) As we will see in later chapters, Gaussian orbitals are

2
Y = Ng exp (—a—2—>
%
which are often used instead of hydrogenic ones when dealing with molecular
quantum-mechanical problems. The quantity « is called the Gaussian exponent.
Gaussian orbitals have the correct boundary condition at r = oo, but don’t satisfy
the electronic Schrodinger equation for a hydrogen atom. Calculation of the
variational integral

_ Jvefycdr
J¥évede
gives
3h%a 226 /a

8m2meal  Amepn/mag

gcla) =
Every positive choice of « will give a variational energy higher than the true

energy, and the best value of o occurs when

dég(e)  3h? 12722712
do 8m2meal 2 dmeo/map

Simplification and evaluation
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0.8 SYSTEMS OF UNITS
0.8.1 The Systéme International

It is usual these days to express all physical quantities in the system of unitg
referred to as the Systéme International, SI for short. The International Unions of
Pure and Applied Physics, and of Pure and Applied Chemistry both recommeng
SI units. The units are based on the metre, kilogram, second and the ampere
as the fundamental units of length, mass, time and electric current. (There are
three other fundamental units in SI, the kelvin, mole and candela which are the
units of thermodynamic temperature, amount of substance and luminous intensity,
respectively.)

Other SI electrical units are determined from the first four via the fundamenta]
constants €y and o, the permittivity and permeability of free space respectively,
The ampere is defined in terms of the force between two straight parallel infinitely
long conductors placed a metre apart, and once this has been defined the coulomb
must be such that one coulomb per second passes along a conductor if it is
carrying a current of one ampere.

It turns out that the speed of light in vacuo co, €p and pg are interrelated by

1

/€ 11
/ €0H0

co = (039)

and since 1983 the speed of light has been defined in terms of the distance that
light travels per unit time. This speed of light in free space has the exact value

co = 2.99792458 x 108 ms™! (0.40)

We are going to be concerned with electrical and magnetic properties in this text,

N . wanartd tha findamanial famnn Tawe far abatinnary charonc
so I had better yuL On recora tne tundaamentar 10rce iaws 101 bl.auuum_y cnarges

and steady currents. These are as follows.

1 g —Ia
P rs — AP

is the electrostatic force exerted by point charge Qa on point charge Qg, where
ra is the position vector of Qa and rg is the position vector of Qp. I discussed
this above, and you should be aware that this force is exactly equal and opposite
to the force exerted by O on Qa.

The corresponding force between two complete electrical circuits A and B is

I'p —I'a

F(Circuit A on Circuit B) = IAIB:L—;; j{j{ dlg x (dlA X ) (0.41)

rg —ral?
This is a much more complicated force law, because the integrations have to be
done around the complete electrical circuits A and B. The details of the integration
do not matter, the point being this. Because ¢y and g are interrelated, we are
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free to give one of them an arbitrary value. In SI we choose arbitrarily to make

o =47 x 107"Hm™! (0.42)

0.8.2 Gaussian Units

The most commonly used system apart from SI is the cgs system based on the
centimetre, gram and second as the only base units. The unit of force is the dyne,
and the unit of energy is the erg. In electromagnetism, SI is associated with an
independent base quantity of current, whereas cgs is associated with current as
a derived quantity.

The system of quantities usually associated with cgs units is called the Gaussian

AAAAAA that associated with ST is often called 4D.
Syb“;;u, tnat a

There is usually no problem in converting between 4D and Gaussian quantities
until we have to consider electrical and magnetic phenomena. In the Gaussian

system we take the proportionality constant in Coulomb’s law to be unity (a

number),
—TIa

I —r1al?

cgs(QA on QB) = QAQB

and this means that derived equations have a different form. The unit of charge
is called the electrostatic unit (esu). If we have two charges each of magnitude
1esu separated by a distance of 1cm, then each charge experiences a force of
1dyne. The electric field is measured in statvolts cm™.

As a rule of thumb, be wary of equations that have a (—e)? but no 4meg, and
of equations that relate to highly symmetrical charge distributions but seem to
have a 4 too many.

It gets worse with magnetic properties, and the Lorentz force

F=QE+v x B) (0.43)

nene mauction

dimensions as the electnc field E, namely force per length. In the Gaussian
system, the Lorentz force law becomes

is written in such a way as to make the magnph duction B have the same

/ 1 \
-F=QKE+C_OVXB) (0.44)

So, as a final aide-mémoire, beware of magnetic equations that have a ¢ in them.

A anick convarcion tahla oivan in Tahla N1 Tt :1on’t Al Tt vy
43 UL Ludiveiosivil favic 18 slveil i 1a0i€ Ui, atisn't bUlulJlCuCllbl VC, UuL yvu

should find it useful. Unfortunately, many texts dealing with molecular modelling
still use the cgs system.

0.8.3 Hartree’s System

One problem in molecular modelling calculations is that large powers of 10tend
to appear in all the calculated quantities. Thus, for example, molecules have
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Table 0.1 Conversion factors between SI and cgs units (taking the speed of light in free
space as 3 x 108 ms™! instead of 2.997 92458 x 108 ms~!

No. of cgs units

Quantity ST unit cgs unit in one SI unit
Force newton dyne 10°
Energy joule erg 107
Charge coulomb esu 3 x 10°
Current ampere esus! 3 x 10°
Potential volt statvolt 1/300
Electric field E volt metre™ statvolt cm™! 1/3 x 10%)
Magnetic induction B tesla gauss 10*

masses of typically 1026 kg, ions have charges in multiples of 1.6 x 10~1°C,
and so on. In many engineering applications it is normal to reduce an equation
to dimensionless form and this is in essence what I will now describe. It is

nat mandatary that vann chanld 1indarctand Wartran’e ouctam of hit yon
1uuvL 1uauuuLu1_y Liiav _yuu olivulyg uuu\AoLauu iliaiuuve o byDLVlLl UL uuuo, vulL _yvu

will understand the output from many molecular modelling packages a lot more
easily if you study this section.

The ‘atomic unit of length’ ag is equal to the radius of the first Bohr orbit
for a hydrogen atom (and is usually called the bohr), whilst the ‘atomic unit of
energy’, the hartree Ey, is twice the magnitude of the energy of a ground-state
hydrogen atom. This also works out as the mutual potential energy of a pair of

electrons at distance aq apart.

In terms of the electron rest mass m, and the electron charge we find

€0h2
ay = 5 (0.45)
Tme €
and
o2
Ep = - (0.46)
41TEeRaQ
Table 0.1 shows such ‘atomic units’. The accepted values of the SI constants are

themselves subject to minor experimental improvements, so authors generally
report the results of molecular modelling calculations as (e.g.) R = 50ay and
give the conversion factor to SI somewhere in their paper, usually as a footnote.

As 1 mentioned above, it is conventional in many engineering applications
to seek to rewrite basic equations in dimensionless form. This also applies in
quantum-mechanical applications. For example, consider the time-independent
electronic Schrodinger equation for a hydrogen atom

n» o, &
pa— V _ — y
( 87[2me 4JT€0r> Val(r) a1 Pel(T)

(Notice that I have been very careful to use the symbol ¢, for the permittivity of
e

free space and the symbol ¢ to denote a

1 energv
TEETROJ

N7
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Table 0.2 Hartree atomic units

Physical quantity Symbol X Value of X
length Lx,yzr a 52918 x 10~''m

mass m me 9.1094 x 10~ kg

energy £ Ey 43598 x 10~18]

charge o e 1.6022 x 10~19]

electric dipole moment pe cdo 8.4784 x 10 Cm
e}ectric quadl'UPOIe moment 0. eaé 4.4866 x 10740 Cm?
electric field E Ene'ap’ 5.1422 x 10" V™!
electric field gradient Ve Ene~lay? 9.7174 x 102! V=2
magnetic induction B (h/2m)e~'a;? 23505 x 10°T

electric dipole polarizability o éa (%E; 1.6488 x 101 C2 m2 J-!
magnetizability £ ez azm;! 7.8910 x 10-2] T2

The energy ¢ and the distance r are both real physical quantities, with a measure
and a unit. If we define the variables ry = r/ag and &g = €/E}, then both req
and eeq are dimensionless. The idea is to rewrite the electronic Schrﬁdinger

S Sy tarma nf tha Aimanginn lagq varia hlag giving a miiph gimnlar Arran

qudl.lull 111 terms O1 tnc uuucuouuuvoo vauauxco, 51v1us a 11iuvii Dllllylbl uliiivii-

sionless equation,

1 1
(—— id — \ 1//;-1 ,red (l‘md) = Eel,red 10.31 red (l'md)
\ 2 Tred/

I am afraid that it is common practice for people to forget about all the consid-
erations above, write down the equation as

1
(_ivz - —) Vel (r) = ge1eal(r) (0.47)

and quote the results of their caiculations as if they were true distances, energies
and so on. They are reduced quantities and so are dimensionless.

Even worse is the confusion regarding the wavefunction itself. The Born
interpretation of quantum mechanics tells us that ¢¥*(r)¥(r)dr represents the
probability of finding the particle with spatial coordinates r, described by the
wavefunction ¥(r), in volume element dt. Probabilities are real numbers, and so
the dimensions of ¥(r) must be of (length)=3/2. In the atomic system of units,
we take the unit of wavefunction to be ay~>/2.

For your guidance, Table 0.2 will help you convert between the results of
some molecular modelling packages and SI. The first column gives the physical
quantity. The second column shows the usual symbol. The third column gives
X, the collection of physical constants that correspond to each quantity. This
collection is not unique, but the value given in the fourth column is unique.
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You were probably taught very early in your professional career that skills in
quantum chemistry are a prerequisite for the study of atomic and molecular

en’t comnletel

mugt tell von that thig 1 v trme
Wil yUU uidi uiis 1oil v CULLIPITICE Yy uul.

phenomena. I must i
phenomena can be modelled very accurately indeed using classical mechanics,
and to get us started in our study of moiecular modeliing, we are going to study
molecular mechanics. This aims to treat the vibrations of complex molecules
by the methods of classical mechanics, and as we shall see, it does so very
successfully.

Molecular mechanics is known by the acronym MM.

Some molecular
SOme molecuiar

Consider first of all a very simple classical model for vibrational motion. We
have a particle of mass m attached to a spring, which is anchored to a wall.
The particle is initially at rest, with an equilibrium position x. along the x-axis.
If we displace the particle in the +x direction, then experience teaches us that

there is a restoring force exerted by the spring. Likewise, if we displace the
pariicie in the —x direction and so compress the spring, then there is also a
restoring force. In either case the force acts so as to restore the particle to its rest
position x.
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For very many springs, the restoring force turns out to be dlI’eCﬂy proportional

o digsplacement x — x.:
o the aispiacciiedit

Fy = —ki(x — x)

and this is known as Hooke’s law. The proportionality constant ks is called the
force constant. Not all materials obey Hooke’s law, and even those materials that
do, show deviations for a large extension. It is a good place to start our study
of molecular modelling as it turns out that molecules vibrate in much the same

,,,,,, aq particles attached to Qnﬂnac pcnpmal]v when thev make small excursions

way as paltliits ailallichs 10 SPRiligs, Lopttially WAL MAC) 1Hakt Siiall CALUISIONS

from their equilibrium positions. We therefore set the particle in motion along

the horizontal (x) axis.
According to Newton’s second law, force is mass times acceleration

FemdX (1.1)
= m—
dr?
and so the motion of the particle is described by the second-order differential
equation
d?x
mE = ks(x — xe) (1.2)

This differential equation has solution

X =X + Asin (\/Et\ + Bcos [4/Et] (1.3)
\Vm) LVAm/ |

where A and B are constants that have to be determined from the so-called
boundary conditions. These constants need not concern us here; we find them by
substituting known values of x at known times and so on.

The quantity +/ks/m occurs again and again in the treatment of vibrational

motion. It has dimension units of (time)~! and so it is an angular frequency.
It is often called the (angular) vibration frequency of the gystem, You might

OLtC Lall00 1AL \alghial viDIallQl LICHRLlLy o1 UK Siviii, IVW L

have been expecting me to write angle (time)~! for the d1mens1on of /ks/m, but
angles are dimensionless quantities, being defined as the ratio of arc length to
circumference; the SI unit of angle is the radian.
We call
1 kS
=—4/= 14
Vel = o ( )

1€ classical vibration frequency of the sysiem.

111 The Potential Energy

I explained the connection between force and potential energy in Chapter 0. For
a one-dimensional problem

F=—— (1.5)
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In the case of a Hooke’s law spring where
Fs = —ks(x — X¢)
vou should be able to nrove tha
you should be able to prove that
U= U+ Jks(x — xc) (1.6)

where Uj is a constant of integration. If we can define U = 0 when x = 0, then
this constant of integration is zero.

1.1.2 A Diatomic

The next step is to consider a more obvious model of a vibrating diatomic, where

we have narticleg af maggeg 72: and m1- iained hy a enring that nheve Hanke’q law
W€ Nave pariiCies OI Masses mj and mi; jJoIea Oy a sprinig wnal 00CYySs 100K § 1aw.

The horizontal axis is the x-axis, and the x coordinates of the two particles are
x and x,. The equilibrium spring length is R.. If we now pull the two particles
away from each other such that the length of the spring is R (which is given
by x, — x1), then the spring exerts a restoring force on both atoms. In particular,
the spring exerts a restoring force of magnitude ks(x» — x; — R,) in the direction

of increasing x; on particle 1, and a force of magnitude ks(x, — x; — Re) in the
direction of decreasing x on particle 2.

direction of decreasing x on particle
According to Newton’s second law we have
d2x1
my—— = ks(xs —x1 — R,)
ar=
and R
dLX2
2 ar? = _ks(x2 — X1 — Re)
If we subtract and rearrange, we get a more interesting equation,
dx,  dx k k
S — =3 =——m—x1—R)— —(n—x —Re) (1.7)
dar- dr- my my
which can be rewritten in terms of the bond length R = x, — x3,
R (1 TN o R
— ==k | — + — —R 1.8
i om Y ) ¢ e) (1.8)
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This equation has exactly the same form as the equation of motion for the single

that tha radicad m 11 ranlacac tha macg of the cinole narticla
pal'u(,lc, CA\A«PL tnatl tne requces mass M LVPIAvus LIV 1LAOD Vi WiV DLIgIv pal uvx\/,
where
1 1 1
— =t — (1.9)
1 my my

The general solution is

eerssss [ [ o[} o

N~/ v N/

and a diatomic molecule undergomg such s1mple harmonic motion has an angular
frequency of +/ks/u, which is exactly what we would expect for a single particle
with mass equal to the reduced mass.

1.1.3 The Mutual Potential Energy
The total energy, kinetic pius poteniial, of the system is easily shown io be
1 (da\* 1 (dop)> 1 )
=-m (=) +=my (== ) + zkp—x1 — R 1.11
€ zml(dt>+2m2(dt>+zs(x2 X1 —Re) (1.11)

To check that the equation for ¢ really does obey the law of conservation of
energy, we differentiate with respect to time as follows:

2 2
s:l,% (1) +1mA (92 +1k<(xn_x1_1ge\2
Ndr ) 27\ad /) 2777 ’

de dx1 dle dX2 d X2 (dxz dxl)
R k — R —= - —
@~ My ap Ty e T a R

dr dr |
Collecting terms in dx; /d¢ and dx,/dt we find

de d2x1
o \Mgz
dt \

dx
ks<xz—x1—R))—+(2—+k<x2—x1 R)) 5

and each term in the large brackets is zero, showing that the energy is a constant.
The term
U = 3ks(r —x1 — Re)? o
) v 5 (1.12)
= 3ks(R — Re)

is the mutual potential energy of the two particles. It is related to the forces
actino an each nartinle as Fn"n wQ
acting on each particl lows
ou
Forceon 1 = ——
dx;
F 2 ou (1.13)
orceon 2= ——— .
dx;

This gives us the general rule for relating force to mutual potential energy: you
differentiate the force with respect to the coordinates of the nﬂrﬁr‘]e of interest.
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1.2 NORMAL MODES OF VIBRATION

Consider now two particles connected by two springs, as shown in Figure 1.3,
Let’s call the force constant of the ieft-hand spring k; and the force constant of
the right-hand spring k,. The equilibrium position corresponds to the two masses
having x coordinates x; . and x, .. When we stretch the system, the two springs
extend and I will call the instantaneous positions of the particles x; and x;.

The left-hand spring exerts a restoring force on particle 1 of

—ki(x1 — x1e)
The right-hand spring is stretched by an amount (x, — x;) and so it exerts a force
ka(xp — X2e — X1 + X1¢)

This force acts to the left on particle 2 and to the right on particle 1. For the
sake of neatness, I can write

Y. - -
A

= X1 — Xie

Xo=x) — X2

and so ,
d“x
kX, —X1)— kX, = ml—d;gl
(1.14)
oo s d’X,
—ko(&2 —Xp) = mz'a;'z’

There are many different solutions for X; and X, to this pair of coupled equations,
but it proves possible to find two particularly simple ones called normal modes
of vibration. These have the property that both particles execute simple harmonic
motion at the same angular frequency. Not only that, every possible vibrational
motion of the two particles can be described in terms of the normal modes, so
they are obviously very important.

Having said that, it proves possible to find such solutions where both particles
vibrate with the same frequency; let me assume that there exist such solutions to

Wza

Figure 1.3 Figure for discussion of normal modes of vibration
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the equations of motion such that
X)) =A Sil’l(a)t + ¢1)
X,(t) = Bsin(wt + ¢,)

hare A R . and ¢, are ¢
wnere 4, £, ¢ allt @ alt L
conditions.

Differentiating each of these two equations twice with respect to time gives

d—2X1 (-’) 2 .
arra = w Asin(wt + ¢1)
2 (1.16)
Xo(t
—T}(—) = w’Bsin(wt + ¢)
ul
and substituting these expressions into the equations of motion gives
ki +k k
athley By, o _ox,
m my
' L (1.17)
2X) — =X, = —w’X;
my my

It turns out that these two equations are valid only when @ has one of two
possible values called the normal-mode angular frequencies. In either case, both

particles oscillate with the same angular frequency.
T

nrdar ta fin of vihrats T ain “,r:ta

ot

Tn d tha normal maodec an am o o to a ahav,
1il UlULl LU 10U WL viiddal 1iivaed vl viviauavl, 1 auul s\}llls LU wWilllv UL auuy

c
equations in matrix form, and then find the eigenvalues and eigenvectors of a
certain matrix. In matrix form, we write

/ (kitk) ko

mi mq X 2 Xy
oo )= (®) am

my my
which is obviously a matrix eigenvalue problem. We have to find the two values
of —@? for which these equations hold, and then for each value of —w? we need
to find the relevant ratios of the coordinates. The results are rather complicated
and won’t be stated here.
There are thus two frequencies at which the two particles will show simple
harmonic motion at the same frequency.

1.3 THE QUANTUM-MECHANICAL TREATMENT

We now need to investigate the quantum-mechanical treatment of vibrational
motion. Congsider then a diatomic molecule with reduced mass u. The time-
independent Schrodinger equation is

&y 87%u
+ 1.2

-

e-Uyw=0 (1.19)

A2
UA
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where ¥ is the vibrational wavefunction and U the vibrational potential energy,
The obvious place to start the discussion is with the Hooke’s law model, where

U=Up+ zks(x — x)

Wa narmally talka the cangtant af intaoration I'/- ta he 20ra CSalution
A ALY uu,uuuu_y Lanv uiv Lvulioilalil vi lllt\aslul—l\lll UU [SVER PIVEV AV A VINRWAVIIPAN AV S

independent Schrodinger equation can be done exactly. We don’t need
ourselves with the details, I will just give you the results.

First of all, the vibrational energy is quantized, and we write the single quantum
number v. This quantum number can take values 0, 1, 2, ...

The vibrational energy levels are given by

AR [k, (120
&y = — = = .
27 kv 2) \/u )
The normalized vibrational wavefunctions are given by the general expression
2
VBIE\"
Vo(§) = ( oo ) Ho©exp(=£2/2) (12

where B = (2m+/pks)/h and & = /Bx. The polynomials H, are called the Her-
mite polynomials. They are solutions of the differential equation

2
&H 2&£ F2uH =0 (1.22)
dsz S dg n \1l.os)
and they are most easily found explicitly from the recursion formula
Hyy1(8) = 26H,(§) — 20H -1 (§) (1.23)

The first few are shown in Table 1.1.

The Hermite polynomials are well known in science and engineering.
Vibrational wavefunctions for the states v=0 and v=1 are shown in

Figures 1.4 and 1.5. For the sake of illustration, I have taken numerical

values appropriate to '2C'®0. The x-axis legend ‘variable’ is £. Note that the

v =0 wavefunction has a maximum in the middle of the spring. The v =1

wavefunction has a node at the midpoint.

Table 1.1
H,(§)
v=0 1
v=1 2&
v=2 48> -2
v=73 883 — 12¢
v=4 16&* — 48£% + 12
v=>5 3285 — 16083 + 120¢
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Wavefunctions by themselves can be very beautiful objects, but they do not
have any particular physical interpretation. Of more importance is the Born inter-
pretation of quantum mechanics, which relates the square of a wavefunction to the

probability of finding a particle (in this case a particle of reduced mass y vibrating

about the centre of mass) in a certain differential region of space. This probability
is given by the square of the wavefunction times dx and so we shouid concentrate
on the square of the wavefunction rather than on the wavefunction itself.

The square of the wavefunction for v = 0 is shown in Figure 1.6. And the
square of the wavefunction for v =5 is shown in Figure 1.7. '

The classical model predicts that the largest probability of finding a particle is
when it is at the endpoints of the vibration. The quantum-mechanical picture is
quite different. In the lowest vibrational state, the maximum probability is at the
midpoint of the vibration. As the quantum number v increases, then the maximum
probability approaches the classical picture. This is called the correspondence
principle. Classical and quantum results have to agree with each other as the

quantum numbers get large.

Square of wavefunction

Figure 1.6 Square of wavefunction for v =0
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Figure 1.7 Square of wavefunction with v =5

A plot of the square of the vibrational wavefunction with v = 30 is shown in
Figure 1.8.

The square of the wavefunction is finite beyond the classical turning points
of the motion, and this is referred to as quantum-mechanical tunnelling. There
is a further point worth noticing about the quantum-mechanical solutions. The
harmonic oscillator is not allowed to have zero energy. The smallest allowed
value of vibrational energy is (h/2m)/ks/u (0 + %) and this is called the zero
point energy. Even at a temperature of 0 K, molecules have this residual energy.

Spectroscopists usually talk in terms of wavenumbers rather than frequencies
or energies. A wavenumber is an energy divided by hcy, or a frequency divided
by ¢g, and so we refer to the classical vibrational wavenumber w, given by

1 [k
we = \/ = (1.24)
2mco \| 1
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Figure 1.8 Square of wavefunction for v = 30

Table 1.2

Dy 11.092eV

We 2169.8cm™!
WeXe 13.3¢cm™!
R 0.0308 cm™!
B, 1.9313cm™!
o, 0.01748cm™!
R, 112.81 pm

To take a typical diatomic molecule such '2C'60 in its electronic ground state,
Table 1.2 gives data from Herzberg and Huber’s compilation (1979).

The simple harmonic model gives a force constant of 4m2c3w?p and since the
reduced mass u = 1.139 x 1072" kg, ks = 1901.5 Nm~'. The potential energy is
therefore
x 1901.5Nm™ ! (Rco — 112.81 pm)? (1.25)

Ugo = 1 (1

and this is shown in Figure 1.9.
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Figure 1.9 Hooke’s law plot for CO

14 THE TAYLOR EXPANSION

It is useful at this point if we examine the Taylor expansion for a general diatomic
potential U(R) about the equilibrium bond length R..

s oaTTN P 7

UR) = U(R.) + (%)R, (R =R+ 5 (

\

°”) R—RP+-  (126)
R

dRr?
where the point R is close to R.. Symbols

such as (.
N\

1

d
calculate the first derivative and then evaluate it at the point R..
If R, is a minimum point then
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and

We often choose the zero of potential such that U(R.) = 0 and the term
/d20\

\& ).,

is called the harmonic force constant. As we shall see, we can include terms
beyond the quadratic term in the energy expression.

N =

1& THL MODRALT DOTENTTA
Lo AXAL, IVAUNDSLL T vUiiuvi

The harmonic potential is a good starting place for a discussion of vibrating
molecules, but analysis of the vibrational spectrum shows that real diatomic

2A10~18--\

1.5:10718+
o)
S
>
g
§ 110718f
E]
g
o3
s
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£.10-19

21U +

=\ / | |
810711 1-10710 1.2.10710 1.4-10710 1.6-10-19

Figure 1.10 Morse potential for CO
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molccules'do not vibrate as if they were simple particles at the ends of classical
springs- Professional spectroscopists would scoff at the idea of us.ing Hoolse’s law
as a model for the vibration. They would be more conge_rngx_l with matchlng _tife
experimental energy levels with a more accurate potential. Ma1‘1y such potentials
have been used over the years, with that due to Morse being widely quoted. The
Morse potential is as follows:

U = D.(1 — exp(—pBx))? (1.27)

where D, is the depth of the potential well, i.e. the dissociation energy, and

_we [2p
ﬂ_z\vpe

This potential actually contains three parameters, D, ks and R., and so should
be capable of giving a better representation to the potential energy curve than
the simple harmonic, which contains just the two parameters ks and R..

In the case of 12C!®0, a simple calculation shows that the dissociation energy

~ ~ . 11 /m N\
D. = Dy + 5h(2ncowe)

is 11.092 4+ 0.134eV. The Morse potential for >C!0 is shown in Figure 1.10.

1.6 MORE ADVANCED EMPIRICAL POTENTIALS

More often than not, the following spectroscopic constants are available for a
diatomic molecule:

R.  the equilibrium internuclear separation

D.  the dissociation energy

ks the force constant

weX. the anharmonicity constant (sometimes equated to x. only)

o,  the vibration~rotation coupling constant

and usually these five constants can be found to good experimental accuracy.

There are a number of three- to five-parameter potential functions in the liter-
ature, of which the Morse potential is the most popular; a typical five-parameter
potential is the Linnett function (Linnett, 1940, 1942):

UG = 5 —bexp(-ll 4 g1~ Dt gac— 17 (128)

The five parameters K, b, t, g; and g, can be related to the molecular constants.
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1.7 MOLECULAR MECHANICS

At this point, spectroscopists and molecular modellers part company because
they have very different aims. Spectroscopists want to describe the vibrations of
a molecule to the last possible decimal point, and their problem is how a force
Jield shouid be determined as accurately as possibie from a set of experimenta]
vibrational frequencies and absorption intensities. This problem is well under-
stood, and is discussed in definitive textbooks such as that by Wilson, Deciug
and Cross (1955). :

Molecular modellers want to be able to start from a given molecule and
make predictions about the geometries of related molecules. We saw above the
harmonic potential for 12C'60,

Uco = § x 1901.5Nm™" (Rco — 112.81 pm)>
Similar considerations can be applied to 2C32S to give
Ucs = 5 x 849.0Nm ™! (Rcs — 153.5 pm)?
and we might imagine that a sum of these two would describe the vibrations of

the linear triatomic molecule '80'2C32S (so long as we discount the possibility
of vibrations that bend the molecuie). That is,

U(OCS) = U(CO) + U(CS) (1.29)
or
Uocs = 3 % 849.0Nm™' (Rcs — 153.5 pm)>
+ 3 x 1901.9Nm™ (Rco — 112.81 pm)°

where the mutual potential energy now depends on the two independent variables
RCO and RCS~

The minimum of Upcs corresponds to the equilibrium geometry, and it is
very easy io see that it corresponds i0 Rcs = 153.5pm and Reo = 112.8 pm.
We might have suspected from our study of normal modes of vibration that the
two vibrations would not be independent of each other, so our first guess at a
triatomic potential is not very profitable.

We refer to models where we write the total potential energy in terms of
chemical entities such as bond lengths, bond angles, dihedral angles and so on
as valence force field models.

e s .
A Urey—Bradley force field is similar to a valence force fie

include non-bonded interactions.

Even for such a simple molecule, which I deliberately constrained to be linear
and where I assumed that the harmonic approximation was applicable, the poten-
tial energy function will have cross-terms.

U(OCS) = 3kcoRco — Re,co)* + skcs(Res — Recs)?

w2
N’
~~
o
[3%)
(=]
g
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where the off-diagonal force constant kco,cs couples together the CO and the
C§ vibrations.

For a non-linear molecule of N atoms, there are 3N — 6 (3N — 5 if the molecule
is linear) internal vibrational coordinates. If we wish to include the off-diagonal
force constants then there are (3N — 6) diagonal and (3N — 6)*> — (3N — 6) off-
diagonal terms. Only half of the off-diagonal force constants are unique, since (for
example) kco,cs must equal kcs co. In other words, the force constant matrix has
1o be symmetric. This gives 1/2(3N — 6)(3N — 5) independent force constants, a
aumber that usually far exceeds the available experimental vibration frequencies.
A complete determination of all force constants requires analysis of the spectra of
many isotopically substituted molecules. Many of the off-diagonal terms turn out
to be very small, and spectroscopists have developed systematic simplifications
to the force field in order to make as many of the off-diagonal terms as possible,
vanish.

The key study for our development of molecular mechanics was that
by Schachtschneider and Snyder (1969), who showed that transferabie force
constants can be obtained provided that a few off-diagonal terms are not
neglected. These authors found that off-diagonal terms are usually largest when
neighbouring atoms are involved. A final point for consideration is that the C
atom in OCS is obviously chemically different from a C atom in ethane and from
a C atom in ethyne. It is necessary to take account of the chemical environment
of a given atom.

In molecular mechanics, then, we have to take account of non-bonded inter-
actions, and the chemical sense of each atom. The idea is to treat the force
constants, the reference equilibrium geometry and just about everything else as
parameters that have to be fixed by reference to some molecular properties. You
can imagine the difficulty of trying to set up a system of reliable and transferable
parameters for large molecules containing many different types of atoms, and it
should come as no surprise to find that the original molecular mechanics calcula-
tions were performed on saturated hydrocarbons. The aim of the calculations was
invariably to predict an equilibrium geometry by minimizing the intramolecular
potential energy. Over the years, the original parameter sets were extended to
include different atoms with varied hybridizations, and attention was also given
to the problem of intermolecular interactions.

So, consider a typical molecule such as aspirin (acetylsalicylic acid), shown in
Figure 1.11. Such two-dimensional drawings can be made using ChemDraw or
ISISDraw, but all the features needed to construct a molecular mechanics force
field are apparent.

First of all, we have to take account of every bond-stretching motion. We could
write a simple harmonic potential for each bond, as discussed above. For a bond
A-B, we would therefore write

"

ks, (Rag — Re,ag)’ (1.31)

£

Uap =

N—
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Figure 1.11

where the force constant ks op and the reference equilibrium bond length R. a5
would be appropriate for the atom pairs AB with their given hybridizations.

Next we have to consider the bond angies. It is usual to write these vibrational
terms as harmonic ones, typically for the connected atoms A~B-C

Uasc = 3kapc(6anc — 6e,apc) (1.32)

where kapc is a harmonic bending force constant and 6. apc the reference equi-
librium angle for that particular grouping of atoms.

Next come the dihedral angles (or torsions), and the contribution that each
makes to the total intramolecular potential energy depends on the local symmetry.
We distinguish between torsion where full internal rotation is chemically possible,
and torsion where we would not normally expect full rotation. Full rotation about
the C—C bond in ethane is normal behaviour at room temperature (although I
have yet to tell you why), and the two CHj; groups would clearly need a threefold
potential, such as

U(CH; — CH3) = %(1 + cos(3w)) (1.33)

where w gives the dihedral angles between the corresponding C—~H groups on
the two C atoms. For systems of lower symmetry we must seek a potential that
depends on the local axis of symmetry; for an n-fold axis, we would write

Up

] — —— (1 4 coclne — 70n)) (134
\+ \ 77 \ L

U > t cos 3
where the phase angle wy shifts the potential curve to the right or left. For n =1
and wg = 0, the equation represents a minimum for the trans conformation, with
an energy Up lower than the cis conformation.

Some authors refer to improper dihedrals when discussing dihedral torsion

where we would not normally expect full rotation, for example, any of the
C-C-C-C linkages in the benzene ring of aspirin. Many MM force fields treat

2 v AL avaally 2 12028S
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improper .dihedrals in the same way as bond-bending, and take a contribution to

the force field as 1 ,
Uascp = 3kaBcp(§aBcp — &e,aBCD) (1.35)

where & is the dihedral angle between the planes defined by the atoms ABC and
the atoms BCD. The dihedral force constant is taken as an empirical parameter.

1 mentioned earlier that molecular-mechanics force fields have to be transfer-
able from molecule to molecule, and that it was found many years ago that extra
terms were needed apart from the pure valence ones. Non-bonded interactions
are usually taken as the Lennard-Jones 12-6 potentlal

Cn Ce
AB AB
1 tha anafficiante (.. and . danend tha natnra af tha atoms A and D
WIICICT UIC VULV \.«1 ana w6 uulJvuu Oon tn nawure o1 tic alow i alug

The Lennard-Jones 12—6 potential is sometimes written in terms of the depth
of the potential well ¢ and the parameter o which is related to the equilibrium

distance R by
R, =2%¢

Ups = 4¢ (( o\ (1.37)
RAB/ \RAB//

Lennard-Jones 12—6 parameters have been deduced over the years, initially for
the interactions between identical pairs of inert gas atoms. Over the years, authors
have extended such studies to include simple molecules and some examples are
given-in Table 1.3.

For molecular species, the interaction is to be interpreted as some kind of
average over all the possible geometries. A typical plot for the van der Waals
benzene—benzene interaction is shown in Figure 1.12.

For interactions between different atom pairs, we should ideally try to deduce
experimental parameters for the interactions of these atoms. What is done instead
is to use combination rules, which allow us to relate the parameters for unlike
atom pairs A.--B to those for the two like pairs A---A and B---B. If we use
symbols i and j to label the two atoms, then there are a number of different such

Table 1.3 Sample Lennard-Jones parameters

&/Tmol™! o/pm
He 84.97 258
Ne 296.8 279
Ar 1031.0 342
H, 276.9 297
CO, 1580.0 400

CeHs 3658.0 527
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Figure 1.12 L-J 12-6 potential for benzene—benzene
combination rules in the literature such as the following three.
rfg r* 12
Crij= (3’ + %) i8]
1 (1.38)

where 7}/2 is half the minimum energy separation for two atoms of type i and
&; the well depth.

Cra,ij = 4(0;0;)% /5]
2 (1.39)
Cﬁyij = 4(0’,'0‘1')3«/8,'8]'



- MOLECULAR MECHANICS 43

and finally

o
oy
Ce,ij =
/ a, [o; ,

71 AN
3 (1.4U)

Cra,ij = 3Ce,ij(R; + R;)®

where o; is the dipole polarizability of atom i, N; the number of valence electrons
and R; the van der Waals radius. C is a constant.

1.7.1 Hydrogen Bonding

Some force fields make special provision for hydrogen-bonded atoms A-H - - - B,
and modify the Lennard-Jones 12—6 potential to a 12—10 model:

nIﬂ (71/\
Usp = —2 — -2 (141)
RZ R

1
i

Some force fields make special provision for the mutual electrostatic potential
energy of pairs of atoms that have different electronegativities If atom A has a

formal ulcugc of gA and atom B (distant Rapg from gA) has a formal ulmgc of
Og, then their mutual potential energy is

1
Uap = 1 0nls (1.42)
4mey Rap
The Q’s are treated as parameters, and these terms are sometimes included in
molecular-mechanics force fields.

1.7.3 United Atoms

Some force fields use the so-called united atom approach where (for example) a
methyl group is treated as a single pseudo-atom. They arose historically in order

to save computer resource when dealing with large systems such as amino-acid
chains.

1.74 Cut-offs

For a given large molecule, there are very many more non-bonded interac-
tions than bonded ones. Molecular-mechanics force fields often truncate the
non-bonded interactions at some finite distance, in order to save on computer
resource. A number of ingenious algorithms have been proposed in order to
ensure the (‘nntmmtv of the potential at the cut-off point.

.............. (LR R § L oleiilial Al LR PRt
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1.7.5 Conjugated Subsystems

The aspirin molecule given above contains a single conjugated ring. Smart molec-
ular mechanics packages note the presence of conjugated systems, and cut down
on the computation time needed by recognizing that such subsystems are invari-
ably planar. They sometimes use quantum-mechanically based models in order

to treat the conjugated system — see later.

TTNNOOTYTMARATAT AANT

1.8 PROFESSIONAL MOLECULAR MECHANICS

FORCE FIELDS

The original molecular-mechanics force field was developed by Allinger, and is
generally referred to as MM. You should read the definitive text by Burkert and
Allinger (1982) for more details. This model was followed by the MM2 model
(Allinger, 1977), and I thought that you might like to read the synopsis.

Conformational Analysis 130
MM2. A Hydrocarbon Force Field Utilizing V, and V, Torsional Terms
Norman L. Allinger
Journal of the American Chemical Society, 99 (1977) 8127

An improved force field for molecular mechanics calculations of the struc-
tures and energies of hydrocarbons is presented. The problem of simultane-

ini 1 hnt int +3 hilat
cusly obtaining a sufficiently large gauche butane interaction energy whilst

keeping the hydrogens small enough for good structural predictions was
soived with the aid of onefoid and twofold rotational barriers. The struc-
tural results are competitive with the best of currently available force fields,
while the energy calculations are superior to any previously reported. For
a list of 42 selected diverse types of hydrocarbons, the standard deviation
between the calculated and experimental heats of formation is 0.42 kcal/mol,

™ i imantal arrar for tha cama orann
compared with an average reported experimental error for the same group

of compounds of 0.40 kcal/mol.

The following additional force fields are currently available in serious profes-
sional modelling packages.

1.8.1 MM+

This is an extension of MM2, and it was designed primarily for small organic
molecules. It uses a cubic stretching potential

Uas = qu AB(Rap — R. a8)°(1 + a(Rap —R.

€ASS A : \VIYAD

AB)) (1.43)

£
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where « is a constant which depends on the atom types of A and B, rather than

the Hooke’s law expression
Uas = 3ks,aB(Rap — Re,aB)”
Also, the angle-bending term is modified from
Uasc = 2kapc(@apc — 6e,aBc)’

by inclusion of a higher-order angle term to give

Uasc = skapc(@asc — 0e,anc)” (1 + BOasc — e,aBc)’) (1.44)
Here B is a constant that depends on the nature of atoms A, B and C. Not
only that, both MM+ and MM2 aliow for coupling between bond-stretching and

angle-bending. Electrostatic interactions are accounted for by the interaction of
bond dipoles rather than point charges.

1.8.2 AMBER (Assisted Model Building and Energy Refinement)

a fald Ad 1
llllb 1U1LC 1ici1a was ueVeleed Pluumll_y 1\)1 Pluu.du aud uuclelc ucld apyhcatlcns

It is a united atom force field, and there are many versions. Once again, you might
like to see the Abstract of the original Paper.

A New Force Field for Molecular Mechanics Simulation of Nucleic

Acids and Proteins
Scott I. Wmnpr Peter A. I(n"man David A. Case, U. Chandra .Qinoh

2ULi111a11

Caterina Ghio, Gu111ano Alagona, Salvatore Profeta, Jr and Paul Wemer
Journal of the American Chemical Society 106 (1984) 765

We present the development of a force field for simulation of nucleic acids
and proteins. Our approach began by obtaining bond lengths and angles
from microwave spectroscopy, neutron diffraction, and prior molecular
mechanical calculations, torsional constants from microwave, NMR, and
molecular mechanical studies, nonbonded parameters from crystal packing
calculations and atomic charges from the fit of a partial charge model to
electrostatic potentials calculated by Ab Initio quantum mechanical theory.
The parameters were then refined with molecular mechanics studies on the

structures and energies of model compounds. For nucleic acids . . .

An interesting feature of this force field is that it adds lone pairs to all sulfur
atoms.
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1.8.3 OPLS (Optimized Potentials for Liquid Simulations)

The OPLS Potential Function for Proteins. Energy Minimization for
Crystals of Cyclic Peptides and Crambin
William L. Jorgensen and Julian Tirado-Rives
Journal of the American Chemical Society 110 (1988) 1657

A complete set of intermolecular potential functions has been developed for .
use in computer simulations of proteins in their native environment. Para-
meters have been reported for 25 peptide residues as well as the common
neutral and charged terminal groups. The potential functions have the simple
Coulomb plus Lennard-jones form and are compatibie with the widely used
models for water, TIP4P, TIP3P and SPC. The parameters were obtained
and tested primarily in conjunction with Monte Carlo statistical mechanics
simulations of 36 pure organic liquids and numerous aqueous solutions of
organic ions representative of subunits in the side chains and backbones of
proteins. .

Improvement is apparent over the AMBER united-atom force field which

L~ YRR PR P

has previously been demonstrated to be superior to many alternatives.

OPLS is designed for calculations on proteins and nucleic acids; the non-bonded
interactions have been carefully developed from liquid simulations on small
molecules. There are many more force fields in the literature, but the ones given
above are representative.

1.9 A SAMPLE MM CALCULATION: ASPIRIN

Molecular mechanics calculations generally aim to find energy minima. They
need a starting geometry, corresponding to a starting point on the potential energy
surface. In the early days of molecular modelling, people had lots of fun taking
X-ray pictures of macroscopic models, or projecting shadows of such models onto
screens and then measuring their Cartesian coordinates. Many of the available
molecular modelling packages have libraries of fragments or full molecules, and
they can make a rough attempt at converting two-dimensional representations
of simpie molecuies produced by drawing packages such as ChemDraw and
ISISDraw, into three-dimensional structures.

So, back then to aspirin. Very often, X-ray data is available for the molecule of
interest or related molecules. The lingua franca for molecular modelling purposes
is a file of Cartesian coordinates such as the following .pdb (Protein Database)
file, Figure 1.13, for aspirin.
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The format is self-explanatory; each HETATM line gives the Cartesian coordi-
nates of the atoms, and lines such as

CONECT 1 2 6 9

give connectivity data. Atom 1 is joined to atoms 2, 6 and 9. A .pdb file from
the Internet or from the Brookhaven Protein Data Rank will also have lots of

AIRCIIAC QI UWLC DIVOALIAQVEI IO JJalad 2alll w O

‘comment’ lines and literature references.

1.10 THE GRAPHICAL USER INTERFACE

In the good old days of the 1960s, we had to try and make sense of a numerical
table of atomic Cartesian coordinates. We did this by plotting points on graph

paper and then trying to see how things would look in three dimensions. Plastic

model-building kits were the height of technology by the 1970s.

Figure 1.14 is a screen grab from HyperChem, after geometry optimization
(energy minimization). I’ll explain later how energy minimization works. I have
deliberately given the output as a screen grab so that you can see some of the
options available in such a sophisticated modelling package.

There are many ways of representing molecules on screen, and most modelling
nackages will have a selection. The screen orab in Ficure 1.14 shows the ‘line’

packages will have a selection. The screen grab in Figure 1.14 shows the ‘li
representation of aspirin. Figures 1.15 to 1.17 give a few of the options from
WebLab Viewer.
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Figure 1.15 Stick representation of aspirin

Figure 1.16 Aspirin ball and stick

49
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Figure 1.17 Aspirin CPK representation

Figure 1.18 Procolipase from the Protein DataBank
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Figure 1.19 Tube representation of protein

Takmg a larcer number of nixels can smooth the Jaggﬂd borders

$R2A=2 p S LA 1AL L PRATLS LAl SIUUUVRIL UIT jJeppY s PRI,

Different methods have been devised to represent proteins. A structure for
porcine pancreatic procolipase is reported in the Protein Databank, as determined
by NMR spectroscopy. Many such structures are reported without the hydrogen
atoms, since their positions often cannot be determined experimentally. Most MM
packages will add hydrogens. Figure 1.18 gives the hydrogen-free procolipase
structure in line representation.

Such large amino acid strands are usually
tubes, where attention focuses on the backbon
a tube view of procolipase.

presented in terms of ribbons, or
e of the protein. Figure 1.19 gives

1.11 GENERAL FEATURES OF POTENTIAL
ENERGY SURFACES

Most people use MM in order to find potential energy minima, which correspond
to equilibrium geometries at 0 K.
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A little experimentation shows that there are very many stationary points,
depending on the starting geometry. For example, I quickly generated the aspirin
energy stationary point in Figure 1.20 by starting from a different geometry and

then minimizing the energy.

This structure has a lower energy than the one we first found. Both structures
are true stationary points, and a detailed investigation shows that they are both
minima on the potential energy surface. For large molecules there will be very
many minima. How can I say with confidence that a given stationary-point struc-
ture corresponds to a minimum (rather than a maximum), how do I go about

finding these stationary points and which is the ‘real’ minimum? What do the

other stationarv noints mean r‘hpminq"v‘? In order to answer such nnpchnhc we
ne ary pomts mean chemical estions,

need to take a look at the general features exhibited by potential energy surfaces.

Even potential energy curves that depend on a single variable can show interesting
properties. Consider, for example, a model (Figure 1.21) of ethane composed of
two rigid CH3 fragments which are joined through the C atoms but are free
to rotate about the internuclear C-C axis. The potential energy curve is then a
function of the single variable describing the azimuthal angle, and there are three

identical minima senarated ]-\v intervalg of 120°. In this case, the minima are all

iUviiubar s stpalaite Uy i vais Ui 11 udlS LAST, T dGNna Qi

equivalent to each other.
Figure 1.22 shows a typical energy calculation, to illustrate the point.

M
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Figure 1.20 A second stationary energy point for aspirin
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Figure 1.21
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Figure 1.22 Potential energy curve for rotation about C—C bond of ethane

Now consider the disubstituted molecule CH,FCH,Cl. The potential energy
curve has a new feature. There are three minima, corresponding to the three
conformations of Figure 1.23. A potential energy curve is shown in Figure 1.24.

The conformation with the F and the Cl atoms trans is the global minimum.
The other two conformations nnrregpnnd to local minima.
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Figure 1.24 Potential energy curve for rotation about C—C bond

The next step is a function of two variables, when we begin to talk about
potential energy surfaces rather than potential energy curves. Such functions are
often represented as surface plots such as the one in Figure 1.25 which shows
the variation of energy of the water molecule (the vertical axis) against the two
bond lengths (assumed equal) and the bond angle.
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Figure 1.25 A function of two variables

This particular potential energy surface seems very clean-cut, because there is
a single minimum in the range of variables scanned. The chances are that this
minimum is a local one, and a more careful scan of the potential surface with a
wider range of variables would reveal many other potential minima.

Potential energy surfaces show many fascinating features, of which the most
important for chemists is a saddle point. At any stationary point, both 3f/ax
and df /dy are zero. For functions of two variables f(x, y) such as that above,
elementary calculus texts rarely go beyond the simple observation that if the

quantity

2 2 ¢ \2
rroy <3f) (1.45)

ECEW B daxdy

is greater than zero at a certain point, then that point is either a maximum or a

minimum. If the quantity is less than zero then there is neither a maximum nor
a minimum, and if the quantity is zero then the case is undecided.

AR iAiL, allgd AT GUAILALY 5 LOI0 U0 UIT CasTO 15 LIIGCOLICO

I'll explain later how we characterize such surfaces; you might have noticed
that (1.45) can be written as the determinant of a matrix H called the Hessian

s/ a2 r a2 £ N\
o7 J 0 j
_ | a2 oaxdy
H=| 20 %/ (1.46)

3ydx 3y

J
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Example of saddle point

Figure 1.26 Example of a saddle point

1.12 OTHER PROPERTIES

Apart from finding structures that give energy minima, most molecular mechanics
packages will calculate structural features such as the surface area or the molec-
ular volume. Quantities such as these are often used to investigate relationships
between molecular structure and pharmacological activity. This field of human
endeavour is called QSAR (quantitative structure and activity relations).

1.13 PROTEIN DOCKING

One great advantage of the molecular mechanics model is that it can be applied
to large molecules on your average PC. Apart from single molecular structure
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Figure 1.27 Protein docking: niacin and vitamin C

calculations, many researchers in the life sciences are concerned with the interac-
tion between proteins, and we normally refer to protein docking when we study
this phenomenon. Let me give you a very simple example, with which to end
the chapter.

Figure 1.27 represents a protein docking study of the interaction between
niacin and vitamin C. It is widely believed that such interactions can help stabi-
lize proteins because of the strong electrostatic interactions. The idea of protein
docking is to investigate the way such amino acids interact with each other as
they approach an equilibrium separation. In vector docking we choose an atomic
position in either fragment and then study the energy variation as the two frag-
ments approach along the line joining these two points. In unconstrained docking,
we simply let the fragments interact as best they can. In either case, we would
normally keep the geometry of the fragments constant.

1.14 UNANSWERED QUESTIONS

The molecular mechanics calculations discussed so far have been concerned with
predictions of the possible equilibrium geometries of molecules in vacuo and at
0K. Because of the classical treatment, there is no zero-point energy (which is
a pure quantum-mechanical effect), and so the molecules are completely at rest
at 0K. There are therefore two problems that I have carefully avoided. First of
all, I have not treated dynamical processes. Neither have I mentioned the effect
of temperature, and for that matter, how do molecules know the temperature?
Secondly, very few scientists are interested in isolated molecules in the gas phase.
Chemical reactions usually take place in solution and so we should ask how to
tackle the solvent. We will pick up these problems in future chapters.
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I mentioned temperature at the end of the last chapter. 1ne concept of tempera-

ture has a great deal to do with thermodynamics, and at first sight very little to do
with microscopic systems such as atoms or molecules. The Zeroth Law of Ther-
modynamics states that ‘If system A is in thermal equilibrium with system B, and
system B'is in thermal equilibrium with system C, then system A is also in thermal
equilibrium with system C’. This statement indicates the existence of a property
that is common to systems in thermal equilibrium, irrespective of their nature or
composition. The property is referred to as the femperature of the system.

That’s fine in the macroscopic world, but how does the concept of temperature
translate to the microscopic world?

Consider the vibrating diatomic of Chapter 1, where we wrote the total energy

as
1 dy ¥ 1 dx,

e=2m (E) +3m (dt> + k(xg—xl R.) 2.1)

For pedantic reasons, I am going to rewrite this energy expression in terms of so-
called generalized coordinates, which in this simple case are exactly the Cartesian
ones

to give a quantity called the Hamiltonian H.

1 /dp; 2 1 dp2> 5
=— | — — —q1 —R 2.2
2m; ( ar ) + 2y ( ar + ks(‘]Z q1 — Re) (2.2)
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H is of immense importance in classical mechanics; it is seen by inspection
to be a sum of the kinetic and potential energies, and it is easily proved that
g is constant with time provided that the potential energy does not contain
ﬁme_dependent terms.

Although I do not intend to progress the idea here, there is a set of first-
order differential equations called Hamilton’s equations of motion that are fully

equivalent to Newton’s laws. Hamilton’s equations are:

ap;  dr

P 2.3)
oH _ _dp;

agi T de

where the subscript i runs over the generalized coordinates. We have to integrate
these equations to study the time evolution of the system. Hamilton’s equations
are first-order differential equations, which are usually easier to solve than second-
order ones.

The state of any particle at any instant is given by its position vector q and
its linear momentum vector p, and we say that the state of a particle can be
described by giving its location in phase space. For a system of N atoms, this
space has 6N dimensions: three components of p and the three components of
q for each atom. If we use the symbol I' to denote a particular point in this
six-dimensional phase space (just as we would use the vector r to denote a point
in three-dimensional coordinate space) then the value of a particular property A
(such as the mutual potential energy, the pressure and so on) will be a function
of I and is often written as A(I"). As the system evolves in time then I' will
change and so will A(T).

Computer simulation generates information at the microscopic level, and the
conversion of this information into macroscopic terms is the province of statis-
tical thermodynamics. An experimentally observable property A is just the time
average of A(T") taken over a long time interval,

A= (A(F))time

21 EQUIPARTITION OF ENERGY

According to the law of equipartition of energy, the average energy of each
different degree of freedom is 5 kpT and this gives us a clear link between energy
and temperature. In the case of a monatomic gas, there are three translational

modes of motion along three perpendicular axes and so the internal energy ought

to be 2 kgT per atom. The law applies pretty well to rotating molecules, and
2 "bpT F© e r J =) ]

so the mean rotational energy of methane ought to be % kgT. The law also

suggests that the mean vibrational energy of a bond ought to be % kgT for the

kinetic energy and % kT for the potential energy, but this is hardly ever found
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in practice because of the finite spacing of vibrational energy levels compared to
kpT. We can use kgT as a yardstick for assessing the magnitude of therma]
effects at room temperature, and these considerations give us a second clue
as to the molecular meaning of temperature. Roughly speaking, provided the
temperature is sufficiently high that we can ignore zero-point vibrations, and
that the Boltzmann populations of vibrational states are all significant then the
laws of classical mechanics are fine and the law of equipartition of energy ig
valid.

2.2 ENSEMBLES

Because of the complexity of dealing with the time evolution for very large
numbers of molecules, Gibbs suggested that we replace the time average by the
ensemble average. There are at least three ensembles in common use, and for each
one certain thermodynamic variables are fixed. In the microcanonical ensemble,
N, V and the internal energy U are held constant, where N is the number of
particles. In the canonical ensemble, N, V and T are held constant. In the grand
canonical ensemble, the chemical potential, V and T are held constant. For each
ensemble, the quantities mentioned are fixed and other quantities of interest have
to be determined by averaging over the members of the ensemble.

Thus we have an alternative route to the experimentally observable property A;
it is the statistical average of the results of measurement on very many identical
systems. The ergodic hypothesis tells us that this interpretation and the time-
dependent interpretation are equivaient.

The simulation of a molecular system at a finite temperature requires the
generation of a statistically significant set of points in phase space (so-called
configurations), and the properties of a system can be obtained as averages
over these points. For a many-particle system, the averaging usually involves
integration over many degrees of freedom.

2.3 THE BOLTZMANN DISTRIBUTION

Suppose now that we have an ensemble of N non-interacting particles in a ther-
mally insulated enclosure of constant volume. This statement means that the
number of particles, the internal energy and the volume are constant and so we
are dealing with a microcanonical ensemble. Suppose that each of the particles
has quantum states with energies given by ¢y, &5, ... and that, at equilibrium

there are: N; particles in quantum state &, N particles in quantum state &,, and
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and since the internal energy U is constant (because the particles do not interact

with each other)
U=Nigy +Nygy +---

According to Boltzmann’s law, the average fraction of particles in quantum state
; with energy with energy ¢; is

. 14 &; \
exp | — -
N k kpT 2.4)

Y Zexl’( knT)

SLaies

The sum in the denominator relates to the quantum states. The formula is often
written in terms of energy levels rather than quantum states; in the case that some
of the energy levels are degenerate, with degeneracy factors g; then the formula

can be modlﬁed to refer to energy-level populatlons d1rect1y.

N’ 8i €Xp (_ bxr)
ol 5 @.5)

Seer )

levels

The numbers N; and N; are only equal if there are no degeneracies. The sum in
the denominator runs over all available molecular energy levels and it is called the
molecular partition function. It is a quantity of immense importance in statistical
thprmndvnamwQ and it is mven the qnpr‘m] vahnl q (sometimes 7). We have

q=)_ giexp ( ) (2.6)

levels

The sum runs over all possible energy levels: transitional, rotational, vibra-
tional and electronic. g can be related to thermodynamic quantities such as the
Helmholtz energy and the entropy. Don’t confuse this g with the generalized
coordinate discussed above. It often happens that some particular states are suffi-
ciently close together that we can replace the sum on the right-hand side by an
integral. It is usually the case that the kinetic-energy part of the Hamiltonian
does not depend on the coordinates, and that the potential-energy part does not
depend on the momenta. In this case we can divide the integral into a product
of momentum integrals and coordinate integrals.

If we deal with N isolated non-interacting entities such as the molecules in a
gas at low density, we can further divide up molecular energies with reasonable

accuracy into their electronic, vibrational and rotational contributions
€ = Eelec + Evib + Erot

If we replace the single molecule energy ¢; in g by the energy of the complete
ensemble of molecules E; and sum over the ensemble states, we create the system
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partition function Q. This can be related to the molecular partition functiop

2 hy
4 O

J

0=4" @7
provided that the N particles are distinguishable, or
N
q
Q= NI (2.8)
if the N particles are indistinguishable. To look ahead a little, molecular partitioy
functions are usually written as a product of electronic, vibrational, rotationa]

and translational contributions

where for example

with the sum running over all molecular vibrational energy levels.

24 MOLECULAR DYNAMICS

In Chapter 1, I discussed the concept of mutual potential energy and demonstrated
its relationship to that of force. So, for example, the mutual potential energy of
the diatomic molecule discussed in Section 1.1.2 is

Tarnca Aan nartinla 1 aU
1ul UUlPalLblC 1 — -
8x1

) U

Force on particle 2 = ——
8x2

This is a general rule: we differentiate U by the coordinates of the particle
in question in order to recover the force on that particle, from the expression
for the mutual potential energy. Knowing the force F, we can use Newton’s
second law "
F= mg—E
dr?
to study the trajectory of each particle in space, and this is the basis of molecular
dynamics (MD). We do not attempt an algebraic solution to Newton’s equations;
rather we look for numerical solutions at discrete time steps Afr. A suitable
At is usually a femtosecond (107!%s). So in order to make progress with an

ACIIONCCONE R



NAMICS

(o))
(5]

MD simulation, we need a reliable numerical algorithm for integrating Newton’s
equations.
2.4.1 Integration

If the position (r), velocity (v), acceleration (a) and time derivative of the accel-
eration (b) are known at time ¢, then these quantities can be obtained at ¢ + ¢
by a Taylor expansion:

rP(t + 8t) = r(t) + 81v(t) + 3 (8)’a(t) + £(30)°b(e) + - --
VP (2 + 8t) = v(t) + Sta(t) + 1 (80)*b(t) + - --

aP(t +é6r)=a(r) + otb(t) + - - -

bP(z + 8t) =b() + - --

2.9)

Nno wav to do thic ig for\rrlnr‘ l-\v ﬂ'\n nvorlrntn
One way o GO 1S 15 € preal

terms higher than those shown expllcltly, and calculate the ‘predicted’ terms
starting with bP(z). However, this procedure will not give the correct trajectory
because we have not included the force law. This is done at the ‘corrector’ step.
We calculate from the new position rP the force at time ¢ 4 6t and hence the
correct acceleration a®(z + 8¢). This can be compared with the predicted acceler-
ation aP(z + 8r) to estimate the size of the error in the prediction step

r—corrvector method. We ionore
or—correcior metneG. We 1gm

Aa(t + 8t) = a°(t + 8t) — aP (¢ + or)

This error, and the results from the predictor step, are fed into the corrector step
to give
re(z + &t) = rP(t + 8¢) + coAa(zr + ot)

Ve(t + 8t) = VP (t + 8t) + c1Aa(t + 8t) @10
aS(t + 6t) = aP(t + 8t) + c, Aa(t + 6r) '

b(z + 8t) = bP(r + 8t) + c3Aa(t + dt)

i approximations to the true position, velocity and
hence the generic term ‘predictor—corrector’ for the solution of such
dlfferentlal equations. Values of the constants ¢ through c3 are available in the
literature.
There are many algorithms in the literature, many of which date from the early
days of the science of numerical analysis. I simply haven’t space to review them
all, so I will end this section with the famous Verlet algorithm.

I‘f we cforf from the Tav]nr DV‘I’\QI’I(‘1I‘\I’\ ahont r(1#) the
tait 11VIL UIV 1ay iU ApPalisiVUll avUul 1@ ) wien

r(t + 8t) = r(f) + 8tv(t) + 1 (61)*a(e) + - - -
r(t — &) = r(t) — 8tv(t) + L (8t)’a(®) + - --
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Adding these two equations gives the Verlet algorithm, which is used to advancg

vectar r fraom itg uolna at Hime t to i + 1L 8¢
”‘}e p““'tle‘l VECIOT I IOl 1S vaiul at iime U 10 ume 7 + of

r(t + 8t) = 2r(t) — r(t — 8t) + (61)*a(r)

The acceleration is calculated from the force on the atom at time ¢. The velocity
does not appear in this expression, but it may be obtained from the formula

G az)zgtr(z — 81) e

There are many other algorithms in the literature and all have their adherents.

2.5 COLLE

s3]
a
-
[
=)
Z
=)
=
.

A molecular dynamics (MD) calculation collects statistical information as it
progresses. So, for example, if the calculated position vector of atom A at

times ti,12,...,%, 1S Talt;), ra(t), ..., ralt,), then the statistical-mechanica]

average is
1 n
)=~ > ralt) (2.12)

We can also calculate the standard deviation if we want to investigate fluctua-
tions from the mean. The total kinetic energy can be calculated as the sum of the
kinetic energies of the individual atoms, whilst the total mutual potential energy
is evaluated by summing over pairs of atoms. We can also collect information
about individual geometric parameters such as bond lengths and angles.

We normally begin an MD simulation with a molecular structure optimized by
(e.g.) molecuiar mechanics, but with aii the atoms at rest. The first step in the
simulation is the heating step, and it is usual to increase the temperature in small
increments from the starting temperature (0 K) to the desired one (e.g. 300K). At
each step, the velocity of each atom is scaled so that its kinetic energy is % keT.
Next we identify the data collection step, and finally we may wish to let the
molecule cool, which gives of course the cooling step. One advantage of using
the cooling step is that we may well overcome potential energy barriers and so
force a molecule into a different conformation from the starting point.

A typical plot of total energy and temperature vs time (for aspirin, with the
temperature constrained to be constant) is shown in Figure 2.1.

The three phases of the run can be seen clearly; the heating step corresponds
to the sharp rise on the left-hand side, the data collection step corresponds to the
flat part of the curve, and the cooling step is seen as the final part of the curve.

2.6 SIMULATION OF SYSTEMS

Simulating the dynamical properties of single molecules is all very interesting, but
molecular dynamics (MD) was originally developed to study systems of particles

AIMCS \UIVALS ) Wds UIIZIA1LY QCVEIODCA 1O STUAY SYIICHS O DAlICICS
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Figure 2.1 Molecular dynamics run on aspirin

rather than individual molecules. The MD method was pioneered by Alder and
Wainwright using model systems with very simple pair potentials, and you might
like to read one of their key papers:

Studies in Molecular Dynamics I General Method
B. J. Alder and T. E. Wainwright
The Journal of Chemical Physics 31 (1959) 459-466

A method is outlined by which it is possible to calculate exactly the
behavior of several hundred interacting classical particles. The study of
this many-body problem is carried out by an electronic computer which
solves numerically the simultaneous equations of motion. The limitations
of this numerical scheme are enumerated and the important steps in making
the program efficient on the computer are indicated. The applicability of
this method to the solution of many problems in both equilibrium and
nonequilibrium statistical mechanics is discussed.

Alder and Wainwright gave MD treatments of particles whose pair potential
was very simple, typically the square well potential and the hard sphere poten-
tial. Rahman (1964) simulated liquid argon in 1964, and the subject has shown

exponential growth since then. The 1970s saw a transition from atomic systems
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to molecular ones, and biological systems are now widely studied using MD,
We have to balance the number of particles against the cost of the calcula-
tion. Figure 2.2 shows a typical box of 216 water molecules suitable for solvent

o~ I A~ o

studies. The box has side 18.70 A and the density is 1 gmcem™ % at 1 atm and 2> (,

2.6.1 Site—Site Interactions

Potential functions such as MM+ discussed in Chapter 1 are fine for intramolec-
ular interactions. MD was developed long before such sophisticated force fields
became available, and in any case the aims of MM and MD simulations tend to

hoe anite difforant MM ctndiec tend ta he cancerned with the identification Af
o€ Quit® GLICIENN. Vivi SWGICs NG O o Conilrnea wiul ui® 1Genuincaudn o

equilibrium geometries of individual molecules whilst MD calculations tend to
be concerned with the simulation of bulk properties. Inspection of Figure 2.2
suggests that the intramolecular details ought to be less important than the
intermolecular ones, and early MD studies concentrated on the intermolecular
potential rather than the intramolecular one.

Figure 2.2 Box of water molecules
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A number of intermolecular potentials have been developed over the years that
treat molecules as collections of point charges. The intermolecular electrostatic
potential is taken as a sum of the mutual electrostatic interaction of these point
cnargt:b, buuuu\,d over ultpl a\,uug pmls uf Juuluvul\,o Ouvaou.um.u_y, extra van d\.d
Waals terms are added to the potential.

In view of the importance of water in chemistry and biology, there have been
many attempts to construct simple yet effective intramolecular potentials for
water molecules. Water monomers are traditionally left rigid. The early three-site

model for water took positive charges on the hydrogens (qu) and a negative

charge (go = —2gu) on the oxygen, and wrote the pair potential between two
nzu molecu les A and B as
— T 4iq; Ci2 Cs .
Uas = ——+ — - - (2.13)
i%,} j%,‘f; 4regrij - r(Oa---0)'?  r(Oa---Op)*

a Coulomb interaction between all charges, and a further Lennard—Jones 12—6
term between the oxygen atoms. This is illustrated in Figure 2.3

Some of the site—site interactions are shown on the figure. We count both
the electrostatic interaction and the Lennard—Jones 12—-6 interaction for the
oxygen—oxygen interaction

oxygen—oxygen interaction.

In the five-site water model, negative charges were also taken to represent the
lone pairs. The magnitude of these charges is sometimes found by attempting to fit
a molecular charge density feature such as the molecular dipole moment, whilst
other authors simply treat them as parameters, along with the Lennard-Jones
constants Cj; and Cg. These parameters are then adjusted until the simulation
gives good agreement with experiment

Here is an extract from the synopsis to the original paper by Rahman and

Stillinger: -

Molecular Dynamics Study of Liquid Water
Aneesur Rahman and Frank H. Stillinger
The Journal of Chemical Physics 55 (1972) 3336-3359

A sample of water, consisting of 216 rigid molecules at mass density
1gm/cm?, has been simulated by computer using the molecular dynamics
technique. The system evolves in time by the laws of classical dynamics,
subject to an effective pair potential that incorporates the principal struc-
tural effects of many body interactions in real water. Both static structural
properties and the kinetic behaviour have been examined in considerabie
detail for a dynamics ‘run’ at nominal temperature 34.3 °C. In those few
cases where direct comparison with experiment can be made, agreement is
moderately good; a simple energy rescaling of the potential (using a factor
1.06) however improves the closeness of agreement considerably . ..
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Figure 2.3 Site—site interaction for water

2.6.2 The Effective Pair Potential

Notice that Rahman and Stillinger make use of the concept of an effective pair
potential. The potential energy of any substance may always be resolved system-
atically into pair, triplet, quadruplet, . .. contributions. If we consider N particles
each with position vector R; then formally we can write

N-1 N
UvRi, Ry, .., Ry) =) > UPR,R)
i=1 j=i+1
N-2 N-1 N

+3 3 Y UORL R, R) A+ (2.14)

i=1 j=i+lk=j+1

In the case of fluids which consist of simple non-polar particles, such as liquid
argon, it is widely believed that Uy is nearly pairwise additive. In other words, the
functions U™ for n > 2 are small. Water fails to conform to this simplification,
and if we truncate the series after the U@ term, then we have to understand that
the potential involved is an effective pair potential which takes into account the
hi gher order-terms.

2.6.3 The Periodic Box

There are two difficulties that arise in trying to model an (essentially) infinite
system in terms of a representative box of particles such as the one above. First of
all, particles near the walls of the box experience very different forces compared
to molecules in the middle of the box. Secondly, as the simulation progresses,
molecules can leave the box and so the density can change. _

Both of these problems can be solved by the introduction of a periodic box; I
can explain this idea by Figure 2.4, which shows a much smaller two-dimensional
box than the one discussed above.

The box in Figure 2.4 is to be thought of as a very limited part of an infinite set
of identical boxes, all joined together. I have illustrated this in two dimensions
in Figure 2.5.

This box is embedded in an infinite array of boxes, all with the same geomet-
rical arrangement of particles.
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Figure 2.5 Ensemble of boxes of particles

Focus attention on the top left-hand box. As the position and momentum of
each particle in this box change, then so do the position and momentum vectors
of all the image particles in all the other boxes. In particular, if the grey particle
in the top left-hand box leaves its box during a dynamics run, then it is replaced
by the movement of its image particle from a corresponding neighbouring box.
This is a well-known technique in statistical mechanics, which acts to preserve
the density.

2.7 THE MONTE CARLO METHOD

The method of molecular dynamics gives information about the time evolution
of a microscopic system, and permits the evaluation of macroscopic properties as
time averages. The alternative Monte Carlo method was developed at the end of
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the Second World War to study the diffusion of neutrons in fissionable material,
Tha nama ‘Manta (Carla’ wae cha horonca af the avtancive 1nige nf randans
111V 1ialiiv iviviiwe cvaliv wao \./llUD\.lll UvLdudLe Ul UiV VALVIIDLIYLVY udv vl l.u.llUUlll
numbers.

Consider the two-dimensional box in Figure 2.5. If we know the positions of
each of the N particles in the square and their pair potential, then we can calculate

the total mutual potential energy

U= Ui

1

N =
M=
[]=

1

1 j#i

and this configuration has a statistical weight of exp(—U/kgT).
In order to calculate an equilibrium property A of the system, we have to
evaluate the integral

Aexp ( ) dpdq

__ Jmomenta J positions 2.15)

e (i)
momenta J positions

where the integration is over all the momenta and all the generalized spatial
coordinates. It is impractical to carry out a several-hundred-dimensional integral
by standard numerical techniques, so we resort to the Monte Carlo method. This

~Annaigt

\/Ullblblb Uf uu.vslauus UVCI Cl 1a.udu1u o\.«lvu{luu vi P\)lllto

We therefore have to generate a significant number of configurations, and
we might (for example) envisage moving each of the particles in succession
according to the prescription

X - X+ o
Y—>Y+af

where « is the maximum allowed displacement and &; and &, are random numbers
between —1 and +1. After we move a particle, it is equally likely to be anywhere
within a square of side 2o centred about its original position. For a densely
packed configuration, there is a high probability that some of the particles will
now be very close to each other, and so the weight of the new configuration
exp(—U/kgT) will be vanishingly small. The method normally employed is the

Metronolis Monte Carlo er‘l‘mmp instead of nhnnung r-nnﬁonrahnnc randnm]v

YICU VPO LLVVSsI

and then weighting them with exp(—U /kgT), we choose conﬁguratlons with a
probability exp(—U /kgT) and weight them evenly.

We do this as follows. The N particles are placed in a starting configuration,
for example a regular lattice. Each particle is then tentatively moved at random.
For each move, we calculate the change in the mutual potential energy, AU. If
AU is negative, then we allow the move. If AU is positive, we allow the move
with a nrnhahlhtv of exp(—U/kgT).
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To decide whether to allow the move or not, we generate a random number

petween O and 1. If this random number is less than exp(—U/kgT), we allow the

move. If the random number is greater than exp(—U/kpT) we leave the particle
in its old position.
After each particle move, we increment (A) and then proceed to the next
article, continuing until a predetermined number of moves have been made.
The following paper is of great historical significance in the field.

Equation of State Calculations by Fast Computing Machines
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller and Edward Teller

ral] Al 7108720 1!\

Journal [} Chemical I’I’inlLS Z1 (1900)

A general method, suitable for fast computing machines, for investigating
such properties as equations of state for substances consisting of interacting
individual molecules is described. The method consists of a modified Monte
Carlo integration over configuration space. Results for the two-dimensional
rigid-sphere system have been obtained on the Los Alamos MANIAC and
are nregented here. These results are r‘nmnm‘ed to the free volume eﬂnahnn

of state and to a four-term virial coefﬁ01ent of expansion.




3 THE HYDROGEN
MOLECULE ION

In Chapter 1, we dealt at length with molecular mechanics. MM is a classical
model where atoms are treated as composite but interacting particles. In the MM
model, we assume a simple mutual potential energy for the particles making up
a molecular system, and then look for stationary points on the potential energy

surface. Minima correspond to equilibrium structures.

Classical descriptions of molecular phenomena can be remarkably successful,
but we have to keep our eye on the intrinsic quantum nature of microscopic
systems.

The traditional place to begin a quantum-mechanical study of molecules is with
the hydrogen molecule ion H,*. Apart from being a prototype molecule, it reminds
us that molecules consist of nuclei and electrons. We often have to be aware of the
nuclear motion in order to understand the electronic ones. The two are linked.

Potential energy surfaces are also central to our quantum-mechanical studies,
and we are going to meet them again and again in subsequent chapters. Let’s start
then with Figure 3.1, which shows H,*. We are not going to be concerned with
the overall translational motion of the molecule. For simplicity, I have drawn a
local axis system with the centre of mass as the origin. By convention, we label
the internuclear axis the z-axis.

TA

,/ /

Origin

t

Figure 3.1 Coordinates used in the discussion
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We need to be clear about the various coordinates, and about the difference
petween the various vector and scalar quantities. The electron has position vector
r from the centre of mass, and the length of the vector is r. The scalar distance
petween the electron and nucleus A is ra, and the scalar distance between the
electron and nucleus B is rg. I will write Rap for the scalar distance between the
two nuclei A and B. The position vector for nucleus A is R, and the position
vector for nucleus B is Rg. The wavefunction for the molecule as a whole will
therefore depend on the vector quantities r, Ry and Rp.

It is an easy step to write down the Hamiltonian operator for the problem

h2 L2 22 L2 52 22
ﬂ t _ v vz _ 112 Vz + C _ v 2 _ C _ C
o 872M A 8m2M B 4megRap  87Pme 4megrs  Admegrp

3.1
The first two terms represent the kinetic energy of the nuclei A and B (each
of mass M), whilst the fourth term represents the kinetic energy of the electron
(of mass m). The fifth and sixth (negative) terms give the Coulomb attraction
between the nuclei and the electron. The third term is the Coulomb repulsion
between the nuclei. I have used the subscript ‘tot’ to mean nuclei plus electron,
and used a capital W.
As is often the case in quantum chemistry, we are interested in solutions of
the time-independent Schrddinger equation

ﬁtot\ptot(RA» Rg, r) = &1t Wit (Ra, Rg, 1) (3.2)

and I have written explicitly the dependence of the wavefunction on the position
vectors of both the nuclei and the electron.

3.1 THE BORN-OPPENHEIMER APPROXIMATION

The first thing to note is that the nuclei are very much more massive than the
electron (by a factor of 1836). If they were classical particles, we might argue
that their velocities would be very much less than the velocity of the electron,
and so to a first approximation the motion of the electron should be the same as
if the nuclei were fixed in space.

If the motions of the electron and of the two nuclei are indeed independent of
one another, the total wavefunction should be a product of an electronic one and
a nuclear one,

VYior = ¥n(Ra, Rp)¥e(Ra, Rp, 1) (3.3)

We might reasonably expect that the electronic wavefunction would depend on
the particular values of Ry and Ry at which the nuclei were fixed, and I have
indicated this in the expression above.

Born and Oppenheimer tackled the problem quantum-mechanically in 1927;
their treatment is pretty involved, but the basic physical idea is as outlined above.
To simplify the notation, I will write the total Hamiltonian as follows:
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. n W2 e
Hy = |— 3 V2 — 3 VZB + )
87°M 8n‘M 4megRAR
rooR &2 2 1
NELE
8712me 4regrp  4megrp
= H, + H. (34

where I have collected the pure nuclear terms symbolized as H, into the first
bracket [...] and the remaining terms symbolized H. into the second square
bracket. The latter operator depends on the coordinates of the electron and on
the nuclei (through the ry and rg terms).

Had we been dealing with a polyelectron system, there would have been extra
terms in the total Hamiltonian to take account of the electron—electron repulsion,

XTI asra alce PN | Py IO & §

These would have also been collected into Ie.
Thus we wish to solve the time-independent Schrodinger equation

ﬁtotq‘tot(RA, Rg, 1} = £t Wioi(Ra, Rp, 1)

or
(Hp + Ho )Wt (Ra, Rp, 1) = Stot‘ptot(RA, Rg, 1)

If we can indeed write the total wavefunction as the product of an electronic and
a nuclear one
Yiot = ¥n(Ra, Rp)¥e(Ra, Rp, 1)

then these two wavefunctions would be separately solutions of the ‘nuclear’ and
‘electronic’ time-independent Schrodinger equations

f{n‘/’n = &yVYn 35)
ﬁe‘l’e = &Y. .

We need to investigate the conditions under which this is true, and to do this
we make use of a technique called ‘separation of variables’. We substitute the
product wavefunction (3.3) into (3.2) to give

(ﬁn + ﬁe)‘ﬁe‘/’n = &iot¥e¥n

Dividing left- and right-hand sides by the product wavefunction gives

and we must now investigate the conditions under which the two terms on the
left-hand side are constant.

The nuclear operator H, contains differentials with respect to the nuclear
coordinates; the electronic operator H contains differentials with respect to the
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electron. The nuclear wavefunction does not involve the coordinates of the elec-
tron, but the electronic wavefunction does involve the coordinates of the nuclei.
This means that

Vet = Ya Ve
Vfﬂlrewn = t/feVi + extra terms

Born and Oppenheimer showed that, to a very good approximation, these extra
terms were of the order of m./M and so the motions of the electron and the
nuclei could indeed be considered separately for many purposes.

There are phenomena such as the Renner and the Jahn—Teller effects where
the Born—Oppenheimer approximation breaks down, but for the vast majority
of chemical applications the Born—Oppenheimer approximation is a vital one. It
has a great conceptual importance in chemistry; without it we could not speak
of a molecular geometry.

The electronic wavefunction is thus given as solution of H. v/, = .1, and the

total energy is given by

52
[4

T 3.6
+ 47TGORAB ( )

Etot = Ee

The final term on the right-hand side is just the Coulomb repulsion between the
stationary nuclei. We think of the nuclei as being clamped in position for the
purpose of calculating the electronic energy and the electronic wavefunction. We
then change the nuclear positions and recalculate the energies and the electronic
wavefunction. Should we be interested in the nuclear motions (vibrational and
rotational), we have to solve the relevant nuclear Schrodinger equation. Don’t get
this confused with MM calculations; the nuclear Schrédinger equation is a full
quantum-mechanical equation, which has to be solved by standard techniques.
You might iike to read Eyring, Waiter and Kimbaii (EWK)’s classic text Quanium
Chemistry (1944) to see how it is done.

The nuclei move under the influence of a potential that is generated by the
electrons, so once again we meet the concept of a potential energy curve (or
surface, for more complicated systems).

The Born—Oppenheimer approximation shows us the way ahead for a polyelec-
tronic molecule comprising 7 electrons and N nuclei; for most chemical appli-

cations we want to solve the electronic time-independent Schrodinger equation

HWe(r1,r, ..., 1) = &We(ry, 12, ..., Fp)

at some fixed nuclear geometry, with the N nuclei clamped at points in space. If
we repeat the calculation for a range of nuclear geometries, we get the potential
energy surface.

Iam going to generally write wavefunctions that depend on the coordinates of
many particles as capitals from now on, and wavefunctions that depend on the
coordinates of a single particle in lower-case.
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You will find the detailed solution of the electronic Schrodinger equation for
H,* in any rigorous and old-fashioned quantum mechanics text (such as EWK),
together with the potential energy curve. If you are particularly interested in the
method of solution, the key reference is Bates, Lodsham and Stewart (1953),
Even for such a simple molecule, solution of the electronic Schrodinger equation
is far from easy and the problem has to be solved numerically. Burrau (1927)
introduced the so-called elliptic coordinates

_ratrs

w= Ras
N
Ran

3.7

and the angle ¢ which measures rotation about the internuclear axis. He was then
able to separate into three equations. The ¢ equation is algebraically soluble but
the remaining two need numerical solution.

The best solution to date for the electronic ground state is that of Wind
(1965) who found an electronic energy (relative to infinitely separated nuclei
and electrons) of —0.602 6342 Ey, which corresponds to a dissociation energy
of 0.1026342 Ey,.

There is very little experimental data available for H,™, apart from the disso-

ciation energy and equilibrium bond distance.

32 THE LC
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The exact solution of the electronic Schrodinger equation is no mean feat, even
for such a simple molecule as H,". The electronic Schrodinger equation is

h? &2 &2
(_ 3 V2 ) Ye = geWe

T2 4megra  4meors

Let’s examine the limiting behaviour when the electron is in the vicinity of
nucleus A but far away from nucleus B. In this case the electronic Schrodinger
equation is

L2 &2\

_ I Vz _
( 87Zm 4megra

Ye = EcVYe

which is just a hydrogen atom problem. This sort of conclusion holds when the
electron is in the vicinity of nucleus B. So, near each nucleus, the molecular
hydrogen molecule-ion electronic wavefunction must resemble an atomic orbital
centred on that particular nucleus. This suggests that it might be profitable to
investigate the approximate wavefunction

Yrcao = calsa +cplsp
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where I have written 1s to represent a hydrogen atom 1s orbital centred on

A nd 1go., tn ranracant 1¢ arhital cantrad on nuclene R Thace atamic
nuc[cua A, a8na 155 6 ICPICSCili & 1§ Oroila: Cenurea on nucitus 5. 11ese giomic

orbitals have the algebraic form exemplified by

[ +3
15 ; P / L_rA\ 72 O\
Isa=4/—5exp| —{— (3.9)
nay ag
where ¢ is called the orbital exponent. In the case of a hydrogen atom, ¢ = 1.
Wwe refer to this treatiment as the linear combination O‘f atomic orbitals (LCAO)

model.

From simple symmetry arguments concerning the electron density, we can
deduce that cy = £cg and we label the two molecular orbitals by symmetry;
lo, = 1sa + Isg and lo, = 1sy — 1sg. Neither is a solution of the electronic
Schrodinger equation, but each has the correct boundary conditions and so they
are possible approximate solutions.

Tn ardar to test H'\p accuracy nf fhn T.CAQ annroximationg. we nce the variation
1il Oiuct w Yy © ooy dpPIOANQuOns, Wo ust wic Valiauon

principle; if Y cao is an approximate solution then the variational integral
/ YrcaoHeYicao dr

/ wlz_CAO dr

ELCAO = (3.9

gives an upper bound to the true ground-state energy. In this particular case,
evaluation of the variational integral is straightforward, and after a little algebraic
manipulation you will find

Haa = Hpp
& = 3.10
LCAO 1< Sxp (3.10)
where the 4 sign goes with the 1s, + Isg combination, the — sign with the
Isa — 1sp combmatlon. The integrals are
Hap = /lsAﬁelsAdr
J
Hap =/1sAHelsB dr (3.11)

SAB:/ ISAISBd‘L'

3.3 INTEGRAL EVALUATION

One of the biggest headaches in computational quantum chemistry is the problem
of integral evaluation, so let’s spend a few minutes with this very simple problem.
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The physical quantities %, ¢ and m, all tend to get in the way, so the first tagk

is to write the Hamiltonian in dimensionless form (each variable is now the tm

variable divided by the appropriate atomic unit). I showed you how to do this i
Chapter 0. The electronic Hamiltonian
1.2 2 2
A n 2 € €

i, =

87%m, Amegrs  Admegrs

becomes, in reduced form

N 1 1 1
H=—V ————
2 A  TB
The variational energy expression for the isp + isg combination is
1
(1 + SAB)ELCAO = 1sa ~—5V 1SA dr

which I am going to write as

1
eLca0 = ————(Taa + Tap — Vaara — Vaars — 2VaBra) (3.12)
1 4+ Sas
Tn derivineg the avnreccinn T have made nee nf the cummetrv nf the nrohlem and
In deriving the expression, I have made use of the symmetry of the problem and
the equality of certain integrals, for example
1 1
/ISA (—:Vz\ Isadr = /1SB (—:Vz\ 1sg dt
J \ 2 / J \ 2 /
Let’s look at the overlap integral in detail.
r
SaB = / 1sa(r)1sg(r)de (3.13)

where the integration has to be done over the coordinates of the electron whose
vector position is r. For the sake of generality, I will take the atomic orbitais to
have exponent ¢ so that their normalizing factors are (£3/m)'/2. The first step in
integral evaluation is to choose an appropriate coordinate system. In this instance,
it is the so-called elliptic system mentioned above. The ranges for integration are
[1, o0}, [—1, +1] and [0, 27x]. The volume element

R3
dr = 2B (u? —v?)dudvdg (3.14)
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Thus

J R TJ. LIL
Spp = = ¢ K / / u? — ¥ exp(—LuRap) diu dv dg

and we find p s

AR
SaB = eXp(fé'RAB) (1 + ¢Rap + 3A ) (3.15)

A)

It is conventional to write p = {Rag.
For the sake of completeness, I have summarized all the H,™ integrals in

Table 3.1.
Figure 3.2 shows the potential energy curve.

Table 3.1 Energy integrals for the hydrogen
molecule-ion LCAO problem. Reduced units are
used throughout. ¢ is the orbital exponent, and
Rap the internuclear separation. p = {Rap

Saa 1

Sap exp(—p)(1 + p + p*/3)

Taa 1/28*

Thas g2 exp(—p)(1/2 + p/2 — (1/6)p?)
Vaara e

VaBra sexp(—p)(1 + p)
Vaars (1/RaB)[1 — exp(—2p)(1 + p)]

| I I I I
-0.3 -
-0.35 -
8
£ ooaf .
=
5
=
5 045 —
=}
=
05 -
/
ok \/ |
-0.6 i i i i H
1 2 3 4 5 6 7
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lavrga inta anlane canavatian  tha ki ntinn

fiiuCiealr separatioil, ne le -+ LDB COoiiiaiion gi'vuo a googd
descnptlon of the dissociation of H,* into H + H* (which together have energy

Eh) Electronic band spectra of the electronic ground state indicate a disso-
01at10n energy of D. =2.791eV (0.01026 Ey) and equilibrium bond length
R. = 106 pm (2.003 ag). Our simple LCAO model predicts 0.00647 E; and
2.495 gy in qualitative agreement with experiment. A more detailed comparison
with the ‘true’ potential energy curve shows that the 1s, + 1sg LCAO combina-

tion oiveg a noor renrecentation for emall internuiclear cenarations One reagon
dlll gives a pUOUT ICpPITstiianiVll 101 sillan HnCiiulical sOpaiauVns. e ITasVll 1§

that, at small Rag, the limiting model should really be a helium cation Het for
which the 1s atomic orbital has an exponent of 2 rather than 1.
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3.4 IMPROVING THE ATOMIC ORBITAL

With the above in mind, it is sensible to modify the atomic orbital by treating
the orbital exponent { as a variational parameter. What we could do is vary ¢
for each value of the internuclear separation Rap, and for each value of R,p
calculate the energy with that particular orbital exponent. Just for illustration,

T have calenlated the eneraies for a rance of orhital exnonent and internnelear
I have calculated the energies Ior a range of oroiial expenent and mernuciear

distance pairs, and my results are shown as energy contours in Figure 3.3.
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The horizontal axis corresponds to an internuclear separation running from 1.5
to 2.5 ao and the vertical axis corresponds to an orbital exponent running from
1.0 to 1.4. The potential energy minimum corresponds to an exponent of 1.238,
and we note the contraction of the atomic 1s orbital on molecule formation.

Table 3.2 records historically significant calculations for the electronic ground
otate of Hp.

3.5 MORE ADVANCED CALCULATIONS

Why stop with a single hydrogenic 1s orbital on either centre? A little thought
shows that the 2s and 2po orbitals might also make a contribution to the bonding,
and so we could write

Yrcao = calsa + cplsp + da2sa + dp2sp + ea2poa + ep2pop (3.16)

1+ iq ohviong by cymmetry that the caefficiente are related: £ — +rn di = +dw
1[, 1D UUuvivuo U] OJ ll.lll.lvl-l] ULIAL UV VUVLIIVIVIILW dlv Lvialvu,. LA _— —l—bb, WA _ -l

and ep = =*eg, but what about the ratios of ca to da to ep? I’'ll just mention
for now that there is a systematic procedure called the Hartree—Fock self consis-
tent field method for solving this problem. In the special case of the hydrogen
molecular ion, which only has a single electron, we can calculate the variational
integral and find the LCAO expansion coefficients by requiring that the varia-
tional integral is a minimum. Dickinson (1933) first did this calculation using
1s and 2po orbitals. He found the best orbital exponents to be £;; = 1.246 and
$aps = 2.965 (See Table 3.2.)

The best orbitals for this simple system are those which exploit its symmetry.
James and Coolidge (1935) found that a good approximation to the lo, orbital
was

¥ = exp(—su)(1 + ov?) (3.17)

where & and ¢ are parameters that have to be determined by the variation principle.
The big advantage of James’s approach is that the integrals are straightforward,

Table 3.2 Historically significant calculations for the electronic ground state of the
hydrogen molecular ion

Description * Reference D./eV R./pm

Experiment 2.791 106.0

Numerical Wind (1965) 2.792 105.8

LCAO with exponent of 1.0 1.763 132.3

LCAO with best exponent of Finkelstein and Horowitz 2.354 106.8
1.238 (1928)

LCAO with optimized Dickinson (1933) 2.716 106.1

exponents, 1s and 2po
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since the wavefunction exploits the natural coordinate system. For the obseryeq

intarnnclaar genaratinn the dicenciation eneroy comes onut ag 2 772 eV
IMCimuciCar sCparaiuioil, uil GiSSOCialsil SNnligy COMICs Out as 4.774¢

agreement with experiment.
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3.6 VISUALIZATION

These days, we place a deal of emphasis on the visualization of quantum chemica]
calculations. I have already emphasized the importance of a graphical user inter-
face in earlier chapters. There are several ways of representing molecular orbitals
graphically. Figures 3.4 through 3.6 all refer to the simple LCAO treatment of
the ground-state hydrogen molecule-ion, which has algebraic form

1
YLcao = W(ISA + 1Isp)

The orbital is correctly normalized. I have taken a bond length of 106 pm, and
fixed the orbital exponent at 1.
First of all, it is traditional to plot values of the wavefunction alon

nuclear axis, and this is shown in Figure 3.4.
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Figure 3.5 LCAO wavefunction, contour plot

0.3 —

0.1




84 "MODELLING MOLECULAR STRUCTURES

As an alternative, we might want to plot the square of the wavefunction rathe;
than the wavefunction itself, on the physical grounds that such quantities have 5
direct interpretation. The form of the graph is very similar to Figure 3.4, and |
haven’t shown it.

Many graphics packages allow for contour diagrams and surface plots. Thege

f
are g1ven above for the square of the LCAO pl omblnatlon for any plane



4 THE HYDROGEN
MOLECULE

I dealt with the simplest possible molecule, the hydrogen molecule ion H,T, in
Chapter 3. The hydrogen molecule is also one of great historical interest, and
it is shown schematically in Figure 4.1. The naming convention for particles
and distances should be self-evident, despite the fact that I have not indicated
all possible distances in the diagram. Once again, I intend to ignore the overall
translational motion of the molecule. The coordinate origin is taken to be the
centre of mass.

To solve the time-independent Schrodinger equation for the nuclei plus elec-
trons, we need an expression for the Hamiltonian operator. It is

N K2 h? &
Heo = |— v: — V2 +
fot [ 8m2M A 8a2M ® ' 4meRap
1.2 1.2 2 . 2
_ ’; % _ n V% _ € _ € (4.1)
872m, 872m, degra1  4megran
& &2 &2

47’[607’31 47’[601"]32 ) 47’[607’12

Electron 1

A

Electron 2

Figure 4.1 Hydrogen molecule
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The terms in square brackets are to do with the nuclear motion; the ﬁrst tWo

of thace renracent the kinatie enerov of the nnelei lahellad A and R
O ullse 1ePprostiit uil Kiiilul Cnligy Oi the nuciel iaoened A and B \Dabll of

mass M), and the third term in the square brackets is the Coulomb repulsioy
between the two nuclei. The fourth and fifth terms give the kinetic energy of the
two electrons. The next four negative terms give the mutual Coulomb attractio
between the two nuclei A, B and the two electrons labelled 1, 2. The final term jg
the Coulomb repulsion between electrons 1 and 2, with rj, the distance betweep

them. As in Chapter 3, I have used the subscript ‘tot’ to mean nuclear plug
electron

The first step is to make use of the Born—Oppenheimer approximation, so |
separate the nuclear and the electronic terms:

o>
o>

A
y
Iiopt — 1

I

1
nTH1

L

e

where H,, is the term in square brackets. Note that the ‘electronic’ contribution H,
contains terms that refer to electron 1, electron 2 and a cross-term involving ry,.

For large molecules, very many terms coniribute to the electronic Hamiltonian,
To simplify the notation, I am going to collect together all those terms that depend
explicitly on the coordinates of a single electron and write them as

72 2 2
n » e e

h(r;) = — 4.2)

82m, h 4wepra; - 4meprp;
Such operators which collect together all the variable terms involving a particular
electron are called one-electron operators. The 1/r12 term is a typical two-electron
operator, which we often write

\
~
ERN
[#S)
p—_

It represents the Coulomb repulsion between a pair of electrons.

You have probably come across the idea of electron spin, know that it can
be represented by a single variable s, and are probably wondering where spin is
going to appear in the discussion. Bear with me for a little while yet.

Using the notation given above for the one- and two-electron operators, the

electronic Hamiltonian is

A, = h(r;) + h(ry) + 3(r1, 12) “.4)

The total wavefunction will depend on the spatial coordinates rj and r, of the two
electrons 1 and 2, and also the spatial coordinates R4 and Rg of the two nuclei
A and B. I will therefore write the total wavefunction as W (Ra, Rg, ry, I2).
The time-independent Schrodinger equation is

HiotWioi(Ra, Rp, 11, 12) = g10tWiot (Ra, Rg, 11, 12) “.5)
But we can carry forward the knowledge of the Born—Oppenheimer approxima-
tion gained from Chapter 2 and focus attention on the electronic problem. Thus
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we want to solve
HeWe(Ra, Re, 1ir2) = 8. We(Ry, R, 11, 12)
or, in our new notation,
(1) + h@2) + g1, 2)1We(Ra, Rp, 11, 15) = £ U (R, Ry, T1,15)  (4.6)

As before, the nuclei are to be thought of as being clamped in position for the

nnce of evalnating the electronic enerov and electronic wavefunction. The

PUIPU"V o vaiLalillp b CALLIONC CIRIE) ant cclunic (23018 02810 8 N

electronic wavefunction depends implicitly on the nuclear coordinates, which is
why I have shown the functional dependence.

If we want to calculate the potential energy curve, then we have to change
the internuclear separation and rework the electronic problem at the new A--B
distance, as in the H,* calculation. Once again, should we be so interested, the
nuclear problem can be studied by solving the appropriate nuclear Schrodinger
equation. This is a full quantum-mechanical equation, not to be confused with

the MM treatment.

You will see shortly that an exact solution of the electronic Schrodinger
equation is impossible, because of the electron—electron repulsion term g(r;, rz).
What we have to do is investigate approximate solutions based on chemical intu-
ition, and then refine these models, typically using the variation principle, until
we attain the required accuracy. This means in particular that any approximate
solution will not satisfy the electronic Schrodinger equation, and we will not be
able to calculate the energy from an eigenvalue equation. First of all, let’s see
why the problem is so difficult.

41 THE NON-INTERACTING ELECTRON MODEL

Imagine a model hydrogen molecule with non-interacting electrons, such that
their Coulomb repuision is zero. Each electron in our model still has kinetic
energy and is still attracted to both nuclei, but the electron motions are completely
independent of each other because the electron—electron interaction term is zero.
We would, therefore, expect that the electronic wavefunction for the pair of
electrons would be a product of the wavefunctions for two independent electrons
in H,* (Figure 4.1), which I will write X(r;) and Y (r;). Thus X(r;) and Y (r;)
are molecular orbitals which describe independently the two electrons in our
non-interacting electron model.

In order to investigate whether the wavefunction can indeed be written in this
way, we use the ‘separation of variables’ technique and so write a wavefunction
of the form

We(ry, r2) = X(r)Y (1)

We then substitute this wavefunction into th electronic Schrodinger equation,
and study the consequences. Do the substitution yourself, divide either side b by

LSCQUCICES. 1 youl
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Y. (ry, r7) and you will find

1 .
mh( DX (ry) + Y(r2)h(l‘2)Y(l‘2) =&

Each term on the left-hand side sepa_at,l v involves the coordinates of one of ﬂ'n.
two electrons, and as the sum has to be a constant for all values of the coordmates
of these two electrons, the terms must individually be constants which I can write
as g, and &, S0

h(r)X (1)) = &,.X(r)
h(r)Y (1) = £,Y(r2)

and in the case where the two electrons don’t interact with each other we just
solve the H,™ problem twice over (once for each electron). The solution I have
given is exact, even for two atoms at a chemical bond length. If you substitute
the solution into the electronic Schrédinger equation then you will find that it fits
exactly, and you can calculate the energy that way if you so wish (or just add ¢,
and ¢,).

You are probably used to this idea from descriptive chemistry, where we build
up the configurations for many-eleciron atoms in terms of atomic wavefunctions,
and where we would write an electronic configuration for Ne as

@.7)

Ne: (1s)2(2s)*(2p)°

The orbital model would be exact were the electron repulsion terms negligible
or equal to a constant. Even if they were negligible, we would have to solve
an electronic Schrodinger equation appropriate to C1gHg®’* in order to make
progress with the solution of the electronic Schrodinger equation for naphthalene.
Every molecular problem would be different.

We will actually use the idea that the interaction between electrons can some-

hau ha late o in h thic id arm
llUW U avulusuu, lll ﬂ 1au,1 \/ual)u,r _‘,’Uu ‘V‘V’Ill See IIG‘V‘Vy udS u.leu fUllllD the basls

for the self-consistent field (SCF) model.

T~ nt\‘m MAMAATRTT

4.2 THE VALENCE BOND M

So, let’s get a bit more chemical and imagine the formation of an H; molecule
from two separated hydrogen atoms, Hy and Hp, initially an infinite distance
apart. Electron 1 is associated with nucleus A, electron 2 with nucleus B, and
the terms in the electronic Hamiltonian Rag, ra2 and rp; are all negligible when
the nuclei are at infinite separation. Thus the electronic Schrédinger equation

hecomeg
oecomes

(h22 o, & &

 872m Vi ) We(ry, 1) = . We(ry, I2)

(4.8)
\Fe

87r2me 2 4JT€0rA1 47[607'32
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[ am going to leave you to prove for yourself that the wavefunction corresponding
o this infinite-distance H; problem is a product of two hydrogen atom wavefunc-
uonS Physically, you might have expected this: the two atoms are independent
and so the electronic wavefunctions multiply to give the molecular electronic
wavefunction.
If I write possible atomic orbitals for hydroge atom A as x, and possible
atomic orbitals for hydrogen atom B as x5, the molecular electronic wavefunction
will be
We(ri, 12) = XA (1) xp(r2)

v’s can individually be 1s, 2s, ’)n atomic orbitals. The lowest-enerov

The x’s can ndividually . fhe lo Iy

solution will be when the x’s correspond to 1s orbitals on each of the two
hydrogen atoms, the next-highest-energy solution will be when one of the x’s is
a 1s, the other a 2s atomic orbital, and so on. Possible solutions of the electronic
problem, with the two H atoms at infinity, are shown in Table 4.1.

In this table, ;5 is the energy of a hydrogenic 1s orbital, &55 the energy of a
hydrogenic 2s orbital. Before we worry about comparison with experiment, there
are a couple of loose ends that have to be tidied up.

4.3 INDISTINGUISHABILITY

I live in a country park, which has a lake, ducks, geese and rabbits. One rabbit
looks very much like another one, but each of them is actually different (if you
happen to be a rabbit). The one I caught eating my runner beans is quite different
from the others because ii is now dead, but we could paint one rabbit red, one
blue, one green if we wanted to distinguish between them. Despite that fact that
they all look alike, they are distinguishable. All similar things in our macroscopic
world are distinguishable.

Electrons are indistinguishable, they simply cannot be labelled. This means
that an acceptable electronic wavefunction has to treat all electrons on an equal
footing. Thus, although I have so far implied that electron 1 is to be associated

with niinalane I nd alantran ) with nuiclang Ho T mncet alan natar far tho altanr_
Vil Luvivud llA, auu uxpuuuu r<3 VVlI.ll llu\./lbl-lb LiB, 1 llluDL aldv valvl 1ul Lll\/ aitvi

native description where electron 1 is associated with nucleus Hg and electron 2
with nucleus Hp. I therefore have to modify Table 4.1 to Table 4.2.

Table 4.1 Hydrogen molecule with infi-
nite atomic separation; electron 1 associ-
ated with nucleus A, electron 2 associated
with nucleus B

W, (ry, 1) Electronic energy &
Isa(r1)1sp(ry) 2¢4s
Isa (r;)2sp(rs) 15 + €25
284 (r1)1sp(r) 15 + &2

284 (r1)2sB(r2) 2e55
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Figure 4.2 Distinguishable rabbits

Table 4.2 Hydrogen molecule with infinite atomic sepa-
ration; allowance made for indistinguishability

W, (ry, I2) Electronic energy e
Isa(ri)lsg(r;)  1sa(ry)lsp(r;) 2¢e15
Isa(r;)2sp(r2) 1sa(r2)2sp(r) £15 + €25
2s5(r)1sp(r2)  2sa(r2)1sp(ry) 815 + &35
2sa(r1)2sp(r2)  28a(r2)2sp(ry) 2695

The extra column allows for indistinguishability. Each entry in the table is a
distinct quantum state, and the ground state of the molecule is described equally
by the two quantum states 1s4 (r;)1sp(r2) and 154 (r2)1sg(r), and each quantum
state has the same energy. Any linear combination of these two quantum states
also has the same energy, and so we ought to consider a linear combination
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Symmetfy arguments tell us that we have to take a = b, so we write possible

wrayuanfiin
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44 ELECTRON SPIN

So far, I have ignored the existence of spin. Spin is an internal angular momentum
that some particles have and others do not. Electron spin is a two-valued quantity;
we denote the spin variable for a single electron s, and the spin states are written
a(s) and B(s), or just & and B for short when the meaning is obvious. The notation
I am going to use is that o(s;) means electron 1 in spin state . With an eye to
the discussion above about indistinguishability, we consider the following four

combinations of spin states for two electrons:
a(s1)B(s2) £ a(s2)B(s1)
a(sy)a(sz) (4.10)
B(s1)B(s2)

All four of these combinations allow for the indistinguishability of the elec-
trons.

45 THE PAULI PRINCIPLE

We can construct a total electronic wavefunction as th

art and art Har tha alactranie oround ctate o
part anag a nl.uu part. ror ine SieCuwonic grouna siai€ ©

combinations of the two spatial terms
1sa(r1)1sp(r2) £ 1s5(r2)1sp(ry)
with the four spin terms
(s1)B(s2) £ a(s2)B(s1)
or(s1)ee(s2)
B(s1)B(s2)

to give eight possible candidates for the total (space and spin) wavefunction.
The generalized Pauli principle (Pauli, 1925) guides us in our choice: for elec-
trons, the total wavefunction has to be antisymmetric to the exchange of elec-
tron names, and so nnlv the f'nllnwmo four combinations out of the ﬂoht are
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acceptable:

(1sA(r1)1sp(r2) + 1sa(r)1sp(rz))(ee(s1)B(s2) — a(s2)B(s1))
(Isa(r1)1sg(r2) — 1sa(r1)1sp (r2))(ex(s1)B(s2) + a(s2)B(s1))
(1sa(r1)1sp(r2) — 1sa(ri)1sp(r2))a(si)ox(s2)
(1sa(r1)1sp(r2) — 1sa(r1)1sp(r2))B(s1)B(s2)

In the limit of infinite atom separations, or if we switch off the Coulomb repul-
sion between two electrons, all four wavefunctions have the same energy. Byt
they correspond to different eigenvalues of the electron spin operator: the firgt
combination describes the singlet electronic ground state, and the other three

combinations give an approximate description of the components of the first
triplet excited state.

~

:.l; .
S—
o
~—

4.6 THE DIHYDROGEN MOLECULE

For a real-life dihydrogen molecule around the equilibrium bond length, we
cannot ignore the electron repulsion term g(ry, ry) in the Hamiltonian. The simple
atomic orbital product wavefunctions in Table 4.2 are no longer solutions of
the electronic problem. They have the right physical characteristics, and so are
acceptable models. As the two H atoms approach from infinity, the energy will
decrease. As the two H atoms approach, we expect that the energy will increase
rapidly because as the two unscreened nuclei approach they repel strongly. Heitler
and London first tried this approach in 1927. The singiet eiectronic ground state
is written

Wyr, = (1sa(r)1sp(r2) + 1sa(ri)1sp(ra) ) e(s1)B(s2) — a(s2)B(s1))  (4.12)

and the electronic energy is evaluated with the exact Hamiltonian as

f WmHCWm dr
2
J Wiy dr

n

Here the 1ntegrangn [...dr is over the coordinates of both electrons. Such

integrals are therefore elght -dimensional (three spatial variables and one spin
variable per electron). Integration over the spin variables is straightforward, but
the spatial variables are far from easy; a particular source of trouble arises from
the electron repulsion term.

In the case of the hydrogen molecule-ion H,", we defined certain integrals

Saa, Taa, Tag, - .- VaBra. The electronic part of the energy appropriate to the
Heitler—I.ondon (s ( ]eﬂ ormmd-qtafe wavefunction, after dnmo the mteorathl’lS
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1 the spin variables, is found to be

ove
. fet) = 2Tan + 25a8TaB — 2Vaara — 2Vaare — 4SaBVaBrA + Eaare + Eapas
o (S0 = (1+ S%s)
“4.13)
where EAABB and Expap are additional integrals given by
EaaBB = / 153 (r1)g(r, r2)1s3(r2) dr; doy
“4.14)

Exaap = //1. r) s (g, )l
The integrals | f ---dry dr; are called two-electron integrals, and they are hard
to evaluate. Expressions for these integrals are given in (for example) Slater
(1965, 1974). They are often given classical elecirostatic inierpretations. The first
one represents the mutual potential energy of two charge clouds with densities
welsi(rl) and —e152B (rp). It is often called a Coulomb integral. The second
represents the mutual potential energy of a charge distribution —elsa (r)1sg(r)
with itself. It is often called an exchange integral.
Finally we have to remember to add on the nuclear repulsion and, if we repeat
the calculation for a range of values of the internuclear separation, we arrive

o+ tha natential anarov cuirvace chawn in Figura 4 2 far tha grannd_atata fainglat)
al uiv puwiiiiial Ciivigy LULVLS olvuwil Ul C1guic 7.0 101 UIc sxuuuu-btatc \DIUZICL)

-0.2 T

Total energy/hartree

-~ -
-~~~ --

|
2 3 4 5 6

Internuclear se
internuciear se

Figure 4.3 Valence bond treatment of singlet and triplet states
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Table 4.3 Significant calculations on dihydrogen

Description Reference D./eV  R./pm
Experiment 472 741
Single hydrogenic 1s valence bond Heitler and London & =1 3.156 86.8
Best exponent for above ¢=1.12 3.592
Single hydrogenic 1s VB-CI =1 3.238 884
Single hydrogenic 1s LCAO =1 2.694 847
Best exponent for above =11 3.292
Simple LCAO including 2p, orbitals Rosen (1931) 4.02

and excited-state (triplet) wavefunctions. The triplet state is repulsive, whilst the
singlet state curve shows a minimum at 88.4 pm.

We often refer to Heitler and London’s method as the valence bond (VB)
model. A comparison between the experimental and the valence bond potential
energy curves shows excellent agreement at large Rap but poor quantitative agree-
ment in the valence region (Table 4.3). The cause of this lies in the method itself:
the VB model starts from atomic wavefunctions and adds as a perturbation the fact
that the electron clouds of the atoms are polarized when the molecule is formed.

A slight improvement in the predicted dissociation energy occurs if the 1s
orbital exponent is treated as a variational parameter.

4.7 CONFIGURATION INTERACTION

The simple VB treatment of dihydrogen uses a wavefunction

and it is usual to give a physical interpretation to each of the spatial terms. We
say that 1sa (r;)1sp(r;) represents a situation where electron 1 is associated with
nucleus A and electron 2 with nucleus B. The term 1s,(r;)isg(r;) represents
a situation where electron 2 is associated with nucleus A and electron 2 with
nucleus B. We talk about covalent structures and recognize that ionic structures
such as 1s5(r;)1sa(r2) and 1sg(r;)1sg(r,y) should also be considered. Here, the
two electrons are both associated with nucleus A or nucleus B. So, an improved
VB wavefunction would have spatial part

a(isa(r))1sp(r2) + 1sa(m2)1sp (1)) + b{1sa(T1)15a({12) + Isp(ry)isp(E2))
where the -parameters a and b would have to be determined by the variation
principle. We would expect on physical grounds that a > b, that is to say the
covalent terms would outweigh the ionic ones.

This is a simple example of valence bond configuration interaction.
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48 THE LCAO-MOLECULAR ORBITAL MODEL

In Chapter 3, I discussed the construction of simple LCAO-MOs for the hydro-
en molecule-ion, starting from 1s atomic orbitals on the hydrogen centres. Thus,
we constructed LCAO-MO approximations to the two lowest energy molecular

orbitals as
1

log = ————(Isp + 1s
Og 2(1+SAB)( A+ 1sp)

V2(1 — San
and we noted how to calculate energies. We now have to deal with the case
of two electrons, and we must seriously consider the consequences of spii: and
antisymmetry. Table 4.3 summarized the possible allowed space and spin parts
of the total wavefunction formed by allowing either electron to occupy the 1o,
or the 10, molecular orbital.

In Table 4.4, T have ignored overall normalization.

Calculation of the potential energy curve for the ground state gives poor agree-
ment with experiment on three counts. The predicted equilibrium distance is poor
and the dissociation energy is only about one-half of its experimental value. This
is not dissimilar to the simple VB calculation. Much more serious is that the
molecular orbital wavefunction shows the wrong behaviour for large Rap. The
asymptotic energy ought to be —1E}. The simple VB calculation gets the energy
of the dissociated state (relative to four separated particles) right.

A careful analysis shows that the dissociation process corresponds to

1 .
lo, = —)(1$A — 1sp)

H, > jH+H+H"+H")
rather than the lower-energy reaction
H, - H+H
This is a near-universal failure of molecular orbital calculations.

Table 4.4 Possible LCAO-MO wavefunctions for dihydrogen

R I PR
riecuonicC state

Spatial function Spin function Symmetry Configuration
log(r;)1o,(r2) a(s1)B(s2) — a(s2)B(s1) 15, lo}
log(r)1oy(ry) — log(r)iou(r)  alsia(s:) Ty logloy
log(r))loy(rz) — log(rp)lou(r)  a(s))B(s2) + a(s2)B(s1) 3%y loglo;
log(ry) 10y (1) — 1og(r2)lou(r)  B(s1)B(s2) 3T loglo,

10';{1'1\117 (v N1 1 (v a (v wlo YR(c- ) _ nulc,
B\TL/AVuUNRZ) 7 LVgRRZJEVUNR L) WAL IM\RL) WwAvZ

hY \
loy(r))1oy(rz) a(s1)B(s2) — a(s2)B(s1) '3, lo?

Rlc.
[

Iy 1ol151
i 10,10,
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Figure 4.4 Molecular orbital treatment

4.8.1 Configuration Interaction

In molecular orbital language, we write lag2 for the ground-state electronic config-
uration (corresponding to a single state), lagl o] for a singly excited configuration
(corresponding to both a triplet and a singlet state) and 1‘7121 for the first available
doubly excited configuration (again corresponding to a single state). In the spirit
of the variation iechnique, we would seek to improve our descripiion of the elec-
tronic ground state by writing a ‘better’ wavefunction as a linear combination of
all three singlet-spin states:

Yo = a¥(lo}) + b¥(lo,1o,) + c¥(loy) . (4.16)

where a, b and ¢ can be determined using the variation principle. Table 4.4
different from that of the first excited singlet state. This shows immediately that
b =0, since only states of the same symmetry can mix.

Once the calculation is done, we get a better prediction of the equilibrium
bond length and dissociation energy, but most important of all we recover the
correct behaviour for large Ragp.
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Figure 4.5 Simpie CI treatment

49 COMPARISON OF SIMPLE VB AND LCAO
TREATMENTS

It is instructive to compare the simple LCAO and VB (valence bond) treatments,

and especially to enquire why the LCAO treatment fails so disastrously at large R.

T oA

It is easily shown that the LCAO wavefunction can be written
WMO = \IJHL + q’ionic

and so it gives equal weights to the ‘covalent’ and ‘ionic’ valence bond structures.
The simple VB treatment gives zero weighting to the ionic structures. In their
simplest forms, the LCAO and VB models give very different descriptions of the
dihydrogen covalent bond. Once configuration interaction is taken into account,
they give exactly the same answers.

410 SLATER DETERMINANTS
The simplest possible LCAO building block for the ground state of dihydrogen is

lag(ri)1og(r2)(a(s1)B(s2) — a(s2)B(s1))

This simple wavefunction is antisymmetric to the exchange of electron names,
and treats both space and spin.
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\O
o]

By inspection, it can be written as a determinant

log(ry)a(s;) log(ra)a(sz)

log(ri)B(s1) 1og(r2)B(s2)

property that they change qwn when we inter-

is qu1valent to mterchangmg the names of the

(4.17)

Determinants have the

change two columns, an
two electrons:

o
-
;"
U) b=

| log(ri)ats;) log(rae(sy)| _ _ |loglr)elsy)  1og(re( 31)'
log(r1)B(s1) log(ra)B(s2)| Ing(l'z)ﬂ( 2)  log(ri2)B(s1)

Such a determinantal wavefunction is called a Slater determinant, after Slater

1d annraciata that o

10U1G yylcuiau.« tdat a

Slater determinant = smallest logical building block for electronic
wavefunctions

I don’t mean that such a wavefunction is necessarily very accurate; you saw a
minute ago that the LCAO treatment of dihydrogen is rather poor. I mean that,
in principle, a Slater determinant has the correct spatial and spin symmetry to
represent an electronic state. It very often happens that we have to take combi-
nations of Siater determinants in order to make progress; for exampie, the first
excited states of dihydrogen cannot be represented adequately by a single Slater
determinant such as
| Log(rpa(s))  1og(ra)a(sy) |

[1ow(r)B(s1)  lou(ry)B(sz) |
we have to take combinations of determinants such as

| 1o,(r1)B(s1)  1og(r2)B(s2) |
loy(rpa(sy)  loy(r)a(sz)

I e N e N 1 PN |
log(rp)a(sy) 1og(rz)alsz)

loy(r))B(s1)  1lou(rz)B(s2)

We cannot ignore one of them at the expense of the other.

So, we have learned that a single Slater determinant can adequately describe
some electronic configurations, but others can only be described by a linear
combination of Slater determinants, even at the lowest level of accuracy.
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A = AN AN

As computational facilities improve, electronic wavefunctions tend to become
more and more complicated. A configuration interaction (CI) calculation on a
medium-sized molecule might be a linear combination of a million Slater deter-
minants, and it is very easy to lose sight of the ‘chemistry’ and the ‘chemical
intuition’, to say nothing of the visualization of the results. Such wavefunctions
seem to give no simple physical picture of the electron distribution, and so we
must seek to find ways of extracting information that is chemically useful.

In Chapter 3, I showed you how to write a simple LCAO wavefunction for
the electronic ground state of the hydrogen molecule-ion, Hy™

1
Y = e (I () + 155 () CRY
V2(1 + SaB)
Sap is the overlap integral between atomic orbitals 1s, and 1sg, and the factor
1/3/2(1 + Sap) is often called a normalization coefficient or the normalizing
factor. 1t is introduced to make sure that

/ WP dr = 1

where the integration is over the spatial variables of the electron.

I have included the modulus bars in |(r)|?> because wavefunctions can be
complex quantities. For most of this and subsequent chapters, I will assume that
we are dealing with real wavefunctions.

The total electronic wavefunction is the product of a spatial part and a spin
part; it is ¥(r) times a(s) or B(s) for this one-electron molecule. There are thus
two different quantum states having the same spatial part ¥(r). In the absence
of a magnetic field, these are degenerate.

Some authors write x = r s to denote the ‘total’ variables of the electron, and
write the total wavefunction as \I‘(X) or lIJ(r s) I have used a capital ¥ here
to UullJlla.blLC that the total wavefunction UCPCllub on both the spacc and s oyu.
variables. I will use the symbol dz to denote a differential space element, and ds
to denote a differential spin element.
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The Born interpretation of quantum mechanics tells us that W2 (r, s) dt ds gives
the chance of finding the electron in the spatial volume element dz and with spjp
coordinate between s and s + ds. Since probabilities have to sum to 1, we have

/wm9a®:1

whara tha intagratinn hag tn ha Avar tha gnatial variahlag and tha gnin variall,
Wilivi v l-.ll\.« llll\-télallull Had w uUv uvvul uiv lJ ua1 valiauvivn aliu uiv Dl.llll vall Ule'
A short calculation will show you that a wavefunction such as
1
W(r)a(s) = ,——"—'-—(ISA(I') + ISR(I'))C((S) (52)
~2(1 + SaB)

does indeed satisfy this requirement. (You should recall that the spin functions
a(s) and B(s) are orthonormal.)

Many physical properties such as the electrostatic potential, the dipole moment
and so on, do not depend on electron spin and so we can ask a slightly different
question: what is the chance that we will find the electron in a certain region
of space dr irrespective of spin? To find the answer, we integrate over the spin

e AAltepelil A0 2130 G allsW we L eiatl vid AL Spili

Var1ab1e, and to use the example 5.2 above
| [y 0s)as| ae
LJ il

gives the chance of finding the electron in drz, irrespective of spin. A short
calculation shows that this is

TS50 [1sA(r) + 1s3(r) + 2 x 1sa(r)1sp(r)] dr (5.3)

Tl'n'c 1'0 ucually written P(r) dr where P(x) ic the 2loctron dencity
111k uSuQuy WILLCIL £ x) Ge WilIT 1L ) 15 w0 E&liFon Gcisicy.

What happens when we have a many-electron wavefunction, such as the one
below which relates to the simple valence-bond treatment of dihydrogen?

1
Wyp(ry, 81, T2, 82) = ————(1s5(r1)1sp(r2) + 1sa(1r2)1sp(r1))
2 (1 + SZZ\B)

X 75 @0P62) — as2)p1)

—~
(9]
=N

~—

As noted above, many of the common molecular properties don’t depend on
electron spin. The first step is to average-out the effect of electron spin, and

CACLIVI SpPRiL. 0 IS Sop SQVLAGET VUL Wb Caillt UL Latluivil ospaal, &uv

we do this by integrating with respect to s; and s, to give the purely spatial
wavefunction

1
Wyp(ry, 1) = ——=———(1sa(r1)1sp(r2) + 154 (2)1sp(r1))
\/2 (14 523)

(5.5)
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The Born interpretation of quantum mechanics tells us that
l_‘-I-’%,B(l‘l, 1'2)_‘ d‘L'] dl’z (56)

is the probability of finding electron 1 in dr; and simultaneously finding electron

ind aguantitv in sguare brackets comes to
dr gquantity in square brackets comes to

»
[\
2

1
2—(‘1“;‘5:2—) (1sA(r)1s3(r2) + 1s3 (r2)1s3(ry)
AB

+ 2 x 1sa(ry)1sp(r1)1sa(r2)1sp (r2)) 5.7)

Trrespective of electron spin, many simple molecular electronic properties depend
only on the probability of finding either electron in a region of space dr. The
region dt is to be regarded as a fixed region of space that could from time to
time be occupied by either of the electrons. To find this probability, we focus
attention on one of the electrons (say 1), and then average over the coordinates
of the other. In the simple VB case, Eq. 5.4, we average-out electron 2 to give

a probability

1
2(1 + S3p)

(126N 1 1272 19C . v T, (. Yau {3\ dr (
(184 (F1) 1 I8p{I1) + 25AB X 18A(F1)18Bi¥1)) GT {

Electrons are indistinguishable, and this probability is exactly equal to the chance
of finding electron 2 in dt. The chance of finding either electron in dr is therefore
twice the above expression.

We could therefore define the electron density P(r;) as

f
P(I‘l) = 2/ ‘I-’éB(l'l, 1'2) d‘L'z (59)

where the integration has to be carried out with respect to the second electron.
Mhasn ia o Frrthar gimnlifiaatinn diia ta tha indigtingnichahility Af tha alantrang
1ICIC 1> a 1uluicl buupuuua,uuu, UUL WV UIC LHTUIDULIZUIDIIdUIIILY UL UV VIVLVULVLLDS.

We normally drop all reference to electron 1 and write simply
P(r)=2 J/ Wip(ry, 12)d, (5.10)

where it is understood that we replace the variable r; with r after integration.
P(r)dr gives the chance that the differential volume of space dr is occupied by
one electron, no matter which.

Integration of P(r) with respect to the coordinates of this electron (now written
r) gives the number of electrons, 2 in this case. In the case of a many-electron
wavefunction that depends on the spatial coordinates of electrons 1, 2, . .., m, we
define the electron density as

P(r)=m /IIJ2(r1,r2,...,rm)drzdtz---dtm (5.11)
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with the understanding that we replace r; by r after the integration. Again,
integration of the electron density yields the number of electrons, m.

When working with atomic orbitals, it is usual to write the electron density
in terms of a certain matrix called (not surprisingly) the electron density matrix.
For the simple dihydrogen VB wavefunction, we have

1 SAB
_ 1+ 8 1+S% 1sa(r)
P(r) = (1sa(r)1sp(r)) Sas 1 155(r) (5.12)
\1+85 1+85/
For the simple LCAO case, it turns out to be
1 Ly
14§ 1+ 1
P() = (Isa(@1sp(x)) | A8 1 oae ( lzggg ) (5.13)
1+8Sa8 1+ SaB
5.1 THE GENERAL LCAO CASE
In later chapters we will be concerned with the LCAO model. Suppose we have a
set of # atomic orbitals y;(r), x,(r), ..., x, (), and a normalized LCAQ orbital
WA = a:v.(r) (5.14)
FTAXNT S Ld N[N~/ \ J

I will assume that the atomic orbitals y; are normalized, but not generally orthog-

onal. That is to say,
f ximdr=1

r
/ x:(®)x;(x)dz # 0

By analogy with the discussion of the previous section, the electron density for
s electro

single
ingle

[

in Y 1S given bv
n ¥, 1s given by

a;  aia aa, X, ()
P(r) = (ot ®)x,(0) .. x,l(r))(“z‘l1 @G “Zan\l ( Xz(r)\ (5.15)

a,a; apay; ... aﬁ Xn (l‘)
and the matrix ,
/ as aiadn aia,. \
i bl SaA bl et/
2
aa a ... ana
P=| @ % 20n (5.16)
\ a1 a,day ... {lz
ra1 7 n
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is the electron density matrix associated with the single LCAO ¥a. If the elec-
tronic state of the molecule in question could be written (for example) t//A 1//B 1//C,
where the three LCAO orbitals were linear combinations of the same atomic
orbitals, we wouid calculate an electron density mairix whose (i, j)th element is

P,‘j = 2a,~aj + 2bibj + 1C,'Cj (517)
j— AV A o 1 are ~n11. PRSIy PR AN PR PRSI | 1analar Arhital
The £ S aild uic 1 € Calied occupaition numoers. In standard molecular orvita:

theory, occupation numbers are 0, 1 or 2 and they tell us the occupancy of a
given orbital.
Since

/ Y r)dr =1
we have

1—a1/Xl(r)dt+2a1a2/)(1(r)x2(r)dr+-~+aﬁ Xﬁ(r)dt

The integrals involving atomic orbitals are often collected together into a matrix
called the overlap matrix S
| [xmdr [x@x@dr ... f x,(®)x, (x)dz
S — LJ Xz(‘r‘)x r)dr J szr)df o f XZ\l)x,,\l)uL) (5.18)
I xn (l')xl mdr  [x, (r)xz(r) dr ... [ximdr

The matrix S is of course symmetric. The normalization condition for a single
LCAO wavefunction can be written in a compact notation as

n n

N\ ' o
l"ub],—l

i=1 j=1

—~
n
—
o

p—1

In the more general case of several LCAOs, where P has been calculated accord-
ing to the occupation numbers, we have

> > " P;;S;i = number of electrons (5.20)

i=1 j=1

5.2 POPULATION ANALYSIS

Once an approximation to the wavefunction of a molecule has been found, it can
be used to calculate the probable result of many physical measurements and hence
to predict properties such as a molecular hexadecapole moment or the electric
field gradient at a quadrupolar nucleus. For many workers in the field, this is
the primary objective for performing quantum-mechanical calculations. But from
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the early days of quantum chemistry, others have repeatedly tackled the probley,
of interpreting the wavefunction itself, attempting to understand why it takeg a
particular form for a particular molecule, and how the form of the wavefunctiy
affects the expectation values calculated from it.

I have emphasized the electron density P(r); it turns out that the expectatioy
values of operators such as the dipole moment operator can be determined dn-ecﬂy
IIUIIl ["\I') llell Wll.IlULll recourse to the waveruncuon J.IIC UCIlblly 1unct10n ["(r)
has a simple physical meaning; P(r) dt gives the probability of finding an electroy
of either spin in the spatial volume element dz. Authors often speak about P(y)
as if it were some kind of time average, and state that electrons ‘spend so much
of their time associated with nucleus A’, etc. This interpretation is quite wrong,
First of all, we have only considered the time-independent Schrodinger equation,
so you should be wary about any arguments based on time. Time does not appear

in tha tima_indenandent Schradinocer eauatinan!
il UlC uinc- xuuvy\.«uuvut STNroainger Cquauosn.

Secondly, making measurements on atomic and molecular systems generally
interferes with the system. If we were to repeatedly make measurements on
single system, we would change the system at each measurement and so would
not be dealing necessarily with the same system. The correct interpretation is a
statistical one. We would have to prepare a very large number of systems all in
the same electronic state, and then do the measurements on all of them.

For a preliminary survey of the electron density, it is usual to make a pictorial
representation as we did in previous chapters. WhllSt such diagrams do not carry
much information, they do provide a theoretical measure which can be compared
to the results of X-ray diffraction studies. A whole volume of the Transac-
tions of the American Chemical Society (1972) was devoted to the Symposium
‘Experimental and Theoretical Studies of Electron Densities’.

For the purposes of a purely theoretical analysis of molecular electronic struc-
ture, we need more detailed information. The term population analysis was
introduced in a series of papers by Mulliken in 1955, but the basic ideas had
already been anticipated by Mulliken himself, and by other authors. The tech-
nique has been widely applied since Mulliken’s 1955 papers because it is very
simple and has the apparent virtue of being ‘quantitative’. The word ‘quantitative’
seems to mean two different things to different authors:

e an analytical description of the charge distribution in a molecule
e a measure of the strength and nature of the bonding in a molecule.

Most users of population analysis seem to be concerned with the first meaning.
Take the LCAO-MO treatment of dihydrogen as an example. We focus on the
electron density

1
1+SAB 1+SAB\ { 1sa()

sa(r \ 1 1 }\ISB(r)}

14+ Sap 14 Sas

—~
Lh
138
—_
Nt
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Electronic Population Analysis on LCAO-MO Molecular Wave Functions I
R. S. Mulliken
Journal of Chemical Physics 23 (1955) 1833-1840

With increasing availability of good all-electron LCAO-MO wavefunctions
for molecules, a systematic procedure for obtaining maximum insight from
guch data has become desirable. An analysis in quantitative form is given
here in terms of breakdowns of the electronic population into partial and
total ‘gross atomic populations’ or into partial and total ‘net atomic popu-

1ations’ together with ‘overlan nonulations’. ‘Gross atomic nnnnl;mnnc

1auUis WeTiaata voliap pPOpPRIalivils o WROSS alLILC popialilllls

distribute the electrons almost perfectly among the various AOs of the
various atoms in the molecule. From these numbers, a definite figure is
obtained for the amount of promotion (e.g., from 2s to 2p) in each atom;
and also for the gross charge Q on each atom if the bonds are polar. The
total overlap population for any pair of atoms in a molecule is in general
made up of positive and negative contributions.

and the matrix / 1 1
P= k 1 -i-loAB i -i-loAB ) (5.22)
14+S8Sa8 1+ Sas

P P I I P Ta T 421 xofale amasalanao Panes | ~elald <zt

ﬂlollllb UlUlldl le lb abbUL«ldlCU wiul uuucub HA alg alUllﬂb UlUll.al IDB WILLL
nucleus Hg. The first term in the electron density (ls A(r)) /(1 + Sap) is taken
to represent the amount of electron density associated with nucleus Ha. The
corresponding term (1s3(r)) /(1 + Sap) represents the electron density associ-
ated with nucleus Hg and the remainder 2(1sa(r)1sg(r))/(1 + Sag) is taken to
represent the amount shared by the two nuclei. Mulliken’s first idea was to inte-
grate these contributions, which gives the values 1/(1 + Sap), 1/(1 + Sap) and

MC. /(1 1. C._\ Thaca valiiac ara accrimad tn ~antain cnma rhaminal infarmal
\@JAB Jj \L T OAB . 11iC5C Vaiuls al® asSsulfiClG O COnialil SOMC CinliiiCd: liOiia

tion. Note that they sum to 2, the number of electrons in H,.

The values are called the net atomic populations and the overlap population.
Chemists speak of the charges on atoms in molecules, and Mulliken’s second
contribution was to propose a method of partitioning the overlap population
between contributing atoms. He proposed that the overlap populations be divided
equally between participating atoms, so giving the gross atomic populations of

1 1 2548
14+Sas 214 Sas

and hence atomic (nuclear plus electronic) charges of 0 in this particular case.
For a homonuclear diatomic, there is no argument that this sharing is equi-
table, but other authors have produced different sharing schemes for heteronuclear

(5.23)
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Table 5.1 Mulliken atomic charges for water as function of quality

of LCAO-MO

Quality Total energy/E,  Charge on O/e  Charge on H/e
STO-3G —74.959835 —0.3824 +0.1912
STO/6G —75.675842 —0.4000 +0.2000
STO/6-31G —75.984303 —0.7925 +0.3963
STO/6-31G* —76.010703 —0.8698 +0.4349
STO/6-31G*  —76.023615 —0.6707 +0.3354

systems depending on atomic electronegativity differences, bond dipoles and
SO on.

5.2.1 Dependence on Quality

Population analysis is a deceptively simple process for obtaining a rough and
ready account of the charge distribution in a molecuie. Caution is needed when
quoting population analysis indices, for the following reason. I have looked ahead
a little, and the calculations above are more sophisticated versions of the LCAQ
treatment of water. I will explain the jargon such as ‘HF/STO-3G’ in later chap-
ters; all we need to know for now is that I have added more and more atomic
orbitals in order to get a lower energy. The presence of a * means that I have
added d-type orbitals to oxygen, the presence of ** means that I have taken both
p-type orbitals on hydrogen and d-type orbitals on oxygen.

The first two charges obviously resemble each other, despite the large change
in energy; the overall ‘agreement’ between the calculated charges is non-existent,
other than that oxygen is predicted to carry a negative charge. The numbers calcu-
lated depend critically on the quality of the wavefunction. Nevertheless, it is found
that the Mulliken population analysis indices do carry useful chemical informa-
tion, provided that comparisons are made between wavefunctions of equal quality.

5.3 DENSITY FUNCTIONS

I now want to generalize the concept of the charge density, and in particular
treat spin explicitly rather than averaging it out. I told you earlier that, for a
one-electron wavefunction ¥(r, s), W2(r, s) dr ds gives the chance of finding the
electron in the spatial volume element dr with spin coordinate between s and
s + ds. In Cartesian coordinates, dz = dx dydz. Some authors write x for the
space and spin variables and I am going to follow this notation where appropriate.

In order to calculate the total probability (which comes to 1), we have to
integrate over both space dr and spin ds. In the case of the hydrogen molecule-
ion, we would write LCAO wavefunctions

1
W(r, 8) = —mmmmee= (15 (r) + 1sp (r))x(s)
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THE ELECTRON DENSITY

and 1
W(r,s) = ——————(1sa(r) + isg(r))B(s)
(r,s) 7a +SAB)( A(T) B(X))p(s)

Both correspond to the same energy, in the absence of an external magnetic
£ald. In either case, r\II (r,s)drds = 1 and we call \Dz(r s) the dengsity ﬁ nction

1iC1G. xa LARAA2 e S 1 an SRR QLS Y jiiL Il

p1(X)-
For a many-electron system with wavefunction W(ry, s1,T2,82,..., ', Sp)

then
WA(ry, 81,12, 82, - . ., Fm, Sw) A7y dsy dTp dsy - - - ATy dsy (5.24)

gives the probability of finding simultaneously electron 1 in dz; ds;, electron 2 in
drpdsy, - .. , electron m in dt,, ds,,. The probability that electron 1 is in dz; ds;
with the other electrons anywhere is found by averaging over the remaining
electrons. To find this we integrate

\

.1.2 < - < )

== . e A a. A Ao A Ao
\j j W1, 81, 12,82, ..., 5y, 8,)0T2 A4Sy - - - ATy, ASy,, | AT1 ASy

and, because electrons are indistinguishable, the probability must be the same for
all electrons. We therefore define the one-electron density function as

pi(ry,81)=m (/--~/1112(r1, $1,12,82, ..., m, Sp) dtads; - - - dz,, dsy,
(3.25)
It is sometimes written
N ([ [ 5. N L
p1(xr,s)=m \/ j W (ry, 81, 12,82, - - -, Iy Spp) AT2 AS - "dfmdsm)
(5.26)

with the convention that r,s refers to a point in spin-space. We evaluate p; from
expression 5.25 above, but then drop the subscript.

The one-electron density function is the first of a series of density functions
which relate to clusters of any numbers of electrons. The second member of the
series is

2
p2(r1, 51,2, 52) = m(m — 1) (/ /\p (T1, 1, T2, 52, T3, 83 - - > Fns Sm)

N

x drzds; - - - d7y, dsm)

which is related to the probability that any two electrons will be found simulta-
neously at points 1, s; and rp, s;.

For every electronic wavefunction that is an eigenfunction of the electron spin
operator S, the one-electron densitv function always comprises an o? Qnm nart

_______ Dz, HIC 11C CUOIL QALY 1Jcioil a1 LOLLIPASGS all 13 pelt
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and a B2 spin part, with no cross-term involving af.
pi(r1, s1) = PA(r)e (s1) + PP(x)B (s1)

The electron densities for o spin electrons and for 8 spin electrons are always
equal in a singlet spin state, but in non-singlet spin states the densities may be
different, giving a resultant spin density. If we evaluate the spin density functiop
at the position of certain nuclei, it gives a value proportional to the isotropic
hyperfine coupling constant that can be measured from electron spin resonance
experiments.

We note that the charge density discussed earlier is given by

P(ry) = P(r;) + PP(ry)



In Chapter 4, I discussed the concept of an idealized dihydrogen molecule where
the electrons did not repel each other. After making the Born—Oppenheimer
approximation, we found that the electronic Schrodinger equation separated into
two independent equations, one for either electron. These equations are the ones
appropriate to the hydrogen molecule ion.

Once electron repuision is taken into account, this separation of a many-eiectron
wavefunction into a product of one-electron wavefunctions (orbitals) is no longer
possible. This is not a failing of quantum mechanics; scientists and engineers
reach similar conclusions whenever they have to deal with problems involving
three or more mutually interacting particles. We speak of the three-body problem.

Thus, astronomers also suffer from the three-body problem when they try
to study the motion of the planets round the sun. They are lucky in that the
gravitational force between bodies A and B goes as
GMAMgpRap

Ry 6.1)

Fap = —
where G is the gravitation constant, M, and My the masses of bodies A and B and
Rag the vector joining A and B. In the case of our solar system, the sun is massive
compared to the planets, and the gravitational attraction between the planets can
be treated as a small perturbation on the motion of the planets round the sun.

The electrostatic force between two point charges Qa and Qg is

_ 0a0sRaB

FAB . =3

6.2)
and the charges on an electron and a proton are exactly equal and opposite. The
forces between electrons are therefore comparable in magnitude to the forces
between elecirons and nuciei.

The orbital model is a very attractive one, and it can obviously be used to
successfully model atoms, molecules and the solid state because it is now part
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of the language of elementary descriptive chemistry. In this chapter, I Will show

how we 2o ahn racavering the arhital madel when dealing with
you now we go about reco vering e orbital moael wnen Glailig wiin many.

electron systems. The essence of this Hartree—Fock (HF) model is to solye
the electronic Schrédinger equation for a single electron moving in a potengg
that averages out the effects of the nuclei and the remaining electrons. Electroy,
repulsion is certainly not taken to be zero, but the HF model cannot treat the
finer details of electronic structure theory that are caused by the instantaneoyg
repulsion between electrons. So, dispersion forces cannot be treated at the Hp
level of theory.

The basic physical idea of HF theory is a simple one and can be tied in very
nicely with our discussion of the electron density given in Chapter 5. We noted
the physical significance of the density function p; (r, s); p1(r, s)dr ds gives the
chance of finding any electron simultaneously in the spin-space volume elements
dr and ds, with the other electrons anywhere in space and with either spin,
P(r)dr gives the corresponding chance of finding any electron with either spin
in the spatial volume element dr.

There are several ways in which we can proceed with the derivation of the HF
equations. The traditional one is to look for an eigenvalue equation for the HF
orbitals

W = ents (6.3)

where the HF operator hF depends only on the coordinates of any one of

tha alastrane hnt allawe for tha rar r thair intaractione T
e CiCCUons, out audws 101 Ui avvxaslus over tnelr ineractions. 1 am 5“'”15

to follow tradition, but link the discussion back to the electron density of
Chapter 5.

The vast majority of known molecules are organic, totally lacking in symmetry
and having singlet electronic ground states which can be written in the language
of elementary descriptive chemistry as configurations V23 . .. {2

This is shown schematically in Figure 6.1. For such molecules, the only degen-

eracies that occur are accidental ones and all the 1Ir ¢ have the same anha]

1UTiitGl UViils Qi Qiir o

symmetry (their irreducible representation is a).

There are m doubly occupied molecular orbitals, and the number of electrons is
2m because we have allocated an « and a 8 spin electron to each. In the original
Hartree model, the many-electron wavefunction was written as a straightforward
product of one-electron orbitals ¥4, ¥g and so on

W (r: .0

n * Gn N — ri (P
(X1, 51, ¥2, 52, « + +» P2, S2m) = YaTi)e(s

2m YA\R]
I will refer to the Hartree model from time to time in the text. Hartree’s energies
were in poor agreement with experiment. With the benefit of hindsight he should
have allowed for indistinguishability and the Pauli principle. This was Fock’s
contribution to the field; he wrote the wavefunction as what we would now

recognize as a Slater determinant. Such a wavefunction automatically satisfies
the Pauli principle.
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v

Figure 6.1 Orbital energy-level diagram for a typical organic molecule

ll"e(rl’ Sl’ r2, s25 L] r2m, SZm)

Ya(rdo(sy) Yalr)BG) -+ Ym@)B(sy)
Ya(r)a(sz) Yar2)pB(s2) - YmE)B(s2) 6.5)
L Ya(Tam)a(Som)  Ya®m)B(s2m) -+ Ym(Tam)B(S2m) |

I am assuming that this particular electronic state is the lowest-energy one of that
given spatial symmetry, and that the y’s are orthonormal. The first assumption
is a vital one, the second just makes the algebra a little easier. The aim of HF
theory is to find the best ‘form’ of the one-electron functions ¥4, . .., ¥M and to
do this we minimize the variational energy

/ \Ileﬁellle dr
e = —
/ w2 dr
J

The integration is over the coordinates of all of the electrons, and I have assumed
that the wavefunction is a real quantity. In the case of a complex wavefunction
we are concerned with

(6.6)

/ UH W, dt
o = ¥
J/ I, dr

where W* is the complex conjugate of W,
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The first step is to work out ¢ in terms of the one- and two-electron oper,.
tors and the orbitals ¥, ..., ¥m. For a polyatomic, polyelectron molecule, the
electronic Hamiltonian is a sum of terms representing

e the kinetic energy of each of the electrons (which I will denote wity
subscript i);

o the mutual potential energy of each of the N nuclei with every electron. Nuclej
are given a subscript ¢, which is not to be confused with the spin variable;

e the mutual potential energy of each distinct pair of electrons. I say ‘distinct’
because we have to avoid the double counting of the interaction between
electron 1 with electron 2, and the interaction between electrons 2 and 1.

In symbols, we have

( hz 2m ez 2m N Z \l 62 2m—1 2m 1
A=-——YV-—_SY 22|14+ Y Y = 6
\ 8nPme = ' 4meg 5 = R dmeo = S i ’

I have grouped the terms on the right-hand side together for a reason. We normally
simplify the notation along the lines discussed for dihydrogen in Chapter 4, and
write the electronic Hamiltonian as a sum of the one-electron and two-electron
operators already discussed, )

m 2m—1 2m
fr_v\'f./..\. A U N (£ O\
He= ) nr)+ p p 8Wir;) {0.8)
i=1 i=1 j=i+l
where
Iy —_ -
! 812m, 4reg aZ:T Ry
and
sty =
g, r;)= —
v 47T60 r,-j

The energy expression can be found using a set of rules known as the
Slater—Condon—Shortley rules. These rules are discussed in all the classic texts, the
ideabeing that the energy expression which involves integration over the coordinates
of all the electrons can be reduced to a much simpler sum of terms involving the
coordinates of one and (at most) two electrons. The variational energy works outas

M
=2 / Yr(eDAE)Yr(r) dr;
R=A

rr

M M,
£330 (2 )] vhwgen eien da dn

—=A S=A
- j&f YR Ys(r)E(ry, 12)Yr(r2)Ps(ry) dry dl’z) (6.9)

The subscripts R and S run over the orbital labels as in Y5, ¥, - . .
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~ The first of the two-electron integrals has a simple physical significance. The

. 2 .
pnargv density of the electron labelled 1 is —ey(r;) and the charge density

of the electron labelled 2 is ~ey2(ry). The integral therefore gives the mutual

tential energy of the pair of electrons.

The second two-electron integral is a little more difficult to understand:
formally, it represents the mutual potential energy of the ‘overlap’ charge
distribution —eyr(r1)¥s(r;) .due to electron 1 with an identical density
—eyr(2)¥s(rz2) due to electron 2.

We next find the minimum of the electronic ene

orbitalS wAs '/fB, ey ‘/’M
At the energy minimum, each electron moves in an average field due to the

other electrons and the nuclei. Small variations in the form of the orbitals at
this point do not change the energy or the electric field, and so we speak of a
self-consistent field (SCF). Many authors use the acronyms HF and SCF inter-
changeably, and I will do so from time to time. These HF orbitals are found as
solutions of the HF eigenvalue problem

uaOils V1 10 Claelivaluc probict

Ry = e (6.10)

and the occupied orbit.

All the early work was concerned with atoms, with Sll‘ W1111am Hartree
regarded as the father of the technique. His son, Douglas R. Hartree, published
the definitive book, The Calculation of Atomic Structures, in 1957, and in this
he derived the atomic HF equations and described numerical algorithms for
their solution. Charlotte Froese Fischer was a research student working under

the guidance of D. R. Hartree, and she published her own definitive book, The

Hartree—Fock Method for Atoms: A Numerical Annrnnrh in 1077. The ‘Alppendlx

AZEITCC— DT OLR BECIROK 5 L£3207705 0 A N7l AppiOGLR 111 17

lists a number of freely available atomic structure programs. Most of these can
be obtained from the Computer Physics Communications Program Library.
Solution of the numerical HF equations to full accuracy is routine in the case
of atoms. We say that such calculations are at the Hartree—Fock limit. These
represent the best solution possible within the orbital model. For large molecules,
solutions at the HF limit are not possible, which brings me to my next topic.

6.1 THE LCAO PROCEDURE

In fact, the HF procedure leads to a complicated set of integro-differential
equations that can only be solved for a one-centre problem. If your interest
lies in atomic applications, you should read the classic books mentioned above.
What we normally do for molecules is to use the LCAO procedure; each HF
orbital is expressed as a linear combination of n atomic orbitals x;, Xy - - -5 Xp
so that (for example)
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Here the g; are the LCAO coefficients, which have to be determined. The form,.
lation of HF theory where we use the LCAO approximation is usually attribugeq
to Roothaan (1951a) His formulatlon applies only to electronic conﬁguran(,ns
of the type V2, /3, ..., ¥ . Following the discussion of Chapter 5, the Charge
density matrix has elements

m

Py =25 nr o
2) i ©.11)
r=a

If we collect the LCAO coefficients into an » x m matrix

a by - m
u= | @ by - m
gy b, - my,
then it is evident that
P =2UUT (6.12)

where UT is the transpose of U. Just to remind you how to calculate the product
of two matrices, if A has n rows and / columns, and B has / rows and p columns,
then the i, jM element of AB is

1
(AB); = > AuBy;

Most authors refer to the x’s as basis functions. These usually overlap each
other, and I will collect their overlap integrals into the » x n matrix S as in
Chapter 5:

[Hwar [xonma - [amxee
/ e b / dodr [ 3, @) ar

k / o O ) de / o ©OxEdr - [

Tn tha nnlikaly avant that nana of tha hagic fiinaticone avarlan than Q nit
1l UiC UMikely Cvent uiat nonc oi the basis tunctions Oveiiap, uiCii S is a unit

matrix. We usually require the LCAO orbitals ¥4, ¥, . .., ¥ to be orthonormal
and this fact can be summarized in a single matrix statement. A little manipulation
will show that UTSU is then a unit matrix (with m rows and m columns), and
also that

PSP = 4P 6.13)

We now need to use the variation principle to seek the best possible values
of the LCAO coefficients. To do this, I have to find ¢, as above, and set its first
derivative to zero. I keep track of the requirement that the LCAQ orbitals are
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orthonormal by making sure that the electron density P satisfies equation 6.13

above.
If I collect together all integrals involving the basis functions x;, x,, ..., X,

and a one- -electron operator into an # X n matrix h; with elements

M)y = / X)X, () dny

then it turns out that the one-electron operators make a contribution

n n

Il- N (DY
f / AL )ij AL ) ji
i=1 j=1

~
N
p—
'S
p—e

to the variational energy. This double sum can be written a little more neatiy as
the trace of the matrix product hy P, symbolized Tr (hP). (The trace of ann x n
matrix is the sum of its diagonal elements. The product h; P is n x n and the
diagonal elements of the product are >-7_, (hy);;(P);i.)

The two-electron contribution to the energy can be written as 1/2 Tr (P G)
where the elements of the » x n matrix G depend on P in a complicated manner,

6= Py J xx @it e do o

k=1 1=l

(6.15)
1
-5 Z Zsz // Xi(C) X (P8 (r, 12)x;(r2)x; (r2) dt1 A7,
k 1 i=1
The electronic energy comes out as
o0 — Tr(Ph.\ L LTrPC (6 16)
Ce LI\ ) T 5 ANy \Jl )

The next step is to examine how &, changes when the electron density changes
(equivalent to varying the LCAO coefficients). We let P — P + P and after a
iittie manipuiation find that the first-order change in the electronic energy is

dee = Tr(6Phy) + Tr(5PG) 6.17)

Note that the factor of 1/2 has disappeared from the energy expression; this is
because the G matrix itself depends on P, which has to be taken into account.
We write 8¢, in terms of the Hartree—Fock Hamiltonian matrix h¥, where

hF=h; +G
so that 8¢, = Tr(SPhF). We want t d 8P such that d¢. is zero. We know that
PSP = 4P, and P + 5P must 2] o satisfv the same condition

<QAe also safti =1) 220 aalll QILAL

(P4 6P)S(P + 6P) = 4(P + 46P)
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A little manipulation will show you that, at the energy minimum
hfP = Phf 6.18)

This shows that, when we have found the correct electron density matrix apg

correctly calculated the Hartree—Fock Hamiltonian matrix from it, the twg

matrices will satisfy the condition given. (When two matrices A and B are sy},
that AB = BA, we say that they commute.) This doesn’t help us to actually ﬁnd
the electron density, but it gives us a condition for the minimum.

Roothaan actually solved the problem by allowing the LCAO coefficients tg
vary, subject to the LCAO orbitals remaining orthonormal. He showed that the
LCAO coefficients are given from the following matrix eigenvalue equation;

hfe = eSc (6.19)

Here, ¢ is a column vector of LCAO coefficients and ¢ is called the orbitg]
energy. If we start with n basis functions, then there are exactly n different ¢’s
(and ¢’s) and the m lowest-energy solutions of the eigenvalue problem correspond
to the doubly occupied HF orbitals. The remaining n — m solutions are called
the virtual orbitals. They are unoccupied. ~

Once again, this doesn’t heip us to find the HF orbitals, because we have to
know the LCAO coefficients before we know the Hamiltonian matrix. For the
record, and because we will refer to them many times, the elements of the HF
matrix for a closed shell system are

hj; = / Xi(eDh@)x;(r) dr

P33 R // X DX EDRET, E2)X (1), (2) dry by

k=1 1=1
n n

A e U ¥ I‘f A
22 Fu / j Xi (D)X (r)g(r1, r2) x;(r2)x,; (r2) dry dry - (6.20)
k=1 I=1

A lot of effort has gone into devising procedures for solving the problem.
You might like to read about direct procedures for finding P in McWeeny and
Sutcliffe (1969). Roughly, what we do is this:

have a guess at the electron density P;

calculate hf from it;

check on the condition for a minimum energy; and

improve P if the condition is not met, and move back two steps.

In terms of the LCAO coefficients, the procedure is very similar:

e have a guess at the LCAOQ coefficients and calculate P;

e calculate hF from it:
e caicu

IGUC 22 11VULi1 ity
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check for a minimum energy; and
Solvc LllC Clscuvalu\.« l_uublcul L(¢] 51vv A

LCAO coefficients, and then move back two steps.

)
]
£
=
=
3

>

faYave) o
iIpliuily ) a

Many authors refer to the HF—-LCAO procedure, when discussing HF calculations
made within the LCAO approximation.

6.2 THE ELECTRONIC ENERGY

Suppose then that we have successfully solved the HF equations for a molecule
with 2m electrons as shown in Figure 6.1, and that the occupied orbitals have
energies €, €8, . - . , éM. The LCAO coefficients are also collected in the column
vectors a,b, ..., m and the electronic energy is given by

ge = Tr(Phy) + 3 Tr(PG)
The sum of the orbital energies is

Eob = 2(6a + e+ - +em)

AT - thhn Asrlhital Anargiag ara ocivan hyy
L OW UIC vlvuliwdl CLCLIZIUD ale slvcll Uy
hfe; = &;S¢;
and so ¢'hFe; = g;¢7S¢;. This gives ¢; and after a little manipulation you will
find that
Ee = & — 5 1T (PG) (6.21)
. 1 m P 240 1. ~ga 1 . o

6.3 THE KOOPMANS THEOREM

The orbital energies for such an HF wavefunction therefore don’t bear any simple
relationship to the electronic energy, but they do have an interesting significance
that is of immense importance to workers in the field of photoelectron spec-
troscopy. Suppose we remove a single electron from orbital ¥y, and ask about
the energy required for the process. Koopmans proved that this ionization energy
is related very simply to the HF orbital energy ex by

Ionization energy = —ex

There is some small print to the derivation: the orbitals must not change during
the ionization process. In other words, the orbitals for the cation produced must
be the same as the orbitals for the parent molecule. Koopmans (1934) derived
the result for an exact HF wavefunction in the numerical Hartree—Fock sense.
It turns out that the result is also valid for wavefunctions calculated using the
LCAO version of HF theory.
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The fact is that the molecular orbitals describing the resulting cation’ may
well be quite different from those of the parent molecule. We speak of electry,
relaxation, and so we need to examine the problem of calculating accurate Hf
wavefunctions for open-shell systems.

6.4 OPEN-SHELL SYSTEMS

As mentioned above, the vast majority of organic molecules have electronjc
singlet ground states, which can be described adequately by the HF procedure
detailed above. But a great deal of chemistry is concerned with electronically
excited states and with cations and anions, and the pluucuulc outlined is not
appropriate. The HF approach is very attractive, since it gives an orbital picture
and it turns out that several classes of open-shell electronic states can still be
treated using the HF principles. The simplest case is that shown in Figure 6.2,
where we have removed an electron from the highest occupied orbital vn; and
we could have a number of doubly occupied orbitals together with more thap
one singly occupied orbital, with the proviso that the singly occupied orbitals all

ha ening narallal Wa aftan anaask of tha ~lacod ehall (whara all tha alacts
nave SPiis padldiiCi. vyC ULl SPpCAK O1 ¢ crosea sner \winere aun ne SieCrons are

paired) and the open shell (where all the electrons have parallel spins). Figure 6.2
shows an open shell with a single electron; we could treat the first excited triplet
state of dihydrogen by this technique, but not the first excited singlet state (whose
wavefunction has to be written as a combination of two Slater determinants).
The algebraic treatment is very similar to the closed-shell case, except that we

need to consider electron density matrices for the closed-shell and the open-shell
electrons,

Figure 6.2 An ROHF open-shell configuration
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So, for- the sake of argument, consider the case where there is a closed shell

1 11er ~nncniniad nrhitale and an Aanan chall Af "~ nrhitale all Af which ara
Of ni douoiy OCCupiti Ulviwals, aill dail UpUll Siivil Ul 717 ULvials, ai Ui wikbi aiv

singly occupied with parallel spins. The LCAO-MOs of the closed shell and the
open shell can be collected in the matrices U; and Us, with n; and n, columns
respectively, and we define density matrices R; and R; for each shell as

R; = U,Uf
R, = U,U5

we would have P = 2R; and R, = 0 for a closed-shell singlet state. The closed-
shell electronic energy expression given earlier,

6.22)

&e =1Lj YRr(Ir)AX)YR(r)) dT)
R=A

M M
2\N°\" {2 // 1/:2(!'1\3(!'1 rn\‘n/r%(rn\dp dz,
1 LJLJ\ jj YR\®L/O\ M1y RLJ VY §\*L) 1 Z
R=A S=A
- // Yr(r)Ys@1E(1, 12)Yr(r2)¥s(r2) dr dl’2)
is modified as follows. If we use R, S, ... for general closed-shell orbitals and

U, V, ... for general open-shell orbitals then
e R
L/ YR YR(r)dr
R

Vv

e =V +%v1 S (// YREDR(r1, 12)Y5(ry) dry dy
R s

1
—5/ YRED Vs, r2)Yr(r2)Ys(r) dr de))

— [ "
L/ Yy )Yy ) dn
U
1
| pwd ) ( // Y2 )R, 1Y (ry) dry dry
UG

—/ Yy @)Yy ()8, r2)Yu )Yy (1) dr dfz))

/ .

+oy [ Y)Y (// YrEDEEL, 1)V (1) dry dry
7

R
1oy ) 1\
— 5/ YrE)DYy(X1)EE, r2)Yrr2) Yy ) dn dl’z)) (6.23)

I have introduced the occupation numbers vy and v, (wWhere vi =2 and v; = 1 in
emphasize the symmetry of the elec e i

0 SyIeR! < 218 -]
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For closed-shell states, we found an energy expression
ge = Tr(Phy) + Tr(PG)
The corresponding expression for an open-shell state is _
ge = Tr (Ry (hy + %Gl)) + wTr (R (hy + %Gz)) (6.24)

where the two G matrices are similar to that defined by equation 6.15 for the
closed-shell case. '

We then allow R and R; to vary, subject to orthonormality, just as in the closeq-
shell case. Just as in the closed-shell case, Roothaan (1960) showed how to write
a Hamiltonian matrix whose eigenvectors give the columns U; and U, above,

r'4
L1

A more general way to treat systems having an odd number of electrons, and
certain electronically excited states of other systems, is to let the individual HF
orbitals become singly occupied, as in Figure 6.3. In standard HF theory, we
constrain the wavefunction so that every HF orbital is doubly occupied. The idea
of unrestricted Hartree—Fock (UHF) theory is to allow the « and B electrons to
have different spatial wavefunctions. In the LCAQ variant of UHF theory, we
seek LCAO coefficients for the « spin and B spin orbitals separately. These are
determined from coupled matrix eigenvalue problems that are very similar to the
closed-shell case.
There are several points {0 noie about UHF wavefunctions:

e The « and B electrons are considered separately, and there is an electron
density matrix for each set. These add to give the electron density, whilst the
difference is the spin density.

e The resulting wavefunction is not necessarily an eigenfunction of the spin
operator 52, This may or may not matter, depending on the application.

—1= 4w

Figure 6.3 A UHF open-shell configuration
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o The only electronic states that can be treated are those that correspond to the
highest spin multiplet of a given orbital configuration.

66 THEJ AND K OPERATORS

We saw earlier that the variational energy for a closed-shell state formed from
electron configurations such as

VAVE.. v
can be written

JES

— [
€e =2L/ Yr@EDA(r)YR() dry
R=
M M

( \ / / 1200 \Bfw. o \af2(ze YA A
+).) \ i Yr(®)E@, 1) Ys(r) dr dom
R=AS=

- // YR Ys(r)E(r1, r2)Yr(r2)¥s(r) dr de)
JJ - J

The sums run over the occupied orbitals; note that we have not made any

reference to the LCAO approximation. The energy expression is correct for a
determinantal wavefunction lﬁ'FQnF(‘tIVP of whether the orbitals are of LCAQO

form or not.
It is sometimes useful to recast the equation as the expectation value of a sum
of one-electron and pseudo one-electron operators

M . . 1.
£ = 2/2 Yr(r1) (hl (r)+J@x)— EK(rl)) Yr(r)dr (6.25)
R=A

The operator % is a one-electron operator, representing the kinetic energy of an
electron and the nuclear attraction. The operators J and K are called the Coulomb
and exchange operators. They can be defined through their expectation values as

£
IOLIOWS.

M
[r@iewnenan =Y [[vianae mvienanin 626
S=A
and

/ Yr(E)K () Pr(r;) dry = Y‘ J// Yr(r)Ys(r)g(ry, r)Yr()¥s(ry)dr; doy

S A
6.27)

We will meet these two operators again when we study density functional theory
in (‘h;mtpr 13.
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Molecules with extensive 7 bonding systems, like benzene and pyridine, are not
well described by classical valence bond theory. Such molecules are often planar,
or largely planar, and two types of bond contribute to their structure: o and 7
bonds. The o bonds are to be thought of as localized between atoms, whilst
the m bonds are to be thought of as being delocalized over large portions of
the molecule. Much of the interesting chemistry of such compounds appears to
relate to the so-called m-electrons. Chemists believe that the o-electrons and the
nuciei generate a potentiai for the w-eiectrons, and that this potential is roughly
a constant. From the early days of quantum theory, chemists have focused on
the m-electrons by themselves, almost as if the o-electrons were not present, and
these sr-electron models have been remarkably successful.

One of the earliest models for treating conjugated molecules is afforded by the
Hiickel 7r-electron model. This dates from the work of E. Hiickel in 1931. The
ideas are simple and appealing, and the model enjoyed many years of successful
application to individual molecules, molecular clusters and solids.

Hiickel’s model was not originally presented in terms of the HF model, but
I want you to think in HF-LCAO terms for the remainder of the chapter. So,
imagine a simple w-electron molecule such as ethene (Figure 7.1).

There are 16 electrons in total, 14 ¢ and 2 = and so our total wavefunction will

be some complicated function of their spatial (r, rs, ..., ris) and spin variables
(s1, 82, ..., 816)- The electronic state wavefunction for the molecule can therefore
be written

W(rg, 81,12, 82, ..., 16, 516)

or, if I use the shorthand that x is a space-and-spin variable,

W(x1, X2, ..., X]6) (7.1)

“oi=¢

1=0
/

Figure 7.1 H H
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- Don’t confuse the state wavefunction with a molecular orbital; we might well
want to build the state wavefunction, which describes all the 16 electrons, from
molecular orbitals each of which describe a single electron. But the two are not
the same. We wouid have to find some suitabie one-eiectron wavefunctions and
then combine them into a slater determinant in order to take account of the Pauli
principle. ‘ .

Where might these one-electron wavefunctions come from? I explained the
basic ideas of HF and HF—~LCAO theory in Chapter 6; we could find the molec-
ular orbitals as linear combinations of appropriate atomic orbitals by solving the
HF eigenvalue problem

You should remember the basic physical idea behind the HF model: each electron
experiences an average potential due to the other electrons (and of course the
nuclei), so that the HF Hamiltonian operator contains within itseif the averaged
electron density due to the other electrons. In the LCAO version, we seek to
expand the HF orbitals v in terms of a set of fixed basis functions x;, x5, - - -, X;»

and write

hfc; = &;S¢;
where the matrices hF and S have elements

= [ @@ e dn

il Q.. e N, fae Y A
ala Dij —j X)X i) Ut

For the minute, imagine an HF-LCAO treatment of just the m-electrons in
ethene where each carbon atom contributes just one electron and one atomic
orbital of the correct symmetry to the conjugated system. Without any particular
justification except chemical intuition, we make the following assumptions.

1 The atomic orbitals are normalized and orthogonal.

This means that the overiap mairix is a unit mairix, in this case

=(o V)

Not only that, the elements of the HF-LCAO matrix are taken to be constants
that depend only on the nature of atoms and atom pairs as follows.



124 MODELLING MOLECULAR STRUCTURES

. T ——
2 Diagonal elements of the HF matrix depend only on the nature of the
atom on which y is centred.
3 Off-diagonal elements of the HF matrix are zero for non-bonded atomg,
4 Off-diagonal elements for bonded pairs of atoms depend only on the
types of atom involved.

.

We generally write o for a diagonal element and B for a bonded off-diagong)
element; in particular oc and Bcc for carbon atoms and carbon—carbon conjy-
gated bonds. The physical interpretation is that each of the m-electrons expe-
riences an average field due to the nuclei, the o-electrons and the remajning
mr-electrons.

7.1 EXAMPLES

7.1.1 Ethene

eke

In the Hiickel 7-electron model, ethene is a two-electron problem. I have number-
ed the carbon atoms C; and C,, and x; is centred on C; with x, on C,. The HF

matrix becomes
F_ { ac Bcc
= (ﬁcc ac ) 7.2)

and matrix diagonalization, followed by normaiization of the HF—LCAO orbitals,
gives the results in Table 7.1.

It turns out that Scc is a negative quantity, so the electronic ground state of
ethene corresponds to orbital configuration ¥2 where

The m-electron density matrix is

11
P:(l 1) (7.3)

I should mention that matrix diagonalization can be easily done with any commer-
cially available mathematics package such as Mathcad.

Table 7.1 Hiickel m-electron calculation

on ethene
Orbital energy ¢ LCAO coefficients
ac + Bee 0.7071 0.7071

ac — Bee 0.7071 -0.7071
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7.1.2 Hexatriene

Hexatl’lene (Figure 7.2) is a six-electron problem, and we write the HF—-LCAO

terme of the bhacic functiong one ner carbon atom. The
orvll‘ub in terms ©f the basis unctions X1 X2> -5 Xg» O1C PC 1 atOlf

matrix is
HF oac Pec O 0 0 0
Bcc ac Bec O O O \|
Bcc ac Bcc O 0
0 Bec ac Pcc O 7.4
0 0 Bcc ac  Bee
0 0 0 Bee

N~
v rcc GC /

hf =

S oOo o

\

The zeros arise because (for example) atom 1 is bonded to atom 2 but not to atom
3, 4, 5 or 6. Diagonalization gives the orbital energies and normalized LCAO
coefficients shown in Table 7.2.

Notice molecular symmetry at work. The Hiickel m-electron model is in many
ways a blunt instrument, because we would get exactly the same answers for
either of the following possible conformers of hexatriene (Figure 7.3).

The Hiickel m-electron model uses information about what is bonded
(i.e. the connectivity) but does not cater for molecular geometries.

In the electronic ground state, the six m-electrons occupy the three lowest-
energy orbitals (the first three from Table 7.2). The Hiickel m-electron charge
density matrix is

1.0000  0.8711 0.0000—0.3877 0.0000 0.3014
0.8711 1.0000 0.4834 0.0000 —0.0863 0.0000

P=— 0.0000 0.4834 1.0000 0.7849 0.0000 —0.3877 1.5)
— | —0.3877 0.0000 0.7849 1.0000 0.4834 0.0000 ’
0.0000 —0.0863 0.0000 0.4834 1.0000 0.8711

0.3014  0.0000 —0.3877 0.0000 0.8711 1.0000

+

~ sxhat
LU wllal

T

H Cy Cis  GCs
N/ NS NN
?l C3 C5 H

| |
Figure 7.2 H H H

Table 7.2 Hiickel n-electron calculation on hexatriene
Orbital energy & LCAO coefficients

ac + 1.802Bcc 0.2319 0.4179 0.5211 0.5211 0.4179 0.2319
ac + 1.247Bcc -0.4179 -0.5211 -0.2319 0.2319 0.5211 0.4179
ac +0.4458cc 05211 0.2319 -0.4179 -0.4179 0.2319 0.5211
ac — 0.445B¢c —0.5211 0.2319 04179 -04179 -0.2319 0.5211
ac — 1.247Bcc -0.4179 05211 -0.2319 -0.2319 05211 —-0.4179
ac — 1.8028cc -0.2319 04179 —0.5211 05211  -0.4179 0.2319




126 MMODELLING MOLECULAR STRUCTURES
Iﬁ .
H /Ce\
. i
AN A AN
N/ N7 N\ g N
1 Cs H \Cl G
| g
H
H H. /C4\"
Cs’
Il
Cs
u” wH
Figure 7.3

The off-diagonal elements of P corresponding to directly bonded atoms are
referred to as (m-electron) bond orders. Hexatriene shows bond-length alterng-
tion: there are distinct single and double bonds. Notice that the bond orders for
the bonded atom pairs show a related alternation.

7.1.3 Benzene

A similar calculation on benzene gives the following:

1.0000  0.6667 0.0000 —0.3333 0.0000 0.6667
0.6667 1.0000 0.6667 0.0000 —0.3333 0.0000
0.0000  0.6667 1.0000 0.6667 0.0000—0.3333

P=
S L—0.3333 0.0000 0.6667 1.0000 0.6667 0.0000)

—~

&)
N’

0.0000 —0.3333 0.0000 0.6667 1.0000 0.6667
0.6667  0.0000 —0.3333 0.0000 0.6667 1.0000

Experimentaily, all the C—C bonds in benzene are of equal length, and this is
mirrored by the C—C bond orders.

7.2 BOND LENGTHS AND THE HUCKEL MODEL

It was noted many years ago that the -electron bond orders correlated well with
experimental bond lengths. Simple relationships such as

Rij/pm =150 — 16P,'j (77)

were found to be useful, and you might like to read Streitwieser’s book (1961)
for more details.

Off-diagonal elements of P corresponding to non-bonded atoms can be nega-
tive. They arise because P has to satisfy the orthonormality constraint PSP = 4P.
They are not assigned any deep physical meaning.
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73 MOLECULAR MECHANICS OF 7-ELECTRON
‘ SYSTEMS

Many MM packages now give special consideration to m-electron systems for
the following reason. MM force fields are usually parameterized according to the
classical valence description of a given ‘heavy’ atom: for example, C(sp), C(sp?)
or C(sp®) depending on the local symmetry of the carbon atom. It was found
that this gave a poor representation to the enthalpies of formation of conjugated

inie and 2 ction ig gy made We tegt for the of
sysiems  atid S0 a correction 18 uouuu_y imnaGe. we ©st I0f uiC piresence o1 a

conjugated system, perform a Hiickel calculation on the input geometry and then
adjust the bond lengths in accordance with the calculated bond orders. The MM
calculation is then made on this adjusted geometry, in a self-consistent fashion.

74 ALTERNANT HYDROCARBONS

An important distinction for conjugated hydrocarbons is the classification into
alternant and non-alternant hydrocarbons. Alternant hydrocarbons are those like
ethene, hexatriene, benzene and naphthalene where we can divide the carbon

atoms into two sets called ‘starred’ and ‘unstarred’ , such that no member of one
atoms 1nto v that no memoer o1 one

set is directly bonded to another member (Figure 7.4).

This division is not possible for other hydrocarbons such as fulvene and hepta-
fulvene (Figure 7.5).

Hiickel calculations on alternant hydrocarbons have the following characteristics:

¢ Hiickel orbital energies come in pairs, o == k8 The MO with positive k is a
bonding orbital, that with negative k is an antibonding one.

o In each pair, provided there are no degeneracies, the LCAO coefficients for
the 2p,, orbital on each carbon atom has the same modulus.

o The coefficients of the starred (or unstarred) atoms change sign in each pair.

X * * */\*
V4

VA4 I |
Ethene Hexatriene \ */
Benzene

(Y

Naphthalene
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Orbital energy ¢ LCAO coefficients -

ac + 2.115Bcc 0.2473 0.5230 0.4294 0.3851  0.3851 0.4294
ac + 1.0008cc —0.5000 —0.5000 0 06.5000  0.50660 0

ac + 0.618Bcc 0 0 —-0.6015 -0.3717 03717 0.6015
ac — 0.254Bcc 0.7495 —-0.1904 —-0.3505 02795  0.2795  —-0.3505
ac + 1.618Bcc 0 0 03717 -0.6015 0.6015 —0.3718
ac + 1.861 8¢ —0.3566 0.6635 —0.4390 0.1535  0.1535 —-0.439

A consequence of these findings is that the m-electron charges are all exactly
equal to 1, for the ground state of every alternant hydrocarbon. (Coulson and
Rushbrooke, 1940).

For the record, a Hiickel calculation on fulvene gives the results in Table 7.3.

I leave you to verify that the w-electron P matrix diagonal elements are 0.6223,
1.0470, 1.0923, 1.0730, 1.0730 and 1.0923.

7.5 TREATMENT OF HETEROATOMS

How does the Hiickel m-electron model deal with pyridine? Nitrogen is more
electronegative than carbon, so the N atom ought to have a higher (more negative)
m-electron charge than a carbon atom in benzene. It is conventional to write the
heteroatom (X and Y are used to denote heteroatoms such as N and O) parameters
in terms of the standard a¢ and Bcc as
ax = ac + hxBcc
(7.8)
Bxy = kxyBcc

A trial calculation shows that 4x must be positive, and different authors recom-
mend values ranging from 0.5 to 1.2. The value of kcy is sometimes taken as 0.8,

d //
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Table 7.4 Heteroatom parameters for CX
Atom X hx kcx
C 0 1
N (donates one m-electron) 0.5 0.8
N (donates two m-electrons) 1.5 1.0
B -1.0 0.7
O (donates one m-electron) 1.0 0.8
CH; 2.0 0.7

sometimes as 1. There is a certain subjectivity to the choice. Not only that, the
nitrogen atom in pyridine formally contributes one m-electron to the conjugated
system but the nitrogen atom in pyrrole formally contributes two sm-electrons

zulu SO bhuuld have different pafafﬂetvxo (n'g"fg 7 7}

Some suggested values of the # and k parameters are shown in Table 7.4.
A calculation on pyridine using the values suggested above gives a P matrix

/ 1.2452  0.6380 —0.0268 —0.3528 —0.0268 0.6380\
0.6380  0.9065 0.6866 0.0767 —0.3134 —0.0935
—0.0268  0.6866 1.0047 0.6554 0.0046 —0.3134
—-0.3528  0.0767 0.6554 0.9326 0.6554 0.0767

—0.0268 —0.3134 0.0046 0.6554 1.0047 0.68606

0.6380 —0.0935 —0.3134 0.0767 0.6866 0.9065

which gives the nitrogen atom a formal charge of (1.2452 — 1) electrons, the 1
subtraction arising from the net charge of the nucleus and o-electrons.

Contrary to popular belief, Hiickel mr-electron theory is not dead and buried.
Papers appear from time to time dealing with topics such as dielectric suscepti-
bilities (McIntyre and Hameka, 1978) and soliton dynamics (Su and Schrieffer,
1980).

P= (7.9)

7.6 EXTENDED HUCKEL THEORY

Hiickel’s calculations on planar conjugated systems were extensively exploited,
and I refer you once again to Streitwieser’s classic book, Molecular Orbital Theory
for Organic Chemists. What few calculations that had been done at that time on

tha ~ fra vl had y1igad #
the o framework had used the method of linear combination of bond orbitals.



The pioneering calculations of Wolfsberg and Helmholtz on MnO, ", Cro,~

and C10,~ are nenally cited ac the firet annlicationg of ‘extended’ Hiickal .

QG oavg QLT UoUGILy LIWWU GO uiU Lot QUpLaLauUlis Vi vawnuclu 1TulRll ulcory

e ——

The Spectra and Electronic Structure of the Tetrahedral Ions MnO,4,
CrO4?~ and ClO4~
Max Wolfsberg and Lindsay Helmholtz
Journal of Chemical Physics, 20 (1952) 837843

We have made use of a semiempirical treatment to calculate the energies
of the molecular orbitals for the ground state and the first few excited
states of permanganate, chromate and perchlorate ions. The calculation of
the excitation energies is in agreement with the qualitative features of the
observed spectra, i.e. absorption in the far ultraviolet for Cl104~ with two
strong maxima in the visible or near ultraviolet for MnO4~ and CrO42~ with
the chromate spectrum displaced towards higher energies. An approximate
calculation of the relative f-values for the first two transitions in CrQO,2~
and MnO,4 ™ is also in agreement with experiment.

The data on the absorption spectra of permanganate ion in different crys-

talline fieldg ic internreted in termeg of the cummetrieg of the exeited ctatag
tauine neiGs 1S mMICrproted 1 werms O e symmeuies Ot il SXCIea siates

predicted by our calculations.

The Extended Hiickel model treats all valence electrons within the spirit of
the m-electron model. Each molecular orbital is written as an LCAO expansion
of the valence orbitals, which can be thought of as being Slater-type orbitals (to
look ahead to \,uaptc‘u 9). Siater- -type or bitals are very similar to u_yuiOgEI‘ub ones
except that they do not have radial nodes. Once again we can understand the

model best by considering the HF—-LCAO equations
hFC,' = SiSC,'

For H and He, the atomic basis set consists of a single 1s orbital. For Li
through Ne, the inner-shell electrons are treated as part of the nucleus and the
basis functions used are atomic 2s, 2p,, 2p, and 2p,. For Na through Al, the inner
shell is treated as part of the nucleus and we consider only 3s, 3p,, 3p, and 3p,
orbitals. For Si through Cl we have to decide on whether or not to include the
atomic 3d-orbitals in addition, and practice varies. Most authors include them.

The diagonal elements of the HF-LLCAO matrix are taken to be the negatives
of the valence shell ionization energy for the orbital in question. These can be
determined from a study of atomic spectra.

The off-diagonal elements of the HF-LCAO matrix are usually taken to be
. hi; + b,

hi; = kS (7.10)

s ]
L
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where S;j is the overlap integral between the two basis functions x; and x;. The
pisa ‘constant’ that has to be adjusted to give agreement with experiment, and

common experience is that k = 1.75 is a reasonable choice

To use the chlorate ion example cited by Wolfsberg and Helmholtz, we would
use a basis set comprising 2s and 2p orbitals on oxygen with 3s, 3p and 3d orbitals
on chlorine, giving a total of 25 basis functions. That gives 16 doubly occupied
valence shell molecular orbitals (made up as follows: 6 valence electrons from
each oxygen, 7 from chlorine and 1 from the excess negative charge). A standard
extended Hiickel calculation (using HyperChem) with a tetrahedral geometry and
pond length of 145pm gave the results, in Table 7.5.

The oxygen atoms carry a formal charge of —0.7854 whilst the chiorine carries
a charge of 2.1411.

An isosurface plot of the electron density is shown in Figure 7.8.

A key part to an extended Hiickel treatment is the calculation of overlap
integrals. You might like to read the classic work:

11
£
a
Z
3
@
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Tables for ﬂ\mr]an Inteorals

vl JivS 1L

R S ulhken C A. Rieke, D. Orloff and H. Orloff
The Journal of Chemical Physics 17 (1949) 1248-1267

Explicit formulas and numerical tables for the overlap integral S between
AOs (atomic orbitals) of two overlapping atoms a and b are given. These
cover all the most important combinations of AO pairs involving ns, npo
and nprt AOs. They are based on approximate AOs of the Slater type, each
containing two parameters u [equal to Z/(n — 8)], and n — &, where n — §
is an effective principal quantum number. The S formulas are given as
functions of two parameters p and ¢, where p = %(,u A + uB)R/ag, R being
the interatomic distance, and f = (ua — u)/(ua + ug). Master tables of
computed values of S are given over wide ranges of p and ¢ values
corresponding to actual molecules, and also including the case p = 0 (intra-
atomic overlap integrals). In addition, tables of computed S values are given
for several cases involving 2-quantum s, p hybrid AOs.

Table 7.5 LCAO molecular
orbitals for the chlorate ion

Summetry Orbital energy/eV

1a; —39.083
1t, ~32.839
/ 2a ~19.361
2t ~16.900
le —15.554
3t, ~15.007

1ty —14.543
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Figure 7.8 Isosurface grid of chlorate anion

The systematic application of extended Hiickel theory to organic molecules
comes with the work of Hoffmann.

An Extended Hiickel Theory. I Hydrocarbons
Roald Hoffmann
The Journal of Chemical Physics 39 (1963) 1397-1412

The Hiickel theory, with an extended basis set consisting of 2s and 2p
carbon and 1s hydrogen orbitals, with inclusion of overlap and all interac-
tions, yields a good qualitative solution of most hydrocarbon conformational
problems. Calculations have been performed within the same parameteri-
zation for nearly all simple saturated and unsaturated compounds, testing
a variety of geometries for each. Barriers to internal rotation, ring confor-

mations. and ceometrical isomerism are among the tonics treated. Consis-
geometrical 1somerism are among the topics treated. {onsis

1IAQONS, Al

tent o and & charge distributions and overlap populations are obtained
for aromatice and their relative roles discussed. For alkanes and alkenes
charge distributions are also presented. Failures include overemphasis on
steric factors, which leads to some incorrect isomerization energies; also
the failure to predict strain energies, It is stressed that the geometry of a

molecule appears to be its most predictable property.
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7.7 THE NIGHTMARE OF THE INNER SHELLS

A the beginning of this chapter, I introduced the notion that the 16 electrons

ethene could be divided conceptually into two sets, the 14 o and the 2 7
glectrons. Let me refer to the space and spin variables as xj, Xp, ..., Xj¢, and
for the minute I will formally label electrons 1 and 2 as the n-electrons, with
3 through 16 the o-electrons. Methods such as Hiickel 7-electron theory aim to
treat the m-electrons in an effective field due to the nuclei and the remaining o
alectrons. To see how this might be done, let’s look at the electronic Hamiltonian
and see if it can be sensibly partltloned into a w-electron part (electrons 1 and

2 tha 14 Wa ha
A) aIlU ao l)all \UIUULLULID < uuqu,u J.U} yye uavc

o J6 2 2 15
=— —— — 7.11
He 87r2m Zl 4dmeg ; ; t e 47'[60 ; j;ﬂ rij ( )
If we were to write . . . .
He=H;+Hy+ Hiy (712)

where H, contains only the coordinates of the o-electrons, H, contains the
coordinates of the m-electrons and H;,, contains all the terms left over, then we
would have for example

- L
H. =
7T 8m2me Z 4meq
If it weren’t for the interaction terms such as
e 1

4meq 11,15

2

6
Zg
ZIRTZ 47[602 Z — (7.13)

i=1 a= i=3 j=i+l Fij

then we would be able to concentrate on each set of electrons independently.

There is actually a further problem to do with the Pauli principle. Suppose
that we had been able to calculate a wavefunction for the o-electron and the
m-electron parts, written

W, (X3, X4, . .., X16) and Wy (X1, X3)

Each of them will have to satisfy the Pauli principle. We might be tempted to
write a total wavefunction for the 16 electrons as

\I‘,U(X?n X4y ... ,X16)\Ijﬂ(X1,X2) (714)

|
but we would then run into a problem. The total wavefunction has to change sign
if we interchange the names of two of the mr-electrons (which it does) and if we
interchange the names of two of the o-electrons (which it does). Finally it has
to change sign if we interchange the name of one of the o-electrons with that of
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one of the m-electrons (which it doesn’t). We have to allow for this shortcommg
111 bUllbLlubLlllE L.llC lUlal WaVCfUllbl.lUll

A tull analysis shows that it is indeed possible to treat either group of electrong
as if they were experiencing an average field due to the nuclei and the other group,
The subject is dealt with in more advanced texts, such as McWeeny and Sutcliffe
(1969).

Hiickel theory goes way beyond this and approximates entire matrix elements
to constants. But during the early days of quantum chemistry, it soon became

customary to simplify the problem of molecular binding between many-electrop

atoms by treating the valence electrons alone, regarding the atomic nuclei and
inner shells as simple localized positive charges. This simple valence electron
approximation gave remarkably satisfactory results, yet at first sight there seemed
no justifiable mathematical grounds for the approximation. Van Vleck and Sher-
man (1935) referred to the problem as the ‘nightmare of the inner shells’.

7.8 BUT WHAT /S THE HUCKEL HAMILTONIAN?

A basic tenet of the Hiickel n-electron theory is that the orbital energies add to
give the m-eleciron energy. Yei I demonsiraied earlier ihat HF orbital energies
do not add in this way, so the Hiickel Hamiltonian cannot be strictly identified
with the HF Hamiltonian.

The accepted wisdom is that the Hiickel Hamiltonian matrix should be iden-
tified with the matrix (h* — 1G) where G is the electron repulsion matrix of
Chapter 6. The basis for this belief is that that the matrix (h” — 1G) has eigen-
values that do sum correctly to the electronic energy.
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larity, particularly the m-electron variants. Authors sought to extract the last
possible amount of information from these models, perhaps because nothing
more refined was technically feasible at the time. Thus, for example, the induc-
tive effect was studied. The inductive effect is a key concept in organic chemistry:
a group R should show a +1 or a —I effect (according to the nature of the group
R) when it is substituted into a benzene ring.

"X"r\nlnnrl and Pqnhnn (1050\ tripr] to pvnlain the inductive effect in terme of

n-electron theory by varying the «x and ﬁxy parameters for nearest-neighbour
atoms, then for next-nearest-neighbour atoms and so on. But, as many authors
have also pointed out, it is always easy to introduce yet more parameters into
a simple model, obtain agreement with an experimental finding and then claim
that the model represents some kind of absolute truth.

A great failing of the Hiickel models is their treatment of electron repul-
sion. Electron repulsion is not treated explicitly; it is somehow averaged within
the spirit of Hartree—Fock theory. I gave you a Hiickel m-electron treatment of
pyridine in Chapter 7. Orbital energies are shown in Table 8.1.

Table 8.1 Hiickel orbital energies
for pyridine

Orbital 7

ac + 1.954 Bec
ac + 1.062 ﬂcc
ac + 1.000 Bee
oc — 0.667 ﬂcc
oc — 1.000 ﬁcc
oc — 1.849 ,BCC

AN R WN =
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The electronic ground state corresponds to a conﬁguratlon V’Z%% and the
lowest excited states, both singlet and triplet, correspond to y3y/3y/] vi. Becayge
electron repulsion is not treated explicitly, these two excited states have the Same
energy, (¢c — 0.667 Bec) — (ac + 1.000 Bee) = —1.667 Bec above the electronic

ground state (recall that Bcc is a negative quantity). Experimentally, triplet €Xcited
states are usually lower in energy than the corresponding singlet ground state, A
second failure of the simple 7-electron models is that they cannot treat n — »*

excitations, only = — 7*.

8.1 THE #-ELECTRON ZERO DIFFERENTIAL
OVERLAP MODELS

The next step came in the 1950s, with more serious attempts to include formally
the effect of electron repulsion between the valence electrons. First came the
m-electron models associated with the name of Pople, and with Pariser and Parr,
You might like to read the synopses of their first papers.

Electron Interaction in Unsaturated Molecules
J. A. Popie
Transactions of the Faraday Society 49 (1953) 1375-1385

An approximate form of the molecular orbital theory of unsaturated hydro-
- carbon mou:cuu:b in their gI'OUIl(l staies is QEVCIOPCU The molecular orbital
equations rigorously derived from the correct many-electron Hamiltonian
are simplified by a series of systematic approximations and reduce to
equations comparable with those used in the semi-empirical method based
on an incompletely defined one-electron Hamiltonian. The two sets of
equations differ, however, in that those of this paper include certain impor-
tant terms representing electronic interactions. The theory is used to discuss
the resonance energies, ionization potentials, charge densities, bond orders
and bond lengths of some simple hydrocarbons. The electron interaction
terms introduced in the theory are shown to play an important part in deter-
mining the ionization potentials. It is also shown that the uniform charge
density theorem, proved by Coulson and Rushbrooke for the simpler theory,

holds also for the self consistent orbitals derived by the method of this paper.

A Semi-Empirical Theory of the Electronic Spectra and Electronic

Structure of Complex Unsaturated Molecules
R. Pariser and R, G, Parr

IN. L Qridvl Qi I\, L Qii

The Journal of Chemical Physics 21 (1953) 466-471

A semi-empirical theory is outlined which is designed for the correlation
d ediction of the wavelenuthq and intensities of the first main visible

}D
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| or ultraviolet bands and other properties of complex unsaturated molecules,
and preliminary application of the theory is made to ethylene and benzene.
The theory is formulated in the language of the purely theoretical method

of the antisymmetrized products of molecular orbitals (in LCAO approxi-

~ mation) including configuration interaction, but departs from this theory in
' geveral essential respects. First, atomic orbital integrals involving the core

r.iltanian are exnresced in termg of anantities which mav be recarded
Hamiltonian are expressed in lerms Of quaniiies wnich may de regarced

as semi-empirical. Second, an approximation of zero differential overlap
is employed and an optionally uniformly charged sphere representation of
atomic 7-orbitals is introduced, which greatly simplify the evaluation of
electronic repulsion integrals and make applications to complex molecules
containing heteroatoms relatively simple. Finally, although the theory starts
from the m-electron approximation, in which the unsaturated electrons are
treated apart from the rest, provision is included for the adjustment of the o-

electrons to the m-electron distribution in a way which does not complicate
- the mathematics.

We often speak of the PPP (Pariser—Parr—Pople) model in honour of these
three authors. Thinking of the pyridine example above, we still divide the 42
electrons into two groups, the 6 m-electrons and the 36 o-electrons. The spirit of
the PPP model is that the o-electrons and the atomic nuclei provide a potential
for the m-electrons. Attention focuses on the m-electrons.

You probably noted that the original papers were couched in terms of
HF-LCAO theory. From Chapter 6, the defining equation for a Hamiltonian
matrix element (in the usual doubly occupied molecular orbital, closed-shell
case) is

hg =/Xi(r1)il(r1))(j(r1)d1:1

ﬁh,

+)_ ) Fu // Xi (X)X (&1, r2) X, (r2)x; (ry) dry drp (8.1)
k=1 I=1
IS~sp ff ;

— = P,y v () (r)gry, r)x . (r)y; () dr; dop
2LJLI Mj AINTLIARNTL/ONT L S2/ A JRNE2/AR[NE27 1 Z

~
Il

1 1=l

In the PPP model, each first-row atom such as carbon and nitrogen contributes a
single basis functign to the 7 system. Just as in Hiickel theory, the orbitals x; are
not rigorously defined but we can visualize them as 2p, atomic orbitals. Each
first-row atom contributes a certain number of w-electrons — in the pyridine case,
one electron per atom just as in Hiickel m-electron theory.

It is usual to assume that the basis functions are normalized and orthogonal.

Unnormalized basis functions can easily be normalized, but ordinary atomic 2p,
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orbitals are not orthogonal. Just live with this apparent contradiction for
minute. '

8.i.1 The ZDO Approximation l

The two-electron integrals in equation 8.1 above pose an immense problem. The
are potentially very many of them; for n basis functions there are roughly 3 nrg
unique integrals. As six-dimensional singular integrals, they can also be d1fﬁCu1‘
to evaluate. The PPP model makes the zero differential overlap (ZDO) approgi.
mation: whenever a product of two basis functions x;(r)y; f :(r) dt appears undey
an integral sign in a two-electron integral, the integral is taken to be zero unlegg
i = j. So for example

// Xi(r)x; (x1)&(r1, r2)x;(12) X, (12) dy d7p

= sy [ e 3 dn 32

sxrhana tha 7 1- L iq Aafa A
where the Kronecker § is defined as 0 when the subscripts are different, 1 when

the subscripts are the same. Note that T have used the ZDO approximation twice
in this equation, once for the coordinates of each electron.

This approximation has the immense advantage of reducing the number of
integrals to be calculated, and we could in principle calculate the remainder of
them exactly if we knew which basis functions were involved. When Pariser and

Parr first tried to calculate the excitation energies of unsaturated hydrocarbons
on the assumntion that the basis functions yv. were ordinarv 7n4 orbitalg fhmr

O U0 assSuUINplOon ial U0 Dasis 1LCBSs X Wit OILIRal) PIDAALS, Ul

got very poor agreement with experiment. But when they treated the integrals as
parameters that had to be fixed by appeal to experiment, they got much better
agreement.

Many simple schemes have been put forward for these repulsion integrals,
which are usually written y;;. They are taken to depend on the type of atoms that
basis function x; and x; are centred on, and on the distance between the atomic
centres. Pariser and Parr made use of the uniformly charged sphere representation
illustrated in Figure 8.1.

The spheres represent (roughly) the 2p, atomic orbitals on C and N, and half
an electron resides in each sphere. The mutual potential energy of this charge
distribution can be easily caiculated from elementary electrostatics. For smail
distances, a polynomial fit was used instead.

Figure 8.1 A pair of atoms
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i The snnplest formula used over the years for the y;; is probably that due to
‘ ﬂiﬂhl’mto and Forster (1966), who wrote
, 2

ke o 1 e 8.3
: Yij 4drey R,'j —+ aij ’ )

/g(i
which corresponds to the mutual potential energy of a pair of (point) electrons

geparated by distance R;; + a;;. In the spirit of PPP theory, g;; is treated as a

anrameter.
iﬂl‘

At

§,1:2 The One-Electron Terms \

rrey TY

Now for the One-electron ferms in the HF l'lamlltonlan mamx
/ X EDRe)X; (1) dTy

For bonded atoms, the ‘off-diagonal’ terms (where i # j) are taken to depend on
the type and length of the bond joining the atoms on which the basis functions
x; and x; are centred. The entire integral is written as a constant, g;;, which is
not the same as the Bxy in Hiickel m-eiectron tneory The Bi; j are taken to be
parameters, fixed by calibration against experiment. It is usual to set 8;; to zero
when the pair of atoms are not formally bonded.

The ‘diagonal’ terms (where i = j) need a little more consideration. They are
taken to depend on the nature of the atom on which basis function y; is centred,
but they also depend on the nature of the neighbouring atoms.

We have, from Chapter 6

. K2 2 N Zy
hr)=———V2 - Sy 2=
82m, 47eg

where N is the number of nuclei. Thus,

N h2 & \
[ x@ohtnx e dn = [ x;(r1) ( ———Vi— T x;(r1) dry
J J \ 8&7°me 47‘[60 e Ko,l
and we separate out the kinetic energy term and the contribution from the nucleus
on which Y; is centred. If basis function x; is centred on nucleus I which has
charge Z,, these terms are

4;

h2 e Z]

[ xien) (— vt = ) X:(r) dry 84)
J \ Qs Iing JLC() l ’l

This is taken to be the atomic valence state ionization energy, invariably written

w; and treated as an empirical parameter to be determined by fitting an experi-

il
mental result.
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The remaining terms such as

62 ZJ
[ (‘m—ok;) X dn ®3)

approximations introduced by

are given values of —Zjy;;, according to th
Goeppert-Mayer and Sklar (1938).
To collect up terms and summarize, the HF Hamiltonian matrix has elementg

)
)
}
>
3

i
B = w; + EPiiVii + Z(ij — Zy)yij
J# @®6)

F _ o . _ "D ...
nij = Pij 2"11 Vij

The calculation usually proceeds along the traditional lines of HF-LCAO theory,
We make an initial estimate of the electron density matrix P, calculate a revised
hF and iterate until the electron density and the HF matrix are self-consistent.
In order to perform PPP calculations, we need a molecular geometry because
integral evaluation depends on interatomic separations. In the early days, no one

addraccad the nngaihility of ceometrv antimization and verv few accnrate Vioea.
alliossCh UIe PUSSIUILLY Ul gUUILCHU Y OPUIIHZQUUIL alll VoI y 1CW alluldill A-Tay

structures were known. For that reason, one tended to adopt a cavalier approach
and treat conjugated structures as regular figures with reasonable bond lengths. So
for pyridine I would have assumed a regular hexagon with equal bond lengths
of 140pm. Output from a 1960s-style PPP calculation consisted of a table of
HF-LCAO orbital coefficients, energies and the P matrix. Table 8.2 gives the
first two of these for pyridine. Atom number 1 is the N atom, as in Chapter 6.

In HF-LCAO theory, the electronic ground state of pyridine is ¥/3y/2yr3. We
would write this as a single Slater determinant which I will denote W. Electron
configurations such as Y2 y3 iy are called singly excited states, and they give
a rough and ready treatment of the genuine spectroscopic excited states of such
a molecule. I will denote these as WX where we have promoted an electron from
a doubly occupied orbital 15 to the virtual (unoccupied) orbital ¥rx.

We have to take account of electron spin. It is necessary to write a combination
of two Slater determinants in order to correctly describe the excited singlet states.

Table 8.2 Pariser—Parr—Pople HF—LCAO treatment of pyridine

. L LCAO coefficients
Orbital Orbital energy

1!/,' s,-/eV C1 Cy C3 C4 Cs Co
1 —13.988 —-0.562 —-0.424 -0.337 -0.313 -0337 -—0.424°
2 —11.127 0.539 0.165 -—-0.371 -0.617 -0.371 0.165
3 —10.394 0 —0.495 -0.505 0 0.505 0.495
4 —1.275 0.518 —0.349 —-0.267 0.588 —0.267 —0.349
5 —0.907 0 0.505 —0.495 0 0495 —0.505
6 1.965 0.353 —0415 0422 —-0.420 0422 —0.415




NEGLECT OF DIFFERENTIAL OVERLAP MODELS 141

- =m

_ Yy —— Yy
—_— Yx -—i—- Wk
€ % Va 47 Va
AH— v % 1]

Figure 8.2 Electronic ground and singly excited state

There are 9 possible singly excited singlet states in our r-electron PPP treatment
of pyridine, formed by promoting an electron from any one of the three filled
orbitals to any of the three virtual ones. Their relative energies can be calculated
using the Slater—Condon-Shortley rules. Relative to the energy of the ground

state, the singly excited state WX has energy
[ WX X dr = £x — en
J
- / VAt Ya(r)g(ry, ra)Yx(r)¥x(ry) dry dr

+2 // YA DY, T)YA )Yk () dr dry  (8.7)

where ex and e are the orbital energies. In the Hiickel model, the excited state
energies depend only on differences of orbital energies whilst the PPP model
gives an explicit treatment of electron repulsion.

The two-electron integrals over LCAO orbitals have to be evaluated from the
LCAO coefficients and the y;;. In general, a two-electron integral

// YA )Y (r)E(ry, r2)¥x (1) ¥y () dr; drp

is given by
n n

SO S ] abjerdixgeox; (03 ) E)x ) dry e

i=1 j=1 k=1 I=1 Y

which at first sight contains 6* contributions. The beauty of the ZDO approxi-
mation is that all but 36 of the integrals over the basis functions are zero and the
calculation is pretty simple (in fact, there are only % n(n + 1) distinct two-electron
integrals). The energies work out as shown in Table 8.3.
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Table 8.3 Relative pyndme singly

aveitad ctafe cinolat enaraieg in the
VAVILLVU DLale Dlllsl\/l Ullvlsl\,o lll (8 ¥ ivg

PPP model

State Energy/eV
¥ 0

i 5.697
w3 6.544
w3 6.591
i 6.897
ws 8.689
vt 9.095
w 9.253
we 9.327
o 11.977

The next step might be to perform a configuration interaction calculation, in
order to get a more accurate representation of the excited states. We touched op
this for dihydrogen in an earlier chapter. To do this, we take linear combinations
of the 10 states given above, and solve a 10 x 10 matrix eigenvalue problem to
find the expansion coefficients. The diagonal elements of the Hamiltonian matrix
are given above (equation 8.7), and it turns out that there is a simplification.

Brillouin’s theorem (Brillouin, 1933) tells us that the singly excited states do
not interact with the HF ground state. This theorem is true for all HF wavefunc-
tions, and does not depend on the ZDO or LCAO approximations. This means that

f WoH WX dr =0 (8.8)

and so we need not include ¥y in the calculation. The remaining matrix elements
are given by

/ ALY dr = — / VA VB DR, BV () Yy () dry ds

+2 / YA )Y )BT, 12)Vs (E) Yy (1) dry dry - (89)

I won’t give you the results in full, but on matrix diagonalization we find a
description of the first excited singlet state as
—0.8288W5 + 0.5570%3 + 0.0203W5 — 0.0489%3

with an excitation energy of 4.984 eV, which is to be compared to an experimental
transition energy of 4.90eV. This is actually a very weakly allowed transition.
The first strong singlet 7 — 7* transition is observed experimentally at 6.94 ¢V,
to be compared with the value of 6.897eV obtained from the configuration

ntarantinn ~ala

1la
interaction calculation.
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Notice that certain states (such as \I'S) don’t appear in this particular excited
sate. This is because they have the wrong symmetry; only states of the same
avuunetfy mix. I could have saved myself a great deal of unnecessary calcula-
n by deciding which states correspond to which symmetry, and treating each

ymmetry species separately.

¥

8.2 THE IDENTITY OF THE BASIS FUNCTIONS

Looking back, I seem to have made two contradictory statements about the basis
e antions x; used in the PPP model. On the one hand, 1 appealed to your chemical

unCuliis X ¥sv

intuition and prior knowledge by suggesting that the basis functions should be
regarded as ‘ordinary’ atomic orbitals of the correct symmetry (i.e. 2p, orbitals).
On the other hand, I told you that the basis functions used in such calculations
are taken to be orthonormal and so

[ xw@dr =0

when [ # j. How can we reconcile these two statements?
Think of ethene, where we use 7 basis functions x; and x,. If we identify
these as ordinary atomic 2p, orbitals, then we can calculate the overlap matrix

_____ 14 T wnill 1ta it
using the methods described earlier. I will write it as

_(1 p
s_(p 1) (8.10)

where p is typically 0.25. The eigenvalues of S are 1+ p and 1 — p, and the
eigenvectors are

17 1\

\/ k)andvz Vala)

A short calculation will show you that S can be written in terms of its eigenvalues
and mmanvpr-tnrq as

S = (1+ pyviv] + (1 — p)vavy (8.11)
Other powers of S can be calculated in this way, for example the inverse
St=0+p)yvivi + 1 - p)~lvav}

(although T should tell you that there are more practical ways of inverting such
matrices than this) and the negative square root

ST = (1 + p)y 1 2viv] + (1 — p)~vyv]) (8.12)
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It is widely accepted that the basis functions used in ZDO n-electrop th

(which I will write for clarity x2P0) are related to ‘ordinary’ 2p,; atomic

- 1

orbj
(which I will write x*) by the matrix transformation "y
iy

(XFPOxEPOy = (xP x2S~/ @15

These new basis functions can easily be shown to be orthonormal. It also turpg Oﬁt
thai iwo-eleciron integrais caiculated using these orthogonaiized basis functig
do indeed satisfy the ZDO approximation much more closely than the ordin;@
basis functions.

Although I used the example of ethene, where n = 2, the same consideratigp,
apply to ZDO calculations on all conjugated molecules. All overlap matriceg are
real symmetric, positive definite and so have eigenvalues > 0.

8.3 THE ‘ALL VALENCE ELECTRON’ NDO
MODELS

Prior to 1965, all we had in our armoury were the ¢ and 7 Hiickel theories, and »

4L e 4382 SALLALL VAVOLIGS, Alld §

very small number of rigorous calculations designated ab initio (to be discussed
later). The aims of quantum chemistry in those days were to give total energjes
and charge distributions for ‘real’ molecules, and the seventh decimal place in
the calculated properties of LiH. Practical chemists wanted things like reliable
enthalpy changes for reactions, reaction paths, and so on. It should come as no
surprise to learn that the practical chemists therefore treated theoreticians with
scepticism.

Theoreticians did little to improve their case by proposing yet more compli-
cated and obviously unreliable parameter schemes. For example, it is usual &
call the C, axis of the water molecule the z-axis. The molecule doesn’t care,
it must have the same energy, electric dipole moment and enthalpy of forma-
tion no matter how we label the axes. I have to tell you that some of the more
esoteric versions of extended Hiickel theory did not satisfy this simple criterion.
It proved possible to calculate different physical properties depending on the
arbitrary choice of coordinate system.

To look ahead a little, there are properties that depend on the choice of coordi-
nate system: the electric dipole moment of a charged species is origin-dependent

1 it th lant in anargy!
in a well-understood way. But not the charge density or the electronic energy!

Quantities that have the same value in any coordinate system are sometimes
referred to as invariants, a term borrowed from the theory of relativity.

Pople and Santry seem to have been the first authors to give a systematic
treatment of this problem. They identified two important types of transformation
amongst the basis functions:

o transformations which mix those orbitals on the same atom that share common
principal and azimuthal quantum numbers. For example, a rotation of axes
would mix together the three 2p orbitals on a carbon atom;
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sformatlons that can mix any of the atomic orbitals on the same atom.

! mnle rlpq(‘rmhve nrcmmr' (‘hf-mmtrv Pmnhsmw-c the carbon Ql‘\3 hvhﬂd
Mpr example, d brid

i omic orbitals at the expense of the more usual 2s, 2ps, 2py and 2pz ones.

ﬂa_nSIOI'IIldllUu [UPIC aud LUWUI}.\CID PlUbCCdUd (16 CAdllLlllC l.hC bUlleunll\/Cb
y the context of the ‘all valence electron’ NDO models. I write NDO rather than
#pO because the more sophisticated of these models retain many two-electron
ggrals that would be set to zero under the ZDO prescription.

a1 CNDO/1 and CNDO/2

most elementary ‘all valence electron” NDO model is that known as
mplete neglect of differential overlap’ (CNDO). Segal and Popie introduced

s in 1966. Only valence electrons are explicitly treated, the inner shells being
{aken as part of the atomic core. The ZDO approximation is applied to the

two-clectron integrals, so that
I
Iy // Xi (T X (r1)g(r, 12) X (r2) X (r2) d7y d73y.

i

= Sudji jgf X EDEEL, )X
In the w-electron theories, each first-row atom contributes a single basis function.
For the ‘all valence electron’ models there is now an additional complication in
that some of the basis functions could be on the same atomic cenire. So how
ghould we treat integrals involving basis functions all on the same atomic centre
such as

/ / 2p2(r1)g(ry, r2)28%(r2) dr; dry

// 2} (r1)3(r1, r2)2p3 (r2) d7 do

And what if the basis functions are centred on different atoms? The CNDO
solution to the problem is to take all possible integrals such as those above to be
equal, and to assume that they depend only on the atoms A and B on which the
basis functions are centred. This satisfies the rotational invariance requirement.
In CNDO theory, we write the two-electron integrals as yap and they are taken
to have the same value irrespective of the basis functions on atom A and/or atom
B. They are usually calculated exactly, but assuming that the orbital in question
is a 1s orbital (for hydrogen) or a 2s orbital (for a first row atom).

Once again, I can explain the features of the model in terms of Hartree—Fock
theory. The next step is therefore to investigate the one-electron integrals

/ XXX (1) dry
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The only difference from our discussion about r-electron systems is that there
may be many basis functions on the same atomic centre.

The dlagonal terms (where i = j) are conveniently divided into those contrj.
butions that refer to a given atomic centre (atom A), and those that refer to
other atomic centres. In the following discussion, assume that basis function X;

is centred on nucleus A. We have

R B o, e Nz,
/ X (rOR(r) x;(r) dry = / X)) | —=5—V2 - — > =2 | )y
J J \ OJt I, A\

and the term

h2 62 ZA
() | — V2 — == ) x;(rd
/x,( 1)( Sw2me V1 g RAI) X;(r1)dr

looks like an ‘atomic’ quantity, since it only involves a basis function ; centred
on atom A and the nuclear charge of that atom, Za. It is usually written U;; and
is determined from atomic spectroscopic data. The remaining terms are of the

Xt I R X[( 1 tl

LIV . LN |

physically the interaction of an eleciron in orbital Xi with
ch terms penetration integrals, and they are usually denoted

+

and Lucy' TEpIES
nucleus B. We cal
'—VAB-

The off-diagonal terms (i # j) are treated to a similar analysis. Each penetra-
tion term involving different basis functions that are on the same atomic centre
are given a value of —V,p to maintain invariance. Suppose now that x; is centred
on nucleus A and x; on nucleus B. We have

cii

1
all su

" h2 2 N
[ xohaoxadn = [ x,-(rl)<—8n2m 1 WOZI )xj(n)dn

and so

2 2
x@hx e dn = [ e (~ e —vi- S Zh
J ! J \ 8m2me | 4mep Rai
2
e ZB)
— —_— r;)dr
4mres Ror x;(r)dr
e Z,
+/x-(r1) -y C Ze ) edn
! 4meg R, J
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The final terms involve three atomic centres, and we neglect them. The two-

va writtan 80 ¢ wha R0 Adanande anlv an tha natiira of tha
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atoms A and B, and S;; is the overlap integral between orbitals x; (centred on
atom A) and x; (centred on atom B). The overlap integrals are calculated as if
the basis functions were ‘ordinary’ atomic orbitals.

A CNDO all-valence-electron HF-LCAO Hamiltonian matrix has elements

1
by = Ui + (PAA 2Pu) yaa+ > (Pps¥ap — Vap)
) pA (8.14)

1
hf,- = BsSii — EPijJ/AB

I have collected together all the electron density terms involving basis functions
on atom A into Pxa. These expressions are correct even if x; and x; are both
centred on the same atom.

The original parameter scheme was called CNDO/1 (Pople and Segal, 1965),
and allowed treatment of molecules containing hydrogen and all first-row atoms.
The basis set was taken as Slater-type orbitals, and an orbital exponent of 1.2
was used for hydrogen. Overlap integrals were calculated exactly, but the basis
functions were assumed orthogonal for the purpose of solving the HF-LCAO
equations. Electron repulsion integrals yap were calculated exactly, and the pene-
tration integral was calculated exactly in CNDO/1 theory. The U;; were found
from a study of atomic energy levels. That leaves the ‘bonding’ parameter 535.
In order to help minimize the number of parameters in the theory, the bonding
parameters were estimated from atomic ones (denoted by a single subscript
below) by a very simple additive scheme,

B = B + B (8.15)

In a fascinating variation on ihe usual iheme of comparing wiih experiment, the
atomic S values were chosen by comparison with matrix elements of accurate
HF-LCAO Hamiltonians.

It turned out that CNDO/1 calculations gave poor predictions of molecular
equilibrium geometries, and this failing was analysed as being due to the treat-
ment of the U; and the penetration terms Vp.

The CNDO/2 model came next (Pople and Segal, 1966). It differs from
CNDO/1 in the way it handies U; and Vag. The peneiraiion term Vap is no
longer calculated exactly, but taken as —Zpyap. The atomic terms become

T7.. — l 1\

1
Ui=— 5: Ai)_\ZA_E}Vaa

—~
co
_—
()}

p—e

where I; is the ionization energy of an appropriate valence state orbital an d
the corresponding electron affinity. The basic HF—LCAO Hamiltonian

':‘x

trix
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elements for the CNDO/2 model are.

MODELLING MOLECULAR STRUCTURES

1 1
By =—=;i +A)+ ((PAA —Zp) — =Py — 1)\ VAA
< \ < /

+ ) (Ppeyas — Vas)

B#A

1
hi; = BeSij — EPiijB

(.17)

At this point, it is wise to see an example, and I will take H>O with a bond
length of 95.6 pm and bond angle of 104.5°. If I take the coordinate system such
that the molecule lies in the yz-plane with coordinate origin given by the centre
of mass, and the z-axis as the symmetry axis, then the Cartesian coordinates are

given in Tabie 8.4.

The repulsion integrals can be calculated from standard formulae, and they
come to the values shown in Table 8.5.
The overlap integrals (Table 8.6) were calculated from the master formulae of

Mulliken et al. (1949).

Table 8.4 Cartesian coordinates for H,O

Atom x/pm y/pm z/pm

(0) 0 0 11.71

H, 0 75.59 —46.82

H, 0 —75.99 —46.82

Table 8.5 Electron repulsion integrals yap/Ey for

H,0

0 H,; H,

0] 0.8265 0.5013 0.5013

H; 0.7500 0.3422

H, 0.7500
Table 8.6 Overlap integrals S;; for H,O

0(2s) O(2p») O(2py) O@2py) H(1s) Ha(1s)

0(2s) 1 0 0 0 0.4803 0.4803
O(2p») 1 0 0 0 0
0(2p,) 1 0 0.3031 —0.3031
O(2p,) 1 —0.2347 —0.2347
H;(1s) 1 0.2708

Hy(1s)




,_‘
|
=]

NEGLECT OF DIFFERENTIAL OVERLAP MODELS

Table 8.7 CNDO/2 orbital energies and LCAO coefficients for H,O
“6i/En 0(2s) O (2p,) O (@2py) 0 (2p,) H; (1s) H, (1s)

71488 —0.8617 0 0 00696  —03554  —0.3554
_0788 0 0 0.7589 0 04605  —0.4605
_0713 —03164 0 0 —0.8480 03006 0.3006
0655 O 1 0 0 0 0
0336 —0.3966 0 0 0.5254 0.5323 05323
0351 0 0 —0.6512 0 05366  —0.5366

A CNDO/2 calculation gives the HF orbital energies and LCAO coefficients
shown in Table 8.7.

832 CNDO/S

As I hinted earlier, a major objective for practitioners of ZDO m-electron theo-
ries was the treatment of molecular electronic spectra. These calculations were
almost always made at the ‘HF—LCAO plus singly excited configuration interac-
tion’ level of theory. Consumers of CNDO models had different goals, often the
prediction of ground-state electronic properties, molecular geometries, reaction
mechanisms, atomization energies, etc. When the CNDO models were applied to
the prediction of electronic spectra, it was found that both CNDO/1 and CNDO/2
grossly overestimated electronic excitation energies, especially the singlet n —
7* states, and often predicted the wrong ordering for excited states. These models
had the immense advantage of belng able to treat both # — n* and n — n* tran-
Sl[lOIlb Wl[[llIl a bULIIlU lIlCUfCLl(,dl ll'dI[lCWOI'K Dul bOlTlCl[llIlg was ObV‘O S Ly ‘v‘vror
somewhere.

The most significant treatment of excited states within the CNDO approach is
that of Del Bene and Jaffé, who made three modifications to the original CNDO
parameterization scheme. Two of the modifications were just minor tinkering with
the integral evaluation, and need not concern us. The key point in their method
was the treatment of the B parameters. Think of a pair of bonded carbon atoms
in a large molecule. Some of the p-type basis functions on C, will be aligned to
those on Cg in a o-type local fashion, some will be aligned in a 7-type fashion.
Del Bene and Jaffé introduced a new parameter « such that the 7-type interaction
was reduced. They wrote

BY = 3 (BX + BR)Si;

Lo o (8.18)

5 = 2K (Ba + Br)Si
depending whether the atomic orbital pair x; (on atom A) and x; (on atom B)
were locally o or 7 to each other. Variation of k over a range showed that k =
0.585 gave the best agreement with exneﬁmf-nt for many co___i’ugated molecules.
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The following is a key paper:

Use of the CNDO Method in Spectroscopy: I Benzene, Pyridine and the
Diazines
Janet E. Del Bene and H. H. Jaffe
The Journal of Chemical Physics, 48 (1968) 18071813

The CNDO method has been modified by substitution of semiempirical
Coulomb integrals similar to those used in the Pariser—Parr~Pople method,
and by the introduction of a new empirical parameter to differentiate reso-
nance integrals between o orbitals and 7 orbitals. The CNDO method with
this change in parameterization is extended to the calculation of electronic

spectra and applied to the isoelectronic compounds benzene, pyridine, pyri-
dazine, nvr1m1r‘hnp and nvrsnnm The results obtained were refined hv a

limited CI calculation, and compared with the best available experlmental
data. It was found that the dngCIl'lCIl[ was quue ballbIdb[Ol'y for both the
n — 7* and & — 7* singlet transitions. The relative energies of the 7 and
the lone pair orbitals in pyridine and the diazines are compared and an
explanation proposed for the observed orders. Also, the nature of the ‘lone

pairs’ in these compounds is discussed.

The CNDO model makes a draconian assumption about the two-electron integrals

[ xaomaie e e e dn dn

= 881 Jé/ X; (g, r2)X§(r2)dTI dry

In the case that (for example) x; and x, are centred on the same atom, these
integrals are far from zero. In any case, it is exactly these integrals that give
the correct ordering between atomic spectroscopic states. Thus, for example, the
CNDO model cannot distinguish energetically between the P, !D and 'S states

arising from the orbital configuration

C: (15)*(2s)*(2p)?
nd gives a zero spin density at all the atoms in a planar w-radical such as CHs.
Pople, Beveridge and Dobosh introduced the intermediate neglect of differential
overlap model (INDO) in 1967. INDO is CNDO/2 with a more realistic treatment
of the one-centre two-electron integrals. In the spirit of such models, the non-zero
integrals were calibrated against experiment rather than being calculated from first
principles. The authors concluded that, although INDQ was a little better than
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CNDO/2 for predicting molecular geometries, it gave a vastly superior treatment
of singlet—triplet splittings and spin densities.

834 NDDO

Just to finish this train of thought, the next logical step in the argument would
be to retain all integrals of the type

// Xi(CX (P11, T2)x(F2)x, (1) d7y dry

where orbitals x; and x; are on one nuclear centre, with x | and x; on another.
This is the essence of the neglect of diatomic differential overlap model (NDDO).
For one reason or another, it never caught on.

8.3.5 MINDO

At this point enter stage-left Michael Dewar and the modiﬁed intermediate

ntial rorlan (MINTY Y)Y mada “nt!lor Q 1activa wag vary
m:gu:u UJ MUJCICIMJ«MI/ UVCILulJ \ULVLLLNIINS ) uluuul irovwal o ouuvuvv was vuiy

simple: to develop a CNDO-style parameter scheme that would give a
genuine working model for experimentalists, particularly organic chemists and
biochemists. This is a very worthwhile goal, but there are certain implications.
Any such model has to be capable of making chemical predictions to chemical
accuracy: bond lengths of 0.1 pm, bond angles of 0.1°, enthalpies of formation
that are correct to 0.1%, and so on. The model has to be parameterized for a
range of atoms, not just carbon, nitrogen and hydrogen.

As a practical point, any computer code has to be transferable between plat-
forms, so there is little point writing code in esoteric but obsolete languages such
as French ALGOL.

I am conscious that I have missed many sets of acronyms from my guided
tour of the differential overlap models, and I will just tell you that MINDO,
MINDO/1, MINDO/2 all appeared but have now been consigned to oblivion.
With MINDO/3, Dewar thought that he had at last developed a reliable model for
use by organic chemists. The abstract to the landmark MINDO/3 paper is terse:

MINDO Semlempmcal SCF MO Meth d
Richard C. Bingham, Michael J. S. Dewar and Donald H. Lo
Journal of the American Chemical Society 97 (1975) 1285-1293

The problems involved in attempts to develop quantitative treatments of
organic chemistry are discussed. An improved version (MINDO/3) of the
MINDO semiempirical SCF-MO treatment is described. Results obtained
for a large number of molecules are summarized.
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However, the ‘Summary and Conclusions’ section is more revealing:

Summary and Conclusions

MINDOY/3 has thus proved to be an extraordinarily versatile procedure,
giving good results for every ground state property so far studied and
apparently offering hope of equal extension to excited states and photo-
chemistry. Whilst it has not yet achieved ‘chemical’ accuracy, the average
error in the calculated heats of atomization being ca. 6 kCal mol~! instead
of 1kCalmol~!, it has given no unreasonable results except in one area
where the MINDO approximation would be expected to fail. The errors in
the heats of atomizaiion are in any case less by orders of magnitude than
those (given by non-empirical) calculations or other semiempirical MO
procedures. Moreover, the results for activation energies of reactions and
for heats of formation of ‘non-classical’ ions scem definitely superior to
those from (non-empirical) calculations, although admittedly there are few
examples for comparison since few meaningful (non-empirical) calculations
have been reported.

8.3.6 MNDO

The modified neglect of differential overlap (MNDO) model should probably
come next; MNDO is like INDO except that MNDO treats the diatomic two-

lantran intaagrale mara accnirataly Tt ratai i i 1
clectron integrals more accurately. It retains all two-electron integrals involving

‘monatomic’ differential overlap, and the paper to read is probably:

Ground States of Molecules 39 MNDO Resuits for Molecuies containing
Hydrogen, Carbon, Nitrogen and Oxygen
Michael J. S. Dewar and Walter Thiel
Journal of the American Chemical Society 99 (1977) 4907-4917

Heats of formation, molecular geometries, ionization potentials and dipole
moments are calculated by the MNDO method for a large number of

molecules The MINDQ recults are comnared with the correspondinge

LIIVIVVUIVD . -4 AN AVALNAINS Avouiv L= 8 8 v WULLIpAL VN VY aulii i WASLANO LAl
1 i (=]

MINDO/3 results on a statistical basis. For the properties investigated,
the mean absolute errors in MNDO are uniformly smaller than those in
MINDO/3 by a factor of about 2. Major improvements of MNDO over
MINDO/3 are found for the heats of formation of unsaturated systems and
molecules with NN bonds, for bond angles, for higher ionization potentials,
and for dipole moments of compounds with heteroatoms.
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8 3.7 AM1
Again, let Dewar give the summary for the Austin Model 1 (AM1):

—
AM1: A New General Purpose Quantum Mechanical Molecular Model

Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healey and James
J. P. Stewart
Journal of the American Chemical society 10

-y
/

aAnNnA 1000
dYUL—IOYUY

~—

s1NnoL
(1985

A new parametric quantum mechanical model AM1 (Austin model 1), based
on the NDDO approximations, is described. In it the major weakness of
MNDO, in particular the failure to reproduce hydrogen bonds, have been
overcome without any increase in computer time. Results for 167 molecules
are reported. Parameters are currently available for C, H, O and N.

According to Dewar, MNDO had a common tendency to overestimate repul-
sion between atoms at their van der Waals distances, and attempts to rectify this
bad behaviour usually involved changing the core repulsion integrals. In AMI,
these core repulsion integrals are modified by multiplying them by a sum of
Gaussian functions, whose coefficients and exponents were all optimized. Dewar
concluded, ‘The main gains are the ability of AM1 to reproduce hydrogen bonds
and the promise of better estimates of activation energies for reactions’.

Readers of this book from Austin, TX, will appreciate the significance of the
acronym.

838 PM3

Parameterized Model 3 was developed by Stewart (1989) and is a reparameter-

el o QP DY IeWd

1-"r
ization of AM1. PM3 differs from AMI only in the values of the parameters
used. PM3 has been parameterized for many main group elements.

8.3.9 ZINDO and ZINDO/S

These models were developed by Zerner and coworkers (Zerner, Anderson, and
Edwards, 1986). ZINDOQO/1 is a variant of INDQ, and ZINDQ/S is an INDOQ

method designed to predict spectroscopic transitions.
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Wea muct now caongider the chaoice of a hacic cat T have alreadv made refa.
yvC MUSt BOW CONSIGET W4l CACICe O1 a 0asis S5CL. 1 nave aillady Inadc reter-

ence to hydrogenic orbitals and Slater orbitals without any real explanation, |
have also hinted at the integrals problem: variational calculations almost always
involve the calculation of a number of two-electron integrals over the basis
functions

// Xi (X)X, (rDE X1, 12) X, (r2) X, (r2) dy drz

These integrals can be terrifyingly difficult; they involve the spatial coordinates
of a pair of electrons and so are six-dimensional. They are singular, in the sense
that the integrand becomes infinite as the distance r1, between the electrons tends
to zero. Each basis function could be centred on a different atom, and there is
no obvious choice of coordinate origin in such a case.

Not only that, there are usually a lot of them. An HF—LCAO calculation with
n basis functions requires the calcuiation and manipulation of about n*/8 such
integrals.

Then there is the question of quality. The variation principle only tells us about
energies; we might calculate the variational integral

/‘ll*ﬁl‘lldt
8=—/.'*——’“
/\IJ*\IJdr

to get a rough and ready criterion for the quality of a wavefunction and therefore
a basis set. Suppose we have two different basis sets for carbon, nitrogen and
hydrogen, and we perform HF—LCAO calculations on pyridine using both basis
sets. At first sight, the basis set that gave the lower energy would seem to be the
better one. Unfortunately, a basis set that is good for calculating the energy may
be disastrous for calculating the electric dipole moment, and if your interest in life
is electric dipole moments you would not be helped by the variation principle. The
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yariation pnnc1ple only ‘works’ for energy, there are no corresponding principles
for the more chemically interesting properties.
So pack to the beginning.

9.1 HYDROGENIC ORBITALS

The time- 1ndependent electronic Schrodinger equation for a one-electron atom

wich as H or C°F is
h? Zé
(_ V?— ) Ve = EcVe ©.1)

sucil a= 1%
8721 dmegr

where u is the reduced mass of the electron and the nucleus and Ze the nuclear

charge.
Atoms are spherical objects, and what we do is to write the electronic

ta mirrar tha cummoatry of

a 1. dingar aanation in enharica agq
u(.u,vo, W vl uic o]uuuuuy O1

DOI].IU\.LLUE\,L C{juauiil il oyu\dl\/al pO

the problem.

2

O (pWe), 1 2@

reorc \ or / r<sinf o6
87?2 Ze?

+ s (8 + —> we =

h? 47reg

—

%\ P (32%\
0 ) r2sin®6 \ 9¢? )

(=)

(9.2)

The electronic Hamiltonian A, commutes with both the square of the angular

momentum operator /2 and its z-component /, and so the three operators have
simultaneous eigenfunctions. Solution of the electronic Schrédinger problem

gives the well-known hydrogenic atomic orbitals

wn,l,ml (r,0,9) =Ry, (r)Yl,ml ®, ¢) 9.3)

where the Y; ., (6, ¢) are eigenfunctions of the two angular momentum operators,
and are known as ‘spherical harmonics’. The radial function R(r) satisfies the
radial equation

d’R  2dR 872 Ze? 1+1
S () - o

94
dr? ts rdr h? 4mregr r2 ©4)

S, TR

The uounu states kW[lCl"B E< U) are bﬂdrdC[CI'lZC(l Dy the mree quantum numbers
n (the principal quantum number), ! (the azimuthal quantum number) and my
(the magnetic quantum number).

There are also unbound states for which the energy is positive. The unbound
states are quite different from the bound ones, in that they are finite at infinity
and at the origin. There is a continuous range of positive energies, and these
correspond to ionization of the hydrogen atom. We will not need to consider the

unhg atatas in thic tavt
unbound staiCs il uiis text.



1 &7 J, g —~ A A —— . — N ——
150 IVIODELLING IVIOLECULAR D 1TRUCIURES

The electronic energy of a free one-electron atom depends only on n:

pLe“Z2 1

fn = 87[26 n? ©.5)

and these energies are in essential agreement with the results of simple exper;.
mental measurements.
In summary,

He wnlml =&, l/fnlml

h2
l Wnlml - l(l + 1) 21””1’"1 (96)

- h
LeWnim = mlEWnlmI

For | = 1, there are three possible values of my;, namely m; = —1, m; =0 and
m; = +1, which I can designate as the p_;, po and py; states. Their associated
angular factors Y ., (6, ¢) are (apart from any numerical factors)

sin(6) exp(—j¢) for p_;
cos(0) for py O.1n
sin(6) exp(+j@) for pyy

uare root of —1 Fﬂr many purposes in chemistry wvenient

_ Pt pa
px - /R
vV 4L
P: = Do 9.8)
_ [ P+1— P

P )

In order to get real equivalents for the d-orbitals, we take

de =dj
d. — dy+d
xz = «/E_
L (dn—d
yz = —J «/i 9.9)
, dip+d_,
dp_p=—"—o

V2

e

Y~
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Table 9.1 The 1s, 2s and 3s hydrogenic orbitals

n, 1, m Symbol Expression
7 \3/2
1,0,0 Is T (—0) exp(—p)
7 \32 o
2,0,0 2s (a—) 2 - 0) exp (_5)
2 A \3/ /PN
300 » 8137 &a_ ) (27 —18p+ 200 exp (=3)

It is instructive to look at the form of the 1s, 2s and 3s orbitals (Table 9.1). By
convention, we use the dimensionless variable p = Zr/ay rather than r. Here
Z is the nuclear charge number and ag the first Bohr radius (approximately
52.9pm). The quantity Z/n is usually called the orbital exponent, written &.

These exponents have an increasing number of radial nodes, and they are
orthonormal.

9.2 SLATER’S RULES

Exact solutions to the electronic Schrodinger equation are not possible for many-
electron atoms, but atomic HF calculations have been done both numerically and
within the LCAO model. In approximate work, and for molecular applications,
it is desirable to use basis functions that are simple in form. A polyelectron
atom lb quuc UlllCl’CilL J.l'UIIl a one-electron atom UCC&USE Ul l[lc pllCﬂOI[lCllUll 01
shielding: for a particular electron, the other electrons partially screen the effect
of the positively charged nucleus. Both Zener (1930) and Slater (1930) used very

simple hydrogen-like orbitals of the form

Nr® =D exp (— (Z — s) i) Y1 6, ) (9.10)
n* ag

where the effective principal quantum number n* and the screening constant s

are adjustable constants. Here, N is a normalizing constant. Such orbitals differ

from the hydrogenic orbitals in that they have no radial nodes. They are actually

solutions of an electronic one-electron Schrodinger equation with mutual potential

energy

1 (Z—s)é? N n*(n* — 1)k?

Ulr)=— . (9.11)
4rey r 8m2mer?
By varying n* and s so as to minimize the energy, Slater was able to give the
following rules for the determination of these constants.
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Table 9.2 Slater orbital exponents

Atom S1s S =&

H 1

He 1.700

Li 2.700 0.650

Be 3.700 0.975

B 4.700 1.300

C 5.700 1.625

N 6.700 1.950

0 7.700 2.275

F 8.700 2.600

Ne 9.700 2.925
1 n¥* 10 naggionad a valuie ac fallawse according ta thae yvaliie af tha ‘ranl® ariame
1 i ID ddSIglivU d VALuv dd LULIVWD, daLlULUllly U UL valuv Ul uiv  1val uaiiliin

number 7.
n=1 2 3 4 5 6

n*=1 2 3 3.7 4.0 4.2

2 For determining s, the electrons are divided into the following shells: (lé);
(2s, 2p); (3s, 3p); (3d); (4s, 4p); (4d, 4f).

3 The shielding constant s is calculated, for any of the sets of orbitals, from
the following contributions:

e nothing from any shell ouiside the one considered;
e 0.35 from each other electron in the set considered (except in the 1s case,
where 0.30 is used);

PP Oy [ D PP SR R | IS Lot o

0 ouln olall . ] E R Y | Nnocg oL
L J 11 UIC dHCIL COLBIUCICU 15 dll 5 UL 4 p SHCL, dll dllloulll U.00 11oll Cacil
electron with principal quantum number less by 1, and an amount 1.00
from each electron still farther in. If the shell is a d or f shell, an amount

of 1.00 from each electron inside it.

In honour of J. C. Slater, we refer to such basis functions as Slater-type orbitals
(STOs). Slater orbital exponents ({ = (Z — s5)/n*) for atoms through neon are
given in Table 9.2.

Various other sets of screening constants have been proposed, for example
those by Pauling and Sherman (1932).

9.3 CLEMENTI AND RAIMONDI

Clementi and Raimondi refined these results by performing atomic HF—-LCAO
calculations, treating the orbital exponents as variational parameters. A selection
of their results for H through Ne is given in Table 9.3.
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Table 9.3 Clementi and Raimondi orbital exponents

Atom é'ls {25 §2p
H 1

He 1.6875

1i 2.65006 0.63%06

Be 3.6848 0.9560

B 4.6795 1.2881 1.2107
C 5.6727 1.6083 1.5679
N 6.6651 1.9237 1.9170
O 7.6579 2.2458 2.2266
F 8.6501 2.5638 2.5500
Ne 9.6421 2.8792 2.8792

Atomic Screening Constants from SCF Functions
E. Clementi and D. L. Raimondi
The Journal of Chemical Physics 38 (1963) 2686—2689

The self-consistent field function for atoms with 2 to 36 electrons are
computed with a minimum basis set of Slater-type orbitals. The orbital
exponents of the atomic orbitals are optimized so as to ensure the energy
minimum. The analysis of the optimized orbital exponents allows us to obtain
simple and accurate rules for the 1s, 2s, 3s, 4s, 2p, 3p, 4p and 3d electronic

cereanine conetante Thece mileg are comnared with thace nronoced by Slater
SULICULLILE CULISLALILS. 1 HUOU 1HIVS Al CULLIpPAICU yilll UIULT PIUpUSLU Uy Jiawt

and reveal the need for the screening due to the outside electrons. The ana-
lysis of the screening constants (and orbital exponents) is extended to the
excited states of the ground state configuration and the positive ions.

Notice that the 2s and 2p orbitals have a slightly different exponent. Such basis
sets, where we simply use the same number of atomic orbitals that we would use
in everyday descriptive chemistry, are referred to as minimal basis sets.

The next step on the road to quality is to expand the size of the atomic orbital
basis set, and I hinted in Chapters 3 and 4 how we might go about this. To start
with, we doubie the number of basis functions and then optimize their exponents by
systematically repeating atomic HF-LCAO calculation. This takes account of the
so-called inner and outer regions of the wavefunction, and Clementi puts it nicely.

Simple Basis Set for Molecular Wavefunctions Containing First- and
Second-Row Atoms
E. Clementi
The Journal of Chemical Physics 40 (1964) 1944—1945

The self-consistent field functions for the ground state of the first- and
second-row atoms (from He to Ar) are computed with a basis set in
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which two Slater-type orbitals (STO) are chosen for each atomic orbita]:
The reported STOs have carefully optimized orbital exponents. The tota]
energy is not far from the accurate Hartree—Fock energy given by Clementi,
Roothaan and Yoshimine for the first-row atoms and unpublished data for

the second-row atoms. The obtained bagis sets have sufficient flexibilitv

i SCCONG-TOVW awOills. 1€ 00 ALNICC Dasls SO I1av STIRCICN LCX10uity

to be a most useful starting set for molecular computations, as noted by
Richardson. With the addition of 3d and 4f functions, the reported atomic
basis sets provide a molecular basis set which duplicates quantitatively
most of the chemical information derivable by the more extended basis
sets needed to obtain accurate Hartree—Fock molecular functions.

We refer to such a basis set as a double zeta basis set. Where the minimal
basis set for atomic lithium had a 1s exponent of 2.6906, the double zeta basis
set has two 1s orbitals with exponents 2.4331 and 4.5177 (the outer and inner
orbitals).

A selection of Clementi’s double zeta basis sets is given in Table 9.4.

That accounts for atoms. The general view is that STOs, which are given by
the general formula -

NrDexp (— (Z — S) a—’o) Yim (6, #) 9.12)

n*

are the correct ones to use for accurate descriptions of atomic charge densities.

Table 9.4 A selection from Clementi’s double zeta

basis set
le ;25 §2p
He 1.4461
2.8622
Li 2.4331 0.6714
4.5177 1.9781
Be 3.3370 0.6040
5.5063 1.0118
B 4.3048 0.8814 1.0037
6.8469 1.4070 2.2086
C 5.2309 1.1678 1.2557
7.9690 1.8203 2.7263
N 6.1186 1.3933 1.5059
8.9384 2.2216 3.2674
(0] 7.0623 1.6271 1.6537
10.1085 2.6216 3.6813
F 7.9179 1.9467 1.8454
11.0110 3.0960 4.1710
Ne 8.9141 2.1839 2.0514

12.3454 3.4921 4.6748




i
[#))
—

Basis SETs

9.3.1 Polarization Functions

There is a second point to note in Clementi’s paper above where he speaks of
3d and 4f functions. These atomic orbitals play no part in the description of
atomic electronic ground states for first- and second-row atoms, but on molecule
formation the atomic eiectron density distorts and such polarization functions are
needed to accurately describe the distortion.

9.4 GAUSSIAN ORBITALS

Atoms are special, because of their high symmetry. How do we proceed to

Ao~ilag? Tha arhital madal daminatac chamictry and at tha heart af tha arhital
mOIECUICS { 11T Urvitdir IUUCL GUIHLIAICS CUVIINOW ), alit di Ui Livait Ut Wiv Uivitar

model is the HF~LCAO procedure. The main problem is integral evaluation.
Even in simple HF—LCAO calculations we have to evaluate a large number of
integrals in order to construct the HF Hamiltonian matrix, especially the notorious
two-electron integrals

// Xi ()X (XX, 1) X, (X2) X, (r2) d71 A2

The breakthrough for molecular applications came with Boys’s classic paper
(1950) on the use of Gaussian-type orbitals (GTOs). These basis functions have
an exponential dependence of exp (— (ar?/a3)) rather than exp(—(¢r/ap)).

The quantity o is called the Gaussian exponent. Normalized 1s and 2p
GTOs are

ar o
Gy = exp — (9.13)
(v ) (-% )
1/4 2
12
( 8 \ X exp —%\ (9.14)
T\ 7w2all ) \ a4/
and so are analogous to the corresponding STO. When dealing with d-type (and
higher) GTOs, we often work with the so-called Cartesian GTO; these have

pre-exponential factors
l.m_n

X'y 'z

In the ca rbitals. there are six Cartesian GTQs with pre-exponential

213 U0 Las s WILIU QIT S1A LGl 2 with premLaApOleiiiia
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factors of x? y y2, xz, yz and z2. Only five are linearly independent, the combi-
nation (x? + Y +z ) actually gives an s-orbital. Software packages sometimes
allow a choice of five or six d-type orbitals.

Similar considerations apply to the f, g, h, ... GTOs.

GTOs owe their popularity to one key fact: integrals involving GTOs are much
simpler than those involving STOs. The reason is as follows. Figure 9.1 shows
a pair of s-type GTOs, which I will refer to as x, (= Ga(ra,as)) and xy. The

of
of
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centre of GTO A is at rp and it has exponent as. The centre of Gp is at position
vector rg and it has exponent ogp.

Suppose we wish to evaluate the overlap integral
SAB = J/ XaXg dt 9.15)

We see from the figure that the position vector of the electron relative to the
centre of x, is r —ra, so we need a factor of

204\ /4 aa(r —ra)?
GA(r—ra,op) = (——2) exp (—-—éi——z—A—)) 9.16)

under the integral sign where I have written x,, and a corresponding factor

Ga(r —rp,aB) = /%\3/4 exp /_oz_____B(r—rB)z\
\na(z,} ' k a(z,

~
\O
—
~—

where I have written yg.
Mha smendizat ~F thaca 4378 cvimmmanmtials 20 a~iznl 6a o 4R21 AN _Sécnéad ot
1HC l_uuuuu. UL UIOSC LWU CAPUllClludlb > C(ludl W a Uy Jl1uv situdaicu atc
point C along the line of centres AB, as shown in Figure 9.1. The resultant GTO
Gc(rc, ac) is situated at the point C with position vector r¢ such that

Ic =

= ——(0ara + aprp) (9.18)
op+op

and the exponent of this new GTO is

oac = op + o 9.19)
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Apart from the normalizing factor, the two-centre overlap integral then reduces

+ cimnle one-centre inteoral of the form
to a simple one-centre integral of the form

N2
Sa = / exp (-M) dr 9.20)

ao
The simplification is even more dramatic for a two-eleciron integral, which can
involve GTOs on four different centres. Formulae for integrals involving Carte-
gian GTOs of p, d, ... types can be deduced from those involving s orbitals by
simple differentiatlon. Here is the famous synopsis.

Electronic Wave Functions
A General Method of Calculation for the Stationary States of
any Molecular System
S. F. Boys

Proceedings of the Royal Society of London Series A, 200 (1950) 542-554

This communication deals with the general theory of obtaining numerical
electronic wavefunctions for the stationary states of atoms and molecules.
It is shown that by taking Gaussian functions, and functions derived from
these by differentiation with respect to the parameters, complete systems of
functions can be constructed appropriate to any molecular problem, and that
all the necessary integrals can be explicitly evaluated. These can be used in

connaction with the maolacular aorhital traatmant or localized hond meathad
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or the general method of linear combinations of many Slater determinants
by the variation procedure. This general method of obtaining a sequence of
solutions converging to the accurate solution is examined. It is shown that the
only obstacle to the evaluation of wavefunctions of any required degree of
accuracy is the labour of computation. A modification of the general method
applicable to atoms is discussed and considered to be extremely practicable.

One problem that concerned the early workers is that GTOs do not give terribly
good energies. If we use a single GTO for a hydrogen atom,

a \V4 r?
Galo) = (;;) exp (—a;) 9.21)

0 0
and calculate the best orbital exponent using the variation principle, we find
aopt = 0.283 and the variational energy is —0.424 41 Ey,. This has to be compared
with the ‘experimental’ value of —% Ey, and is therefore in error by some 15%.

In addition, GTOs have the wrong behaviour at nuclear positions. A compar-
ison of the is GTO and the corresponding is STO for a H atom is shown in
Figure 9.2.

The full plot is the STO, and the dotted plot is the corresponding GTO. The

atomic unit of wavefunction is an 3/2 . The GTO shows incorrect behaviour at the
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Figure 9.2 1s Slater and 1s Gaussian

nucleus, where it is fiat rather than having a cusp. It also falls off too quickl;}
with distance from the nucleus.

a5

XS4

THE STO/nG PHILOSOE

ARR4 Tiv A AR

C')

Y
an A

The next step was to represent each Slater atomic orbital as a fixed linear combi-
nation of Gaussian orbitals; so a Slater-type orbital with exponent ¢ is written as

a sum of GTQOs with exponents ¢, o, and so on. For pvamn]p in the case of
xponents o, oz, and so exampie, 1n th

three primitive GTOs we might write
STO(¢) = d1GTO(a1) 4+ d2GTO(ar2) 4+ d3GTO(a3) 9.22)

where STO(¢) represents a 1s STO with exponent &, which is to be represented
as a linear combination of the three 1s GTOs with exponents a1, oz and «3. The

values of the d’s and the exponents are usually found by least-squares fitting
(Hehre, Stewart and Dnr\]p 1060\ Tf we choose to fit the entire minimal basis set

ALATLIL T,

STO as a linear combmatlon of n GTOs, then we speak of the STO—nG model.
Here is the synopsis for a key paper.

Self Consistent Molecular-Orbital Methods
I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals
W. . Hehre, R. F. Stewart and J. A. Pople
The Journal of Chemical Physics 51 (1969) 2657-2665

Least squares representations of Slater-type atomic orbitals as a sum of
yaussian-tvpe orbitals are nreqenfed These have the qnemnl feature that

¥ ATy pPe LIDLAls
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common Gaussian exponents are shared between Slater-type 2s and 2p
functions. Use of these atomic orbitals in self-consistent molecular-orbital
calculations is shown to lead to values of atomization energies, atomic popu-
lations, and electric dipole moments which converge rapidly (with increasing

<ize of the Gaussian exnansion) to the values anpronriate for pure Qlafpr_fvnp
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orbitals. The & exponents (or scale factors) for the atomic orbitals Wthh are
optimized for a number of molecules are also shown to be nearly indepen-
dent of the number of Gaussian functions. A standard set of £ values for
use in molecular calculations is suggested on the basis of this study and is
shown to be adequate for the calculation of total and atomization energies,
but less appropriate for studies of the charge distribution.

To take a concrete example, the fit for a 1s atomic orbital with £ =1 gives
the values of d and o shown in Table 9.5, as we increase the number of GTO in
the expansion.

We therefore regard each fixed linear combination as a single basis function
made up from the n primitive Gaussians, for the purposes of (e.g.) HF-LCAO
calculations. But of course we have to do integral evaluation over all the primitive

GTOs and so we don’t escape the necessity of calculating integrals over the prim-
itive GTOs. The STO-nG method uses the same primitives (but with different

Table 9.5 STO-nG expansion coefficients for fitting
a 1s STO with exponent ¢ = 1

Gaussian Linear expansion
cxponents « cocfficients d
STO-2G 0.151623 0.067 8914
0.851 819 0.430129
STO-3G 0.109818 0.444 635
0.405771 0.535328
2.227 66 0.154 329
STO-4G 0.0880187 0.291 626
0.265 204 0.532 846
0.954 620 0.260 141
5.21686 0.0567523
STO-5G 0.0744527 0.193572
0.197572 0.482570
0.578 648 0.331816
2.07173 0.113 541
11.3056 0.022 1406
STO-6G 0.065 1095 0.130334
0.158 088 0.416492
0.407099 0.370563
1.18506 0.168 538
4.23592 0.049 3615
23.31030 0.009 16360
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Figure 9.3 Primitive Gaussians in the STO-3G expansion
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evaluation because there are many common integrals over the primitives.

Thus, to give an STO-3G fit to a 1s orbital with exponent ¢ =1 we
have to take the three primitive 1s GTOs with exponents «; = 0.109 818,
ar = 0.405771 and a3 = 2.227 66. Their individual variations with distance is
shown in Figure 9.3.

The atomic unit of wavefunction is a(; 32 The dashed plot is the primitive
with exponent 2.227 66, the dotted plot is the primitive with exponent 0.405 771
and the full plot is the primitive with exponent 0.109 818. The idea is that each
primitive describes a part of the STO. If we combine them together using the
expansion coefficients from Table 9.5, we get a very close fit to the STO, except
in the vicinity of the nucleus. The full curve in Figure 9.4 is the contracted GTO,
the dotted curve the STO.

For an atomic STO with exponent ¢ different from 1, the d’s remain the same
but the exponents of the primitives have to be multiplied by ¢3/2.

The original literature reference contains coefficients and expansion coeffi-
cients for 2s and 2p orbitals. For computational efficiency, the 2s and 2p orbitals
are taken to have the same exponents.

The STO-3G wavefunction does not have a cusp at the nucleus. Very few mole-

cular properties depend on the exact shape of the wavefunction at the nucleus;
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the only common exception being hyperfine coupling constants, to be discussed
in Chapter 18. We say that we have contracted the primitive GTOs into a basis
function, and we often speak about the d coefficients as contraction coefficients.

9.6 THE STO/4-31G STORY

It became apparent that these STO-nG minimal basis sets were not particularly
adequate for the accurate prediction of molecular geometries, and this failing was
attributed to their lack of flexibility in the valence region. The next step was to give a
little more flexibility to the STO-nG basis sets, whilst retaining their computational

10 11 YT

attractiveness. The classic paper is that by Ditchfield, Hehre and Pople.

Self-Consistent Molecular-Orbital Methods IX. An Extended Gaussian-Type
Basis for Molecular-Orbital Studies of Organic Molecules
R. Ditchfield, W. J. Hehre and J. A. Pople
The Journal of Chemical Physics 54 (1971) 724-728

An extended basis set of atomic functions expressed as fixed linear
combinations of Gaussian functions is presented for hydrogen and the
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first row atoms carbon to fluorine. In this set, described as 4-31G, each
inner shell is represented by a single basis function taken as a sum over
four Gaussians and each valence orbital is split into inner and outer part
described by three and one Gaussian function respectively. The expansion
coefficients and Gaussian exponents are determined by minimizing the tota]
calculated energy of the electronic ground state. This basis set is thep

VRO SRR

used in single-determinant molecular-orbital studies of a group of smal]
polyatomic molecules. Optimization of valence-shell scaling factors shows
that considerable rescaling of atomic functions occurs in molecules, the
largest effects being observed for hydrogen and carbon. However, the range
of optimum scale factors for each atom is small enough to allow the selection
of a standard molecular set. The use of this standard basis gives theoretical
equilibrium geometries in reasonable agreement with experiment.

Thus a hydrogen atom is represented by two basis functions, the first of which
is a fixed linear combination of three primitives, and the other one a more diffuse
primitive as shown in Table 9.6.

To remind you, for an atomic STO with exponent ¢ different from 1, the @’s
remain the same but the exponents of the primitives have to be multiplied by 3/2,

For a carbon atom, the 1s STO is represented as a combination of four primitive
GTOs, whilst the 2s and 2p STO are represented by two basis functions, one
consisting of three primitives and the other of one.

9.7 EXTENDED BASIS SETS

Other workers followed a different line of attack, which I can illustrate using
Dunning’s basis sets. The idea is to start out with a reasonable (large) set of
atomic GTOs, and then look for a contraction scheme that will give accuracy
but computational economy. So we search for groupings of the primitives that
are more or less constant in a molecular calculation. Dunning concentrated on
energy-optimized GTOs where each exponent had been variationally optimized
in an atomic HF—-LCAO calculation. The GTO set used was that of Huzinaga,
which consists of ten primitive s-type GTO and six primitive GTO for each
first-row atom.

Table 9.6 STO/4-31G treatment of H (3S)

Exponent o Contraction coefficient d
13.007 73 0.334 960
1.962 079 0.22472720
0.4445290 0.8137573

0.1219492 1
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First, the synopsis:

r;;ssian Basis Functions for use in Molecular Calculations ITI Contraction
of (10s, 6p) Atomic Basis Sets for the First-Row Atoms
T. H. Dunning, Jr
The Journal of Chemical Physics 55 (1975) 716-723

Contracted [5s3p] and [5s4p] Gaussian basis sets for the first-row atoms are
derived from the (10s6p) primitive basis sets of Huzinaga. Contracted [2s]
and [3s] sets for the hydrogen atom obtained from primitive sets ranging
from (4s) to (6s) are also examined. Calculations on the water and nitrogen

Py R acic cata PO

molecules indicate that such basis sets when augmented with suitable polari-
zation functions should yield wavefunctions near the Hartree—Fock limit.

Take note of Dunning’s notation. He writes the primitives (10s6p) and the
contracted basis functions in square brackets [5s3p]. To give a detailed example,
consider the oxygen atom set in Table 9.7.

The primitive GTOs with exponents 18 050.0 through 0.2558 are 1s type, and
the remainder are 2p type. The two most diffuse s functions (those with exponents
0.7736 and 0.2558) are the main components of the 2s STO, and they are allowed
to vary freely in molecular calculations. The 1s primitive with exponent 2.077
turns out to make substantial contributions to both the atomic 1s and 2s orbitals,
so that one is also left free. The remaining seven distinct primitive 1s GTOs
describe the atomic 1s orbital, and a careful examination of the ratios of their

Table 9.7 Dunning’s [5s3p] contrac-
tion scheme for Huzinaga’s (10s6p)

GTO set

1805.0 S 0.000757
2660.0 0.006 066
585.7 0.032782
160.9 0.132 609
51.16 0.396 8395
17.90 0.542572
17.90 S 0.262490
6.639 0.769 828
2.077 S 1

0.7736 s 1

0.2558 S 1

49.83 p 0.016358
11.49 0.106453
3.609 0.349302
1.321 0.657183
0.4821 1

T

0.1651 1
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9.8 DIFFUSE AND POLARIZATION FUNCTIONS

We would normally write the electronic ground state electron configuration of
a carbon atom as 1s?2s?2p?. Despite the intellectual activity that has gone into
tions, no one would include a d-orbital in the description of ground state ca;l;;n_

Carbon atoms in free space have spherical symmetry, but a carbon ‘atom’ i
a molecule is a quite different entity because its charge density may well distort

from spherical symmetry. To take account of the finer points of this distortion,
we very often need to include d, f, ... atomic orbitals in the basis set. Such

atomic orbitals are referred to as polarization functions because their inclusion
would allow a free atom to take account of the polarization induced by an externa]
electric field or by molecule formation. I mentioned polarization functions briefly
in Section 9.3.1.

Let’s see what Pople and coworkers have to say about polarization functions,

Self-Consistent Molecular Orbital Methods. XVII Geometries and Binding
Energies of Second-Row Molecules. A Comparison of Three Basis Sets
J. B. Collins, P. von R. Schieyer, J. S. Binkley and J. A. Pople
The Journal of Chemical Physics 64 (1976) 5142-5151

Three basis sets (minimal s-p, extended s-p and minimal s-p with d functions
on the second row atoms) are used to calculate geometries and binding
energies of 24 molecules containing second row atoms. d functions are
found to be essential in the description of both properties for hypervalent

molecules and to he imnortant in the calenlationg of twa_heavv_atom hond
me:ecuies ang ¢ de umpoertant i ne ca:icuiations ©f twe-neavy-aicm oonc

lengths even for molecules of normal valence.

The presence of a single polarization function (either a full set of the six
Cartesian Gaussians dyy, dyy, dx;, dyy, dy, and d, or five spherical harmonic
ones) on each first row atom in a molecule is denoted by the addition of a *. Thus,
QTO/RGF meang the STO/2G hacic cet with a cet of cix Clartacian (Ia11cciang her
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heavy atom. A second star as in STO/3G** implies the presence of 2p polarization
functions on each hydrogen atom. Details of these polarization functions are
usually stored internally within the software package.

Sometimes it turns out that we need to include a number of polarization func-
tions, not just one of each type. The notation 4—31G(3d, 2p) indicates a standard
4-31G basis set augmented with three d-type primitive Cartesian Gaussians per
centre and two p-type primiriveg on every hvdrocen atom. Agnin, details of the

CCIl TIHINLIVES OI1T C 2 yLeiogell atVlid aill, LLlalls
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Gaussian exponents are usually stored internally; it isn’t necessary to know the
details.

In order to deal with atoms and molecules that carry a formal negative charge,
it is necessary to treat the outer regions of the charge density with some respect.
Anions have extended electron densities compared to neutral species. These outer
regions can best be described by atomic orbitals whose maxima are far from
the associated nucleus, and we. speak about diffuse functions. It is necessary to
add diffuse functions to the standard basis sets when dealing with anions, with

molecular properties that give a measure of the response to external electric
fields and so on. Once again, there have been a number of studies to optimize
exponents, and details are usually stored internally in sophisticated packages like
GAUSSIAN.

So, finally, a Gaussian basis set denoted
STO/6-311++G(3d, 2p)

means that inner shelis are represented as fixed linear combinations of six GTOs.
The valence shells are represented as combinations of inner and outer orbitals.
The inner orbitals are represented as three fixed-combination GTOs and two
GTOs are left free to vary in LCAO calculations. The ++ shows that extra
diffuse functions have been added to both the hydrogens and the heavy atoms
and the (3d, 2p) means that three sets of (probably Cartesian) d-orbitals have
been added to each heavy atom, whilst two sets of p orbitals have been added to

—nnle IT nésnn
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9.9 EFFECTIVE CORE POTENTIALS

The chemical similarities of periodic elements arise because the valence electrons
determine most of the chemical properties of molecules. The core electrons are
only slightly affected by their chemical environment and act primarily to shield
the nuclei. They also provide an effective field for the valence electrons.

Effective core potentials (ECP) replace the atomic core electrons in valence-
only ab initio calculations, and they are often used when dealing with compounds
containing elements from the second row of the periodic table and above.

These ECPs were traditionally presented as a linear combination of functions
of the type

r"exp (—ar?)

with coefficients and exponents determined by least-squares fits to the potential
generated from accurate HF-LLCAO wavefunctions. Typically, ten such functions
would be needed and for this reason ECPs offered no competitive advantage
for molecular calculations involving only first-row atoms. In recent years, it
has become fashionable to represent these core potentials by compact one- and
two-term Gaussian expansions obtained directly from the appropriate atomic
eigenva_lue. equation,

cayval
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Ab initio ECPs are derived from atomic all-electron calculations, and they

alanial Trnlat 1o tha
are then used in valence-o u1u_y molecular calculations where the atomic cores are

chemically inactive. We start with the atomic HF equation for valence orbitg] X1,
whose angular momentum quantum number is 1:

V 4 120 4 1 -~ 2 ,1
1d’R 1dR  Zé? ii+1)
——— e — = U U L= &1 X
( 2dr2  rdr A4mweyr 2r2 + Vval + Com) Xii = ELiX - (9.23)

Here, Uya and Ucore are the Coulomb and exchange operators summed over the
core and other occupied valence orbitals, respectively.
Valence orbital x;; is the lowest energy solution of equation 9.23 only if

there are no core orbitals with the same angular momentum quantum number.

mehn‘n 9,23 can be solved nmng standard atomic HF codes. Once these solii-

tions are known, it is possible to construct a valence-only HF-like equation that
uses an effective potential to ensure that the valence orbital is the lowest energy
solution. The equation is written

2dr2  rdr 4megr 2r2

1dR  1dR Zgye* (U+1) -
( i ( ) + U,y + Uiore) wi =€ (9.24)

Here UST, is the effective potential and @ ; is a nodeless pseudo-orbital that
can be derived from Y;; in several different ways. For first-row atoms, Chris-

tiansen, Lee and Pitzer (1979) suggest

4
a)l,i(r) = CkrN+k if r < Rl
kz=; (9.25)

wLi(r)=x,;ifr 2R

So, for some match point R; to infinity, the atomic pseudo-orbital is identical
to the valence HF atomic orbital. For radial distances less than R; the pseudo-
orbital is defined by a polynomial expansion that goes to zero. The values of the
polynomial are found by matching the value and first three derivatives of the HF
orbital at R;.
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10 AB INITIO PACKAGES

It is traditional to divide quantum-mechanical molecular models into three broad

pands depending on their degree of sophistication. There are sublevels within
~anh hand. and a oreat deal of 1 jargon accomnanied bv acronvms. Manv authors
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of the ‘level of theory’. The Hiickel independent electron model of Chapter

7 typifies the lowest level of theory, and authors sometimes refer to these models

as ‘empirical’. The Hamiltonian is not rigorously defined, and neither are the

basis functions. Nevertheless, these models have been able to produce impressive
predictions and rationalizations.

At the other end of the spectrum are the ab initio (‘from first principles’)

mathade cnieh ac the calenlationg alrandy dicenigeed for He in Chanter 4 T am
meuicas, sucn as i Ca:Cuialions aiready GiSCUsSSEa 101 mip il LhA4per 4. 1 aild

not trying to imply that these calculations are ‘correct’ in any strict sense,
although we would hope that the results would bear some relation to reality.
An ab initio HF calculation of the potential energy curve for a diatomic A, will
generally give incorrect dissociation products, and so cannot possibly be ‘right’
in the absolute sense. The phrase ab initio simply means that we have started
with a certain Hamiltonian and a set of basis functions, and then done all the
intermediate calculations with full rigour and no appeal to experimet.

In between come the semi-empirical models such as PPP or ZINDO. Here we
start with a rigorous Hamiltonian and perhaps a well-defined basis set, but we
then calibrate the difficult integrals against experiment.

I'have deliberately restricted the discussion to quantum-mechanical models, so
molecular mechanics is excluded from the classification.

Over the last thirty years, international collaboration and cooperation on a scale
rarely witnessed in science has led to the development of several very sophisti-
cated software packages for ab initio molecular electronic structure calculations.
In the early days, such packages were freely distributed amongst workers in the
field. Today, you buy executable code, a licence and professional documentation
just as with any software package.

Source code for the early packages such as POLYATOM, HONDO and GAUS-
SIAN70 are still available from the Quantum Chemistry Program Exchange, for
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a handling fee. Set your web browser to find QCPE (based at the Umversny of
Indiana) if you want more details.

At its very simplest, a 1970s package would consist 20 000 lines of FORTRAN
to calculate one- and two-electron integrals over Gaussian orbitals, perform
HF-LCAO calculations on closed-shell states and a few possible open-ghe]f
states, and finally give a Mulliken population analysis together with the
electric dipole moment. Think of input on punched cards and output on 5
Teletype, and you have got the idea. Visualization was done (by hand) wig,
a pencil and sheets of graph paper. The graphical user interface had still to pe
born.

We have moved along since then and a modern ab initio package will do
very much more. ‘Visualization’ is the key word. Some packages are strong
on visualization and some are rather poor. Third-party packages proliferate, |
am going to use the output from two well-known packages, Gaussian 98W and
HyperChem5.1 in order to illustrate this chapter. Both run under MS-Windows98,
and I did all the calculations on my office PC. It may be that you prefer a different
package or that you do all your calculations on a workstation or supercomputer.

lllC Pllllblplcb alc lllC d>aAilic.

10.1 LEVEL OF THEORY

We need two things to get going, a molecular geometry and a decision as to
the ‘level of theory’. I am going to concentrate on HF—-LCAOQO molecular orbital
calculations using GTOs for this chapter, which together with my choice of basis
set defines the level of theory. Everyone in the field understands acronyms such
as HF/4-31G*. Most ab initio packages have the common basis sets stored
internally. In addition several basis sets have been developed for certain specific

purposes. Table 10.1 gives a selection.

10.2 GEOMETRY INPUT
Apart from editing a screen image, there are two ways to input a molecular
geometry: the Cartesian coordinates and the Z-matrix. The Z-matrix defines the
nuclear geometry in terms of bond lengths, bond angles and dihedral angles.
In recent years, Cartesian coordinates have displaced the Z-matrix, but it is as
well to know about the Z-matrix. In any case, the packages sometimes trans-
late a screen image into a Z-mairix. Some exampies will make things piain
(Figure 10.1).

The first case is H,O. I will take a bond length of 95.6 pm and an H;-O-Hz
bond angle of 104.5°.

We start the Z-matrix with an atom — it doesn’t matter too much which. I have
chosen to start with oxygen (Figure 10.2). The next Z-matrix record says that
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Table 10.1 Some common basis sets, and some special-purpose ones

E;i; set Atoms Comment and reference
STO/3G H to Xe General-purpose minimal basis set. Hehre,
Stewart and Pople(1969)
3-21G H to Xe General-purpose compact extended basis
set. Binkley, Pople and Hehre, (1980)
4-31G H to Ne General-purpose extended basis set.
Ditchfield, Hehre and Pople (1971)
£-311G H to Kr Krishnan et al. (1980); McLean and
° Chandler (1980)
D95V H to Ne Dunning valence double zeta Dunning
(1975); Dunning and Hay (1976)
D95 Hto Cl Dunning full double zeta. References as
above
SHC Hto CI Shape and Hamiltonian consistent basis set.
Rappé, Smedley and Goddard (1981)
CEP-4G H to Rn Stevens, Basch and Krauss (1984) Used for
ECP (effective core potentialy calculations
cc-pVDZ through H, He, B-Ne, Dunning’s correlation consistent basis sets
cc-pV6Z Al-Ar (double, triple, quadruple, quintuple and
sextuple zeta respectively). Used for
correlation calculations Woon and
Dunning (1993)
0 3 <36
/ \ \ \\\\\\HS
H, H, wo— &
HY \
H, H,
Figure 10.1
OXYGEN
H1 OXYGEN ROH
H2 OXYGEN ROH H1 ANGLE
ROH 0.956
ANGLE 104.5
Figure 10.2

H; is joined to OXYGEN with a bond distance of ROH. The third record says
that H, is joined to OXYGEN with a bond length of ROH and the bond angle
H,-O-H; is ANGLE.
The final two records give values to the two variables ROH and ANGLE.
For a molecule having more than three atoms, we have to define dihedral
angles in addition to the bond lengths and bond angles. For such a molecule,
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each Z-matrix record after the first three usually has a format
E NI LN2AN3D

where, in the words of one user manual ‘E is the elemental symbol of the atom;
N1 is a previously defined atom to which the new atom is bonded and L is the
length of the bond. N2 is another atom and B the bond angle between the atop,

bemg defined (N}} and N2. N3 is another atom and D the dlllUU,lCLl auslc Uc[Ween

the ENIN2 and N1IN2N3 planes’.

In the case of staggered ethane, I have started at C; (Figure 10.3). The next
record says that C, is joined to C; with a bond length RCC. H; is joined to G
with bond length RCH and makes a bond angle H;C;C,. H; is obv1ous1y related
to H; by a 120" rotation about the C-C axis, so the dihedral angle is 4120°. H,
is related to H; by a 120° rotation about the C—C bond in the opposite direction,
giving a dihedral angle of —120°.

To define Hy, I make use of the dihedral angle H4C2C1H1 = 180°, and the
same reasoning applied to the two remaining H atoms.

There are a couple of simple tricks of the trade when writing Z-matrices. The
first point concerns linear molecules. Many packages run into difficulty at some
stage when bond angles of 180° occur. These problems can be avoided by intro-
ducing dummy atoms (which are invariably given the symbol X). The Z-matrix
for the linear CO - - - HF hydrogen-bonded complex is shown in Figure 10.4. 1
have added two dummy centres, X; and X, with the aim of creating off-axis
centres. The first dummy atom is joined to O with an arbitrary bond distance,
and the second is joined to H. See Figure 10.5 for the Z-matrix.

The second point concerns cyclic structures in molecules of high symmetry.
Think of furan (Figure 10.6) and you might define the Z-matrix by starting

C1

C2 C1 RCC

H1 C1 RCH C2 ANG

H2 C1 RCH C2 ANG HI1 +120.0
H3 Ci ROH C2 ANG Hi -120.0
H4 C2 RCH C1 ANG H1 +180.0
H5 C2 RCHC1 ANG H2 +180.0
H6 C2 RCH C1 ANGH3 +180.

RCC 1.5272
RCH 1.0862
ANG 111.1184

Figure 10.3

X, X

Figure 104 C——O----H—F
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I
{‘ Jﬁ.J C
I 0 C RCO
) X1 010 C 900
o H O ROH X1 90.0 C 180.0
X2H 10 O 90.0 X100
F H RHF X2 900 O 180.0
f RCO 1.1306
: ROH 1.9606
N RHF 09234
Figure 10.5
H; H,
G—C
//CZ\ ,CS\\
H, N H;
Figure 10.6 o

from O and working round to the last C atom joined to O. The problem is
that by the time you get round to the final C atom, arithmetic rounding errors

«ill hava raducad tha cuvmmatry A diffaranca of 1N0-3 R ic ananch to hraak
Wlll 1IAve 1vuauvuvu uiv Ojlll.lll\ul.l‘y- LA uUllIvIVIIVG UL iv 2 1 \.all\.ll—lsll w uvivan

the symmetry, unless your package is sufficiently smart to prevent this kind of
behaviour.

A solution to the problem is to define an axis of symmetry through the use of
dummy atoms. To take the case of furan, the Z-matrix of Figure 10.7 will retain
C,y symmetry.

X

C3 X HALF34

O X ROX C3 90.

C4 X HALF34 O 90. C3 180.
C2 C3 R23 X A23X O 0.0
C5 C4 R23 X A23X O 00

oY M BOIT O AA Y 120
14 L& INULIR U Naia o 10v.

H3 C3 RCH C2 BB H2 0.
H5 C5 RCH O AA X 180.
H4 C4 RCH C5 BB O 180.

HALF34 0.72119
ROX 2.0933
R23 1.3395
RCH 1.0632
A23X 106.676
AA 1164592
BB 126.685
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What I have done is to take a dummy centre halfway along the C;-C, bong,
defined the oxygen atom by its distance from the dummy atom and work frop,
there. The lengths and angles used in a Z-matrix do not have to correspond t,
chemical bond distances or angies, aithough the normai vaience variables are
said to be the best choice for geometry optimization.

Most packages will happily take Cartesian coordinates or Z-matrices, but yoy
ought to be aware of the Z-matrix. The point is that Cartesian coordinates can he
obtained from sources such as the Protein Data Bank (these come in files wit
.pdb or .ent extensions).

10.3 AN AB INITIO HF-LCAO CALCULATION

Consider then a HF/STO-3G calculation on aspirin (acetylsalicylic acid)—
Figure 10.8.

In chapter 2 I gave you the .pdb file which contains the Cartesian coordinates.
We just add a couple of records to define the level of theory (HF/STO-3G), the
charge (0) and spin multiplicity (1).

Extracts from the Gaussian 98 output file follow.

The first extract (Figure 10.9) reminds us that such packages have been devel-
oped over a number of years by a large team of people.

Gaussian 98 is a complex program with very many options. It is possibie to
take standard routes through the program (as I have done in this case) or to
design your own route. Lines such as

1/38=1/1;

shown in the second extract (Figure 10.10) are to do with the route to be taken
through the program.

Of interest is the SCF=Direct option. There are three ways of dealing with
two-electron integrals over the basis functions in ab initio HF-LCAO calcu-
lations. The Conventional way is to calculate them once and store them on a

Figure 10.8
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1988,1990,1992,1993,1995,1998 Gaussian, Inc.

right (c)
GoPYEEE All Rights Reserved.

rhis is part of the Gaussian(R) 98 program. It is based on
the Gaussian 94 (TM) system (copyright 1995 Gaussian, Inc.),
the Gaussian 92 (TM) system (copyright 1992 Gaussian, Inc.),
the Gaussian 90 (TM) system (copyright 1990 Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon
yniversity), and the Gaussian 82 (TM) system (copyright 1983

t

N . . . . 11 3 arad
carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.

Figure 10.9

hkhkkhkkhkhkkhkhkhkhkhhhhkhhhhhkhkhhkkhkhhhhkhhkhhhhkhhkhkhhkhhkhhkkk

Gaussian 98: x86-Win32-G98RevA.3 2-Sep-1998
20-Jul-1999

AR KRR A RKR KK RRRRR AR ARk hkhkhkhkhkhkhkhkRkkkhkhkhkhhkkkhkk*k*%

1/38=1/1;
2/17=6,18=5/2;
3/11=9,25=1,30=1/1,2, 3;
4//1;
5/5=2,32=1,38=4/2;
6/7=3,28=1/1;
99/5=1,9=1/99;

Figure 10.10

medium such as magnetic tape or a fixed disk. At each cycle of the HF-LCAO
procedure, the list of integrals has to be read back into memory and processed
in order to construct the HF—~LCAO matrix.

The In-Core method is to calculate all the integrals over the basis functions and
keep them all in memory. Given that a set of n basis functions will lead to roughly
n*/8 unique integrals, you will appreciate that the memory requirements will be
enormous. For 1000 basis functions, there will be about 2 x 10'! possible non-
zero integrals. If each integral requires 4 bytes of storage (for 32-bit precision),
this implies a memory requirement of about 10'2 bytes. In fact very many of the
integrals will be negligible, and we normally store the basis set indices i, j, k
and [, together with the value of the integral.
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In the Direct SCF method, we do. not store the two-electron integrals over the
basis functions, we recalculate them on demand every cycle of the HF Procedure,
At first sight, this may seem wasteful, but Conventional methods rely on djg
input/output transfer rates whilst Direct methods rely on processor power. There
is obviously a balance between processor speed and disk I/O. Just for the Tecord,
my calculation on aspirin (73 basis functions) took 363 s using the Direct n‘lethod
and 567 s using the Conventional method.

The next part of the output illustrates the interconversion between a Z-matrix
and Cartesian coordinates, and shows the internal use of molecular Symmetry,
Aspirin as written above belongs to the C; point group, and the two irreducible
representations are A’ and A”. :

Stoichiometry C9HBO4
Framework group CS[SG(C9H804)]
Deg. of freedom 39

Full point group cs NOp 2
Largest Abelian subgroup (o) NOp 2
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 6 0 -1.428383 2.498520 0.000000
2 6 0 -2,543396 1.753807 0.000000
3 6 0 -0.116280 1.845891 0.000000
4 1 0 -1.494894 3.546991 0.000000
5 [ [o] -2.44000¢9 0,292180 0.000000
6 6 0 0.000000 0.499220 0.000000
7 1 0 -3.487840 2,214115 0.000000
8 1 0 0.728893 2.465226 0.000000
9 6 0 -1.240174 -0.333599 0.000000
10 1 4] -3.332825 ~0.264241 0.000000
11 8 0 1.208109 -0.133455 0.000000
12 6 0 -1.237527 -1.821254 0.000000
13 6 0 2.494909 0.331263 0.000000
14 8 0 © -2.308522 -2.430781 0.000000
i5 8 1] -0.138012 -2.612651 0.0060000
16 6 0 3.680034 -0.591191 0.000000
17 8 0 2.755492 1.533783 0.000000
18 1 0 2.910506 -1.379933 0.000000
19 1 0 4.053206 -1.630788 0.000000
20 1 0 4.733745 -0.366119 0.000000
21 1 0 0.737625 -2.289446 0.000000
Rotational constants (GHZ): 1.0711540 0.6654936 0.4104725

Isotopes: C-12,Cc-12,Cc-12,H-1,C-12,C-12,H-1,H-1,C-12,H-1,0-16,C-12,C~
12,0-16,0-16

,C-12,0-16,H-1,H-1,H-1,H-1

Standard basis: STO-3G (5D, 7F)

There are 60 symmetry adapted basis functions of A' symmetry.
There are 13 symmetry adapted basis functions of A" symmetry.

Figure 10.11
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asis= " 73 RedAO= T NBF= 60 13
“BsUSé= 73 1.00D-04 NBFU= 60 13
WgrojeCted INDO Guess.
flgnitial guess orbital symmetries:
© Occupied (A') (A') (A') (A") (A') (A') (A") (A") (A') (A")
(A') (A") (A") (A') (A") (A") (A") (A") (A") (A")
(A7) (") (A") (A") (A"™) (A") (A") (A7) (A") (A™)
it (A') (A") (A") (A') (A") (A") (A') (A™) (A") (A")
(A") (A") (A") (A") (A") (A") (A")
virtual (A") (A") (A") (A'") (A") (A") (A") (A")
(A') (A") (A') (A") (A') (A') (A"} (A')
(A') (A") (A") (A') (A") (A")
‘warning! Cutoffs for single-point calculations used.
. Requested convergence on RMS density matrix=1.00D-04 within 64

i

cycles.
Bequested convergence on MAX density matrix=1.00D-02.
Requested convergence on energy=5.00D-05.
Keep Rl integrals in memory in canonical form, NReqg= 4071361.
SCF Done: E(RHF) = -636.243800745 A.U. after 7 cycles
: Convg = G.3782D-04 -v/T = 2.0077

S**2 = 0.0000

Figure 10.12

Orbital Symmetries:
Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A")
(A') (A") (A") (A") (A") (A") (A") (A') (A") (A")

{AYY {(A'Y (AYY (A'YY [A'Y (AT'Y [(A'Y [A')Y (AY)Y [(A')
Y 7 i ] 7 R CEN A

(A™) (A*) (A") (A™) (A') (A") (A") (A") (A') (A")
(A") (A"™) (A") (A") (A") (A™) (A")
Virtual (A") (A') (A™) (A") (A") (A") (A") (A") (A') (A")
(A") (A') (A') (A") (A') (A") (A") (A') (A") (A")
(A') (A*) (A") (A') (A") (A")
The electronic state is 1-A'.

Alpha occ. eigenvalues -- -20.32754 -20.28919 -20.23878 -20.20047 -11.20280
Alpha occ. eigenvalues -- -11.17353 -11.13004 -11.06195 -11,05888 -11.05053
Alpha occ. eigenvalues -- -11.03949 -11.03396 -10.92559 -1.39537 -1.36745
Alpha occ. eigenvalues -- -1.27006 -1.26471 -1.10366 -1.00327 -0.99032
Alpha occ. eigenvalues -- -0.96013 -0.82844 -0.82451 -0.75402 -0.73686
Alpha occ. eigenvalues ~- -0.68413 -0.65340 -0.62420 ~0.60484 -0.58760
Alpha occ. eigenvalues -- -0.58396 -0.57071 -0.53887 -0.53741 -0.51825
Alpha occ. eigenvalues -- -0.48601 -0.46728 -0.46414 -0.44373 -0.40557
Alpha occ. eigenvalues —- -0.39446 -0.35013 -0.33729 -0.31190 -0.28954
Alpha occ. eigenvalues -- -0.26614 -0.22939

Alpha virt. eigenvalues -- 0.20727 0.23748 0.25227 0.34313 0.35649
Alpha virt. eigenvalues -- 0.44296 0.49537 0.54428 0.58825 0.61972
Alpha virt. eigenvalues —- 0.62580 0.63299 0.68586 0.72629 0.74855
Alpha virt. eigenvalues —- 0.77352 0.80054 0.85786 0.87739 0.91347
Alpha virt. eigenvalues —-— 0.54313 0.96%4¢6 $.59%165 1.01562 1.0574¢
Alpha virt. eigenvalues —- 1.15348

Figure 10.13
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Then comes the HF-LCAQ calculation (Figure 10.12). The procedure Startg
with an INDO run (Chapter 8) for the initial estimate of the electron density;
Notice once again the internal use of molecular symmetry. In early packages such
as POLYATOM, the use of molecular symmetry was essential for fast execyg;
but had to be explicitly included by the user.

The item $**2 = 0.0000 is the expectation value of the spin operator §2, For
a singlet state, the value should be 0 as it is.

Next (Figure 10.13) come the results in numerical form: orbital energies,
LCAO-MO coetficients and the like.

Here, ‘occ’ means occupied and ‘virt’ means virtnal. In the restricteq
Hartree—Fock model, each orbital can be occupied by at most one « spin and one
B spin electron. That is the meaning of the (redundant) Alpha in the output, Iy
the unrestricted Hartree—Fock model, the « spin electrons have a different spatia]
part to the B spin electrons and the output consists of the HF-LCAO coefficients
for both the « spin and the B spin electrons.

There is very little point in trying to obtain information from the 73 x 47 =
3431 numbers that constitute the HF-LCAO coefficients for the occupied
orbitals. Mulliken population indices are given next, together with Mulliken
atomic charges (Figure 10.14). N

on

Total atomic charges:

1
1 ¢C -0.050486
2 C -0.075257
3 C -0.098742
4 H 0.078064
5 C —0.040957
6 C 0.153293
7 H 0.073339
8 H 0.102517
9 C -0.041052
10 H 0.095825
11 o© -0.315261
12 C 0.317285
13 ¢C 0.366709
14 © -0.256523
15 0o -0.338841
16 C -0.563162
17 O -0.303240
18 H 0.265387
19 H 0.240602
20 H 0.155675
21 H 0.234826

Sum of Mulliken charges= 0.00000
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arge= 0.0000 electrons
pipole moment (Debye) :
K= 2.4644 Y= -0.6049 7= 0.0000 Tot= 2.5375
Quadrupole moment (Debye-Ang):
XX= -62.3974 YY= -74.3387 2z= -68.9444
XY= -22.4504 X72= 0.0000 YZ= 0.0000
octapole moment (Debye-Ang**2):
KXX= 54.6261 YYY= 12.0293 zzz= 0.0000 XYYy= 25,5933
XXY= -38.3246 XXZ=  0.0000 XzZz= 0.2697 Yzz= -8.9088
YYZ= 0.0000 Xyz= 0.0000
Hexadecapole moment (Debye-Ang**3):
| x¥xX= -1574.8336 YYYY= -1160.7386 ZZZ%Z= -49.8971 XXXY= -209.9827
XXXZ= 0.0000 YYYX= -98.4096 YYYZ= 0.0000 ZzZ2ZX= 0.0000
322Y= 0.0000 XXYY= -487.0756 XXz2= -334.7616 YYZZ= -192.3609
KXYZ= 0.0000 YYXZ= 0.0000 ZzZXYy= 17.9459
Figure 10.15
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Figure 10.16 Aspirin isosurface electron density
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Finally, the package gives us skeletal information about molecular propertieg
in the form of electric moments (Figure 10.15).

10.4 VISUALIZATION

Some of the major packages are better at visualization than others. In any case,
there are a host of third-party providers with software on offer. Here then is
what you might like to do with the results of the calculations above (and I used
HyperChem to produce the following screen grabs). First of all an isosurface plot
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Figure 10.17 Aspirin LUMO density isosurface
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Figure 10.18 Aspirin HOMO density isosurface

occupied molecular orbital (the HOMO) and the lowest unoccupied molecular

orbital (the LUMO).



11 ELECTRON
CORRELATION

In our discussion of the electron density in Chapter 5, I mentioned the density
functions p;(x;) and p,(x;, X2). I have used the composite space—spin vari-

able x to include both the spatial variables r and the spin variable s. These

Ui A ICILVUC DU UL Spauil QLIQUVICS 2 It wIC Spal VALIAWET S. 2150

density functions have a probabilistic interpretation: p;(x;)dr; ds; gives the
chance of finding an electron in the element dr; ds; of space and spin, whilst
p (X1, Xp) d1; ds; dtp ds; gives the chance of finding simultaneously electron 1 in
dr; ds; and electron 2 in dr; ds;. The two-electron density function gives infor-
mation as to how the motion of any pair of electrons is correlated. For independent
particles, these probabilities are independent and so we would expect

02(X1, X2) = p1(X1)p2(X2) (11.1)

In such a case we say that there is no correlation between the particles. This
would certainly be the case if there were no electrostatic interaction between
electrons, but it also holds for the electrons in Hartree’s original SCF model. This
is because each electron experiences an average potential due to the remaining
electrons and the nuclei. Electrons repel each other, and we would certainly
expect the probability of finding two of them ciose together wouid be reduced
compared to the value expected for independent particles.

e In the Hartree—Fock model, where we take account of antisymmetry, it turns
out that there is no correlation between the positions of electrons of opposite
spin, yet,

e there is a correlation between the position of electrons of like spin.

The second bullet point describes a special type of correlation that prevents two
electrons of like spin being found at the same point in space, and it applies whenever
the particles are fermions. For that reason, it is described as Fermi correlation.

It should therefore be clear that energies calculated by the HF procedure
will always be greater than the true energy because of the correlation defect.
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HF-LCAO calculations must give poorer energies still, because we have to use
a finite basis set. I have illustrated these ideas in Figure 11.1. The difference
petween the ‘true’ HF energy and the ‘experimental’ energy is called the corre-
lation energy. It is typically 1% of the total energy, which often works out as the
order of magnitude of the energy of a chemical bond.

There is a nice point as to what we mean by the ‘experimental’ energy. All
the calculations so far have been based on non-relativistic quantum mechanics. A
measure of the importance of relativistic effects for a given atom is afforded by
jts spin—orbit coupling parameter. This parameter can be easily determined from
spectroscopic studies, and it is certainly not zero for first-row atoms. We should
strictlty compare the HF limit to an experimental energy that refers to a non-
relativistic molecule. This is a moot point; we can neither calculate molecular
energies at the HF limit, nor can we easily make measurements that allow for
these relativistic effects.

The remarkable thing is that the HF model is so reliable for the calculation of
very many molecular properties, as I will discuss in Chapters 16 and 17. But for
many simple applications, a more advanced treatment of electron correlation is
esseniial and in any case there are very many examples of speciroscopic siaies that
cannot be represented as a single Slater determinant (and so cannot be treated
using the standard HF model). In addition, the HF model can only treat the
lowest-energy state of any given symmetry.

Let me give you a couple of simple examples to show where the HF model is
inadequate.

1 Consider the electronic

o
210 5

would suggest a ground state configuration
C, : lojl03202200 1y 'S

which could certainly be treated using the HF model. But two other electronic
configurations also have states that are also possible contenders to be the

HF-LCAO energies

—— HF limit

——  True energy

Figure 11.1 Relationships between energies
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electronic ground state;
C, : loj10320220,1m330y  'M,,°T,  and

Gy : loglo20520,1m230; 'S, 75;,'A,
Even at the equilibrium geometry, it is necessary to treat both of the ! 3+
states in order to get a reasonable description of the electronic wavefunction
for the ground state.

2 In Chapter 4, we considered a simple LCAO treatment of dihydrogen and
calculated the potential energy curve reproduced in Figure 11.2. The LCAOQs
we deduced correspond to HF—LCAO MOs for a minimal basis set.

The lowest-energy process for bond-breaking is

H, — 2H (%S)
In the atomic system of units, the energy of a ground-state hydrogen atom is
—% Ey, and so we would expect the potential curve to tend asymptotically to
—1Ey,. This is obviously not the case, and analysis of the results shows that
the HF wavefunction describes the following process, for large R: -

H, > 1 (2H(*S) +H" +H").

-0.75 T T T T

-0.95 - -

Total energy / hartree

-1.05 - -
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This turns out to be common behaviour for HF wavefunctions; wherever
strong bonds are made or broken, the HF wavefunction will tend to give
incorrect dissociation products.

In fact, I showed you how to solve this problem using configuration interaction.
w-~ write suitable singlet spin wavefunctions correspondine to the electronic

WE Wiliv S2ralite 2370550 9p22 Vel LALRARs LRI opRRilis 1T CICCU 00

configurations 1(72 10 lo! and 102. According to the Brillouin theorem, singly
excited states don t IIl.lX w1th the ground state in the HF model. In any case, the
singly excited state has the wrong spatial symmetry for mixing with the ground
state, so we mix together just the ground state and the doubly excited state.
This simple treatment is of great historical interest, but for a real molecule
there will be a vast number of possible excited states and we obviously need to
develop a svstematic treatment in order to make sensible CI calculations on larce

CVECiI0P 4 sy sitilialit oAl AT O1¢e QAT STARIDVIT LA LANLIAU0IS O 2&al8

systems.

lranva’

In Chapter 8, I discussed a ZDO treatment of the w — 7* transitions in pyridine
using configuration interaction. I used singly excited states (sometimes referred
to as singles), and explained the key steps in the calculation. I showed that
a Hamiltonian matrix element between two singlet spin, singly excited states

formed by promoting an electron from ¥4 to ¥x (written lllf,f) and from yg to
1IA (written \IIX\ was gnmn hv

jf VAHeWg dr = — //T Ya(r)ysT)E(r, r2)¥x (r)yy (r2) dr; dr,
+2 // YA DY, 12)¥p (02) Yy () dry dr (11.2)

The two-electron integrals involve the LCAO orbitals, and the time-consuming
part of a traditional CI calculation is the transformation of these to integrals
involving the basis functions. This is often referred to as the four-index transfor-
mation. Not only that, it turns out that traditional CI calculations are very slowly

convercent: we have to add a vast number of excited stateg in order to imnrove

COLVEISS, aaV {0 add a vast number or ¢xcited states in order o LIAPIUY v

the energy significantly.

The reason usually advanced is that whilst the occupied orbitals are deter-
mined variationally within the HF—LCAO procedure, the virtual orbitals are not.
Consequently, the virtual orbitals give a very poor description of excited states.

Nevertheless, CI is an important tool for addressmg electron correlation. It is
used in two different ways:

e to give a description of excited states;
e to improve the ground-state wavefunction and energy;

and a good place to start is with the 1992 p
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Towards a Systematic Molecular Orbital Theory for Excited States
James B. Foresman, Martin Head-Gordon, John A. Pople
and Michael J. Frisch
Journal of Physical Chemistry 96 (1992) 135

This work reviews the methodological and computational considerations

necessary for the determination of the gb initio enerov, wavefunction and
nec aetermnation o ergy, f1on an

gradient of a molecule in an electronically excited state using molecular
orbital theory. In particular, this paper re-examines a fundamental level of
theory which was employed several years ago for the interpretation of the
electronic spectra of simple organic molecules: configuration interaction
(CI) among all singly substituted determinants using a Hartree Fock refer-
ence state. This investigation presents several new enhancements to this
general theory. First, it is shown how the CI singles wavefunction can be

used to compute efficiently the analytic first derivative of the energy .

DCLOHU a COIIIPUICT progrdm 1S (.leLHDC(l Wﬂl(,l'l dllOWb lﬂCbC LOHIPULdllOl'lS
to be done in a ‘direct’ fashion.

Part of this paper deals with energy gradients, a subject for a later chapter. You
should recognize the phrase from Chapter 1, and realize that it is concerned with
geometry optimization.

Tha hagies idaa 1ig ta talba a gingla datarminant grannd_gtate HE wavafime,
111V vadiv 1uva 1d W wunv a Dlllslb usvieildiiiiiane 51UullU_DLCI.L\/ 111 vwavueliuliv-

tion, and produce excited-state wavefunctions from it by replacing each occupied
orbital in turn by each of the virtual orbitais. The variation principie is invoked
in order to find linear combinations of the resulting Slater determinants. These
linear combinations describe the excited states; some CI implementations allow
for the fact that just the first few lowest-energy states will be of interest, and
only calculate these explicitly. If all possible singly excited states are used, then

we reach a level of theory known variously as single-excitation confisuration
we reacn wevel of theory Xxnown variousyy as single-excilation conjiguragtion

interaction (SECI), monoexcited CI, CIS (CI singles), or the Tamm—Dancoff
approximation.

The basis functions are kept constant throughout the calculation, as are the
LCAO coefficients.

The treatment follows my discussion of the m — n* spectra in Chapter 8. 1
actually performed a CIS calculation on pyridine within the ZDO scheme. If the

ormmd state :‘nnﬁonmhrm is

Vavs - Yin
with (unnormalized) Slater determinant
Ya(rpde(sy) Ya)B(sy) -+ Ym(r)B(s1)
Wy = Ya(ra)o(sz) 1/fA(l‘2)13(52) oo M) B(s2) (11.3)
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then single replacements such as

YAVKYE - Ui

can be represented by the two Slater determinants,

Ya(r)e(sy) Yx(r)B(s1) Ym(r)pB(s1)
Ya(r2)a(s2) Yx (r2)B(s2) Ym(r2)B(s2) (11.4)
Ya(rov)a(som)  ¥x (ram)B(s2m) Ym(ram)B(som)
and
Yx(ra(s) Ya(r)B(s1) Ym(r)B(s1)
P¥x (r2)a(sz) Pa(r2)B(s2) Ym(r2)B(s2) (i1.5)
Yx(Eama(som)  Ya(ram)B(som) Ym(ram)B(s2m)

In my discussion of pyridine, I took a combination of these determinants that
had the correct singlet spin symmetry (that is, the combination that represented
a singlet state). I could equally well have concentrated on the triplet states. In
modern CI calculations, we simply use all the raw Slater determinants. Such
single determinants by themselves are not necessarily spin eigenfunctions, but
provided we include them all we will get correct spin eigenfunctions on diago-
nalization of the Hamiltonian matrix.

11.1.1 An Ab Initio CIS Calculation

1

on pyridine. As a routin
discussed) at the HF/6-31G*
ab initio orbital configuration

Let’s now look at an ab initio calculation
I optimized the molecular geometry (yet to be
level of theory. It is interesting to examine the
(Figure 11.3).

The highest occupied a, and by orbitals are of = type and MO number 19
(which is of a; type) is best thought of as the n orbital (i.e, a o orbital more or

el kN
i

Orbital Symmetries:

Occupied (A1) (B2) (Al) (Al) (B2) (A1) (Al) (A1) (B2) (B2)
(A1) (A1) (B2) (A1) (B2) (Al) (B1l) (B2) (Al) (B1)
(A2)

Virtual (B1) (A2) (A1) (B2) (A1) (Al) (B2) (B1l) (Al) (B2)
(A1) (B2) (B2) (Al) (B1l) (B2) (Al) (Al) (A2) (B1)
(B2) (A1) (A2) (A1) (B1) (B2) (Al) (B2) (A1) (B2)
(A1) (B1) (B2) (A1) (A1) (B2) (B2) (Al) (A1) (B2)
(a2) (A1) (B1) (B2) (A2) (B1) (B1) (A2) (Al) (A1)
(A1) (B2) (Al) (B2) (A1) (A2) (B2) (B1) (B2) (A1)
(B1) (A2) (B1l) (al) (B2) (Al) (A1) (A2) (B2) (B2)
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less localized on nitrogen). MO number 17 (by) is of & type and the remainder
of the occupied orbitals are of o type. The LUMO (orbital 22 of b; symmetry)
is 7r*, as is MO number 23, whilst MOs number 24 and 25 are of ¢* type. MQ
number 29 is 7*. There is an interesting overlap between the sets of o, 7 and
orbitals. :

On, then, to the CIS calculation. I ran the Gaussian98 job of Figure 11.5,
The %chk record refers to the ‘checkpoint’ file, where 1 have stored all my
pyridine Gaussian results. I studied the first 15 singlet excited states, and the
Symmetry=Loose directive was included in order to make the package recog-
nize C,, symmetry (this is needed because of tiny rounding errors in the nuclear
geometry). So we find Figure 11.6.

The phrase symmetry adapted basis functions refers to those linear
combinations of basis functions (on several atoms) that transform like the
particular irreducible representation of the appropriate point group. Molecular
symmetry is used at various points in these calculations; twenty years ago
I would have had to write several chapters on molecular symmetry, point
groups, constructing symmetry-adapted combinations of basis functions, factoring
a Hamiltonian matrix using symmetry and related topics. The point is that twenty

I

gl

aa =8

E ]

Figure 11.4 Orbital energy diagram

hhkhkhkhhkhdhhhhhkhkhkhkhkhhhdhdhhhkhhkhhhhhdhhhhhkrhkhhkhkd

Gaussian 98: x86-Win32-G98RevVA.3 2-Sep-1998
29-Jul-1999

hkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhhdhhhhkhkhhkhkhkhhkhhkhkhkhkhhkkkkkk

%chk=f:\modmol2\pyridine.chk

# RCIS=(NStates=15,Singlets)/6-31G* Guess=Read Geom=Check CIS=Direct #
Symmetry=Loose

Figure 11.5
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stoichiometry C5HEN
Framework group C2VI[C2(NCH),SGV(C4H4)]
peg. of freedom 10

Full point group c2v NOp 4

Largest Abelian subgroup cav NOp 4

Largest concise Abelian subgroup C2 NOp 2

standard basis: 6-31G(d) (6D, 7F)

There are 44 symmetry adapted basis functions of Al symmetry.
There are 10 symmetry adapted basis functions of A2 symmetry.
There are 14 symmetry adapted basis functions of Bl symmetry.
There are 32 gymmetry adapted basis functions of B2 symmetry.

Figure 11.6

years ago one invariably studied simple molecules with high degrees of symmetry
and it was necessary to manually include symmetry information in the molecule’s
dataset. Today, the emphasis has moved to large systems where there is essentially
no molecular symmetry, but in any case the input is transparent.

It is usual to make the frozen core approximation in calculations of this type.
This means that the seven inner shells are left frozen and not included in the CI
calculation.

There are 100 basis functions and 21 electron pairs, giving a total of (100 —
22+ 1) x (21 — 7 + 1) = 1264 possible singly excited configurations. We do not
need to include the electronic ground state, which does not mix with singly
excited states according to the Brillouin theorem. The intermediate details of the
calculation are not of relevance to our discussion. The final output (Figure 11.7)
consists of transition electric dipole moment vectors (which give measures
of optical transition probabilities) followed by the velocity dipole transition

kkkkhhkkdkhkhkhhkhkhkhhhkhhkhhhhhhhhhhhhhdhhhhdhhhhhdhhhhdhhhhhhhdhhhhhhhkhhkhhdhk

Excited states from <AA,BB:AA,BB> singles matrix:
hkhkhkhkkhkhkhkhkhkhkdhhhkhhkhhhkhkhkdhhhdhhhhhhhhhhhhdhhkhkhhhhhhhhkhhhhhhkdhhhhhhkhhhhxddkx

Ground to excited state Transition electric dipole moments (Au):

state X Y Z Osc.
1 0.2132 0.0000 0.0000 0.0016
2 0.0000 -0.6755 0.0000 0.0160
3 0.0000 0.0000 0.3127 0.0037
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 -1.5520 0.1477
6 0.0000 -1.5060 0.0000 0.1424
7 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000
9 0.1937 0.0000 0.0000 0.0035
10 0.0159 0.0000 0.0000 0.0000
11 -0.0727 0.0000 0.0000 0.0005
12 0.0000 0.0000 ~-0.0025 0.0000
13 -0.0339 0.0000 0.0000 0.0001
14 0.0000 0.0000 0.0000 0.0000
15 -0.0473 0.0000 0.0000 0.0003
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Excitation energies and oscillator strengths:
Excited State 1: Singlet-Bl 6.1593 ev 201
19 -> 22 0.62353
19 -> 29 0.17224
Excited State 2: Singlet-B2 6.2393 eV 198.
20 -> 23 -0.43901
21 -> 22 0.71451
Excited State 3: Singlet-Al 6.4810 eV 191.
20 -> 22 0.51178
21 -> 23 0.61081
Excited State 4: Singlet-A2 7.4309 eV 166
19 -> 23 0.68673
Excited State 5: Singlet-Al 8.2523 eV 150.
20 -> 22 0.43344
21 -> 23 -0.32914
Excited State 6: Singlet-B2 8.3504 eV 148.
20 -> 23 0.52127
21 -> 22 0.22250
Excited State 7: Singlet-A2 9.5874 eV 129.
13 -> 29 -0.11048
18 -> 22 0.66163
Excited State 8: Singlet-A2 $.8517 eV 125
17 -> 25 0.11413
21 -> 24 0.66494
Excited State 9: Singlet-Bl 10.2384 eV  121.
18 -> 23 0.63474
20 -> 24 -0.13901
21 -> 25 -0.15090
Excited State 10: Singlet-Bl 10.3730 eV 119.
16 -> 22 0.28974
17 -> 24 0.12749
18 -> 23 0.17177
19 -> 29 0.11827
20 -> 24 0.48694
21 -> 25 0.26104
Excited State 11 Singlet-Bl 10.5776 eV 117
16 -> 22 0.55320
19 -> 22 -0.10156
19 -> 29 0.15972
20 -> 24 -0.24304
21 -» 25 -0.17777
Excited State 12: Singlet-Al 11.1073 eV 111.
17 .-> 22 0.61381
19 -> 24 0.13502
20 -> 25 -0.21363
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Excited State 13: Singlet-B1 11.2926 eV 109.79 nm £=0.0001
17 -> 26 0.11306
20 -> 24 -0.34991
20 -> 27 0.11588
21 -> 25 0.55600
Excited State 14 Singlet-A2 11.4545 eV 108.24 nm £=0.0000
13 -> 22 0.27183
14 -> 23 -0.14972
15 -> 22 -0.37389
16 -> 23 0.37982
18 -> 29 -0.24753
Excited State 15: Singlet-Bl 11.5322 eV 107.51 nm £=0.0003
12 -> 29 0.10325
13 -> 23 0.17548
14 -> 22 0.11632
15 -» 23 0.56037
18 -> 23 -0.11083
19 -> 29 0.23168
Figure 11.8

moments, transition magnetic dipole moments, excitation energies and oscillator
strengths for the 15 lowest-energy singlet states.

The largest coefficients in the CI expansion are also given. A nice feature is
that all transitions, o — o*, n — o*, n — #*, m — #* and so on are treated on
an equal footing with no ‘calibration’ against experiment. The agreement with
experiment is not spectacular; no one would claim that CIS is a reliable tool for
the accurate treatment of electronic spectra. Rather, it offers a low-level means

of studying excited states with minimal inclusion of electron correlation.

11.1.2 CISD

~To 1

The CIS procedure was designed to give a computationally inexpensive way of
dealing with excited states. The next logical step is to include all doubly excited
states. This can be done together with the singly excited ones (in which case we
speak of configuration interaction with all single and double substitutions, CISD),
or without the singly excited ones (in which case we speak of configuration
interaction with double substitutions, CID).

The Brillouin theorem still applies (singly excited states do not interact with
the ground state), but doubly excited states interact with the ground state and
with the singly excited states (if present), so lowering the ground-state energy.
This means that the singly excited states couple with the ground state via the
doubly excited states. If we write WHF for the Hartree—Fock wavefunction and

WCISD for the new ground-state wavefunction, then

QCISD _ \HF | ZC§W§ + Z Cg@ég (11.6)

AW DYV
nLA ,0, A, X
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where WY is a singly excited state formed by promoting from orbital ¥4 to virtag]
orbital ¥x, WX} a doubly excited state formed by promoting two electrons from
Y4 and ¥ to Yx and ¥y. The ¢’s are the expansion coefficients, and in order
to normalize the wavefunction we would have to divide by

L+ (@ + Y () (11.7)

AX ABXY

AX A8, X,

To illustrate the CISD technique, consider dineon (Figure 11.9). HF theory
cannot hope to give an accurate description of the dispersion interaction between

two neon atoms. sO an electron correlation treatment ig vi fql Here are the resulis
WO neCH atoms, SC an CieCiron Corrdianuln wreaiment 1s vi ulC ICSUIS

for a separation of 300 pm.

The HF-LCAO calculation follows the usual lines (Figure 11.10) and the
frozen core approximation is invoked by default for the CISD calculation. CISD
is iterative, and eventually we arrive at the improved ground-state energy and
normalization coefficient (as given by equation 11.7) — Figure 11.11.

kkhkkhkhkhkhkkkhkhhkkhhkhkhkhhhhkkhkhkhhhkkkkhhkhkhkkkkhkkk

Gaugsian 98: xX86-Win32-G98RevA.3 2-Sep-1998
30-Jul-1999
X E RS RS EE R R R SRR R R R R R R X R R R LR R EE RS

Figure 11.9

Requested convergence on RMS density matrix=1.00D-08 within 64
cycles.

Requested convergence on MAX density matrix=1.00D-06.

Keep R1 integrals in memory in canonical form, NReg=

714311.

SCF Done: E(RHF) = -257.045191385 A.U. after 7 cycles
Convg = 0.2525D-08 -V/T = 1.9997
S**2 = 0.0000

Range of M.O.s used for correlation: 3 36

Figure 11.10

Iteration Nr. 7
khkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhhkkhk
DE(CI -0.40155306D+00 E(CI)= -0.25744674445D+03

L N 1N249acnNN.01
A= U.1Uaz0I33UU+FUL

Figure 11.11
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Table 11.1 Dineon 6—311G* calculations

Method 5000 pm Atom energy
HF-LCAO —257.0451061 —128.52255305
CISD —257.4466147 —128.7283956

m.kla 11.1 shows an interestino noint about CISD. The enerov of the dineon

1d0IC 11.1 S Qi LRCICSULES pPULL QUVLL L0 CLliE) wuaie Q00N

pair at the arbitrarily large separation of 5000 pm is exactly twice the energy
of two free atoms at the HF-LCAO level of theory, but this is not the case at
the CISD level of theory. We say that HF theory scales correctly, whilst CISD
does not.

More rigorously, if we have an ensemble of n particles and their energy at a
certain level of theory is related to the energy of a single particle (at the same
level of theory) by £(n) = ne(1), then we say that the theory scales correctly.

In calculating a pair potential for dineon, we have to take the ‘separated atom’
energy as one half of the pair energy for an arbitrarily large distance.

11.2 PERTURBATION THEORY

The number of problems that can be solved exactly in mechanics is not large.
Once we have to treat three interacting bodies, life becomes very ditficult indeed.
This comment applies to classical mechanics just as to quantum mechanics. What
we often do is to look for a simple, idealized problem that we can solve exactly,
and then treat the real problem in hand as some kind of perturbation on the
idealized one.

Suppose then that our problem is to solve

A
II\Is

— oIr /11 QN
IY¥; =& ¥; \11.0)

which at first sight does not seem to be capable of solution, whilst the simpler
problem

A

00 — (Oy
H}W) = )W

D

(11.9)

can be solved on the back of a postcard. For example, H might be the Hamil-
tonian for a helium atom whilst the simpler Hamiltonian H° might refer to two
superimposed deuterium atoms with non-interacting electrons. We can solve the
H° problem very easily: the wavefunction is just a product of hydrogenic orbitals.
In perturbation theory, we write the ‘true’ Hamiltonian H in terms of A° and

a perturbation H®
H=H4+:4D (11.10)

I have included the arbitrary parameter A in order to keep track of orders of
magnitude. I will later set it to unity. In the case of the helium problem above,
the perturbation would be just the Coulomb repulsion between the electrons.
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Very occasionally, we might need to add more than one perturbation; for

avamnle if we wanted to ctndv a maolacule eunhiect to external electrin oo
CAQILIPIC, 11 WU Walllbu W Stuu)y a mivitLuiv Suyjtil W Catiiiar Gaoldid ' ang

magnetic fields, we might write something like
A =A% 4270 4 yAO (11.11)

where the double superscript refers to the double perturbation. 00 indicates 3
molecule in the absence of the perturbation, 01 might indicate the presence of
the electric field and the absence of the magnetic one, 10 the presence of the

maanatic field and tha ahcance nf tha alactric nne and ecao nn T am accniming +hae
MagnCud i afG uiC adsOnel Of ull COCUil ONiC, aliG 50 Ul 1 alll asSelliig gt

we can solve the field-free problem AW = 0w to chemical accuracy.
Back now to the simpler case of a single perturbation. Perturbation theory aims
to write solutions for ‘
H \I‘i = &; \I»’i

in terms of the known solutions for the zero-order problem

7r0,1,0 ~0.1,0
i ‘i"i E: ‘Pt

where A = H° + AA®
To this end we make a perturbation expansion of the wavefunctions and energies

W =00 w4220
. ) (11.12)
& =8?+X6‘§)+)\28§)+~-

If we substitute these series into equation 11.8, we find

HoW) + A (ﬁ(l)q;? + 190\11,?”) + 22 (ﬁ“)\p,.(” T f{O\IJi@)) +

= P00+ 4 (6100 + 600 + 32 (P00 + 6w + W) + -
(11.13)

In order that this equation may be satisfied for all values of A the coefficients of
the various powers of A on the two sides of the equation must be equal. We find

o) = £20?
(1Y .5 0 20 - (1) (1) -0 () e D) PRV
HOW) + HOWY = 707 + ;70 (11.14)
FI(I)\II?) —|—I:IO\I’,(2) — 852)\1’? + (1)\1,(1) + O‘I,(Z)

. If the secopﬂ can be solved,

we can find the ﬁrst—order corrections to the wavefunction W' and the energy
¢, Solution of the third equation gives the second-order correctlons and so on.
It is shown in the standard textbooks (e.g. Eyring, Walter and Kimball, 1944)

that the solutions are
(1) (1)

s,-=s?+kH§3)+/\2Z 2y i +A3( SR (11.15)
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m
H::
¥ _\IO_L)'T‘ il \IIO
Wi =TT AL 00
j# T
W) Mg \
+"-22(/_, HO kon . Hii Hy S0 34
ki \ m##i (8 _sk) (si _8m) (8? —82) }
(11.16)

where (for example)

ST

The first-order energy involves only the perturbation operator and the unper-
turbed wavefunction. In an HF-LCAO treatment, the integrals would be over
the LCAOs, and this implies a four-index transformation to integrals over the
basis functions.

11.3 MOLLER-PLESSET PERTURBATION THEORY

Until the advent of density functional theory (Chapter 13), thinking centred
around means of circumventing the two-electron integral transformation, or at

least partially circumventing it. The Mgller—Plesset method is one of immense
historical importance, and you might like to read the original paper.

Note on an Approximate Treatment for Many-Electron Systems
Chr. Mglier and M. S. Plesset
Physical Review 46 (1934) 618

A Perturbation Theory is developed for treating a system of n electrons in
which the Hartree—Fock solution appears as the zero-order approximation.
It is shown by this development that the first order correction for the energy
and the charge density of the system is zero. The expression for the second
order correction for the energy greatly simplifies because of the special
property of the zero order solution. It is pointed out that the development
of the higher order approximation involves only calculations based on a
definite one-body problem.

The idea is simple. We take the zero-order problem as the HF (or HF—LCAO)

one, where each electron moves in an average field due to the nuclei and the
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remaining electrons. The perturbation is the difference between the true Hamj].
tonian and the HF Hamiltonian. Because of the special features of the zero-order
problem, it is not necessary to fully transform all the two-electron integrals; aj
that is needed is a partial transformation. Depending on the order of perturbatiop
theory, we speak of MP2, MP3, MP4, ... or generically MPrn calculations,

Pople, Binkley and Seeger (amongst others) have made a systematic study of
the MP method. Here is their summary.

Theoretical Models Incorporating Electron Correlation
John A. Pople, J. Stephen Binkley and Rolf Seeger
International Journal of Quantum Theory, Symp. No. 10 (1976) 1

Some methods of describing electron correlation are compared from the
point of view of requirements for theoretical chemical models. The pertur-
bation approach originally introduced by Mgller and Plesset, terminated at
finite order, is found to satisfy most of these requirements. It is size consis-
tent, that is applicable to an ensemble of isolated systems in an additive
manner. On the other hand, it does not provide an upper bound for the
electronic energy ... . -

Equilibrium geometries, dissociation energies, and energy separations
between electronic states of different spin multiplicities are described

substantially better by Mgller—Plesset theory to second or third order than
by Hartree—Fock theory.

As a simple example, let’s return to the dineon problem discussed above. Here
are the salient points from a Gaussian run at 300 pm. Figure 11.12 shows the
standard HF-LLCAO calculation.

Next come the integral transformations (not shown) and then (Figure 11.13)
the various contributions to the second, third and fourth order MPn energies. The

Requested convergence on RMS density matrix=1.00D-08 within 64

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Keep Rl integrals in memory in canonical form, NReq=

714311.

SCF Done: E(RHF) = -257.045191385 A.U, after 7 cycles
Convg 0.2525D-08 -V/T = 1.9997

Qexo n nanon
[= Rl V.Uuuu

nu

Figure 11.12
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gpin components of T(2) and E(2):
alpha-alpha T2 = 0.7548320174D-02 E2= -
0.5726319677D-01
alpha-beta T2
0.3035686778D+00

0.4048023368D-01 E2= -

beta-beta T2 = 0.7548320174D-02 E2= -
0.5726319677D—01
ANorm= 0.1027412709D+01
E2= -0.4180950714D+00 EUMP2= -0.25746328645640D+03
R2 and R3 integrals will be kept in memory, NReg= 979822.
pDiDir will call FoFMem 1 times, thaiL— 72
NAB= 36 NAA= 0 NBB= 0.
MP4 (D)= -0.32010852D-02
MP4 (S)= -0.15655063D-02
MP4 (R+Q)= 0.92129416D-03
Time for triples= 22,00 seconds.
MP4 (T)=  -0.47497314D-02
E3= 0,51230403D-03 EUMP3= -0.25746277415D+03
E4 (DQ) = -0.22797910D-02 UMP4 (DQ) = -0.25746505394D+03
E4{SDQ)= -0.38452973D-02 UMP4 (SDQ) = -0.25746661945D+03
E4 (SDTQ)= -0.85950287D-02 UMP4 (SDTQ)= -0.25747136918D+03

Largest amplitude= 1.90D-02
Figure 11.13

e fourth-order
e th-orger

JROLVE

114 THE DINEON PAIR POTENTIAL

I have used dineon as an example in this chapter you nught like to compare the

2110
lelUub lllUUClb IUl l.llC ulllCUll Pd.ll PULCllle.l llllb lb uuuc IUl LllC ll.l"IU 1109 ,

MP2/6-311G* and CISD/6-311G* levels of theory in Figure 11.14. The poten-
tial minima and distances are shown in Table 11.2, together with two ‘experi-
mental’ values that have been deduced from studies using Lennard—Jones poten-
tials. The two experimental results differ significantly: we have to distinguish
results that are appropriate to an isolated pair of particles in the gas phase (I),
and experimental results that refer to condensed phases such as liquids (IT). In
the latter case, the nmr nnfpnfml is an ‘effective’ one, since it absorbs the effects

of three, four and hlgher many—body interactions.

Electron correlation studies demand basis sets that are capab}e of very hlgh
accuracy, and the 6-311G* set I used for the examples above is not truly
adequate. A number of basis sets have been carefully designed for correlation
studies, for example the correlation consistent basis sets of Dunning. These go by
the acronyms cc—pVDZ, cc—pVTZ, cc—pVQZ, cc—pV5Z and cc—pV6Z (double,
triple, quadruple, quintuple and sextuple-zeta respectively). They include polar-
ization functions by definition, and (for example) the cc—pV6Z set consists of
s, 61) 4d, 3f, 2g and 1h basis functions,
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¢ 11.14 Dinecon pair potential HF—-LCAO, MP2 and CISD/6-311G*

Table 11.2 Dineon potential energy parameters
Level of theory R/ipm Emin/J mol ™!
HF/6-311G* 289.3 257.6
MP2/6-311G* 282.1 545.1
CISD/6-311G* 2838 436.9
HF/cc-pVTZ 312.2 140.8
MP2/cc—pVTZ 298.3 4458
CISD/cc—pVTZ 300.7 362.1
Lennard-Jones (I) 272.0 391
Maitland, et al. (1981)
Lennard-Jones (II) 279.0 297

Hirschfelder, Curtiss
and Bird (1900)
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I have included some representative results in the table, using the cc—pVTZ
basis set.

If the neon—neon interaction were a pure dispersion one, then the HF-LCAO
calculation would give a fully repulsive curve. The fact that the HF-LCAO
calculation gives a shallow minimum implies an element of covalency.

Most of the calculations cited give qualitative agreement with ‘experiment’,

but none agrees quantitatively.

11.5 MULTICONFIGURATION SCF
In Chapter 6, I discussed the open-shell HF-LCAO model. I considered the

simple case where we had n; doubly occupied orbitals and n, orbitals all singly
occupied by parallel spin electrons. The ground-state wavefunction was a single
Slater determinant. I explained that it was possible to derive an expression for
the electronic energy

Z/‘pR(rl)ﬁ(rl)'ﬁR(rl)dtl
R

1
—5/ Yr(r)Ys g, 12)Yr(r2)¥s(ry) dr dtz)}

Z ‘/4 Yy APy () dry
U

1
+ v +,:sz‘§‘( i Y2 ()1, 12)Y5 (ry) dry doy
2 TN\

- / Yy )Yy (r)gr, r2)yy )Yy (r)drn de)

+ v (ZZ ( / Yz(E1)E(r1, 1) (1) dry do
R U

1 rr \\
= 3 ] YREOve @R R E e dn b ) )

(11.17)

where R and S run over the doubly occupied orbitals and U, V run over the singly
occupied orbitals (which contain electrons with parallel spins) I have followed
common practise and introduced the occupation numbers v; and v,, to demon-
strate the symmetry of the result. In this case, v{ = r; and v, = n, but more
general cases are possible.

It turns out that certain electronic states of atoms and linear molecules, even

those requiring many-determinant wavefunctions, may have an energy expression
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of the form

1
+v | - 7Y‘Y‘( J// U2 (r)2(ry, 1) Y (ry ) dr; do

I\J

(Z/wR(rl)i’(rl)WR(rl)drl

U v
l
—3 / Wu(rl)lﬁv(l‘l)g(l‘lal‘z)'ﬁv(l‘z)lﬁv(l‘z)dfldfz>)

+ 21, (Z (// VDB, )Y (1) dry dry

R
NI

= 3 [ VeE @R RV () by dl’z))
(11.18)

The constants v;, v2, a and b depend on the particular electronic state under
consideration, and they have been listed by Roothaan (1960). Open-shell HF
uneory can deal with such states.

There are, however, many electronic states for which a linear combination of
determinants is essential, but which cannot by treated using HF theory.

It is also a common experience that traditional CI calculations converge very
poorly, because the virtual orbitals produced from an HF (or HF—LCAOQ) calcu-
lation are not determined by the variation principle and turn out to be very poor
for representations of excited states.

{MCSCF) theory aims to optimize
simultaneously the LCAO coefficients and the CI expansion coefficients in a

wavefunction such as

1.V 071 7 PP ORGP S ¥ SNSRI SV i I |
lVluLtl(,UHJlgulultLUIL ACI;]'LUILQLJtC’Ht JlClu

W =coWo+ ) cXWX + - (11.19)

discussed above. I have written the wavefunction emotively as if it were domi-
nated by a ground state Wy, but this may not be the case. In the singlet dihydrogen
excited state example, we would have to include two Slater determinants of
equal weight corresponding to the electron configuration 10; lol, together with
a number of less important hloher excited r‘nnﬁcnmfmnﬁ

HIIPOTTAIL 10
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, \MCSCF theory is a specialist branch of quantum modelling. Over the years

has become apparent that there are computational advantages in treating all
possible excitations arising by promoting electron(s) from a (sub)set of the occu-
. ied orbitals to a (sub)set of the virtual orbitals. We then speak of complete active
space MCSCEF, or CASSCF.

khkkdkhkkkkhhkhkkhkdhhhhkkhkkhkhkhkhhkkhkhkhkhkhkhkkhhkhhkkkkk

Gaussian 98: x86-Win32-G98RevA.3 2- Sep 1998
15-Aug-1999

khkkkhkhkkkhkhhkhkkhkhkhhkkhkhkkhkhkhkkhkhkkkkkkhkkkkkkkhkkkkkk

schk=f:\modmol2\ethene.chk

Figure 11.15

ENTER MCSCF PROGRAM

NO. OF ORBITALS =116 NO. OF CORE-ORBITALS = 7

NO. OF VALENCE-ORBITALS = 2 NO. OF VIRTUAL-ORBITALS =107
USED ACCURACY IN CHECKING CONVEGERGENCE = 1.00D-05
InCore calculation needs more space: 37926342

In this calculation the integrals will be calculated in every iteration

and Contracted with The Density Matrices

Do 4 iterations with Incremental Fock Matrices and then one

IBUJAK length= 68120
Symmetry not used in FoFDir.
MinBra= 0 MaxBra= 3 Meth= 1

IRaf= -5 NMai= 4 IRICUL— 1 DoRegl=T DoRafl=F ISym2E= 0 JSym2E=0
Defining IBUGAM

2ND ORD PT ENERGY CV 0.000000 CU -0.000016 UV -0.007902
TOTAL -78.085413
ITN= 1MaxIt= 64 E= -78.0774944659 DE=-7.81D+01 Acc= 1.00D-05 Lan= 0
ITN= 2MaxIt= 64 E= -78.0898795485 DE=-1.24D-02 Acc= 1.00D-05 Lan= 0
ITN= 3 MaxIt= 64 E= -78.0907919941 DE=-9.12D-04 Acc= 1.00D-05 Lan=
ITN= 4 MaxIt= 64 E= -78.0909381754 DE=-1.46D-04 Acc= 1.00D-05 Lan=
ITN= 5MaxIt= 64 E= -78.0909656422 DE=-2.75D-05 Acc= 1.00D-05 Lan=
ITN= 6 Maxlt= 64 E= -78.0909710896 DE=-5.45D-06 Acc= 1.00D-05 Lan=
.. DO AN EXTRA-ITERATION FOR FINAL PRINTING
Flnal one electron symbolic density matrix:
1 2
1 0.191968D+01
2 0.000000D+00 0.803168D-01

MCSCFE convereed
NovIN L vullvv15uu

[N NNl

Figure 11.16
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To give a numerical example, consider ethene. In the traditional HF-LCAQ
treatment there are eight doubly occupied orbitals, and descriptive chemistry
leads us to believe that both the HOMO and the LUMO will be of 7 type.
An HF-LCAO calculation using the cc—pVTZ basis set does indeed give such
an ordering. The salient features from a CASSCF calculation using an active
space comprising just the HOMO and the LUMO are shown in Figure 11.15,
The (2,2) means that I have included the highest two electrons, and enough
virtual orbitals to make a total of two orbitals. I optimized the geometry in a
previous calculation, and saved the results on the checkpoint file.

The main output is shown in Figure 11.16. The energy of the ground state is
given, together with the ‘one-electron symbolic density matrix’.

11.6 QUADRATIC CONFIGURATION
INTERACTION

A full configuration interaction calculation is only possible for very small
systems. Limited CI expansions (CID and CISD) are widely used; they give
energies that are upper bounds to the correct energy (they are said to be
variational) but they are not size-consistent. Langhoff and Davidson (1974) gave
a simple correction to the CISD method that makes the energies approximately
size-consistent but no longer variational. The CISD method also omits the effects
of triple substitutions.

The MPr method treats the correlation part of the Hamiltonian as a perturba-
tion on the Hartree—Fock part, and truncates the perturbation expansion at some
order, typically n = 4. MP4 theory incorporates the effect of single, double,
triple and quadruple substitutions. The method is size-consistent but not varia-
tional. It is commonly believed that the series MP1, MP2, MP3, ... converges
very slowly.

Quadratic Configuration Interaction. A general technique for determining
electron correlation energies
John A. Pople, Martin Head-Gordon and Krishnan Raghavachari
Journal of Chemical Physics 87 (1987) 5968—-5975

A general procedure is introduced for calculation of the electron correlation
energy, starting from a single Hartree—Fock determinant. The normal
equations of (linear) configuration interaction theory are modified by
introducing new terms which are quadratic in the configuration coefficients
and which ensure size consistency in the resulting total energy. When used
in the truncated configuration space of single and double substitutions, the
method termed QCISD, leads to a tractable set of quadratic equations. The
relation of this method to coupled cluster (CCSD) theory is discussed. A
simplified method of adding corrections for triple substitutions is outlined,
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leading to a method termed QCISD(T). Both of these new procedures are
tested (and compared with other procedures) by application to some small
systems for which full configuration interaction results are available.

|

Suppose we have an HF determinantal wavefunction Wy constructed from
singly occupied spin orbitals ¥, ¥, . .., ¥, (that is, a UHF wavefunction). Other
determinantal wavefunctions are derived from W, by substitution of occupied spin
orbitals by virtual spin orbitals. If we use indices A, B, ... for the occupied spin
orbitals and X, Y, ... for the virtual spin orbitals, then we define complete single,
double, triple, ... substitution operators

o\ ,X5X
T] _LaAtA
A X

Fo= L N Xy v

=3 & e la (11.20)
A 1
_ XYZ $XYZ
T3 = EY3 Z aaBC IABC
"2 ABCXY.Z

where the ¢’s are elementary substitution operators and the a’s are coefficients
that have to be determined.

Various types of antisymmetric wavefunction can be obtained by applying
different functions of the T operators to Wy, and the unknown coefficients together
with the energy can be determined from the projection equations

IS ~
/ Wo(H —e)Wdr =0
/\pf,f(ﬁ —&)Wdr =0 (11.21)
J

/wfg(i{ —&)Wdr =0

The simplest choice for the T operators is linear, and so we have

Ve = (14 T2)¥

] ";‘,\ﬂ:
1T L2)%¥0

(11.22)

hi)

s o — 71
*FCISD — \1 T

The projection equations are then identical with those obtained by minimizing
the energy and so the CID and CISD energies are truly variational (they give

unner honndc ta the 'Pl]]l CI ragnlt)

TIPVE vUUuLIu WV UV 1ulL ’ s IVDUII-}.
If we define
AHE L o
H™+V

HF | _correlation
T C

A

(11.23)
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where the superscript HF refers to the Hartree— Fock wavefunction, the projection
equations become

/ W, fAI T,W, dr = ecorrelation

n

/ \I’)A( (IA{ - SHF) (Tl + f"2> Yodr = aiecorrelarjon (11‘24)
J/ ‘I&g (f] — gHF) (1 + f‘] + f‘2> Yodr = a;(-gscorrelation

and the CISD energy is not size-consistent. The energy can be made size-
consistent by introducing quadratic T terms as follows:

/ \VOFI T,¥ydr = gcorrelation

/ wyX (H - SHF) (fl +T2+ Tﬁz) Wodr = @} e (11,25)
/ XY (fy _ HF) ( s ] *2\ XY _correlation )
J A I\ 2% o
and these equations form the basis of the QCISD method.
QCISD still takes inadequate account of the triple substitutions. If their effect

is small, they may be added as a perturbation after calculation of the singles plus
doubles. This is the basis of the QCISD(T) method.

11.7 RESOURCE CONSUMPTION

Many authors have drawn attention to the resource implications of ab initio calcu-
lations. Schiegel and Frisch (1990) give a particularly comprehensive review. The
two resources to be considered are CPU usage and disk usage. A small subset
of Schlegel and Frisch’s tables are given in Table 11.3; n is the number of basis

functions and O is the number of occupied orbitals.

Table 11.3 Resource consumption

CPU usage Disk usage
Conventional HF—-LCAO n33 n33
Direct HF-LCAO n%’ n?
- Conventional MP2 Oon* n*
Direct MP2 0*n? n?
CISD o*n* n*




12 SLATER’S Xo MODEL

I have dealt at length with the Hartree and the Hartree—Fock models. The father of
this field, Sir William Hartree, was concerned with the atomic problem where it is
routinely possible to integrate numerically the HF integro-differential equations in
order to produce (numerical) wavefunctions that correspond to the Hartree—Fock
limit. For molecular appiications the LCAO variant of HF theory assumes a
dominant role because of the reduced symmetry of the problem.

Briefly, we write the atomic orbitals for a one-electron atom as

D/ 7/\ AN 717 1N

bl N AN
¥ir, 6, ¢) = R(rNY (6, ¢) (12.1)

and separate out the radial and angular variables, by making use of the standard
separation-of-variables technique. This gives the radial equation

d’R 2dR 877:;L g+
dr2  r dr r2
R(r) is called the radial function, and Y; ., (0, ¢) is a spherical harmonic. U(r) is
the mutual potential energy of the nucleus and the electron.
In order to retain the orbital model for a many-electron atom, Hartree assumed
that each electron came under the influence of the nuclear charge and an average

notantial dna ta the o alectrane Ho tharafara ratainad the fo of tha
potentiar Guc 1o nC Luluauuus CiCCIrons. i Wereiore retainead ne iorm o1 e

radial equation for a one-electron atom, equation 12.2, but assumed that the
mutual potential energy U was the sum of

R(r) = (12.2)

Aamea Al T s 4L

® Llldl UCLWUCII uic CIeCLon Ellld L mclei.is an d
an average between the same electron and the remaining electrons in the
atom.

[ ]
[¢]

Qir William Hartree de Aland fnganisne wratve of coliin PR LI L S
O vviuiaifi n acveiopea ulgcluuua ways of m,uvulg, the radial €quation,

and they are documented in Douglas R. Hartree’s book (1957). By the time
this book was published, the SCF method had been well developed, and its
connection with the variation principle was finally understood. It is interesting
to note that Chapter 2 of Douglas R. Hartree’s book deals with the variation
principle.
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then we can write either a simple product wavefunction

We(ry, 1,12, 82, .., Ip, ) = Ya(rD)a(s1)Ya (X2)B(82) - - - Ym(T2m) B(S2m)
(12.3)

for which the elecironic energy is

M ~
ee=2Y" [ vrCohtrr)

R=A"

M M
+3° 32 [ v e dn an (12.4

D_A C_A
N=AJ3=A

or an (unnormalized) Slater determinant

We(ry, 81,12, 82, - -« F2m, S2m)

Yaralsy) Yar)BGs1) - Ym(r)BGs1)
ll/fA(Q)a(Sz) Yar)B(s2) -+ Ym@r2)B(s2) (12.5)

WA(rzm)a(Szm) Va@®2m)B(s2m) -+ llfM(rzm)ﬂ(Szm)|

which automatically takes account of the Pauli antisymmetry principle. The elec-
tronic energy then works out as

fo = 22 / VrEDhe VR dn

R=A"

+ Z Z (2 / YRR, R)Y3(r) dry dr

- / Yr)Ys(r)Er, r2)Yr(r)¥s(r) dry dfz) (12.6)

Notice that I haven’t made any mention of the LCAO procedure; Hartree
produced numerical tables of radial functions. The atomic problem is quite
different from the molecular one because of the high symmetry of atoms. The
theory of atomic structure is simplified (or complicated, according to your view-
point) by angular momentum considerations. The Hartree—Fock limit can be
easily reached by numerical integration of the HF equations, and it is not neces-
sary to invoke the LCAO method.
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There has been a resurgence of interest in atomic HF calculations because
astrophysicists want to study highly ionized atomic species in the interstellar

.
medium. They lock to theory for their energy-level data rather than earth-bound

experiments where the species are hard to prepare and study.

12.1 THE EXCHANGE POTENTIAL

There was initially a great deal of confusion about the extra term in the Hartree—
Fock energy equation 12.6 above, compared to the straightforward Hartree model
energy equation 12.4. The extra term in the energy expression was called the
‘exchange term’, and some authors tried to describe it in terms of a myste-
rious force called the ‘exchange potential’. Attention focused on the exchange

in findin affact adal
phenomenon, and a great deal of effort was spent in finding an effective model

potential that mimicked exchange.

In the meantime, solid-state physics had been developing along a quite different
direction. Wigner and Seitz (1934) suggested what is now called the ‘cellular
method’ for handling the problem of computing crystal orbitals. These orbitals
have energies ¢ that form continuous bands and for this reason their models are
known as energy band theories. Wigner and Seitz made valuable observations
about the exchange terms.

In order to give you some background to Slater’s Xo method, I would like to
describe some very simple models that were used many years ago in order to
understand the behaviour of electrons in metallic conductors,

122 THE DRUDE MODEL

The simplest picture of a metallic conductor is one where we have a rigid lattice
of metal (M) atoms, each of which has lost one or more electrons to form a
surrounding sea of electrons.

Figure 12.1 shows a slice through such a solid; the cations are to be thought
of as a rigid lattice, and the electrons form a gas. I have deliberately drawn the
cations as large objects for two reasons. First, the very early models such as that
due to Drude tried to treat the electron sea as a perfect gas. It was eventually
recognized that the electrons would collide with the cations and with each other
an uncomfortable number of times. In any case, many of the predictions of the
Drude model turned out to be demonstrably flawed.

Secondly, the influence of the cations on their surrounding space is not
negligible. The cations produce strong non-uniform electrostatic fields and the
electron density in such a model is far from constant, or even slowly varying.
The free electrons experience a very strong attraction when they approach the

catiang
waAUvILLD,
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Figure 12.1 The Drude model: small circles are electrons, large circles cations

12.3 PAULI’'S MODEL

In Pauli’s model, we still envisage a core of rigid cations (metal atoms that have
lost electrons), surrounded by a sea of electrons. The electrons are treated as
non-interacting particles just as in the Drude model, but the analysis is done
according to the rules of quantum mechanics.

The electrons are treated as independent particles constrained to a three-
dimensional box, treated here for simplicity as a cube of side L. The box contains
the metallic sample. The potential U is infinite outside the box, and a constant

Uy inside the box. We focus attention on a single electron whose electronic
Schrodinger equation is

(__*# V2 \ 12.7)
- Uy = )
k S + ) v =cy (

It is easily demonstrated that the solutions are

3
2 . (N7 . [km . (I
Ykt = \/Z sin (Tx) sin <—L—y) sin (fz>

hZ
8m.L?

(12.8)

enis = Up+ (n* +k* 4 1%)
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where the three quantum numbers r, k and / can each take values 1, 2, 3, ...
Fach orbital can hold at most two electrons, one of either spin.

A simple pen and paper calculation for the metallic sample shows that quantum
numbers can be very large, typicaily 10°. For large quantum numbers, very many
of the individual quantum states are degenerate. This is for two reasons. First of
all, there are six possible quantum states for every set of different values of n,
& and 1. Secondly, there are many combinations of n% + k2 + [? that sum to the
same value. Not only that, the high-energy quantum states crowd together and
essentially form a continuum rather than a discrete set of levels. For these reasons,
we focus attention on the number of quantuni states having energy between ¢
and € + de. This is writien D{g) de where D{g) is the density of states. For the
‘electron-in-a-box’ model of a metal, it turns out that

4xL?
D(e) = ’_;—3(2me)3/281/2 (12.9)

and so the density of states depends on the square root of the energy.
In Pauli’s model, the sea of electrons, known as the conduction electrons are
taken to be non-interacting and so the total wavefunction is nnt a nrndnr*t of

ancii 10 DO DOUNRIINLIALULIE &l o0 U0 &l veILUNCLION I8 sl a ouue

individual one-electron wavefunctions. The Pauli model takes account of the
exclusion principle: each conduction electron has spin and so each available
spatial quantum state can accommodate a pair of electrons, one of either spin.
If we wish to investigate the lowest-energy configuration of the metal, we have
to fill up the available quantum states with pairs of electrons, starting with the
lowest-energy quantum state v 1,;. The highest occupied energy level is referred
to as the Fermi level, and the corresponding energy is called the Fermi energy.
The number N of conduction electrons can be related to the Fermi energy, and
we find
n* (3N
8me \ L3/

&p = (12.10)
Now, N/L3 is the number density of conduction electrons and so Pauli’s model
gives a simple relationship between the Fermi energy and the number density of

electrons. If I follow normal practice and write the number density pp then we

have R 23
B /3
fp= — (ﬂ) (12.11)

8m. \
< \ 7

(Unfortunately, some authors use the same symbol p for a number density and
for volume charge distributions; the electron density is (—e) times the number
density.) The number density is a constant in this simple model.

124 THE THOMAS-FERMI MODEL

We now switch on an external potential U(r) that is slowly varying over the
dimensions of the metallic box. This makes the conduction electron density
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inhomogeneous and a little analysis suggests that the number density should be

8n
3n
which is called the Thomas—Fermi relation. It relates the number density of the
conduction electrons at point r to the potential at that point.

Our treatment so far has dealt with non-interacting electrons, yet we know for
sure that electrons do interact with each other. Dirac (1930b) studied the effects
~AF avahanga intasantinng an tha Thamao Farmi madal and ha cnnan diccavarad
Ul CA\AICUIEC i1 acuiuln Ul Ulv 1 1uvllias—i vl lllu‘\.lbl, aliu 11U dUULL UIovuyulC(

that this effect could be modelled by adding an extra term

p(r) = — (2me)**(ep — Ur))*/? (12.12)

Vx = Cp'/3 ' (12.13)

where C is a constant given by

3 1/3
C= ——Ehag (;) (12.14)

This result was rediscovered by Slater (1951) with a slightly different numerical
coefficient of % C. Authors often refer to a term Vx which is proportional to the
one-third power of the electron density as a Slater—Dirac exchange potential.

Just to remind you, the electron density and therefore the exchange potential are
both scalar fields; they vary depending on the position in space r. We often refer to
models that make use of such exchange potentials as local density models. The
disagreement between Slater’s and Dirac’s numerical coefficients was quickly
resolved, and authors began to write the exchange potential as

V., — nd”
14 w

3
<o = aCpY (12.15)

o

where ¢ would take values between % and 1. I will refer to this potential as the
Xo exchange potential, and the idea is that you add it to the Hartree Hamiltonian
in order to take account of electron exchange (i.e. antisymmetry).

125 THE ATOMIC Xo MODEL

By analogy with solid-state studies, Slater had the idea of writing the atomic
Hartree—Fock eigenvalue equation

REyi(r) = &iri(r) (12.16)
as . . R
(h1 + Ve@) + Vxo@)Yi(r) = ;9 (r) (12.17)

where il] and Vc are the one-electron and Coulomb operators discussed in
Chapter 6. Slater’s suggestion does not make the atomic problem easier to solve,
and it begs the question of the correct choice of or. The o values given by Schwarz
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(1972) are normally used. Atomic X calculations are straightforward, and most
workers use the computer code developed by Herman and Skillman (1963).

The orbitals and orbital energies produced by an atomic HF-Xea calculation
differ in several ways from those produced by standard HF calculations. First of
all, the Koopmans theorem is not valid and so the orbital energies do not give a
direct estimate of the ionization energy. A key difference between standard HF
and HF—Xo theories is the way we conceive the occupation number v. In standard
HF theory, we deal with doubly occupied, singly occupied and virtual orbitals
for which v =2, 1 and O respectively. In solid-state theory, it is conventional
to think about the occupation number as a continuous variable that can take any
value between 0 and 2.

In X theories, the relationship between the electronic energy €., the orbital
energy €;, and the occupation number v; of orbital i is

de
= — g (12.18)
Bvi
so that the ionization energy from a particular orbital v;, assuming that all the
other orbitals remain unchanged on ionization, is given by

0
(Vi =0)—s.(v;i=1)= / g; dy; (12.19)
J1
If we make the assumption that the total energy is a quadratic function of occu-
pation number v;, then a quick calculation shows that the ionization energy is
given by the orbital energy calculated when that orbital is half occupied.

A separate HF—Xa calculation is therefore needed in order to calculate each
ionization energy. What we do is to place half an electron in the orbital from
which the electron is supposedly ionized and re-do the HF—Xa calculation. The
hypothetical state with a fractional electron is sometimes called an X« transition
state, a phrase borrowed from chemical kinetics. We treat the transition state by
UHF or ROHF methods according to personal preference.

The great advantage of such HF—Xe calculations over traditional HF ones is
that they take account of electron reorganization on ionization, and so the Xo
ionization energies were thought to be superior.

12.6 SLATER’S MULTIPLE SCATTERING X«
METHOD FOR MOLECULES

We can quickly and easily solve the HF—Xa equations for an atomic species
because of the spherical symmetry. Molecules do not generally have spherical
symmetry; in fact, the vast majority of organic molecules have no symmetry to
speak of. The extension of HF-Xo models from atoms to molecules took many
years, and most calculations in the literature relate to symmetrical inorganic
species. The molecular version of the Xo model builds on a chemist’s intuitive
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Outer Sphere

Figure 12.2 Atomic, outer and intersphere regions

idea that a molecule is a collection of perturbed atoms. To take a simple example,
H,0, we picture the three atoms as spheres, and inside these spheres we solve
the atomic HF—Xu equations.

The atoms in Figure 12.2 belong to ‘region I’. We solve the atomic X« problem
in region L. -

It was found in pilot calculations that it is necessary to enclose the molecule by
an outer sphere that includes the entire molecule. I have denoted the region from
the outer sphere radius to infinity as region III. The wavefunction is assumed to
be of an atomic type in region IIl.

The intersphere region 11 is more difficult, and Slater assumed that the poten-
tial was constant in this region (this region is shown as II in the figure). The
wavefunction and its gradient have to be continuous at the region boundaries,
and this requirement leads to an eigenvalue equation. Extensive use is made of
molecular symmetry in locating the eigenvalues.

The molecular HF—Xo method has been reviewed by Connolly, and you might

like to see how it works for the H,O example.

12.6.1 An HF-Xa Calculation of the Ionization Energies of Water

The first step is to choose a molecular geometry, the atomic sphere radii and the
exchange parameters for each atom and the outer sphere region. I have summa-
rized these in Table 12.1.

Table 12.1 H,0 molecular HF—Xa calculation.
Ron = 95.84 pm, HOH = 104.5°

tom Q vo radivie/a
Pa N AN Y »J U

I3
IS
1

H 0.310 126 0.978 04
0} 1.498 674 0.743 67
Outer sphere 1.903 608 0.89992
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Table 12.2 HF—Xe calculation on H,O ROHF transition state, ionization energies/Ey,

10% overlapped Conventional
Orbital Touching spheres spheres ESCA HF-LCAO
1b, 0.586 0.585 0.464 0.396
3a; 0.606 0.599 0.540 0.458
1b, 0.622 0.667 0.682 0.621
23, 1.149 . 1.140 1.181 1.277
0(1s) 1a 20.10 20.10 19.89 20.43

The sphere radii were deduced from Slater’s (1965) table based on crystal

data. The basic molecular HF- X« equations were originally derived on the basis
that the spheres did not overlap (Schwarz and (“nnnnllv 1971). But the eguations

WAL s SPRItAts LRI0 DO OVRAIAY \WLRAWaAIZ aliu LOIO0y, 17/ 1. BUl uiC CQuUaudsiis

remain valid when the spheres are allowed to overlap, prov1ded that each sphere
does not contain more than one nucleus and that none of the nuclei lie outside
the outer sphere. A 10% overlap seems to be normal practice, and our results are
given in Table 12.2.

In this particular example, the X orbital energies resemble those produced
from a conventional HF-LCAO calculation. It often happens that the Xe ioniza-
tion energies come in a different order than HF-L.CAO Koopmans-theorem ones,

uont clivls Hlciodit uitdcth Ulall 1ir

due to electron relaxation.
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Electronic wavefunctions symbolized in this text as We(r1, 51, T2, 82, ..., Iy, 8y)
depend on the spatial (r) and spin (s) variables of all the m electrons. The electron
density on the other hand depends only on the coordinates of a single electron. 1
discussed the electron density in Chapter 5, and showed how it was related to the
wavefunction. The argument proceeds as follows. The chance of finding electron 1
in the differential space element dr; and spin element ds; with the other electrons
anywhere is given by

*
(/‘IJ (X1, 81,12, 82, ..., Tn, $p)W(r1, 81, 12,82, ..., Ty, Sp)
\J

x drpds; ... dT, dsm> drty ds; (13.1)
if W is compiex, or just
(/ W2(ry,81,12,8, ..., I, Sp)dradsy . .. ATy, dsm> dr; ds; (13.2)

if W is a real quantity.

The integration is over all the space and spin coordinates of electrons 2, 3, ..., m.
Many of the operators that represent physical properties do not depend on spin, and
so we often average-out over the spin variable when dealing with such properties.
The chance of finding electron 1 in the differential space element dz; with either
spin, and the remaining electrons anywhere and with either spin is

/ /‘nl’t Ve . NaTYes_o AY
K/ ‘l’*(i'],31,i'2, 527 1rn’ Sn)‘l’ki'l, Slar2= SZ; arnasn)
x dsydrpds; ... dT, ds,,) dny (13.3)

Here, the integration is now over the spin variable for electron 1, as well as the
space and spin variables for all the remaining electrons.
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Finally, many of the common molecular electronic properties depend only on
the chance of finding any electron in dz; and this is obviously m times the above
quantities. We focus attention on points in space (written r) and interest ourselves
in the electron probability density

Pr)y=m (/ WH(ry, 81,12, 82, . .., Tn, $2)W(T1, 81, 12,82, ..., T, Sp)

X dsydryds; ... dt, dsm) (13.4)

where the convention is that we replace r; by r after integration.

The actual electron density is —eP(r), but authors speak about P(r), which is
strictly the electron number density, as if it were the same thing. I will follow
this sloppy (but common) usage from time to time.

We know a number of things about the electron density P(r). First of all, if we
integrate it over space, we get the number of electrons, m. This follows simply
from the definition

P@)=m (/ W(ry, s, 2,82, ..., Iy, Sp)ds;drads, ... dt, dsm) (13.5)

whence

/P(r) dt=m

provided the wavefunction W is normalized to unity.
Secondly, it can be shown (Davidson, 1976) that the so-called nuclear cusp
condition for nucleus A with position vector R, gives

» (13.6)
In this equation, (P(R,)) is the spherical average of the electron density at
distance Ra from nucleus A. The symbol (. ..)g—o means that we have to evaluate
the mean value of the quantity and then set R to zero in the result. The symbol
(...(Ra = 0)) means that we have to evaluate the mean value of the quantity
when it is measured at Ry = 0.

Thirdly, Morrell, Parr and Levy (1975) have demonstrate

asymptotically as r — oo as follows:

where I, is the first ionization energy and A a constant.

Many atomic and molecular properties depend on the electron density, and
some depend on the gradient of the electron density evaluated at certain positions
In space.
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It has become fashionable to talk about density functional theory, so we haq
better come to grips with the term linear functional. 1t is a highly specialized term
in modern algebra with the following meaning (for the mathematicians amongst

you, and paraphrased from Birkhoff and MacLane (1965: 182)):

In elementary algebra, a ‘linear function’ of the coordinates x; of a vari-
able vector & = (x1, x, . .., X, ) of the finite-dimensional vector space V =
V. (F) is a polynomial function of the special form

fE =cixi+ o+ -+ eaxy

where the ¢; terms are arbitrary constants in the field F. One easily verifies
that any such function satisfies the identities

GE+mf=&f+nf
(@®)f = a&f)
for any vectors £ and n in V and any scalar a in F ...

We ... therefore define a linear functional f on any vector space V over -
any field F as a function which satisfies the above identities.

A little explanation is in order. A set is a collection of elements with a defining
formula: for example, the set of positive integers, the set of all integers, the set
of all real numbers and so on. Figure 13.1 shows a mapping f between two sets;

N

B

\/

Figure 13.1 A many—one relationship (a function)
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a mapping is just a rule whereby we can calculate an element in set B given an

3 innmt in cot A The relatinnchin illictrated ic rallad o _ alats
elemeiit ifi 5Ct 4. 10 1C1aU0NSNIP 1uusSirated 15 cauda a many—one 1\.41al.1uuoluP,

since several elements in set A map into the same element in set B. Such a
mapping f is called a function. Other mappings are possible, for example a
one—many relationship.

A vector space is a set with very special properties, which I don’t have time to
discuss. Wavefunctions are members of vector spaces. If we identify set A with
the set of all possible electron densities for the problem of interest, and set B as
the set- of all real energies, then f defines a density functional.

So, a function is a rule for mapping from a set of numbers to a set of numbers.
A functional is a mapping from a set of functions to a set of numbers.

The familiar expectation value [W*HWdr is a functional because, given a
wavefunction W, one calculates the integral and so gets a number (in this context,
we gloss over the difference between a number and a physical quantity such as
energy, which has a measure and units). Similarly [ W*W dr is a mapping between
a function and a number and so is a functional.

13.1 THE HOHENBERG-KOHN THEOREM

Slater’s Xo method is now regarded as so much history, but it gave an impor-
tant stepping stone towards modern density functional theory. In Chapter 12, I
discussed the free-electron model of the conduction electrons in a solid. The
ClCLLlUIlb WEIe dbbulllCU to ULLUpy a VUlUlllt Ul bpdbc llldl. we lucnuueu Wltﬂ
the dimensions of the metal under study, and the electrons were taken to be
non-interacting.

I explained how the model could be extended to allow for the fermion nature
of electrons (that is, the Pauli principle).

Electrons do of course interact with each other through their mutual Coulomb
electrostatic potential, so an alternative step to greater sophistication might be

Ao thawsafa
to allow electron fepuloxvu into the free-electron model. We therefore start agaiu

from the free-electron model but allow for the Coulomb repulsion between the
electrons. We don’t worry about the fermion nature of electrons at this point.
The Hamiltonian operator is now written

A, =T+V+0

where the operators on the right-hand side are (reading from left to right) the
kinetic energy, the potential energy due to any one-electron external perturbation
U(r) and the Coulomb repulsion between pairs of electrons. It is fashionable
to denote density functionals by square brackets so we would write the energy
expression as

g[P]1=T[P]+ VIP]+ UlP] (13.8)

Hohenberg a d Koh
true importance in che

n’s 1964 paper was widely regarded by physicists, but its
J

strv haq nnlv become apparent dnrmo the last decade
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or so. During this time, density functional theory has become an increasingly
important topic in chemistry. This culminated in the award of a half-part of the
1998 Chemistry Nobel Prize to Walter Kohn. (You might like to know that the
other haif-part of the award went to john A. Pople, whose name ought to be
familiar to you by now.)

The paper deals with a gas of interacting metallic electrons, and examines the
ground state of such a gas in the presence of an external potential U(r).

The key papers in the field were written by physicists. They tend to write n(r)
for the electron number density, i.e. P(r). I have kept to the original wording in
the following abstract, but you should mentally switch to P(r) for n(r).

Inhomogeneous Electron Gas
P. Hohenberg and W. Kohn
Physical Review 136 (1964) B864

This paper deals with the ground state of an interacting electron gas in an
external potential v(r). It is proved that there exists a universal functional
of the density, F[n(r)], independent of v(r), such that the expression E =
J v(®)n(r)dr + Fln(r)] has as its minimum value the correct ground state
energy associated with v(r). The functional F[n(r)] is then discussed for
two situations: (1) n(@) =ne +a{@), fi/ng K 1, and 2) n{®) = ¢r/r)
with ¢ arbitrary and ryp — oo. In both cases F can be expressed entirely
in terms of the correlation energy and linear and higher order electronic
polarizabilities of a uniform electron gas. This approach also sheds some
light on generalized Thomas—Fermi methods and their limitations. Some
new extensions of these methods are presented.

Part I of the paper develops an exact variational principle for the ground-state
energy, in which the density n(r) is the variable function (i.e. the one allowed
to vary). The authors introduce a universal functional F{r(r)] which applies to
all electronic systems in their ground states no matter what the external potential
is. This functional is used to develop a variational principle.

The authors essentially state and prove two theorems. These theorems are at
the heart of modern density functional theorv, so here thev are. I have renlaced

IV AICAIL U1 ALUUCIL URAISILy duiluliadn Ll y, SU aitaT Wil 1 AVe ITphaltAs

the number density n(r) beloved of physicists with P(r), the electron density
beloved of chemists.

Theorem 1
The electron density P(r) determines the external potential.
Proof

Suppose there are two external potentials v;(r) and v,(r) arising from the same
electron density P(r). There will be two Hamiltonians H; and H, with the same
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electron density with different wavefunctions W; and W». If €; and ¢, are the
ground—state energies for H; and H, respectively, then

£ < /W;ﬁﬂﬂz dr
1 can rearrange the right-hand side as follows:

[ * fy [ 77 .1

als ale Ae Al ¥ A— 1 ,*/
j w2111w2ub—j (/12112W2ULTJ ([12\

which gives

r

sr<et | P (r) [v1(r) — va(r)]dr
The above argument can be repeated with subscripts interchanged to give

6 <1+ / P(®)[v2(r) — vy (0)] de

g1t eé<e+ée
which is a contradiction.

Thus v(r) is a unique functional of the electron density; since v(r) fixes the
Hamiltonian we see that the full many-particle ground state is a unique functional
of the electron density.

Note that the theorem is restricted to electronic ground states.

We next define a universal functional

FIP(r)] = / o (T + fj) Wdr

e(P(r)) = / v(r)P(r)dt + F[P(r)]dt

Theorem 2
&(P(r)) assumes its minimum value for the correct P(r), if the admissible func-
tions P(r) satisfy the condition



224 MODELLING MOLECULAR STRUCTURES

Proof :
Any approximate density P(r), by Theorem 1, determines the Hamiltonian anq
wavefunction W. Using this wavefunction in the variational expression we obtajp

= / U*HW dr > ¢[P(r)]

The main problem relating to practical applications of the Hohenberg and Kohn
theorems is obvious: the theorems are existence theorems and do not give us any
clues as to the calculation of the quantities involved.

In Part 2 of their paper, Hohenberg and Kohn go on to investigate the form of
the functional F[P(r)] in the special cases of certain limiting charge densities,
They find that F[P(r)] can be expressed in terms of the correlation energy and
electric polarizabilities.

13.2 THE KOHN-SHAM EQI

224 - 4 VS § ~ ) Ve B
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The next key paper is that of Kohn and Sham. Here is the abstract, which is
self-explanatory.

Self-Consistent Equations Including Exchange and Correlation Effects
W. Kohn and L. J. Sham
Physical Review 140 (1965) A1133

From a theory of Hohenberg and Kohn, approximation methods for treating

aro AQ‘?DI(\!‘\QA T]‘\A(‘n
an inhomogeneous system of interacting electrons are developed. These

methods are exact for systems of slowly varying or high density. For the
ground state, they lead to self-consistent equations analogous to the Hartree
and Hartree—Fock equations, respectively. In these equations the exchange
and correlation portions of the chemical potential of a uniform electron
gas appears as additional effective potentials. (The exchange portion of
our effective potential differs from the due to Slater by a factor of 2/3.)
Electronic systems at finite temperatures and in magnetic fields are also

treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

The Kohn—Sham equations look like standard HF equations, except that the
exchange term is replaced with an exchange—correlation potential whose form is

o ~rxraa

UNKNowiil.
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In order to bring the notation back into line with other chapters, I will write
the electronic energy for a molecular species as

£e[P] = v[P] + hy[P] + J[P] + Vxc[P] (13.9)

The first term on the right-hand side is a contribution from external fields, usually
zero. The second term is the contribution from the kinetic energy and the nuclear

araction. The third term is the Coulomb renulsion between the electrons, and

atraCudUii. 1000 Wil G Willl 15 UWiv LUBIVILY IVPUISIUIL DLWl Wit LILLUUILS, anu

the final term is a composite exchange and correlation term.

All that is needed (in principle) in order to solve the KS—-LCAO equations
is a simple modification to standard HF—LCAO computer codes. The exchange
contribution has to be replaced by the KS contribution.

We often split the exchange—correlation term into a sum of one part for
exchange effects and one part for correlation effects.

13.3 THE LOCAL DENSITY APPROXIMATION

There is no systematic way in which the exchange correlation functional Vxc[P]
can be systemat1cally improved; in standard HF—LCAO theory, we can improve
on the model by increasing the accuracy of the basis set, doing configuration
interaction or MPn calculations. What we have to do in density functional theory
is to start from a modei for which there is an exact soiution, and this modei is
the uniform electron gas. Parr and Yang (1989) write

Vxc(P) = Vx(P) + Vc(P) (13.10)
The exchange part is given by the Dirac exchange-energy functional
Vx = CP'? (13.11)

Accurate values of the correlation functional are available thanks to the quantum
Monte Carlo calculations of Ceperley and Alder (1980). These values have been
interpolated in order to give an analytic form to the correlation potential (Vosko,

A} 154 [ TR,
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134 BEYOND THE LOCAL DENSITY
APPROXIMATION

According to many authors (e.g. Handy, 1993), the local density approximation
(LDA) is not adequate for useful predictions in computational chemistry.

13.5 THE BECKE EXCHANGE CORRECTION

One of the most important deficiencies of the LDA exchange is that is does
not have the correct asymptotic behaviour. Becke (1988a) recognized that it was
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necessary to introduce both a logarithm and a term that included the gradient of
the density. He found o

2

X

vVB—_pgpii T
x=—F 1+ 6Bxsinh™'x (13.12)
|grad P| '
X = na/R
P/

It has one adjustable parameter B which was chosen so that the sum of the LDA
and Becke exchange terms accurately reproduce the exchange energies of six

nohle ogac atomg
..... € gas atoms.

13.6 THE LEE-YANG-PARR CORRELATION
POTENTIAL

Development of the Colle—Salvetti Correlation-Energy Formula into a
Functional of the Electron Density
Chengteh Lee, Weitao Yang and Robert G. Parr
Physical Review B 37 (1988) 785-789

A correlation-energy formula due to Colle and Salvetti [Theor. Chim.
Acta 37 (1975) 329], in which the correlation energy density is expressed
in terms of the electron density and a Laplacian of the second-order
Hartree—Fock density matrix, is restated as a formula involving the density
and local kinetic-energy density. On insertion of gradient expansions for the

local kinetic-energy density, density functional formulas for the correlation
enerov and correlation potential are then obtained. Throuch numerical

energy and correlation potential are then obtained. Through numeric

calculations on a number of atoms, positive ions, and molecules, of both
open- and closed-shell type, it is demonstrated that these formulas, like
the original Colle—Salvetti formulas, give correlation energies within a few
percent.

The great challenge is to develop improved functionals for molecular studies,

and a great deal of effort is currently going into such studies.

13.7 QUADRATURE

Implementation of the Kohn—Sham—-LCAO procedure is quite simple: we replace
the standard exchange term in the HF—-LCAO expression by an appropriate Vxc
that will depend on the local electron density and perhaps also its gradient. The
new integrals involved contain fractional powers of the electron density and
cannot be evaluated analytically. There are various ways forward, all of which
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involve numerical integration (or quadrature). All methods involve a grid of
points in molecular three-dimensional space. A typical scheme is that discussed

by Becke.

Multicenter Numerical Integration Scheme for Polyatomic Molecules
~ A.D. Becke
The Journal of Chemical Physics 88 (1988b) 2547-2553

‘We propose a simple scheme for decomposition of molecuiar functions into
single-center components. The problem of three-dimensional integration in
molecular systems thus reduces to a sum of one-centre, atomic-like inte-
grations which are treated using standard numerical techniques in spherical
polar coordinates. The resulting method is tested on representative diatomic

and nolvatomic svsteme for which we ohtain five- or gix-fionre accuracvy
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using a few thousand integration points per atom.

13.8 A TYPICAL IMPLEMENTATION

Gaussian98 gives a choice of six exchange functionals and seven correlation
functionals, together with a number of so-called hybrid functionals. These latter

1/38=1/1;

2/17=6,18=5/2;
3/5=16,6=1,11=2,25=1,30=1/1,2,3;
4//1;

5/5=2,32=1,38=4,42=402/2;
6/28=1/1;
99/5=1,9

2/

o=
iy
~
\0
0

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1
o)
Hl O ROH
Hl O ROH H1 Angle
Variables:
ROH ‘ 0.957
Angle 104.5
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include a mixture of HF exchange with density functional exchange correlation,
There is a great deal of interest in hybrid functionals at present. It is interesting to
see that the only local exchange functional used in Gaussian98 is the Slater one,

As mentioned above, a KS—LCAO calculation adds one additional step to
each iteration of a standard HF—LCAO calculation: a quadrature to calculate the
exchange and correlation functionals. The accuracy of such calculations therefore
depends on the number of grid points used, and this has a memory resource
implication. The Kohn—Sham equations are very similar to the HF-LCAO ones
and most cases converge readily.

Here is a KS—-LCAO calculation on water at the experimental geometry of

—~

95.7pm and 104.5°. I chose the BLYP functionai; this comprises Becke’s 198§

Rotational constants (GHZ): 822.4556261 437.8911976
285.7515664

Isotopes: 0-16,H-1,H-1

Standard basis: CC-pVTZ (5D, 7F)

There are 23 symmetry adapted basis functions of Al symmetry.
There are 7 symmetry adapted basis functions of A2 symmetry.
There are 11 symmetry adapted basis functions of Bl symmetry.
There are 17 symmetry adapted basis functions of B2 symmetry.

Crude estimate of integral set expansion from redundant
integrals=1.074.
Integral buffers will be 262144 words long.

Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.

58 basis functions 82 primitive gaussians
5 alpha electrons 5 beta electrons
nuclear repulsion energy 9.1969343804 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 58 RedAO= T NBF= 23 7 11 17
NBsUse= 58 1.00D-04 NBFU= 23 7 11 17

Projected INDO Guess.
Initial guess orbital symmetries:
Occupied (Al) (Al) (B2) (Al) (B1)
Virtual (A1) (B2) (Al) (Al) (A1) (A1) (A1) (Al) (A1) (Aal)
(A1) (A1) (A1) (A1) (A1) (Al) (A1) (A1) (A1) (A1)
(A1) (a2) (a2) (A2) (Aa2) (A2) (a2) (A2) (B1l) (B1l)
(B1) (B1) (B1) (B1l) (B1) (B1l) (B1) (B1l) (B2) (B2)
(B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2)
(B2) (B2) (B2)
Warning! Cutoffs for single-peint calculations used.
Requested convergence on RMS density matrix=1.00D-04 within 64
cycles.
Requested convergence on MAX density matrix=1.00D-02.
Requested convergence on energy=5.00D-05.
Keep Rl and R2 integrals in memory in canonical form, NReqg=
5761857.

SCF Done: E(RB-LYP) = -76.4411026287 A.U. after 6 cycles
Convg = 0.2791D-05 -V/T = 2.0040
S*%2 = 0.0000

Figure 13.3
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orbital Symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2) (B2) (A1) (A1) (Bl) (B2) (Al) (A2) (B1)
(A1) (B2) (B2) (Al) (Bl) (A2) (B2) (Al) (Al) (A1)
(B2) (B1) (A1) (A2) (B1) (B2) (B2) (Al) (A2) (B1)
(B2) (Al) (A2) (A1) (B2) (Bl) (B2) (Al) (Al) (B2)
(B1) (Al) (Bl) (A2) (Al) (B1) (B2) (Al) (A2) (Al)
(B2) (B2) (A1)
The electronic state is 1-Al.

Alpha occ. eigenvalues -- -18.76231 -0.91207 -0.46904 -0.32290 -0.24616
Alpha virt. eigenvalues -- 0.00328 0.07608 0.33663 0.38177 0.45939
Alpha virt. eigenvalues -- 0.54070 0.58491 0.59357 0.64622 0.74151
Alpha virt. eigenvalues -- 0.87913 0.97494 1.24170 1.26731 1.71176
Alpha virt. eigenvalues -- 1.73466 1.75416 1.83488 1.90195 2.17845
alpha virt. eigenvalues -- 2.53596 2.99038 3.13072 3.20401 3.28472
Alpha virt. eigenvalues -- 3.29464 3.45557 3.51785 3.58143 3.61826
Alpha virt. eigenvalues -- 3.63519 3.69604 3.93397 3.95737 4.17591
Alpha virt. eigenvalues -- 4.20129 4.44204 4.66603 4.73489 4.95462
Alpha virt. eigenvalues -- 5.51075 6.01502 6.29660 6.29910 6.39267
Alpha virt. eigenvalues -- 6.43740 6.49235 6.54653 6.68312 6.84804
Alpha virt. eigenvalues -- 7.19141 7.64739 12.01801
Figure 13.4
Total atomic charges:
1

1 O -0.414266

2 H 0.207133

3 H 0.207133

Sum of Mulliken charges= 0.00000
Figure 13.5

exchange functional and the Lee, Yang and Parr correlation functional. I also
chose a large and sophisticated basis set.
Flgure 13.2 shows the route and basis set choice.

lllCll rlguu; lD J bIlUWb WIldl. dppCdlb to UC a bld[lud.lu l'l[‘ L\JI'\U Ldl(.«uld.(.lUIl

The calculated density functional KS—-LCAO energy is denoted E(RB-LYP).

I drew attention in Chapter 12 to the fact that the X orbitals did not satisfy the
nice properties of standard HF—LCAO ones: the Koopmans theorem is not valid,
and so on. The same is true of all density functional KS—L.CAO calculations.
In practice, it usually turns out that the KS—LCAO orbitals are very similar to
ordinary HF—~LCAO ones, which must mirror the fact that exchange—correlation

effecte ara anly art nf tha tatal alactern narou Qna tha arhitale ara
wiivwld alv \Jlll] a ].lllllU]. Pu].t Ul uiv wiar \/I\JVIJ.UI.II\/ Ull\./lsy (e iV lll\/ viviwdald aiv

often analysed as if they were ordinary HF orbitals (Figure 13.4).
The KS—LCAO orbitals may be visualized by all the popular methods, or one
may just focus on the Mulliken population analysis indices (Figure 13.5).
Density functional theory was originally developed by solid-state physicists
for treating crystalline solids and almost all applications were in that field until
the mid-1980s. It is a current hot topic in chemistry, with many papers appearing
in the primary journals.
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4 POTENTIAL ENERGY
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SURFACES

The concept of a potential energy surface has appeared in several chapters Just to
remind you, we make use of the DUlu—uppcuucuucl applUAuuauuu 0 S¢parate
the total (electron plus nuclear) wavefunction into a nuclear wavefunction and
an electronic wavefunction. To calculate the electronic wavefunction, we regard
the nuclei as being clamped in position. To calculate the nuclear wavefunction,
we have to solve the relevant nuclear Schrodinger equation. The nuclei vibrate in
the potential generated by the electrons. Don’t confuse the nuclear Schrodinger
equation (a quantum-mechanical treatment) with molecular mechanics (a classical
treatment).

People are interested in potential energy surfaces for a variety of reasons. They
might want to

e calculate molecular geometries, in which case they are interested in the local

and glnhal minima on the surface;

e fit an analytical expression to the potential energy surface for one reason or
another. For example, to use the resulting curve as input to a ‘scattering’
calculation, or to test out the validity of some physical model such as the
harmonic oscillator. In the latter case, the physical model will be represented

ac a (cimnla) annation containing a numhar of naramatare and the aim of
Ad a4 \DULUPIV) VY{UdauUll LULILALLLILLEE G UULIULVL Ul PAlaiiivivid aliu uiv s U2

the calculation is to choose the best parameters in order to give a fit with
experiment;

intention of interpolation, differentiation, integration and so on. In this case,
the form of the fitting equation is usually irrelevant;

e OIVP a very accurate representa tion of the notential energy surface, with the

e investigate chemical reactions from a study of saddle points. Such data is of
great interest in theories of reaction mechanisms, but virtually unobtainable

from evnerimental meacniramaentg:
1O CXPOIimitilvda: MCasUrCimeis,
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o calculate accurate force constants for a novel molecule. Such experimental
data is hard to come by, even after making all possible isotopic substitutions.

s 11 sl

All these

roblems are int
roblems nt:

141 A DIATOMIC MOLECULE

Consider a diatomic molecule such as 'H3CL. Within the Born—Oppenheimer
approximation, we focus attention on the electronic wavefunction and calculate
- epough data points to give a potential energy curve. Such a curve shows the
;ariazion of the electronic energy with internuclear separation. The nuclei vibrate
in this potential.
1" You will easily reproduce Table 14.1 if you have access to an ab initio package.
A more advanced calculation shows that the potential (defined by the
data points) has a minimum at 127.34pm with a corresponding energy of
~460.244 0222 Ey,.
Suppose for example that we want to test the validity of our data against the
harmonic model
: ge = €0 + 3ks(R — Re)? (14.1)

(I have written &. because we have calculated an electronic energy.) One way
to do this is to fit the data points to a function such as

e=a+bR—c) (14.2)
Table 14.1
R/pm MP2 Energy/Ey
110.0 —460.217 540
112.5 —460.225 580
115.0 —460.231 890
117.5 —460.236 630
120.0 —460.240 130
1225 —460.242 410
125.0 —460.243 660
127.5 —460.244 020
130.0 —460.243 600
132.5 —460.242 490
| 135.0 —460.240790
' 137.5 —460.238 580
140.0 —460.235920
142.5 —460.232890
i 145.0 —460.229 530
147.5 —460.225 890
150.0 —460.222030
e 152.5 —460.217970

155.0 —460.213 760
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Table 14.2 HClI MP2/6-311G**

calcuiation

Equation k/Nm™!
14.2 459.3
14.3 355.9
144 403.1
i4.5 434.5
Experimental value 516.3

where a, b and ¢ can be determined by least squares techniques. Other strategjes
might be to fix the constant(s) a and/or ¢

e =a+ bR — 127.34pm)? (14.3)
£ = —460.244 0222Ey, + b(R — 127.34 pm)° (14.4)

Alternatively, we might try to allow for anharmonicity and write a more general
expression such as

If for the minute we

AVL Uil iiisjiuce vy

Table 14.2.

On the other hand, the equaiion
& = & +aln(R/pm) + b(In(R/pm))* + c(n(R/pm))’ + - - - + g(n(R/pm))*
(14.6)
gave the best fit to the data points out of the several thousand equations I tested,
but it bears no relation to any simple physical model.
For the rest of the chapter, I am going to be concerned with two problems:

e characterizing stationary points on a potential energy surface, and
e locating stationary points on a potential energy surface.

14.2 CHARACTERIZING POINTS ON A POTENTIAL
ENERGY SURFACE

In Chapter 1, I discussed the Taylor expansion for a general diatomic potential
U(R) about the equilibrium bond length R.:

rr

1
R

-~

where the point R is close to R.. Symbols such as (dU/dR), mean that we
calculate the first derivative and then evaluate it at the point R..
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KR isa minimum point then

(AU _o

\@& )
and Ceuy

\ar? ), ="

We often choose the zero of potential such that U(R.) = 0 and the term

! 1 (d2U>
: 2 \dR? /.

B PRSI I IR PPN

" So in order to calculate the harmonic force constant from equation 14.6 above,
" & =¢o +aln(R/pm) + b(In(R/pm))* + c(In(R/pm))* + - - - + g(In(R/pm))°

1 would have to find the minimum and then calculate the second derivative at
the minimum.

Suppose that our potential function U is now a function of many (p) vari-
ables. They could be bond lengths, bond angles, dihedral angles or the Cartesian
coordinates of each atom in a molecule. I will write these variables x;, x3, ..., x,
and so

U=U@,%2,...,%p)

I can collect the coordinates xi, x5, ..., Xp into a column vector

. \

X1
[ =)
\,/
and so x defines a vector in a p-dimensional space. If I write U as U(x), then
Taylor’s expansion of U about point xq is

U = Utso)+ Y ( %) (i — /)
i=1 N/

/X
i

2 P s 2U \

1 —
f +§LL(3xi3xj)oo
i=1 j=1 X X;

(=) (55 —x0) 4o (148)

The column vector with components U /dx; is the gradient of U; it gives the
Regative of the force, when evaluated at a nuclear position. The p x p matrix
Wwith components BZU/B_x,.-ij is called the Hessian. The Hessian is also called
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the force constant matrix. I will use the symbols g and H, so that

U U *U U
E ?% ax10x, o 0x10x,,
14 U U U
g=grad U = 3:x2 and H= m 8x2 T 3x28x,,
U U 32U 32U
Ox 0x,0x)  0xp0x2 o 8;1% /

I discussed stationary points in Chapter 1: a stationary point is one where
the gradient vector is zero. For functions of a single variable, such points can be
maxima, minima or points of inflection, as determined by the value of the second
derivative. For functions of many variables, the points can be maxima, minimg
or saddle points and they are characterized by the eigenvalues of the Hessian
matrix. If all the eigenvalues are positive, the point is a local minimum. If all are
negative then the point is a local maximum. A first-order saddle point has one
negative eigenvalue An nth-order saddle point has n negative eigenvalues.

A minimum on a potential energy surface represents an equilibrium structure

Th nf ennoh 1 1 M A
There will 1ﬂ‘v’anabl_y be a number of such local rmmma, ana we can uuagluc a

number of paths on the surface that connect one particular minimum to another.
If the highest-energy point on each path is considered, the transition structure can
be defined as the lowest of these maxima. The reaction path is the lowest-energy
route between two minima.

An intrinsic reaction coordinate (IRC) is concerned with travel along the reac-
tion path; it can be defined by the path taken by a classical particle sliding from

a saddle point down to a minimum

e iiiiiissiinisl ey

14.3 LOCATING STATIONARY POINTS
14.3.1 A Function of a Single Variable

A good place to start our study is with a function of a single variable f(x).
Consider the function
f(x) = xexp(—x)

for which o
ajx)
dx
It is obvious by inspection that the equation f(x) =0 has a root at x =0, and a
graph of the function is shown in Figure 14.1.
A simple way of finding the roots of an equation, other than by divine inspi-

ration, symmetry or guesswork is afforded by the Newton method. We start at
some point denoted x(1) along the x-axis, and calculate the tangent to the curve at

= exp(—x) — xexp(—x)
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Figure 14.1 Newton’s method. Dotted line is tangent at x = 0.5

this point. For the function in the figure, if we take x! = 0.5, then the gradient
at this point is 0.3033. I will write this as (df/dx),m. A simple calculation shows
that this tangent line cuts the x-axis at the point

@ _ (df)_l (D
D =xO (=) f(x") (14.9)
dx x

which works out as —0.5. We take x¥ = —0.5 as the next guess for the root of
the equation and repeat the process until the required accuracy is achieved. We
have to repeat the process for all of the roots, unless we are just interested in
certain ones.

Newton’s method can be easily re-written for the problem of finding stationary
points, where (df /dx) = O rather than x = 0. The formula 14.9 becomes

D — M _ (i—i); (%)xm (14.10)

and so we need to know the first and second derivatives of f(x) in order to apply
the moathn~d

v aCuiia.
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Newton’s method raises several issues. There is the ease of evaluating the
function value (the energy, in our case), and this has to be balanced against the
number of variables. A molecular mechanics calculation on a large molecule will
typically have thousands of unknown bond lengths, bond angles and the [ike
but the energy formula is particularly simple. An HF—-LCAO calculation on a

system of medium size nnght have 100 unknowns but each energy evaluau(m

Af tha TOE_T AN anarayu) will tala +1 Far thaca reacon
\Ul ui€ nr—iraanv \.11\415]/ Wil (aKe SOme tme. r'or tnese reasons, uuuuulLd[l()n

techniques for MM applications tend to be different from minimization techmques
for quantum-chemical applications.

Finally, there is the question of availablity of analytical derivatives. Minima,
maxima and saddle points can be characterized by their first and second deriva-
tives. Over the last 25 years, there has been a rapid development in this area,
and analytical gradient formulae are now known for most of the common tech-
niques discussed in this volume. The great advantage is that those methods that
use analytical gradients tend to out-perform in speed of execution those methods
where gradients have to be estimated numerically.

14.3.2 Function-only Minimization Methods

Such algorithms can be found in any standard book on numerical analysis. These
methods have the widest range of applicability, but they tend to be slower
than those methods that make use of analytical formulae for the gradient. Two
examples will give the gist.

14.3.3 The Sequential Univariate Search

Here we change one variable at a time, and cycle over all the variables until a
minimum is reached. We proceed as follows:

Calculate the energy at the initial geometry.
Calculate the energy at two displacements along a coordinate.
Fit a quadratic to these three points.

Find the minimum of the quadratlc and calculate the energy.

MNha tha <t o3 A hack ta atoan 9
\Jll\JUDU lllb ll\./Al, \.«UUL\.llllal,\.a, auu 5\1 vavn WU oy l.l PN

Wb N =

We stop the calculation once the change in the coordinates is thought to be

acceptable. In general, convergence is slow and the only way to check the accu-
racy is to carry through yet another cycle and observe the changes in predicted
coordinates.

14.3.4 The Fletcher—Powell Algorithm

A more sophisticated version of the sequential univariate search, the
Fletcher—Powell, is actually a derivative method where elements of the gradient
vector g and the Hessian matrix H are estimated numerically.
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1 Calculate the energy U¥ for an initial geometry x* (with iteration count k = 0),
and at positive and negative displacements for each of the coordinates. (Note
that I have dropped the brackets from around the iteration count superscript,

for clarity.)
9 Fita quadratic for each of the coordinates according to the formula

N SOV AR . | P A
U(X):UK+Lkgf (xi—xf)-l-EH:fi (xi — f)) (14.11)
i=1

(which essentially gives numerical estimates of the gradient and the Hessian).
3 Find a minimum of this expression

U
Y _o
8X,'
g +HE (xi—x) =0 (14.12)
k
pr=x— b= 5L
Hi;

The last term gives the correction to coordinate x;; if the p’s are small enough
then stop. Otherwise we progress to the next point on the surface. To do
this we:

4 Calculate the energy at points x, x* + p* and x* + 2p*.

5 Fit a quadratic to these three points as in step 2.

6 Find the energy minimum, as in step 3. This gives point x¢*!

Calculate the gradient g¢+! at this point.
7 Go back to step 3.

on the surface.

14.3.5 Gradient Methods

The term gradient method is often applied to algorithms that make use of a
gradient to find stationary points. It is always possible to estimate the gradient
numerically, for example by calculating the function value at points that are close
together in space
/d £\ Fly: L A — Flx:)
. 1 ~ J L =y J J
\&

X=X]

(14.13)

but such numerical estimations need sevaral energy evaluations and there is
the gradient and a non-gradient method.

I will use the term ‘gradient method’ to imply the existence of an analytical
formula for the calculation of an energy gradient. In order to calculate an analyt-
iiqéal formula, we have to be able to differentiate one- and two-electron integrals
With respect to nuclear coordinates.
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14.3.6 Newton’s Method

The algorithm for a function of a single variable

@ o _ (LLY (4
\dx? /o \dx /o

~
—
i~
-
oy
N

x® =x® - (HO) ™ g® (14.15)

when we have to deal with a function of many variables. In ab initio calculanons
the gradient vector involves first derivatives and the Hessian involves second
derivatives of the basis functions with respect to the nuclear coordinates. Firs.
and second-derivative expressions are known for a number of levels of theory.

144 GENERAL COMMENTS

Many gradient methods approximate the energy surface at step k by a quadratic
expression in terms of the coordinate vector x(¥), the total energy £®, the gradlent
g® and the Hessian H®

T
%) =P ) + (@) (x — x®) + (x — X(k))T HO (x —x®)  (14.16)

Almost all optimization methods need a starting geometry and an initial estimate
of the Hessian. The Hessian is improved as the optimization proceeds.

14.5 STEEPEST DESCENTS

The simplest gradient method is the steepest descents algorithm. The Hessian is
taken as a multiplier of the unit matrix, and it is constant for the entire geometry
optimization. The search is along the direction in which x* decreases most
rapidly. Experience suggests that the steepest descent algorithm quickly decreases
the energy in the first few cycles, but that the final convergence is slow.

14.6 THE FLETCHER-REEVES ALGORITHM

The most frequently used methods fall between the Newton method and the
steepest descents method. These methods avoid direct calculation of the Hessian
(the matrix of second derivatives); instead they start with an approximate Hessian
and update it at every iteration.

The conjugate gradient method is one of the oldest; in the Fletcher—Reeves
approach, the search direction is given by

) (14.17)

p® = _g® 4 pk-D \
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more detailed discussion of such methods can be found in specialist books

deahng with opnmlzauon (Fletcher, 1981; Powell, 1985).

{47 THE HELLMAN-FEYNMAN THEOREM

Suppose we have a wavefunction W, which for the sake of argument I will assume
1o be real. The expectation value of the energy is

£ = / WH W dr
and the wavefunction is normalized if
r
/ Yydr =1

now differentiate these expressions with respect to some parameter ‘a’ that
could be a Cartesian coordinate, the component of an applied electric field, or
whatever. We then have

o . oH . OW
g /R—H\Ildt—l— /lllﬂ—llldt+ /\IIHQ— dr (14.18)

The first and third terms on the right-hand side are equal for a real wavefunction.
Differentiating the normalization condition gives

r s r Ns

0:/ %E\Ildt-i-/ w;; dr

(14.19)

which shows that W is orthogonal to its derivative. The two terms on the right-

hand side are gbviously equal. Reneated differentiation of exnression 14.10¢
WI\J ViV Guwvw U 'L\Ju\)l \-luul .l\vl.l\.dulv\l\-l NALAAWEWIAUIQUIVILL Vi VAPIVOUOLULL 17 T.1 .7 UL

that W is orthogonal to all its derivatives.

In the early days of quantum chemistry, it was argued that terms such
% f (Blll/aa)ﬁ Wdr were therefore zero, as substitution of HW = ¢W into
Fquation 14.18 might suggest. Unfortunately, exact wavefunctions are very hard
to come by and HYU =¥ only for an exact wavefunction.

- The result

hows

A

—/ xp"“ Wdr (14.20)

CD
m

¢ da
h‘l‘:ferred to as the Hellman—Feynman theorem. It was widely used to investi-
Jate isoelectronic processes such as isomerizations X — Y, barriers to internal
tation, and bond extensions where the only changes in the energy are due to
nges in the positions of the nuclei and so the energy change can be calculated
m one-electron integrals.

Notice that the Hellman—Feynman theorem only applies to exact wavefunc-
!@S, not to variational approximations. All the enthusiasm of the 1960s and
Wﬂs evaporated when it was realized that approximate wavefunctions them-
11“ ves also depend on nuclear coordinates, since the basis functions are usually
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centred there. So the derivatives of W with respect to the parameter ‘a’ are not
necessarily negligibie.

The Hellman—Feynman theorem deserves a place in history and in thig text,
but all attempts to make profitable use of the theorem failed because of the smajj
print contained in the paragraph above. ‘

14.8 THE COUPLED HARTREE-FOCK (CPHF)

To show the principles involved in finding an analytical gradient expression,
consider an HF—LCAO calculation where the electronic energy comes to

g. = trace(Phy) + jtrace(PG) (14.21

The P matrix involves the HF-LCAO coefficients and the h; matrix has elements
that consist of the one-electron integrals (kinetic energy and nuclear attraction)
over the basis functions xj, . .., x,. The G matrix contains two-electron integrals
and elements of the P matrix. If we differentiate with respect to parameter ‘g’
which could be a nuclear coordinate or a component of an applied electric field,

then we have to evaluate terms such as

5 A :
% / Xi(Dh () x;(r)dr (14.22)
a
d
%/Xi(rl)Xj(rl)g(rlvrZ)Xk(rZ)X.!(rZ)dfl dr, (14.23)
and
BP!'; A
— (14.24)
oa

The first two kinds of terms are called derivative integrals; they are the derivatives
of integrals that are well known in molecular structure theory, and they are easy
to evaluate. Terms of the third kind pose a problem, and we have to solve a set
of equations called the coupled Hartree—Fock equations in order to find them.
The coupled Hartree—Fock method is far from new; one of the earliest papers is
that of Gerratt and Mills.

Force Constants and Dipole-Moment Derivatives of Molecules from
Perturbed Hartree—Fock Caiculations 1
J. Gerratt and I. M. Mills
Journal of Physical Chemistry 49 (1968) 1719

General expressions for the force constants and dipole derivatives of
molecules are derived, and the problems arising from their practical
application are reviewed. Great emphasis is placed on the use of the
Hartree—Fock function as an approximate wavefunction, and a number
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of its properties are discussed and re-emphasized. The main content of
this paper is the development of a perturbed Hartree—Fock theory that
makes possible the direct calculation of force constants and dipole-moment
derivatives from SCF-MO wavefunctions. Essentially the theory yields
a¢;/ORS, the derivative of an MO with respect to a nuclear coordinate.

m——

A pioneering paper in gradient evaluation is that of Pulay.

I
Ab Initio Calculation of Force Constants and Equilibrium Geometries
in Polyatomic Molecules. I. Theory
P. Pulay
Molecular Physics 2 (1969) 197-204

The general expression for the exact forces on the nuclei (negative deriva-
tives of the total energy with respect to the nuclear coordinates) is applied

for Hartree —Fock wavefunctions. It is sucoested that force constants should

107 SAaICC—TOCK VOIRACLUONS. 23 58 SUEELSILE UlIar 10100 CONSAINS SN0BG

be calculated by differentiating the forces numerically. This method, called
the force method, is numerically more accurate and requires less computa-
tion than the customary one of differentiating the energy numerically twice.
It permits the quick determination of the equilibrium geometry by relaxing
the nuclear coordinates until the forces vanish. The unreliability of the
methods using the Hellmann—Feynman forces is re-emphasized. The ques-
tion of which force constants can be best calculated ab initio is discussed.

Note Pulay’s mention of the Hellman— Feynman theorem. We have moved on
since 1569, especially in the development and application of analyiical methods
for evaluating the gradients.

E

149 CHOICE OF VARIABLES

Ab initio packages are generally written to perform their minimizations using
so:called internal coordinates. This means the bond lengths, bond angles and
tzimuthal angles discussed in Chapter 1. Such coordinates are often called
‘valence coordinates’ because they relate to chemists’ way of thinking. MM
packages often work directly with the Cartesian coordinates.

iIn the early days of ab initio geometry optimizations, everything was control-
ied by the Z-matrix discussed in Chapter 10. To give an example, consider ethene
fHs. There are N = 6 atoms and so the molecule has 3 x 6 — 6 = 12 degrees
of vibrational freedom. A full geometry optimization should therefore include
{3 independent bond lengths, bond angles and azimuthal angles. However most
#hemists would be interested in a planar D,,-symmetry ethene, for which all HCC

hond angles were equal and all the CH bond lengths were the same (Figure 14.2).
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Symbolic Z-matrix:
Charge = 0 Multiplicity =1

(o2}

Cc2 C1l RCC

H1 Cl  RCH Cc2  Angle

H2 c2 RCH Cl Angle H1 180. 0

H3 c2 RCH Cl Angle H1 0. 0

H4 Cl RCH Cc2 Angle H3 180. 0
Variables:

RCC 1.2

RCH 1.08

Angle 120.

Berny optimization.

Initialization pass.
! Initial Parameters !
! (Angstroms and Degrees) !

! Name Value Derivative information (Atomic Units) !
1 RCC 1.2 estimate D2E/DX2
! RCH 1.08 estimate D2E/DX2
! Angle 120. estimate D2E/DX2

Figure 14.3

Here are the salient features from a typical Gaussian98 run on ethene at the
HF/6-311G** level of theory, using the Z-matrix option (Figure 14.3). I have
forced Dy, syminetry by setting all the C—H bonds equal, all HCC bond angles
equal and all azimuthal angles equal.

The three variables R(C-C), R(C-H) and the angle HCC are displayed,
together with the Z-matrix. As the calculation progresses, the force on each
nucleus is displayed as in Figure 14.4 and the optimization algorithm proceeds
to find the values of these variables that lead to a local minimum on the potential

energy surface. In Figure 14.5 we keep our eye on the second derivative (force

constant) matrix esnecially the eicenvalueg
wULIO M—I.llL/ L1IQALE Iy \/DY\/\/‘“}.IJ i \Jlsvll YAaLuvo.

Eventually, if all has gone well, we reach the local stationary point
(Figure 14.6).

We still have to investigate the nature of the stationary point, especially in
view of my assumption of Dy, symmetry. We do this by calculating the Hessian
matrix at this point, and finding its eigenvalues. To repeat myself, an energy

minimum corresponds to positive eigenvalues. A single negative eigenvalue tells
us that we have a saddle point
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xx%+* Axes restored to original set **k*x*
‘ Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
1 6 0.000000000 0.000000000 -0.014663036
2 6 0.000000000 0.000000000 0.014663036
3 1 0.000276006 0.000000000 0.002054343
4 1 -0.000276006 0.000000000 -0.002054343
5 1 0.000276006 0.000000000 -0.002054343
6 1 -0.000276006 0.000000000 0.002054343
cartesian Forces: Max 0.014663036 RMS 0.004984394
Figure 14.4
" rhe second derivative matrix:
RCC RCH Angle
RCC 1.04510
RCH 0.00784 1.43953
Angle 0.04066 0.00093 1.53653
Eigenvalues --- 1.04310 1.43968 1.93838
RFO step: Lambda=-2.11895882D-04.
Quartic linear search produced a step of 0.04333.
Variable 0ld X -DE/DX Delta X Delta X Delta X New X
{Linear) {Quad) {Total)
RCC 2.47097 0.01055 0.00881 0.00402 0.01283 2.48380
RCH 2.03769 -0.00346 -0.00014 -0.00241 -0.00255 2.03514
Angle 2.13539 -0.01535 0.00178 -0.00990 -0.00813 2.12726
! Item Value Threshold Converged?
Maximum Force 0.015350 0.000450 NO
RMS Force 0.010939 0.000300 NO
Maximum Displacement 0.012830 0.001800 NO
RMS Displacement 0.008891 0.001200 NO

Predicted change in Energy=-1.501837D-04
Figure 14.5

-- Stationary point found.

! Optimized Parameters !
! (Angstroms and Degrees) !

1 Name Value Derivative information (Atomic Units) !
! RCC 1.3163 -DE/DX = -0.0001 !
! RCH 1.0767 -DE/DX = -0.0001 !
! Angle 121.6939 -DE/DX -0.0002 !

Figure 14.6

Over the years, geometry optimization has become an essential part of ab initio
methodology. Research papers simply don’t get published unless they report a
geometry optimization. Almost all of the early ab initio packages made use of
internal coordinates (bond lengths, bond angles and dihedral angles), as defined
by the Z-matrix discussed in Chapter 1. The reason for the popularity of the

L0 wiaiity
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Z-matrix was that it mirrors the way chemists think. Molecular construction using
the Z-matrix is not particularly difficult for a small molecule, and symmetry can
be readily imposed, as in my ethene example above.

Molecular construction for a protein chain is just about impossible using
the Z-matrix (unless you are particularly good at crossword puzzles). Ag y
mentioned in Chapter 10, there are also immense practical difficulties aSSOCiate(i
with symmetric, cyclic and linear structures, and as time went by people begay

to question the use of the Z-matrix.

Finally, I should tell you that structural datab

coordinates. A typical paper from the early 1990s addresses the problem

vaiiau.

PP SRR () VSIS PR PP o P P PRI LaN s

Geometry Upilimizaiion in Lariesian Coordinates:

The End of the Z-Matrix?
Jon Baker and Warren J. Hehre
Journal of Computational Chemistry 12 (1991) 606-610

Geometry optimization directly in Cartesian coordinates using the EF and
GDIIS algorithms with standard Hessian updating techniques is compared
and contrasted with optimization in internal coordinates utilising thewell-
known Z-matrix formalism. Results on a test set of 20 molecules show
that, with an appropriate initial Hessian, optimization in Cartesians is just
as efficient as optimization in internals, thus rendering it unnecessary to
consitruct a Z-matrix in situations where Cartesians are readily avaiiabie,
for example from structural databases or graphical model builders,

Many modern computer codes (e.g. GAUSSIAN9S8) employ so-called redundant
internal coordinates; this means that we use all possible internal coordinates, of
which there will generally be more than 3N — 6. Only a maximum of 3N — 6 will

UC llneafly lIlUCpCIlUClll, d.llu we csbcuuduy I.Il[UW d.Wdy I.IlC [CIIld.i[lUC[ at tne cuu
of the full calculation. Here is ethene, done using redundant internal coordinates.

Symbolic Z-matrix:

Charge = 0 Multiplicity =1

C1 0. 0. 0.
c2 0. 0. 1.2
H1 0.93531 0. -0.54
H2 -0.93531 0. 1.74
H3 0.93531 0. 1.74
H4 -0.93531 0. -0.54
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o ! Initial Parameters !
! (Angstroms and Degrees) !

, Name Definition Value Derivative Info. !
Rl R(1,2) 1.2 estimate D2E/DX2 :
| R2 R(1,3) 1.08 estimate D2E/DX2 !
| B3 R(1,6) 1.08 estimate D2E/DX2 !
| R4 R(2,4) 1.08 estimate D2E/DX2 !
| RS R(2,5) 1.08 estimate D2E/DX2 !
| Al A(2,1,3) 120. D2E/DX2 1
| a2 A(2,1,6) 120. D2E/DX2 !
{ A3 A(3,1,6) 120 estimate D2E/DX2 !
| a4 A(1,2,4) 120. estimate D2E/DX2 :
| a5 A(1,2,5) 120. estimate D2E/DX2 !
| a6  Al(4,2,5) 120. estimate D2E/DX2 !
1 D1 D(3,1,2,4) 180. estimate D2E/DX2 !
| D2 D(3,1,2,5) 0. estimate D2E/DX2 !
y D3 D(6,1,2,4) 0. estimate D2E/DX2 !
y p4 D(6,1,2,5) 180. estimate D2E/DX2 !

First of all (Figure 14.7), the initial structure can be input using any coordinate
system, or with a Z-matrix. I chose Cartesian coordinates, but could have used
the Z-matrix.

The big difference is the internal coordinates: 15 in all, of which 3 are redun-
dant (Figure 14.8).

Once again, we keep our eye on the matrix of force constants. Three eigen-
values are arbitrariliy given a large value (1000) and the variables are updated
(Figure 14.9).

" Eventually, we get exactly the same answer as before, and each calculation
took about the same time on my office PC.

1410 NORMAL COORDINATES

Force constant calculations are normally done in Cartesian coordinates. Suppose
we have N atoms whose position vectors are Ry, Ry, ..., Ry. Each of the atoms
vibrates about its equilibrium position Ry ¢, Rae, ..., Ryee.

The first step in our treatment is to define mass-weighted displacement coor-

dinates

Qi = /mi(R; — R;e) (14.25)
The total nuclear kinetic energy is therefore
N 2
1 d
T=:->" dQ (14.26)
24~ dt
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Eigenvalues --- 0.04734 0.04734 0.04734 0.16000  0.1600¢
Eigenvalues --- 0.16000 0.16000 0.35994 0.35994 0 e
Eigenvalues --- 0.35994 1.04823 1000.000 1000.00 163330

RFO step: Lambda=-4.79873037D-02. -00

Linear search not attempted -- first point.

Iteration 1 RMS(Cart)= 0.09017486 RMS(Int)= 0.00104771

Tteration 2 RMS(Cart)= 0.00096206 RMS(Int)= 0.00000002

Iteration 3 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000000

Variable 0old X -DE/DX Delta X Delta X Delta X New x

(Linear) (Quad) (Total)
R1 2.26767 0.22300 0.00000 0.20343 0.20343 2.47110'
R2 2.04080 -0.00120 0.00000 -0.00293 -0.00293 2.03797
R3 2.04090 -0.00120 0.00000 -0.00293 -0.00293 2.03797
R4 2.04090 -0.00120 0.00000 -0.00293 -0.00293 2.03797
R5 2.04090 -0.00120 0.00000 -0.00293 -0.00293 2.03797
Al 2.09440 0.00672 0.00000 0.03233 0.03233 2.12673
A2 2.09440 0.00672 0.00000 0.03233 0.03233 2.12673
A3 ©2.09439 -0.01345 0.00000 -0.06467 -0.06467 2.02973
Ad 2.09440 0.00672 0.00000 0.03233 0.03233 2.12673
A5 2.09440 0.00672 0.00000 0.03233 0.03233 2.12673
A6 2.09439 -0.01345 0.00000 -0.06467 -0.06467 2.02973
D1 3.14159  0.00000 0.00000  0.00000  0.00000  3.1415g
D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
Item Value Threshold Converged?

Maximum Force 0.223000 0.000450 NO

RMS Force 0.057895 0.000300 NO

Maximum Displacement 0.156772 0.001800 NO

RMS Displacement 0.091031 0.001200 NO

Predicted change in Energy=-2.269891D-02

Figure 14.9

It is convenient to define a set of 3N mass-weighted Cartesian displacement
coordinates g1, g2, ..., g3y such that the first three g’s are the components of
Q1. the fourth, fifth and sixth g’s are the components of Q,, and so on. The
kinetic energy 7 can therefore be written

1 3N dg; )2
T = 5 Zl: & (14.27)

The vibrational potential energy U will also be a function of the q s, so I can
write it

U=U(4g1,92,-..,93n) (14.28)

and we can re-write its expansion about the equilibrium position in a Taylor

3N 3N

U
U= UC+Z( )+ ZZ(Sqlaq>qiqj+.-- (14.29)



POTENTIAL ENERGY SURFACES 247

equilibrium position, the gradient is zero and provided the vibrations are
large we can write

+ 3N 3N, aoeg N
U

1 (o)
U=U,+~ ( ) 4ig; (14.30)
‘ 2221:; 3g:9q; ),
1 3N 3N
, U=U+ EZZuﬁqiq}- (14.31)
4‘ i=1 j=1

‘*he force on atom i is given by the negative of the gradient

i

! n.
F; = —gradU which is m; iy
‘ dr?
ence, each of the g’s satisfies
;!’ ¢q U -0
: dr? aq;
L\ifferentiating equation 14.31 shows that
3N
au
= ui;q
3 ,Z_; ijdj
and so, finally
2 3N
L o Y (14.32)
2
L

Normal modes are those motions where all the atoms are vibrating in phase;
if we write
gi = A; sin(wt + ¢;)

as in Chapter 1, we have

3N
—w’qi+ Y ujg;=0for j=1,2,...,3N (14.33)

1
=1

or
{ q1
21 92

q3N

{un up e u1,3N\ {Q1
Uz Up .-+ U3N q2

U3N,1 U3N2 - UN3N q3N

N————
N————
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Harmonic frequencies (cm**-1), IR intensities (KM/Mole),

Raman scattering activities (A**4/AMU), Raman depolarization ratios,
reduced masses (AMU), force constants (mDyne/A) and normal coordinates:

1
B2U
Frequencies -- 890.0098
Red. masses -- 1.0426
Frc consts -- 0.4866
IR Inten -~ 0.2468
Raman Activ -- 0.0000
Depolar -- 0.0000
Atom AN X Y
1 6 0.00 0.04
2 13 0.00 0.04
3 1 0.00 -0.24
4 1 0.00 -0.24
5 1 0.00 -0.24
6 1 0.00 -0.24

OO0 OO0 0o

.00

o0

.G0
.44
.44

.44
.44

2
B3U
1082.2465
1.1607
0.8010
112.5680
0.0000
0.0000
X Y
0.08 0.00
.08 .00
-0.50 0.00
-0.50 0.00
-0.50 0.00
-0.50 0.00

OO0 OO0 OO

.00

0o

.00
.00
.00
.00
.00

.15

1g

.49
.49
.49
.49

B2G

1096.

1

o ulo -

(ool NeNe)

8653

.5199
.0774
.0000
.5215
.7500

.00
.00
.00
.00
.00
.00

(el oleNeNaNal
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This is clearly a mairix eigenvalue problem; the eigenvalues determine
the vibrational frequencies and the eigenvectors are the normal modes of
vibration. Typical output is shown in Figure 14.10, with the mass-weighted
normal coordinates expressed as linear combinations of mass-weighted Cartesian
displacements making up the bottom six lines.

HyperChem 5.1 has a nice graphical display (Figure 14.11) of calculated vibra-
tional frequencies and it is also possible to animate the vibrations. The bottom

s L tlhn Aloalary chawtre tha ~anlanlotad dmtanciting ~Ff tha cemanteal Tinag
par[ OI UlC uispidy >SHUWDS UIC Ldltulattld HIWCIBIUCS UL UIT dpotial LS.

1411 SEARCHING FOR TRANSITION STATES

Maxima, minima and saddle points are stationary points on a potential energy
surface characterized by a zero gradient. A (first-order) saddle point is a maximum
along just one direction and in general this direction is not known in advance. It
must therefore be determined during the course of the optimization. Numerous
algorithms have been proposed, and I will finish this chapter by describing a few
of the more popular ones.

14.12 SURFACE-FITTING

At first sight, the easiest approach is to fit a set of points near the saddle point to
some analytical expression. Derivatives of the fitted function can then be used to
locate the saddle point. This method has been well used for small molecules (see
Sana, 1981). An accurate fit to a large portion of the potential energy surface
is also needed for the study of reaction dynamics by classical or semi-classical
trajectory methods.

The main disadvantage seems to be the lac iversally appli-
cable method for fitting multidimensional non-quadratic surfaces. Each family of
reactions is a special case.

o ctandard  imitven
d Sldliddaid, ull

14.12.1 Linear and Quadratic Synchronous Transit

The linear synchronous transit (LST) and quadratic synchronous transit (QST)
methods first proposed by Halgren and Lipscomb (1977) make assumptions about
the reaction path. The LST algorithm assumes that the path joining reactants and
products is linear. The LST estimate of the transition state occurs at the energy
maximum along this linear path. The QST algorithm is an improvement on LST,
and searches for a maximum along a parabola connecting the reactants and the
products.
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e

The Synchronous-Transit Method for determining Reaction Pathways and
Locating Molecular Transition States
Thomas A. Halgren and William N. Lipscomb
Chemical Physics Letters 49 (1977) 225-232

In the Synchronous-Transit method, a linear synchronous transit pathway
is first constructed and is then refined by optimizing one or more
intermediate structures subject to the constraint that the optimized structure
retain the same relative position along the path (orthogonal optimization).
The method yields a series of energy estimates, which progressively
bound the energy of the transition state from above and from below,
High computational efficiency is attainable, and sufficient flexibility is
provided to deai with asynchronous processes. Comparisons are made
to the alternative ‘reaction-coordinate’ approach, which is shown to
be subject to several serious deficiencies. The method is applied to a
model two-dimensional energy surface and to the allowed electrocyclic
interconversions of the cyclopropyl and allyl cations and of cyclobutene
and cis-butadiene.

In a recent version, the LST or QST algorithm is used to find an estimate of
the maximum, and a Newton method is then used to complete the optimization
(Peng and Schlegel, 1993).

14.12.2 Coordinate Driving

It often happens that the change from reactants to products is dominated by
the change of one coordinate. A series of points along the reaction path can be
obtained by stepping along the dominant coordinate and minimizing the energy

af tha ramainino coordinatag at aach naint
Gi uil Ieimaining Coo1aGinaws ai €aclin poiit.

14.12.3 Eigenvector Following

One of the earliest attempts to develop a transition-state search algorithm that
could take corrective action when in the wrong region of the potential energy
surface was due to Poppinger (1975). Poppinger suggested that, if the Hessian
had all positive eigenvalues, the lowest Hessian eigenvector should be followed
uphill. If the Hessian had two or more negative eigenvalues, the eigenvector
corresponding to the least negative eigenvalue should be followed uphill. Baker
has described an algorithm that makes use of these ideas.
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An Algorithim ior the Location of Transition States

Jon Baker

Journal of Computational Chemistry T (1986) 385-395

An algorithm for locating transition states designed for use in the ab initio
program package GAUSSIAN 82 is presented. It is capable of locating tran-
sition states even if started in the wrong region of the energy surface, and,
by incorporating the ideas on Hessian mode following due to Cerjan and
Miller, can locate transition states for alternative rearrangement/dissociation
reactions from the same initial starting point. It can also be used to locate
minima.

14.12.4 The Synchronous Transit-Guided Quasi-Newton Method(s)

A recent development uses the quadratic synchronous transit approach to get
close to a transition state, and then a Newton or eigenvector-following algorithm
to complete the optimization. It performs optimizations in redundant internal

Py 1.
coordinates. The key reference is due to Peng, Ayala and Schlegel.

Using Redundant Internal Coordinates to Optimize Equilibrium Geometries
and Transition States
Chunyang Peng, Philippe Y. Ayala and H. Bernhard Schlegel
Journal of Computational Chemistry 17 (1996) 49-56

A redundant internal coordinate system for optimizing molecular geometries
is constructed from all bonds, all valence angles between bonded atoms, and
all dihedral angles between bonded atoms. Redundancies are removed by

nmng the generahzed inverse of the G matr-v constraints can be added l'\v

using an appropriate projector. For minimizations, redundant internal coor-
dinates provide substantial improvements in optimization efficiency over
Cartesian and nonredundant internal coordinates, especially for flexible and
polycyclic systems. Transition structure searches are also improved when
‘tedundant coordinates are used and when the initial steps are guided by the
quadratic synchronous transit approach.




15 DEALING WITH THE
SOLVENT

Chemical reactions generally take place in condensed media. I have had very
little to say so far about the presence or otherwise of a solvent, and many of our
calculations refer to isolated molecules in the gas phase at 0 K.

Over the years, many models have been tried that aim to take account of the
solvent. I will just discuss four basic types.

15.1 LANGEVIN DYNAMICS

In Chapter 2, I gave you a brief introduction to molecular dynamics. The idea is
quite simple: we study the time evolution of our system according to classical
mechanics. To do this, we calculate the force on each particle (by differentiating
the potential) and then numerically solve Newton’s second law

— =F (15.1)

The calculation is advan
statistical data is collected for comparison with experiment.

In Langevin dynamics, we simulate the effect of a solvent by making two
modifications to equation 15.1. First of all, we take account of random collisions
between the solute and the solvent by adding a random force R. It is usual to
assume that there is no correlation between this random force and the particle
velocities and positions, and it is often taken to obey a Gaussian distribution with
Zero mean.

Second, we take account of the frictional drag as the solute molecule moves
through the solvent. The frictional force is taken to be proportional to the velocity
of the particle, with a proportionality constant called the friction coefficient &:

ced by a suitable timestep, typically a femtosecond, and

dr
Fiiction = _sa (152)
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is related to the collision frequency y by y = &/m and for a spherical particle
the friction coefficient y can be related to the diffusion constant D of the solvent
by the Einstein relation

kT

= — 15.3
Y=1o (15.3)
{The quantity y~! is sometimes called the velocity relaxation time; it can be
’Fonsidered to be the time taken for the particle to forget its initial velocity. The
Langevin equation of motion for a particle is therefore

dr dar N
} mﬁ =F —mya—f-l( (15.4)
No solvent molecules are actually included in the simulation. The integration
‘moceeds along the lines discussed in Chapter 2. In the general case, where the
tegration timestep and the velocity relaxation time are of similar magnitudes,
the integration algorithm is rather complicated (van Gunsteren and Berendsen,
1982). We can distinguish two limiting cases, as follows.

If the timestep is short relative to the velocity relaxation time, the solvent does
not play much part in the motion. Indeed, if y = 0, there are no solvent effects
at all. A simple algorithm for advancing the position vector r and velocity v has
been given by van Gunsteren (van Gunsteren, Berendsen and Rullmann, 1981):

r(t+ 6t) =r(t) + dtv(t) + %(302 (—)’V(f) + %(F(I) + RO‘)))
, 1 \ (15.5)
V(t + 81) = v(t) + ot (—yv(r) F—(F@)+ R(t)))
m

The random force is taken from a Gaussian distribution with zero mean and

variance
2mkpTy

5 (i5.6)

If the velocity relaxation time is short relative to the integration timestep, the
following result is obtained:

wf 1L S\ —w(tY L W
i\ T Or) — 1y )7 x

3
—~

were X is a Gaussian distribution with zero mean and variance 2D§t.

152 THE SOLVENT BOX

In Langevin dynamics studies, the solvent is simulated; no solvent molecules are
included explicitly in the calculation. The beauty of such calculations is their
consequent speed.
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In Chapter 2, I mentioned that there was great interest in water as a solvent,
and explained about the pioneering calculations of Rahman and Stillinger (1972).

Many molecular mechanics (MM), Monte Carlo (MC) and molecular dynamics
(MD) studies have been made based on their box of 216 water molecules, A

good starting point is the work of Jorgensen and coworkers.

Comparison of Simple Potential Functions for Simulating Liquid Water
William L. Jorgensen, Jayaraman Chandresekhar and Jeffrey D. Madura
Journal of Physical Chemistry 79 (1983) 926

Classical Monte Carlo simulations have been carried out for liquid water in
the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolec-

ular potential functions for the water dimer: Bernal-Fowler (BF), SPC,
Q'T") TIDQ') TIP3P and TIPAP, (‘nmnqncnne are made with exnerimental

with experimental
thermodynamic and structural data 1nc1ud1ng the recent neutron diffraction
data of Thiessen and Narien. The compuied densities and potentiai ener-
gies are in reasonable accord with experiment except for the original BF
model, which yields an 18% overestimate of the density and poor struc-
tural results. The TIPS2 and TIP4P potentials yield oxygen—oxygen partial
structure functions in good agreement with the neutron diffraction results.
The accord with the experimental OH and HH partial structure functions
is poorer; however, the computed results for these functions are similar
for all the potential functions. Consequently, the discrepancy may be due
to the correction terms needed in processing the neutron data or to an
~ effect uniformly neglected in the computations. Comparisons are also made
for self-diffusion coefficients obtained from molecular dynamics simula-
tions. Overall, the SPC, SDT2, TIPS2 and TIP4P models give reasonable
structural and thermodynamic descriptions of liquid water and they should
be useful in simulations of aqueous solutions. The simplicity of the SPC,

Atbian nditra L PRSIV SRS (S

TDQN ~ . .
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The idea is to embed the molecule of interest in a solvent box as shown in
Figure 15.1 (aspirin in water). After this MM, MD or MC calculations can be

made A nariodic hox chould ha addad ag naaded
magGe. A perioaiC 00X snouiG 0€ aGaea as neeaea.

15.3 THE ONSAGER MODEL

In their classic review on ‘Continuous Distributions of the Solvent’, Tomasi and
Persico (1994) identify four groups of approaches to dealing with the solvent.
First, there are methods based on the elaboration of physical functions; this
includes approaches based on the virial equation of state and methods based on
perturbation theory with particularly simple reference systems. For many years
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the evolution of such methods was based on a drastically simplified intermolecular
potential.

In the second group come molecular dynamics and Monte Carlo simulations,
especially those where the solvent is modelled without being explicitly included.
Their fourth class is the related supermolecule class, where we actually inciude
solvent molecules in the simulation, and treat the entire array of molecules
according to the rules of quantum mechanics or whatever.

The third group is the continuum models, and these are based on simple
concepts from classical electromagnetism. It is convenient to divide materials
into two classes, electrical conductors and dielectrics. In a conductor such as
metallic copper, the conduction electrons are free to move under the influence
of an applied electric field. In a dielectric material such as glass, paraffin wax
or paper, all the electrons are bound to the molecules as shown schematically
in Figure 15.2. The black circles represent nuclei, and the electron clouds are
represented as open circles.
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Figure 153

If we apply an external electrostatic field E then the protons and electrons each
experience a force. This force tends to cause charge separation in the dielectric.
The positively charged nuclei move in the direction of the applied field, the
negatively charged electrons move in the opposite direction. I have illustrated
this behaviour in Figure 15.3.

The phenomenon is referred to as dielectric polarization. The induced dipole
moment per volume is called the polarization P, and the charge reorganization
always acts so as to reduce the field inside the dielectric. The phenomenon is
treated in all elementary books on electromagnetism.

For very many materials, the polarization can be related to the applied field by

P=¢xE (15.8)
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Suppose now, that the material is a gas comprising N atoms each of polariz-

ability @ in a volume V. When an electric field E is applied, each atom acquires
an induced dipole moment «E and so the polarization is
NaE
P=— (15.9)
\4

Comparison of the macroscopic and microscopic equations 15.8 and 15.9 gives

Na

=— (15.10)
E()V

Xe

The relative permittivity, the electric susceptibility and the refractive index n are
related bv
L J

al’ce v

=1+ x,
(15.11)
€ =n?
e have
and so we havi Na\1/2
n= (1 + —) (15.12)
60V
which can be expanded by the binomial theorem to give
N
n=1+-—— (15.13)
€V
Finally, if the gas is ideal we have
1 pa 18 1 AN
n=1-t 2eokaT (1J.14)

which gives a means of deducing «, by measuring n at different pressures and
temperatures.

In condensed phases, the separation between molecules is of the order of the
molecular dimensions and the result is that each molecule is polarized not by
just the ordinary applied electric field E but by a local field F consisting of E
plus the fields of all the other dipoles. Once the local field is known, we can
use equation 15.8 to find the polarization, simply by substituting oF for «E. The
calculation of F is difficult because the dipoles that contribute to F are themselves
determined by F and a self-consistent treatment is necessary. This is achieved
by relating F to P, ultimately giving an equation for ..

We write the local field as

LP
€0

h nl } R
r =L+

—~
[y
h
—
Lh

N’

where L is the (dimensionless) Lorentz structure tensor. In cubic and isotropic
phases the three principal values of the tensor are equal to % and we then obtain
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the Lorentz local field

P
F=E+ —
+360 (15.16)

After a little manipulation we derive the Clausius—Mossotti equation

e —1 N
= o
€&+ 2 3¢V

(15.17)
At optical frequencies in non-magnetic materials we may replace ¢, by n? to give
the Lorenz—Lorentz equation

-1 N
n2+2_360V

—~
[UmN
(¥,
-
CoO

~

In the case of a condensed phase comprising molecules with permanent dipole
moment p,, the argument is more involved. Such a molecule will have an inter-
action energy

U = _PO . E (15.19)
with an external field, and this energy will achieve its minimum when the dipole

is parallel to the field and so the molecules in a fluid will tend to orient themselves
parallel to the field. This tendency will be opposed by random thermal agitation,
but there will be some net orientation and hence a net orientation polarization Py,
This can be calculated by the methods of statistical thermodynamics, and we

find )
Po= 2P0 g (15.20)

AVEST

JV¥Y NBL

This orientation polarization has to be added to the distortion polarization consid-
ered above, giving a total polarization

2
P=%|:a+ Po ]F (15.21)

3kgT

The derivation of the Clausius—Mossotti equation follows as above, except
that the quantity in square brackets has to replace «, and we obtain finally

Me—1 Na|  p2 ) (15.22)
ve+2  3e la+3kBTJ -

where M is the molar mass, N the Avogardo number and p the density.

A more thorough analysis shows that one should not expect the electric dipole
moment to remain constant, because real molecules have polarizability. The polar-
ization of the dielectric in the electric field of the molecule itself gives rise to a
reaction field, which tends to enhance the electrical asymmetry.
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Figure 15.4 Molecule in cavity

Continuum models of solvation treat the solute microscopically, and the
surrounding solvent macroscopically, according to the above principles. The
simplest treatment is the Onsager (1936) model, where aspirin in solution would

he modelled accordineg to Fioure 154 The ceoliute ic emhadded in 2 enherical
oC MMI0GCLTG aCCOIGIng O riguid 15.4. 148 501U 1S CIMoCGGEa 1l a4 SPpaliiCal

cavity, whose radius can be estimated by calculating the molecular volume. A
dipole in the solute molecule induces polarization in the solvent continuum, which
in turn interacts with the solute dipole, leading to stabilization.

One drawback of the original Onsager model is that molecules that have no
dipole moment do not show any stabilization.

Over the years, many workers have addressed the problem of choice of cavity
and the reaction field. Tomasi’s polarized continuum model (PCM) defines the
cavity as a series of interlocking spheres. The isodensity PCM (IPCM) defines
the cavity as an isodensity surface of the molecule. This isodensity surface is
determined iteratively. The self-consistent isodensity polarized continuum model
(SCI-PCM) gives a further refinement in that it allows for a full coupling between
the cavity shape and the electron density.

Figure 15.5 defines a SCI-PCM run on aspirin.

The relevant output is as in Figure 15.6.
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Gaussian 98: Sun-SVR4-Unix-G98RevA.5 21-Sep-1998
26-Nov-1999

Default route: MAXDISK=400MB

Figure 15.5

IN VACUO Dipole moment (Debye):

X= 2.1145 = -3.1745 Z= -1.2549 Tot= 4.0154
IN SOLUTION Dipole moment (Debye) :
X= 2.5047 = -3.5616 = -1.4632 Tot= 4.5934
SCF Done: E(RHF) = -636.664451503 A.U. after 4 cycles
Convg = 0.3728D-04 -V/T = 2.0091
S**2 = 0.0000
-------------- VARIATIONAL IEF RESULTS -------------

<Psi(0)| H |Psi(0)> (a.u.) = -636.654763
<Psi (0) |H+V(0)/2|Psi(0)> (a.u.) = -636.663805
<Psi(0) |H+V(f)/2|Psi(0)> (a.u.) = -636.664444
<Psi(f)| H |Psi(f)> (a.u.) = -636.654035
<Psi (£) |H+V(£)/2|Psi(£f)> (a.u.) -636.664452
Total free energy in sol.

(with non electrost.terms) (a.u.) = -636.657233
(Unpol.Solute) -Solvent (kcal/mol) = -5.67
(Polar.Solute) -Solvent (kcal/mol) = -6.54
Solute Polarization (kcal/mol) = 0.46
Total Electrostatic (kcal/mol) = -6.08
Cavitation energy (kcal/mol) = 23.67
Dispersion energy (kcal/mol) = -22.66
Repulsicn energy (kcal/mol) = 3.52
Total non electr. (kcal/mol) = 4.53
DeltaG (solv) (kcal/mol) = -1.55

Figure 15.6
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MOLECULAR MECHANICAL METHODS

Studies of chemical reactions in solution and in enzymes present an enormous
challenge because of the enormous size and complexity of these systems. MM
force fields have made a tremendous impact in certain areas, but they cannot
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cope with chemical phenomena involving bond-forming and bond-breaking, nor
with electronically excited states.

A combination of quantum mechanics and molecular mechanics, where one
treats a small part of the system (e.g. the solute) by means of quantum mechanics
and the remainder by MM, provides a powerful tool for studies of structure and
reactivity. It all started with the classic paper due to Warshel and Levitt.

Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and
Steric Stabilizations of the Carbonium Ion in the Reaction of Lysozyme
A. Warshel and M. Levitt
Journal of Molecular Biology 103 (1976) 227-249

A general method for detailed study of enzymic reactions is presented. The
method considers the complete enzyme—substrate complex together with
the surrounding solvent and evaluates all the different quantum mechanical
factors include the quantum mechanical energies associated with bond
cleavage and charge redistribution of the substrate and the classical energies
of steric and electrostatic interactions between the substrate and the enzyme.
The electrostatic polarization of the enzyme atoms and the orientation of the
dipoles of the surrounding water molecules are simulated by a microscopic
dielectric model. The solvation energy resulting from this polarization is
considerable and must be included in any realistic calculation of chemical
reactions involving anything more than an isolated atom in vacuo. Without
it, acidic groups can never become ionized and the charge distribution on
the substrate will not be reasonable. The same dielectric model can also
be used to study the reaction of the substrate in solution. In this way, the
reaction is solution can be compared with the enzymic reaction.

In this paper, we study the stability of the carbonium ion intermediate
formed in the cleavage of a glycosidic bond by lysozyme. It is found that the
electrostatic stabilization is an important factor in increasing the rate of the
reaction step that leads to the formation of the carbonium ion intermediate.
Steric factors, such as the strain of the substrate on binding to lysozyme,
do not seem to contribute significantly.

What the authors did was to combine a
an early (MINDO/2) quantum-mechanical model for the solute. Perhaps because
of the biological nature of the journal, the method did not become immediately
popular with chemists. By 1998, such hybrid methods had become sufficiently
well known to justify an American Chemical Society ACS Symposium (Gao and
Thompson, 1998).

I can explain a two-level hybrid calculation by referring to Figure 15.1, where
I divide the system into two parts, the solute (aspirin) and the solvent (water). I

i1 eL)

MM notential for the solvent with
viM, potenfial Ior the soivent with
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treat the solute quantum-mechanically and the solvent by molecular mechanics,
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coordinates of the quantum-mechanical solute molecule Rgy and the coordmates
of all the molecular mechanics solvent molecules Ryp (I have omitted Spemﬁc
electron and atom labels, such as r;, for clarity).

¥ = ¥(Rom, Rmm, 1) (15.23)
The Hamiltonian is an effective electronic Hamiltonian that operates on W:
HerY(Rom, Rvm, 1) = eW(Rom, R, 1) (15.24)

and it can be divided into three terms: a completely quantum-mechanical term
that describes the solute molecule, a completely molecular mechanics term
that describes the solvent and an interaction term that describes the interaction
between the quantum-mechanical particles and the classical particles.

The total energy of the system can also be written

& =éemm + &M + Eom/MM (1525)

Here emu is the energy of the MM part of the system, and this is calculated from
a straightforward MM procedure. gqgum is the quantum-mechanical energy of the
solute and, in recent years, different authors have used semi-empirical, ab initio
and density functional treatments for this part. The mixed term represents the
interactions between the MM atoms with the quantum-mechanical electrons of
the solute, as well as the repulsions between the MM atoms and the QM atomic
nuclei.
In detail, if

gwm is the atom point charge on the MM atom iabelled M,

R is the distance from the quantum-mechanical atom A to the MM atom M,
eZ, is the core charge of the quantum-mechanical atom A, and

rim is the distance between electron i in the quantum-mechanical system and
the MM atom M, then

Z m mZa (15.26)

47T€n M 47T6n M ‘Al\'

) AM

[AIQM,MM =

Finally, it was found necessary to add a Lennard-Jones (LJ) 12—6 intermolec-
ular term between each pair of quantum-mechanical and MM atoms, in order to

obtain good interaction energies as well as good geometries for intermolecular
interactions.
The complete equation for the QM/MM interaction is therefore
~ 02 ey, T x ped \
} “ S YMm < M’—‘A ‘-/ u AM ‘-’(‘) AM
Hommvm = — > —+ E - =
dmweg ~—~ rm  4meg RAM Ram
iM AM
(15.27)
where the C; and the Cg are the Lennard-Jones 12—6 parameters from Chapter 1.
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The term that allows the quantum-mechanical region to see the MM region
is the first term of equation 15.27, where the summation is over the quantum-
mechanical electrons and the MM atoms.

There are no new concepts for us to study, so I wiii quickiy deai with the three
terms in the Hamiltonian.

154.1 The QM Region

In their original paper, Warshel and Levitt used MINDO/2 to treat the quantum-
mechanical part of the system. Since then, different authors have tried all the
most popular quantum- mechanical models. The auantum-mechanical nart of the
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model tends to dominate resource consumption.

154.2 The MM Region

Typically a simple MM model is used.

One of the more difficult decisions to be made is the proper value for the Lennard-
Jones parameters These relate to the interaction between the quantum mechanical
atoms and the MM atoms. At the time of writing (1999), there does not appear
to be a consensus amongst researchers. Some authors recommend a 10% scaling

of the traditional 12—6 parameters. Some authors scale the MM atom charges.

15.4.4 Link Atoms

In the case of solution phase studies, it is clear where we should draw a boundary

between the parts of a system that ought to be studied guantum-mechanicallv and
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those that can be treated by the techniques of molecular mechanics.

Biochemists have different problems in mind: they want to divide parts of
a protein chain into regions of interest that ought to be treated quantum-
mechanically and the remainder of the chain that can be treated according to
the methods of molecular mechanics.

Consider, for example, the protein shown in Figure 15.7. The bottom left-
hand amino acid is valine, which is linked to proline. Suppose for the sake of
argument that we wanted to treat this valine quantum- mechamcally and the rest
of the protein chain according to the methods of molecular mechanics. We would
have to draw a QM/MM boundary somewhere between valine and the rest of
the protein. The link atoms define the boundary between the QM and the MM
regions. A great deal of care has to go into this choice of boundary. The boundary
should not give two species whose chemical properties are quite different from
those implied by the structural formulae on either side of this boundary.

In order to achieve this aim, it is usual to ‘cap’ the exposed valency at the

boundary by adding an extra quantum-mechanical atom. There are several reasons
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N

Figure 15.7 A typical protein

for doing this, not the least of which is that we do not want to be left with a
radical for the quantum-mechanical part. The extra quantum-mechanical atom
does not see any atoms within the MM region and the finai atom of the MM
region is attached to this quantum-mechanical atom by a harmonic molecular
mechanics potential.

15.4.5 Three-Layer Studies

In a three-layer model, we represent one part of the system by MM, one part by
a semi-empirical Hamiltonian and one part by an ab initio Hamiltonian.



16 PRIMARY PROPERTIES
AND THEIR DERIVATIVES

In their classic paper ‘Mathematical Problems in the Complete Quantum Predic-
tions of Chemical Phenomena’, Boys and Cook (1960) divided the determina-
tion of an ab initio electronic wavefunction into distinct logical stages which
include the

choice of atomic orbital basis set,
calculation of one-electron integrals,
calculation of two-electron integrals,
choice of Slater determinants, and finally

tha 1 Tats £ th 3
the calculation of the wavefunction.

This paper represented advanced thinking in 1960, and whilst we might now be
interested to add extra steps such as

o post-HF calculations, and
e geometry optimizations,

their 1962 analysis is stiil usefui. Once the electronic wavefunction W, has been
determined, a number of molecular properties O (for example, the electric dipole
moment) can be determined from an expression such as

m
0= Onuc+/\lf: (Z&-) W, dr (16.1)

i=1

where Oy, is the contribution to the molecular property made by the nuclei
(which are clamped in position according to the Born—Oppenheimer approxima-
tion), and the second term is the electronic contribution from the m electrons.
The electronic contribution is the expectation value of a symmetric sum of m
one-electron operators, and it can also be written in terms of the electron density,
as discussed in Chapter 5.
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Boys and Cook refer to these properties as primary properties because thej
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V.. As a matter of interest, they also classified the electronic energy as a primary
property. It can’t be calculated as the expectation value of a sum of true one-
electron operators, but the Hartree—Fock operator is sometimes written as a sum
of pseudo one-electron operators, which include the average effects of the other
electrons.

Several other properties are given by the rate of change of a primary property
with respect to the normal coordinates (or to some other gquantity such as 3
component of an applied electric field). For example, the second denvatlve of the
energy with respect to the normal coordinates gives the force constants, and the
rate of change of the electric dipole moment with normal coordinates determines
the intensities of the bands in vibrational infrared spectra. Boys and Cook refer
to these as derivative properties. 1 have mentioned the importance of gradients in
several chapters, particularly those concerned with geometry optimization. There
has recently been a great deal of interest in the calculation of related derivative
properties, and I will spend time on them later in this chapter.

Thirdly, induced properties are those that measure the response of a system
to an applied field. I will concentrate on polarizabilities (for which the external
field is electric) and magnetizabilities (for which the applied field is magnetic)
in a later chapter.

Finally, Boys and Cook refer to interactions between systems as the fourth
category of molecular property.

This is not a unique way of classifying molecular properties. For example,
Dykstra et al. (1990) concentrate on the response of a system to an applied
external field; the electric dipole moment can be defined as the first derivative
of the CHCIgy with respect to the field, and so on. I will stick with the Dbe and
Cook nomenclature as a broad basis for discussion.

Much of our knowledge of molecules is obtained from experimental studies
of the way they interact with electromagnetic radiation, and the recent growth
in non-linear spectroscopies and molecular electronics has focused attention on
our ability (or otherwise) to predict and rationalize the electric properties of
molecules. The idea of an electric multipole is an important one, so let’s begin

the diccnecion there
the giscussion there.

16.1 ELECTRIC MULTIPOLE MOMENTS

In Figure 16.1, we see a pair of point charges: Q4 at position vector ra and Qg at
position vector rg. Q4 is not necessarily equal to Qg, and one is not necessarily
the negative of the other. Their electric dipole moment p. is defined as

Pe = Qara + QOgrs

This is consistent with the more elementary definition usually given: a pair
of e quL and nrmnmte charges +0 separated hv distance d (in which case the

Stpald Cil Cast
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oura 16.1
Figure 16.1

dipole moment has magnitude Qd and a direction from —Q to +Q). For the sake
of generality, we take a set of point charges Oy, Os, ..., On located at position
vectors I'a, I'g, ..., I'y. The general definition is

N
p. = OR (16.2)
i=1

The vector p. thus has three components whose values are

(16.3)

This definition is therefore independent of the choice of coordinate origin only
when the charges sum to zero. The dipole moment of a charged species depends
on the coordinate origin, which must be quoted when reporting such quantities.

At the molecular level, electric dipole moments are important because they
give information about the charge distribution in a molecule. Examination of the

experimental data for a few simple compounds reveals that the electric dipole
moment is also a property associated with chemical bonds and their polarity. The
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literature is immense and you might like to consult the classic text by LeFeyre
(1938) on this subject. '
The six quantities

N N N N N N
2 2 2
S0 > 02 >0 Y Oy, Y Qixizi and > Oz
i=1 i=1 i=1 i=1 i=1 i=1

define the electric second moments and we usually collect them into a 3 x3
symmetric matrix:

N N N
Z thiz Z Cix;i yi Z Qix;z;
i=1 i=1 i=1
N N N
Q=D 0yx > 0y Y Ovu (16.4)

There are several different definitions relating to second moments in the literature,
and it is necessary to take care when applying seemingly simple formulae that
involve such quantities. Not only that, authors often use the same name for the
different definitions.

Most authors prefer to work with a quantity @ called the electric quadrupole
moment. It is usually defined as

(X
)

N | =
7~
—
N
o
=

The factor of 1/2 is thought conventional by some authors, but ignored by others.
The diagonal elements of ©, always add together to zero, for any charge distribu-
tion. For a spherically symmetric charge distribution, each of the diagonal terms
is individually zero, and so the electric quadrupole moment gives us a measure
of the deviation of a charge distribution from spherical symmetry.

Depending on the orientation of the Cartesian axes, the matrix of quadrupole

moimnents

®xx ®xy ®xz
. = (@)yx Oyy @W) (16.6)
O ®zy O

may or may not be diagonal. There is always one choice of coordinate axes,
called the principal axes, for which the matrix is diagonal. We normally refer to
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these as the a, b and c directions and the diagonal components are referred to as
the principal values. We find these by the usual process of matrix diagonalization.
The largest of the three principal values

O O 0
O, = ( 0 Oy O ) (16.7)
0 0 Ok

is usually referred to as ‘the’ electric quadrupole moment.

At the molecular level, electric quadrupoles can lead to useful structural infor-
mation. Thus, whilst the absence of a permanent electric dipole in CO, simply
means that the molecule is linear, the fact that the electric quadrupole moment
is negative shows that our simple chemical intuition of O~C*O~ is correct. The
definition of quadrupole moment is only independent of the coordinate origin

when the charges sum to zero and when the electric dipole moment is zero.

The definitions need to be generalized when dealing with continuous charge
distributions. Sums such as

WA
Yil...)

=

1

have to be replaced by integrals over the charge distribution p(r),

/p(r)(. . )dr

so for CXdIIlPlC e )C bUIIlpOHGHl of the eleciric quaurup(ne momenti is

O, = / p(r)x?dt (16.8)

16.2 THE MULTIPOLE EXPANSION

Multipole moments are useful quantities in that they collectively describe an
overall charge distribution. In Chapter 0, I explained how to calculate the elec-
trostatic field (and electrostatic potential) due to a charge distribution, at an
arbitrary point in space.

In principle, we can calculate the potential at the point in space r from

1 [‘ ( “) (16 O)
(16.2)
4 S j |l‘—l‘A|

AHr) —
YA J

but in practice this integral might be a difficult one to evaluate. The charge distri-
bution will have a set of associated electric moments, and one might anticipate
that it would be possible to evaluate ¢(r) from the (simpler) potentials due to
these moments. For example, the potential due to a dipole is shown in all the
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Origin

Point in
space

Figure 16.2 Potential at point in space, due to charge distribution

elementary electromagnetism texts to be

I pe:-(xr—~rp)
dmey |r—ryl3

Gaip(r) = (16.10)
The multipole expansion gives exactly that expression. If the charge distribution
shown has an overall charge Q, an electric dipole pe, an electric quadrupole ©,,
and so on, then we write

¢(l‘) = ¢charge (l‘) + ¢dipole (l‘) + ¢quadrupole (l‘) + - (16'11)
The potential due to a point charge falls off as 1/7, the potential due to a dipole
falls off as 1/r2, and so on, and the expectation in that the series will quickly

terminate for chemical problems.
The equations become a little more compact if we take the point in space as
the coordinate origin. The potential due to a dipole is then

1 pe-r
Gaip(r) = 3 (16.12)
dmey r
It is conventional to write the multipole expansion as a series in 1/7, and so
we need to find alternative expressions for terms higher than the first. From
elementary vector calculus we have
7/ 1\ r
grad [ — | = —— (16.13)
r r

and so we write the multipole expansion as

4mepp(r) = g — Pe - grad (%) + .- (16.14)
r
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where each term on the right-hand side is a product of an electrical moment with
an expression involving 1/r.

For a long time, the multipole expansion was widely regarded as giving the
correct starting point for a study of intermoiecular forces. The hope is that the
major contributions to the potential around a molecule will be those associated
with its overall charge, dipole and quadrupole (if any). It is interesting to note
that all the classic texts on intermolecular forces begin with a discussion of
electromagnetism and the multipole expansion. Historically, such studies were
also used as an indirect route to molecular quadrupole moments.

16.3 CHARGE DISTRIBUTION IN AN EXTERNAL
FIELD

It is often useful to know the energy of interaction U of a charge distribution in
the presence of an external electrostatic field E. It is

U=0¢—pe- E“LL@U (16.15)
i=x j=x
where E’ is the electrostatic field gradient matrix
0E, OE, OE,
( ax ay 0z 1

0E, OE, OE,

(16.16)
ox ay 0z { )
ox ay 0z

Just like the electric quadrupole moment, the electric field gradient matrix can
be written in diagonal form for a suitable choice of coordinate axes.

16.4 IMPLICATIONS OF BRILLOUIN’S THEOREM

I mentioned the Brillouin theorem in earlier chapters; if Wy is a closed-shell HF
wavefunction and WX represents a singly excited state, then

/ WA WX dr =0 (16.17)
J

If we were to seek an improvement on W, using configuration interaction, we
could write

Wy — oW + Zcﬁ\pﬁ +Y Y AR+ (16.18)
AB XY
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If we used perturbation theory to estimate the expansion coefficients cX etc.,
then all the singly excited coefficients would be zero by Brillouin’s theorem,
This led authors to make statements that ‘HF calculations of primary properties
are correct to second order of perturbation theory’, because substitution of the
perturbed wavefunction into

roo (.
0=Omet+ [ ¥ k ) W, dr (16.19)

suggests that the first correction terms ought to be typically

M
cocky / w (Z )wg dr

If we were to use CISD to calculate the expansion coefficients, then the c§
need not be zero; they couple in to the ground state through the higher-order
excitations.

In any case, the argument ignores the fact that molecular HF calculations are
invariably done at the HF-LCAO level and the ch01ce of basis set often turns

out to be the dominant source of error.

16.S ELECTRIC DIPOLE MOMENTS

These can be determined experimentally to very high accuracy from the Stark
effect and molecular beam studies. The experimental accuracy is far beyond
the capabilities of ab initio studies. At the other extreme, the original route to

thaca anantitiag wae thranoh ctiidiae of tha dialastrio nalarizatian of ganeciog in
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solution, and there is currently interest in collision-induced dipole moments. In
either case, the quantities deduced depend critically on the model used to interpret
the experiment.

The electric dipole moment operator is

In terms of the electron density P(r), the expectation value is therefore

N
Pe=c) ZRo—e / tP(r)dr (16.20)

a=1

and the integrals involved are particularly easy to calculate. Dipole moments are
usually routinely reported by ab initio packages, often in non-SI units. The debye
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(D) is a relic from the days of cgs, defined as the dipole moment corresponding
to a pair of equal and opposite charges of magnitudes 10™'° esu, separated by
1 A. There are 2.998 x 10° esu per coulomb, and so ID = 10"1%esux 1 A =
3.336 x 107 C m. Also, eap = 8.4784 x 1073 Cm, which is 2.5418 D.

In recent years, a great deal of effort has been expended in seeking analytical
first and second derivatives of the energy with respect to nuclear displacements,
in order to calculate the gradient (i.e. the force) and force constants. Given such

gradient program, it is a simple matter to differentiate the interaction energy of

P an aviammal Alaadeceoad e cimand 4 2l
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U=00—p.. E“ZZ®U (16.21)

The gradient gives the electric dipole, since

oUu
0E,

= —p, etc.

Many ab initio packages use this route to calculate the dipole for wavefunctions
where analytical derivatives are known.

It is usual to consider the following factors in discussions of one-electron
properties:
relativistic effects
the Born-Oppenheimer approximation
dependence upon basis set

electron correlation.

Spin—orbit coupling is a relativistic effect that is well reported in tables of atomic
energy levels, and this gives a guide. Relativistic effects are generally thought to
be negligible for first-row elements.

Breakdown of the Born—Oppenheimer approximation is responsible for the
small but non-zero permanent electric dipole moment of HD (2 x 10733 Cm,
Trefler and Gush, 1968) but otherwise the effect is negligible to chemical

ancnIrany
avvuialy.

Table 16.1 Modulus of the electric
dipole moment vector of pyridine

Details Value/10~3°Cm
HF/STO-3G 6.9185
HF/4-31G 8.7901
HF/6-311G** 7.6070
MP2/6-311G** 7.4431
BLYP/6-311G** 7.1828

Experiment 7.31+2%
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Basis set dependence is important. The results in Table 16.1 were obtained for
HF-LCAO calculations on pyridine. In each case, the geometry was optimizeq

As a general rule, ab initio HF-LCAO calculations with small basis sets tenq
to underestimate the dipole moment, whilst extended basis sets overestimate it

A treatment of electron correlation usually brings better agreement wit
experiment.

16.5.1 Dipole Derivatives

HF-LCAO calculations on molecules with small electric dipoles need to he
treated with caution. The classic case is CO. Burrus (1958) determined the magni-
tude of the vector from a Stark experiment as 0.112 4 0.005 D (0.374 £ 0.017 x
10730 C m).

Early ab initio HF—LCAQ caiculaiions using minimal basis sets were at first
thought to have been unsuccessful, in that they gave the polarity C”O™", whilst
HF-LCAQO calculations with extended basis sets gave the polarity C*O~. That
the polarity is indeed C" O™ was shown by Rosenblum, Nethercott and Townes
(1958) from a molecular beam resonance experiment; it goes against all chemical
intuition. =

Table 16.2 shows typical results. In all cases, the bond length was optimized.

It is of interest to consider the variation of electric dipole moment with internu-
clear separation, shown in Table 16.3.

At this level of theory, the calculated equilibrium bond length is 110.47 pm,
and the dipole moment changes sign around R. which may explain why one has
to work so hard to achieve agreement with experiment. The dipole derivative can
be found by numerical methods from the data points.

The variation of any diatomic property O with bond distance is usually studied

in terms of the fractional extension

R—R
f= T (16.22)
Req

Table 16.2 Electric dipole moment of CO

Level of theory R./pm Pe/1073°Cm Polarity
HF/STO-3G 114.55 0.4147 cof
HF/4-31G 112.77 —2.0023 cto~
HF/6-311G** 11047 —0.5111 cto~
MP2/6-311G** 113.87 1.0872 c o
MP2/cc—pVTZ 113.85 0.9808 c o
CID/6-311G*™ 112.16 0.2862 c ot
CISD/6-311G** 11243 0.2986 cof
BLYP/6-311G* 113.88 0.6435 c o*
Experiment 0.374

0.017
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Table 16.3 Dipole moment vs
internuclear separation for CO
HF/6-311G**

R/pm p./1073*Cm
95 1.8308
100 1.1222
105. 0.3646
110.47 =R, —0.5111
115 —1.2767
120 —2.1137
125 —2.9787

where Req 18 the equilibrium bond distance. If we write the vibrational potential
energy as
UE) — Up = aot® (1 + a1 + aé* +---) (16.23)

and property O as
0 =0+ 015+ 30,8 + - (16.24)

the expectation value of the property for the vth vibrational and Jth rotational
state of a diatiomic molecule is (Buckingham, 1962)

(0.
<

2
" (1625)
where B. and w, are the equilibrium rotational constant (expressed as an inverse
length) and fundamental vibrational wavenumber. Similar formulae exist for
polyaiomic moilecules (Riley, Raynes and Fowier, 1579). The formuiae are aii
based on perturbation theory, and it is often better to explicitly solve the nuclear
Schrodinger equation and evaluate the expectation values by direct integration.

One of the most familiar uses of dipole derivatives is the calculation of infrared
intensities. To relate the intensity of a transition between states with vibrational

wavefunctions v, and ¥ it is necessary to evaluate the transition dipole moment

[ oy

afo B ale A
j YoPeVv Ul

1 B
0y.5 = O¢q + (U+ ;) ( e) (03 —3a101) +4J(J + 1)(

\ / \%e/

If we write a Taylor expansion of p. in normal coordinates about the equilibrium
value pe eq

ape) 1 ( & De )

= Peeq + (— qi + = ——)qiq; +--- (16.26)
Pe e,eq Z 3 ity Z ; 3q:0q; iqj

and truncate after the first derivatives, the transition moment becomes

9pe
/wvﬁeww dr = Z (%) /'ﬁ/qu,‘llfu' dr (16.27)
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If we further assume that the vibrational wavefunctions associated with Normg)
mode i are the usual harmonic oscillator ones, and v/ = v + 1, then the integrateq
intensity of the infrared absorption band becomes

1 N AT 3pe
— =5 ) &
4mey \ 3cp dg;

2

(16.28)

where d; is the degeneracy of the mode, N the Avogadro number and ¢ the
speed of light in free space. :

16.6 ANALYTICAL GRADIENTS

Analytical gradient energy expressions have been reported for many of the stan-
dard modeis discussed in this book. Analytical second derivatives are aiso widely
available. The main use of analytical gradient methods is to locate stationary
points on potential energy surfaces. So, for example, in order to find an expres-
sion for the gradient of a closed-shell HF-LCAO wavefunction we might start
with the electronic energy expression from Chapter 6,

& = trace (Phy) + % trace (PG)

Differentiating with respect to some parameter ‘a’, we see that it is necessary to

evaluate terms such as —— 3G
ij , 1,ij and ij
da oa da

in order to calculate the gradient. The terms involving G involve both differen-
tiation of the electron density and differentiation of the two-electron integrals.

Similar considerations apply to the electric dipole moment; the derivatives of
the dipole integrals can be easily obtained whilst the derivatives of the density
matrix require the use of coupled Hartree—Fock theory (e.g. Gerratt and Mills,
1968).

16.7 ELECTRIC QUADRUPOLE MOMENTS

Molecular electric quadrupole moments are more elusive animals, and they are
not particularly easy to determine experimentally. Prior to 1970, the only direct
routes to these quantities were from the Kerr and Cotton—Mouton effects. They
can now be obtained from microwave Zeeman spectroscopy, to fair accuracy. It
is fair to say that direct calculation offers a faster and more reliable route to this
property than experiment.

Basis-set sensitivity is important, as it was for the calculation of electric dipole
moments. Several experimental values in the literature refer to measurements
corrected neither for zero-point vibrations nor for centrifugal effects.
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16.8 ELECTRIC FIELD GRADIENTS

Flectron spln has appeared many times in this book; it is an intrinsic property of

e o

electrons. It is an angular momentum, usually written s. We know that

o the magnitude of s is v/s(s + 1) A/27w where the spin quantum number s =
1/2;

¢ only the magnitude of s and one component (usually called the z component)
can be measured simultaneously;

¢ the z component of the vector has magnitude mg h/2x, where ms, the magnetic

anin anantim numher — 4+1/9
spinn quantum numoer = =i/,

We often say that an electron is a spin-1/2 particle. Many nuclei also have a
corresponding internal angular momentum which we refer to as nuclear spin,
and we use the symboi I to represent the vecior. The nuclear spin quanium
number I is not restricted to the value of 1/2: it can have both integral and half-
integral values depending on the particular isotope of a particular element. All
nuclei for which I > 1 also posses a nuclear quadrupole moment. 1t is usually
given the symbol O and it is related to the nuclear charge density on(r) in much

the same way as the electric quadrupole discussed earlier;

/j[;’)N(r) (3x2 — 72) dz 3 j//JN ‘_‘y'u /p xz dt \
= | 3 [enmar [on (370 / on()yzdr
[ f
\ 3/ on(r)zxdr 3/ pon(r)zydr /pN(r) (32 —r )dr/

(16.29)
although some authors prefer to work with the second moment

/ pn(0)x? dt / pn(r)xy dz / pn(r)xzdt
/pN(r)yxdr /,oN(r)y2 dr /pN(r)yzdt (16.30)
/ pon()zx dt / on(®)zydr / ,oN(r)z2 dr

The context usually makes it clear which definition is in use.

In principle we could calculate the nuclear quadrupole moment from knowl-
edge of the nuclear charge density distribution, but this knowledge is very hard
to come by and so we determine the nuclear quadrupole experimentally. The
charged particies in the nucieus are of course protons, and we can imagine
them rotating about the local z-axis of the nuclear spin vector. If an average
is made over a time that is long enough for the nuclear particles to rotate but
so short that the electrons have not appreciably changed position, the nuclear
charge distribution may be considered axial. Using a principal axis system which
coincides with the nuclear spin, all non-diagonal components of Qy will be zero

& | ==
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and On . = ON,yy = —1/2 ON,z;. We normally speak of ‘the’ nuclear quadrupole
On = QN,zz

In a molecule, a given nucleus will generally experience an electric fielq
gradient due to the surrounding electrons. The energy of interaction U between
the nuclear quadrupole and the electric field gradient E’ is given by

ZZQN ij (1631)

I=x j=x

It is usual to denote the electric field gradient at nuclear position N by qn, which
can be written as a 3 x 3 matrix

(Gxx  Gxy Gxz )
qN = (‘Iyx 9yy 4y ) (16.32)
9 49zy 4z

2 thic to nenallu defined in cich 8 way that tho cii o
and this is usually defined in such a way that the sum o

is zero. In principal axes, we have

Gaa O 0 .
gn=1( 0 gw O (16.33)
\ 0 0 qcc}

and g, + gpp + gcc = 0. The interaction is therefore characterized by Qx , and
two Of Gaa, Gobs qcc- The largest of the g’s is just referred to as g. The quantity
v = (difference of smaller ¢’s divided by the largest) is called the asymmetry
parameter.

In order to find the correct quantum-mechanical energies for a nuclear
quadrupole in an electric field gradient, we need to

e write down the classical energy expression,

¢ deduce the correct Hamiltonian operator, and

e solve the eigenvalue problem.

The interaction energy depends on Qn, ¢ and v and the allowed energy levels
turn out to depend on eQJng. Division by & gives eqQOn/h which we refer to as
the quadrupole coupling constant (QCC).

16.8.1 Quadrupole Coupling Constants

Quadrupole coupling constants for molecules are usually determined from the
hyperfine structure of pure rotational spectra or from electric-beam and magnetic-
beam resonance spectroscopies. Nuclear magnetic resonance, electron spin reso-
nance and Mossbauer spectroscopies are also routes to the property. There is a

large amount of experimental data for '*N and halogen-substituted molecules.
Less data is available for deuterium because the nuclear mmdmnnle is small.
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The quadrupole coupling constant contains two unknowns, the electric field
gradient at a given nucleus and the nuclear quadrupole moment. For a simple
atom OT an atomic anion, it is occasionally possible to make a realistic estimate
of the field gradient, and so the quadrupole coupling constant has sometimes
been used to give a measure of the nuclear quadrupole moment. In a molecule
(charged or otherwise), the nuclei are embedded in the electron cloud, and the
electric field gradient gives a measure of the departure from spherical symmetry
of the electric charge distribution at the nucleus in question. It depends on the
environment of the nucleus, and is thus intimately connected with bonding.

The chemical significance of quadrupole coupling constants has been summa-
rized by Townes and Dailey (1949), and reviewed by Orviiie-Thomas (1957,
1965). Townes and Dailey argue that only p, d and f atomic orbitals can contribute
to the field gradients, and since d and f orbitals do not penetrate near the nucleus,
quadrupole coupling constants should be largely due to any p-electrons in the
valence shell. An interesting discussion of the Townes and Dailey theory is given
in Orville-Thomas’s paper, which has both an intriguing title and abstract.

Clash between Experimental Parameters and Simple Theoretical Concepts
W. I. Orville-Thomas
Journal of Chemical Physics 43 (1965) S244—-S247

Facts are better than Dreams — Winston Churchill

The author concerns himself with a comparison between theoretical and experi-
mental studies of simple molecules containing the C = N linkage. A large number
of spectroscopic studies have been made for XCN molecules, and in the majority
of cases many isotopic species have been studied. The experimental data is very
accurate. An interesting feature of such molecules is that the C = N distances are
equal to within experimental error, and one might expect that the *N quadrupole

coupling constants would be similar. This is not the case, as shown in Table 16.4.

16.9 THE ELECTROSTATIC POTENTIAL

One of the fundamental objectives of chemistry is the prediction and rational-

ization of molecular reactivity. In principle, this involves the construction of an

Table 16.4 N quadrupole coupling constants

(QCC)

Molecule R (C=N)/pm QCC/MHz
HCN 1155 —4.58
FCN 115.9 —2.67

CICN 1159 —3.63
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accurate potential energy surface and a study of the motion of reactants and prod-
ucts along this surface. Most of the traditional theories of chemical reactivity haye
been aimed at organic molecules, and these theories attempt to extract, from the
electronic properties of isolated moiecuies, some useful information as to ho
molecules will interact with other molecules. :

We can distinguish between static theories, which in essence give a descrip-
tion of the electron density, and dynamic theories, where an attempt is made to
measure the response of a molecule to (e.g.) an approaching NO,* ion. In recent
years, the electrostatic potential has been used to give a simple representation
of the more important features of molecular reactivity. It can be calculated quite
easily at points in space:

e (& Za P(') )
0l = (Z Tl By (16.34)
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Figure 16.3 Electrostatic potential for aspirin HF/STO-3G
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and the quantity +1 C ¢(r) is often used in discussion. (This quantity is actually
s~ muntnnal notential enerov of the maolecnle and a charoe of 1 (' at nogition r )
the mutual potential energy of the molecule and a charge of 1 C at position r.)
The spirit of this kind of calculation is to give a rough and ready visualization
to the potential reactivity of a molecule. For example, Figure 16.3 is a contour
map for aspirin. These maps look much better in colour, and it is often possible

to spot the route that an approaching charged reagent would take.



17 INDUCED PROPERTIES

In Chapter 16, we studied the so-called primary properties, which I defined as
those that could be obtained by direct calculation from the electron density (or

pqnnmlpnﬂv the umvpfur}phnn\ We also touched on derivative or oradient prop-

vuiVis Sraniatii

erties. It is now time to turn our attention to those properties that measure the
response of a system to an external field. In the language of Boys and Cook,
these are the induced properties.

As 1 mentioned earlier, this classification is not unique and other authors
concentrate on classification with respect to gradients. The electric dipole can
be understood as the gradient of a certain interaction energy with respect to the

compgnents of an a qnn]n:-ﬂ ﬁp]d and so on.

17.1 INDUCED DIPOLES

Molecules do not consist of rigid arrays of point charges, and on application of
an external electrostatic field the electrons and protons will rearrange themselves
until the interaction energy is a minimum. In classical electrostatics, where we

deal with macroscopic samples, the phenomenon is referred to as the induced
polarization. 1 dealt with this in Chapter 15, when we discussed the Onsager
model of solvation. The nuclei and the electrons will tend to move in opposite
directions when a field is applied, and so the electric dipole moment will change.
Again, in classical electrostatics we study the induced dipole moment per unit
volume.

Both the permanent dipole and th
direction of e induced dipole nee
applied field. Herice, we nieed a mor
the polarizability.

Since we normally deal with electrostatic field perturbations that are small,
we can profitably expand the electric moments as a Taylor series in the external

field:

applied field are vector quantities, and the
not be the same as the direction of the

[N a voartnr to dagorih,

cncrai pr Pcu._y than a vector to describe

a

—

]

()]

®+a E+- . a7.1)
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where pe(0) is the permanent electric dipole. The property « is the dipole polar-
izability, and it can be written as a 3 x 3 symmetric matrix

7 o reVs o \
Cxx  Oxy Oy
o= (ayx ayy ayz) (17.2)
Oz Ozy Oy

Tha nalae nalarizahilit tha fiald gradiant and tha adm nt ara all
1nc ulyulv Puu.uxbuuuu._y tne 1cia graaint anad wc \iuaul uPUlU moment aré an

examples of tensor properties. A detailed treatment of tensors is outside the scope
of the text, but you should be aware of the existence of such entities.
In terms of the components of p. we write

z
Pe,i(E) = pei(0) + Zd,'jEj 17.3)

j=x

For the special case of an axially symmetric molecule, the electric dipole
moment lies along the axis of highest symmetry, which we usually call the
z-axis. The induced dipole due to a field along the molecular axis is usually
written

pe,z(E) = Pe(o) + azzEz (17-4)

whilst for a field perpendicular to the axis we have
Pex(E) = axnEy (17.5)
The next terms in the series, denoted . .. in equat ion 17.1 above, are called the

dipole hyperpolarizabilities. The first one is 8 and this also is a tensor. It has three
indices, and the corresponding formula for the induced dipole, equation 17.3,
becomes

Pei(B) = pei(0) + Z a;Ej + Z Z BijkE;Ex (17.6)
Jj=x k=x
There arc in fact an infinite number of hyperpolarizabilities, and one occasionally
comes across terms higher than
17.2 ENERGY OF CHARGE DISTRIBUTION IN
FIELD
The effect of the induced dipole on the energy of a charge distribution in a
uniform electrostatic field can be deduced, and it is (Hinchliffe and Munn, 1985)
1 Z Z 1 z Z Z
U=Up—p0)- E— =3 Y o;EE ——> > Y BinEEE; —
U TR/ 21_41_4 Pj—ij 6[—JLJ£—JFUNE-’"
i=x j=x i=x j=x k=x
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The Cartesian components of the permanent dipole and the polarizability cap
therefore be written equivalently

oUu
De,i = —55
13
17.
2U (17.8)
®ij = Top o
OL;OLj

with corresponding formulae for the hyperpolarizabilities. All the derivatives have
to be evaluated at zero electrostatic field (E = 0). The latter equation demon-
strates that the dipole moment tensor is symmetric, and so there are no more
than six independent components. As with all such properties, there is a set of
Cartesian axes that are uysually called a, b and ¢ such that the matrix has diagonal

form, and we speak of the ‘principal axes of polarizability’. For a molecule with

iaiilaY @ 1At uic

symmetry axes, the principal axes correspond to the symmetry axes. For a linear

PrUNy P e en Lo

molecule, the mairix can be writien in an even simpler way,

o 1] 0
a:(O o O)
0 0 «

and the parallel component is usually larger than the perpendicular one. Exper-
imental measurements focus on the mean value (@) = %(a + 20, ) and the
anisotropy y =« — . In the general case,

(o) = %(axx + oyy + Q)

whilst some authors report an anisotropy y given by

2 2 2
Y= Z ((au - ajj) + 6&1‘]‘)
i>j

Experimental determinations are far from straightforward, especially if the
molecule has little or no symmetry. The mean value can be deduced from the
refractive index of a gas, whilst Kerr effect experiments give some idea of the
anisotropy.

17.3 MULTIPOLE POLARIZABILITIES
Just as the dipole changes in an external field, so do all the other moments, and
we can develop a set of equations for the quadrupole polarizability (and hyper-

polarizabilities), the octupole polarizability, and so on. These esoteric quantities
are rarely met in chemistry

AL AL ALY
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174 POLARIZABILITY DERIVATIVES

Just as the derivatives of the electric dipole with respect to normal coordinates are

de at £ +h 1 zahilite,
uupuxuxut in infrared nyuu{nuoyuy_y, so the same derivatives of the p\')laﬁLauuuy

play a role in Raman spectroscopy.

17.5 A CLASSICAL MODEL OF DIPOLE
POLARIZABILITY

Studying the response of a very simple ‘atom’ to an applied electric field can
provide an insight into the physical mechanism of polarizability. Our model
has a point positive charge 4+Q surrounded by a uniform spherical distribution of

negative charge. The radius of the atom is a. We now apply a uniform electric field

as shown in Figure 17.1. The nucleus and the negative sphere will be displaced in
opposite directions to create a displacement between centres of d. For simplicity,
the sphere is not shown as displaced in the figure. At this point, there is on the
nucleus a force due to the applied field and a force due to the electron density.
This latter force can be shown (e.g. by Gauss’s theorem) to be

Q*d
4mega’
At equilibrium these two forces must be equal and so the displacement d satisfies

Q%d

— OF
4rega®

- =X~

The induced dipole moment is Qd and the polarizability (here a scalar) is Qd/E
so that
o = 4negd’ (17.9)
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Figure 17.1 Construct needed to discuss polarizability
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Apart from the factor of 47e, the polarizability of an atom is determined in thig

model by the volume If we had heen workine in cog (old-fachioned elacteaa
mogde: by he voilume. it we had been working 1 ¢gs (oig-1asnonea vxvuuuumg-

netic quantities) rather than SI (modern ones), we would have found o = 43 apq
for this reason people speak of the polarizability volume.

The SI units of polarizability are Fm?. Alternatively, since Fm~! =
C?m~2N~! we can quote polarizabilities as C2N~'m or C?m?J~!, which ig
the normal form. In the atomic system, it is usual to quote polarizabilities ip
multiples of ?a3E;".

The nolarizabilitv of the inert oag atome doeg indeed
1hie polarizaduty of the mert gas atoms aoces 1naeed

as can be seen from Table 17.1.

Atomic and molecular polarizabilities are usually determined by measuring the
response of a system to monochromatic electromagnetic radiation. It turns out
that the measured values depend on the frequency of the radiation used; they
are said to be frequency-dependent properties. Roughly speaking, it is observed
that the dipole polarizability increases as the frequency of the radiation increases,
Eventuallv the energy of each photon is enough to cause an electronic transition

CiRally 0 LLLIE)Y 91 Lalll praian 2o LUVUE 1L Laliot /il LALLIVANL aLsHIOn,

when a large change is observed in the polarizability. In order to account for
the photon absorption, any model has to take account of the quantum nature of
matter. For this reason, our simple model above does not explain the experimental
findings.

Molecules respond to frequency-dependent fields in a quite different way than
to static fields, and some care has to be exercised when comparing the results of
theory and experiment.

To give a simple classical model for frequency-dependent polarizabilities, let
me return to Figure 17.1 and now consider the positive charge as a point nucleus
and the negative sphere as an electron cloud. In the static case, the restoring
force on the displaced nucleus is (Q°d)/(4mepa’) which corresponds to a simple
harmonic oscillater with force constant

QZ

k=
4JT€0a3

Since nuclear masses are much greater than the electron mass we can treat
the nucleus as if it were fixed in space. Taking the mass of the electron charge
cloud as m, then k = mw? where wy is the angular frequency of the oscillator.

Table 17.1 Some atomic

polarizabilities

Atom /10~ Fm?
He 0.23

Ne 0.44

Ar 1.83
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where « is the static polarizability.
A simple time-dependent electric field is given by

E@r) = Eoexp(jor)
where Eo is a constant, w the angular frequency of the field and j the square
root of minus 1 (j2 = —1). Repeating the polarizability calculation above for a
simple harmonic oscillator in such a field gives

QZ
o(w) = ———— 17.10
©) = (17.10)
This simple model shows that the polarizability increases as w increases, in
agreement with experiment, but it cannot deal with the case where the frequency
of the applied field is able to cause an electronic transition.

17.6 QUANTUM-MECHANICAL CALCULATIONS OF

STATIC POLARIZA ARBRIT ITIES

LA ARAD

1 — =
Pe (E) = De, i(0) + Lau ‘2’ L ﬁijkEjEk +
Jj=x Jj=x k=x
- g
[J] — (']0 — LPCJ(ﬁ)E’ — 5 LL(X,JEZEJ
i=x i=x j=x
1 G S
i=x j=x k=x

The external field E is taken to be uniform over the dimensions of an atom or
a molecule so that there are no external electric field gradients, and I should
remind you that these equations are classical ones: we have made no mention
of quantization. Again to remind you, the dipole components are given by the
first derivative of the energy, the polarizability components are given by either
the first derivative of the dipole or the second derivative of the energy. The
second derivatives of the dipole or the third derivatives of the energy give the
hyperpolarizability, and so on. All derivatives are with respect to the external
electric field, and they all have to be evaluated for a limiting zero field.
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The first step in our quantum-mechanical calculation is the construction of ap
appropriate molecular Hamiltonian. For a weak constant static field E we have

U=U,—p.(0)E (17.11)

and so we simply add an extra term to the corresponding field-free Hamiltoniag
operator to give
H =Hy—pc(0)-E

I will write A = —p. - E as appropriate in the following few pages, for the sake
of compactness.

17.6.1 Standard Perturbation Theory

If we know the solutions for the field-free problem
ﬁo‘l»‘j = 8,"1»’,'

then standard perturbation theory allows us to write solutions to the perturbed
problem, as discussed in other chapters. I will write the electronic ground state
as Wy and the excited states ;. The number of excited states might very well
be infinite, and it is necessary to include any unbound states.

Examination of the energy expression 17.7 shows that the polarizability
components are the second-order energies and a little analysis shows that (for

OINCILS 4l LOnU=OIUCL CHCIEICS dlia

example)
o0 ) / \IJO px\IJ df
v\
€o

—~
—
N*]

~

||t<

This expression is correct, but not useful because we need information about the
excited states of the molecule. Such information is hard to come by. In the old

days, we would try to make progress by taking some average energy difference
Ae between the excited states and the ground state. We can then write

Uy = é L ’ / WG Dy dt’ (17.13)

The sum runs over all excited states but not the ground state. It can also be
written as a sum over all states (including the ground state) as

2 o 2 2
O = (Z (‘ /wgﬁxwidr ) —)/\Pgi)x\llodr ) (17.14)
=0 \ / /

The summation can be simplified using an expression called the closure relation,
to give finally

\
) (17.15)
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The first term in the brackets is the expectation value of the square of the dipole
moment operator (i.e. the second moment) and the second term is the square of
the expectation value of the dipole moment operator. This expression defines the
sum over states model. A subjective choice of the average excitation energy Ae
has to be made.

17.6.2 Self-Consistent Perturbation Theory

In the context of the HF-LCAO model, we seek a solution of the matrix eigen-
value equation
hFe. — 2.Sp.
n 3y (141
If we add a perturbation A then the self-consistency is destroyed and we need to
re-do the iterative HF-LCAO calculation. The idea of self-consistent perturbation

™ T M

theory is io seek solutions of the periurbed HF-LCAO equations

(hF + A)e; =S¢ (17.16)

iy martinhatian thanms 30 o aalf_Annoicta MThansa avra varianig o latinng

usSiiig peiur vation uiCory iii a self-consistent way. 1nere arc various Luuu'uxatiuuo
depending on whether or not the orders of perturbation need to be kept separate,
and the dipole polarizability can be evaluated from a second-order energy.

17.6.3 The Finite Field Method

This is sunllar to self-consistent perturbation theory, except that we just solve
d HF_T.CAOQO eguations

Xix LAY VYuAuUILS

(hF + A)e; = &:S¢; (17.16)

for some arbitrary (and small) external electric field, without bothering to sort out
the orders of perturbation theory. Imagine then a 31mple finite-field calculation
on CH3F. We would run a HF-LCAO calculation on the field-free molecule, and
then include an external field along each of the Cartesian axes. The polarizability
is calculated from the induced dipole moment or from the energy change. In the
HF-LCAO model with basis functions x;, X, ..., X, this involves calculating
an extra matrix of dipole integrals over the basis functions, and adding it to the
one-electron integral matrix.

In practice the finite-field calculation is not so simple because the higher-
order terms in the induced dipole and the interaction energy are not negligible.
Normally we use a number of applied fields along each axis, typically multiples
of 10~ a.u., and use the standard techniques of numericai analysis to extract the
required data. Such calculations are not particularly accurate, because they use
numerical methods to find differentials.

As an example, here is an output from Gaussian 98 on CH3F (Figure 17.2). I
forced the finite field method by choice of Polar = Enonly (Polar = Energy only)
in the route. The geometry was first optimized and stored in a checkpoint file.
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The following finite field(s) will be applied:
An electric field of -0.0010 0.0000 0.0000

The following finite field(s) will be applied:
An electric field of 0.0000 0.0010 0.0000

Figure 17.3

Various external electric fields are now switched on, in order to calculate the
second derivatives (Figure 17.3).
The gradients are then evaluated to produce the polarizabilities.

17.7
Many ab initio packages use the two key equations given above in order to
calculate the polarizabilities and hyperpolarizabilities. If analytical gradients are
available, as they are for many levels of theory, then the quantities are calcu-
lated from the first or second derivative (with respect to the electric field), as
appropriate. If analytical formulae do not exist, then numerical methods are used.

An analytical gradient calculation is
To repeat the argument from Chapter 14, with real wavefunction W, Hamiltonian
H (including the field terms) and ‘parameter’ a (where a is a component of the

external electric field)

s=/\mfmdr

0e

— =2 | —HWYdr+ | Vv—Wdr

da oa
e 5 fBZ\IJ'A” ) fOVOoH . [0V .0V
—_= —HW¥dr ——Wdr+2 | —H—dr
da? / a? T da Oa ™ / da = Oa
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Differentiating once with respect to electric field.
with respect to dipole field.
Figure 17.5

Exact polarizability: 12.435 0.000 12.364 0.000 0.000 12.435
Approx polarizability: 9.969 0.000 10.235 0.000 0.000 9.969

Figure 17.6

The first term is zero because W and its derivatives are orthogonal. The fourth
term involves second moments and we use the coupled Hartree—Fock procedure
to find the terms requiring the first derivative of the wavefunction.

Figure 17.4 then is a typical Hartree—Fock analytical derivative calculation on
fluoromethane.

The coupled Hartree—Fock equations are then solved (Figure 17.5).

In the older literature, the coupled Hartree—Fock part of the calculation was
often ignored. Output in this case (Figure 17.6) gives the coupled and (so-called)
uncoupled polarizabilities; these are the Approx polarizabilities. The output is
in the order oy, Gy, tyy, Oy, Qyy, Oy

1y
17.7

1 Qoealdla i 4 T .1 0
-1 Densiivily 10 LEvel o1 1neory

Table 17.2 refers to various polarizability calculations on CH3F. In every case, I
optimized the geometry before calculating the polarizability.

Table 17.2 Polarizability calculations for fluoromethane

Level of Theory oy Uy = Oty {a)

HF/STO-3G 1.182 0.938 1.019
HF/4-31G 1914 1.789 1.831
HF/6-311G* 2.040 2.047 2.045
HF/6-311++G(3d,2p) 2.221 2.202 2.208
MP2/6-311G* 2.179 2.111 2.134
CID/6-311G** 2.113 2.071 2.092
CISD/6-311G** 2.123 2.075 2.091

BLYP/6-311G** 2362 2.261 2.295
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The STO-3G basis set is clearly inadequate for such calculations. The results

demonstrate the lmn(\ﬁﬂh(‘P of the diffuse functions and electron correlation. The

density functional results are very attractive.

17.8 INTERACTION POLARIZABILITIES

The virial equation of state is sometimes written

PVan B C
0y = .
xSttt (17.17)

This equation of state applies to all substances under all conditions of p, Vi, and
T. All of the virial coefficients B, C, ... are zero for a perfect gas. For other
materials, the virial coefficients are finite and they give information about molec-
ular interactions. The virial coefficients are temperature-dependent. Theoretical
expressions for the virial coefficients can be found from the methods of statistical
thermodynamics.

By analogy, the virial expansion of the bulk molecular property X (such as the
dielectric polarization) is written

Bx Cx

X=A = 17.18
x+V Tyt (17.18)

where in this case all the constants Ay, By, ... are dependent on the temperature.

For static electric properties, the bulk property of interest is the dielectric

polarization P. The magnitude of P can be estimated from (for example) the
Clausius—Mossotti relation

¢ —1

- €& +2

Vm (17.19)

where ¢; is the relative permittivity of the medium. The dielectric virial equation
for the polarization is usually written

B C
P=A+—+—+ (17.20)
Vm V2
.,.-d is argued that A, gives the contribution of free molecules to the property,

B, gives the contnbutlon from pairwise interactions, and so on. Terrns beyond
B, are rarely encountered. The first dielectric virial coefficient can be estimated
from the Clausius—Mossotti equation in its original form, as obtained by Debye
(see Chapter 15 for a fuller discussion).

N 2
Ac=22 (ao n qf:T) 17.21)
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Buckingham (1962) has given the (classical) statistical thermodynamic expression
for B, as

1UL 22¢

5 _ 4nNg /r°° ((1 " )
e= app(r) —ap
3e 2
0 Vot (17.22)
12(r
+E"BT (31’3,12(’) - PiO) exp ( ﬂ r*dr
> \< / \

Here, an( ) s the mean polarizability of a pair of species separated by distance
r, while s their electric dipole moment and U the potential energy. peo is

marmanant alanteia dimala mamant far tha twon oo,
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An important experimental quantity for studying molecular interactions in
gases and liquids is the scattering of laser light. When polarized light is scattered
by a fluid, both polarized and depolarized components are produced. The depo-
larized spectrum is several orders of magnitude less intense than the polarized
spectrum and much more difficult to observe. A great deal of information has
been obtained about molecular motions from such spectral analyses.

(lalhart (1074 hag raviewad a nnimbar of thanriag af tha ariging of tha dannlar
Ul10dit (17 /7 Has ICVICWOU a TIuIIOCT U1 ulCUIICSs O ulC OIigiils O1 ull GCPpuiai-

ized spectrum. One of the simplest models is the isolated binary collision (IBC)

model of McTague and Birnbaum (1968). All effects due to the interaction of

three or more particles are ignored, and the scattering is due only to diatomic

collision processes. In the case that the interacting particles A and B are atoms

or highly symmetrical molecules then there are only two unique components of

the pair polarizability tensor, and attention focuses on the anisotropy and the
C 1,

nair nolarizability
v plid pOGinlhdeeie y

(@®) = %(a +201) — (ap + o) (17.23)

where a5 and ap are the polarizabilities of the interacting species A and B. In

Qi PRI LADIINICS O 1L Cliilg SpPLLals

the IBC model, the polarlzed spectrum depends on the thermal average of this
quaniity over the assembly of inieraciing particies. The thermal average of the
anisotropy is also responsible for the depolarized spectrum.

The first ab initio study of an interaction polarizability was that of O’Brien
et al. (1973) on a pair of helium atoms. They obtained B(r) for the range r =
3.5ay through 10ay. The experimentally determined value of B is negative, which
suggests that the incremental mean pair polarizability must be negative around
the minimum in the potential curve.

A problem with studies on inert gas is that the interactions are so weak. Alkali
halides are important commercial compounds because of their role in extractive
metallurgy. A deal of effort has gone into corresponding calculations on alkali
halides such as LiCl, with a view to understanding the structure and properties of
ionic melts. Experience suggests that calculations at the Hartree—Fock level of
theory are adequate, provided that a reasonable basis set is chosen. Figure 17.7
shows the variation of the anisotropy and incremental mean pair polarizability as

a funotinn of digtanca

a Iuncuon o1 ulblall\/\/
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Figure 17.7 Anisotropy (dotted) and mean incremental pair polarizability

If one examines similar simple systems, then it turns out that these curves all
have the same features provided one works with the reduced distance R/R,.

17.9 THE HAMILTONIAN

I appealed to your good sense when I asked you to believe that the Hamiltonian
for a particle in an external electric field could be written

H = Hy— pc(0)- E

Derivation of this equation is actually far from straightforward. In electromag-
netism, we describe static fields by the electric field E and the magnetic induction
B. For our purposes, we need to enquire about the potentials rather than the fields,
and these are defined by

E = —grad¢
B =curlA

We have met the electrostatic potential ¢ in earlier chapters. The vector potential
A is a fundamental construct in electromagnetism (Hinchliffe and Munn, 1985).
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Imagine a free particle with charge Q and mass m. The Hamiltonian is
A 1
H=_—p
2m P
where p is the linear momentum. In the presence of external fields defined by the
potentials ¢ and A, the correct Hamiltonian turns out to be (Hinchliffe and Munn,
1985) '

+ Q¢ (17.24)

The quantity p — QA is called a generalised momentum. It appears in both clas-
sical electromagnetism and quantum mechanics. In the Schrodinger picture, we
make the substitution o
VoY -]
-V
P— 27

After some manipuliation the Hamiltonian turns out to be

.. ih 242
A=t r ™A vy 2
2mm 2m

+ Q¢ (17.25)

where jZ = —1.
The vector potential A is defined by

B =curlA
and by making use of the vector identity curl grad = 0 we also have
B = curl (A 4 grad V)

where V is an arbitrary differentiable scalar field. The vector potential is therefore
undetermined to within a constant field. In deriving the equation 17.25 above, I

have made use of this freedom, and assumed that the vector potential satisfies
divA =0

In the special case where the vector potential is zero and the electrostatic field
is uniform along the z-axis we have

A A
Y £ ~ A N

H =Hy,— QE? (17.26)
and you should recognize Qz as the z-component of the dipole moment oper-
ator p..

In the case of a uniform magnetic induction along the z-axis, B = Be,, you
will find that the vector field

A = 5(—Bye, + Bxe,)

N —
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satisfies both of

.~ jhOB 9 ’B

H=Ho+£(—y——+x >+Q (x +y)+Q<b 17.27)
m 8m

The operator in the first brackets is related to the z-component of the anguiar

momentum operator /,, giving finally

17.10 MAGNETIZABILITIES

Magnetizabilities are the magnetic analogue of polarizabilities; they measure the
response of the system to an applied magnetic induction. As a rule of thumb,
rnagnetostatic phenomena are more complicated than their electrostatic analogues
and this turns out to be the case here. Apcut from the pure electrostatic O,
the Hamiltonian contains two extra terms involving B. In terms of perturbation
theory, the first- and second-order corrections are therefore more complicated in

the magnetic case. The first-order correction is

AUWY = ——E/llf*i Yodt (17.29)
m otz¥0 .

e magnetizability. These are

2 p2 2 00 * 2
O T Y M

& — &0

The second-order terms give the magnetizability. The first term is known as
the diamagnetic part and it is particularly easy to calculate since it is just the
expectation value of the second moment operators. The second term is called the
paramagnetic part.

The derivations given above related to a single particle in a constant magnetic
induction. For a molecule within the Born—Oppenheimer approximation, the
derivation is similar except that we take the nuclei to be fixed in space. There is
a nuclear and an electronic contribution to each property.

I mentioned above the magnetic vector potential A. This is given in the static
case by
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There is a vector identity
curi (grad F) =

0
which is true for any differentiable field F, and so if we add grad F to A, the
curl is still zero. In symbols,

B=curl(A+gradF) =

and so the vector potential is undefined to within a constant of integration.

Maonetic nronerties should be indenendent of the choice of coordinate origin

WiaguLul prUpPUIilils SuULIN UL LLULPLLBCIL Ul WIS LLHUILL U1 SUVIRLLAWS Viigiit.

The term choice of origin is often translated into choice of gauge, and so we say
that physical properties should be gauge-invariant (for a discussion, see Hameka,
1965).

In early work, Stevens, Pitzer and Lipscomb (1963) calculated magnetic
shielding constants for a number of diatomics, using self-consistent perturbation
theory. They achieved gauge invariance by using a very large basis set. An
alternative is to use gauge-invariant atomic orbitals (GIAO). A GIAO is the

product of an ordinary basis function x(r) and a complex factor that depends on
the origin of the vector potential

OITAN . o / j . \
xT0(r) = x(r)exp k— iA . ) (17.31)

London (1937) first made use of these functions in connection with ring currents
in aromatic hydrocarbons. A key paper for the use of GIAO is that of Ditch-

field. o - o -

Self-Consistent Perturbation Theory of Diamagnetism I. A Gauge-Invariant
LCAO
Method for N M R Chemical Shifts
Robert Ditchfield
Molecular Physics 27 (1974) 789-807

An ab initio gauge-invariant molecular orbital theory is developed for
nuclear magnetic shielding. The molecular orbitals are written as linear
combinations of gauge-invariant atomic orbitals, the wavefunction in the
presence of an external magnetic field being determined by self-consistent
field perturbation theory. The final magnetic shielding result is broken up

inta contribntione which can ha ralatad to variong faaturee of alactronic
11U CULIUIUUUVLIS WwiliUll Ldll UL IVIdivUu WU valivud lvdluive VUl vitluvuiuav

structure. Calculated magnetic shielding constants are presented using three
sets of atomic orbitals, all of which are taken as contracted gaussian-type
functions. The first two sets are minimal and the third is slightly extended.
All three levels of theory give good descriptions of shielding at first row
and hydrogen atoms. Carbon and hydrogen chemical shifts calculated at the
extended level are in excellent agreement with experimental values.
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17.12 NON-LINEAR OPTICAL PROPERTIES

There is a growing interest in the non-linear optical (NLO) properties of organic
materials. Organic and polymeric materials with large non-linear optical coeffi-
cients can be used in principle in optoelectronic and photonic devices, and a great
deal of research effort has been expended in efforts to design new compounds
with optimal NLO properties.

Such efforts have met with limited success, and the reason usually advanced
is our lack of understanding of the frequency dependence of molecular NIL.O
properties. In classical electromagnetism, we refer to properties that depend on
the frequency of radiation as dispersive and we say that (for example) dispersion
is responsible for a rainbow. The blue colour of the sky is a dispersion effect, as
is the red sky at night and morning. There is more to it than that, and you might
like to read a more advanced text (Hinchliffe and Munn, 1985).

We have seen above how to calculate polarizabilities and hyperpolarizabilities
for static electric fields. I will consider a simple oscillating electric field

E = Egexp(jwr)

I should mention the convention that in electromagnetic studies we write oscil-
lating fields as (e.g.) E = Egexp(jwt) rather than E = Ejcos(jwt). There is
nothing sinister in this — it just makes the maths simpler. A laboratory electric
field is the real part of E = Epexp(jwt), and so we have to remember to take
the real pari of any resuit before comparison with experiment.

The polarizabilities e, g and y are often calculated by the methods of time-
dependent perturbation theory, which I shall now describe.

1713 TIME-DEPENDENT PERTURBATION THEORY

Strictly sneakino, all nerturbations must be ime_de endent: we cannot arrange

ALY Sspealiily, 4l pelitlioalions i oC Uil 1 aR.

for them to have been in existence since t = —oo and we must instead sw1tch
them on. As in an electrical circuit, such switching-on causes initial transient
behaviour that eventually dies away to leave a steady state.

We now suppose that the perturbed system is described by

H@) =Ho+ V(@) (17.32)
where the zero-order problem has solutions
Hoy} = &)y}

The corresponding zero-order time-dependent states are (from Chapter 0)

2
W0(r) = y¥exp ( ”h 8 ’) (17.33)
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In this section I will write W for the time-dependent states and ¢ for the time-
independent ones. The ; may themselves depend on the space and spin variables

of all the particles present.
If I write the state of the perturbed system W,(#) then it must satisfy the
time-dependent Schrédinger equation
h oW, (z)
2w ot

In the spirit of the time-independent perturbati n_ t
combination of the unperturbed states

(1) =Y W) (17.35)

AW, (1) = j—

It is easily seen that
ci(t) = / W)W dr (17.36)

and so |c;(1)|> gives the fraction of the unperturbed state W9 in the perturbed

state W, (1).
Tha agQ 17 2% ig ihetitnted inta th time_denendent Qehraddinocer
J.II,U UAPI\«DDIUII e l e e 10 nuuoutuu,u lllI.U U L (o4 . 29

equation to give, after a little rearrangement,

c;
— Y‘ ( i ( )\Ifo(t) + c,m—\ Y‘c,m(Hn + V()

"27-[“

This equation contains the time-dependent Schr6dinger equation for the unper-
turbed states

0pn . h VD)
HO‘I’ ®=j— v
leaving
e 32 g0 = S a0 0w (1737)
2 ; t .

The time derivative of the coefficient i (f\ for the narticular state \IJO{r\ is found

1e particular found
by multiplying either side of the equation by the complex conjugate of W(z) and
integrating. After a little manipulation we find

_h A

i 2 e [woriowos (17.38)

The integral on the right-hand side is over space and spin Variables, and so can
be written

0
/ w2())* V(t)\IJO(t)dt—exp( M) / @H*V(@OYldr  (17.39)
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For the sake of neatness, we can put

Vi = / (W0)* V(g de

and

h
n

21

0 0

This gives the result
LAY
ocE\t)

at

= ;% > Vi) exp(jont) (17.40)

which is exact. This integral equation is generally hard to solve, but can often
be found to successively higher orders of perturbation theory.

17.14 TIME-DEPENDENT HARTREE-FOCK
THEORY

The time-dependent Hartree—Fock theory was first discussed by Dirac (1930b)
and subsequently in perturbative form by Dalgarno and Victor (1966). Its
relationship to time-dependent perturbation theory has been discussed by
Langhoff, Epstein and Karplus (1972).

The standard Hartree—Fock LCAO equation from Chapter 6

hFCi = e,-Sci
becomes -
( hf - j— _,—S\ ¢ = £S¢; (17.41)
\ 2w dt )

where the LCAO coefficients are now time-dependent. The normalization condi-
tion

becomes 5
TQe. = 17.42
o9t i Sc] 0 ( )

The Hartree—Fock equations have to be solved by the coupled Hartree—Fock
method. The following article affords a typical example.

Dispersion of Linear and Nonlinear Optical Properties of Benzene: An Ab
Initio Time-Dependent Coupled-Perturbed Hartree—Fock Study
Shashi P. Karna, Gautam B. Talapatra and Paras N. Prasad
Journal of Chemical Physics 95 (1991) 5873-5881

Frequency-dependent polarizability « and second hyperpolarizability ¥

onrmcnnnding to various third-order nonlinear ontical nrocesses have been
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calculated by ab initio time-dependent coupled—perturbed Hartree—Fock
method. The selection of proper diffuse functions in the basis set is
made from a comparison of the calculated values of «(w) at two optical
wavelengths (A =589 and 632.3nm) and that of y(—2w, 0, w, w) at
A = 1064 nm with the reported experimental values at these wavelengths.
It is found that a 4-31G basis with a diffuse p and diffuse d function,
in addition to properly describing various elements, yields the values of
a and y which are, respectively, within 7% and 5% of the corresponding
experimental results. The in-plane components of « show a larger frequency
dispersion compared to the out-of-plane component. The calculated values
of y for the electric field-induced second harmonic generation (EFISH) at
five optical wavelengths are within 5%—14% of the reported experimental
results. However, a somewhat larger discrepancy between the calculated and
measured values of y for the third harmonic generation (THG) and y for
degenerate four wave mixing (DFWM) is found. The order of the y values
for various third-order processes is {THG) > wEFISH) > {DFWM) >
y(EFIKE) =~ Y(EFIOR), where EFIKE and EFIOR, respectively, represent
electric field-induced Kerr effects and electric field-induced optical
rectification. The elements of y show deviation from the Kleinmann
symmetry even at lower optical frequencies.

[y




18 MISCELLANY

To finish off, I want to describe four applications. They either illustrate or rein-
force many of the themes discussed in this book. I hope they will interest you.

18.1 THE FLOATING SPHERICAL GAUSSIAN
(FSGO) MODEL

In standard quantum-mechanical molecular structure calculations, we normally
work with a set of nuclear-centred atomic orbitals x,, x5, ..., x,. GTOs are a
good choice for the x’s, if only because of the ease of integral evaluation. Proce-
dures such as HF-L.CAO then express the molecular electronic wavefunction in
terms of these basis functions and at first sight the resulting HF—LCAO orbitals
are delocalized over regions of molecules. It is often thought desirable to have a
simple ab initio method that can correlate with chemical concepts such as bonds,
lone pairs and inner shells. A theorem due to Fock (1930) enables one to trans-
form the HF—LCAOs into localized orbitals that often have the desired spatial
properties.

Another approach, the floating spherical Gaussian orbital (FSGO) model starts
from a set of localized orbitals and uses the ideas of simple descriptive chemistry.
Most chemists would describe ammonia as a nitrogen inner shell comprising a
pair of 1s electrons, three equivalent pairs of electrons localized between the N
and the H nuclei, and a nitrogen lone pair. In FSGO theory, each pair of electrons
is allocated to a spherical (1s) GTO x;, X, - - -, X5, as illustrated in Figure 18.1.
For simplicity I have omitted the inner shell and two of the bond orbitals. In the
simplest version of the FSGO model we just consider enough spherical (i.e. s-
type) Gaussian orbitals to accommodate the number of electrons: if there are 2m
electrons, we need m FSGOs. These basis functions need not be nuclear-centred,
and indeed we let them float through space and change their size (the orbital
exponent) until an energy minimum is reached.
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bond
orbital
H

Figure 18.1 The FSGO model for ammonia

In the case of ammonia, which has ten electrons, we would choose five 1s-type
GTOs X;, X35 - - - » X5 as appropriate and write an electronic wavefunction
X (rpasy)  x(r2)es2) -+ x(r)e(sio)
U= Xl(rl)ﬁ(sl) Xl(r2)ﬁ(52) v Xl(rlo)ﬁ(slo) (18 1)

|x5(rl)ﬂ(s1) K@) -+ x50 |

A geometry optimization can be done if required, using any of the standard

methods.

There are a few interesting points about the treatment. First of all, there is no
variational HF—LCAO calculation (because every available y is doubly occupied)
and so the energy evaluation is straightforward. For a wavefunction comprising
m doubly occupied orthonormal x’s the normalizing factor N is

1

A A
y ()i

N (18.2)

In the case that the x’s are individually normalized but not necessarily orthogonal
then the overlap integrals between the basis functions have to be taken into account.
If we write the matrix of overlap integrals S and its determinant det S then

[ 1
N= 1 @) detS (18.3)

The electronic energy formula turns out as

E

Eel = ZLL T,,/ Xi @Dk x; () dry

i=1 j=1

where T is the inverse of the overlap matrix
T=S"!

The overlap integrals are first calculated, and the matrix inverted. The one- and
two-electron integral contributions to the electronic energy are summed as they
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Table 18.1 Input and output from an FSGO calculation on ammonia

Nucleus Charge X/pm Y/pm Z/pm
N 7 0.0 0.0 0.0
H1 1 0.0 149.95 100.13
H2 1 129.86 —75.00 100.13
H3 1 —129.86. —75.00 100.13
Orbital Radius/pm x/pm y/pm z/pm
N 1s 27.69 0.0 0.0 0.08
N lone pair 154.93 0.0 0.0 0.08
Bond 1 150.07 0.0 57.12 40.00
Bond 2 150.07 49.46 —28.56 40.00
Bond 3 150.07 —49.46 —28.56 40.00

are calculated. Finally the nuclear repulsion is added. The positions and sizes of
the x’s are determined, and a geometry optimization performed.

The final total energy in such calculations is typically 85% of that obtained in
a standard HF-LCAO calculation.

The inner-shell orbitals for first-row atoms are almost invariably found to be
very close to the nuclei, and so they were often assumed to be nuclear-centred.
An interesting problem arises when trying to handle multiple bonds. It is natural
to place a pair of doubly occupied FSGOs above and below the plane of the
molecule. It is observed that the energy minimum occurs as these two FSGOs
coalesce, which gives a singular overlap matrix. An ad hoc solution is to keep
such a pair of FSGOs separated by a fixed amount.

Some authors also recommended that the inner-shell octet of a second-row
atom should be represented by four doubly occupied FSGOs arranged tetrahe-
drally round the nucleus.

The FSGO model attracted a great deal of attention in the 1960s and 1970s.
Bond lengths, bond angles, barriers to rotation, electric moments, force constants
and electric dipole moments were all studied. According to Frost and Rouse

(1968), the greatest computational achievement of the FSGO model was its

ability to calculate bond lengths to within a few percent. Deviations occur

for short bonds and long bonds, but hydrocarbons are particularly well repre-
sented.

18.2 HYPERFINE INTERACTIONS
Any particle with charge Q, mass m and non-zero angular momentum 1 is a
magnetic dipole,

PM = ;Q- (18.5)

LIt



In the presence of an external magnetic induction B this dipole py has a potential
energy glven hv the laws of classical elp(‘tmmaonptmm as

U= —pwm- ) (18.6)
All possible alignments between the dipole and the magnetic induction are. al-

]n\xlpd and the energies are continuous: there is no hint of guantization
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The Stern—Gerlach experiment demonstrated that electrons have an intrinsic
angular momentum in addition to their orbital angular momentum, and the unfor-
tunate term ‘electron spin’ was coined to describe this pure quantum-mechanical
phenomenon. Many nuclei also possess an internal angular momentum, referred
to as nuclear spin. As in classical mechanics, there is a relationship between the
angular momentum and the magnetic moment. For electrons, we write
—e
2meS
where g, is approximately 2. The fact that g, is different from 1 is a consequence
of the quantum-mechanical nature of electron spin. It simply does not have a
classical analogue.

Spin does not appear in the Schridinger treatment, and essentially has to
be postulated. There are more sophisticated versions of quantum theory where
electron spin appears naturally, and where the magnetic dipole appears with the
correct magnitude. I want to spend time discussing electron spin in more detail,
before moving to the topic of electron spin resonance.

PM = g (18.7)

18.2.1 The Dirac Theory of the Electron

The version of quantum mechanics we have developed so far does not satisfy
the requirements of the special theory of relativity. We can see this by noting the

form of the time- dependent Schrodlnger equation for a single electron
n? V2 h oy
g Y VU =i
It is a first-order differential equation in time, but second-order in the spatial
variables. Space and time do not enter on an equal footing, as required by the
special theory of relativity.
There are at least two ways forward, and the first was proposed by Schrodinger.
Instead of the non-relativistic Hamiltonian for a free electron, he started from the
correct relativistic expression

(18.8)

2 24, 2.2
& =MmeCy 1 P
where m, is the electron mass and co the speed of light in free space. He then
made the operator replacements
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One then arrives at the Klein—Gordon equation

1 8>  4n’mic}

0
V2o o - e 0 gy, ) =0 (18.9)
( c3 or? h?
In onino fro tha Qchridinoer nnnqhnn to the V‘AI“ Gordos on equatio 7
11 gULllg ircm e uwuluuulsv Lyual 1 W uUIiv 1aala SUiuaUL u\iuuuvu, we

obtain the necessary symmetry between space and time by having second-order
derivatives throughout. It is usually written in a form that brings out its relativistic
invariance by using what is called four-vector notation. We define a four-vector

x to have components
(XI ) ( ) )
ll N Z (18.10)

\X4 Jjeot /

(Don’t confuse this with my earlier use of x for a space-spin variable; the notation
is common usage in both applications.) The Klein—Gordon equation is therefore

82+82+82+82 4r’mic]
a3 a3 ax? h?

) Y(x1, x2, %3, x4) =0 (18.11)

It turns out that the Klein—Gordon equation cannot describe electron spin; in the
limit of small kinetic energy, it can be shown to reduce to the familiar Schrodinger
equation.

Dirac \ i 930&)

ad
au
linear in the space and time derivatives. He wrote

a a d 2nm c
()/1 + a5~ + €, + vag + g 0\) Y(x1, X2, %3, x4) =0 (18.12)

-

tha idoa af waorkino with a ralati
UiV 1uv L

a
X a UL WUILIRIIIEZ wWill a 1T

-

where the y’s have to be determined. They are certainly not ordinary scalars.
This equation is called the Dirac equation.

The Schrodineer eguation and the Klein—Gordon eaguation both involve second
1€ Scareqinger equaten and e A€ equ vVOive second

order partial derivatives, and to recover such an equation from the Dirac equation
we can operate on equation 18.12 with the operator

2mmecy \

0 a
2 2 2 9 _ AeC 18.13
K'Vl + 8x2 +vs o + v ™ . ) ( )

A little operator algebra shows that this gives exactly the Klein—Gordon equation
if the y’s q::mefv the rplnhnnqhw\

Yivi +vivi = 28 (18.14)

where the Kronecker § is zero unless i = j, in which case it is 1.

Dirac’s theory therefore leads to a Hamiltonian linear in the space and time
variables, but with coefficients that do not commute. It turns out that these coef-
ficients can be represented as 4 x 4 matrices, related in turn to the well-known
Pauli spin matrices. I have focused on electrons in the discussion; it can be shown
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that any particle whose wavefunction satisfies the Dirac equation must have spin
%. Not only that, the Dirac theory gave the correct value for the magnetic moment
(if you accept that 2 = 2.0023...).

18.2.2 Many-Particle Systems

A charge density p(r) generates an electrostatic potential ¢(R) at the field point
R according to the formula

1 p(r)
PR = tres | R

where the integration is over the coordinates of the charge distribution. Fields
can only propagate through free space at the speed of light, and so if a change
were made to the charge distribution p(r) at time ¢, the effect of that change
couid only take an effect at field point R at a time
IR —r|
Co
later. The contribution to the potential (or indeed, any other field) at time ¢ made
by the charge density thus depends on the charge density as it was at time
R —r|
t —
co

dr

This potential is referred to in electromagnetism texts as the retarded potential.
It gives a clue as to why a complete relativistic treatment of the many-body
problem has never been given. A theory due to Darwin and Breit suggests that
the Hamiltonian can indeed be written as a sum of nuclear—nuclear repulsions,
electron—nuclear attractions and electron—electron repulsions. But these terms
are only the leading terms in an infinite expansion.

Atomic and molecular magnetic dipoles have to obey the angular momentum
laws of quantum mechanics, since they are proportional to angular momenta.
Each dipole can therefore make just a number of orientations with an applied
magnetic induction B. Each allowed orientation corresponds to a different poten-
tial energy, and absorption of a photon with suitable energy may cause a change
in orientation.

When discussing magnetic resonance phenomena, it is conventional to proceed
ajong the lines of standard perturbation theory. If the fieid-free Hamiitonian is
ro then we write

AH=H+A®"

where the perturbation represents the effect of external fieids and the smail
internal fields that typically give rise to the fine structure shown in atomic spectra
(for example, spin—orbit coupling and the Lamb shift).
According to McWeeny and Sutcliffe (1969) we should write the perturba-
tion as
A® =Hg+Hy + Hs + Hz + Hss + Hx (18.15)
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The first term on the right-hand side arises from external electric fields. The
second (B) term arises from external magnetic inductions interacting with elec-
tronic orbital motion. The SL term arises from electron spin—orbital motion
interactions. The Z term arises from the Zeeman interaction between electron
spin and the external electric field. H ss arises from electron spin—electron spin
interactions and Hy includes all hyperfine terms arising from nuclear spins.

big N includes a nuclear Zeeman term, a nuclear dipole—dipole term, an elec-
tron—nuclear dipole term and a term describing the interaction between the

nuclear dipole and the electron orbital motion.
18.2.3 Spin Hamiltonians

Electron spin resonance (or electron paramagnetic resonance) is now a well-
established analytical technique, which also offers a unique probe into the details
of molecular structure. The energy levels involved are very close together and
reflect essentially the properties of a single electronic state split by a small pertur-

bation.
There are two terms of interest. First there is a classical electron s

spin dipole—dipole interaction

B33 gt ) (R“‘;;f) Ri(S)
i « i

This interaction dominates the spectra for free radicals and radical ions in solids.
It averages to zero for species in the gas phase or in solution.
Second, the Fermi contact term

4 A A
8B Y. Y gabole - $i8(Ra) (18.17)

where 8(Ry;) is a Dirac delta function which is zero everywhere except when

the separation R,; between electron i and nucleus « is zero. g. and g, are the
electron and nuclear g-values and 8., B, the electron and nuclear magnetons.

1CCLTOI allg 1ucical vallits AL Pey Pg Y20 CIOLUTON S-S,

This term gives rise to the isotropic hyperfine coupling.
Experimentalists work with a spin Hamiltonian, which in the latter case would
be written

~

N . (18.18)

The spin Hamiltonian operates only on spin wavefunctions, and all details of the
clectronic wavefunction are absorbed into the coupling constant a,. If we treat

the Fermi contact term as a perturbation on the wavefunction Wy, then use of
standard perturbation theory gives a first-order energy

c A \
[ (%geﬁe >3 gubula éia(Rai)) wdr (18.19)
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This can be written neatly in terms of the spin density, introduced in Chapter 5.

For nucleus o we have

(18.20)

h
SZ>Q(Ra)

BegaBe
{

|

4
ay = "3_ge

the difference between the «-spin electrons and the S-spin

electrons, and it can have positive and negative regions. To look ahead a little,

. The spin density is

CH, calculated at

1 H2C=
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Figure 18.2 Spin density in the vinyl radical
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a higher density than those of « spin and so the spin density is negative at these
points. In particuiar, the spin density is negative at the CH, carbon and so the
coupling constant must be negative.

The late 1960s and 1970s saw an immense wave of interest in the production
and characterization of radicals and radical ions. Calculated coupling constants
gave a useful guide to the assignment of ESR spectra, and the literature of that era
abounds with semi-empirical (PPP, INDO, etc.) and a few rudimentary ab initio
calculations. Attention focuses on the Fermi contact term. Analysis of an ESR
bpt‘:Cu“um y1c1ub the i‘ﬁagﬁuuuc of the u'y'pc‘:uu“le C(‘J‘u‘pliﬁg COﬁStai‘u, but not the
sign. The sign can be determined (in principle) by observing linewidth variations
or from a single-crystal study. Few radicals are sufficiently stable for the latter
studies. To be strictly comparable, theoretical studies should report calculated
splittings averaged over all populated vibrational states.

The simplest place to start is with a hydrogen atom. The experimental ESR
spectrum shows two lines separated by 1420.4 MHz (often reported as a magnetic

indnotio trangitinnge acenr at tha wocananco rondition hy — ) 2 N
uluuuuuu, Dlll\.«\a ULULALIDIUIUVILD ULLUL Al Uiy 7oouvrniuiite vvrneiwvie iy — 56’/6”1 Pl

which case it is 50.682 mT).
The spin density function is very simple, since there is only one electron

Q(r) = xj,(m) (18.21)
Substitution r = 0 gives a value of 1422.7 MHz (50.765 mT) and the small differ-
ence between theory and experiment is essentially due to the use of first-order
perturbation theory in the derivation above.

GTOs are widely used in molecular structure calculations, but have the wrong

behaviour at the nucleus. We might expect them to give poorer agreement with
exneriment. Table 18.2 shows a selection of calculations for the H atom. Standard

CAPUILILCIL. 2G0I0 10,4 SUUWS & SUATL LU UL LRILLEQUEls 200 W0 12 Qi Salizais

GTO expansions were taken from the literature and left uncontracted.
Simple organic radicals such as the vinyl radical mentioned above were routi-
nely treated using semi-empirical or rudimentary ab initio HF—LCAO techniques.

Table 18.2 Hyperfine coupling constant for a
hydrogen atom when the 1s orbital is represented
as an uncontracted sum of n primitives

n e/Ey ay/mT
2 —0.4858 27.95
3 —0.4970 37.55
4 —0.4993 42.86
5 —0.4998 45.84
6 —0.4999 47.61
7 —0.5000 48.68
8 —0.5000 49.34
9 —0.5000 49.78

10 —0.5000 50.09

Exact 1s orbital -3 50.68
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Table 18.3 illustrates some salient points for ROHF calculations. In each case, I
optimized the geometry before calculating the hyperfine coupling constants.
Agreement with experiment is not particularly good, and the ROHF method
cannot give regions of negative spin density, since the spin density is just the
sum of the squares of the partially occupied orbitals in this model.
Corresponding calculations with the UHF method give Table 18.4.
A major problem with the UHF method is that it does not give a pu

state, so that

e Shin
e spin

~ ) h?
S* Wy # s(s + I)FWUHF (18.22)

In general, if there are p a-spin electrons and g B-spin electrons, the UHF wave-
function can contain spin contributions ranging from s = % (p—¢g)to % (p+9).
The expectation value

<S2> =/‘II%IHF§2\PUHFde‘C

gives a measure of the spin impurities. For the vinyi radicai discussed above, this
was typically 1.2308 (atomic units) rather than % for each point in the geometry
optimization.

Ideally one should remove all the unwanted spin components before mini-
mizing the energy. In semi-empirical m-electron theory, Amos and Snyder (1965)

Hj
\
Cr—==C
/N
Figure 183 12 Hi

Table 18.3 Hyperfine coupling constants/mT for the vinyl radical. ROHF calculations

H, H, H; C, C,
Experiment 1.33 6.81 341 10.76 —0.86
ROHF/STO-3G 1.35 2.53 241 13.80 0.923
ROHF/4-31G 1.56 241 2.36 11.24 0.99
ROHF/6-311G** 1.32 2.01 2.38 11.49 1.19

Table 18.4 Hyperfine coupling constants/mT for the vinyl radical. UHF calculations

H1 H2 H3 C1 CZ
Experiment (—=71.33 6.81 341 10.76 —0.86
UHF/STO-3G —-3.34 7.75 543 23.52 —8.31
UHF/4-31G —3.06 8.01 6.53 20.38 -7.07

UHF/6-311G* —1.33 6.53 4.59 17.77 —4.23
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demonstrated that a reliable compromise was to remove the component corre-
sponding to the next highest spin state to the one of interest (i.e. the quartet in
this case). For the example above, this gave typically an expectation value of

0.7771. which is sufficientlv close to the doublet value of 3
V./T7TT1, Wk 1s suiciently close to the doubiet value of 7.

A good many early ESR studies were concerned with m-electron radicals and
triplet states. A protoiype m-electron system is the methyl radical, CHjs. This
radical is planar, and according to the concepts of elementary structural chemistry
the odd electron occupies a 2p, orbital perpendicular to the molecular plane,
A straightforward ab initio ROHF calculation gives exactly that, and the spin

density is zero at all the nuclear positions. Experimental measurements show
g constants from

hvperfine counlings from all the nuclei., with negative counlin
hyperfine couplings from all the nuclei, with negative coupling constants from

the protons. A UHF calculation reveals the following spin density for a C-H
ane perpendicular to the molecular plane.

Many early studies in ESR spectroscopy were concerned with anions, cations
and triplet states derived from conjugated molecules. The unpaired electron(s)
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formally occupy n-type orbital, which have nodes at the nuclear positions.
McConnell (1956) explained the non-zero hyperfine coupling constants in terms
of a spin polarization mechanism: the spin due to the odd electron polarizes

the electron ening in the C—H bhond. and <o the H nnclear ¢nin can sence the
tne cieciren spins 1 ne L—1 20ng, anG s¢ N I nuc:icar spin can sense ne

electron spin at the C atom, through the CH bonding electron pair. Pictorially,

the argument runs as shown in Figure 18.4 and so McConnell derived his weli-
known relationship

ay/mT = —2.3Q™ (18.23)

relating the proton coupling constant to the 7-electron spin density at the adjoining
carbon atom. The spin density couid then be caicuiated from standard m-eiectron
models.

A large number of calculations have appeared in the literature for the methyl
radical. It has a low out-of-plane vibrational frequency and the coupling constant
is observed to vary with temperature. There have been a number of semi-empirical
calculations of the temperature dependence, for example Chang, Davidson and
Vincow (1970a). They considered just the symmetric out-of-plane vibration, and
the normal coordinate for this vibration was approximated as the out-of-plane
angle 6. The hyperfine coupling constant was calculated for a series of values of
0, and these values were then averaged over the nuclear motion using a harmonic
oscillator which incorporated the experimental vibrational frequency.

18.2.4 The Cusp Condition

Chang, and Davidson and Vincow (1970b) also investigated the problem of
making the wavefunction satisfy the cusp condition (Kato, 1957). A general
conclusion appears to be that it makes little or no difference to the agreement
with experiment of the hyperfine coupling constants, provided that a large enough

basis set is used.

18.2.5 Density Functional Calculations

Barone’s review is timely.

Figure 18.5 Spin polarization mechanism
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Structure, Magnetic Properties and Reactivity of Open-Shell Species from
I')enqlfv Functional and Self-Consistent Hybnd Methods
Vincenzo Barone
in Recent Advances in Density Functional Methods, ed. D. P. Chong. World

Scientific Publishing Co, Singapore, 1996

This contribution is devoted to the impact of density functional theory in
the most important building blocks of a comprehensive theoretical char-
acterization and analysis of processes involving open-shell species. After
a discussion of the theoretical background, I report the essentials of a
number of case studies selected to show the potentialities and limits of
local and gradient corrected density functionals in dealing with structural,

cnactrncconic the chamicral and Linatic agnacte At tha atimals
oyvvuvovul.u\., Mermocnemica: ang sanetc aSpeCLs. At the same time 1 intro-

duce self-consistent hybrid methods obtained by adding some Hartree—Fock
exchange to gradient-corrected functionals . ..

Barone also introduces two new basis sets, EPR-II and EPR-III. These are
optimized for the calculation of hyperfine coupling constants by density functional

s atl
methods. EPR-II is a double zeta basis set wilii a 0111510 set of lJuuuu..auUll

functions and an enhanced s part. EPR-III is a triple zeta set including diffuse
functions, double d polarization functions and a single set off functions.

18.2.6 Typical Applications

In the following, all isotropic hyperfine coupling constants were calculated using
the BLYP functional and the EPR-II basis set. A full geometry nnt1m17atmn was
done in all cases.

A great deal is known about the methyl radical CHj.

The effect of vibrational averaging is particularly significant for the carbon
hyperfine coupling constant.

The allyl radical (Figure 18.6) has been the subject of very many studies. It
has been prepared in the liquid phase by electron irradiation of cyclopropane.
The sign of the CH proton coupling constant was deduced by comparison with a
single-crystal study of the radical CH(COOH), formed by y-irradiation of a single
crystal of malonic acid. A straightforward UHF calculation gives a wavefunction

Property BLYP/EPR-II results Experiment
Geometry Planar Planar
R{C-H)/pm 108.8 107.9
ay/mT —2.206 -2.309

ac/mT 2.829 3.829
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Figure 18.6 Hy Ho

that has a totally unacceptable value of (S*) even after annihilation of the quartet
spin contaminant. In addition, the radical exhibits the phenomenon of symmetry-
breaking and ROHF studies fail to give a C,, structure. This behaviour does not
occur in DFT studies.

Experimental and theoretical studies on the benzyl radical (Figure 18.7) have
long figured in the literature. The agreement with experiment is acceptable at
the BLYP/EPR-II level of theory — much better than that produced by standard
UHF calculations.

In standard Hiickel m-electron theory, the highest occupied orbital has a node
through the position of C; and so we might expect a zero proton hyperfine
coupling constant, even after using McConnell’s argument.

Table 18.6 The allyl radical C;H;

Property BLYP/EPR-II result Experiment
R(C-C)/pm 140.5 138.7
R(C,-H;)/pm 109.6 108.7
R(C,-H,)/pm 109.2 108.5
R(C,-H3)/pm 109.0 108.2
C;-C,—Hjz/degrees 117.5 118.0
C;~C,—Hs/degrees 120.9 121.2
C;-C,-Hjs/degrees 121.5 121.5
a(H;)/mT —1.320 -1.39
a(H;)/mT —1.393 —1.48
a(H;)/mT +0.289 +0.41
a(C;)/mT 1.6909
a(C)/mT —1.407
H; /Hz
>C——C\ /Hl
) —C< \/C_C\
c—CcC H

Figure 18.7
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hfcc/mT Calculated Experiment
H,; —1.497 —1.635
H, —0.470 -0.514
H; +0.138 +0.175
H, —0.567 —0.614

18.3 ATOMS IN MOLECULES

The atom and bond concepts dominate chemistry. Dalton postulated that atoms
retained their identities even when in chemical combinations with other atoms.

1 iag +1 trangfarahla fram ona lansla
We know that their properties are sometimes transferable from one molecule

to another; for example, the incremental increase in the standard enthalpy of
formation of a normal hydrocarbon per CH, group is —20.6 + 1.3 kI mol~!. We
also know that more often there are subtle modifications to the electron density.

In Chapter 3, we studied the topic of population analysis. In population anal-
ysis, we attempt a rough-and-ready numerical division of the electron density into
atom and bond regions. In Mulliken theory, the bond contributions are divided up

o . e
equally between the contributing atoms, giving the net charges. The aim of the

present section is to answer the questions ‘Are there atoms in Molecules?’, and
if so, ‘How can they be defined?’. According to Bader and coworkers (Bader,
1990) the answers to both questions are affirmative, and the boundaries of these
atoms are determined by a particular property of the electron density.

In our study of the hydrogen molecule-ion H,™ in Chapter 3, we considered
the electron density map shown in Figure 18.8. It is obvious by inspection that the




MISCELLANY 317

electron density has maxima at the positions of the nuclei. The mutual potential
energy of a nucleus and an electron becomes singular as the electron approaches
the nucleus, and the first derivative of the electronic wavefunction has to be zero
at the nucleus. This is the reason for the so-called cusp condition (Kato 1957).

RC DRCICES. 2110 15 A0 1Eas001 10 1000 S0=CalC L LONNCI0 \AAA0, 270

These are local maxima: we would expect much higher maxima at the carbon
atoms of ethene than at the hydrogen atoms.

The electron density also has a saddle point halfway between the two nuclei.

It should be clear from our discussion of potential energy surfaces that we
have to examine the gradient of the electron density and the matrix of second
derivatives, in order to make progress. The gradient of the electron density P(r)

is, in Cartesian coordinates,

-+
~
-
e
)
I~
N’

/PP PP PP\

P ‘P O°P
H= | (18.25)
dvax av2 avoz
J J I ddad
L ?*pP P P )
0z0x 0zdy 0z
H is a real symmetric matrix, and its eigenvalues are therefore real. Its eigen-

3 b

vectors are referred to as the ‘principal axes of curvature’.
The quantity

#P PP &P

w2 3y a2
is called the Laplacian of P, and it is also equal to the sum of the eigenvalues
of the Hessian.

2
V2P =

Each maximum, minimum or saddle point occurs at a so-called critical point r,
where the gradient vanishes. The nature of the critical point is determined by
the eigenvalues of the Hessian. All the eigenvalues are real at the critical point,
but some of them may be zero. The rank  of the critical point is defined to be
the number of non-zero eigenvalues. The signature o is the sum of the signs of
the eigenvalues, and critical points are discussed in terms of the pair of numbers
(w, 0).

With few exceptions, the critical points for stable molecules usually have @ = 3
and there are three possible signature values:

o = —3: all curvatures are negative and the electron density is a local maximum
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o = —1: two curvatures are negative, so we have a saddle point.
o = +1: two curvatures are positive, again corresponding to a saddle point.

Now imagine that we rotate the molecule about the internuclear axis. The
curved contour will trace out a surface. If we draw a unit outward normal vector
to this surface, it will be everywhere perpendicuiar io ihe gradieni vecior (because
the gradient vector points along the trajectory).

In vector calculus, the flux & of an arbitrary vector field A through a surface
S is given by the surface integral

o= /A-ﬁdS (18.27)
S

If A is everywhere perpendicuiar io ihe unii normai then the flux through the
surface is zero. We note that for all points on the curved trajectory in Figure 18.9,
the gradient of the charge density is perpendicular to any unit normal. When we
construct a plane by rotating the molecule about the axis, the charge density
gradient is perpendicular to any outward normal on this plane and so the flux of
the density gradient is zero through this plane.

For molecules with lower symmetry, we have to find this plane by numerical
methods.

In AIM theory, this plane is used to divide up a molecule into atoms. The
charge in either region can be calculated numerically, and many other properties
calculated. The numbers resulting are quite different from those of conventional
population analysis. In Table 18.8, for example, are HF/6—311G** results for
LiCl and LiH. The interesting thing is that the Li charges are so similar, with an
underlying chemical trend.

o o
e ot
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Table 18.8 LiH and LiCl atom charges
HF/6-311G** calculations

Lithium charge
Mulliken AIM
LiH 0.3571 09118
LiCl 0.6353 0.9321

184 THERMODYNAMIC QUANTITIES

It is reasonable to expect that models in chemistry should be capable of giving
thermodynamic quantities to chemical accuracy. In this text, the phrase ‘ther-
modynamic quantities’ means enthalpy changes AH, internal energy changes

AI] heat canacities O and ¢o on for cag-nhace reactione Where naceccarv tha
AU, neat capaciiies L, anc sC on, I0r gas-pnase reactions. waere necessary, ine

gases are assumed ideal. The calculation of equilibrium constants and transport
properties is aiso of great interest, but I don’t have the space to deai with them
in this text. Also, the term ‘chemical accuracy’ means that we should be able
to calculate the usual thermodynamic quantities to the same accuracy that an
experimentalist would measure them (+10kJ mol~1).

Our objective proved elusive in the early days of quantum chemistry. The

maior nroblem is electron correlation. As I have nointed out on several occasions

LHGUL PRUDNTILL A5 TACUUVIL LULITIAURVIL A0S 1 LAVE PULIRTUG VUl Vil ST Vliar ULLASIVILS

through the text, the dissociation energy of dihydrogen into its lowest-energy
producis

H, — 2H (*S)

is beyond the scope of Hartree—Fock theory, because HF wavefunctions disso-
ciate into a mixture of ions and atoms according to

H, - § (2H(®S) +H" + H")

Several authors have been more modest in their goals and attempted to calculate
directly thermodynamic quantities for reactions involving closed-shell species,
where there is some hope that the correlation errors will cancel. The two papers
often quoted in this field are those of Snyder and Basch (1969) and Hehre et al.

(1970).

ATzl ace Ml 1 Ml ~f 4L PP SRy PRSI o O WPy

1V1U1€bulal ullldl lllUUly 01 e DICLUUIIIL« Oll ucire Ul Ulgdlllb
Compounds V Molecular Orbital Theory of Bond Separation
W. 1. Hehre, R. Ditchfield, L. Random and J. A. Pople
Journal of the American Chemical Society 92 (1970) 4796

The complete hydrogenation of an organic molecule is separated into two
processes. In the first, termed bond separation, the molecule is separated
into its simplest parents (:on_ra_nmo the same component bonds. The energy

S1HNEST Paltll g HIC o4l COINDONCIL DOICS. 110 G
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associated with such a reaction is then the heat nf bond senaration Tha

o Wiuid Sulil & 1TAlulUil 15 uavir wav fhi Clive oCp G Ginlre. 1100

second step then consists of full hydrogenation of the products of bond sepa-
ration. To study these two processes, we have performed Ab Initio molecular
orbital calculations on a variety of polyatomic molecules. Both minimal
and extended basis sets, taken as linear combinations of Gaussian-type
functions, are shown to give heats of bond separation in good agreement
with experiment. In contrast, only the extended basis set is successful in
reproducing the heats of hydrogenation of the parents.

The aim is to predict the enthalpy change for a reaction such as
C¢Hg + 9H, — 6CH4 (18.28)
We use Hess’s law to break down the equation into a composite of
C¢Hg + 6CHy — 3C,Hg + 3C,Hy i
C,H¢ + H, — 2CH,4 I (18.29)
C,H, + 2H, — 2CH4 1

Weighted addition of the three equations gives the original equation.

Bond separation reactions such as (I) are examples of chemical changes in
which there is a retention of the number of bonds of a given formal type, but
with a change in their relationship to one another. Such reactions are often called
isodesmic.

Table 18.9 shows the HF/6-311G** energies for the molecules of interest.
Some care is nceded when comparing these with thermodynamic data.

The values in the second column give internal energies (U) all relative to
separated electrons and nuclei. For a reaction involving ideal gases with a change
of Ar in the number of gaseous moles, we have

AH = AU+ RT An

They take no account of the zero point vibrations. So for example, in the case
of a diatomic molecule the dissociation constants D, and Dy are related by
D, = Do + 3hcow, (18.30)

ML, ov data calculs
1dic 10-7 1v101cx,u141 Cllt?lgy la CalCul

HF/6-311G** level of theory

Molecule &a/En Corrected to 298 K
H, —1.132491 —1.119 664
CH, —40.209012 —40.159212
CHy —78.054 725 —77.997 729
C,Hg —79.251708 —79.169 691

C.H. —230.754 008 —230.643 386

~Hiif L3V i 95 UF0 4£3V.053 560
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We therefore need to calculate the vibrational frequencies, which means
have to perform a geometry optimization.
The energies quoted are electronic energies, and we often have to take account

that we

of the translational, rotational and vibrational contributions of the nuciear frame-
work. They also refer to a temperature of 0K, and for a molecule at temperature
T the kinetic energy is 5 ksT (i.e. 5 ksT per translational degree of freedom,
where kg is the Boltzmann constant). The rotational energy is also 1 5 kT per
degree of rotational freedom, and there are two such degrees of freedom for a
linear molecule and three for a non-linear molecule. Many vibrational modes
will be populated at temperature T; if the fundamental vibrational wavenumber
of a given mode is w, then the associated energy is hcowe and in the harmonic
approximation the energies of all vibrational states are

= (v+ 3) heowe (18.31)

The fraction of molecules N,/N having energy ¢, is given by the well-known
Boltzmann formula
[ &

N _ i \_ k7 (18.32)

T4 Zex /_ &v
. p( kT

With all this in mind, the molecular data in column 3 of Table 18.9 has been
corrected to 298 K and 1 atm pressure. Like is compared to like in Table 18.10.

The agreement with experiment is reasonable, for both types of reaction. In the
case of benzene, the bond separation energy refers to the energy of the molecule

Urﬁpai‘cu io lldglllclllb WlLll PLII'C blllglc dIlLl UUUUIC DUHUb d.IlU SO LIlC lIllCI'Ildl
energy change should give a good estimate for the resonance energy.

184.1 G1 and G2

mTh hawva mavad An gincn +lan ala~ Tha Aacalamasant ~F
11111153 nave movea on Dllle uic Cdll_y PaPClb BIVCII aoove. 110c ucvoluplicin vi

Mgller—Plesset perturbation theory (Chapter 11) marked a turning point in treat-
ments of electron correlation, and made such calculations feasible for molecules
of moderate size. The Mgller—Plesset method is usually implemented up to MP4
but the convergence of the MPn series is sometimes unsatisfactory. The effect

Table 18.10 Internal energy changes at 298 K and 1 atm

Reaction AU298K(C211C)/kJ mol~! AUsjgg K(CXpt)/kJ mol ™!
CH;-CH; + H, —» 2CH,y —76.17 —75.73
CH,=CH, + 2H, — 2CH, —213.63 —194.56
CsHs + 6CH; — +253.09 +275.30

3CH,=CH, + 3CH;-CH;




322 MODELLING MOLECULAR STRUCTURES

of extended basis sets is also important: d and even f orbitals make consider.
able contributions to the total energies of small first-row molecules. With thege
general thoughts in mind, Pople ez al. (1989) introduced the Gaussian-1 (G1)
theory.

Gaussian-1 theory: A general procedure for prediction of
molecular energies John A. Pople, Martin Head-Gordon, Douglas J. Fox,
Krishnan Raghavachari and Larry A. Curtiss
Journal of Chemical Physics 90 (1989) 5622-5629

A general procedure is developed for the computation of the total energies
of molecules at their equilibrium geometries. Ab Initio molecular orbital
theory is used to calculate electronic energies by a composite method,
utilizing iarge basis sets (inciuding diffuse-sp, doubie-d and f-poiarization
functions) and treating electron correlation by the Mgller Plesset perturba-
tion theory and by quadratic configuration interaction. The theory is also
used to compute zero-point vibrational energy corrections. Total atomiza-
tion energies for a set of 31 molecules are found to agree with experimental
thermochemical data to an accuracy of greater than 2kcal mol~! in most
cases. Similar agreement is achieved for ionization energies, electron and
proton affinities. Residual errors are assessed for the total energies of neuiral
atoms.

The G1 procedure consists of a number of standard calculation steps that aim
to find an equilibrium geometry, an electronic energy and a set of harmonic
force constants. The defects mentioned above are assumed additive, and they are

...... 42t d e b

invesugaiea ii turil.
There are eight distinct stages in the calculation:

1 An initial equilibrium structure is obtained at the HF/6—-31G* level of theory.

2 The equilibrium structure is revised to the MP2/6—31G* level of theory. For
operational reasons, all electrons are used in the perturbation expansion.

3 The geometry from step 2 is now used in a number of single-point calculations
at higher levels of theory, starting with MP4/6—311G**. This energy is now
systematically improved, and the improvements are assumed to be additive.

4 The first correction is that due to diffuse sp basis functions. These are known

tmmamniabnind e mml e g e T ol ceciala Do ol e A S e

to be important for anions and molecules with lone pairs. The correction is
obtained at MP4 level, comparing the energy of the 6-311 + G* and the
6-311G* basis sets.

5 The second correction takes account of polarization functions on non-hydro-
gens. This is done by comparing MP4/6-311G**(2df) and MP4/6-311G**

energies.
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6 The third correction allows for inadequacies in the MP4 treatment. The
QCISD(T) method is equivalent to MP4 in fourth order and also correctly
incorporates parts of the fifth and higher orders. We therefore make a quadratic
CI correction using the 6—311G*™* basis set. This is a very expensive calcu-
lation for molecules of medium size.

7 The final correction is to add an empirical ‘higher-level correction’ which is
chosen to give agreement between the G1 values for hydrogen atom, hydrogen
molecule and experiment. In the original G1 theory, a value of Ang — Bn,
was used. Here n,, is the number of «-spin electrons, ng the number of B-spin
electrons, A = 4.81 x 1073E; and B = 0.19 x 1073 E}.

8 Finally, the harmonic frequencies are obtained at the HF/6-31G* level and
scaled uniformly by the well-accepted factor of 0.8929. That allows for Boltz-
mann contributions to the vibrational modes.

Typical output from a G1 calculation on HCN is shown in Figure 18.10. For
‘Free Energy’ read Gibbs energy.
The MP4/6-311G** energy (not shown) works out at —93.233 84E}, and the final
G1 energy at 0K is —93.285 47F; . The final corrected G1 ener i

—93.28295 Ey.

18.4.2 G2 Theory

‘Gl theory’ was originally tested against experimental values of atomization
energies, ionization energies, proton affinities and electron affinities for a wide
range of simple molecules. For compounds containing first-row atoms, the agree-
ment with experiment turned out as +2kcalmol~!. For molecules containing
second-row atoms, the agreement with experiment is 43 kcal mol .

G1 theory does badly with ionic molecules, with triplet-state molecules such as
0O, and S; and with hypervalent molecules. ‘Gaussian-2’ (G2) theory eliminates
some of these difficulties by making the following three changes:

1 It eliminates the assumption of additivity of the diffuse sp (4-) and 2df basis
set used in G1 theory.

2 It adds a third d function on the non-hydrogen atoms and a second p function
on the hydrogens.

3 The high-level correction (item 7 above) is determined by a least squares fit
for 55 molecules rather than just hydrogen atom and hydrogen molecule.

Temperature= 298.150000 Pressure= 1.000000
E(ZPE) = 0.016065 E(Thermal)= 0.018586
E(QCISD(T) )= -93.220833 E(Empiric)= -0.030700
DE(Plus)= -0.003008 DE(2DF)= -0.046991
G1(0 K)= -93.285468 Gl Energy= -93.282947
Gl Enthalpy= -92.282003 G1 Free Energy= -93.304798

Figure 18.10
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Gaussian-2 Theory for Molecular Energies of First- and Second-Row
Compounds
Larry A. Curtiss, Krishnan Raghavachari, Gary W. Trucks and
John A. Pople

Journal of Chemical Physics 94 (1991) 7221-7230

The Gaussian-2 theoretical (G2 theory), based on ab initio molecular
orbital theory, for calculation of molecular energies (atomization energies,
ionization potentials, electron affinities, and proton affinities) of compounds
containing first- (Li—F) and second-row atoms (Na—Cl) is presented. This
new theoretical procedure adds three features to Gl theory including a
correction for nonadditivity of diffuse sp and 2df basis set extensions, a
basis set extension containing a third d function on nonhydrogen atoms
and a second p function on hydrogen atoms, and a modification of the high
level correction. G2 theory is a significant improvement over G1 theory
because it eliminates a number of deficiencies present in G1 theory. Of
particular importance is the improvement in atomization energies of ionic
molecules such as LiF and hydrides such as C;Hg, NH3, NoHy, H,O, and

O QLT
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