A Guide to

[ATEX

and Electronic Publishing

Fourth edition

Helmut Kopka

Patrick W. Daly

A
vy

Addison-Wesley

Harlow, England « Reading, Massachusetts « Menlo Park, California
New York « Don Mills, Ontario « Amsterdam « Bonn « Sydney « Singapore
Tokyo ¢ Madrid « San Juan « Milan « Mexico City * Seoul « Taipei

(© Addison Wesley Longman Limited 2004

Addison Wesley Longman Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the World.

The rights of Helmut Kopka and Patrick W. Daly to be identified as authors of
this Work have been asserted by them in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a licence permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1P 9HE.

The programs in this book have been included for their instructional value.
They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not o LCerlany warranties or representations nor
does it accept any liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison Wesley Longman Limited has
made every attempt to supply trademark information about manufacturers and
their products mentioned in this book. A list of the trademark designations and
their owners appears on page v.

Cover designed by Designers & Partners, Oxford

Typeset by the authors with the IATEX Documentation System

Printed in Great Britain by Henry Ling Ltd, at the Dorset Press, Dorchester,
Dorset

First published 1993
Second edition 1995
Third edition 1999. Reprinted 1999, 2000
Fourth edition 2004

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Kopka, Helmut.
A guide to IATEX : and Electronic Publishing
/ Helmut Kopka, Patrick W. Daly -- 4th ed.
p.cm.
Includes bibliographical references and index.
ISBN 0-201-39825-7
1. IATEX (Computer file) 2. Computerized typesetting. |. Daly,

Patrick W. II. Title.
299999977777

2?7??7?7?277777 2?7?7777

Trademark notices

METAFONT™ is a trademark of Addison-Wesley Publishing Company.

TEX™, AMS-TEX™, and ApgS-IATEX™ are trademarks of the American
Mathematical Society.

Lucida™ is a trademark of Bigelow & Holmes.

Microsoft®, MS-DOS®, Windows®, Internet Explorer® are registered
trademarks of Microsoft Corporation.

PostScript®, Acrobat Reader®, Acrobat logo® are registered trademarks and
PDF™ a trademark of Adobe Systems Incorporated.

UNIX® is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Limited.

VAX™ and VMS™ are trademarks of Digital Equipment Corporation.

IBM® is a registered trademark and techexplorer Hypermedia Browser™ a
trademark of International Business Machines Corporation.

Netscape™ and Netscape Navigator™ are trademarks of Netscape
Communications Corporation.

TrueType™ is a trademark and Apple® and Macintosh® are registered
trademarks of Apple Computer Inc.

Preface

A new edition to A Guide to IATEX begs the fundamental question: Has
IATEX changed so much since the appearance of the third edition in 1999
that a new release of this manual is justified?

The simple answer to that question is ‘Well . ..’ In 1994, the IATeX world
was in upheaval with the issue of the new version IATEX 2¢, and the second
edition of the Guide came out just then to act as the bridge between the
old and new versions. By 1998, the initial teething problems had been
worked out and corrected through semi-annual releases, and the third
edition could describe an established, working system. However, homage
was still paid to the older 2.09 version since many users still employed its
familiar syntax, although they were most likely to be using it in a IATEX 2¢
environment. IATEX has now reached a degree of stability that since 2000
the regular updates have been reduced to annual events, which often
appear months after the nominal date, something that does not worry
anyone. The old version 2.09 is obsolete and should no longer play any
role in such a manual. In this fourth edition, it is reduced to an appendix
just to document its syntax and usage.

But if IATEX itself has not changed substantially since 1999, many of its
peripherals have. The rise of programs like pdfTgX and dvipdfm for PDF
output adds new possibilities, which are realized, not in IATEX directly, but
by means of more modern packages to extend the basic features. The
distribution of TeX/IATEX installations has changed, such that most users
are given a complete, ready-to-run setup, with all the ‘extras’ that one
used to have to obtain oneself. Those extras include user-contributed
packages, many of which are now considered indispensable. Today ‘the
IATEX system’ includes much more than the basic kernel by Leslie Lamport,
encompassing the contributions of hundreds of other people. This edition
reflects this increase in breadth.

The changes to the fourth edition are mainly those of emphasis.

1. The material has been reorganized into ‘Basics’ and ‘Beyond the
Basics’ (‘advanced’ sounds too intimidating) while the appendices
contain topics that really can be skipped by most everyday users.
Exception: Appendix H is an alphabetized command summary that
many people find extremely useful (including ourselves).

This reorganizing is meant to stress certain aspects over others. For

vii

viii

Preface

example, the section on graphics inclusion and color was originally
treated as an exotic freak, relegated to an appendix on extensions;
in the third edition, it moved up to be included in a front chapter
along with the picture environment and floats; now it dominates
Chapter 6 all on its own, the floats come in the following Chapter 7,
and picture is banished to the later Chapter 13. This is not to say
that the picture features are no good, but only that they are very
specialized. We add descriptions of additional drawing possibilities
there too.

. It is stressed as much as possible that IATEX is a markup language,

with separation of content and form. Typographical settings should
be placed in the preamble, while the body contains only logical
markup. This is in keeping with the modern ideas of XML, where
form and content are radically segregated.

. Throughout this edition, contributed packages are explained at that

point in the text where they are most relevant. The fancyhdr
package comes in the section on page styles, natbib where literature
citations are explained. This stresses that these ‘extensions’ are part
of the IATEX system as a whole. However, to remind the user that
they must still be explicitly loaded, a marginal note is placed at the
start of their descriptions.

. PDF output is taken for granted throughout the book, in addition

to the classical DVI format. This means that the added possibilities
of pdfTgX and dvipdfm are explained where they are relevant. A
separate Chapter 10 on PostScript and PDF is still necessary, and the
best interface to PDF output, the hyperref package by Sebastian
Rahtz, is explained in detail. PDF is also included in Chapter 15 on
presentation material.

On the other hand, the other Web output formats, HTML and XML,
are only dealt with briefly in Appendix E, since these are large topics
treated in other books, most noticeably the IATEX Web Companion.

. This book is being distributed with the TgXLive CD, with the kind

permission of Sebastian Rahtz who maintains it for the TgX Users
Group. It contains a full TeX and IATEX installation for Windows,
Macintosh, and Linux, plus many of the myriad extensions that
exist.

We once again express our hope that this Guide will prove more than
useful to all those who wish to find their way through the intricate world
of IATEX. And with the addition of the TgXLive CD, that world is brought
even closer to their doorsteps.

Helmut Kopka and Patrick W. Daly
June, 2003

Contents

Preface

| Basics

1 Introduction

11 Justwhatis IATEX?o o
1.2 MarkuplLanguages
13 TeXanditsolsgring
14 Howtousethisbook.
15 BasicsofalATpXfile.
1.6 TpXprocessing procedure
2 Text, Symbols, and Commands
2.1 Command names and arguments
2.2 Environments
2.3 Declarations
24 Lengths e
25 Specialcharacters.,
2.6 EXEICISES v v v i e
2.7 Fine-tuningtext
2.8 Worddivision

3 Document Layout and Organization

3.1 Documentclass,
3.2 Pagestyle
3.3 Partsofthedocument
3.4 Tableofcontents

4 Displayed Text

4.1 Changingfont
4.2 Centeringandindenting.
43 Lists
4.4 Generalizedlists 0.
4.5 Theorem-like declarations

Vil

o~ WW

10

14

17
17
19
20
21
22
27
28
34

37
37
42
52
58

61
61
67
69
74
80

X

CONTENTS

4.6
4.7
4.8
4.9

Tabulator stops
Boxes
Tables
Printing literal text

4.10 Footnotes and marginalnotes
4.11 Comments withintext

Mathematical Formulas

51
52
53
54
55
5.6

Mathematical environments
Main elements of mathmode
Mathematical symbols
Additional elements L
Fine-tuning mathematics
Beyond standard IATEX oo

Graphics Inclusion and Color

6.1
6.2

The graphicspackages
Addingcolor

Floating tables and figures

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Float placement
Postponing floats
Style parameters for floats
Floatcaptions
Floatexamples.,
References to figures and tablesintext
Some float packages

User Customizations

8.1
8.2
8.3
8.4
8.5

Counters e
Lengths
User-definedcommands
User-defined environments
Some comments on user-defined structures

Beyond the Basics

Document Management

9.1
9.2
9.3
9.4

Processing parts of adocument
In-textreferences
Bibliographies
Keywordindex

119
119
120
124
130
145
151

153
153
166

169
169
171
171
173
174
177
178

181
181
184
185
195
200

205

CONTENTS

10 PostScript and PDF
10.1 ¥TpXand PostScript Lo
10.2 Portable DocumentFormat

11 Multilingual IATEX
11.1 Thebabel system
11.2 Contents of the language.datfile

12 Math Extensions with ApjS-IATEX
12.1 Invoking ApS-IATEX .« o o oo o
12.2 Standard features of ApjS-IATEX oL
12.3 Further ApjS-IATEX packages oL
124 The A\pSfonts oo o oo

13 Drawing with IATEX
13.1 The picture environment
13.2 Extended pictures
13.3 Otherdrawingpackages

14 Bibliographic Databases and BisTEX
141 The BiBTRX program oo v i it e
14.2 Creating a bibliographic database
14.3 Customizing bibliography styles

15 Presentation Material
151 Slide production with SLTEX
15.2 Slide production with seminar
15.3 Electronic documents for screen viewing
154 SpecialeleckswithPDF

16 Letters
16.1 The lATeX letterclass
16.2 Ahouseletterstyle
16.3 A model letter customization

Appendices

A The New Font Selection Scheme (NFSS)
Al Fontattributesunder NFSS
A.2 Simplified fontselection.
A3 Installing fontswith NFSS

Xi

231
231
236

251
252
256

257
258
258
280
283

287
287
302
307

309
309
311
321

323
324
330
340
343

CONTENTS

B The IATgX Clockwork 381
B.1 InstallingIATEX oo 381
B.2 Obtaining the Adobeeurofonts 387
B.3 TpXdirectory structure., 387
B.4 The CTANServer 389
B.5 Additional standard files 391
B.6 Thevarious IATeX files oL 396

C Error Messages 401
C.1 Basic structure of errormessages 401
C.2 Somesampleerrors 409
C.3 Listof IATEXerrormessages. oo oo i 415
C.4 TEXerrormessages 424
C5 Warnings e 429
C.6 Search for subtleerrors 435

D IATeX Programming 437
D.1 Classand packagefiles 437
D.2 IATEX programmingcommands 440
D.3 Samplepackages 451
D.4 Changing preprogrammed text 459
D.5 Direct typing of special letters 461
D.6 Alternatives for special symbols 462
D.7 Managing code and documentation 462

E IATeX and World Wide Web 475
E.1l ConvertingtoHTML 476
E.2 The Extensible Markup Language: XML 478
E.3 The techexplorer Hypermedia Browser 481

F Obsolete IATEX 483
F1 The209preamble 483
F2 Fontselection 484
F.3 Obsolete meansobsolete 485

G TgX Fonts 487
G.1 Fontmetricsandbitmaps 487
G.2 Computer Modernfonts 488
G.3 The METAFONT program 497
G.4 Extended Computerfonts. 498
G.5 PostScriptfonts 503

G.6 Computer Modern as PostScriptfonts 505

LIST OF TABLES

H Command Summary
H.1 Brief description of the INTeX commands
H.2 Summary tablesand figures

Bibliography

Index

List of Tables

10.1 The psnfss packages and theirfonts
10.2 Acrobatmenuactions

A1l The NFSS encoding schemes
A.2 The NFSS series attributes
A.3 Attributes of the Computer Modernfonts

D.1 Input coding schemes for inputenc package
D.2 Alternative commands for special symbols

G.1 Computer Moderntextfonts
G.2 Root names of the 35 standard PostScript fonts
G.3 Encodingsulxed,

H.1 Fontattributecommands
H.2 Math alphabetcommands.
H.3 Fontsizes.
H.4 IATEX 2.09 font declarations
H5 Dimensions.
H6 Accents
H.7 Special letters from other languages
H.8 Specialsymbols
H9 Commandsymbols
H.10 Greek letters
H.11 Binary operationsymbols
H.12 Relational symbols
H.13 Negated relational symbols
H.14 Brackets
H.15 Arrows
H.16 Miscellaneoussymbols
H.17 Mathematical symbolsintwosizes
H.18 Functionnames
H.19 Mathaccents
H20 ApSarrows o
H.21 ApgS binary operation symbols

Xiii
507
507
595
605

607

Xiv

CONTENTS

H.22 AnS Greek and Hebrew letters 600
H23 AppS delimiters oo 600
H.24 ApgS relational symbols oL 600
H.25 AnS negated relational symbols 601
H.26 Miscellaneous AngSsymbols 601

List of Figures

1.1 Sample display with the WinEdt editor 16
3.1 Page layout parameters 48
3.2 Sampletitlepage 53
4.1 The listparameters 76
6.1 Anembellished imagefile. 160

10.1 Output produced by pdfTeX with the hyperref package . . 240

13.1 Comparison of eepic with eepicemu 306
15.2 Title page of a pdfscreendocument 341
B.1 The TeXLivewelcome 383
B.2 The TpXLive documentation browser 384
B.3 The TDSdirectorytree. 388
B.4 Partial directory tree of CTAN servers 390
E.1 Example of TeX4ht and techexplorer output 482
H.1 Single columnpageformat 602
H.2 Double column page format 603

H.3 Format of the list environment 604

Part |

Basics

1.1

Introduction

Just what is IATEX?

To summarize very briefly:

IATEX is a comprehensive set of markup commands used with the
powerful typesetting program TgX for the preparation of a wide
variety of documents, from scientific articles, reports, to complex
books.

IATEX like TEX is an open software system, available free of charge.
Its core is maintained by the IATEX3 Project Group but it also benefits
from extensions written by hundreds of user/contributors, with all
the advantages and disadvantages of such a democracy.

A IATeX document consists of one or more source files contain-
ing plain text characters, the actual textual content plus markup
commands. These include instructions which can insert graphical
material produced by other programs.

It is processed by the TeX program to produce a binary file in DVI
(device independent) format, containing precise directions for the
typesetting of each character. This in turn can be viewed on a moni-
tor, or converted into printer instructions, or some other electronic
form such as PostScript, HTML, XML, or PDF.

A variant on the TgX program called pdfTgX produces PDF output
directly from the source file without going through the DVI inter-
mediary. With this, IATEX can automatically include internal links
and bookmarks with little or no extra e [Cork, plus PDF buttons and
external links, in addition to graphics in a wide range of common
formats.

TeX activities are coordinated by the TgX Users Group, TUG (www.
tug.org) who distribute a set of CDs, called TgXLive, annually to its

3

1.2

121

Chapter 1. Introduction

members, containing a TpX/IATEX installation for various computer
types.

The rest of this book attempts to fill in the gaps in the above summary.
With the help of the included TgXLive CD for Windows, Macintosh, and
Linux, which also contains a directory specific to this book (\books\
Kopka_and_Daly\), we hope that the user will have additional pleasure
in learning the joys of IATEX.

Markup Languages

Typographical markup

In the days before computers, an author would prepare a manuscript
either by hand or by typewriter, which he or she would submit to a pub-
lisher. Once accepted for publication (and after several rounds of correc-
tions and modifications, each requiring a rewrite of the paper manuscript),
it would be sent to a copy editor, a human being who would decorate the
manuscript with markup, marginal notes that inform the typesetter (an-
other human being) which fonts and spacings and other typographical
features should be used to convert it to the final printed form that one
expects of books and articles.

Electronic processing of text today follows a similar procedure, except
that the humans have been replaced by computer programs. (So far the
author has avoided this fate, but they are working on it.) The markup
is normally included directly in the manuscript in such a way that it is
converted immediately to its output form and displayed on the computer
monitor. This is known as WYSIWYG, or ‘what you see is what you get’.

However, what you see is not always what you’ve got. An alternative
that is used more and more by major publishers is markup languages,
in which the raw text is interspersed with indicators ‘for the typesetter.’
The result as seen on the monitor is much the same as a typewritten
manuscript, except that the markup is no longer abbreviated marginal
notes, but cryptic code within the actual text. This source text, which
can be prepared by a simple, dumb text editor program, is converted into
typographically set output by a separate program.

For example, to code the line

He took a bold step forward.

with HTML, the classical markup language of the World Wide Web, one
enters in the source text:

He took a bold step forward.

In Plain TpX, the same sentence would be coded as:

1.2.2

1.2. Markup Languages 5

He took a {\bf bold step} forward.

The first example is to be processed (displayed) by a Web browser program
that decides to set everything between and as bold face. The
second example is intended for the TeX program (Section 1.3). The markup
in these two examples follow diCerknt rules, diCerent syntax, but the
functionality is the same.

Logical markup

The above examples illustrate typographical markup, where the inserted
commands or tags give direct instructions to alter the appearance of the
output, here a change of font. An alternative is to indicate the purpose
of the text. For example, HTML recognizes several levels of headings; to
place a title into the highest level one enters:

<hl>Logical Markup</hl>
The equivalent IATEX entry would be:
\section{Logical Markup}

With this logical markup, the author concentrates entirely on the con-
tent and leaves the typographical considerations to the experts. One
merely marks the structure of the document, and has no means of con-
trolling how the logical elements, like section titles, are to be rendered
typographically. This information is put into HTML style sheets or IATgX
classes and packages, which are external to the actual source file. This
means that the entire layout of a document can be overhauled with only
minimal or even no alterations to the source file.

Today much e [art is being put into XML, the Extensible Markup Lan-
guage, as the ultimate markup system, since it allows the markup, or
tags, to be defined as needed, without any indication of how they are to
be implemented. That is left to XSL, the Extensible Stylesheet Language.
It must be emphasized that neither XML nor XSL are programs at all; they
are specifications for how documents and databases may be marked up,
and how the markup tags may be translated into real output. Programs
still need to be found to do the actual job.

And that is the fundamental idea behind markup languages: that the
source text indicates the logical structure of its contents. Such source
files, being written in plain ascii text, are extremely robust, not being
married to any particular software package or computer type.

What does all this have to do with IATEX? In the next Section we outline
the development of TeX and IATEX, and go on to show that IATEX, a product
of the mid 1980’s, is a programmable markup language that is ideally
suited for the modern world of electronic publishing.

1.3

131

Chapter 1. Introduction

TeX and its o Lsdring

The most powerful formatting program for producing book quality text
of scientific and technical works is that of Donald E. Knuth (Knuth, 19863,
1986b, 1986¢c, 1986d, 1986e). The program is called TgX, which is a
rendering in capitals of the Greek letters T For this reason the last
letter is pronounced not as an x, but as the ch in Scottish loch or German
ach, or as the Spanish j or Russian kh. The name is meant to emphasize
that the printing of mathematical texts is an integral part of the program
and not a cumbersome add-on. In addition to TgX, the same author has
developed a further program called METAFONT for the production of
character fonts. The standard TgX program package contains 75 fonts
in various design sizes, each of which is also available in up to eight
magnification steps. All these fonts were produced with the program
METAFONT. With additional applications, further character fonts have
been created, such as for Cyrillic, Chinese, and Japanese, with which texts
in these alphabets can be printed in book quality.

The TgX program is free, and the source code is readily available.
Anybody may take it and modify it as they like, provided they call the
result something other than TgX. This indeed has occurred, and several
TeX variants do exist, including pdfTeX which we deal with later in this
Chapter. Only Knuth is allowed to alter TgX itself, which he does only to
correct any obvious bugs. Otherwise, he considers TgX to be completed;
the current version number is 3.14159, and with his death, the code will
be frozen for all time, and the version number will become exactly 1.

The TpX program

The basic TpX program only understands a set of very primitive com-
mands that are adequate for the simplest of typesetting operations and
programming functions. However, it does allow more complex, higher-
level commands to be defined in terms of the primitive ones. In this way,
a more user-friendly environment can be constructed out of the low-level
building blocks.

During a processing run, the program first reads in a so-called format
file which contains the definitions of the higher-level commands in terms
of the primitive ones, and which also contains the hyphenation patterns
for word division. Only then does it read in the author’s source file con-
taining the actual text to be processed, including formatting commands
that are predefined in the format file.

Creating new formats is something that should be left to very knowl-
edgeable programmers. The definitions are written to a source file which
is then processed with a special version of the TgX program called initex.
It stores the new format file in a compact manner so that it can be read
in quickly by the regular TeX program.

1.32

133

1.3. TeX and its o [sgdring 7

Although the normal user will almost never write such a format, he
or she may be presented with a new format source file that will need to
be installed with initex. For example, this is just what must be done to
upgrade IATEX periodically. How to do this is described in Appendix B.

Plain TgX

Knuth has provided a basic format named Plain TgX to interact with TeX
at its simplest level. This is such a fundamental part of TgX processing
that one tends to forget the distinction between the actual processing
program TgX and this particular format. Most people who claim to ‘work
only with TgX' really mean that they only work with Plain TgX.

Plain TgX is also the basis of every other format, something that only
reinforces the impression that TgX and Plain TgX are one and the same.

IATEX

The emphasis of Plain TpX is still very much at the typesetter’s level,
rather than the author’s. Furthermore, the exploitation of all its poten-
tial demands considerable experience with programming techniques. Its
application thus remains the exclusive domain of typographic and pro-
gramming professionals.

For this reason, the American computer scientist Leslie Lamport has
developed the IATEX format (Lamport, 1985), which provides a set of
higher-level commands for the production of complex documents. With
it, even the user with no knowledge of typesetting or programming is in
a position to take extensive advantage of the possibilities o [erkd by TgX,
and to be able to produce a variety of text outputs in book quality within
a few days, if not hours. This is especially true for the production of
complex tables and mathematical formulas.

As pointed out in Section 1.2.2, IATgX is very much more a logical
markup language than the original Plain TgX, on which it is based. It
contains provisions for automatic running heads, sectioning, tables of
contents, cross-referencing, equation numbering, citations, floating tables
and figures, without the author having to know just how these are to be
formatted. The layout information is stored in additional class files which
are referred to but not included in the input text. The predefined layouts
may be accepted as they are, or replaced by others with minimal changes
to the source file.

Since its introduction in the mid-1980s, IATeX has been periodically
updated and revised, like all software products. For many years the
version number was fixed at 2.09 and the revisions were only identified
by their dates. The last major update occurred on December 1, 1991, with
some minor corrections up to March 25, 1992, at which point IATEX 2.09
became frozen.

134

135

Chapter 1. Introduction

IATEX 2¢

The enormous popularity of IATEX and its expansion into fields for which
it was not originally intended, together with improvements in computer
technology, especially dealing with cheap but powerful laser printers, had
created a diversity of formats bearing the IATEX label. In an e [ark to
re-establish a genuine, improved standard, the IATEX3 Project was set up
in 1989 by Leslie Lamport, Frank Mittelbach, Chris Rowley, and Rainer
Schopf. Their goal was to construct an optimized and e [cieht set of
basic commands complemented by various packages to add specific func-
tionality as needed.

As the name of the project implies, its aim is to achieve a version 3
for IATEX. However, since that is the long-term goal, a first step towards it
was the release of IATEX2¢ in mid-1994 together with the publication of
the second edition of Lamport’s basic manual (Lamport, 1994) and of an
additional book (Goossens et al., 1994) describing many of the extension
packages available and IATEX programming in the new system. Since then,
two further books have appeared, Goossens et al. (1997) dealing with the
inclusion of graphics and color, and Goossens and Rahtz (1999) explaining
how IATEX may be used with the World Wide Web. Both these topics are
also dealt with in this Guide.

Initially updates to IATpX2¢ were issued twice a year, in June and
December, but it has now become so stable that since 2000 the changes
are released only once a year, nominally in June.

IATEX 2¢ is now the standard version, and IATeX 2.09 is considered
obsolete, although source files intended for the older version may still be
processed with the newer one. In this book, unless otherwise indicated,
‘IATEX” will always mean IATEX 2¢.

TeX fonts

TeX initially made use of its own set of fonts, called Computer Modern
generated by Knuth’s METAFONT program. The reason for doing this
was that printers at that time (and even today) may contain their own
preloaded fonts, but they are often slightly diCerknt from printer to
printer. Furthermore, they lacked the mathematical character sets that
are essential to TpX’s main hallmark, mathematical typesetting. So Knuth
created pixel fonts that could be sent to every printer ensuring the same
results everywhere.

Today the situation with fonts has changed dramatically. Outline fonts
(also known as type 1 fonts) are more compact and versatile than the pixel
fonts (type 3). They also have a far superior appearance and are drawn
much faster in PDF files. The original Computer Modern fonts have been
converted to outline fonts, but there is no reason to stick with them,
except possibly for the mathematical symbols. It is IATEX 2¢ with its New

1.3.6

1.3.7

1.3. TeX and its o [sgdring 9

Font Selection Scheme that freed TgX from its rigid marriage to Computer
Modern.
Fonts are discussed in more detail in Appendix G.

The IATEX bazaar: user contributions

Like the TpX program on which is relies, IATgX is freeware. There may be
a prejudice that what is free in not worth anything, but there are other
examples in the computer world to contradict this statement. And since
the IATEX macros are provided in files containing plain text, there is no
problem to exchange, modify, and supplement them. In other words, the
user can participate in extending the basic IATEX system.

Taking advantage of a mechanism in IATEX 2.09 that allowed options
to the default layouts to be contained in so-called style option files, many
users began writing their own ‘options’ to provide additional features to
the basic IATEX. They then made these available to other users via the
Internet. Many were intended for very specific problems, but many more
proved to be of such general usefulness that they have become part of the
standard IATEX installation. In this way, the users themselves have built
up a system that meets their needs.

With IATEX 2¢, these user contributions acquired o [cial status: they
became known as packages, they could be entered directly into the docu-
ment and not by the back door, guidelines were issued for writing them,
and additional commands were introduced to assist package program-
ming. Package files bear the extension .sty from IATEX 2.09 days, so that
the older style option files may still function as packages today.

Those packages that have established themselves as indispensable
for sophisticated IATEX processing are described in this book in those
sections where they are most relevant. This does not imply that other
packages are less worthwhile, but simply that this book does have to
make a selection. Many other packages are described fully in The LATEX
Companion (Goossens et al., 1994) and it would go beyond the bounds of
this book to reproduce it here.

I“TEX and electronic publishing

The most significant development in computer usage in the last decade
is the rise of the World Wide Web (or the hijacking of the Internet by the
glitzy society). IATEX makes its own contribution here with

e programs to convert IATEX files to HTML (Appendix E);

e means of creating PDF output, with hypertext features such as links,
bookmarks, active buttons (Chapter 10);

10

14

141

Chapter 1. Introduction

e interfacing to XML both by acting as an engine to render XML doc-
uments and with programs to convert IATEX to XML and vice versa
(Appendix E).

All these forms of electronic publishing are alternatives to traditional
paper output. We do not expect paper to disappear entirely so quickly,
but it is rapidly being replaced by electronic forms, which can always
reproduce the paper whenever needed.

How to use this book

This Guide is meant to be a mixture of textbook and reference manual.
It explains all the essential elements of the current standard IATEX 2¢, but
compared to Lamport (1985, 1994), it goes into more detail, o [erk more
examples and exercises, and describes many ‘tricks’ based on the authors’
experiences. It explains not only the core IATEX installation, but also many
of the contributed packages that have become essential to modern IATEX
processing, and thus quasi-standard. We necessarily have to be selective,
for we cannot go to the same extend as The IATEX Companion (Goossens et
al., 1994), The IATEX Graphics Companion (Goossens et al., 1997), and The
IATEX Web Companion (Goossens and Rahtz, 1999), which are still valid
companions to this book.

The first part of the book is entitled The Basics, and deals with the more
fundamental aspects of IATEX: inputting text and symbols, document or-
ganization, lists and tables, entering mathematics, and customizations by
the user. The second part is called Beyond the Basics, meaning it presents
concepts which may be more advanced but which are still essential to
producing complex, sophisticated documents. The distinction is rather
arbitrary. Finally, the appendices contain topics that are not directly part
of IATEX itself, but useful for understanding its applications: installation,
error messages, creating packages, World Wide Web, fonts. Appendix H
is an alphabetized summary of most of the commands and their use,
cross-referenced to their locations in the main text.

Some conventions

In the description of command syntax, typewriter type is used to indicate
those parts that must be entered exactly as given, while italic is reserved
for those parts that are variable or for the text itself. For example, the
command to produce tables is presented as follows:

\begin{tabular}{col_form} lines \end{tabular}

The parts in typewriter type are obligatory, while col_form stands for the
definition of the column format that must be inserted here. The allowed

Package:
sample

15

151

1.5. Basics of a IATEX file 11

values and their combinations are given in the detailed descriptions of
the commands. In the above example, lines stands for the line entries in
the table and are thus part of the text itself.

Sections describing a package, an extension to basic IATEX, have the
name of that package printed as a marginal note, as demonstrated here
for this paragraph. In this way, you are reminded that you must include
it with \usepackage (Section 3.1.2) in order to obtain the additional
features. Without it, you are likely to get an error message about undefined
commands.

Sections of text that are printed in a smaller typeface together with the boxed
exclamation mark at the left are meant as an extension to the basic description.
They may be skipped over on a first reading. This information presents deeper
insight into the workings of IATEX than is necessary for everyday usage, but which
is invaluable for creating more refined control over the output.

Basics of a IATEX file

Text and commands

The source file for IATEX processing, or simply the LATEX file, contains the
source text that is to be processed to produce the printed output. Splitting
the text up into lines of equal width, formatting it into paragraphs, and
breaking it into pages with page numbers and running heads are all
functions of the processing program and not of the input text itself.

For example, words in the source text are strings of letters terminated
by some non-letter, such as punctuation, blanks, or end-of-lines (hard
end-of-lines, ones that are really there, not the soft ones that move with
the window width); whereas punctuation marks will be transferred to the
output, blanks and end-of-lines merely indicate a gap between words.
Multiple blanks in the input, or blanks at the beginning of a line, have no
e [ect on the interword spacing in the output.

Similarly, a new paragraph is indicated in the input text by an empty
line; multiple empty lines have the same e [eck as a single one. In the
output, the paragraph may be formatted either by indentation of the first
line, or by extra interline spacing, but this is not a [eckted in any way by
the number of blank lines or extra spaces in the input.

The source file contains more than just text, however; it is also inter-
spersed with markup commands that control the formatting or indicate
the structure. It is therefore necessary for the author to be able to rec-
ognize what is text and what is a command. Commands consist either
of certain single characters that cannot be used as text characters, or of
words preceded immediately by a special character, the backslash (\).

The syntax of source text is explained in detail in Chapter 2.

12

152

153

Chapter 1. Introduction

Contents of a IATgX source file

Every IATEX file contains a preamble and a body.

The preamble is a collection of commands that specify the global
processing parameters for the following text, such as the paper format,
the height and width of the text, the form of the output page with its
pagination and automatic page heads and footlines. As a minimum, the
preamble must contain the command \documentclass to specify the
document’s overall processing type. This is the first command in the
preamble.

If there are no other commands in the preamble, IATEX selects standard
values for the line width, margins, paragraph spacing, page height and
width, and much more. By default, these specifications are tailored to
the American norms. For European requirements, built-in options exist to
alter the text height and width to the A4 standard. Furthermore, there are
language-specific packages to translate certain headings such as ‘Chapter’
and ‘Abstract’.

The preamble ends with \begin{document}. Everything that follows
this command is interpreted as body. It consists of the actual text mixed
with markup commands. In contrast to those in the preamble, these
commands have only a local e [eck, meaning they apply only to a part of
the text, such as indentation, equations, temporary change of font, and so
on. The body ends with the command \end{document}. This is normally
the end of the file as well.

The general syntax of a IATEX file is as follows:

\documentclass[options]{class}

Further global commands and specifications
\begin{document}

Text mixed with additional commands of local e [eck
\end{document}

The possible options and classes that may appear in the \documentclass
command are presented in Section 3.1.1.
A minimal IATEX file named hi . tex contains just the following lines:

\documentclass{article}
\begin{document}

Hi!t
\end{document}

Extending IATEX with packages

Packages are a very important feature of IATEX. These are extensions to
the basic IATEX commands that are written to files with names that end
in .sty and are loaded with the command \usepackage in the preamble.
Packages can be classified by their origin:

1.5. Basics of a IATEX file 13

core packages are an integral part of the IATEX basic installation and are
therefore fully standard,;

tools packages are a set written by members of the IATgX3 Team, and
should always be in the installation;

graphics packages are a standardized set for including pictures gener-
ated by other programs, and for handling color; they are on the same
level as the tools packages;

AMS-IATEX packages published by the American Mathematical Society,
should be in any installation;

contributed packages have been submitted by actual users; certain of
these have established themselves as ‘essential’ to standard IATEX
usage, but all are useful.

Only a limited number of these packages are described in this book, those
that we consider indispensable. However, there is nothing to prevent
the user from obtaining and incorporating any others that should prove
beneficial for his or her purposes.

There are over 1000 contributed packages on the included TgXLive CD.
How can one begin to get an overview of what they o [er? Graham Williams
has compiled a list of brief descriptions which can be found online and
on the TeXLive CD at

\texmf\doc\htmI\catalogue\catalogue.html

How to load packages into the IATEX source file is explained in Sec-
tion 3.1.2.

Documentation of contributed packages is somewhat haphazard, de-
pending on how much the author has put into it. The preferred method
for distributing packages is to integrate the documentation with the
code into a single file with extension .dtx. A special program DocStrip
(Section D.7.1) is used to extract the actual package file or files, while
IATEXing the original .dtx file produces the instruction manual. Most
ready-to-run installations will already have done all this for the user,
with the resulting manuals stored as DVI or PDF files somewhere in
\texmf\doc\latex\.... However, you might have to generate the doc-
umentation output yourself by processing the .dtx file, which should be
found in \texmf\source\latex\. ... (Section B.3 explains the organiza-
tion of the TpX directory system.)

Some package authors write their manuals as an extra .tex file, the
output of which may or may not be prestored in DVI or PDF form. Others
provide HTML files. And still others simply add the instructions as
comments in the package file itself. (This illustrates some of the joys of
an open system.)

14

1.6

161

Chapter 1. Introduction

TeX processing procedure

Since IATEX is a set of definitions for the TeX program, IATEX processing itself
is in fact TpX processing with the IATEX format. What TgX does with this is
the same as for any other of the many formats available (of which IATEX is
perhaps the most popular). All the typesetting work is done by TgX, while
IATEX handles the conversion from the logical markup to the typesetting
commands. It also enables cross-referencing, running headlines, table
of contents, literature citations and bibliography, indexing, and more.
However, the processing of the source file to final output is TgX’s task,
regardless of the format being used.

In the good old days

TpX arose over 20 years ago before there were such things as PCs, graphical
displays, and before computers were infected with windows or mice. TgX
and its support programs were invoked from a command line, not with
a mouse click. This may sound very old fashioned, but it did guarantee
portability to all computer types.

The processing steps that were taken in those days still exist with
today’s graphical interfaces, but are now executed more conveniently.
One can still open a ‘command prompt window’ and run them from the
command line.

The first step is of course to use a text editor program to write the
source file containing the actual text and markup. The rules for entering
this source text are explained in Chapter 2. It goes into a text file, or what
is often called an ‘ascii’ file containing only standard punctuation marks,
numbers, unaccented letters, upper and lower case. In other words, the
text is that which can be produced from a standard English typewriter.

The name of the source file normally has the extension .tex; it is then
processed by TgX to produce a new file with the same base name and the
extension .dvi, for device independent file. This is a binary file (all codes
possible, not a text file) containing precise instructions for the selection
and placement of every symbol, a coded description of the final printed
page. The command to invoke TgX with the source file hi . tex is

tex &latex hi

meaning run the TpX program with the format latex. Usually the instal-
lation has defined a shortcut named latex to do this, so

latex hi

should be su [cieht. It is only necessary to specify the extension of the
source file name if it is something other than _tex.

During the processing, TeX writes information, warnings, error mes-
sages to the computer monitor, and to a transcript file with the extension
-log. Itis well worth inspecting this file when unexpected results appear.

16.2

1.6.3

1.6. TgX processing procedure 15

The final step is to produce the printed pages from the DVI file. This
requires another program, a driver, to generate the instructions specific
to the given printer. For example, to produce a PostScript file, one runs

dvips hi

to obtain hi .ps from hi.dvi. And then one sends hi . ps to the PostScript
printer with the regular command for that computer system.

Previewing the DVI file on a computer monitor before printing was
a later development, requiring high quality graphics displays. These
programs are essentially special drivers that send the output directly to
the monitor rather than to a printer or printer file. One very popular
previewer is called with

xdvi hi

to view hi .dvi before committing it to paper.

And today

The various steps for IATEX processing described above are still necessary
today, and one can open up a command prompt window and carry them
out just as before. However, there now exist intelligent editors with IATEX-
savvy that not only assist writing the source text, but also will call the
various programs, TgX, previewer, printer driver, BisTgX, Makelndex (these
are explained later) with a mouse click.

One such editor for Windows, available on the enclosed TgXLive CD in
the support directory, is called WinShell, written by Ingo H. de Boer (www.
winshell.de). Although free of charge, its author appreciates donations
to o [set his expenses.

Another such editor and IATeX interface is WinEdt by Aleksander Si-
monic (www.winedt.com). A sample window with the opening text of this
chapter is shown in Figure 1.1. This program is available for a 30-day trial
period, after which one must pay a nominal fee to obtain a licence. It is
the editor that we ourselves use and we can highly recommend it.

An alternative is LyX, a free, open source software for document pro-
cessing in near WYSIWYG, acting as a front-end to IATEX, where the user
need not know anything about IATEX. See its home page at www. Iyx.org.

It must be stressed that all the above are interfaces to an existing IATEX
installation. On the other hand, there are also commercial packages which
include both the TeX/IATEX installation and a graphics interface. These are
listed in Section B.1.1.

Alternative to TpX: pdfTeX

As we mentioned earlier, it is permitted to use the TgX source code to
generate something else, as long as it bears another name. One such

16 Chapter 1. Introduction

£ WinEdt - Guide to LaTeX(4) - [C:\tex!,GUIDE\gtl-intro.tex]

File Edit Search Document Project Insert Tools Macros Utiities Options ‘Window Help ==l x|
D& | & :=ed 2R Wk 5 288 & @&
H2Z DV @3 BWEL %e 20 O 8

giHetters.tox | tlsitentes | gtiinstallies | ctienors.tex | gthprogs.tex | atbwnten| gth209utex| otiontstes | otisumten | ibbib.tes | gtiindewtex|
giHapout tex | otl-display.tex | othuserdef tex | atbmathi tex | otidocmantes | atlorsphicstex | atbpditex | atbabeltes | atmathz.tex | atkbibrentex |
guide.tex | warksheettit | ehecksheettst | nales.tst| comindensty | preamble.tex | propasalter| giltoctes atiino.tex | giallid | gilemdstex|

“chapter :,I
T

{ Introduction}]
FEIIEETIIIIISIETIISIRIIISIIISIIEIIISISISTIIIIISIIIIIIIIIISIIIIIIININES
lebelichap:intro}

Ysection

{What is “LaTeX?}

hlabel{sec:uhatlex)

To swmarize very briefly:

‘hegint itemize}

hitem

YLaTeX} is a cowprehensive set of warkup comwands used with the poverful typesetting
program 4 TeX| for the preparation of a wide variety of documents, from scientific
articles, reports, to complex hooks.

fitem -
Ll I»l_I

2Aa] 45:1 [815 [wrap [Indent [INS [LINE [Spel | Texls [atl | quide.ter

Figure 1.1: Sample display with the WinEdt editor for interfacing to IATEX.

modification is called pdfTgX, created by Han Thé Thanh. This program
does everything TgX does, but it optionally writes its output directly to a
PDF file, bypassing the DVI output of regular TgX. It therefore combines
the TgX program with a DVI-to-PDF driver program. Normally this option
is also the default.

There are many advantages to producing PDF output directly this way,
apart from saving a step. The PDF file is generated in exactly the same way
as the DVI file with TgX, and can be viewed immediately with the Acrobat
Reader or other PDF viewer. The results can be sent directly to a printer
without going through the DVI-to-Printer program. It is also much easier
to include the hypertext features of a true active PDF file, as we explain in
Section 10.2.4.

Adding the IATEX macros to pdfTeX produces something one could call
pdflIATEX. This distinction is only meaningful for invoking the program-
plus-format to process the IATeX source file. Except for some things that
we note in Section 10.2.3, IATEX commands are identical whether used with
TeX or with pdfTeX. This makes the conversion extremely easy.

The rest of this book deals essentially with IATgX itself, regardless of
what the end product is to be: paper, HTML, XML, or PDF.

Text, Symbols, and
Commands

21

The text that is to be the input to a IATEX processing run is written to a
source file with a name ending in .tex, the file name extension. This file is
prepared with a text editor, either one that handles straightforward plain
text, or one that is configured to assist the writing and processing of IATgX
files. In either case, the contents of this file are plain ascii characters
only, with no special symbols, no accented letters, preferably displayed in
a fixed width typewriter font, with no frills like bold or italics, all in one
size. All these aspects of true typesetting are produced afterwards by
the TeX processing program with the help of markup commands inserted
visibly into the actual text. It is therefore vital to know how commands
are distinguished from text that is to be printed, and, of course, how they
function.

(However, for languages other than English, native keyboard input may
indeed be used, as shown in Section 2.5.9.)

Command names and arguments

A command is an instruction to IATEX to do something special, like print
some symbol or text not available to the restricted character set used
in the input file, or to change the current typeface or other formatting
properties. There are three types of command names:

e thesinglecharacters# $ & — _ ~ % { } all have special meanings
that are explained later in this chapter;

e the backslash character \ plus a single non-letter character; for
example \$ to print the $ sign; all the special characters listed above
have a corresponding two-character command to print them literally;

e the backslash character \ plus a sequence of letters, ending with the
first non-letter; for example, \large to switch to a larger typeface.

17

18

Chapter 2. Text, Symbols, and Commands

Command names are case sensitive, so \large, \Large and \LARGE
are distinct commands.

Many commands operate on some short piece of text, which then
appears as an argument in curly braces following the command name.
For example, \emph{stress} is given to print the word stress in an
emphasized typeface (here italic) as stress. Such arguments are said to be
mandatory because they must always be given.

Some commands take optional arguments, which are normally em-
ployed to modify the e [eckts of the command somehow. The optional
arguments appear in square braces.

In this book we present the general syntax of commands as

\name[optional]{mandatory}

where typewriter characters must be typed exactly as illustrated and
italic text indicates something that must be substituted for. Optional
arguments are put into square brackets [] and the mandatory ones into
curly braces { }. A command may have several optional arguments, each
one in its set of brackets in the specified sequence. If none of the optional
arguments is used, the square brackets may be omitted. Any number of
blanks, or even a single new line, may appear between the command name
and the arguments, to improve legibility.

Some commands have several mandatory arguments. Each one must
be put into a { } pair and their sequence must be maintained as given in
the command description. For example,

\rule[lift]{width}{height}

produces a black rectangle of size width and height, raised by an amount
lift above the current baseline. A rectangle of width 10 mm and height
3 mm is made with \rule{10mm}{3mm}. Since the optional argument lift
is omitted, the rectangle is set on the baseline with no lifting, as I
The arguments must appear in the order specified by the syntax and may
not be interchanged.

Some commands have a so-called *-form in addition to their normal
appearance. A * is added to their name to modify their functionality
somehow. For example, the \section command has a *-form \section*
which, unlike the regular form, does not print an automatic section num-
ber. For each such command, the di[erknce between the normal and
*-form will be explained in the description of the individual commands.

Command names consist only of letters, with the first non-letter indi-
cating the end of the name. If there are optional or mandatory arguments
following the command name, then it ends before the [or { bracket,
since these characters are not letters. Many commands, however, possess
no arguments and are composed of only a name, such as the command
\LaTeX to produce the IATgX logo. If such a command is followed by

2.2

2.2. Environments 19

a punctuation mark, such as comma or period, it is obvious where the
command ends. If it is followed by a normal word, the blank between
the command name and the next word is interpreted as the command
terminator: The \LaTeX logo results in ‘The IATeXlogo’, that is, the blank
was seen only as the end of the command and not as spacing between
two words. This is a result of the special rules for blanks, described in
Section 2.5.1.

In order to insert a space after acommand that consists only of a name,
either an empty structure {} or a space command (\ and blank) must be
placed after the command. The proper way to produce ‘The IATEX logo’ is
to type either The \LaTeX{} logo or The \LaTeX\ logo. Alternatively,
the command itself may be put into curly braces, as The {\TeX} logo,
which also yields the right output with the inserted blank: ‘The TgX logo’.
Incidentally, the IATEX 2¢ logo is produced with \LaTeXe. Can you see why
this logo command cannot be named \LaTeX2e?

Environments

An environment is initiated with the command \begin{name} and is
terminated by \end{name}.

An environment has the e [eck that the text within it is treated dif-
ferently according to the environment parameters. It is possible to alter
(temporarily) certain processing features, such as indentation, line width,
typeface, and much more. The changes apply only within the environ-
ment. For example, with the quote environment,

previous text

\begin{quote}

textl \smal l text2 \bfseries text3
\end{quote}

following text

the left and right margins are increased relative to those of the previous
and following texts. In the example, this applies to the three texts textl,
text2, and text3. After textl comes the command \small, which has the
e [ect of setting the next text in a smaller typeface. After text2, there is an
additional command \bfseries to switch to bold face type. Both these
commands only remain in e [eck up to the \end{quote}.

The three texts within the quote environment are indented on
both sides relative to the previous and following texts. The
textl appears in the normal typeface, the same one as outside
the environment. The text2 and text3 appear in a smaller typeface,
and text3 furthermore appears in bold face.

After the end of the quote environment, the subsequent text appears in
the same typeface that was in e [ect beforehand.

20

2.3

Chapter 2. Text, Symbols, and Commands

Note that if the names of the environmentin the \begin{. .}\end{. .}
pair do not match, an error message will be issued on processing.

Most declaration command names (see next section) may also be used
as environment names. In this case the command name is used without
the preceding \ character. For example, the command \em switches to
an emphatic typeface, usually italic, and the corresponding environment
\begin{em} will set all the text in italic until \end{em} is reached.

A nameless environment can be simulated by a {. ..} pair. The e [eck
of any command within it ends with the closing curly brace.

The user can even create his or her own environments, as described in
Section 8.4.

Declarations

A declaration is a command that changes the values or meanings of
certain parameters or commands without printing any text. The e [ect of
the declaration begins immediately and ends when another declaration
of the same type is encountered. However, if the declaration occurs
within an environment or a {...} pair, its scope extends only to the
corresponding \end command, or to the closing brace }. The commands
\bfseries and \small mentioned in the previous section are examples
of such non-printing declarations that alter the current typeface.

Some declarations have associated arguments, such as the command
\setlength which assigns a value to a length parameter (see Sections 2.4
and 8.2).

Examples:

{\bfseries This text appears in bold face} The\bfseries dec-
laration changes the typeface: This text appears in bold face. The
e [eck of this declaration ends with the closing brace }.

\setlength{\parindent}{0.5cm} The paragraph indentation is set to
0.5 cm. The e [Leck of this declaration ends with the next encounter
of the command \setlength{\parindent}, or at the latest with
the \end command that terminates the current environment.

\pagenumbering{roman} The page numbering is to be printed in Roman
numerals.

Some declarations, such as the last example, are global, that is, their
e [ecks are not limited to the current environment. The following decla-
rations are of this nature, the meanings of which are given later:

\newcounter \pagenumbering \newlength
\setcounter \thispagestyle \newsavebox
\addtocounter

24

241

24.2

2.4. Lengths 21

Declarations made with these commands are e [ective right away and
remain so until they are overridden by a new declaration of the same type.
In the last example above, page numbering will be done in Roman numerals
until countermanded by a new \pagenumbering{arabic} command.

Lengths

Fixed lengths

Lengths consist of a decimal number with a possible sign in front (+ or
-) followed by a mandatory dimensional unit. Permissible units and their
abbreviated names are:

cm centimeter,

mm millimeter,

in inch (1in=2.54cm),

pt point(1in=72.27 pt),

bp big point (1 in =72 bp),

pc pica (1 pc =12 pt),

dd did6t point (1157 dd = 1238 pt),

cc cicero (1 cc =12 dd),

em a font-specific size, the width of the capital M,

ex another font-related size, the height of the letter x.

Decimal numbers in TgX and IATeX may be written in either the English
or European manner, with a period or a comma: both 12_.5cm and 12,5cm
are permitted.

Note that O is not a legitimate length since the unit specification is
missing. To give a zero length it is necessary to add some unit, such as
Opt or Ocm.

Values are assigned to a length parameter by means of the IATgX com-
mand \setlength, which is described in Section 8.2 along with other
commands for dealing with lengths. Its syntax is:

\setlength{\length_name}{length_spec}

For example, the width of a line of text is specified by the parameter
\textwidth, which is normally set to a default value depending on the
class, paper type, and font size. To change the line width to be 12.5 cm,
one would give:

\setlength{\textwidth}{12.5cm}

Rubber lengths

Some parameters expect a rubber length. These are lengths that can be
stretched or shrunk by a certain amount. The syntax for a rubber length
is:

22

2.5

251

Chapter 2. Text, Symbols, and Commands

nominal_value plus stretch_value minus shrink_value

where the nominal_value, stretch_value, and shrink_value are each a length.
For example,

\setlength{\parskip}{lex plusO.5ex minusO.2ex}

means: the extra line spacing between paragraphs, called \parskip, is to
be the height of the x in the current font, but it may be increased to 1.5
or reduced to 0.8 times that size.

One special rubber length is \Fill. This has the natural length of
zero but can be stretched to any size.

Special characters

Spaces

The space or blank character has some properties di Lerent from those
of normal characters, some of which have already been mentioned in
Section 2.1. During processing, blanks in the input text are replaced by
rubber lengths (Section 2.4.2) in order to allow the line to fill up to the
full line width. As a result, some peculiar e [ecks can occur if one is not
aware of the following rules:

e one blank is the same as a thousand, only the first one counts;
e blanks at the beginning of an input line are ignored,;

e blanks terminating a command name are removed;

e the end of a line is treated as a blank.

Some of the consequences of these rules are that there may be as many
blanks as desired between words or at the beginning of a line (to make
the input text more legible) and that a word may come right at the end of
a line without the spacing between it and the next word disappearing. To
force a space to appear where it would otherwise be ignored, one must
give the command \, (a \ followed by a space character, made visible here
by the symbol).

To ensure that certain words remain together on the same line, a pro-
tected space is inserted between them with the = character (Section 2.7.1,
page 28). Multiple protected spaces are all printed out, in contrast to
normal spaces.

Sometimes it is necessary to suppress the space that appears because
of the new line. In this case, the last character in the line must be the
comment character % (Section 4.11).

Paragraphs are separated in the source text by blank lines. As for
blank characters, one blank line is the same as a thousand.

25.2

253

254

255

2.5. Special characters 23

Instead of a blank line, the command \par may also be used to indicate
the end of a paragraph.

Quotation marks

The quotation marks found on the typewriter " are not used in book
printing. Instead di [erknt characters are used at the beginning and end,
such as ‘single quotes’ and “double quotes”. Single quotes are produced
with “ and ”, while double quotes are made by typing the respective
characters twice: ““ for “ and >~ for ”. Furthermore the typewriter
character ™ will also generate the double closing quote ”. However, it
should be avoided since it can lead to confusion.

Hyphens and dashes

In book printing, the character that appears on the typewriter as - comes
in various lengths: -, -, — The smallest of these, the hyphen, is used
for compound words such as father-in-law and for word division at the
end of a line; the middle-sized one, the en dash, is used in ranges of
numbers, for example, pages 33-36; and the largest, the em dash, is used
as punctuation—what is normally called the dash. These are generated
by typing the hyphen character one, two, or three times, so that - yields
-, while -- makes —, and --- produces —. A fourth type of dash is the
minus sign —, which is entered in math mode as $-$ (Chapter 5).

Printing command characters

As mentioned in Section 2.1, the characters# $ — _ ~ % { } are inter-
preted as commands. To print them as text, one must give a command
consisting of \ plus that character.

$=\$ &=\& %=\% #=* _=_ {=\{ }=\}

The special characters §, {, §, €, © and £
These special characters do not exist on the computer keyboard. They
can however be generated by special commands as follows:

§=\S f=\dag f=\ddag 9=\P (© =\copyright £=\pounds

The production of Greek letters and other mathematical symbols is
described in Chapter 5.

24

256

25.7

258

Package:
textcomp

Chapter 2. Text, Symbols, and Commands

Non-English letters

Special letters that exist in languages other than English can also be
generated with TgX. These are:

ce={\oe} E={\0E} x=={\ae} A={\AE} &d={\aa} K:{\AA} =l
g={\o} O={\0} ++=\1} t={\L} RB={\ss} SS={\SS} (=7°

f&ngstmm may be written as {\AA}ngstr{\o}m while Karlstrafle can be
input as Karlstraf{\ss}e. The ‘letter’ \SS is the upper case equivalent
of \ss, used for automatic conversion between upper and lower case.

However, see Section 2.5.9 for the possibility of entering such charac-
ters directly.

Accents

In non-English languages, there is a multiplicity of diacritical marks or
accents, most of which can be printed with TgX:

=\“{o} ©6=\"{o} O=\"{o} o©=\"{o} ©O=\"{o}
=\={o} o0=\.{o} ©O=\u{o} 0O=\v{o} ©O=\H{o}
oo=\t{oo} o=\c{o} o=\d{o} o=\b{o} B=\r{o}

o| o/

The o above is given merely as an example: any letter may be used. With
i and j it should be pointed out that the dot must first be removed. This
is carried out by prefixing these letters with a backslash: the commands
\i and \j yield 1 and C1In this way T and Téare formed by typing \u{\i}
and \H{\j}.

The accent commands consisting of a non-letter may also be given
without the curly braces:

0=\“o0 06=\"0 06=\"0 ©0=\"o ©=\"0 o0=\=0 O=\.0

The letter accent commands should always be used with the curly braces.

The euro symbol

The euro symbol € (or €) is too new to be part of the original IATEX, but it
can be produced with the help of some additional fonts and contributed
packages. Just which package you may use depends on your installation,
and whether you have access to these additional fonts.

The Text Companion fonts, described in Section G.4.4, do contain a
euro symbol. Since these fonts should be part of every modern IATEX
installation, you should be able to use their euro symbol if all else fails.

The package textcomp must be loaded in the preamble with

\usepackage{textcomp}

Package:
eurosym

Package:
europs

Package:
eurosans

2.5. Special characters 25

which defines many commands including \texteuro to print the symbol
€. Since the European Commission originally dictated that it should only
be printed in a sans serif font, itis better to issue \textsf{\texteuro} to
produce €. (The font selection commands are described in Section 4.1.4.)
If you are going to use this very frequently, you might want to define a
shortcut named \euro with

\newcommand{\euro}{\textsF{\texteuro}}

as described in Section 8.3 on defining commands.

A better solution is presented by the eurosym package by Henrik
Theiling and the associated fonts that come with it, which bear the names
feymrl0, feybrl0, and so on. This package defines the \euro command
to print €, which changes automatically to bold € and slanted € as
needed.

The europs package by Joern Clausen interfaces to the type 1 (Post-
Script) euro fonts published by Adobe. For licensing reasons, these fonts
may only be obtained from Adobe directly, even though free of charge
(see Section B.2). This package provides the command \EUR for a symbol
that varies with font family (Roman €25, sans serif €25, and typewriter
£25) as well as for bold €25 and slanted €25. There is also a command
\EURofc for the invariable symbol €.

Finally, the package eurosans by Walter Schmidt also addresses the
Adobe euro fonts, again with the command \euro, with the same behavior
as that of eurosym: always sans serif family, but changes with the other
font attributes.

The table below summarizes the above packages:

Package Command | Fonts Notes

textcomp | \texteuro | Text Companion | Non standard symbol

eurosym \euro Eurosym Sans serif, variable

europs \EUR PostScript Varies with font family
\EURofc Invariable, o [cial

eurosans | \euro PostScript Sans serif, variable

So which package should one use? That really depends on the fonts
available. Since the Adobe fonts can never be distributed with a TgX
installation, they must be actively fetched and installed. However, it is
worth doing so, because the European Commission has revised its initial
directive and now allows the euro symbol to be typographically matched to
the text, which is also standard practice in Europe today. This strengthens
the case for the europs package and the \EUR command for €, at least for
Roman fonts.

26

259

Package:
inputenc

2.5.10

Chapter 2. Text, Symbols, and Commands

Typing special symbols directly

The commands for producing the special characters and accented letters in
the previous sections may be suitable for typing isolated ‘foreign’ words, but
become quite tedious for inputting large amounts of text making regular use of
such characters. Most computer systems provide non-English keyboards with
appropriate fonts for typing these national variants directly. Unfortunately, the
coding of such extra symbols is by ho means standard, depending very much on
the computer system.

For example, the text Gaull meets Ampére entered with an MS-DOS editor
(code page 437 or 850) appears in a Windows application as Gaua meets AmpSre
and on a Macintosh as Gau- meets Ampdre. Since IATEX is intended to run on
all systems, it simply ignores all such extra character codes on the grounds that
they are not properly defined.

The inputenc package solves this problem. It not only informs IATEX which
input coding scheme is being used, it also tells it what to do with the extra
characters. One invokes it with

\usepackage[code]{inputenc}

where code is the name of the coding scheme to be used. The current list of
allowed values for code (more are added with each IATgX update) can be found in
Table D.1 on page 462. For most users, the most interesting codes are:

cp437 IBM code page 437 (DOS, North America)
cp850 IBM code page 850 (DOS, Western Europe)
applemac Macintosh encoding

ansinew Windows ANSI encoding

In short, you should select applemac for a Macintosh, and ansinew for Windows,
and one of the others if you are working with DOS.

Documents making use of this package are fully portable to other computer
systems. The source text produced with a DOS editor may still look very strange
to a human user reading it on a Macintosh, but when the Macintosh IATEX processes
it, the proper DOS interpretations will be applied so that the end result is what
the author intended.

See Section D.5 for more details.

Ligatures

In book printing, certain combinations of letters are not printed as in-
dividuals but as a single symbol, a so-called ligature. TgX processes the
letter combinations f, fi, fl, ¥fi, and ffl not as

ff, fi, fl, ffi, ffl but rather as CH, fl, 111

Ligatures may be broken, that is, forced to be printed as separate letters,
by inserting \/ between the letters. This is sometimes desired for such
words as shelfful (shelf\/ful), which looks rather strange when printed
with the normal [CTihature, shel [Cull

2.6. Exercises 27

2.5.11 The date

2.6

The current date can be placed at any point in the text with the command
\today. The standard form for the date is the American style of month,
day, year (for example, January 15, 2004). The British form (15th January
2004) or the date in other languages can be generated with the help of the
TeX commands \day, \month, and \year, which return the current values
of these parameters as numbers. Examples of how such a new \today
command may be made are shown on page 461 in Section D.4.2.

It is in fact better to enter the date explicitly, rather than to rely
on \today. Reprocessing a two-year-old IATEX source file will yield a
document with the processing date, not the date when the text was
written.

Exercises

Exercise 2.1: This exercise tests the basic operations of running the IATEX program
with a short piece of text. A few simple commands are also included. Use a text
editor to produce the following source text and store it in a file named exer . tex.

\documentclass{article}

\begin{document}

Today (\today) the rate of exchange between the British
pound and American dollar is \pounds 1 = \$1.58, an
increase of 1\% over yesterday.

\end{document}

Process this source file with IATeX by clicking the appropriate icon, or by
issuing latex exer in acommand window. If the processing occurs without any
error messages, the .dvi file exer.dvi will have been successfully created and
may be viewed by a dvi previewer or sent to a printer. The final printed result
should look as follows except that your current date will appear:

Today (January 15, 2004) the rate of exchange between the British pound and
American dollar is £1 = $1.58, an increase of 1% over yesterday.

Note the following points about the commands used:
e no blank is necessary after \today because the) su [ced to terminate it;
e the blank after \pounds is optional and it is not printed in the output;

e the commands \$ and \% do not require blanks to terminate them; if blanks
are given, they will be printed.

Exercise 2.2: Take some text of about 3/4 of a page long out of a book or journal
article and type it into a IATEX source file. Pay attention that the paragraphs are
separated by blank lines. Use the same set of commands as in Exercise 2.1, that
is, put the text between the commands \begin{document}. . .\end{document}
and repeat the procedures for obtaining the output.

28

2.7

271

Chapter 2. Text, Symbols, and Commands

Exercise 2.3: If you are likely to need the euro symbol in your work, try redoing
Exercise 2.1 as follows:

\documentclass{article}

\usepackage{eurosym}

\begin{document}

Today (\today) the rate of exchange between the British
pound and European euro is \pounds 1 = \eurol.46, an
increase of 1\% over yesterday.

\end{document}

If this fails, try one of the other packages described in Section 2.5.8, substituting
\textsTt{\texteuro} or \EUR for \euro as required.

Fine-tuning text

The subject of the section concerns pure typographical markup, and has
nothing to do with the logical markup that we wish to stress in this book.
Unfortunately, there are times when the author or editor does have to
help the typesetting program to achieve good appearance.

Word and character spacing

The spacing between words and characters is normally set automatically
by TeX, which not only makes use of the natural width of the characters
but also takes into account alterations for certain character combinations.
For example, an A followed by a V does not appear as AV but rather as AV,
that is, they are moved together slightly for a more pleasing appearance.
Interword spacing within one line is uniform, and is chosen so that the
right and left ends match exactly with the side margins. This is called
left and right justification. TpX also attempts to keep the word spacing for
di Cerent lines as nearly the same as possible.

Words that end with a punctuation mark are given extra spacing,
depending on the character: following a period ‘.’ or exclamation mark ‘’,
there is more space than after acomma ‘. This corresponds to the rule in
English typesetting that there should be extra spacing between sentences.
In certain cases, the automatic procedures do not work properly, or it is
desirable to override them, as described in the next sections.

Sentence termination and periods

TeX interprets a period following a lower case letter to be the end of a
sentence where additional interword spacing is to be inserted. This leads
to confusion with abbreviations such as i. e., Prof. Jones, or Phys. Rev.,
where the normal spacing is required. This can be achieved by using
the characters = or _ instead of the normal blank. (The character _, is

2.7. Fine-tuning text 29

simply a symbol for the blank which is otherwise invisible.) Both these
methods insert the normal interword spacing; in addition, ~ is a protected
space that prevents the line from being broken at this point. The above
examples should be typed in as i.7e., Prof.7Jones, and Phys.\ Rev.,
producing i. e., Prof. Jones, and Phys. Rev. with the correct spacing and
forcing the first two to be all on one line. In the third case, there is nothing
wrong with putting Phys. and Rev. on di Lerent lines.

A period following an upper case letter is not interpreted as the end
of a sentence, but as an abbreviation. If it really is the end of a sentence,
then it is necessary to add \@ before the period in order to achieve the
extra spacing. For example, this sentence ends with NASA. It is typed in
as This sentence ends with NASA\Q@.

French spacing

The additional interword spacing between sentences can be switched
o [with the command \frenchspacing, which remains in e [ect until
countermanded with \nonfrenchspacing. In this case, the command \@
is ignored and may be omitted. This paragraph has been printed with
\frenchspacing turned on, so that all word spacings within one line are
the same. It corresponds to the normal rule for non-English typesetting.

e

Character combinations “‘ and '”

A small spacing is produced with the command \,. This may be used, for
example, to separate the double quotes “ and ” from the corresponding
single quotes ‘ and * when they appear together. For example, the text
““\, “Beginning” and “End~\,”” produces “‘Beginning’ and ‘End’”.

Inserting arbitrary spacing

Spacing of any desired size may be inserted into the text with the com-
mands

\hspace{space}
\hspace*{space}

where space is the length specification for the amount of spacing, for
example 1.5cm or 3em. (Recall that one em is the width of the letter M in
the current typeface.)

This command puts blank space of width space at that point in the
text where it appears. The standard form (without *) has no e [ect if it
should come at the beginning of an output line, just as normal blanks are
removed at the beginning of lines. The *-form, on the other hand, inserts
the spacing no matter where it occurs.

A blank before or after the command will also be included:

30

Chapter 2. Text, Symbols, and Commands

This is\hspace{lcm}lcm This is 1cm
This is \hspace{lcm}lcm This is 1cm
This is \hspace{lcm} lcm This is lcm

The length specification may be negative, in which case the command
works as a backspace for overprinting characters with other ones, or
moving them closer together. For example, there is an energy unit in
physics called electron volt, abbreviated ‘eV’, which looks much better if
the two letters are nearer together, as ‘eV’, with e\hspace{-.12em}V.

The command \hfill is an abbreviation for \hspace{\fill} (see
Section 2.4.2). It inserts enough space at that point to force the text
on either side to be pushed over to the left and right margins. With
Left\hfill Right one produces

Left Right

Multiple occurrences of \hfill within one line will each insert the
same amount of spacing so that the line becomes left and right justified.
For example, the text Left\hfill Center\hfill Right generates

Left Center Right

If \hfill comes at the beginning of a line, the spacing is suppressed
in accordance with the behavior of the standard form for \hspace. If
a rubber space is really to be added at the beginning or end of a line,
\hspace*{\fill} must be used instead. However, IATgX also o [erk a
number of commands and environments to simplify most such applica-
tions (see Section 4.2.2).

A number of other fixed horizontal spacing commands are available:

\quad and \qgquad

The command \quad inserts a horizontal space equal to the current type
size, that is, 10 pt for a 10 pt typeface, whereas \qquad inserts twice as
much.

Inserting variable and sequences

Two commands that work exactly the same way as \hfill are
\dotfill and \hrulefill

Instead of inserting empty space, these commands fill the gap with dots
or a ruled line, as follows:

Start \dotfill\ Finish\\ and
Left \hrulefill\ Center \hrulefill\ Right\\ produce
3] - o Finish

Left Center Right

27.2

2.7. Fine-tuning text 31

Any combination of \hfill,\dotfill, and \hrulefill may be given
on one line. If any of these commands appears more than once at one
location, the corresponding filling will be printed that many more times
than for a single occurrence.

Departure \dotFill\dotfill\dotFfill\ 8:30 \hfill\hfill
Arrival \hrulefill\ 11:45\\

Departure 8:30 Arrival 11:45

Line breaking

Breaking text into lines is done automatically in TgX and IATEX. However,
there are times when a line break must be forced or encouraged, or when
a line break is to be suppressed.

The command \\

A new line with or without additional line spacing can be achieved with
the command \\. Its syntax is

\\[space]
*[space]

The optional argument space is a length that specifies how much addi-
tional line spacing is to be put between the lines. If it is necessary to start
a new page, the additional line spacing is not included and the new page
begins with the next line of text. The *-form prevents a new page from
occurring between the two lines.

With *[10cm], the current line is ended and a vertical spacing of
10 cm is inserted before the next line, which is forced to be on the same
page as the current line. If a page break is necessary, it will be made
before the current line, which is then positioned at the top of the new
page together with the 10 cm vertical spacing and the next text line.

The command \newline is identical to \\ without the option space.
That is, a new line is started with no additional spacing and a page break
is possible at that point.

Both commands may be given only within a paragraph, and not between
them where they would be meaningless.

Further line-breaking commands

The command \linebreak is used to encourage or force a line break at
a certain point in the text. Its form is

\linebreak[num]

32

2.7.3

Chapter 2. Text, Symbols, and Commands

where num is an optional argument, a number between 0 and 4 that
specifies how important a line break is. The command recommends a line
break, and the higher the number the stronger the recommendation. A
value of O allows a break where it otherwise would not occur (like in the
middle of a word), whereas 4 compels a line break, as does \linebreak
without num. The di Cerknce between this command and \\ or \newline
is that the current line will be fully justified, that is, interword spacing will
be added so that the text fills the line completely. With \\ and \newl ine,
however, the line is filled with empty space after the last word and the
interword spacing remains normal.
The opposite command

\nolinebreak[num]

discourages a line break at the given position, with num specifying the
degree of discouragement. Again, \nolinebreak without a num argu-
ment has the same e [eck as \nolinebreak[4], that is, a line break is
absolutely impossible here.

Another way of forcing text to stay together on one line is with the com-
mand \mbox{text}. This is convenient for expressions such as ‘Voyager-1’
to stop a line break at the hyphen.

Vertical spacing

It is possible to add extra vertical spacing of amount space between
particular paragraphs using the commands

\vspace{space}
\vspace*{space}

The *-form will add the extra space even when a new page occurs, or
when the command appears at the top of a new page. The standard form
ignores the extra vertical spacing in these situations.

If these commands are given within a paragraph, the extra space is
inserted after the current line, which is right and left justified as usual.

The space parameter may even be negative, in order to move the
following text higher up the page than where it would normally be printed.

The command \vfill is an abbreviation for \vspace{\fill} (see
Section 2.4.2). This is the equivalent of \hfill for vertical spacing,
inserting enough blank vertical space to make the top and bottom of the
text match up exactly with the upper and lower margins. The comments
on multiple occurrences of \hfill also apply to \vfill. If thiscommand
is given at the beginning of a page, it is ignored, just like the standard
form of \vspace{\fill}. If a rubber space is to be put at the top of a
page, the *-form \vspace*{\fi 11} must be used.

Further commands for increasing the spacing between paragraphs are

2.7.4

2.7. Fine-tuning text 33

\bigskip \medskip \smal Iskip

which add vertical spacing depending on the font size declared in the
document class.

Page breaking

Breaking text into pages occurs automatically in TpX and IATEX, just as
for line breaking. Here again, it may be necessary to interfere with the
program’s notion of where a break should take place.

Normal pages

The commands

\pagebreak[[num]
\nopagebreak[num]

are the equivalents of \linebreak and \nol inebreak for page breaking.
If \pagebreak appears between two paragraphs, a new page will be forced
at that point. If it comes within a paragraph, the new page will be
implemented after the current line is completed. This line will be right
and left justified as usual.

The command \nopagebreak has the opposite e [ect: between para-
graphs, it prevents a page break from occurring there, and within a
paragraph, it stops a page break that might take place at the end of the
current line.

Optional numbers between 0 and 4 express the degree of encourage-
ment or discouragement for a page break. The analogy with the command
\linebreak goes further: just as the line before the break is left and right
justified with extra interword spacing, in the same way the page before
the break is expanded with interline spacing to make it top and bottom
justified.

The proper command to end a page in the middle, fill it with blank
spacing, and go on to a new page is

\newpage

which is equivalent to \newl ine with regard to page breaking.

Pages with figures and tables

If the text contains tables, pictures, or reserved space for figures, these
are inserted at the location of the corresponding command, provided that
there is enough room for them on the current page. If there is not enough
space, the text continues and the figure or table is stored to be put on a
following page.

The command

34

2.8

Chapter 2. Text, Symbols, and Commands

\clearpage

ends the current page like \newpage and in addition outputs all the
pending figures and tables on one or more extra pages (Chapter 7).

Two-column pages

If the document class option twocolumn has been chosen, or the com-
mand \twocollumn is in e [ect, then the two commands \pagebreak and
\newpage end the current column and begin a