Learning LATEX by Doing # André Heck # $\ \odot$ 2002, AMSTEL Institute # Contents | 1 | Intr | roduction | 3 | | | | | | | | | |---|------|--|-----------------|--|--|--|--|--|--|--|--| | 2 | A S | Simple Example | | | | | | | | | | | | 2.1 | Running LATEX and Related Programs | 3 | | | | | | | | | | | 2.2 | The Structure of a LATEX Document | 5 | | | | | | | | | | | 2.3 | If Formatting Goes Wrong | 10 | | | | | | | | | | | 2.4 | Basic Conventions | 11 | | | | | | | | | | | | 2.4.1 Spacing, Line Breaking and Page Breaking | 12 | | | | | | | | | | | | 2.4.2 Modes and Environments | 12 | | | | | | | | | | | | 2.4.3 Forbidden Characters | 14 | | | | | | | | | | 3 | Bas | ic Tools for Formatting Text | 14 | | | | | | | | | | • | 3.1 | Structuring | 14 | | | | | | | | | | | 3.1 | 3.1.1 Sectioning Commands | 14 | | | | | | | | | | | | 3.1.2 Title and Table of Contents | 15 | | | | | | | | | | | | 3.1.3 Cross-Referencing | 15 | | | | | | | | | | | 3.2 | Creating Lists | 16 | | | | | | | | | | | 3.3 | Changing Fonts | 17 | | | | | | | | | | | | 3.3.1 Changing the Typeface | 17 | | | | | | | | | | | | 3.3.2 Changing the Font Size | 18 | | | | | | | | | | | 3.4 | Paragraph Justification | 19 | | | | | | | | | | | 3.5 | Using Accents | | | | | | | | | | | | 3.6 | Creating Tables | 20 | | | | | | | | | | | 3.7 | Importing Graphics | 20 | | | | | | | | | | 4 | Mat | thematical Formulas | 21 | | | | | | | | | | | 4.1 | Math Environments | 21 | | | | | | | | | | | 4.2 | Basic Conventions in Math Mode | 22 | | | | | | | | | | | | 4.2.1 Spacing | 22 | | | | | | | | | | | | 4.2.2 Mathematical Symbols and Greek Letters | 22 | | | | | | | | | | | | 4.2.3 Brackets and Ordinary Text in Formulas | 23 | | | | | | | | | | | | 4.2.4 Changing the Mathematical Style | $\frac{1}{24}$ | | | | | | | | | | | 4.3 | Simple Mathematical Formulas | $\overline{24}$ | | | | | | | | | | | 4.4 | Alignments | 26 | | | | | | | | | | | 4.5 | Matrices | 27 | | | | | | | | | | | 4.6
4.7
4.8
4.9 | Dots in Formulas | 28
29
31
31 | |----------------------|--------------------------|---|----------------------| | 5 | | l and Ends | 32 | | 6 | Wh | ere to Get IATEX? | 33 | | \mathbf{A} | Ans | wers to the Exercises | 34 | | В | List | of Mathematical Symbols | 36 | | ${f L}^{ rac{1}{2}}$ | ist c | of Tables | | | | 1 | Standard Document Classes | | | | 2 | Class Options. | | | | 3 | Some Useful I $^{\perp}$ TEX $^{\perp}$ 2 $_{\varepsilon}$ Packages | | | | 4 | Page Breaking, Line Breaking, and Spacing | 1 | | | 5 | Ten Forbidden Characters | 1 | | | 6 | Sectioning Commands | 1 | | | 7 | Changing the Typeface | 1 | | | 8 | Changing the Font Size |] | | | 9 | Paragraph Mode Accents |] | | | 10 | Math Mode Accents. | 2 | | | 11 | Horizontal Spacing in Math Mode | 4 | | | 12 | Changing the Mathematical Typeface | 2 | | | 13 | Changing the Mathematical Style | 2 | | | 14 | Common Constructions in Math Mode | 2 | | | 15 | Matrix Environments | 2 | | | 16 | Delimiters | 2 | | | 17 | Resizing Delimiters | • | | | 18 | Dashes and Hyphens | • | ### 1 Introduction LaTeX is a document preparation system developed from Donald Knuth's T_EX program. The most recent version, LaTeX 2_{ε} , is a sophisticated program designed to produce high-quality typesetting especially for mathematical text. This course is only meant as a short, hands-on introduction to LaTeX for newcomers who want to prepare rather simple documents. The main objective is to get students started with LaTeX 2_{ε} on a UNIX platform. A more thorough, but also much longer Dutch introduction is Handleiding LaTeX of Piet van Oostrum [Oos97]. For complete descriptions we refer to the LaTeX-Manual of Leslie Lamport [Lam94] and the LaTeX-Companion of Michel Goossens, Frank Mittelbach and Alexander Samarin [GSM94]. The tables make this course document also useful as a reference manual. We have followed a few didactical guidelines in writing the course. Learning is best done from examples, learning is done from practice. The examples are often formatted in two columns, as follows:¹ ``` \frac{1}{2} is a fraction ``` $\frac{1}{2}$ is a fraction. The exercises give you the opportunity to practice LATEX, instead of only reading about the program. You can compare your answers with the ones in Appendix A. # 2 A Simple Example LATEX is neither a desktop publishing package nor a word processor. It is a document preparation system. First, you write a plain text containing formatting commands into a file by means of your favorite editor. Next, the LATEX-program converts this text into formatted matter that you can preview and print. Here we shall describe the basics of this process. ### 2.1 Running LATEX and Related Programs Do the following steps: 1. Create a text file, say example.tex, that contains the following text and IATEX commands: \documentclass{article} \begin{document} This is a simple example to start with \LaTeX. \end{document} The first task. Figure 1: A Simple LATEX document. For example, you can use the editor XEMACS: xemacs example.tex ¹On the left is printed the result of formatting the input on the right. The above UNIX command starts the editor and creates the source file example.tex. Good advice: always give a source file a name with extension .tex. This will make it easier for you to distinguish the source document from files with other extensions, which LATEX will create during the formatting. 2. Convert this file into formatted, printable code. Here the IATEX-program does the job: #### latex example It is not necessary to give the filename extension here. LATEX now creates some additional files: ``` example.dvi that can be printed and previewed; example.aux that is needed for cross-referencing; example.log that is a transcript of the formatting. ``` 3. Preview the **dev**ice **i**ndependent document (with extension .dvi) on your computer screen by typing: ``` xdvi example ``` 4. Convert the dvi-file into a printable PostScript document by typing: ``` dvips example ``` It creates the file example.ps that you can print in the usual way. For example, when you want print it on the printer sl1, just enter: ``` lpr -Psl1 example.ps ``` 5. Alternatively, convert the dvi-file into a printable pdf-document (Portable Display Format) by typing: ``` dvipdf example ``` It creates the file example.pdf, which you can view on the computer screen with the Adobe Acrobat Reader by entering the command: ``` acroread example.pdf ``` You can print this file in the usual way. #### Two shortcuts: • You can immediately print a dvi-file, without creating a PostScript file. For example, to print the file example.dvi on the printer sl1, you can enter the command: #### dvips -f example.dvi | lpr -Psl1 • You can immediately format the source file into a pdf-file. Use the pdflatex command instead of latex for formatting. Figure 2 summarizes the standard processing of a LATEX document. Figure 2: Standard Processing of a LATEX document. ### 2.2 The Structure of a LATEX Document We shall use the above example to explain the basic structure of a LATEX document. As stated before, the source file example.tex contains both text and LATEX commands. You can easily recognize the formatting commands: they always start with a backslash (\). For example, the first line #### \documentclass{article} is the command that informs IATEX what kind of document will be compiled. The five standard document classes are: | class | purpose | |---------|--| | article | papers in scientific journals, short tutorials, etc. | | report | rather long texts, master theses, etc. | | book | actual books | | letter | letters | | slides | transparencies | Table 1: Standard Document Classes. EXERCISE 2 Change the document class of example.tex from article into slides, format the document again, and see the effect on the dvi-file. In addition to choosing the document class, you can select from among certain documentclass options and additional packages. The options for the article and report classes include the following: | class option | purpose | |---|---| | 11pt specifies an eleven-point type size, which is 10 | | | | than the default ten-point type size. | | 12pt | specifies an twelve-point type size. | | twocolumn | produces two-column output. | | a4paper | generates an A4 page layout. | | landscape | uses the landscape orientation, where the longer side | | | of the paper is horizontally oriented. | Table 2: Class Options. You specify options between square brackets. For example, the line #### \documentclass[12pt,a4paper]{article} specifies that the document should be formatted in the article style, using a twelve-point character size and an A4 page layout. Additional packages must be declared via the \usepackage command in the *preamble*, i.e., they must be declared between the \documentclass command and \begin{document}. Much used packages are listed below: | packages | purpose | |----------|--| | a4wide | produces an A4 page layout with longer lines. | | amssymb | allows the use of mathematical symbols developed | | | by the American Mathematical Society (AMS). | | babel | facilitates the use of several languages. | | graphicx | allows the use of the imported graphics via the | | | extended graphics package. | | color | allows the use of colors. | Table 3: Some Useful LATEX 2ε Packages. For example, the two lines \usepackage[dutch] {babel} \usepackage{a4wide} specify that - document elements like chapter headings, section headings, and so on, are in Dutch; - Dutch hyphenation rules are applied; - the document is formatted in an A4 page layout with long lines. In case you want to deviate from
the standard settings, you can place further instructions in the preamble. For example, the two lines ``` \addtolength{\textheight}{2cm} \setlength{\parindent}{0pt} ``` will make the text height two centimeters longer than the default size and causes paragraphs to be displayed without indentation. Finally, the text is placed between the \begin{document} command and \end{document}. All lines after the \end{document} command are considered by LATEX as commentary, as you may have noticed in the example. By the way, everything that occurs after a percent sign (%) until the end of the line in the source file is considered by LATEX as commentary, too. EXERCISE 3 In the introduction we stated that LATEX is the program to create mathematical texts. To get you motivated, change the contents of the example.tex file into the following: Format the file again and preview the result. Note that a mathematical formula in a running text is put between single dollar symbols \$. A formula is centered on a separate line if it is between \[and \], or between double dollar symbols \$\$. We end this subsection with a more elaborate document structure. A screen shot of the two pages is shown in Figure 3. Figure 3: The Formatted Sample Document. The program listing is in Figure 4. It shows, among other things, how to - add a title and the name of the author, - use accents - omit a date, - add a table of contents, - add a bibliography, - introduce sections, - switch between language choices. Do not worry too much if not every detail of the program is clear to you. We shall explain many of the issues later on in this tutorial. ``` \documentclass[a5paper,11pt]{article} \usepackage[english, dutch]{babel} % Note: the last language is the default at the beginning. \usepackage{color} \author{Andr\'e Heck\\ AMSTEL Institute} \title{A Sample Document in \LaTeXe} \date{} \begin{document} \maketitle \begin{abstract} Dit is een voorbeeld van een korte Nederlandstalige tekst met enkele Engelstalige fragmenten. Zie ook hoofdstuk 9 van \emph{The \LaTeX\ Companion} \cite{GMS94}. \end{abstract} \tableofcontents \section{Begin van het artikel} We laten het eigenlijke artikel beginnen met een \textcolor{green}{Nederlandstalige} sectie \ldots \selectlanguage{english} % we choose the English language \section{End of the article} \ldots\ and finally, the article ends for some very strange reasons with an English section. \selectlanguage{dutch} % terug naar Nederlandstalige tekst \begin{thebibliography}{99} \bibitem{GMS94} M.~Goossens, F.~Mittelbach, A.~Samarin. \emph{The \LaTeX\ Companion}, Addison-Wesley (1994), ISBN~0-201-54199-8. \end{thebibliography} \end{document} ``` Figure 4: A Sample LATEX document. # EXERCISE 4 The sample text in Figure 4 is available in the source file sample.tex. - 1. Format the document once with the latex command. Verify with the ls sample.* command that four new documents have been created. Ignore the formatting warnings for the moment. - 2. Preview the dvi-file sample.dvi and verify that the table of contents and the bibliographic - citation in the abstract are not correct, yet. Note that LATEX uses hyphenation rules according to the choice of language. - 3. Format the document once more and verify that the table of contents and the citation are correct now. - 4. The previewer xdvi does not display the text Nederlandstalige in section 1 in the green color. Convert the dvi-file into a printable pdf-document and use the Acrobat reader to verify the proper use of colors. ### 2.3 If Formatting Goes Wrong If you make a mistake in the source file and IATEX cannot format your document, the formatting process is interrupted. In the following exercise, you will practice the identification and correction of errors. EXERCISE 5 Deliberately make the following typographical error in the source file sample.tex: Change the line \section{Begin van het artikel} into \sectino{Begin van het artikel} 1. Try to format the document. LATEX will be unable to do this and the processing would be interrupted. The terminal window where you entered the latex command looks like:² ``` % latex sample.tex This is TeX, Version 3.14159 (Web2C 7.3.1) (sample.tex LaTeX2e <1998/12/01> patch level 1 Babel <v3.6x> and hyphenation patterns for american, french, german, ngerman, dutch, spanish, nohyphenation, loaded. (/opt/teTeX/share/texmf/tex/latex/base/article.cls Document Class: article 1999/01/07 v1.4a Standard LaTeX document class (/opt/teTeX/share/texmf/tex/latex/base/size11.clo)) (/opt/teTeX/share/texmf/tex/generic/babel/babel.sty (/opt/teTeX/share/texmf/tex/latex/graphics/dvipsnam.def)) No file sample.aux. LaTeX Warning: Citation 'GMS94' on page 1 undefined on input line 16. No file sample.toc. [1] ! Undefined control sequence. ``` ²We omit some output for clarity. ``` 1.21 \sectino {Begin van het artikel} ``` ? The first warning is innocent. You will be reminded later on that you have to format the document once more to get the cross-references correct. The second error message is serious. The LATEX program notifies the location where it signalled that something goes wrong, viz., line number 21. However, this does not mean that the error is necessarily there. 2. There are several ways to proceed after the interupt. Enter a question mark and you see your options: ``` ? ? Type <return> to proceed, S to scroll future error messages, R to run without stopping, Q to run quietly, I to insert something, E to edit your file, 1 or ... or 9 to ignore the next 1 to 9 tokens of input, H for help, X to quit. ``` 3. Press Return. LateX will continue formatting and tries to make the best of it. Logging continues: ``` [2] (sample.aux) LaTeX Warning: There were undefined references. LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.) Output written on sample.dvi (2 pages, 2040 bytes). Transcript written on sample.log. ``` - 4. Preview the dvi-file and identify the error. - 5. Format again, but this time enter the character e. Your default editor will be opened and the cursor will be at the location where LATEX spotted the error. Correct the source file³ and give the formatting another try. #### 2.4 Basic Conventions We end this chapter with some basic conventions of LATEX that are essential for your understanding of the program. ³If you have not specified in your UNIX shell the TEX editor that you prefer, then the vi-editor will be started. You can leave this editor by entering ZZ. In the c-shell you can add in the file .cshrc the line seteny TEXEDIT 'xemacs +%d %s' so that XEMACS is used. #### 2.4.1 Spacing, Line Breaking and Page Breaking Because LATEX itself formats the document using certain fonts and a given page layout, the source file and the actual printout are different. In other words, it does not matter where the lines in the source file end (where the carriage returns are) in the source file; LATEX joins them. Similarly, extra spaces are ignored, as the example below illustrates: | extra spaces and single line breaks | extra spaces | and | |-------------------------------------|--------------------|---------------| | in the source file are ignored. | single line breaks | in the source | | | file are ignored. | | If you really want to start a new line, pressing the ENTER key once is not enough. IATEX uses the convention that pressing the ENTER key twice starts a new paragraph. The following example generates the lines 'one' and 'two': | one | one | |-----|-----| | two | | | | two | It goes without saying that IATEX contains many constructions to influence spacing, line breaking and page breaking. We list a few of them in Table 4. | command | effect | |------------|---| | \newpage | starts a new page at that point. | | \pagebreak | starts a new page after the current line. | | \newline | ends a line without justifying it. | | \linebreak | ends a line and justifies it, i.e., stretches the spacing | | | between words so the line extends to the right margin. | | \- | allows LATEX to hyphenate a word at that point. | | _ | a blackslash followed by a blank space causes | | | a single space to be printed. | | \hspace | produces a horizontal space of given size. | | \vspace | produces vertical space of given size. | | \smallskip | creates a little extra vertical space between paragraphs. | | \medskip | creates medium extra vertical space between paragraphs. | | \bigskip | creates large extra vertical space between paragraphs. | Table 4: Page Breaking, Line Breaking, and Spacing A shortcut for the \newline command is the double backslash \\. #### 2.4.2 Modes and Environments Important are the concepts 'mode' and 'environment' as they determine the way LATEX is formatting the document. LATEX distinguishes: paragraph mode: LATEX regards your input as a sequence of words and sentences to be broken into lines, paragraphs, and pages. math mode: this mode is for generating mathematical formulas. With the dollar symbol \$ you mark the start and the end of an in-line mathematical formula, i.e., a formula in a running text. A formula put between \[and \] appears on a separate line and centered. left-to-right mode: IATFX produces output that keeps going from left to right. LATEX has a clear syntax for using the brackets [], (), and {}. For example, in paragraph mode: parentheses (rounded brackets) are ordinary parentheses. braces (curly brackets) are used for the parameters of a command, like \begin{document}, and for grouping parts of the document into a single unit, like 2^{n+1}. square brackets are ordinary brackets, and are also used for optional arguments to a command, like \documentstyle[12pt]{article}. A useful environment is **verbatim**: it is the one place where LATEX pays attention to how input is formatted. The example below illustrates that the **verbatim** environment allows you to type the text exactly the way you want it to appear in the formatted version. A short *Mathematica*
session: A short \emph{Mathematica} session: \begin{verbatim} $In[1] := 1/(x^3+1)$ $In[1] := 1/(x^3+1)$ 1 Out[1]= -----Out[1]= -----1 + x1 + x $In[2] := D[\%, \{x,2\}]$ $In[2] := D[\%, \{x,2\}]$ 18 x 18 x 6 x Out[2]= ------Out[2]= -----3 3 3 2 3 3 (1 + x) (1 + x)(1 + x) (1 + x)In[3] := QuitIn[3] := Quit\end{verbatim} A LATEX environment determines a scope in which commands have a special meaning or a special formatting. You will encounter in this tutorial many environments: itemize, enumerate, center, displaymath, and others. #### 2.4.3 Forbidden Characters As you have seen before, some characters have a special meaning for IATEX. For example, the dollar symbol, the percent sign, curly brackets, and so on. In Table 5 we list the special commands to get the characters in your document. | forbidden: | \ | { | } | \$ | & | # | ^ | _ | ~ | % | |------------|----------------|----|----|-----|----|----|------|------|------|----| | use: | \$\backslash\$ | \{ | \} | \\$ | \& | \# | \^{} | _{} | \~{} | \% | | result: | \ | { | } | \$ | & | # | ^ | _ | ~ | % | Table 5: Ten Forbidden Characters. Create a LATEX document that formats like the text shown in Figure 5 (the first two sentences are intentionally separated). Mathematica uses the percent sign (%) to refer to the previous result and curly brackets ($\{\}$) for grouping. See the two instructions below: ``` Sin[x]/x Plot[%, {x,-3,3}]; ``` Figure 5: The Document in Question between Rules. # 3 Basic Tools for Formatting Text Although our main objective is to learn how to create with LAT_EX well-formatted mathematical texts, we shall first discuss the organizational elements of ordinary texts that contains little or no mathematics. Large portions of the text are reference tables that help you to do the exercises. At first reading you may omit the last two subsections about tables and pictures. #### 3.1 Structuring In this subsection you will learn how to structure your documents: creating sections, adding a title and table of contents, etc. It will explain parts of the program listing in Figure 4. ### 3.1.1 Sectioning Commands In the document classes article, report, and book you can easily structure the document into chapters, sections, subsections, and so on. The commands are listed in Table 6. LATEX takes care of numbering chapters and sections, i.e., it automatically generates the numbers. If you want a section heading without a number, just add an asterisk to the command. | Example | \subsubsection*{Example} | |--------------------------------|--------------------------------| | This is an unnumbered section. | This is an unnumbered section. | | command | purpose | |----------------|--| | \part | divides long documents into separate parts. | | \chapter | starts a new chapter. Only in report and book, | | | not in article. | | \section | starts a new section. | | \subsection | starts a new subsection. | | \subsubsection | starts a nested subsection. | Table 6: Sectioning Commands. #### 3.1.2 Title and Table of Contents Use the \maketitle command to create a titlepage. This command must come after the \begin{document} command. The actual date may be specified in the preamble with the commands \title, \author, etc. Depending on the class of the document, IATEX may automatically generate the date when the document was formatted. In case you do not like this, you can specify an empty date with \date{}. See the example in Figure 4. The use of the sectioning commands makes generating the table of contents an easy task: just enter the **\tableofcontents** command at the point where you want to place the listing and run the formatting program twice: the first time for getting the numbering done, and the second time for creating the table of contents. #### 3.1.3 Cross-Referencing With the commands \label and \ref it is possible to refer to section numbers that have been automatically generated by LATEX. For example, the current nested subsection has been defined by the line #### \subsubsection{Cross-Referencing} \label{crossref} LATEX replaces every occurrence of \ref{crossref} by the actual section number. The following example illustrates this and gives the trick of how to avoid unpleasant line breaks: | It is not difficult to refer to Section | It is not difficult to refer to | |---|-------------------------------------| | 3.1.3. | Section \ref{crossref}.\\ | | But use the tilde to ensure that no | But use the tilde to ensure that no | | line break occurs between the word | line break occurs between the word | | and the number: | and the number:\\ | | It is not difficult to refer to Sec- | It is not difficult to refer to | | tion 3.1.3. | Section~\ref{crossref}. | In the same way you can label and refer to pictures, tables, mathematical formulas, etc. ## 3.2 Creating Lists LATEX has several environments for creating lists, which can also be nested. A few examples will do. An enumerated (numbered) list: | 1. This is the 1st item. | \begin{enumerate} | |--------------------------------|--------------------------------------| | 2. This is the 2nd item. | \item This is the 1st item. | | 2. This is the 2nd item. | \item This is the 2nd item. | | | \end{enumerate} | | A simple unnumbered list: | | | • This is the 1st item. | \begin{itemize} | | mile to the old to | \item This is the 1st item. | | • This is the 2d item. | \item This is the 2nd item. | | | \end{itemize} | | A customizable list: | | | One This is the 1st item. | \begin{description} | | | \item[One] This is the 1st item. | | Two This is the 2nd item. | \item[Two] This is the 2nd item. | | | \end{description} | | | | | [First] This is the 1st item. | \begin{description} | | | \item{[First]} This is the 1st item | | [Second] This is the 2nd item. | \item{[Second]} This is the 2nd item | | | \end{description} | | | · | ## EXERCISE 7 Create a LATEX document that formats like the text shown in Figure 6. List of mathematical functions: - Trigonometric functions - $-\sin e$ - cosine - tangent - Special functions - Beta function - Gamma function - Riemann zeta function Figure 6: Nested Lists ### 3.3 Changing Fonts Occasionally you will want to change from one font to another, for example if you wish to be **bold**, to *emphasize* something, or to make it look huge. There are many ways of dealing with font changes in LATEX. #### 3.3.1 Changing the Typeface You can change the font family, font series (width and weight), and the font shape by the commands and declarations listed in Table 7. | command | declaration | meaning | |---------|---------------|----------------------------------| | | {\rmfamily} | formatted in roman family | | | {\sffamily} | formatted in sans serif family | | | {\ttfamily} | formatted in typewriter family | | | {\mdseries} | formatted in medium series | | | {\bfseries} | formatted in bold series | | | {\upshape} | formatted in upright shape | | | {\itshape} | formatted in <i>italic</i> shape | | | {\slshape} | formatted in slanted shape | | | {\scshape} | formatted in SMALL CAPS shape | | | {\em} | formatted in <i>emphasized</i> | | | {\normalfont} | formatted in the document font | Table 7: Changing the Typeface. The following example also shows how the commands and declarations can be combined: | You can strongly <i>emphasize</i> the | You can strongly \emph{\textbf{emphasize}} | |---------------------------------------|--| | possibility of formatting text in a | the possibility of formatting text | | sans serif bold typeface | {\sffamily\bfseries in a sans serif bold | | | typeface} | Each of the declarations in Table 7 has a corresponding environment whose name is obtained by dropping the backslash from the command name.⁴ For example, text placed between \begin{bfseries} and \end{bfseries} will be formatted in bold. You may wonder why LATEX provides three manners of changing the typeface and when to use which method. Our advice is the following: - A command like \textbf is intended for formatting words or short pieces of text in a specific family, series, or shape. Two advantages are: (1) it is consistent with other LATEX structures. (2) LATEX takes care of correct spacing like automatic italic correction. - A declaration is appropriate when you define your own commands or environments as in the example below. ⁴Any declaration has a corresponding environment in this manner. • For longer passages in your document it is clearer to use an environment. | • Now boldface items. | <pre>\newenvironment{bolditemize}{\begin{itemize}</pre> | |--|--| | • Note the difference between <i>italic</i> with italic correction of spacing and <i>italic</i> without. | <pre>\normalfont\bfseries}{\end{itemize}} \begin{bolditemize} \item Now boldface items. \item Note the difference between \textit{italic} with italic correction of spacing and {\itshape italic} without. \end{bolditemize}</pre> | ### 3.3.2 Changing the Font Size IATEX has ten size-changing declarations. There are no corresponding size-changing command forms with one argument because such changes are normally only used in the definition of commands or in a limited scope. Table 8 lists the size-changing commands. | declaration | size | declaration | size | declaration | size | |-----------------|------|---------------|------|-------------|------| | {\tiny} | size | {\normalsize} | size | | | | {\scriptsize} | size | {\large} | size | | | | {\footnotesize} | size | {\Large} | size | {\huge} | size | | {\small} | size | {\LARGE} | size | {\Huge} | Size | Table 8: Changing the Font Size. Create a
LATEX document that formats like the installation script shown in Figure 7. To install Mathcad: - 1. Start Windows. - 2. Insert the disk marked Disk 1 in the floppy disk drive. - 3. From the File menu in the Windows Program Manager, choose Run (ALT+F,R). - 4. Type *drive*:\setup.exe, where *drive* is the letter of the disk drive containing the disk. - 5. Press enter. - 6. Follow the instructions on the screen. Figure 7: Installation Script with Various Fonts. ### 3.4 Paragraph Justification There are two ways to change the alignment of lines in a paragraph: via an environment and via a declaration. The difference is that an environment starts a new paragraph, and a command does not do this. An example of centering lines of text in a paragraph, using \\ to break lines: | This | \begin{center} | |-----------|---------------------------------| | is | This \\ is \\ centered. | | centered. | \end{center} | | | \begin{quote} | | This | \centering | | is | This \\ is \\ also \\ centered. | | also | \end{quote} | | centered. | - | The environments and commands for left and right justification work similarly. An example: | This | \begin{flushright} | |----------------|--------------------------------------| | is | This \\ is \\ right flushed. | | right flushed. | \end{flushright} | | | \begin{quote} | | This | \raggedleft | | is | This \\ is \\ also \\ right flushed. | | also | \end{quote} | | right flushed. | - | | | | ### 3.5 Using Accents The following Portuguese text illustrates the use of accents: | A equação do pêndulo matemática | A equa\c ${c}\^{a}$ o do p\^ ${e}$ ndulo | |---|--| | com período próprio $\frac{2\pi}{\omega}$ é | <pre>matem\'{a}tica com per\'{\i}odo</pre> | | $u'' + \omega^2 u = 0$ | <pre>pr\'{o}prio \$\frac{2\pi}{\omega}\$ \'{e} \[u''+\omega^2u=0\]</pre> | Note that the letter i in periodo needs special treatment: the command i produces a dotless i that can be accented. The commands in Table 9 show how to produce various accented symbols in paragraph mode. | ò \'{o} | õ \~{o} | ŏ \v{o} | g \c{o} | |---------|---------|--------------------------------|---------| | ó \'{o} | ō \={o} | ő \H{o} | o \d{o} | | ô \^{o} | | ŏ \v{o}
ő \H{o}
ŵ \t{oo} | o \b{o} | | ö \"{o} | ŏ \u{o} | | | Table 9: Paragraph Mode Accents. Accents in math mode are produced with other commands. For example, use $\star \tilde{g}$ for \tilde{g} . We list the math mode accents in Table 10. | \hat{a} | \hat{a} | á | \acute{a} | \bar{a} | \bar{a} | \dot{a} | \dot{a} | |-----------|-------------|-------------|-------------|-----------|------------|------------|----------| | ă | \check{a} | à | \grave{a} | \vec{a} | \sqrt{a} | \ddot{a} | \ddot{a} | | $reve{a}$ | \breve{a} | \tilde{a} | \tilde{a} | | | | | Table 10: Math Mode Accents. EXERCISE 9 Explain how to format the following four words: Hühner-händler, débâcle, situações, naïef. ### 3.6 Creating Tables Formatting tabular material is a branch of sports of its own, learned best by mimicking many good examples. The only example in this tutorial illustrates how to create a simple table of the first four Legendre polynomials. | | | \begin{tabular}{ 1 1 } \hline | |---|---|---| | n | $P_n(x)$ | <pre>\$n\$ & \$P_n(x)\$ \\ \hline</pre> | | 0 | 1 | O & \$1\$ \\ | | 1 | x | 1 & \$x\$ \\ | | 2 | $(3x^2-1)/2$ | 2 & \$(3x^2-1)/2\$ \\ | | 3 | $(5x^3 - 3x)/2$ | 3 & \$(5x^3-3x)/2\$ \\ \hline | | | , | \end{tabular} | In the first line, the options {||1|1||} stand for two left adjusted (1) columns, separated by a vertical line (|), with double vertical lines on the vertical sides of the table. In the source file, row entries are separated by an ampersand (&) and every row is closed with the \\ command. The \hline command creates a horizontal line right across the width of the table. ### 3.7 Importing Graphics While LATEX can import virtually any graphics format, Encapsulated PostScript (EPS) is the easiest graphics format to import into LATEX. For example, the EPS file file.eps is inserted by specifying \usepackag{graphicx} in the preamble and then using the command \includegraphics{file.eps} Optionally, the picture can be scaled to a specific height and/or width \includegraphics[height=10cm]{file.eps} \includegraphics[width=5cm]{file.eps} Additionally, the angle option rotates the included picture \includegraphics[angle=45]{file.eps} The example below shows the UvA logo twice, but the second one is rotated 90 degrees. ### 4 Mathematical Formulas Basic LaTeX offers a high level of mathematical typesetting capabilities. Nevertheless many packages are available for complex equations or mathematical constructs that are repeatedly required. In this tutorial we only describe the basic facilities. #### 4.1 Math Environments Mathematical formulas are put in an environment. The main ones are: - \begin{math} ... \end{math}: This places a formula in the running text. Usually, one does not start and end the math environment in this way, but instead one uses a shortcut: one only puts a dollar symbol before and after the formula. - \begin{displaymath} ... \end{displaymath}: The mathematical formula is displayed centered on a separate line. Instead of these commands you can also use \$\$ before and after the formula, or put the formula between \[and \]. - \begin{equation} ... \end{equation}: The same as displaymath except that equation numbers the formula. The following two examples give you a better idea: If we take -1 < a < 1, then $$\int_0^\infty \frac{u^a}{(1+u)^2} \, du = a!(-a)! \qquad (1)$$ By contour integration the left-hand side of (1) may by shown to be equal to $\pi a/\sin \pi a$, thus obtaining the identity $$z!(-z)! = \frac{\pi z}{\sin \pi z}.$$ \begin{equation} \int_{0}^{\infty} \frac{u^a}{(1+u)^2}\,du = a!(-a)! \label{eqno} \end{equation} By contour integration the left-hand side of (\ref{eqno}) may by shown to be equal If we take -1<a<1, then of (\ref{eqno}) may by shown to be equal to \$\pi a / \sin \pi a\$, thus obtaining the identity \[z!(-z)!= \frac{\pi z}{\sin \pi z}\,. \] The in-line formula $$\sum_{k=0}^{\infty} a_n$$ differs from the displayed formula $\frac{1}{k=0}^{\infty}a_n$ The in-line formula $\frac{1}{k=0}^{\infty}a_n$ The in-line formula $\frac{1}{k=0}^{\infty}a_n$ differs from the displayed formula $\frac{1}{k=0}^{\infty}a_n$ \[\sum_{k=0}^{\infty}\infty}a_n \] The above examples illustrate that LaTeX knows in math mode many special characters that cannot be used in paragraph mode, e.g., mathematical symbols like ∞ , \int , \sum , and Greek characters like α , β , γ . #### 4.2 Basic Conventions in Math Mode #### 4.2.1 Spacing In math mode, LATEX automatically italicizes letters and it hardly uses spaces. Also, \$a b\$ and \$ab\$ format the same. Normally, you can best rely on LATEX's internal spacing rules, but if desired, you can change it with one of the commands listed in Table 11. | command | explanation | example | result | |---------------------|--------------------------------|---------|--------| | | normal spacing between symbols | 11 | | | \! or \negthinspace | negative thin space | [\!] | | | or \thinspace | thin space | | | | \: or \medspace | medium space | 1\:1 | | | \; or \thickspace | thick space | \; | | | | extra space | | | | \qquad | doubled extra space | \qquad | | Table 11: Horizontal Spacing in Math Mode. #### 4.2.2 Mathematical Symbols and Greek Letters Mathematical symbols are entered - directly from the keyboard, e.g., =, <, and > or - by a command, e.g., $\$ leq stands for the less-than-or-equal sumbol \le , and $\$ infty stands for the infinity symbol ∞ . In Appendex B we list many mathematical symbols. Greek letters are produced by commands that consist of the name of the letter preceded by a backslash \. The following example shows it all: | Examples of Greek characters are δ , | Examples of Greek characters are \$\delta\$, | |---|---| | Δ , θ , and Θ . | <pre>\$\Delta\$, \$\theta\$, and \$\Theta\$.\\</pre> | | Note the difference between | Note the difference between\\ \$\Pi\$ and | | Π and \prod (as in $\prod_{i=1}^n$), and | $\scriptstyle \$ (as in $\scriptstyle \$ prod_{i=1}^n\$), and\\ | | between ϵ and ϵ . | between \$\epsilon\$ and \$\varepsilon\$. | ### 4.2.3 Brackets and Ordinary Text in Formulas In math mode, parentheses and square brackets have their ordinary meaning. Braces (curly brackets) are used for grouping parts of a formula, like in 2^{n+1}. If you want to use real curly brackets, for example to denote a set, then specify them as \{ and \}, respectively. $$2^{x}y \neq 2^{xy}$$ \$2^xy \not= 2^{xy}\$ This example also shows that you can put a slash through a LATEX symbol by preceding it with the \not command. The above example also illustrates how to enter ordinary text inside a mathematical expression. Other font-changing commands have been listed before in Table 7. Although we say 'font-changing', a command like \textrm also applies the spacing rules for ordinary text instead of mathematical text. If you only want to change the typeface, but keep the spacing rules of mathematics, then use one of the commands listed in Table 12. | command | explanation | example | result | |-------------|-----------------|-----------------------------------|--------------------------------| | \mathrm | roman typeface | <pre>\$\mathrm{maximum_i}\$</pre> | $maximum_i$ | | \mathbf | bold | $\infty \$ | $\mathbf{v} = (v_1, v_2, v_3)$ | | \mathsf | sans serif | \$M_1^2\$ | M^2_1 | | \mathit | italics | $f^{neq\mathbb{T}}$ | $ff \neq ff$ | | \mathtt | typewriter type |
$\mathrm{Mathtt}(N)(g)$ | $\mathtt{N}(g)$ | | \mathnormal | normal typeface | <pre>\$ff=\mathnormal{ff}\$</pre> | ff = ff | | \mathcal | calligraphic | <pre>\$\mathcal{N}\$</pre> | \mathcal{N} | Table 12: Changing the Mathematical Typeface The packages amssymb and amsmath developed by the American Mathematical Society (AMS) provide more mathematical symbols and typeface-changing commands. In appendix B we shall list many of them. For example, we use the symbols for the standard notation of natural numbers, integers, fractions, and so on: | \mathbb{NZQRC} gives \mathbb{NZQRC} . | $\verb \$ mathbb{NZQRC}\$ gives | | |---|----------------------------------|--| | | <pre>\$\mathbb{NZQRC}\$.</pre> | | Henceforth, we shall assume that the packages amsmath and amssymb have been specified in the preamble. ### 4.2.4 Changing the Mathematical Style Table 13 lists the four mathematical styles that LATEX uses when formatting formulas and the commands to specify them: | style | command | explanation | |---------|----------------------|---| | display | \displaystyle | formulae displayed on lines by themselves | | text | \textstyle | formulae embedded in the running text | | script | \scriptstyle | formulae used as sub- or superscripts | | script | \scriptscriptstyle | higher-order subscript or superscripts | Table 13: Changing the Mathematical Style ### An example: | Compare | | Compare | |---------|---|--| | | $w + \frac{1}{1}$ | $\[w+\frac{1}{x+\frac{1}{y+\frac{1}{z}}} \]$ and | | | $w + \frac{1}{x + \frac{1}{y + \frac{1}{z}}}$ | $\[w+\frac{1}{\displaystyle x+} \]$ | | | * Z | $\frac{1}{\langle displaystyle\ y+\langle 1}{z}} \]$ | | and | | | | | $w\frac{1}{x+\frac{1}{x+\frac{1}{x+x}}}$ | | | | $y + \frac{1}{z}$ | | # 4.3 Simple Mathematical Formulas It is high time that you get started with mathematical typesetting in practice. In Table 14 we list commonly used constructions for mathematical formulas. We assume that we are already in math mode. | command | example | result and explanation | |--------------|-------------------|--| | ^{} | x^{2} | x^2 , a superscript. | | _{} | x_{2} | x_2 , a subscript. | | {} | \frac{1}{2} | $\frac{1}{2}$, a fraction. | | | \sqrt{2} | $\sqrt{2}$, a square root. | | \sum_{}^{} | $\sum_{k=1}^{n}k$ | $\sum_{k=1}^{n} k$, here a definite sum. | | \int_{}^{} | $\int_{0}^{1}xdx$ | $\int_{x=0}^{1} x dx$, here a definite integral. | | \lim_{} | $\lim_{x\to0}e^x$ | $\lim_{x\to 0} e^x$, a limit. | | \ln | \ln x | $\ln x$, a differently formatted function | | \cos and \pi | \cos\pi | $\cos \pi$, a trigonometric function and | | | | a mathematical symbol. | | \infty | +\infty | $+\infty$, the infinity symbol function | Table 14: Common Constructions in Math Mode. ## EXERCISE 10 Explain how to format the following formulas. 1. $$\cos^2 \theta + \sin^2 \theta = 1$$ 2. $$\sqrt{2} \approx 1.414$$ $\sqrt[3]{2} \approx 1.260$ 3. $$e^{\pi i} = 1$$ 4. $$\frac{\partial^2 f}{\partial x \partial y}$$ 5. $$F_n = F_{n-1} + F_{n-2}, \qquad n \ge 0.$$ 6. $$A = B$$ if and only if $A \subseteq B$ and $A \supseteq B$. # EXERCISE 11 Compare the following commands. 1. $$f_{2}^{2}\$$ and $f_{2}^{2}\$. 2. $$x_{1}^{y}$$, x^{y}_{1} , and x^{y}_{1} \$. ### EXERCISE 12 Explain how to format the following unit conversion. henry = $$1.113 \times 10^{-12} \sec^2/\text{cm}$$ ### EXERCISE 13 Create a LATEX document that formats the text shown in Figure 8. The equation $$ax^2 + bx + c$$ has as solution $$x_{12} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Figure 8: A Mathematical Text. ### EXERCISE 14 Create a LATEX document that formats the text shown in Figure $9.^5$ $$\epsilon > 0$$ (2) From condition (2) follows ... Figure 9: A Mathematical Fragment. $^{^5\}mathrm{The}$ label is automatically created and will probably differ form yours. ### 4.4 Alignments An example that shows how you can align equations in LATEX: $$x^2 + y^2 = 1 \qquad (3)$$ \begin{eqnarray} \x^2 + y^2 &= & 1 \\ y &= & \sqrt{1-x^2} \\ y = \sqrt{1-x^2} \quad (4) Vertical alignment is with respect to the mathematical symbol that has been placed between ampersands. Lines are separated by the usual \\. All lines are numbered separately, except lines that have a \nonumber command. The eqnarray* environment is the same as eqnarray except that it does not generate equation numbers. ### EXERCISE 15 Explain how to format the following system of equations. $$x + 2y - 3z = -11$$ $$y + z = 11$$ $$3z = 21$$ The amsmath package defines several convenient environments for creating multiline display equations, some of which allowing you to align parts of a formula. They also provide better spacing around the alignment points compared to the eqnarray environment. The following example illustrates this. Note the difference between the eqnarray and align environment in their method for marking the alignment points. eqnarray uses two ampersand characters surrounding the part that should be aligned. The align environment uses a single ampersand to mark the alignment point: the ampersand is placed in front of the character that should be aligned vertically with other lines. The packages align and align*, which is the same but without automatic numbering of the formula, align at a single place. For alignment at several places you must use the alignat environment or alignat*. An example: The split environment allows you to split a large formula into multiple lines. $$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \\ = x^n + nx^{n-1}y + \frac{n(n-1)}{2} x^{n-2}y \\ + \cdots + nxy^{n-1} + y^n$$ \left\[\ending \] \] \] \right. \right. \right. \left\[\lef This example also shows you how to format a binomial coefficient in the amsmath package. # EXERCISE 16 Explain how to format the following formula. $$x = r \cos \phi \sin \theta$$ $$y = r \sin \phi \sin \theta$$ $$z = r \cos \theta$$ # EXERCISE 17 Explain how you can format the following formula. $$x + 2y - 3z = -11$$ $$y + z = 11$$ $$z = 21$$ ### 4.5 Matrices In Table 15 we list the matrix environments that IATEX provides. In these environments you cannot specify the format of the columns. If you do want to control this, then you must use the array environment. A simple example will do. ``` \mathbf{M} = \begin{pmatrix} x & x^2 \\ 1+x & 1+x+x^2 \end{pmatrix} \qquad \begin{array}{l} & \text{\compare} \\ & \text{\compartive} \text{\compa ``` | command | example | result | |---------|---|--| | | \$\begin{matrix} 1 & 2 \\ | 1 2
3 4 | | | 3 & 4\end{matrix}\$ | | | | <pre>\$\begin{pmatrix} 1 & 2 \\</pre> | $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ | | | 3 & 4\end{pmatrix}\$ | | | | \$\begin{bmatrix} 1 & 2 \\ | $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ | | | 3 & 4\end{bmatrix}\$ | | | | \$\begin{vmatrix} 1 & 2 \\ | $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ | | | 3 & 4\end{vmatrix}\$ | | | | <pre>\$\begin{Vmatrix} 1 & 2 \\</pre> | $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ | | | 3 & 4\end{bmatrix}\$ | 11 11 | Table 15: Matrix Environments. #### EXERCISE 18 Explain how to format the following matrix. $$\mathbf{A} = \begin{pmatrix} 1 & a & b \\ . & 1 & c \\ . & . & 1 \end{pmatrix}$$ ### 4.6 Dots in Formulas The commands \ldots and \cdots produce two kinds of ellipsis (...). A low ellipsis: x_1, \ldots, x_n . A centered ellipsis: $x_1 + \cdots + x_n$ A low ellipsis: $x_1 + \cdots + x_n$ A centered ellipsis: $x_1 + \cdots + x_n$ Other commands to produce dots are shown in the following example: $$A = \begin{cases} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{cases} \qquad \begin{cases} A = \langle 21 \rangle & \langle 1dots \& a_{1n} \rangle \\ a_{11} \& a_{12} \& \langle 1dots \& a_{2n} \rangle \\ \langle a_{11} \& a_{22} \& \langle 1dots \& a_{2n} \rangle \\ \langle a_{11} \& a_{22} \& \langle 1dots \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11}
\& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{1n} \rangle \\ \langle a_{11} \& a_{12} \& \langle 1dots \& a_{12} \& \langle 1do$$ ### EXERCISE 19 Explain how to format the following statement. if $$\mathbf{v} = (v_1, \dots, v_n)$$ then $\mathbf{v}^t = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ ### 4.7 Delimiters In Table 16 are listed the basic brackets and delimiters. | input | meaning | display | |---------------|--------------------------|--------------| | (| left parenthesis | (| |) | right parenthesis |) | | [or \lbrack | left bracket | [| |] or \rbrack | right bracket |] | | \{ or \lbrace | left curly bracket | { | | \} or \rbrace | right curly bracket | } | | \lfloor | left floor bracket | L | | \rfloor | right floor bracket | j | | \lceil | left ceil bracket | Ī | | \rceil | right ceil bracket |] | | \langle | left angle bracket | < | | \rangle | right angle bracket | > | | / | slash | / | | \backslash | reverse slash | \ | | or \vert | vertical bar | | | \ or \Vert | double vertical bar | | | \uparrow | upward arrow | ↑ | | \Uparrow | double upward arrow | \uparrow | | \downarrow | downward arrow | \downarrow | | \Downarrow | double downward arrow | \downarrow | | \updownarrow | up-and-down arrow | \uparrow | | \Updownarrow | double up-and-down arrow | \$ | Table 16: Delimiters. If you put the \left command in front of an opening delimiter and the \right command at closure, then LATEX automatically tries to resize the delimiters to an appropriate size. In this example, you may want to have the outmost brackets of the same size. Then you must use one of the commands \bigl, \Bigl, \biggl, \Biggl, and the analogous command with \bigr, and so on. In Table 17 we show the various sizes. Table 17: Resizing Delimiters. The \left and \right commands must come in matching pairs, but the matching delimiters need not be the same. An invisible delimiter can for instance be created by entering a dot ('.') after the \left and \right command. The following example illustrates this: $$|x| = \begin{cases} -x & \text{if } x < 0, \\ x & \text{otherwise} \end{cases}$$ \[|x| = \left\{ \textnormal\{if \\$x<0\}\}, \\ x & \textnormal\{otherwise\} \\ \end\{array\} \right. \] However, it easier to use the cases environment in this example. $$|x| = \begin{cases} -x & \text{if } x < 0, \\ x & \text{otherwise} \end{cases}$$ \[|x| = \begin{cases} \ -x & \textnormal{if \$x < 0\$}, \\ x & \textnormal{otherwise} \ \end{cases} \] ### EXERCISE 20 Explain how to format the following formula. $$\lim_{x \downarrow 0} \frac{1}{x} = \infty \quad \left[\neq \lim_{x \uparrow 0} \frac{1}{x} \right]$$ #### EXERCISE 21 Explain how to format the following formula. $$f(x) = \begin{cases} 1 & \text{if } x \neq 0, \\ \frac{\sin x}{x} & \text{otherwise} \end{cases}$$ #### EXERCISE 22 Explain how to format the following rule of partial integration. $$\int_a^b f'(x)g(x) dx = f(x)g(x) \Big|_a^b - \int_a^b f(x)g'(x) dx$$ #### 4.8 Decorations You can easily put a horizontal line or horizontal brace above or below a formula. The \stackrel command stacks one symbol above another. $$\vec{v} \stackrel{\text{def}}{=} (v_1, \dots, v_n) \begin{tabular}{l} $$ \cline{\cline{conditions} & \cline{conditions} \cline{co$$ #### 4.9 Theorem, Conjectures, etc. Statement of theorems, lemmas, corollaries, conjectures, and so on, is rather easy in LATEX as the following examples illustrate. **Theorem 1** There exist infinitely many prime numbers. **Conjecture 1** There exist infinitely many prime numbers p of the form $p = 2^n - 1$. ### Conjecture 2 (Artin, 1927) Let a > 1 be an integer that is not a square. Then, a is a primitive root modulo infinitely many prime numbers p. $\verb|\newtheorem{theorem}{Theorem}|$ \begin{theorem} There exist infinitely many prime numbers. \end{theorem} \newtheorem{conj}{Conjecture} \begin{conj} There exist infinitely many prime numbers \$p\$ of the form \$p=2^n-1\$. \end{conj} \begin{conj}[Artin, 1927] Let \$a>1\$ be an integer that is not a square. Then, \$a\$ is a primitive root modulo infinitely many prime numbers \$p\$. \end{conj} ### 5 Odd and Ends - LATEX uses the single quotes ' and ' as quotation marks. Never use the double quote " from the keyboard for this purpose. To get a double quote as quotation mark, just enter two single quotes. - Note the various uses of dashes in LATEX: | input | meaning | example | |-------|------------|------------------------------| | _ | hyphen | X-rated | | | en-dash | pages 1–10 | | | em-dash | this is —nomen est omen— for | | \$-\$ | minus sign | -4 | Table 18: Dashes and Hyphens. - The \noindent command at the beginning of a paragraph suppresses indentation. - You can split large LATEX files into smaller ones and use the \include command to include the file for formatting. The main structure of the document may look like: Formatting of an included file starts always at a new page. To avoid this, use the input command. # 6 Where to Get LATEX? There are several distributions of IATEX in the public domain. On the UNIX computer of FNWI, the **teTeX** distribution has been installed. It can be downloaded from the Comprehensive Tex Archive Network (CTAN), in the Netherlands from URL ftp://ftp.ntg.nl/pub/tex-archive/ teTeX comes along with the RedHat distribution of Linux. The website of teTeX is www.tug.org/teTeX The Dutch TEX— Users Group (website: www.ntg.nl) is the producer of a cd-rom with the 4TeX distribution for PC-users. For details we refer to the website 4tex.ntg.nl A highly regarded setup for Windows (all current variants) is **MikTeX**. It can be obtained from its website www.miktex.org This is a rather complete configuration, which includes previewing and PDF conversion. A complete list of available systems can be found on the website of the worldwide TeX Users Group is www.tug.org This is anyway the main source of information about LATEX. ### References - [GSM94] M. Goossens, F. Mittelbach, A. Samarin. The LATEX Companion, Addison-Wesley (1994), ISBN 0-201-54199-8. - [Lam94] L. Lamport: BT_EX , A Document Preparation System, User's Guide and Reference Manual 2nd ed., Addison-Wesley (1994), ISBN 0-201-52983-1. - [Oos97] P. Oostrum. Handleiding LATEX (in Dutch), A version adapted to the local situation is available (date: 11/4/2001) in PDF-format on the website at URL http://www.science.uva.nl/onderwijs/ict/handleiding/tex/latex.pdf. # **Appendices** # A Answers to the Exercises ``` EXERCISE 6 \emph{Mathematica} uses the percent sign (\%) to refer to the previous result and curly brackets (\{\\}) for grouping.\ See the two instructions below: \begin{verbatim} Sin[x]/x Plot[%, \{x,-3,3\}]; \end{verbatim} EXERCISE 7 List of mathematical functions: \begin{itemize} \item Trigonometric functions \begin{itemize} \item sine \item cosine \item tangent \end{itemize} \item Special functions \begin{itemize} \item Beta function \item Gamma function \item Riemann zeta function \end{itemize} \end{itemize} EXERCISE 8 To install Mathcad: \begin{enumerate} \item Start Windows. \item Insert the disk marked \texttt{Disk 1} in the floppy disk drive. \item From the \textsf{File} menu in the Windows Program Manager, choose \textsf{Run} (\textsc{alt+f},\textsc{r}). \item Type \textbf{\emph{drive}:\backslashsetup.exe}, where \textbf{\emph{drive}}} is the letter of the disk drive containing the disk. \item Press \textsc{enter}. \item Follow the instructions on the screen. \end{enumerate} EXERCISE 9 ``` $H''uhner-h''andler, d'eb^acle, situa\c{c}^oes, na''{i}ef.$ #### EXERCISE 10 - 1. $\cos^2\theta = 1$ - 2. $\sqrt{2}\$ 1.414 \qquad 1.260\$ - 3. $e^{\pi i}=1$ - 4. \$\frac{\partial^2f}{\partial x\partial y}\$ - 5. $F_{n}=F_{n-1}+F_{n-2}$, \qquad n\geq0.\$ - 6. \$\displaystyle A=B \qquad\textrm{if and only if}\qquad A\subseteq B \quad\textrm{and}\quad A\subseteq B\,.\$ #### EXERCISE 12 $\[\mathbf{0^{-12}}\] = 1.113\times 10^{-12}\]$ #### EXERCISE 13 #### EXERCISE 14 \begin{equation} \epsilon>0 \label{eps}\end{equation} From condition (\ref{eps}) follows\ldots #### EXERCISE 15 \begin{eqnarray*} x+2y-3z &=& -11\\ y+z &=& 11\\ 3z &=& 21 \end{eqnarray*} #### EXERCISE 16 \begin{align*} x &= r\cos\phi\sin\theta \\ y &= r\sin\phi\sin\theta \\ z &= r\cos\theta \end{align*} #### EXERCISE 17 ``` \begin{alignat*}{5} x + 2& y - 3& z & = -&11\\ & y\; + & z & = &11\\ & & z & = &21\\ \end{alignat*} ``` #### EXERCISE 18 $\label{eq:local_abs} $$ \prod_{a \in \mathbb{A}} = \left[\mathcal A \in \mathbb{A} : \& 1 \& a \& b \right] . & 1 \& c \right] . & . & 1 \leq p_{a}.$ ``` EXERCISE 19 \[\textrm{if} \quad \mathbf{v} = (v_1, \ldots, v_n) \quad \textrm{then} \quad \mathbf{v}^t = \begin{pmatrix} v_1\\ \vdots\\ v_n \end{pmatrix} \] EXERCISE 20 \[\lim_{x\downarrow 0}\frac{1}{x}=\infty\quad \left[\;\neq \lim_{x\uparrow 0}\frac{1}{x}\;\right] \] ``` ### EXERCISE 21 # EXERCISE 22 ``` \label{limitab} $$ \prod_a^b f'(x)g(x)\dx = f(x)g(x)\Big[_{a}^{b} - \int_a^b f(x)g'(x)\dx \] $$ ``` # B List of Mathematical Symbols In the following tables are listed all symbols that are by default available in math mode (referred to as NFSS) and all symbols that are provided by the packages amsmath and amssymb. The pages are exact copies of the relevant pages of [GSM94] it have the laborsaving abilities of IATEX for preparing indexes,
bibliographies, tables, or simple diagrams. These features are such a convenience for authors that the use of IATEX spread rapidly in the mid-1980s (a reasonably mature version of IATEX was available by the end of 1983), and the American Mathematical Society began to be asked by its authors to accept electronic submissions in IATEX. Thus, the $\mathcal{A}_{\mathcal{M}}S$ -IATEX project came into being in 1987 and three years later $\mathcal{A}_{\mathcal{M}}S$ -IATEX version 1.0 was released. The conversion of $\mathcal{A}_{\mathcal{M}}S$ -TEX's mathematical capabilities to IATEX, and the integration with the NFSS, were done by Frank Mittelbach and Rainer Schöpf, working as consultants to the AMS, with assistance from Michael Downes of the AMS technical support staff. The most often used packages are amsmath (from $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IATEX) and amssymb (from the AMSFonts distribution). To invoke them in a document you write, e.g., \usepackage{amsmath} in the usual way. Installation and usage documentation is included with the packages. For amssymb the principal piece of documentation is the $AMSFonts\ User's\ Guide\ (amsfndoc.tex)$; for amsmath it is the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IATEX User's Guide (amsldoc.tex). # 8.2 Fonts and Symbols in Formulae ### 8.2.1 Mathematical Symbols $(\mathcal{L} \ 42-47)$ $(\mathcal{L} 44)$ Tables 8.2 on the next page to 8.11 on page 227 review the mathematical symbols available in standard LATEX. You can put a slash through a LATEX symbol by preceding it with the \not command, for instance. $u \not< v \text{ or } a \not\in \mathbf{A}$ \$u \not< v\$ or \$a \not\in \mathbf{A}\$</pre> Tables 8.12 on page 227 to 8.19 on page 229 show the extra math symbols of the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -Fonts, which are automatically available when you specify the amssymb package.² However, if you want to define only some of them (perhaps because your TEX installation has insufficient memory to define all the symbol names), you can use the amsfonts package and the \DeclareMathSymbol command, which is explained in section 7.7.6. Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved. . The AMS distribution also contains a file diff12.tex which describes differences between version 1.1 and 1.2 of $\mathcal{A}_{\mathcal{M}}S$ -IATEX. Note in particular that in versions 1.0 and 1.1 of $\mathcal{A}_{\mathcal{M}}S$ -IATEX, which predated IATEX 2ε , the amsmath package was named "amstex" and included some of the font-related features that are now separated in the amssymb and amsfonts packages. Note that the Companion uses Lucida math fonts which contain the standard IATEX and \mathcal{AMS} symbols but with different shapes compared to the Computer Modern math fonts. ``` \hat{a} \hat{a} \acute{a} \acute{a} \bar{a} \bar{a} \dot{a} \dot{a} \check{a} \breve{a} \check{a} à \grave{a} \vec{a} \vec{a} \ddot{a} \ddot{a} \tilde{a} \tilde{a} ``` Table 8.1: Math mode accents (available in LATEX) ``` \gamma \delta \epsilon \alpha \beta \beta \delta \alpha \varepsilon \zeta \eta \theta \vartheta ζ \vartheta ε \eta \iota \iota \kappa \kappa \lambda \lambda \mu \mu \nu \nu ξ \xi 0 \pi \pi \varpi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \sigma ς \tau \varrho \phi \varphi \chi \psi \psi \omega \phi \varphi \chi Γ \Gamma \Delta \Delta Θ Ξ \Xi \Theta Λ \Lambda Π \Pi \sum \Sigma Υ \Upsilon \Phi \Psi \Psi \Omega \Omega ``` Table 8.2: Greek letters (available in LATEX) | \pm | /pm | \cap | \cap | \Diamond | \diamond | \oplus | \oplus | |----------|---------|-----------|-----------|--------------------|-----------------------------|------------|-----------| | Ŧ | \mp | \cup | \cup | \triangle | $\$ bigtriangleup | \ominus | \ominus | | × | \times | \forall | \uplus | ∇ | $\$ bigtriangledown | \otimes | \otimes | | ÷ | \div | П | \sqcap | ◁ | $\$ triangleleft | \oslash | \oslash | | * | \ast | \sqcup | \sqcup | \triangleright | $\$ triangleright | \odot | \odot | | * | \star | \vee | \vee | \triangleleft | $ackslash \mathtt{lhd}^a$ | \bigcirc | \bigcirc | | 0 | \circ | \wedge | \wedge | \triangleright | $ackslash \mathtt{rhd}^a$ | † | \dagger | | • | \bullet | \ | \setminus | \leq | $ackslash \mathrm{unlhd}^a$ | ‡ | \ddagger | | | \cdot | ? | \wr | \trianglerighteq | $ackslash \mathrm{unrhd}^a$ | П | \amalg | $^{^{}a}$ Not predefined in NFSS. Use the latexsym or amssymb package. Table 8.3: Binary operation symbols (available in $\mbox{\sc IAT}_{\mbox{\sc E}}\mbox{X})$ ``` \leq \leq,\leq \geq,\ge \equiv \models \prec \succ \preceq \succeq \sim \perp \perp \preceq \succeq \simeq \mid « \11 \asymp \asymp \simeq \gg \gg \parallel \bowtie \subset \subset \supset \supset \approx \bowtie \supseteq \subseteq \supseteq \cong \bowtie \Join \sqsubset \subseteq \Box \sqsupset \neq \neq \smile \sqsubseteq \exists \sqsupseteq \propto \doteq \frown \in \in \ni \ni \propto \dashv \vdash \dashv < > į ``` Table 8.4: Relation symbols (available in LATEX) Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved. 1 ``` \longleftarrow \leftarrow \uparrow \Leftarrow \Leftarrow \Longleftarrow \uparrow \Uparrow \rightarrow \longrightarrow \downarrow \Rightarrow \Rightarrow \Longrightarrow \Downarrow \leftrightarrow \longleftrightarrow \updownarrow 1 \Leftrightarrow \Longleftrightarrow \Updownarrow \Leftrightarrow \mapsto \longmapsto \nearrow \hookleftarrow \hookrightarrow \searrow \hookrightarrow \rightharpoonup \leftharpoonup \rightarrow \swarrow \leftharpoondown \rightharpoondown \nwarrow ``` Table 8.5: Arrow symbols (available in LATEX) | | \ldots | | \cdots | : | \vdots | ٠٠. | \ddots | × | \aleph | |------------|--------------------------------------|-----------|-----------|------------|--------------|------------|-------------------------------------|--------------|--------------------------| | 1 | \prime | \forall | \forall | ∞ | ∞ | \hbar | \hbar | Ø | \emptyset | | 3 | \exists | ∇ | \nabla | | \surd | | $\operatorname{ extsf{NB}}$ ox a | \triangle | $\$ triangle | | \Diamond | ${ackslash}$ Diamond a | \imath | \imath | \jmath | \jmath | ℓ | \ell | \neg | \neg | | Т | \top | b | \flat | Ц | \natural | # | \sharp | 60 | \wp | | \perp | \bot | # | \clubsuit | \Diamond | \diamondsuit | \Diamond | \heartsuit | \spadesuit | \spadesuit | | Ω | $\mbox{\ensuremath{\mathtt{mho}}}^a$ | \Re | \Re | 3 | \Im | _ | \angle | ∂ | $\operatorname{partial}$ | $[^]a$ Not predefined in NFSS. Use the latexsym or amssymb package. Table 8.6: Miscellaneous symbols (available in IATEX) | \sum | \sum | Π | \prod | \coprod | \coprod | ſ | \int | ∮ | \oint | |---------|----------|-----------|------------|-----------|-----------|-----------|-----------|----------|-----------| | \cap | \bigcap | U | \bigcup | | \bigsqcup | V | \bigvee | \wedge | \bigwedge | | \odot | \bigodot | \otimes | \bigotimes | \oplus | \bigoplus | \forall | \biguplus | | | Table 8.7: Variable-sized symbols (available in LATEX) | \arccos | \cos | \csc | \exp | \ker | \label{limsup} | \mbox{min} | \sinh | |---------|-------|------|---------|------------------|------------------|--------------|-------------------| | \arcsin | \cosh | \deg | \gcd | \lg | \ln | \Pr | \sup | | \arctan | \cot | \det | \hom | \label{lim} | \log | \sec | an | | \arg | \coth | \dim | $\$ inf | \label{liminf} | \max | \sin | $\operatorname{}$ | Table 8.8: Log-like symbols (available in LATEX) | 1 | \uparrow | \uparrow | \Uparrow | \downarrow | \downarrow | \Downarrow | \Downarrow | |---|--|------------|----------|--------------|--------------|--------------|--------------| | { | \{ | } | \} | \uparrow | \updownarrow | 1 | \Updownarrow | | Ĺ | \lfloor | j | \rfloor | Ĺ | \lceil | ĺ | \rceil | | (| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | \rangle | \rangle | / | / | \ | \backslash | | | | | \ I | | | | | Table 8.9: Delimiters (available in \LaTeX) Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved. \prod \rightarrow \bigcirc ``` \rmoustache \lmoustache \rgroup \lgroup \Arrowvert \arrowvert \bracevert Table 8.10: Large delimiters (available in LATEX) abc abc \widetilde{abc} \widehat{abc} \overline{abc} \overleftarrow{abc} ab\dot{c} \overrightarrow{abc} \overline{abc} \underline{abc} \overline{abc} abc abc \overbrace{abc} \underbrace{abc} abc \sqrt{abc} \sqrt{abc} \sqrt[n]{abc} \sqrt[n]{abc} f, \frac{abc}{xyz} Table 8.11: LATEX math constructs \digamma \notin \varkappa \Boxed \tau \daleth \Boxed \quad \gimel Table 8.12: AMS Greek and Hebrew (available with amssymb package) \ulcorner \urcorner \llcorner _ Table 8.13: AMS delimiters (available with amssymb package) \Rrightarrow \rightsquigarrow \leftleftarrows \leftrightarrows \Leftarrow \Lleftarrow \twoheadleftarrow \leftarrowtail \looparrowleft \leftrightharpoons \leftarrow \curvearrowleft Q \circlearrowleft \Lsh \upuparrows \upharpoonleft \downharpoonleft 1 1 \multimap \leftrightsquigarrow \rightleftarrows \rightrightarrows \twoheadrightarrow \rightarrowtail \looparrowright \rightleftharpoons \curvearrowright \rightleftharpoons \circlearrowright \Rsh \downdownarrows \downharpoonright \upharpoonright,\restriction Table 8.14: AMS arrows (available with amssymb package) \nleftarrow \nrightarrow \nLeftarrow \nRightarrow \nleftrightarrow \nLeftrightarrow ``` Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved. Table 8.15: AMS negated arrows (available with amssymb package) | \leq | \leqq | \leq |
\leqslant | < | \eqslantless | |-------------------------|-------------------|--|-----------------------|---------------------|-----------------------------------| | \lesssim | \lesssim | ≨ | \lessapprox | \approx | \approxeq | | < | \lessdot | /// | $\111,\11less$ | \leq | \lessgtr | | \leq | \lesseqgtr | \\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\. | \lesseqqgtr | ÷ | $\verb \doteqdot , \verb \Doteq $ | | ≓ | \risingdotseq | = | \fallingdotseq | \sim | \backsim | | \geq | \backsimeq | \subseteq | \subseteqq | \subseteq | \Subset | | | \sqsubset | \preccurlyeq | \preccurlyeq | \curlyeqprec | \curlyeqprec | | $\stackrel{\sim}{\sim}$ | \precsim | ¥≋⊥ | \precapprox | \triangleleft | \vartriangleleft | | \leq | \trianglelefteq | F | \vDash | II⊢ | \Vvdash | | \smile | \smallsmile | $\overline{}$ | \smallfrown | $\stackrel{\sim}{}$ | \bumpeq | | ≎ | \Bumpeq | \geq | \geqq | \geqslant | \geqslant | | ≽ | \eqslantgtr | ~ 1 | \gtrsim | \gtrapprox | \gtrapprox | | ⋗ | \gtrdot | >>> | \ggg,\gggtr | √≋ /√ | \gtrless | | \geq | \gtreqless | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | \gtreqqless | | \eqcirc | | $\stackrel{\circ}{=}$ | \circeq | \triangleq | \triangleq | \sim | \thicksim | | \approx | \thickapprox | \supseteq | \supseteqq | \ni | \Supset | | | \sqsupset | ≽ | \succcurlyeq | \succcurlyeq | \curlyeqsucc | | \succeq | \succsim | £≋ | \succapprox | \triangleright | \vartriangleright | | \trianglerighteq | \trianglerighteq | I | \Vdash | I | \shortmid | | П | \shortparallel | Ŏ | \between | ф | \pitchfork | | \propto | \varpropto | ⋖ | $\$ blacktriangleleft | <i>:</i> . | \therefore | | € | \backepsilon | • | \blacktriangleright | •: | \because | Table 8.16: AMS binary relations (available with amssymb package) | * | \nless | ≰ | \nleq | ≰ | \nleqslant | |----------------------|-------------------|---------------|-------------------|---|-------------------------| | ≰ | \nleqq | ≨ | \lneq | ≨ | \lneqq | | ≰
≨ | \lvertneqq | \lesssim | \lnsim | ≨ | \lnapprox | | \neq | \nprec | ≠ | \npreceq | \#\. | \precnsim | | √ æ_ | \precnapprox | ~ | \nsim | ł | \nshortmid | | 1 | \nmid | $\not\vdash$ | \nvdash | ¥ | \nvDash | | | \ntriangleleft | ⊉ | \n | ⊈ | \nsubseteq | | \subsetneq | \subsetneq | \neq | \varsubsetneq | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \subsetneqq | | ≨ | \varsubsetneqq | $\not >$ | \ngtr | ≱ | \ngeq | | ¥#0# | \ngeqslant | ≱ | \ngeqq | \geq | \gneq | | \geq | \gneqq | \geq | \gvertneqq | \geq | \gnsim | | ^∦ <i>\</i> ₩\∻ | \gnapprox | $\not\succ$ | \nsucc | ⋧⊭ | \nsucceq | | 7 | \succnsim | ∑ ≋ | \succnapprox | \ncong | \ncong | | Ħ | \nshortparallel | # | nparallel | $\not\vDash$ | \nvDash | | $\not \Vdash$ | \nVDash | \not | \ntriangleright | ⋭ | \n | | $ ot \geq$ | \nsupseteq | $ \not\equiv$ | \nsupseteqq | | \supsetneq | | \supseteq | \varsupsetneq | \supseteq | \supsetneqq | $\supseteq \neq$ | $\vert var supset neqq$ | Table 8.17: AMS negated binary relations (available with amssymb package) Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved. • ``` \dotplus \smallsetminus \bigcirc \Cap,\doublecap \Cup,\doublecup \overline{\wedge} \barwedge \vee \veebar = \Box \boxtimes \doublebarwedge \boxminus \boxtimes • \boxdot \blacksquare \boxplus \divideontimes \ltimes \rtimes \leftthreetimes \bowtie × \rightthreetimes 人 \curlywedge Υ \curlyvee \circleddash \circledast \circledcirc \Theta 0 \centerdot \intercal Т Table 8.18: AMS binary operators (available with amssymb package) \hbar \hslash \vartriangle \hbar \hbar \nabla \triangledown \square \Diamond \lozenge _ \measuredangle \circledS \angle 4 ∄ \nexists \Omega \mbox{mho} Н \Finv G \Game \Bbbk \backprime 0 \varnothing \blacktriangle \blacksquare \blacktriangledown \blacksquare \blacklozenge \star \bigstar \sphericalangle С \complement \mathfrak{g} \eth ``` Table 8.19: AMS miscellaneous (available with amssymb package) \diagdown #### 8.2.2 Names of Math Font Commands \diagup The list of math font commands provided by the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ packages is shown in table 8.20 on the next page, where for each case an example is shown. In addition, the math font commands of table 7.4 on page 183 can be used. In the amsmath package, \boldsymbol is to be used for individual bold math symbols and bold Greek letters—everything in math except for letters (where one would use \mathbf). For example, to obtain a bold ∞ , or \boldsymbol{\infty}, \boldsymbol{+}, \boldsymbol{\pi}, or \boldsymbol{0}. Since \boldsymbol takes a lot of typing, you can introduce new commands for bold symbols to be used frequently: ``` \label{eq:linear_command_bpi}_{\boldsymbol{\phi}_{\boldsymbol{\phi}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}}}} $$ \end{array} $$ \sum_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} $$ \end{array} $$ \sum_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} + \pi \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} $$ \end{array} $$ \sum_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} $$ \end{array} $$ \end{array} $$ \end{array} $$ \end{array} $$ \sum_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} \mathbf{B}_{\boldsymbol{\phi}_{\boldsymbol{\phi}}} $$ \end{array} \end{ar ``` For those math symbols where the command \boldsymbol has no effect because the bold version of the symbol does not exist in the currently available fonts, there exists a command "Poor man's bold" (\pmb), which simulates bold Chapter 8 of "The LaTeX Companion", updated for AMS-LaTeX version 1.2 (Sep. 1st 1997). Copyright © 1997 by Addison Wesley Longman, Inc. All rights reserved.