

Cognitive Technologies

Managing Editors: D. M. Gabbay J. Siekmann

Editorial Board: A. Bundy J. G. Carbonell
M. Pinkal H. Uszkoreit M. Veloso W. Wahlster
M. J. Wooldridge

Advisory Board:

Luigia Carlucci Aiello
Franz Baader
Wolfgang Bibel
Leonard Bolc
Craig Boutilier
Ron Brachman
Bruce G. Buchanan
Anthony Cohn
Artur d’Avila Garcez
Luis Fariñas del Cerro
Koichi Furukawa
Georg Gottlob
Patrick J. Hayes
James A. Hendler
Anthony Jameson
Nick Jennings
Aravind K. Joshi
Hans Kamp
Martin Kay
Hiroaki Kitano
Robert Kowalski
Sarit Kraus
Maurizio Lenzerini
Hector Levesque
John Lloyd

Alan Mackworth
Mark Maybury
Tom Mitchell
Johanna D. Moore
Stephen H. Muggleton
Bernhard Nebel
Sharon Oviatt
Luis Pereira
Lu Ruqian
Stuart Russell
Erik Sandewall
Luc Steels
Oliviero Stock
Peter Stone
Gerhard Strube
Katia Sycara
Milind Tambe
Hidehiko Tanaka
Sebastian Thrun
Junichi Tsujii
Kurt VanLehn
Andrei Voronkov
Toby Walsh
Bonnie Webber

For further volumes:
http://www.springer.com/series/5216

Laura Kallmeyer

Parsing Beyond Context-Free
Grammars

123

PD Dr. Laura Kallmeyer
SFB 833
Universität
Nauklerstr. 35
72074 Tübingen
Germany
lk@sfs.uni-tuebingen.de

Managing Editors
Prof. Dr. Dov M. Gabbay
Augustus De Morgan Professor of Logic
King’s College London
Dept. Computer Science
London WC2R 2LS
United Kingdom

Prof. Dr. Jörg Siekmann
Forschungsbereich Deduktions- und
Multiagentensysteme, DFKI
Stuhlsatzenweg 3, Geb. 43
66123 Saarbrücken, Germany

Cognitive Technologies ISSN 1611-2482
ISBN 978-3-642-14845-3 e-ISBN 978-3-642-14846-0
DOI 10.1007/978-3-642-14846-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010933793

ACM Computing Classification (1998): I.2.7, F.4, J.5

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Tübingen

Preface

Given that context-free grammars cannot adequately describe natural lan-
guages, grammar formalisms beyond CFG that are still computationally
tractable are of central interest for computational linguists. However, despite
the considerable interest in such formalisms and in their various parsing algo-
rithms, a coherent textbook that allows access to the large body of knowledge
on polynomial-time parsing beyond context-free grammars has not been avail-
able so far. Textbooks on parsing covered mainly context-free grammars while
mentioning more powerful formalisms only very briefly.

This want of a detailed presentation of grammar formalisms and pars-
ing beyond CFG is addressed with this book. The book provides an exten-
sive overview of the formal language landscape between CFG and PTIME.
It moves from Tree Adjoining Grammars to Multiple Context-Free Gram-
mars and then to Range Concatenation Grammars while explaining available
parsing techniques for these formalisms. The text is enriched with many illus-
trations and examples coming with the different formalisms and algorithms.
This makes the book accessible to anybody familiar with basic notions of
CFG parsing. It is useful both for researchers and students in computational
linguistics and in formal language theory.

Tübingen, Laura Kallmeyer
June 2010

Acknowledgments

First of all and most importantly, I want to thank my colleague Wolfgang
Maier. We taught two courses at the University of Tübingen and one course at
the European Summer School in Logic, Language and Information (ESSLLI)
in 2008 in Hamburg, all of them covering the topic of parsing beyond context-
free grammars. The idea to write this textbook arose out of these courses and
much material from the course slides was reused when writing the book. The
course preparations and the related discussions of the subject were crucial for
achieving a good understanding of the topic and being able to cover it in a
textbook. Also, when writing the book, I frequently discussed its content and
structure with Wolfgang. Therefore one can say that without Wolfgang’s help
the book would not look as it does and, furthermore, it would very probably
not exist at all.

The suggestion to write a textbook on parsing beyond context-free gram-
mars came from Carl Vogel who participated in our ESSLLI course on this
topic. I am grateful for this suggestion; it made me for the first time seriously
consider the idea of covering the course material in a book.

While writing this book, I was financed by an Emmy Noether Grant from
the German Research Foundation DFG (Deutsche Forschungsgemeinschaft).

Contents

1 Introduction . 1
1.1 Formal Grammars and Natural Languages 1
1.2 Parsing Beyond CFGs . 5
1.3 What This Book Is Not About . 7
1.4 Overview of the Book . 8

1.4.1 Grammar Formalisms for Natural Languages 8
1.4.2 Parsing: Preliminaries . 8
1.4.3 Tree Adjoining Grammars . 8
1.4.4 MCFG and LCFRS . 9
1.4.5 Range Concatenation Grammars . 9
1.4.6 Automata . 10

1.5 Some Basic Definitions . 10
1.5.1 Languages . 10
1.5.2 Context-Free Grammars . 11
1.5.3 Automata . 12
1.5.4 Trees . 14

2 Grammar Formalisms for Natural Languages 17
2.1 Context-Free Grammars and Natural Languages 17

2.1.1 The Generative Capacity of CFGs 17
2.1.2 CFGs and Lexicalization . 20
2.1.3 Mild Context-Sensitivity . 23

2.2 Grammar Formalisms Beyond CFG . 26
2.2.1 Tree Adjoining Grammars . 26
2.2.2 Linear Indexed Grammars . 31
2.2.3 Linear Context-Free Rewriting Systems 33
2.2.4 Multicomponent Tree Adjoining Grammars 33
2.2.5 Multiple Context-Free Grammars . 36
2.2.6 Range Concatenation Grammars . 36

2.3 Summary . 38

X Contents

3 Parsing: Preliminaries . 41
3.1 Parsing as Deduction . 41

3.1.1 Motivation . 41
3.1.2 Items . 42
3.1.3 Deduction Rules . 44

3.2 Implementation Issues . 44
3.2.1 Dynamic Programming . 44
3.2.2 Chart Parsing and Tabulation . 46
3.2.3 Hypergraphs . 47

3.3 Properties of Parsing Algorithms . 48
3.3.1 Soundness and Completeness . 48
3.3.2 Complexity . 49
3.3.3 Valid Prefix Property . 51

3.4 Summary . 51

4 Tree Adjoining Grammars . 53
4.1 Introduction to Tree Adjoining Grammars 53

4.1.1 Definition of TAG . 53
4.1.2 Formal Properties . 58
4.1.3 Linguistic Principles for TAG . 63
4.1.4 Extended Domain of Locality and Factoring of Recursion 65
4.1.5 Constituency and Dependencies . 68

4.2 Equivalent Formalisms . 70
4.2.1 Tree-Local MCTAG . 70
4.2.2 Linear Indexed Grammars . 72
4.2.3 Combinatory Categorial Grammars 72

4.3 Summary . 74

5 Parsing Tree Adjoining Grammars . 77
5.1 A CYK Parser for TAG . 77

5.1.1 The Recognizer . 77
5.1.2 Complexity . 82

5.2 An Earley Parser for TAG . 82
5.2.1 Introduction . 82
5.2.2 Items . 83
5.2.3 Inference Rules . 85
5.2.4 Extending the Algorithm to Substitution 88
5.2.5 The Parser . 91
5.2.6 Properties of the Algorithm . 92
5.2.7 Prefix Valid Earley Parsing . 93

5.3 An LR Parser for TAG . 96
5.3.1 Introduction . 96
5.3.2 Construction of the Automaton . 99
5.3.3 The Recognizer . 101
5.3.4 Valid Prefix Property . 107

Contents XI

5.4 Summary . 107

6 Multiple Context-Free Grammars and Linear Context-
Free Rewriting Systems . 109
6.1 Introduction to MCFG, LCFRS and Simple RCG 109

6.1.1 MCFG and LCFRS . 110
6.1.2 Formal Properties . 117
6.1.3 Applications . 122

6.2 Equivalent Formalisms . 125
6.2.1 Set-Local Multicomponent TAG . 125
6.2.2 Minimalist Grammars . 126
6.2.3 Finite-Copying LFG . 126

6.3 Summary . 128

7 Parsing MCFG, LCFRS and Simple RCG 131
7.1 CYK Parsing of MCFG . 131

7.1.1 The Basic Algorithm. 131
7.1.2 The Näıve Algorithm . 134
7.1.3 The Active Algorithm . 136
7.1.4 The Incremental Algorithm . 139
7.1.5 Prediction Strategies . 141

7.2 Simplifying Simple RCGs . 142
7.2.1 Eliminating Useless Rules . 142
7.2.2 Eliminating ε-Rules . 143
7.2.3 Ordered Simple RCG . 145
7.2.4 Binarization of the Rules . 147

7.3 An Incremental Earley Parser for Simple RCG 149
7.3.1 The Algorithm . 149
7.3.2 Filters . 154

7.4 Summary . 155

8 Range Concatenation Grammars . 157
8.1 Introduction to Range Concatenation Grammars 157

8.1.1 Definition of RCG . 157
8.1.2 Applications . 164

8.2 Relations to Other Formalisms . 167
8.2.1 Literal Movement Grammars . 167
8.2.2 CFG, TAG and MCFG . 170

8.3 Summary . 173

9 Parsing Range Concatenation Grammars 177
9.1 Basic RCG Parsing . 177

9.1.1 CYK Parsing with Passive Items . 178
9.1.2 Non-directional Top-Down Parsing 179
9.1.3 Directional Top-Down Parsing . 180

XII Contents

9.1.4 Optimizations . 183
9.2 Parsing with Constraint Propagation . 184

9.2.1 Range Constraints . 185
9.2.2 CYK Parsing with Active Items . 186
9.2.3 Earley Parsing . 188

9.3 Summary . 190

10 Automata . 193
10.1 Embedded Push-Down Automata . 193

10.1.1 Definition of EPDA . 193
10.1.2 EPDA and TAG . 197
10.1.3 Bottom-Up Embedded Push-Down Automata 197
10.1.4 k-Order EPDA . 199

10.2 Two-Stack Automata . 200
10.2.1 General Definition . 200
10.2.2 Strongly-Driven Two-Stack Automata 202

10.3 Thread Automata . 204
10.3.1 Idea . 204
10.3.2 General Definition of TA . 206
10.3.3 Constructing a TA for a TAG . 208
10.3.4 Constructing a TA for an Ordered SRCG 209

10.4 Summary . 213

Appendix A: Hierarchy of Grammar Formalisms 215

Appendix B: List of Acronyms . 217

Solutions . 219

References . 235

Index . 245

1

Introduction

1.1 Formal Grammars and Natural Languages

Since the 1980s it has been known that context-free grammars (CFGs) are not
powerful enough to describe all phenomena we encounter in natural languages.
Examples that show the limitation of CFGs are cross-serial dependencies in
Dutch, as in (1), and in Swiss German (Shieber, 1985; Bresnan et al., 1982) and
so-called unbounded scrambling phenomena (Becker, Rambow, and Niv, 1992;
Rambow, 1994) in, for instance, German and Korean. A German scrambling
example is given in (2).

(1) ... dat Jan Piet de kinderen zag helpen zwemmen
... that Jan Piet the children saw help swim
‘... that Jan saw Piet help the children swim’

(2) ... dass des Verbrechens der Detektiv den Verdächtigen
... that the crimegen the detectivenom the suspectacc

dem Klienten zu überführen versprochen hat
the clientdat to prove guilty of promised has
‘... that the detective has promised the client to prove the suspect guilty
of the crime’

Let us express the relation between a noun and the verb it depends on by
mapping a verb and its nominal arguments to the same terminal symbol. If we
do this for the two example sentences, we obtain the following: The cross-serial
dependencies as in (1) yield a string abcabc, which, when iterated, amounts
to a dependency pattern as in the copy language {ww |w ∈ {a, b, c}+}.
For scrambling, all permutations of the noun phrases preceding the verbs
are grammatical (though, depending on the lexical material they are filled
with, these permutations are more or less felicitous). This leads to patterns
ababab (see (2)), aabbab, abbaab, babaab, This amounts to the language
{π(w′)w |w = a1 . . . an ∈ {a, b, . . .}∗, w′ = ak1

1 . . . akn
n , where ki is the number

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 1, c© Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

of nominal arguments of ai and π is a permutation}. Both phenomena, cross-
serial dependencies and scrambling, cannot be described using only CFGs.

In an attempt to specify the formal properties of natural languages, Joshi
introduced the notion of mild context-sensitivity (1985) that proposes that
a grammar formalism that is adequate for dealing with natural languages
should 1. extend CFGs, 2. be able to describe a limited amount of crossing
dependencies, 3. be polynomially parsable and 4. generate only languages of
constant growth. The latter means, roughly, that if we order the word lengths
we find in a language, then the difference between two subsequent elements is
limited by a constant.

The first two conditions formulate minimal requirements that are widely
accepted. Any grammar formalism proposed for natural languages satisfies
these constraints. The other two conditions formulate limitations of the gener-
ative capacity of the grammar formalisms we choose for natural languages. The
property of constant growth has been questioned for natural languages since
there are some phenomena where, when iterating them, the word length seems
to grow exponentially. These are case stacking in Old Georgian (Michaelis
and Kracht, 1997) and Chinese number names (Radzinski, 1991). It should be
noted, however, that the generalizations for Old Georgian cannot be verified
since there are no speakers of this language today, and for Chinese number
names, it is not completely clear to what extent this is really part of the syn-
tax. Therefore it is still an open question whether natural languages are of
constant growth.

Given these facts, different extensions of CFG have been proposed for
processing natural languages. Within this book, we restrict ourselves to for-
malisms that satisfy at least the first three constraints, i.e., in particular, we
treat only formalisms generating polynomial languages.

The weakest extension we will cover in this book is Tree Adjoining Gram-
mar (TAG), originally introduced in (Joshi, Levy, and Takahashi, 1975). TAGs
extend CFGs in the following way: In a CFG, in each derivation step we
rewrite non-terminals with strings of terminals and non-terminals. In terms
of the corresponding derivation tree, we substitute a new tree (the root be-
ing the left-hand side non-terminal and the daughters being the right-hand
side elements of the corresponding production) for a leaf with a non-terminal
label. In TAG, we can even insert new trees somewhere inside the already de-
rived tree, and not only at leaves. In other words, we can replace an internal
node with a new tree. This new tree can contribute two non-adjacent parts
to the terminal string. Figure 1.1 gives examples of how the yields of elemen-
tary structures can look in the different formalisms. In a CFG, the yield of a
non-terminal A is a single string γ. The example for TAG shows the result of
an adjunction where the subtree between the two A nodes is a tree from the
grammar that has been adjoined. Its yield has two components, namely the
two non-adjacent strings γ1 and γ2.

TAGs have been shown to be able to model a large range of linguistic
phenomena in an adequate way (Abeillé, 1988; Abeillé, 2002; Kroch, 1987;

1.1 Formal Grammars and Natural Languages 3

CFG: A

γ

TAG:
A

A
γ1 γ2

LCFRS:

•
A

• •
γ1 γ2 γ3

RCG:

•
A B

• •
γ1 γ2 γ3

Fig. 1.1. Yields of non-terminals in different formalisms

Kroch, 1989; Frank, 1992; Frank, 2002) and several large coverage grammars
have been implemented using TAG, among others for English (XTAG Re-
search Group, 2001) and French (Abeillé, 2002; Crabbé, 2005).

Extending the idea of having non-adjacent portions of the terminal string
in the yield of an element from the grammar leads to Linear Context-Free
Rewriting Systems (LCFRSs) (Vijay-Shanker, Weir, and Joshi, 1987; Weir,
1988) and the equivalent Multiple Context-Free Grammars (MCFGs) (Seki et
al., 1991). In these grammars, non-terminals can span tuples of strings and
the productions specify how to compute the span of the left-hand side non-
terminal from the spans of the right-hand side terminals. In terms of trees,
this leads to trees with crossing branches. Figure 1.1 shows an example where
the yield of the non-terminal A consists of the three non-adjacent strings γ1,
γ2 and γ3.

For some natural language phenomena, TAGs are too limited to provide
a linguistically adequate analysis, for instance for certain extraction phenom-
ena and word order variations in so-called free word order languages (Kroch
and Joshi, 1987; Becker, Joshi, and Rambow, 1991; Kahane, Candito, and
de Kercadio, 2000). An example for the latter are scrambling configurations
such as (2). Some of the extensions proposed for this reason fall into the
class of LCFRS. Furthermore, more recently, LCFRSs have attracted con-
siderable interest in the context of data-driven parsing since they can be
extracted in a very natural way both from constituency treebanks (Maier
and Søgaard, 2008; Kallmeyer and Maier, 2010) and from dependency tree-
banks (Kuhlmann, 2007; Kuhlmann and Satta, 2009). Constituency treebanks
are sets of sentences that are equipped with tree-shaped syntactic structures
where the internal nodes are labeled with non-terminal syntactic categories
such as VP and NP. In contrast to this, dependency treebanks are sets of

4 1 Introduction

Constituent tree:
S

VP

VP

VP

Comp NP NP NP V V V

dat Jan Piet de kinderen zag helpen zwemmen

Dependency tree:

dat Jan Piet de kinderen zag helpen zwemmen

Fig. 1.2. Constituent and dependency tree for (1)

sentences that are equipped with tree-shaped syntactic structures where the
words in a sentence represent the nodes of the tree while the edges correspond
to dependency relations. See Figure 1.2 for an example.

In LCFRS, we have a linearity condition that signifies that a single portion
of the terminal string cannot belong to the spans of two different non-terminals
that are not derived from each other (i.e., that do not stand in a dominance
relation in the derivation tree). If we drop this constraint, we obtain Range
Concatenation Grammars (RCGs) (Boullier, 2000b), the most expressive for-
malism that we will present in this book. In an RCG, a terminal node can be
part of two subtrees of the derivation tree whose root nodes do not stand in
any dominance relation. The example in Figure 1.1 shows a case where two
non-terminals, A and B, both have two non-adjacent strings as yields where
the first component of both yields is the same: A has a yield consisting of the
strings γ1 and γ2 while B has a yield consisting of the strings γ1 and γ3.

To get a better understanding of the idea behind RCGs, think of the non-
terminals as predicates that are true for the string tuples that are in their
yields. In an RCG, it is possible to require more than one predicate to be true
for a certain yield. It would be possible for instance to generate structures as
shown in Figure 1.3 for so-called gapping phenomena. Here, the noun broccoli
is the object of both the first and the second VP.

From a formal point of view, RCGs are particularly interesting because
they generate exactly the class of all polynomial languages. Furthermore,
RCGs can model some natural language phenomena that even LCFRSs cannot
deal with. These are long-distance scrambling in languages such as German
(Becker, Rambow, and Niv, 1992; Boullier, 1999a) and some phenomena that

1.2 Parsing Beyond CFGs 5

S

S S

VP
VP

John likes and Tom hates broccoli

Fig. 1.3. A possible RCG tree for gapping constructions

have been argued not to be of constant growth (Radzinski, 1991).1 Finally,
RCGs are closed under intersection and allow us to model different aspects
of natural language in parallel (Sagot, 2005). Therefore, restricted forms of
RCGs can be exploited for machine translation (Søgaard, 2008).

As a summary, Figure 1.4 shows the hierarchy of language classes that we
will deal with in this book.

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
	CFG

TAG

LCFRS

RCG
(= PTIME)

mildly
context-sensitive

Fig. 1.4. The language hierarchy treated in this book

1.2 Parsing Beyond CFGs

The focus of this book is on parsing algorithms for the above-mentioned for-
malisms. We will concentrate on symbolic approaches only.

The parsing strategies and the automata presented throughout the book
are all extensions of the strategies that have been developed for CFGs (see

1 Note however that for scrambling other extensions of TAG have been proposed,
such as V-TAG (Rambow, 1994) and TT-MCTAG (Lichte, 2007), which are prob-
ably more adequate from a linguistic point of view.

6 1 Introduction

Grune and Jacobs (2008) for an extensive overview of CFG parsing). More
concretely, we will extend the bottom-up and top-down parsing techniques
from CFGs to the more powerful formalisms treated in this book.

We will see how the different ways to extend CFGs adopted in the differ-
ent formalisms influence the parsing complexity. A central aspect is always
the maximal number of non-adjacent strings that can occur in the yield of
an elementary structure where an elementary structure can be a tree from
the grammar as in the case of TAG or a non-terminal node as in the case
of LCFRS. In LCFRS terminology, this number is called the fan-out of the
grammar. For TAG, we can have at most two non-adjacent parts in the yield,
i.e., we have fan-out 2, and we obtain a parsing complexity of O(n6). For
LCFRS, if we have maximal k non-adjacent parts in the yields (fan-out k),
we can do parsing in O(n3k) if the grammar is binarized.

Since we are mainly interested in natural language processing, we have
to assume that our grammars are highly ambiguous. As a consequence, if we
want to perform an efficient parsing, we have to use tabulation techniques, i.e.,
we have to make sure we can reuse partial results and thereby avoid having
to compute the same sub-analysis several times. This is one of the reasons
why we will present parsing as a deductive process (Pereira and Warren,
1983; Shieber, Schabes, and Pereira, 1995) where, in every step, we deduce a
new partial result from results we have already found. We assume that our
algorithms are implemented as chart parsers (Kay, 1986). This means that we
have a structure (the chart) that serves to store all our intermediate partial
results. We add new results that we can deduce from the results already in the
chart as long as possible. Once this process stops because we cannot find any
more new results, we check whether the chart contains a result that represents
a possible parse for our input string.

The goal of this book is twofold: On the one hand we aim at giving a com-
plete picture of the formal grammar landscape extending CFGs in the spirit of
mildly context-sensitive grammars. For this reason, we give detailed formal-
izations of the different formalisms; we list their formal properties, sometimes
with proofs, and we also give application examples that motivate the need
for these formalisms. On the other hand, we provide a detailed description of
symbolic parsing algorithms that have been developed for these formalisms.
We will show how traditional CFG parsing techniques can be extended to the
more powerful grammar frameworks covered in this book.

Besides providing a thorough formalization of the presented material, we
give numerous examples and list a large range of problems at the end of each
chapter whose solutions can be found at the end of the book. This way, the
book is useful not only for advanced researchers but also for students who
have only just started studying this field. Furthermore, the book may be used
as a textbook on which a course on advanced symbolic parsing algorithms can
be based.

Though some prior knowledge of formal grammar theory and parsing is
of course helpful when reading this book, it is not a necessary requirement.

1.3 What This Book Is Not About 7

The book is self-contained; it introduces all the mathematical concepts and
all aspects of CFG parsing that are needed to be able to follow it.

1.3 What This Book Is Not About

There are several grammar formalisms used for natural languages that are left
aside in this book.

A first group concerns formalisms that have a very high expressive power
and, as a consequence of this, generate more than polynomial languages.
The most prominent formalisms of this type are Lexical Functional Grammar
(LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) and Head-Driven Phrase
Structure Grammar (HPSG) (Pollard and Sag, 1994). These formalisms fol-
low a different tradition, compared to the grammars we deal with. All the
formalisms covered in this book are motivated by the goal to extend the ex-
pressive power as far as necessary beyond CFG (necessary to describe all nat-
ural language phenomena) while keeping it as restricted as possible in order
to guarantee computational tractability. This amounts to the aim of finding
a grammar formalism that, by itself, gives already a close characterization
of the class of natural languages. LFG and HPSG do not subscribe to this
line of grammar design since they provide formalisms that are very powerful
and that, by themselves, do not tell us anything about the class of natu-
ral languages. Only the concrete grammars of course characterize a natural
language.

A second set of formalisms that are only briefly mentioned but not treated
in detail are the different types of vector grammars proposed in the context of
natural language processing. A vector grammar is a grammar whose elements
are sets, for instance sets of rewriting rules or sets of TAG trees. Whenever
an element from such a set is used in a derivation, all the other elements
from the same set must be used as well. Depending on how elements from the
same set have to be added, we obtain a large range of different formalisms
with different properties. Examples are Matrix Grammars (Dassow and Pǎun,
1989), unordered Vector Grammars (Cremers and Mayer, 1973), tree-local and
set-local multicomponent TAG (Joshi, 1985; Weir, 1988), non-local MCTAG
with dominance links (Becker, Joshi, and Rambow, 1991) and Vector-TAG
with dominance links (Rambow, 1994).

A third group of grammar formalisms that are not treated in this book are
the different types of Categorial Grammar such as Combinatory Categorial
Grammar (CCG) (Steedman, 2000) and Abstract Categorial Grammar (ACG)
(de Groote, 2001). The way these grammars are defined is different from
the grammar formalisms covered in this book since categorial grammars are
deduction-based logical frameworks. In this book, we concentrate on rewriting
grammars, i.e., grammars whose rules define the way parts of an already
generated structure can be rewritten. Such grammars present straight-forward
extensions of CFG.

8 1 Introduction

Another important topic in the context of parsing that is left aside as well
is dependency parsing. The reason is that, in general, dependency parsing is
data driven and not rule-based and therefore presents a different approach to
parsing, compared with the rule-based symbolic parsing algorithms presented
in this book. See for instance (Merlo, Bunt, and Nivre, 2010) for a series of
recent papers on dependency parsing.

1.4 Overview of the Book

The book is structured into ten chapters where the first three chapters serve
as introduction while the next six chapters cover the different extensions of
CFG and their respective parsing algorithms. Chapter 10 introduces differ-
ent automata models that generate the string languages of the formalisms
introduced in the preceding chapters.

1.4.1 Grammar Formalisms for Natural Languages

In Chapter 2 we explain why CFGs are too limited for natural languages.
In particular, we give the proof from Shieber (1985) that Swiss German is
not context-free because of its cross-serial dependencies. CFGs can describe
nested dependencies but they are too limited to deal with the crossing depen-
dencies we encounter in some natural languages. We also introduce the notion
of mild context-sensitivity, a property that Joshi (1985) has put forward as
a reasonable characterization of the type of grammar formalism needed for
natural languages. Finally, we motivate the different extensions of CFG that
we will treat in this book. We give an overview over these formalisms, the
languages they generate and the way they are related to each other.

1.4.2 Parsing: Preliminaries

Chapter 3 introduces notions about parsing that are relevant for this book.
We introduce the framework of parsing as deduction (Shieber, Schabes, and
Pereira, 1995) that will be used throughout the book to specify parsing al-
gorithms. We then explain some basic notions about tabulation and chart
parsing. Furthermore, we list some properties of parsing algorithms such as
complexity and prefix validity that oftentimes will be subject to investigation
in the context of the different algorithms presented in the course of the book.

1.4.3 Tree Adjoining Grammars

The fourth and fifth chapter cover the smallest extension of CFG presented in
this book, namely Tree Adjoining Grammars (TAG). Chapter 4 introduces the
formalism while Chapter 5 deals with different parsing techniques for TAG.

1.4 Overview of the Book 9

TAGs (Joshi and Schabes, 1997) only slightly extend CFGs. The additional
power stems from the adjunction operation that permits us to replace internal
nodes in a tree with new trees from the grammar. TAGs have been extensively
used for modeling natural languages; we give several examples of TAG analyses
for natural language phenomena. The string languages of TAG have several
closure properties and a pumping lemma for TAG has been shown.

We explain different parsing algorithms for TAG that apply strategies from
CFG parsing to the specific needs of TAG parsing. In particular, we describe
a CYK-style bottom-up parser, an Earley bottom-up parser with top-down
prediction and a proposal for LR parsing. We discuss various aspects of these
algorithms, such as the prefix validity of different types of Earley parsing
algorithms for TAG.

1.4.4 MCFG and LCFRS

Chapters 6 and 7 deal with Linear Context-Free Rewriting Systems (LCFRSs)
(Vijay-Shanker, Weir, and Joshi, 1987) and the equivalent Multiple Context-
Free Grammars (MCFGs) (Seki et al., 1991) and simple Range Concatenation
Grammars (SRCGs) (Boullier, 1998a). These formalisms extend CFGs by
allowing non-terminals to have a sequence of non-adjacent strings as yields.
They are particularly well suited for modelling discontinuities which occur
frequently in natural languages. In Chapter 6 we introduce the formalism,
discuss its formal properties and present some applications.

Chapter 7 then presents different types of CYK and Earley parsing algo-
rithms that have been proposed for these grammars. In this chapter, we also
introduce several normal forms for SRCG such as ε-free SRCGs, ordered SR-
CGs and binarized SRCGs and we show how to transform an arbitrary SRCG
into an equivalent SRCG in one of these normal forms. All these normal forms
of course have an impact on parsing complexity.

1.4.5 Range Concatenation Grammars

The next chapter introduces Range Concatenation Grammars (RCGs)
(Boullier, 2000b). RCGs have the greatest generative capacity among the for-
malisms presented in this book. They generate the entire class of all polynomi-
ally parsable languages. The formalism keeps the idea from LCFRS and SRCG
that non-terminals can span sequences of terminal strings. But it extends this
by allowing a single string to be part of the yields of different non-terminal
nodes that are not derived from each other. In other words, one can reuse
terminal strings in different contexts.

We present the formalism and discuss several restricted forms of it. Fur-
thermore, we discuss its relation to other formalisms, namely to CFG, TAG,
MCFG and Literal Movement Grammar (LMG) (Groenink, 1996). A re-
stricted form of the latter, so-called simple LMG, is equivalent to RCG. We
give the transformation algorithm from TAG to specific types of SRCG.

10 1 Introduction

Concerning parsing, we discuss in Chapter 9 the extensions of standard
parsing algorithms such as CYK and Earley to the specific needs of RCG.

1.4.6 Automata

Chapter 10 finally presents several automata models that generate the string
languages of some of the formalisms from the previous chapters.

Extended Push-down Automata (EPDA) (Vijay-Shanker, 1987) recognize
the class of Tree-Adjoining Languages (TALs) and are a natural extension
of Push-down Automata (PDA). An alternative automata model for TAL is
Two-Stack Automata (2-SA) (Becker, 1994), which we present as well. A re-
stricted variant of 2-SA is Strongly-driven Two-Stack Automata (SD-2SA)
(Villemonte de la Clergerie and Pardo, 1998; Alonso Pardo, Nederhof, and
Villemonte de la Clergerie, 2000), explicitly aiming at an elegant representa-
tion of different parsing strategies.

The most powerful automata model treated in this book are Thread
Automata (TA) (Villemonte de la Clergerie, 2002) that recognize all Lin-
ear Context-Free Rewriting Languages (LCFRLs). The strategy of a TA for
LCFRS follows an incremental top-down restricted bottom-up recognition
strategy. Therefore one of the Earley algorithms presented in Chapter 6 for
simple RCG can be seen as a deduction rule-based formulation of a TA for
simple RCG.

1.5 Some Basic Definitions

In the following, we introduce some basic notions and facts related to formal
grammars and formal languages that will be referred to in the course of the
book. We follow standard definitions presented, e.g., in (Hopcroft and Ullman,
1979).

1.5.1 Languages

First, we introduce some definitions related to the notion of languages.

Definition 1.1 (Alphabet, word, language).

1. An alphabet is a non-empty finite set X.
2. A string x1 . . . xn with n ≥ 1 and xi ∈ X for 1 ≤ i ≤ n is called a non-

empty word on the alphabet X. X+ is defined as the set of all non-empty
words on X.

3. A new element ε /∈ X+ is added: X∗ := x+ ∪ {ε}.
For each w ∈ X∗, the concatenation of w and ε is defined as follows:
wε = εw = w.
ε is called the empty word, and each w ∈ X∗ is called a word on X.

1.5 Some Basic Definitions 11

4. A set L is called a language iff there is an alphabet X such that L ⊆ X∗.

Definition 1.2 (Homomorphism).
For two alphabets X and Y , a function f : X∗ → Y ∗ is a homomorphism

iff for all v, w ∈ X∗: f(vw) = f(v)f(w).

Definition 1.3 (Length of a word).
Let X be an alphabet, w ∈ X∗.

1. The length of w, |w| is defined as follows: if w = ε, then |w| = 0. If
w = xw′ for some x ∈ X, then |w| = 1 + |w′|.

2. For every a ∈ X, we define |w|a as the number of as occurring in w: If
w = ε, then |w|a = 0, if w = aw′, then |w|a = |w′|a + 1 and if w = bw′

for some b ∈ X \ {a}, then |w|a = |w′|a.

1.5.2 Context-Free Grammars

In the following, we introduce context-free grammars and the languages they
generate and we list a range of properties they have.

Definition 1.4 (Context-free grammar).
A context-free grammar (CFG) is a tuple G = 〈N,T, P, S〉 such that

1. N and T are disjoint alphabets, the non-terminals and terminals of G,
2. P ⊂ N × (N ∪ T)∗ is a finite set of productions (also called rewriting

rules). A production 〈A,α〉 is usually written A→ α.
3. S ∈ N is the start symbol.

Definition 1.5 (Language of a CFG).
Let G = 〈N,T, P, S〉 be a CFG. The (string) language L(G) of G is the

set {w ∈ T ∗ |S ∗⇒ w} where

• for w,w′ ∈ (N ∪ T)∗: w ⇒ w′ iff there is a A → α ∈ P and there are
v, u ∈ (N ∪ T)∗ such that w = vAu and w′ = vαu.

• ∗⇒ is the reflexive transitive closure of ⇒:

– w
0⇒ w for all w ∈ (N ∪ T)∗, and

– for all w,w′ ∈ (N ∪ T)∗: w n⇒ w′ iff there is a v such that w ⇒ v and
v

n−1⇒ w′.
– for all w,w′ ∈ (N ∪T)∗: w ∗⇒ w′ iff there is a i ∈ IN such that w i⇒ w′.

A language L is called context-free iff there is a CFG G such that L =
L(G).

Definition 1.6 (Useful symbol).
Let G = 〈N,T, P, S〉 be a CFG. A X ∈ (N ∪T) is called useful if there are

α, β ∈ (N ∪ T)∗ and w ∈ T ∗ such that S
∗{⇒
α Xβ

∗{⇒
w .

Otherwise, A is called useless.

12 1 Introduction

Definition 1.7 (Normal forms).
Let G = 〈N,T, P, S〉 be a CFG. G is

• in Chomsky normal form (CNF) iff all productions have either the form
A→ BC or A→ a with A,B,C ∈ N, a ∈ T .

• in Greibach normal form (GNF) iff all productions have the form A→ aα
with a ∈ T, α ∈ N∗.

Proposition 1.8 (Pumping lemma for context-free languages).
Let L be a context-free language. Then there is a constant c such that for

all w ∈ L with |w| ≥ c it holds that w = xv1yv2z with

• |v1v2| ≥ 1,
• |v1yv2| ≤ c, and
• for all i ≥ 0: xvi

1yv
i
2z ∈ L.

Proposition 1.9. Context-free languages are closed under homomorphisms,
i.e., for alphabets T1, T2 and for every context-free language L1 ⊂ T ∗

1 and
every homomorphism h : T ∗

1 → T ∗
2 , h(L1) = {h(w) |w ∈ L1} is a context-free

language.

Proposition 1.10. Context-free languages are closed under intersection with
regular languages, i.e., for every context-free language L and every regular
language Lr, L ∩ Lr is a context-free language.

Proposition 1.11. The copy language {ww |w ∈ {a, b}∗} is not context-free.

Proposition 1.12. For every CFG G,

• there exists a CFG G′ that does not contain useless symbols such that
L(G) = L(G′).

• there exists a CFG G′ in Chomsky normal form such that L(G) \ {ε} =
L(G′).

• there exists a CFG G′ in Greibach normal form such that L(G) \ {ε} =
L(G′).

Proofs of these propositions can be found for example in (Hopcroft and
Ullman, 1979).

1.5.3 Automata

The productions of CFGs are rewriting rules that describe how to generate
words from a start symbol by repeatedly rewriting a left-hand side symbol of
a production with its right-hand side string. Such grammars are generative
devices.

A different way to characterize a language is a device that, given an input
word w, performs certain actions and, after a certain number of steps, eventu-
ally accepts or rejects w. Such devices are for instance automata such as Finite

1.5 Some Basic Definitions 13

State Automata (FSA) and Push-Down Automata (PDA). An automaton is
a recognizer in the sense that it recognizes the words belonging to a specific
language. Oftentimes it can be extended to a parser, i.e., a device that not
only accepts the words belonging to a given language but that also outputs
their analysis.

Definition 1.13 (Finite State Automaton).

1. A Finite State Automaton (FSA) M is a quintuple 〈Q,Σ, δ, q0, F 〉 such
that
• Q is a finite set of states.
• Σ is a finite set, the input alphabet.
• δ : Q×Σ → P(Q) is the transition function (where P(Q) is the power

set of Q).
• q0 ∈ Q is the initial state.
• F ⊆ Q is the set of final states.

2. The transition closure δ̂ : Q × Σ∗ → P(Q) of an FSA M is defined as
follows:
• δ̂(q, ε) := {q} for all q ∈ Q.
• For all a ∈ Σ,w ∈ Σ∗: δ̂(q, wa) := {p | there is a r ∈ δ̂(q, w) such that

p ∈ δ(r, a)}.
3. The string language accepted by an FSA M is

L(M) := {w | δ̂(q0, w) ∩ F
= ∅}.

Proposition 1.14. The set of languages accepted by FSAs is the set of regular
languages (Hopcroft and Ullman, 1979).

Definition 1.15 (Push-Down Automaton).

1. A Push-Down Automaton (PDA) M is a tuple 〈Q,Σ, Γ, δ, q0, Z0, F 〉 with
• Q is a finite set of states.
• Σ is a finite set, the input alphabet.
• Γ is a finite set, the stack alphabet.
• q0 ∈ Q is the initial state.
• Z0 ∈ Γ is the initial stack symbol.
• F ⊆ Q is the set of final states.
• δ : Q × (Σ ∪ {ε}) × Γ → Pfin(Q × Γ ∗) is the transition function.

(Pfin(X) is the set of finite subsets of X).
2. An instantaneous description of a PDA is a triple (q, w, γ) with

• q ∈ Q is the current state of the automaton,
• w ∈ Σ∗ is the remaining part of the input string, and
• γ ∈ Γ ∗ is the current stack.

14 1 Introduction

3. For all q, q′ ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, Z ∈ Γ, α, β ∈ Γ ∗:
(q, aw,Zα) � (q′, w, βα) iff 〈q′, β〉 ∈ δ(q, a, Z).
∗
� is the reflexive transitive closure of �.

4. The language accepted by M with a final state is

L(M) := {w | (q0, w, Z0)
∗
� (qf , ε, γ) for a qf ∈ F and a γ ∈ Γ ∗}.

The language accepted by M with an empty stack is

N(M) := {w | (q0, w, Z0)
∗
� (q, ε, ε) for a q ∈ Q}.

The two modes of acceptance are equivalent, i.e., for each language L there
is a PDA M1 with L = L(M1) iff there is a PDA M2 with L = N(M2).

Proposition 1.16. The set of languages accepted by PDAs is the set of all
context-free languages (Hopcroft and Ullman, 1979).

1.5.4 Trees

Many of the formalisms treated in this book are concerned with trees; we
therefore need the following basic definitions of trees.

Definition 1.17 (Directed Graph).

1. A directed graph is a pair 〈V,E〉 where V is a finite set of vertices and
E ⊆ V × V is a set of edges.

2. For every v ∈ V , we define the in-degree of v as |{v′ ∈ V | 〈v′, v〉 ∈ E}|
and the out-degree of v as |{v′ ∈ V | 〈v, v′〉 ∈ E}|.

E+ is the transitive closure of E and E∗ is the reflexive transitive closure
of E.

Definition 1.18 (Tree).

1. A tree is a triple γ = 〈V,E, r〉 such that
• 〈V,E〉 is a directed graph and r ∈ V is a special node, the root node.
• γ contains no cycles, i.e., there is no v ∈ V such that 〈v, v〉 ∈ E+,
• only the root r ∈ V has in-degree 0,
• every vertex v ∈ V is accessible from r, i.e., 〈r, v〉 ∈ E∗, and
• all nodes v ∈ V − {r} have in-degree 1.

2. a tree is ordered if it has an additional linear precedence relation ≺∈ V ×V
such that
• ≺ is irreflexive, antisymmetric and transitive,
• for all v1, v2 with {〈v1, v2〉, 〈v2, v1〉}∩E∗ = ∅: either v1 ≺ v2 or v2 ≺ v1

and if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2 or a 〈v4, v2〉 ∈ E with
v1 ≺ v4, then v1 ≺ v2, and

1.5 Some Basic Definitions 15

• nothing else is in ≺.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are also
called nodes.

We use Gorn addresses for nodes in ordered trees: The root address is ε,
and the jth child of a node with address p has address pj.

Definition 1.19 (Labeling). A labeling of a graph γ = 〈V,E〉 over a signa-
ture 〈A1, A2〉 is a pair of functions l : V → A1 and g : E → A2 with A1, A2

possibly distinct.

Definition 1.20 (Syntactic tree).
Let N and T be disjoint alphabets of non-terminal and terminal symbols.

A syntactic tree (over N and T) is an ordered finite labeled tree such that
l(v) ∈ N for each vertex v with out-degree at least 1 and l(v) ∈ (N ∪ T ∪ {ε})
for each leaf v.

Definition 1.21 (Tree Language of a CFG).
Let G = 〈N,T, P, S〉 be a CFG.

1. A syntactic tree 〈V,E, r〉 over N and T is a parse tree in G iff
• l(v) ∈ (T ∪ {ε}) for each leaf v,
• for every v0, v1, . . . , vn ∈ V , n ≥ 1 such that 〈v0, vi〉 ∈ E for 1 ≤ i ≤ n,

there is no u /∈ {v1, . . . , vn} with 〈v0, u〉 ∈ E and 〈vi, vi+1〉 ∈ ≺ for
1 ≤ i < n, it holds that l(v0) → l(v1) . . . l(vn) ∈ P .

2. A parse tree 〈V,E, r〉 is a derivation tree in G iff l(r) = S.
3. The tree language of G is

LT (G) = {γ | γ is a derivation tree in G}.

Definition 1.22 (Weak and Strong Equivalence).
Let F1, F2 be two grammar formalisms.

• F1 and F2 are weakly equivalent iff for each instance G1 of F1 there is an
instance G2 of F2 that generates the same string language and vice versa.

• F1 and F2 are strongly equivalent iff for both formalisms the notion of a
tree language is defined and, furthermore, for each instance G1 of F1 there
is an instance G2 of F2 that generates the same tree language and vice
versa.

2

Grammar Formalisms for Natural Languages

2.1 Context-Free Grammars and Natural Languages

2.1.1 The Generative Capacity of CFGs

For a long time there has been a debate about whether CFGs are suffi-
ciently powerful to describe natural languages. Several approaches have used
CFGs, oftentimes enriched with some additional mechanism of transformation
(Chomsky, 1956) or with features (Gazdar et al., 1985) for natural languages.
These approaches were able to treat a large range of linguistic phenomena.

However, in the 1980s Stuart Shieber was able to prove in (1985) that
there are natural languages that cannot be generated by a CFG. Before that,
Bresnan et al. (1982) made a similar argument but their proof is based on the
tree structures obtained with CFGs while Shieber argues on the basis of weak
generative capacity, i.e., of the string languages.

The phenomena considered in both papers are cross-serial dependencies.
Bresnan et al. (1982) argue that CFGs cannot describe cross-serial dependen-
cies in Dutch while Shieber (1985) argues the same for Swiss German. Swiss
German has case marking; therefore dependencies are visible on the strings
and one can show that the string languages are not context-free.

Let us first consider the Dutch data from (Bresnan et al., 1982).

(3) ... dat Jan de kinderen zag zwemmen
... that Jan the children saw swim

‘... that Jan saw the children swim’

In (3), we have two verbs and two noun phrases. The links mark the
dependencies between these: the children is an argument of swim while Jan
is an argument of saw. The dependency links are in a crossing configuration.
This phenomenon can be iterated, as shown in (4) and (5).

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 2, c© Springer-Verlag Berlin Heidelberg 2010

18 2 Grammar Formalisms for Natural Languages

(4) ... dat Jan Piet de kinderen zag helpen zwemmen
... that Jan Piet the children saw help swim

‘... that Jan saw Piet help the children swim’

(5) ... dat Jan Piet Marie de kinderen zag helpen leren zwemmen
... that Jan Piet Marie the children saw help teach swim

‘... that Jan saw Piet help Marie teach the children to swim’

In principle, an unbounded number of crossed dependencies is possible.
However, except for the first and last verb any permutation of the NPs and
the verbs is grammatical as well (even though with a completely different de-
pendency structure since the dependencies are always cross-serial). Therefore,
the string language of Dutch cross-serial dependencies amounts roughly to
{nkvk | k > 0}, which is a context-free language.

Bresnan et al. (1982) argue that the strong generative capacity of CFGs is
too limited for the Dutch examples. A weakness of the argument is however
that an argument about syntactic structure makes always certain theoretical
stipulations. Although it is very probable, it does not absolutely prove that,
even using different syntactic theories, there is no context-free analysis for the
Dutch examples. It only shows that the syntactic structures Bresnan et al.
(1982) think the appropriate ones cannot be obtained with a CFG.

Shieber’s argument about Swiss German cross-serial dependencies is more
convincing since it relies only on the string language, i.e., it concerns the weak
generative capacity of CFGs. Swiss German displays the same dependency
patterns as Dutch in examples such as (3)–(5). The crucial difference is that
Swiss German has case marking. Let us consider the Swiss German data.

(6) ... das mer em Hans es huus hälfed aastriiche
... that we HansDAT houseACC helped paint

‘... that we helped Hans paint the house’

(7) ... das mer d’chind em Hans es huus lönd hälfe aastriiche
... that we the childrenACC HansDAT houseACC let help paint

‘... that we let the children help Hans paint the house’

2.1 Context-Free Grammars and Natural Languages 19

In Swiss German, as in Dutch, the dependencies are always cross-serial in
these examples. But, since we have case marking, permutations of the noun
phrases would lead to ungrammatical sentences. This is why Shieber was able
to show that Swiss German (as a string language) is not context-free.

Proposition 2.1.
The language L of Swiss German is not context-free (Shieber, 1985).

The argumentation of the proof goes as follows: We assume that L is
context-free. Then the intersection of a regular language with the image of
L under a homomorphism must be context-free as well. We find a particular
homomorphism and a regular language such that the result obtained in this
way is a non-context-free language. This is a contradiction to our assumption
and, consequently, the assumption does not hold.

Shieber considers sentences of the following form:

(8) ... das mer d’chind em Hans es huus haend
... that we the childrenACC HansDAT houseACC have
wele laa hälfe aastriiche
wanted let help paint
‘... that we have wanted to let the children help Hans paint the house’

Swiss German allows constructions of the form (Jan säit) (‘Jan says’)das
mer (d’chind)i (em Hans)j es huus haend wele (laa)i (hälfe)j aastriiche. In
these constructions the number of accusative NPs d’chind must equal the
number of verbs (here laa) selecting for an accusative and the number of
dative NPs em Hans must equal the number of verbs (here hälfe) selecting
for a dative object. Furthermore, the order must be the same in the sense
that if all accusative NPs precede all dative NPs, then all verbs selecting an
accusative must precede all verbs selecting a dative.

The following homomorphism f separates the iterated noun phrases and
verbs in these examples from the surrounding material:

f(“d’chind”) = a f(“Jan säit das mer”) = w
f(“em Hans”) = b f(“es huus haend wele”) = x

f(“laa”) = c f(“aastriiche”) = y
f(“hälfe”) = d f(s) = z otherwise

To make sure we concentrate only on the constructions of the described
form, we intersect f(L) with the regular language wa∗b∗xc∗d∗y. Whenever
we have a sentence whose image under f is in the intersection, this sentence
has the form (Jan säit) das mer (d’chind)i (em Hans)j es huus haend wele
(laa)k (hälfe)l aastriiche for some i, j, k, l ≥ 0. Furthermore, because of the
constraints we observe in Swiss German, i = k and j = l. Therefore, the
result of this intersection is {waibjxcidjy | i, j ≥ 0}, a language that is not

20 2 Grammar Formalisms for Natural Languages

context-free.1 Consequently, the original language L, Swiss German, is not
context-free either.

Alternatively, one can also reduce Swiss German to the copy language
{ww |w ∈ {a, b}∗} by appropriate homomorphisms and an intersection with a
regular language (see Problem 2.2 for more details). For grammar formalisms
whose language classes are closed under homomorphisms and intersection with
regular languages, this means the following: If such a formalism cannot gen-
erate the copy language, then it is not powerful enough to describe all natural
languages. Therefore, the fact that a formalism can generate the copy language
is often considered a necessary condition for the ability to describe natural
languages.

2.1.2 CFGs and Lexicalization

Besides the fact that the generative capacity of CFGs is too weak to describe
all natural languages, CFGs cannot be strongly lexicalized. A set of gram-
mars can be strongly lexicalized if, for every grammar in this set, we can
find a strongly equivalent lexicalized grammar in the same set. This prop-
erty is sometimes claimed useful for formalisms intended to describe natural
languages (Schabes, 1990; Joshi and Schabes, 1997).

Lexicalized grammars are grammars where each rewriting rule contains at
least one terminal. On the one hand, lexicalized grammars are computation-
ally interesting since in a lexicalized grammar the number of analyses for a
sentence is finite (if the grammar is finite of course). On the other hand, they
are linguistically interesting since, if we assume that each lexical item comes
with the possibility of certain partial syntactic constructions, we would like
to associate it with a set of such structures.

Another linguistic aspect of lexicalized grammars is that they relate of-
tentimes immediately to dependency structures since combinations during
derivation can be interpreted as dependencies. This link is investigated in
detail in (Kuhlmann, 2007).

Lexicalization is particularly useful for parsing since the lexical elements
give us a strong indication for which rewriting rules to use, i.e., they help to
restrict the search space during parsing.

A lexicalized grammar can never generate the empty word ε. Therefore,
in the following we consider only languages that do not contain ε.

Definition 2.2 (Lexicalized Grammar). A grammar is lexicalized if it
consists of

• a finite set of elementary objects of finite size each associated with a non-
empty lexical item (called its anchor),

1 To see that, we can intersect this language with the regular language a∗b∗c∗d∗,
which leads to {aibjcidj | i, j ≥ 0}. This language can be shown to be non-context-
free using the pumping lemma for context-free languages.

2.1 Context-Free Grammars and Natural Languages 21

CFG rewriting step αAβ ⇒ αX1 . . . Xkβ with production A→ X1 . . . Xk

Corresponding tree substitution:

A
α β

� A
α β

X1 . . . Xk

because of

A

X1 . . . Xk

Fig. 2.1. Context-free derivation steps as substitution

• and an operation/operations for composing these structures that do not
copy, erase or restructure unbounded components of their arguments.

The objects might be for instance productions as in CFG or trees as in
TAG or tree descriptions (“quasi trees”) as in D-Tree Substitution Grammar
(Rambow, Vijay-Shanker, and Weir, 2001).

An elementary object can contain more than one lexical item. We then
call the set of its lexical items a multicomponent anchor.

Lexicalized grammars are finitely ambiguous, i.e., no sentence of finite
length can be analyzed in an infinite number of ways. Consequently the recog-
nition problem for lexicalized grammars is decidable.

Definition 2.3 (Lexicalization).
A formalism F can be strongly (weakly) lexicalized by a formalism F ′ if

for any finitely ambiguous grammar G in F there is a lexicalized grammar G′

in F ′ such that G and G′ are strongly (weakly) equivalent.

CFG can be weakly lexicalized by CFG since for each CFG whose string
language does not contain ε, a weakly equivalent lexicalized CFG can be found,
namely the one in Greibach Normal Form (GNF) (see Hopcroft and Ullman
(1979)).2 However, the derivation trees obtained with the original CFG and
the one in Greibach Normal Form are different in general.

In order to show that CFGs cannot be strongly lexicalized by CFGs, we
show that they cannot be strongly lexicalized by Tree Substitution Grammars,
a formalism that is strongly equivalent to CFG. Therefore, we now introduce
Tree Substitution Grammars.

We can consider context-free derivation steps as tree substitutions since a
non-terminal leaf is replaced with a tree of height 1 (one mother node and n
daughters) as depicted in Figure 2.1.

Extending the height of the trees permitted leads to Tree Substitution
Grammars:

2 A CFG is in Greibach Normal Form if each production is of the form A → a x
with A ∈ N, a ∈ T, x ∈ (N ∪ T)∗.

22 2 Grammar Formalisms for Natural Languages

Definition 2.4 (Tree Substitution Grammar).
A Tree Substitution Grammar (TSG) consists of a quadruple 〈T,N, I, S〉

such that

• T and N are disjoint alphabets, the terminals and non-terminals,
• I is a finite set of syntactic trees, and
• S ∈ N is the start symbol.

We call the syntactic trees in I the elementary trees.

Every elementary tree is a derived tree and we can obtain larger derived
trees from existing ones by replacing some of the non-terminal leaves with
elementary trees having the same non-terminal as root label. Such operations
are called substitution.

Definition 2.5 (Substitution).
Let γ = 〈V,E, r〉 be a syntactic tree, γ′ = 〈V ′, E′, r′〉 an initial tree and

v ∈ V . γ[v, γ′], the result of substituting γ′ into γ at node v is defined as
follows:

• if v is no leaf or l(v)
= l(r′), then γ[v, γ′] is undefined;
• otherwise, γ[v, γ′] := 〈V ′′, E′′, r′′〉 with V ′′ = V ∪ V ′′ \ {v} and E′′ =

(E \ {〈v1, v2〉 | v2 = v}) ∪ E′ ∪ {〈v1, r′〉 | 〈v1, v〉 ∈ E}.

A leaf that has a non-terminal label is called a substitution node.

A sample substitution is shown in Figure 2.2 where the John-tree with
root node label NP is substituted into the NP substitution node in the laughs
tree.

S

NP↓ VP

V

laughs

NP

John

�

S

NP VP

John V

laughs

Fig. 2.2. Sample substitution

A tree is completed if all leaves are labeled by terminals. The tree language
T (G) of a TSG G is the set of all completed derived trees that have the root
label S. The string language of G is then the set of strings yielded by the trees
in the tree language.

TSGs are weakly equivalent to CFGs and each CFG is a TSG.

Proposition 2.6. CFG cannot be strongly lexicalized by TSG (Schabes, 1990;
Joshi and Schabes, 1997).

2.1 Context-Free Grammars and Natural Languages 23

Proof. Consider the CFG G with productions S → S S, S → a. Assume that
there is a strongly equivalent lexicalized TSG G′. Then each tree in the tree
language is derived from some initial tree t with a leaf labeled with a such
that the path between this leaf and the root has a constant length n. Below
this leaf nothing can be added, i.e., each tree derived from t still has a path
of length n. Let nmax be the maximal path length between root and leaf with
label a in the initial trees of G′. Then there is no derived tree in the tree
language of G′ such that all paths have a length > nmax. But such trees exist
in the tree language of G. Contradiction. ��

Then, trivially, CFGs cannot strongly lexicalize CFGs either.
The reason why TSG cannot strongly lexicalize CFG is that in a TSG

we always add material below one of the leaves. Consequently, TSGs do not
permit the distance between two nodes in the same elementary tree to increase.
One way to overcome this is to allow not only leaves but also internal nodes to
be replaced with new elementary trees. This leads to tree-rewriting grammars
with adjunction, i.e., to Tree Adjoining Grammars.

2.1.3 Mild Context-Sensitivity

Once it was clear that CFGs were not powerful enough to describe all natural
language phenomena, the question of the appropriate context-sensitive for-
malism for natural languages arose. In an attempt to characterize the amount
of context-sensitivity required, Aravind Joshi introduced the notion of mild
context-sensitivity (1985). This is a term that refers to classes of languages,
not to formalisms.

Definition 2.7 (Mildly context-sensitive).

1. A set L of languages is mildly context-sensitive iff
a) L contains all context-free languages.
b) L can describe cross-serial dependencies: There is an n ≥ 2 such that

{wk |w ∈ T ∗} ∈ L for all k ≤ n.
c) The languages in L are polynomially parsable, i.e., L ⊂ PTIME.
d) The languages in L have the constant growth property.

2. A formalism F is mildly context-sensitive iff the set {L |L = L(G) for
some G ∈ F} is mildly context-sensitive.

The constant growth property roughly means that, if we order the words
of a language according to their length, then the length grows in a linear way.
E.g., {a2n |n ≥ 0} does not have the constant growth property. The following
definition is from Weir (1988).

Definition 2.8 (Constant Growth Property).
Let X be an alphabet and L ⊆ X∗. L has the constant growth property iff

there is a constant c0 > 0 and a finite set of constants C ⊂ IN \ {0} such that
for all w ∈ L with |w| > c0, there is a w′ ∈ L with |w| = |w′| + c for some
c ∈ C.

24 2 Grammar Formalisms for Natural Languages

As already mentioned, mild context-sensitivity is introduced as a property
of a set of languages. So far, it has not been possible to identify a grammar
formalism that generates the largest possible mildly context-sensitive set of
string languages. The closest approximation we know of are Linear Context-
Free Rewriting Systems (LCFRSs), introduced in (Vijay-Shanker, Weir, and
Joshi, 1987; Weir, 1988), and equivalent formalisms such as set-local Multicom-
ponent Tree Adjoining Grammars (MCTAGs) (Weir, 1988), Multiple Context-
Free Grammars (MCFGs) (Seki et al., 1991) and simple Range Concatenation
Grammars (simple RCGs) (Boullier, 2000b). However, recent research on cer-
tain types of MCTAG suggests that there might be mildly context-sensitive
grammar formalisms that are not comparable with LCFRS and equivalent
formalisms, i.e., that generate languages that cannot be generated by LCFRS
and vice versa (Kallmeyer and Satta, 2009).

There are different ways to show the constant growth property for a spe-
cific formalism. Oftentimes, constant growth follows from a pumping lemma.
If there is no pumping lemma, then one might show the constant growth
property of a language class by showing the semilinearity (Parikh, 1966) of
the languages. Constant growth follows from semilinearity.

Let us introduce semilinearity.
First, we define for 〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ INn and m ∈ IN that

〈a1, . . . , an〉 + 〈b1, . . . , bn〉 := 〈a1 + b1, . . . , an + bn〉 and m〈a1, . . . , an〉 :=
〈ma1, . . . ,man〉.

A Parikh mapping is a function counting for each letter of an alphabet the
occurrences of this letter in a word w:

Definition 2.9 (Parikh mapping).
Let X = {a1, . . . , an} be an alphabet with some (arbitrary) fixed order of

the elements. The Parikh mapping p : X∗ → INn (with respect to this order)
is defined as follows:

• For all w ∈ X∗ : p(w) := 〈|w|a1 , . . . , |w|an
〉 where |w|ai

is the number of
occurrences of ai in w.

• For all languages L ⊆ X∗ : p(L) := {p(w) |w ∈ L} is the Parikh image of
L.

Two words are letter equivalent if they contain equal number of occurrences
of each terminal symbol, and two languages are letter equivalent if every string
in one language is letter equivalent to a string in the other language and vice-
versa.

Definition 2.10 (Letter equivalent).
Let X be an alphabet.

1. Two words w1, w2 ∈ X∗ are letter equivalent if there is a Parikh mapping
p such that p(w1) = p(w2).

2. Two languages L1, L2 ⊆ X∗ are letter equivalent if there is a Parikh
mapping p such that p(L1) = p(L2).

2.1 Context-Free Grammars and Natural Languages 25

Definition 2.11 (Semilinear).

1. Let x0, . . . , xm with m ≥ 0 be in INn for some n ≥ 0.
The set {x0 +n1x1 + · · ·+nmxm |ni ∈ IN for 1 ≤ i ≤ m} is a linear subset
of INn.

2. The union of finitely many linear subsets of INn is a semilinear subset of
INn.

3. A language L ⊆ X∗ is semilinear iff there is a Parikh mapping p such that
p(L) is a semilinear subset of INn for some n ≥ 0.

Lemma 2.12. The constant growth property holds for semilinear languages.

Proof. Assume L ⊆ X∗ is semilinear and p(L) is a semilinear Parikh image
of L where p(L) is the union of the linear sets M1, . . . ,Ml. Then the constant
growth property holds for L with

c0 := max{Σn
i=1yi | there are x1, . . . , xm such that

{〈y1, . . . , yn〉 + n1x1 + · · · + nmxm |ni ∈ IN}
is one of the sets M1, . . . ,Ml} and

C := {Σn
i=1yi | there are x1, . . . , xm such that

{x1 + n1〈y1, . . . , yn〉 + · · · + nmxm |ni ∈ IN}
is one of the sets M1, . . . ,Ml}.

��

Parikh has shown that a language is semilinear if and only if it is letter
equivalent to a regular language. The proof is given in (Kracht, 2003, p. 151).
As a consequence, we obtain that context-free languages are semilinear.

Proposition 2.13 (Parikh Theorem).
Each context-free language is semilinear (Parikh, 1966).

Furthermore, each language that is letter equivalent to a semilinear lan-
guage is semilinear as well since the Parikh images of the two languages are
equal. Therefore, in order to show the semilinearity (and constant growth) of a
language, it is sufficient to show letter equivalence to a context-free language.

As far as we know, Joshi’s hypothesis that natural languages are mildly
context-sensitive has been questioned only by two natural language phe-
nomena that have been claimed to be non-semilinear, namely case stacking
in Old Georgian (Michaelis and Kracht, 1997) and Chinese number names
(Radzinski, 1991). The analyses of Old Georgian, however, are based on very
few data since there are no speakers of Old Georgian today. Therefore, it is
hard to tell whether there is really an infinite progression of case stacking
possible. Concerning Chinese number names, it is not totally clear to what
extent this constitutes a syntactic phenomenon. Therefore, even with these
counterexamples, there is still good reason to assume that natural languages
are mildly context-sensitive.

26 2 Grammar Formalisms for Natural Languages

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived tree:
S

NP VP

John ADV VP

always V

laughs

Fig. 2.3. TAG derivation for John always laughs

2.2 Grammar Formalisms Beyond CFG

We have seen that CFGs are not powerful enough to deal with all natural
language phenomena. This is one of the reasons why we are interested in
investigating extensions of CFG. We now introduce the different formalisms
that will be treated in this book. The formalisms presented in this section will
be defined in detail in the corresponding chapters on parsing. This section
aims only at providing an intuition of how these formalisms extend CFG, how
they model natural language phenomena and how they are related to each
other.

2.2.1 Tree Adjoining Grammars

The Formalism

Starting from Tree Substitution Grammars, if we allow also for replacing inter-
nal nodes with new trees, we obtain Tree Adjoining Grammars. Tree Adjoining
Grammar (TAG, Joshi, Levy, and Takahashi (1975; Joshi and Schabes (1997))
is a tree-rewriting formalism. A TAG consists of a finite set of syntactic trees
(so-called elementary trees). Starting from the elementary trees, larger trees
are derived by substitution (replacing a leaf with a new tree) and adjunction
(replacing an internal node with a new tree). In case of an adjunction, the tree
being adjoined has exactly one leaf that is marked as the foot node (marked
with an asterisk). Such a tree is called an auxiliary tree. When adjoining it
to a node n, in the resulting tree, the subtree with root n from the old tree
is attached to the foot node of the auxiliary tree. Non-auxiliary elementary
trees are called initial trees. A derivation starts with an initial tree. In a final
derived tree, all leaves must have terminal labels.

For a sample derivation see Figure 2.3 where the tree for John is substituted
for the subject NP slot while the auxiliary tree for the modifier always adjoins
to the VP node in the tree of laughs.

The internal nodes in I ∪A can be marked as OA (obligatory adjunction)
and NA (null adjunction, i.e., no adjunction allowed). Furthermore, for nodes

2.2 Grammar Formalisms Beyond CFG 27

that are not NA, one can specify the set of auxiliary trees that can be adjoined
at that node.

As a second example, Figure 2.4 shows a TAG for the copy language and
Figure 2.5 shows a sample derivation using the trees from this grammar. (NA
stands for “null adjunction”, i.e., no adjunction allowed at that node. OA
stands for “obligatory adjunction”, i.e., adjunction mandatory at that node.)
In this TAG, the NA constraints are crucial since they make sure that the
adjunction always targets the middle S node. Without adjunction constraints,
it is not possible for TAG to generate the copy language.

α
S

ε

βa SNA

a S

S∗
NA a

βb SNA

b S

S∗
NA b

Fig. 2.4. TAG for the copy language

S

ε

SNA

a S

S∗
NA a

�

SNA

a S

S∗
NA a

ε

SNA

a S

S∗
NA a

ε

SNA

b S

S∗
NA b

�

SNA

a SNA

b S

S∗
NA b

S∗
NA a

ε

Fig. 2.5. A sample derivation of a word in the copy language

TAG derivations are represented by derivation trees (unordered trees) that
record the history of how the elementary trees are put together. A derived tree
is the result of carrying out the substitutions and adjunctions, i.e., the deriva-
tion tree describes uniquely the derived tree. Each edge in a derivation tree
stands for an adjunction or a substitution. The edges are labeled with Gorn
addresses. E.g., the derivation tree in Figure 2.6 indicates that the elementary
tree for John is substituted for the node at address 1 and always is adjoined
at node address 2 (the fact that the former is an adjunction and the latter is

28 2 Grammar Formalisms for Natural Languages

derivation tree:
laugh

1 2

john always

Fig. 2.6. TAG derivation tree for John always laughs

a substitution can be inferred from the fact that the node at address 1 is a
leaf that is not a foot node while the node at address 2 is an internal node).

The fact that TAGs are able to generate the copy language indicates that
they are powerful enough to describe cross-serial dependencies. An actual
analysis has been proposed in (Kroch and Santorini, 1991); it is shown in
Figures 2.7 and 2.8.

SNA

SOA Vi

NP VP zwemmen

de kinderen Vi

ε

SNA

SOA Vi

NP VP leren

Marie S∗
NA Vi

ε

SNA

SOA Vi

NP VP helpen

Piet S∗
NA Vi

ε

SNA

NP VP

Jan S∗
NA V

zag

Fig. 2.7. TAG for cross-serial dependencies

Lexicalization

As we have seen in Section 2.1.2, in order to lexicalize CFGs one has to extract
recursive sub-trees (with root and some leaf having the same non-terminal
symbol) and put them into extra structures. This leads to a set of trees with
an adjunction operation, i.e., to a TAG.

As an example, consider again the CFG in Figure 2.9 that cannot be
lexicalized using only substitution. With adjunction, a lexicalization of this
CFG is possible. The corresponding TAG is given in Figure 2.9.

In general it can be shown that CFGs can be lexicalized by TAGs and,
furthermore, TAGs are closed under strong lexicalization. I.e., for each gram-
mar that is a CFG or a TAG, there is a strongly equivalent lexicalized TAG
(LTAG) (Schabes, 1990; Joshi and Schabes, 1997).

2.2 Grammar Formalisms Beyond CFG 29

SNA

SOA V1

NP VP zwemmen

de kinderen V1

ε

SNA

SOA V2

NP VP leren

Marie S∗
NA V2

ε

SNA

SNA V1

SOA V2 zwemmen

NP VP leren

Marie S∗
NA V2

NP VP ε

de kinderen V1

ε

SNA

SOA V3

NP VP helpen

Piet S∗
NA V3

ε

SNA

SNA V1

SNA V2 zwemmen

SOA V3 leren

NP VP helpen

Piet S∗
NA V3

ε
Marie de kinderen

SNA

NP VP

Jan S∗
NA V

zag

Fig. 2.8. Derivation of (5) using adjunction

CFG:
S → SS,
S → a

Strongly equivalent LTAG:
S

a

S

S∗ S

a

Fig. 2.9. CFG and strongly equivalent lexicalized TAG

30 2 Grammar Formalisms for Natural Languages

Extended domain of locality and factoring of recursion

Because of the move to larger trees (compared to CFGs) and the addition of
adjunction, TAGs have some properties that make them particularly interest-
ing for natural language processing.

TAG elementary trees allow to express locally dependencies such as filler-
gap dependencies, even if they are ‘unbound’. This is why TAG is said to
have an extended domain of locality. Two properties are crucial for obtaining
this extended domain of locality: TAG elementary trees can be arbitrarily
large (but have to be finite), and recursion can be factored away because
of adjunction. Consequently, even so-called unbounded dependencies can be
captured locally, i.e., inside single elementary trees (Kroch, 1987; Frank, 1992;
Frank, 2002). Because of the constraints that hold for adjunction, in many
cases one gets locality constraints for unbounded dependencies for free.

(9) a. whomi did John tell Sam that Bill likes ti
b. whomi did John tell Sam that Mary said that Bill likes ti

As an example that illustrates this property of TAG, consider the deriva-
tion of (9a.) in Figure 2.10 with the recursive part being put in a separate
tree that gets adjoined.

S

WHi SOA

whom COMP S

that NP VP

Bill V NP

likes εi

S

INFL NP VP

did John V NP S∗

tell Sam

derived tree:

S

WHi S

whom INFL NP VP

did John V NP S

tell Sam
that Bill likes εi

Fig. 2.10. Derivation for an unbounded dependency

When dealing with natural languages, one always uses Lexicalized Tree Ad-
joining Grammars (LTAGs). The linguistic theory implemented within LTAG

2.2 Grammar Formalisms Beyond CFG 31

is roughly as follows. The grammar contains extended projections of each lex-
ical item (the elementary trees anchored by this lexical item). These extended
projections satisfy certain linguistic principles that are not part of the TAG
formalism itself. The extended projections are minimal in the sense that they
contain slots only for the arguments of their lexical head. Recursion is fac-
tored away. Consequently, the set of elementary structures in the grammar
is finite. Every constraint concerning larger structures (constraints on “un-
bounded dependencies”) does not need to be stipulated but, instead, follows
from the possibilities of adjunction in the extended projections.

We will give a more detailed discussion of LTAG for natural languages in
Chapter 4.

2.2.2 Linear Indexed Grammars

Indexed grammars (IGs) were introduced by (Aho, 1968). An indexed gram-
mar looks like a CFG except that the non-terminals are equipped with stacks
of indices, i.e., besides the non-terminals N and the terminals T , we have an
alphabet I of indices. In a derived sentential form x, non-terminals can be
equipped with stacks of indices, i.e., x ∈ (NI∗ ∪ T)∗.

The productions in an IG have the form (i) A→ α or (ii) A→ Bf or (iii)
Af → α with A,B ∈ N, f ∈ I, α ∈ (N ∪ T)∗. The first kind of production
works like context-free productions while copying the stack of A to all non-
terminals in α. The second kind of production adds a symbol to the stack of
A while replacing A with B. The third kind of production deletes a symbol f
from the stack of A and then works like the first kind of production.

As an example consider the IG for {a2n |n ≥ 0} with N := {S,A,B}, I :=
{f, g}, T := {a} and productions P := {S → a, S → Ag,A → Af,A →
B,Bf → BB,Bg → aa}. This grammar works as follows: For a word a2n

with n ≥ 1, we first apply the production S → Ag and then n times the
production A→ Af . This leads to a non-terminal A with a stack of length n.
Then the A is turned into a B, and, while reducing the stack, the B is doubled
(with the production Bf → BB). This happens n − 1 times. Then we reach
the last stack symbol and, while reducing this as well, we finally generate two
terminals aa. Crucially, when doubling the B with Bf → BB, the remaining
stack is passed to both Bs in the right-hand side of the production. This
guarantees that the two parts have the same number of as (since they have
the same stacks). Figure 2.11 shows a sample derivation with this grammar.

An indexed grammar is called a linear indexed grammar (LIG) (Gazdar,
1988; Vijay-Shanker, 1987) if in a production A→ α or Af → α the stack of
A is copied only to one non-terminal in α.

We write the productions in a LIG as follows:

• A[. . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j
= i, Xi ∈ N .
• A[. . .] → B[f . . .]
• A[f . . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j
= i, Xi ∈ N .

32 2 Grammar Formalisms for Natural Languages

S ⇒ Ag production S → Ag
⇒ Afg production A→ Af
∗⇒ Afffg
⇒ Bfffg production A→ B
⇒ BffgBffg production Bf → BB
∗⇒ BfgBfgBfgBfg
∗⇒ BgBgBgBgBgBgBgBg
∗⇒ aaaaaaaaaaaaaaaa production Bg → aa

Fig. 2.11. IG derivation for a24
= a16

As an example consider the LIG for the copy language from Figure 2.12.

S0 → S[#]
S[..]→ aSa[..] Sa[..]→ S[a..]
S[..]→ bSb[..] Sb[..]→ S[b..]
S → T
T [a..]→ T [..]a T [b..]→ T [..]b
T [#]→ ε

Fig. 2.12. LIG for the copy language

It has been shown that LIG and TAG are weakly equivalent (Vijay-Shanker,
1987; Vijay-Shanker and Weir, 1994).

When constructing a LIG that is equivalent to a given TAG, whenever an
adjunction is performed, while traversing the adjoined tree, the stack can be
used to keep track of the tree one has to go back to once the adjunction is
finished. It needs to be passed along the path from the root to the foot node.
Figure 2.13 shows the LIG one obtains when constructing an equivalent LIG
for the TAG for the copy language given in Figure 2.4 along these lines.

〈S, α〉 → ε
〈S, α〉 → 〈S1, βa〉[〈α, 0〉] 〈S, α〉 → 〈S1, βb〉[〈α, 0〉]
〈S1, βa〉[. . .]→ a〈S2, βa〉[. . .] 〈S1, βb〉[. . .]→ b〈S2, βb〉[. . .]
〈S2, βa〉[. . .]→ 〈S3, βa〉[. . .]a 〈S2, βb〉[. . .]→ 〈S3, βb〉[. . .]b
〈S2, βa〉[. . .]→ 〈S1, βa〉[〈βa, 2〉 . . .] 〈S2, βa〉[. . .]→ 〈S1, βb〉[〈βa, 2〉 . . .]
〈S2, βb〉[. . .]→ 〈S1, βa〉[〈βb, 2〉 . . .] 〈S2, βb〉[. . .]→ 〈S1, βb〉[〈βb, 2〉 . . .]
〈S3, βa〉[〈α, 0〉 . . .]→ 〈S, α〉[. . .] 〈S3, βb〉[〈α, 0〉 . . .]→ 〈S, α〉[. . .]
〈S3, βa〉[〈βa, 2〉 . . .]→ 〈S2, βa〉[. . .] 〈S3, βb〉[〈βa, 2〉 . . .]→ 〈S2, βa〉[. . .]
〈S3, βa〉[〈βb, 2〉 . . .]→ 〈S2, βb〉[. . .] 〈S3, βb〉[〈βb, 2〉 . . .]→ 〈S2, βb〉[. . .]

Fig. 2.13. Equivalent LIG for the TAG from Figure 2.4

2.2 Grammar Formalisms Beyond CFG 33

Productions of the Generalized CFG (start symbol is S):
S → f1(A, B, C) A→ f2(A) B → f3(B) C → f4(C)

A→ f5() B → f5() C → f5()

Strings φ(t) yielded by the terms t:
φ(f5()) := 〈ε, ε〉,
φ(f2(t)) := 〈aw1, aw2〉 where 〈w1, w2〉 = φ(t),
φ(f3(t)) := 〈bw1, bw2〉 where 〈w1, w2〉 = φ(t),
φ(f4(t)) := 〈cw1, cw2〉 where 〈w1, w2〉 = φ(t),
φ(f1(t1, t2, t3)) := 〈w1u1v1w2u2v2〉

where 〈w1, w2〉 = φ(t1), 〈u1, u2〉 = φ(t2), 〈v1, v2〉 = φ(t3)

Fig. 2.14. An LCFRS for {anbmckanbmck |n, m, k ≥ 0}

LIGs themselves are not used for natural languages. Their interest lies
in their relations to other formalisms, in particular in their equivalence to
TAGs. Because of this equivalence, LIGs have been proposed for TAG parsing
(Vijay-Shanker and Weir, 1993; Boullier, 1996).

2.2.3 Linear Context-Free Rewriting Systems

Linear Context-Free Rewriting Systems (LCFRSs) are introduced in (Vijay-Shanker,
Weir, and Joshi, 1987; Weir, 1988). They are grammars that have an under-
lying context-free structure. More concretely, an LCFRS consists of

1. a generalized context-free grammar (GCFG) that generates a set of terms,
2. a yield function that specifies the strings yielded by these structures.

LCFRS is more powerful than TAG and LIG. More concretely, every TAG
can be written as an LCFRS.

In an LCFRS, the yield φ(t) of a term t is a sequence of strings. A unique
equation is associated with each production A → f(A1, . . . , An) in C. It de-
scribes how to compute the yield of a term f(t1, . . . , tn) from the yields of
t1, . . . , tn and a bounded collection of new terminals. When computing the
yield of a left-hand side from the yields of a right-hand side, we must neither
copy nor erase.

As an example consider the LCFRS in Figure 2.14.
The languages generated by these grammars are mildly context-sensitive

and they properly contain the languages generated by TAG. Figure 2.15 shows
an example of an equivalent LCFRS for a given TAG.

2.2.4 Multicomponent Tree Adjoining Grammars

Multicomponent Tree Adjoining Grammars (MCTAGs) were first introduced
in (Joshi, Levy, and Takahashi, 1975) as simultaneous TAGs, later redefined
as multicomponent TAGs (MCTAGs) in (Weir, 1988; Joshi, 1985). The under-
lying linguistic motivation is the idea to separate the contribution of a lexical

34 2 Grammar Formalisms for Natural Languages

TAG for L4 = {anbncndn |n ≥ 0}: α:
S

ε
β:

SNA

a S d

b S∗
NA c

Productions of the corresponding Generalized CFG (start symbol is α):
α→ fα(), β → fβ() (no adjunctions),
α→ fα:ε(β), β → fβ:1(β) (adjunctions of β).

Strings φ(t) yielded by the terms t:
φ(fα()) := ε,
φ(fβ()) := 〈ab, cd〉,
φ(fα:ε(t)) := 〈w1w2〉 where 〈w1, w2〉 = φ(t),
φ(fβ:1(t)) := 〈aw1b, cw2d〉 where 〈w1, w2〉 = φ(t).

Fig. 2.15. An LCFRS for a given TAG

item into several components. Instead of single trees, these grammars contain
(finite) sets of trees. In each derivation step, a new set is picked and all trees
from the set are added simultaneously, i.e., they are attached (by substitution
or adjunction) to different nodes in the already derived tree.

As in TAG, a derivation starts from an initial tree and in the end, in the
final derived tree, all leaves must have terminal labels (or the empty word)
and there must not be any OA constraints left.

A sample MCTAG with a derivation is shown in Figure 2.16.

α A

B

C

ε

{
βA A

a A∗
NA f

βB B

b B∗
NA e

βC C

c C∗
NA d

}

Derivation for aabbccddeeff :

A

B

C

ε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

a A∗
NA f

B

b B∗
NA e

C

c C∗
NA d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

a A∗
NA f

B

b B∗
NA e

C

c C∗
NA d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2.16. MCTAG for L6 = {anbncndnenfn |n ≥ 0} with sample derivation

2.2 Grammar Formalisms Beyond CFG 35

MCTAGs are linguistically interesting because they extend the domain of
locality since the contributions of single lexical elements are separated into dif-
ferent trees. As an example, consider extractions out of complex NPs (Kroch,
1989) as in (10). A possible MCTAG analysis is shown in Figure 2.17.

(10) which paintingi did you see a picture of ti

S

aux S

did NP VP

you V NP

see ε

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S

NPi S∗

which painting

NP

Det N

N PP

picture P NP∗
i

of

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Fig. 2.17. MCTAG elementary trees for extraction from NP

An MCTAG is called tree-local iff in each derivation step, the nodes the
new trees attach to belong to the same elementary tree. It is called set-local
iff in each derivation step, the nodes the new trees attach to belong to the
same elementary tree set. Otherwise it is called non-local. The derivation in
Figure 2.16 for example is a set-local derivation. Usually, the term “MCTAG”
without specification of the locality means “set-local MCTAG”.

Concerning the respective generative capacity, it has been shown that tree-
local MCTAGs are strongly equivalent to TAGs while set-local MCTAGs are
weakly equivalent to LCFRSs. As an example, Figure 2.18 shows the LCFRS
that is equivalent to the set-local MCTAG from Figure 2.16.

GCFG productions:
α→ fα(), α→ gα(βA,B,C),
βA,B,C → fA,B,C(),
βA,B,C → gA,B,C(βA,B,C).

Yield function φ:
φ(fα()) := 〈ε〉,
φ(fA,B,C()) := 〈a, b, c, d, e, f〉,
φ(gα(t)) := 〈w1w2w3w4w5w6〉 where 〈w1, w2, w3, w4, w5, w6〉 = φ(t),
φ(gA,B,C(t)) := 〈w1a, w2b, w3c, dw4, ew5, fw6〉

where 〈w1, w2, w3, w4, w5, w6〉 = φ(t)

Fig. 2.18. LCFRS for L6 = {anbncndnenfn |n ≥ 0}

36 2 Grammar Formalisms for Natural Languages

2.2.5 Multiple Context-Free Grammars

Multiple Context-Free Grammars (MCFGs), (Seki et al., 1991), are very sim-
ilar to LCFRSs. The non-terminals in an MCFG, in contrast to CFG, can
yield sequences of terminals, i.e., their span can be discontinuous in the in-
put. Each non-terminal has a fixed dimension that determines the number of
components in its span. In other words, from a non-terminal of dimension k,
k-tuples of terminal strings are derived. The dimension of the start symbol S
is 1.

An MCFG, similar to the GCFG of an LCFRS, contains productions of the
form A0 → f [A1, . . . , Ak] where f is a function from a given set of functions
F . The idea is that f describes how to compute the yield of A0 (a dim(A0)-
tuple of terminal strings) from the yields of A1, . . . , Ak. f must be linear in
the sense that each of its arguments is used at most once to compute the new
string tuple. Note that the functions f are not required not to delete parts of
their input as in the case of LCFRS. In other words, it might be the case that
some of the arguments in the right-hand side of a production are not used to
compute the yield of the left-hand side. However, even though deletion in the
yield computation is allowed in MCFG and not in LCFRS, the two formalisms
are weakly equivalent (Seki et al., 1991).

As an example consider the MCFG in Figure 2.19 that generates the lan-
guage {anbncndn |n ≥ 1}.

Productions:
S → f [A], A→ g[A], A→ h[].

Yield functions:
h[] = (ab, cd), g[(x1, x2)] = (ax1b, cx2d), f [(x1, x2)] = (x1x2)

Fig. 2.19. MCFG for {anbncndn |n ≥ 1}

MCFGs have been investigated mainly in the context of biological appli-
cations such as the modeling of RNA pseudoknotted structures (Kato, Seki,
and Kasami, 2006). However, because of their equivalence to LCFRSs and
set-local MCTAGs, they are useful for natural language processing as well.

2.2.6 Range Concatenation Grammars

If we incorporate the definitions of the yield functions in MCFG and LCFRS
into the productions themselves, and, in addition, if we relax the conditions
on the yield functions, we obtain Range Concatenation Grammars (RCGs)
(Boullier, 2000b).

The idea of RCGs is roughly that the productions of RCGs (called clauses)
rewrite predicates ranging over parts of the input by other predicates. As an
example consider the clause S(aXb) → S(X). This clause signifies that the

2.2 Grammar Formalisms Beyond CFG 37

predicate S (a unary predicate) holds for a part of the input if (i) this part
starts with an a and ends with a b and (ii) S also holds for the part between
the a and the b.

The RCG with clauses S(aXb) → S(X), S(c) → ε for example generates
the language {ancbn |n ≥ 0}.

An RCG consists of an alphabet N of non-terminals (called predicates)
of a fixed arity (this corresponds to the dimension from MCFG) where the
special predicate S has arity 1. Furthermore, it has a terminal alphabet T and
an alphabet of variables V . The clauses have the form

A(α1, . . . , αdim(A)) → ε

or

A(α1, . . . , αdim(A)) → A1(α
(1)
1 , . . . , α

(1)
dim(A1)

) . . . A(n)
n (α1, . . . , α

(n)
dim(An))

where the predicates are from N and their arguments are words over (T ∪V).
For a given clause, an instantiation with respect to a string w = t1 . . . tn

maps all variables and all occurrences of terminals in the clause to ranges 〈i, j〉
with 0 ≤ i ≤ j ≤ |w|. A range 〈i, j〉 denotes the part of w between positions i
and j. An instantiation must be such that all occurrences of a terminal t are
mapped to a range whose yield is a t, and adjacent variables/occurrences of
terminals in one of the arguments are mapped on adjacent ranges, i.e., ranges
〈i, j〉, 〈k, l〉 with j = k.

A derivation step consists of replacing the left-hand side of an instantiated
clause with its right-hand side. The language of an RCG G is the set of strings
w that satisfy the start predicate S, in other words, the set of w such that ε
can be derived from S(〈0, |w|〉).

RCGs are called simple if (i) the arguments in the right-hand sides of the
clauses are single variables, (ii) no variable appears more than once in the
left-hand side of a clause or more than once in the right-hand side of a clause,
and (iii) each variable occurring in the left-hand side of a clause occurs also
in its right-hand side and vice versa.

Simple RCGs are weakly equivalent to LCFRSs and MCFGs. RCGs in
general however are more powerful; they generate exactly the class PTIME of
polynomially parsable languages (Bertsch and Nederhof, 2001). They properly
include the set of languages generated by LCFRS and even the maximal set
of mildly context-sensitive languages. An example of a language that can be
generated by a RCG but that is not semilinear is the language from Figure
2.20.

RCGs are equivalent to a restricted form of Literal Movement Gram-
mars (LMGs) (Groenink, 1996), so-called simple LMGs. These grammars have
rewriting rules that are like the ones in RCG with the additional constraints
that (i) the arguments in the right-hand sides of the clauses are single vari-
ables, (ii) no variable appears more than once in the left-hand side of a clause
and (iii) each variable occurring in the right-hand side of a clause occurs also

38 2 Grammar Formalisms for Natural Languages

RCG for the language {a2n | n ≥ 0}:
S(XY)→ S(X)eq(X, Y)
S(a)→ ε
eq(aX, aY)→ eq(X, Y)
eq(a, a)→ ε

A sample derivation (reduction to ε) for w = aaaa:
S(X Y) → S(X) eq(X, Y)

〈0, 2〉 〈2, 4〉 〈0, 2〉 〈0, 2〉 〈2, 4〉
aa aa aa aa aa

With this instantiation, S(〈0, 4〉)⇒ S(〈0, 2〉)eq(〈0, 2〉, 〈2, 4〉).
S(X Y) → S(X) eq(X, Y)

〈0, 1〉 〈1, 2〉 〈0, 1〉 〈0, 1〉 〈1, 2〉
a a a a a

S(a) → ε

〈0, 1〉
a

eq(a, a) → ε

〈0, 1〉 〈1, 2〉
a a

leads to S(〈0, 2〉)⇒ S(〈0, 1〉)eq(〈0, 1〉, 〈1, 2〉) ∗⇒ ε
eq(a X a Y) → eq(X, Y)

〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈1, 2〉 〈3, 4〉
a a a a a a

eq(a, a) → ε

〈1, 2〉 〈3, 4〉
a a

leads to eq(〈0, 2〉, 〈2, 4〉)⇒ eq(〈1, 2〉, 〈3, 4〉)⇒ ε

Fig. 2.20. RCG for {a2n | n ≥ 0}

in its left-hand side. In contrast to RCG, an instantiation in a LMG maps
variables to strings of terminals. Consequently, the terminals in a clause need
not have corresponding terminals in the input and different occurrences of the
same variable can be mapped to different occurrences of the same string. This
is why with this restricted form of clauses one obtains a grammar formalism
with the same generative capacity as RCGs.

2.3 Summary

In this chapter, we have given an overview of the different grammar formalisms
that we will deal with in the course of this book.

The starting point was the observation that CFGs do not have enough
expressive power to deal with natural languages. A formal proof of this fact has
been given by Shieber (1985), showing that Swiss German is not context-free
because of its cross-serial dependencies. Shieber was able to make an argument
even on the basis of the weak generative capacity since Swiss German has case
marking and therefore dependencies are visible even in the string language.

Another property that has been argued as being desirable for an adequate
grammar formalism for natural languages is lexicalization. It has been shown
that in general, CFGs cannot be strongly lexicalized.

2.3 Summary 39

From these shortcomings arises the need for more powerful formalisms.
This has led to a rich variety of grammar formalisms that can be seen as
more and more extending the properties of context-free grammars. In TAG,
we allow not only replacing leaves with new trees as in CFG but we also allow
internal nodes to be replaced with new trees. In LCFRS, we allow the yields
of non-terminals to consist not only of single strings but of tuples of non-
adjacent strings. In RCG, we even allow strings to be used several times in
different contexts. All these grammar frameworks, and their respective equiv-
alent formalisms, constitute a hierarchy of string languages as shown in Figure
2.21.

A notion that has proved an important concept in the characterization of
grammar formalisms with respect to their relevance for natural languages is
the notion of mild context-sensitivity, introduced by Joshi (1985). A class of
languages is mildly context-sensitive if it contains all context-free languages,
if it can describe cross-serial dependencies, if it contains only polynomial lan-
guages and if its languages are of constant growth. The language classes of
TAG and of LCFRS in our hierarchy are mildly context-sensitive.

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
	CFG

TAG, LIG
tree-local MCTAG

LCFRS, MCFG, simple RCG
set-local MCTAG

RCG, simple LMG
(= PTIME)

mildly
context-sensitive

Fig. 2.21. The language hierarchy of the different grammar formalisms

Problems

2.1. Consider the language L2 = {anbn |n ≥ 0}.
1. Give a CFG for L2 with nested dependencies, i.e., such that for each word
a1 . . . anb1 . . . bn (the subscripts mark the occurrences of the as and bs
respectively) ai and bn+1−i are added in the same derivation step for all
1 ≤ i ≤ n.

40 2 Grammar Formalisms for Natural Languages

2. Show that for L2 there is no CFG displaying cross-serial dependencies,
i.e., no CFG such that for each word a1 . . . anb1 . . . bn, ai and bi are added
in the same derivation step for all 1 ≤ i ≤ n and, furthermore, different
as are added in different derivation steps.

2.2. Similar to the argument of Shieber (1985) for Swiss German, one can
apply first a homomorphism f , then intersect the result with some regular
language, and then apply another homomorphism g in order to reduce the
language of Swiss German to the copy language {ww |w ∈ {a, b}∗}. Find the
corresponding homomorphisms and the regular language.

2.3. Consider the following CFG:
S → NP VP NP → John
VP → ADV VP ADV → always
VP → V V → laughs
Find a TSG that strongly lexicalizes this grammar.

Why is this lexicalization not satisfying from a linguistic point of view?

2.4. 1. Show that the copy language {ww |w ∈ T ∗} for some alphabet T is
semilinear using the Parikh Theorem.

2. Show that {a2n |n ≥ 0} is not semilinear.

3

Parsing: Preliminaries

3.1 Parsing as Deduction

3.1.1 Motivation

There are different means of specifying a parsing algorithm. The most fre-
quently used are a pseudo-code description of the algorithm and deduction
rules.

The pseudo-code description has the advantage of being relatively close to
the proper implementation. Consequently, implementing an algorithm given in
pseudo-code is more or less immediate. However, the pseudo-code specification
makes a lot of choices that actually do not belong to the parsing strategy of
the algorithm. It introduces data structures and control structures.

Consider for example a CYK algorithm for CFGs in Chomsky Normal
Form. The parsing strategy is a non-directional bottom-up strategy that starts
by assigning categories to terminals and then, in each step, applies a produc-
tion of the form A→ BC by computing a new A from already found categories
B and C. One can store the results in a chart as a data structure and, with
respect to control structure, one can fill the chart row by row or diagonal by
diagonal. A pseudo-code representation of the algorithm would also specify
the latter. In contrast to this, a specification by means of deduction rules
describes only the parsing strategy itself.

Deduction rules for the specification of parsing techniques have been pro-
posed in (Pereira and Warren, 1983; Shieber, Schabes, and Pereira, 1995) and
were further formalized in (Sikkel, 1997). Using deduction rules to describe
parsing algorithms has several advantages: We can concentrate on the parsing
strategy itself without having to worry about implementation details at the
same time, proofs of soundness and completeness are easier to do and the
complexity is easier to determine.

Throughout this book, we will use deduction rules to specify the parsing
algorithms we present. Following Sikkel, we call a specification of an algorithm

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 3, c© Springer-Verlag Berlin Heidelberg 2010

42 3 Parsing: Preliminaries

by means of deduction rules a parsing schema. Roughly, a parsing schema con-
sists of the following parts: a characterization of intermediate parsing results,
a specification of how to deduce new results from existing ones and the spec-
ification of a goal result. In the case of CYK, the intermediate results would
be the categories we can find together with their spans and the goal result
would be an S category that spans the entire input.

3.1.2 Items

A deduction rule is supposed to specify a single parsing step, for example
“Based on the production A → BC, from existing adjacent B and C cate-
gories, we can obtain a new A category.” For this, we first need to characterize
intermediate parsing results, such as an existing B category.

In the context of CYK, having found a category A means having found a
tree with root category A and a span starting at position i in the input and
ending at position j.1 The inner structure of the parse tree rooted with A is
not relevant for the subsequent use of this category in further parsing steps.
Therefore, we abstract away from it in the representation of the parse tree.

In the following, as a running example, let us consider the CFG Gtelescope

from Fig. 3.1.

N = {S, NP, VP, PP, D, P, N, V}, start symbol S,
T = {man, girl, John, Mary, telescope, saw, the, with}.
Productions:

S → NP VP NP → D N N → N PP
VP → VP PP VP → V NP PP → P NP
N → man N → girl N → telescope
D → the NP → John NP → Mary
P → with V → saw

Fig. 3.1. CFG Gtelescope

In a parsing schema, the intermediate results are called items. In the case
of CYK, we can characterize an item by the category A and the start and
end positions i, j of the span. Therefore, in this case, we define an item as
[A, i, j] where A ∈ N and 0 ≤ i < j ≤ n where n is the length of the input.
We can assume i < j since the grammars are in Chomsky Normal Form and
therefore, no category can have an empty span (i.e., a yield ε).

As an example, consider the CYK items given in Fig. 3.2 for parsing the
input sentence Mary saw the man with the CFG Gtelescope from Fig. 3.1. The

1 Alternatively, the span could be specified by giving the start position and the
length.

3.1 Parsing as Deduction 43

goal item, i.e., the result we need to find for a successful parse, is [S, 0, n] in
the case of CYK.

Input: Mary saw the man

Entire parse tree:

S

VP

NP NP

V Det N

Mary saw the man

Items:

[NP, 0, 1]
[V, 1, 2]
[Det, 2, 3]
[N, 3, 4]
[NP, 2, 4]
[VP, 1, 4]
[S, 0, 4]

Fig. 3.2. Example: CYK items

In the case of CYK, we are dealing only with completed categories since
we apply a production A → BC only when having found appropriate B and
C categories. However, in other algorithms, we encounter intermediate results
where some categories are completed while others are only predicted. As an ex-
ample, consider the Earley algorithm, an algorithm that combines a top-down
prediction with a bottom-up completion. Intermediate results of the Earley
algorithm are such that, for a predicted category A, we have completed some
of the daughters of A while the remaining daughters have been predicted. Such
an intermediate result can be represented by an item containing a production
with a dot in the right-hand side. This dot marks the position up to which the
right-hand side has been recognized (i.e., completed). The part on the right of
the dot is the predicted part. Such a production with a dot is called a dotted
production.

Let us consider as an example again our grammar Gtelescope. Starting from
S, we can predict the production S → NP VP. Since nothing from the right-
hand side has been completed, we characterize this prediction by the dotted
production S → • NP VP. Once we have found the NP, we can move the
dot over this category, which results in the dotted production S → NP • VP.
This signifies that we have already found an NP and, in order to complete the
left-hand side category S, we still need to find the predicted VP.

In addition to characterizing the dotted production, in an Earley algo-
rithm, we need to characterize the span of the completed part of the right-
hand side. This can be done again by giving its start and end positions.
Consequently, Earley items have the form [A→ α • β, i, j] with A→ αβ ∈ P
and 0 ≤ i ≤ j ≤ n.

Even in items containing only single categories instead of entire produc-
tions, we might want to distinguish between predicted and completed cate-
gories. This can be done either using a corresponding flag inside the items or
using a dot that precedes (prediction) or follows (completion) the category.

44 3 Parsing: Preliminaries

Items consisting of a single category and its span are called passive items
while items containing a dotted production and its span are called active
items.

3.1.3 Deduction Rules

If we specify an algorithm using parsing schemata, we understand parsing as
a deductive process. We can use deduction rules to describe how to deduce
new items from existing ones. These rules establish a relation between an-
tecedent items and consequent items. In most cases, there is actually only one
consequent item. Eventually, in addition to checking on the existence of the
antecedent items, we also need to check certain side conditions. Therefore, the
general form of deduction rules in parsing schemata is as follows:

antecedent

consequent
side conditions

where antecedent and consequent are lists of items. We can apply such a rule
if the antecedent items can be deduced and the side conditions hold. Then,
the consequent items can be deduced as well.

As an example consider again the complete step in the CYK algorithm,
i.e., the step where, based on the existence of a production A → BC, from
adjacent B and C categories, we can deduce an A category. The corresponding
deduction rule is as follows:

[B, i, j], [C, j, k]
[A, i, k]

A → BC ∈ P .

An entire parsing schema consists of deduction rules, an axiom or axioms
that can be notated as a deduction rule with an empty set of antecedent items,
and a goal item or several goal items. Parsing succeeds if, for a given input,
based on the parsing schema, it is possible to deduce a goal item.

Figure 3.3 gives the parsing schemata for CYK and Earley parsing of
CFGs. As an example of parsing with the Earley algorithm given here, consider
again the grammar Gtelescope from Fig. 3.1 and the input Mary saw the man.
Figure 3.4 lists the items we obtain for this input. (Only the successful items
are listed.)

3.2 Implementation Issues

3.2.1 Dynamic Programming

When dealing with natural languages, we are in general faced with highly
ambiguous grammars. Deterministic parsing approaches such as LL(k) parsing
(Sippu and Soisalon-Soininen, 1990) are therefore not adequate.

There are two aspects arising from the ambiguity of natural language syn-
tax:

3.2 Implementation Issues 45

CYK

Goal item: [S, 0, n]

Scan:

[A, i− 1, i]
A → wi ∈ P

Complete:
[B, i, j], [C, j, k]

[A, i, k]
A → B C ∈ P

Earley

Goal items: [S → α•, 0, n]
with S → α ∈ P

Axioms:

[S → •α, 0, 0]
S → α ∈ P

Predict:
[A→ α •Bβ, i, j]

[B → •γ, j, j]
B → γ ∈ P

Scan:
[A→ α • aβ, i, j]

[A→ αa • β, i, j + 1]
wj+1 = a

Complete:
[A→ α •Bβ, i, j], [B → γ•, j, k]

[A→ αB • β, i, k]

Fig. 3.3. Parsing schemata for CYK and Earley parsing of CFGs

Item Operation

1. [S → • NP VP, 0, 0] axiom
2. [NP → • Mary, 0, 0] predict from 1
3. [NP → Mary •, 0, 1] scan from 2
4. [S → NP • VP, 0, 1] complete 1 with 3
5. [VP → • V NP, 1, 1] predict from 4
6. [V → • saw, 1, 1] predict from 5
7. [V → saw •, 1, 2] scan from 6
8. [VP → V • NP, 1, 2] complete 5 with 7
9. [NP → • Det N, 2, 2] predict from 8
10. [Det → • the, 2, 2] predict from 9
11. [Det → the •, 2, 3] scan from 10
12. [NP → Det • N, 2, 3] complete 9 with 11
13. [N → • man, 3, 3] predict from 12
14. [N → man •, 3, 4] scan from 13
15. [NP → Det N •, 2, 4] complete 12 with 14
16. [VP → V NP •, 1, 4] complete 8 with 15
17. [S → NP VP •, 0, 4] complete 4 with 16

Fig. 3.4. Successful Earley items obtained for Mary saw the man

1. On the one hand, strings can have more than one analysis. Consequently,
we need to find some way to branch and pursue all of them.

2. On the other hand, different analyses can have common sub-analyses for
certain substrings. In order to avoid computing these sub-analyses several

46 3 Parsing: Preliminaries

times, we need to find some way to reuse (partial) parse trees that we
have already found.

Because of these needs, we have to implement a parser in such a way as to
store intermediate parsing results, to pursue all of them and to retrieve them
if needed in order to reuse them in a different context. This latter aspect
is called computation sharing (Villemonte de la Clergerie, 2006). To achieve
this, we follow an approach of dynamic programming, a term that was first
introduced in Operational Research (Bellman, 1957). The underlying strategy
is, roughly, that we have a set of results that can be reused at any time. This
set increases during parsing.

The advantage of specifying an algorithm with deduction rules is that
the items we deduce represent partial parsing results. The fact that once
an item is deduced (computed), it can serve as antecedent in different rule
applications corresponds to a sharing of the computation of this intermediate
result. Therefore the framework of parsing as deduction yields a very natural
formalization of a dynamic programming strategy.

3.2.2 Chart Parsing and Tabulation

In order to store intermediate parse results in a way that allows for an efficient
retrieval, we use a table. Such tables are called charts and the storage of parse
items in a chart is called tabulation.

In the context of CFGs, the CYK parser and the Earley parser (see Fig. 3.3
for the deduction rules) are typical chart parsers. Let us consider the CYK
parser. Here the parse items have the form [A, i, j]. In order to allow for an
efficient storage and retrieval of these items, we can number the non-terminals
and then realize the chart as a 3-dimensional table C where the first dimension
is the index of the non-terminal A, the second the start index i of the span
and the third the end index j of the span.

Chart parsing in general works as follows: We have two structures, the
chart C and an agenda A, both initialized as empty. We then start by com-
puting all items that are axioms, i.e., that can be obtained by applying rules
with empty antecedents. Starting from these items, we extend the set as far as
possible by subsequent applications of the deduction rules. The general chart
parsing technique is sketched in Fig. 3.5.

The way the chart parsing algorithm is formulated here, we have only
a recognizer. Whenever we find a goal item in the resulting chart, we can
conclude that our input sentence is in the language generated by our grammar.

A chart parsing algorithm can be extended to a parser by adding back-
pointers to the items in the charts. The backpointers tell us about the origin
of an item. Actually, since our grammars are ambiguous, there can be more
than one way to deduce an item; therefore we need lists of backpointers. The
chart together with the backpointers can be seen as a compact representation

3.2 Implementation Issues 47

C = A = ∅
for all items I resulting form a rule application with empty antecedent set do

add I to C and to A
end for
repeat

remove an item I from A
for all items I ′ resulting from a rule application with antecedents I and items
from C do

if I ′ /∈ C then
add I ′ to C and to A

end if
end for

until A = ∅
if there is a goal item in C then

output true
else

output false
end if

Fig. 3.5. Chart parsing

CFG:
T = {a, b, c}
N = {S, A, B, C, D, Ta, Tb, Tc}
S → AC S → BD
A→ TaA A→ a
C → TbH H → CTc C → TbTc

B → TaG G→ BTb B → TaTb

D → TcD D → c
Ta → a Tb → b Tc → c

j

6 S, ((·, ·), (·, ·)) S C H D Tc, D

5 C Tc, D

4 B G Tb

3 B Tb

2 A Ta, A

1 Ta, A

0 1 2 3 4 5 i

Fig. 3.6. Chart for parsing w = aabbcc with backpointers for the goal item

of a parse forest. The single parse trees can be read off the chart by starting
from the goal item(s) and following the backpointers.

For an example see the ambiguous CFG in Fig. 3.6 and the sample chart
for parsing aabbcc with the CYK algorithm. The figure shows the backpointers
for the goal item [S, 0, 6]. There are two pairs of backpointers corresponding
to the two syntactic analyses of the input.

3.2.3 Hypergraphs

As we have seen, a chart is a set of items. Each application of a deduction
rule that has been used to create the chart describes dependencies between
the items. These dependencies are between the set of antecedent items and
the set of consequent items. The latter contains usually only a single element.
This view on the items and their dependencies results in a structure that is

48 3 Parsing: Preliminaries

[A, 0, 2] [B, 0, 4] [C, 2, 6] [D, 4, 6]

[S, 0, 6]

Fig. 3.7. Parts of the hypergraph for the chart in Fig. 3.6

a hypergraph (Gallo et al., 1993). In a probabilistic setting, we can assign
weights to the nodes in the hypergraph and then realize k-best parsing as
a search on the hypergraph (Klein and Manning, 2004; Huang and Chiang,
2005).

A hypergraph 〈V,E〉 consists of a set of nodes V and a set of hyperedges
E ∈ P(V)×P(V). In other words, instead of linking a single node to a single
node, the edges in hypergraphs link sets of nodes to sets of nodes.

As already mentioned, in the hypergraph that corresponds to a chart ob-
tained from applying deduction rules, the items are the nodes while every
application of a deduction rule can be seen as a hyperedge that links the set
of antecedent items to the set of consequent items. The reversed hyperedges
are the backpointers that are needed to extract entire parse trees from a chart.
As an example of a hypergraph-based presentation of the deduction process,
consider the fragment of the hypergraph for the chart in Fig. 3.6 that is shown
in Fig. 3.7.

3.3 Properties of Parsing Algorithms

There are different properties of algorithms that are interesting to examine.

3.3.1 Soundness and Completeness

The most important property that a useful algorithm should have is to be
sound and complete. Roughly, this means that the algorithm does what it is
supposed to do. In the context of parsing, we say that an algorithm is sound
and complete if for every grammar G and every input sentence w, the following
holds: a) if the algorithm answers yes, then w is in the string language L(G);
and b) if w is in the string language L(G), then the algorithm answers yes.
The first property (a) is called soundness, the second property (b) is called
completeness.

Given an algorithm specified with deduction rules, soundness and com-
pleteness can often be shown via an induction over the deduction rules. Take
for instance the CYK algorithm from Fig. 3.3 that has the following rules:

3.3 Properties of Parsing Algorithms 49

Goal item: [S, 0, n]

Scan:
[A, i− 1, i]

A → wi ∈ P

Complete:
[B, i, j], [C, j, k]

[A, i, k]
A → B C ∈ P

We can show the following property for the items generated by these rules,
given a fixed grammar G and an input sentence w = w1 · · ·wn with wi ∈ T
for 1 ≤ i ≤ |w| = n: For all A ∈ N and all 0 ≤ i < j ≤ n:

[A, i, j] iff A
∗⇒ wi+1 · · ·wj .

We can show this by induction over the length l = j − i of the span.

1. The case l = 1 is covered by the scan rule since the only way to derive
a string w of length 1 from a non-terminal A is by a rule A → w. The
scan rule guarantees that for every wj and every A ∈ N , if there is a
production A→ wj , then [A, j − 1, j]. On the other hand, since the scan
rule is the only rule that allows us to derive items spanning only a single
terminal, we also know that whenever [A, j − 1, j], then A ∗⇒ wj .

2. The case l > 1 is covered only by the complete rule since its consequent
items always have a span longer than 1. We can assume that the induction
claim holds for the antecedent items since they have a lower length than
the consequent item. Assume that [A, i, k] was obtained by the complete
rule. Then the production A → BC required by the side condition and
B

∗⇒ wi+1 · · ·wj and C
∗⇒ wj+1 · · ·wk give us A ∗⇒ wi+1 · · ·wk. On the

other hand, if A ∗⇒ wi+1 · · ·wk, k > i+1, then there must be a production
A→ BC as above and consequently, [A, i, k].

If we apply our claim to the goal item, we obtain that a) if [S, 0, |w|] then
S

∗⇒ w (soundness) and b) if S ∗⇒ w then [S, 0, |w|] (completeness).
See the solution of problem 3.2 for the proof of the soundness of the Earley

algorithm.

3.3.2 Complexity

For a given grammar G and an input sentence w ∈ T ∗, we call the recognition
problem the task to decide whether w ∈ L(G) or not. We distinguish between
the fixed and the universal recognition problem.

• Fixed recognition problem: Assume a given grammarG (fixed). Then decide
for a given input word w if w ∈ L(G). In this case, the complexity of the
problem is given only with respect to the size of the input sentence w, i.e.,
the size of the grammar is taken to be a constant. This is also sometimes
called the word recognition problem.

50 3 Parsing: Preliminaries

• Universal recognition problem: Decide for an input grammar G and an in-
put word w if w ∈ L(G). In this case, we have to investigate the complexity
of the problem in the size of the input sentence w and the grammar G.

Note that in real natural language applications, we often deal with very
large grammars. Grammars extracted from treebanks for instance can easily
have more than 10,000 or even 20,000 productions while the average sentence
length is somewhere between 20 and 30. Therefore, for natural language pro-
cessing, the complexity of the universal recognition problem is an important
factor.

To characterize the complexity of a problem, we distinguish between the
time and the space complexity. They depend on the length n of the input
sentence w and (if the universal recognition problem is considered) the size of
the grammar G.

We distinguish the following different complexity classes (Hopcroft and
Ullman, 1979):

1. P (PTIME): problems that can be solved deterministically in an amount
of time that is polynomial in the size of the input. I.e., there is a constant
c and a k such that the parsing of a string of length n takes an amount
of time ≤ cnk.
Notation: O(nk).

2. NP: problems whose positive solutions can be verified in polynomial time
given the right information, or equivalently, whose solutions can be non-
deterministically found in polynomial time.

3. NP-complete: the hardest problems in NP. A problem is NP-complete
if any problem in NP can be transformed into it in polynomial time.

The question whether the two classes P and NP are equal or not is an
open question. Most people think however that NP is larger.

The specification of parsing algorithms via deduction rules facilitates the
computation of the complexity of an algorithm (McAllester, 2002). In order
to determine the time complexity, we have to calculate the maximal number
of (different) rule applications that is possible. This depends on the most
complex deduction rule in our parsing schema.

Take for instance again the CYK algorithm specified above. The most
complex rule is the complete rule:

[B, i, j], [C, j, k]
[A, i, k]

A → B C ∈ P .

In this rule, we have three different non-terminals that depend on each
other since they occur in a single production and three different indices, all
of them ranging either from 0 to n− 1 (indices i and j) or from 1 to n (index
k) where n is the length of the input sentence. Consequently, it holds for the
number c of different possible applications of complete that c ≤ |P |n3. We

3.4 Summary 51

therefore obtain for the fixed recognition problem where |P | is treated as a
constant, that the time complexity of this algorithm is O(n3).

See the solutions of Problems 3.3 and 3.4 for the space complexity of the
CYK algorithm and the time complexity of the Earley algorithm.

An example for a formalism where the fixed recognition problem is poly-
nomial while the universal recognition problem is NP-complete are ID/LP
grammars (Shieber, 1984). ID/LP grammars are like CFGs except that the
specification of the immediate dominance relation is separated from the spec-
ification of linear precedence.

Take for instance a CFG production A → X1 . . . Xn. Such a production
specifies two relations, namely the immediate dominance (ID) relations be-
tween A and the Xi (1 ≤ i ≤ n) and the linear precedence (LP) relations
between Xi and Xj for i < j. The idea underlying ID/LP grammars is
to dissociate these two relations: The productions A → X1, . . . , Xn specify
only ID relations while additional LP relations can be specified separately:
X1 ≺ X2,X2 ≺ X3, These LP relations are global, i.e., they hold for all
right-hand sides of productions in the grammar.

For each ID/LP grammar, an equivalent CFG can be constructed. There-
fore the fixed recognition problem for ID/LP (like the one for CFGs) is in
P. The construction of the equivalent CFG however is such that the number
of possible LP orders for A → X1, . . . , Xn can be n!. Therefore the universal
recognition problem for ID/LP grammars is NP-complete (Barton, 1985).

3.3.3 Valid Prefix Property

An algorithm is said to have the valid prefix property (or to be prefix valid)
if it considers only hypotheses consistent with the input seen so far. More
precisely, whenever a partial parse tree spans a portion of the input ending at
position j, the string w0 . . . wj−1 must be the prefix of a word in the language.

Consider for example the two algorithms from Fig. 3.3, the CYK algo-
rithm for CFGs in Chomsky Normal Form and the Earley algorithm. The
CYK algorithm does not have the valid prefix property. For instance, given a
grammar with productions S → AB, B → BB, A → a, B → b, for an input
word bb, we can obtain an item [B, 0, 1] that spans the input up to position
1, i.e., that yields the string b. However, there is no word in the language of
this grammar that starts with a b since every word has to start with an a.

In contrast to this, the Earley algorithm has the valid prefix property if we
assume that the grammar does not contain useless symbols (i.e., from every
non-terminal, we can derive a set of terminal strings). This follows for instance
from the soundness proof in the solution of Problem 3.2.

3.4 Summary

This chapter has introduced basic notions of parsing that are important for
the chapters on parsing algorithms that will come later in the book.

52 3 Parsing: Preliminaries

In a first part, we have explained the framework of parsing as deduction.
The idea is that the set of intermediate parsing results is characterized via
deduction rules. This way of specifying a parsing algorithm has several advan-
tages. Firstly, it separates the proper algorithm from control structures and
data structures. By doing so, it allows a better understanding of the depen-
dencies between parsing results. Furthermore, a formulation with deduction
rules facilitates the tabulation of parsing results in a natural way. This leads
to a chart parsing strategy where all intermediate results are stored in a chart
and can be retrieved for reuse at any time. This is particularly important
in applications where one is faced with highly ambiguous grammars as it is
generally the case in natural language processing. Throughout the book, all
parsing algorithms will be specified using deduction rules.

Besides the technique of defining parsing as a deductive process, we have
also seen a range of properties of parsing algorithms that are important to in-
vestigate such as soundness and completeness, complexity and prefix validity.

Problems

3.1. (Deduction Rules for Earley Parsing)
Let us suppose that we are dealing only with CFGs whose productions

have the form either A→ a or A→ aB where A,B ∈ N , a ∈ T .
For such grammars, we can simplify the Earley algorithm. Give the corre-

sponding parsing schema.

3.2. Show that the Earley algorithm from Fig. 3.3 is sound.
In order to show this, show that the following holds:
If [A → α • β, i, j] then S

∗⇒ w1 · · ·wiAγ ⇒ w1 · · ·wiαβγ
∗⇒ w1 · · ·wjβγ

for some γ ∈ (N ∪ T)∗.
Note that this proves also the prefix validity of this algorithm.

3.3. (CYK space complexity)
What is the space complexity of the CYK algorithm given in this chapter?

3.4. Give the time complexity of the Earley algorithm from Fig. 3.3.

4

Tree Adjoining Grammars

4.1 Introduction to Tree Adjoining Grammars

In this section we introduce TAG. Besides giving the definition of the formal-
ism, we briefly mention the linguistic principles underlying TAG in order to
give an idea of the way TAG is used for natural language processing. The
formal definitions are taken from (Kallmeyer, 2009).

4.1.1 Definition of TAG

Tree Adjoining Grammar (TAG, Joshi and Schabes (1997)) is a tree-rewriting
formalism. A TAG consists of a finite set of trees (elementary trees). The nodes
of these trees are labelled with non-terminals and terminals (terminals only
label leaf nodes). Starting from the elementary trees, larger trees are derived
by substitution (replacing a leaf with a new tree) and adjunction (replacing
an internal node with a new tree). In case of an adjunction, the tree being
adjoined has exactly one leaf that is marked as the foot node (marked with
an asterisk). Such a tree is called an auxiliary tree. To license its adjunction
to a node n, the root and foot nodes must have the same label as n. When
adjoining it to n, in the resulting tree, the subtree with root n from the old tree
is attached to the foot node of the auxiliary tree. Non-auxiliary elementary
trees are called initial trees. A derivation starts with an initial tree. In a final
derived tree, all leaves must have terminal labels.

In a TAG, one can specify for each node whether adjunction is mandatory
and which trees can be adjoined.

(11) John seems to try to sleep

A sample TAG Graising for raising constructions such as (11) is shown in
Fig. 4.1. This TAG (a lexicalized TAG) will be the running example for the
next chapter for illustrating the different parsing algorithms. The subscripts
NA and OA indicate adjunction constraints: NA signifies that for this node,

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 4, c© Springer-Verlag Berlin Heidelberg 2010

54 4 Tree Adjoining Grammars

αn
NP

John

αs
S

NP↓ VPOA

V

to sleep

βinf

VPOA

V VP∗
NA

to try

βfin

VPNA

V VP∗
NA

seems

Fig. 4.1. A small LTAG Graising for raising constructions

NP

John

S

NP↓ VPOA

V

to sleep

VPOA

V VP∗
NA

to try

VPNA

V VP∗
NA

seems

derived tree:

S

NP VPNA

John seems VPNA

to try VPNA

V

to sleep

Fig. 4.2. A sample derivation in Graising

adjunction is not allowed while OA signifies that adjunction is obligatory. The
derivation for (11) using the TAG Graising is shown in Fig. 4.2.

Besides the definition of trees from Section 1.5, for TAG we need, specifi-
cally, the definitions of initial and auxiliary trees. In the following, we assume
an alphabet N of non-terminal symbols and an alphabet T of terminal sym-
bols. For the labels of the nodes in our elementary trees, we also allow the
empty word ε, which acts like a terminal, i.e., only leaves can be labelled with
ε.

Definition 4.1 (Auxiliary and initial trees).

1. An auxiliary tree is a syntactic tree 〈V,E, r〉 such that there is a unique
leaf f marked as foot with l(r) = l(f). We write this tree as 〈V,E, r, f〉.

2. An initial tree is a non-auxiliary syntactic tree.

Any leaf with a non-terminal label that is not a foot node is called a sub-
stitution node.

Now we can introduce TAG.

4.1 Introduction to Tree Adjoining Grammars 55

Definition 4.2 (Tree Adjoining Grammar).
A Tree Adjoining Grammar (TAG) is a tuple G = 〈N,T, I, A, S, fOA, fSA〉

where

• N,T are disjoint alphabets of non-terminal and terminal symbols,
• S ∈ N is a specific start symbol,
• I is a finite set of initial trees, and A a finite set of auxiliary trees with

node labels from N and T ∪ {ε},
• fOA and fSA are functions that represent adjunction constraints:

fOA : {v | v vertex in some γ ∈ I ∪ A} → {0, 1} and fSA : {v | v vertex
in some γ ∈ I ∪ A} → P (A) are functions such that fOA(v) = 0 and
fSA(v) = ∅ for every v with out-degree 0.

Every tree in I ∪A is called an elementary tree.

For a given node, the function fOA specifies whether adjunction is oblig-
atory (value 1) or not (value 0) and fSA gives the set of auxiliary trees that
can be adjoined. Only internal nodes can allow for adjunction; adjunction at
leaves is not possible. As a notational convention, we often omit the functions
fOA and fSA in the tuple notation, i.e., we write TAGs as 〈N,T, I, A, S〉.

In TAG, larger trees are derived from I ∪A by subsequent applications of
the operations substitution and adjunction. The substitution operation com-
bines a syntactic tree and an initial tree into a new syntactic tree while adjunc-
tion combines a syntactic tree and an auxiliary tree into a new syntactic tree.
Substitution was defined in Section 2.1.2, in the context of Tree Substitution
Grammars.

Definition 4.3 (Adjunction).
Let γ = 〈V,E, r〉 be a syntactic tree, γ′ = 〈V ′, E′, r′, f〉 be an auxiliary

tree and v ∈ V . γ[v, γ′], the result of adjoining γ′ into γ at node v, is defined
as follows:

• if v is a leaf or l(v)
= l(r′), then γ[v, γ′] is undefined;
• otherwise, γ[v, γ′] := 〈V ′′, E′′, r′′〉 with

– V ′′ = V ∪ V ′′ \ {v} and
– E′′ = (E \ {〈v1, v2〉 | v1 = v or v2 = v})

∪ E′ ∪ {〈v1, r′〉 | 〈v1, v〉 ∈ E} ∪ {〈f, v2〉 | 〈v, v2〉 ∈ E}.

Derived trees in TAG are trees that can be obtained by taking an elemen-
tary tree γe and adding derived trees γ1, . . . , γn by adjunction or substitution
at pairwise different nodes v1, . . . , vn in γe. Every elementary tree is itself a
derived tree. We assume that in the course of a derivation, we use pairwise
different instances of elementary trees. In other words, the same elementary
tree can be used several times but this means that we use isomorphic copies
of the elementary tree with pairwise disjoint node sets. See for example the
derivation of (12) in Fig. 4.3 where the tree βinf is used twice. We use differ-
ent copies and therefore, in the resulting derived tree, we have for example

56 4 Tree Adjoining Grammars

NP

John

S

NP↓ VPOA

V

to sleep

VPOA

V VP∗
NA

to try

VPOA

V VP∗
NA

to try

VPNA

V VP∗
NA

seems

Fig. 4.3. Derivation of (12) in Graising

two different nodes with terminal label to try. In the following, we call γ an
instance of γe ∈ (I ∪A) if γ is isomorphic to γe.

(12) John seems to try to try to sleep

TAG derivations are represented by derivation trees that record the his-
tory of how the elementary trees are put together. A derived tree is the result
of carrying out the substitutions and adjunctions, i.e., the derivation tree de-
scribes uniquely the derived tree. Each edge in a derivation tree stands for
an adjunction or a substitution. The edges are labelled with Gorn addresses.
E.g., the first derivation tree in Fig. 4.4 indicates that the elementary tree
αn for John is substituted for the node at address 1 and a tree derived from
the elementary tree βinf for to try is adjoined at node address 2 to the tree
αs for to sleep. The tree derived from to try in turn is obtained by adjoining
the elementary tree of seems to the root (address ε). Note that the distinc-
tions between adjunctions and substitutions can be inferred from the nature
of the node whose address labels the corresponding edge. If this address is
the address of a substitution node, then we are dealing with a substitution;
otherwise we are dealing with an adjunction.1 Derivation trees are unordered
trees.2

In the following definition, for each way to obtain a derived tree, we define
immediately the corresponding derivation tree.

Definition 4.4 (Derived tree and derivation tree).
Let G = 〈N,T, I, A, S〉 be a TAG.

1. Every instance γ′ of a γ ∈ I ∪A is a derived tree in G.
The corresponding derivation tree is 〈{v}, ∅, v〉 with l(v) = γ.

2. For γ1, . . . , γn derived trees in G with derivation trees Di = 〈Vi, Ei, ri〉
(1 ≤ i ≤ n) and for an instance γ = 〈V,E, r〉 of a γe ∈ I ∪ A such

1 Some authors actually mark adjunction with a dashed edge and substitution with
a solid edge.

2 We assume that once an adjunction or substitution is performed on a node, the
node disappears (see the definitions of adjunction and substitution). This means
that multiple adjunctions are not possible. Consequently, the order of adjunctions
and substitutions on a tree does not matter for the resulting derived tree.

4.1 Introduction to Tree Adjoining Grammars 57

derivation tree for (11):
αs

1 2

αn βinf

ε

βfin

derivation tree for (12):
αs

1 2

αn βinf

ε

βinf

ε

βfin

Fig. 4.4. Derivation trees in Graising

that γ, γ1, . . . , γn have pairwise disjoint sets of nodes, if there are pairwise
different nodes v1, . . . , vn ∈ V with Gorn addresses p1, . . . , pn such that
• γ′ = γ[v1, γ1] . . . [vn, γn] is defined and
• l(ri) ∈ fSA(vi) for all γi ∈ A,
then γ′ is a derived tree in G.
The corresponding derivation tree is D = 〈V,E, r〉 such that
• V =

⋃n
i=1 Vi ∪ {r},

• E =
⋃n

i=1Ei ∪ {〈r, r1〉, . . . , 〈r, rn〉},
• l(r) = γe and
• g(〈r, ri〉) = pi for 1 ≤ i ≤ n.3

3. These are all derived trees and derivation trees in G.

We call a derived tree that does not contain substitution nodes or vertices
v with fOA(v) = 1 a saturated derived tree and the corresponding derivation
tree a saturated derivation tree.

This definition differs slightly from standard definitions. Here, we treat at
once all adjunctions and substitutions performed on a single elementary tree.
In the corresponding derivation tree, we combine a new root tree with all its
daughters. In classical TAG definitions, these adjunctions and substitutions
are oftentimes defined separately, i.e., each of them is considered a single
derivation step that adds one edge to the derivation tree. The disadvantage of
the classical definition is that, after having performed an adjunction on a tree
γ, the addresses of nodes in γ below the adjunction site change. Consequently,
when adjoining (or substituting) later to such a node, instead of the current
address of this node, we need to take its address in its original elementary
tree as the edge label in the corresponding derivation tree. This complication

3 Note that there can be more than one derivation tree for a single derived tree
since there might be more than one combination of adjunctions and substitutions
with elementary trees leading to the same result. However, for a given derivation
tree, the derived tree is uniquely determined.

58 4 Tree Adjoining Grammars

is avoided here by choosing immediately all adjunction/substitution sites in
an elementary tree.

Definition 4.5 (Tree language).
Let G = 〈N,T, I, A, S〉 be a TAG.

1. The tree language of G is LT (G) := {γ | γ is a saturated derived initial
tree in G with root label S}.4

2. The string language of G is the set of yields of trees in LT (G).

4.1.2 Formal Properties

The class of languages generated by TAG (TAL) properly contains all context-
free languages. Since every CFG can be considered a Tree Substitution Gram-
mar (see Section 2.1.2) which, in turn, is a TAG with an empty set of auxiliary
trees, CFL is clearly contained in TAL. In Chapter 2 we have already seen a
TAG for a non-context-free language, namely the TAG for the copy language
in Fig. 2.4, p. 27. Another example is the TAG for L3 := {anbncn |n ≥ 0}
from the solution of Problem 4.1.

Note that TAGs without adjunction constraints, i.e., TAGs where adjunc-
tions are never obligatory and where the set of adjoinable trees for a given
node contains all auxiliary trees with the appropriate root label, also extend
CFG but are less powerful than TAGs with adjunction constraints as defined
here. Without adjunction constraints it is for instance not possible to generate
L3 = {anbncn |n ≥ 0} (cf. solution of Problem 4.1).

One of the reasons why the TAG formalism is appealing from a formal
point of view is the fact that it has nice closure properties (Vijay-Shanker and
Joshi, 1985; Vijay-Shanker, 1987):

Lemma 4.6. TALs are closed under union.

This can be easily shown as follows: Assume the two sets of non-terminals
to be disjoint. Then build a large TAG putting the initial and auxiliary trees
from the two grammars together.

Lemma 4.7. TALs are closed under concatenation.

In order to show this, assume again the sets of non-terminals to be disjoint.
Then build the unions of the initial and auxiliary trees, introduce a new start
symbol S and add one initial tree with root label S and two daughters labeled
with the start symbols of the original grammars.

Lemma 4.8. TALs are closed under Kleene closure.

4 Sometimes TAG is defined without a start symbol S; then the last condition is
omitted. The two versions (with or without start symbol) are equivalent.

4.1 Introduction to Tree Adjoining Grammars 59

The idea of the proof is as follows: We add an initial tree with the empty
word and an auxiliary tree that can be adjoined to the roots of initial trees
with the start symbol and that has a new leaf with the start symbol.

Lemma 4.9. TALs are closed under substitution.

In order to obtain the TAG that yields the language after substitution, we
replace all terminals by start symbols of the corresponding TAGs.

As a corollary one obtains:

Lemma 4.10. TALs are closed under arbitrary homomorphisms.

Furthermore, TALs are also, like CFLs, closed under intersection with
regular languages:

Lemma 4.11. TALs are closed under intersection with regular languages.

The proof in (Vijay-Shanker, 1987) uses extended push-down automata
(EPDA), the automata that recognize TALs. We will introduce EPDAs in
Section 10.1. Vijay-Shanker combines such an automaton with the finite state
automaton for a regular language in order to construct a new EPDA that
recognizes the intersection.

As a special case of Lemma 4.9 we obtain that TALs are closed under reg-
ular substitution (i.e., substitution with regular languages). With a theorem
from Ginsburg (1966) we then get the following corollary:

Lemma 4.12. TALs are closed under inverse homomorphisms.5

To summarize, the closure properties of TALs are such that TALs form a
substitution-closed Full Abstract Family of Languages (Full AFL).6

We know from the pumping lemma for CFLs (Prop. 1.8) that in CFLs,
from a certain string length on two parts of the string can be iterated
(“pumped”). The proof idea is the following: Context-free derivation trees
from a certain maximal path length on have the property that a non-terminal
occurs twice on this path. Then the part between the two occurrences can
be iterated. This means that the strings to the left and right of this part are
pumped.

The same kind of iteration is possible in TAG derivation trees since TAG
derivation trees are context-free (see Fig. 4.5). This leads to a pumping lemma
for TALs (Vijay-Shanker, 1987).

A derived auxiliary tree β′ can be repeatedly adjoined into itself. Into the
lowest β′ (low in the sense of the derivation tree) another auxiliary tree β′′

5 For a homomorphism f , the image of a language L under the inverse homomor-
phism f−1 is f−1(L) := {x | f(x) ∈ L}.

6 A set of languages forms a Full AFL if it is closed under intersection with regular
languages, homomorphisms, inverse homomorphisms, union, concatenation and
Kleene star.

60 4 Tree Adjoining Grammars

β

β

Iteration:

β

β

β

Fig. 4.5. Iteration in a TAG derivation tree

derived from β is adjoined. What does that mean for the derived tree? Let
n be the node in β′ to which β′ can be adjoined and to which the final β′′

is adjoined as well. There are three cases (see Fig. 4.6 for the corresponding
derived trees before adjoining the final β′′):

1. n is on the spine (i.e., on the path from the root to the foot node),
2. n is on the left of the spine, or
3. n is on the right of the spine.

Assume that the final β′′ adds strings v1 and v2 on the left and right of
the foot node.

Case 1: β′ adds the two strings w1w2 and w3w4 on the two sides of its foot
node. Adjunction to n adds new strings between w1 and w2 and between w3

and w4 respectively. This leads to strings
xw1v1w2yw3v2w4z (no iteration of β′)
xw1w1v1w2w2yw3w3v2w4w4z (one iteration)
xw1w1w1v1w2w2w2yw3w3w3v2w4w4w4z
xw1w1w1w1v1w2w2w2w2yw3w3w3w3v2w4w4w4w4z
. . .
⇒ xwn

1 v1w
n
2 yw

n
3 v2w

n
4 z in the string language for all n ≥ 0.

Case 2: β′ adds the two strings w1w2w3 and w4 on the two sides of its foot
node. Adjunction to n adds new strings between w1 and w2 and between w2

and w3 respectively. This leads to strings
xw1v1w2v2w3yw4z (no iteration)
xw1w1v1w2v2w3w2w4w3yw4z (one iteration of β′)
xw1w1w1v1w2v2w3w2w4w3w2w4w3yw4z
xw1w1w1w1v1w2v2w3w2w4w3w2w4w3w2w4w3yw4z
. . .

⇒ xwn+1
1 v1w2v2w3(w2w4w3)nyw4z in the string language for all n ≥ 0.

Case 3: β′ adds the two strings w1 and w2w3w4 on the two sides of its foot
node. Adjunction to n adds new strings between w2 and w3 and between w3

and w4 respectively. This leads to strings

4.1 Introduction to Tree Adjoining Grammars 61

x z

tree β′ → n

w1 w2 w3 w4

y
case 1

x z

n

w1 w2 w3 w4

y
case 2

x z

n

w1 w2 w3 w4

y
case 3

Fig. 4.6. Different cases for the iteration in the derived tree

xw1yw2v1w3v2w4z (no iteration)
xw1yw2w1w3w2v1w3v2w4w4z (one iteration)
xw1yw2w1w3w2w1w3w2v1w3v2w4w4w4z
xw1yw2w1w3w2w1w3w2w1w3w2v1w3v2w4w4w4w4z
. . .

⇒ xw1y(w2w1w3)nw2v1w3v2w
n+1
4 z in the string language for all n ≥ 0.

Lemma 4.13 (Pumping Lemma for TAL). If L is a TAL, then there is
a constant c such that if w ∈ L and |w| ≥ c, then there are x, y, z, v1, v2,
w1, w2, w3, w4 ∈ T ∗ such that

• |v1v2w1w2w3w4| ≤ c,
• |w1w2w3w4| ≥ 1, and

62 4 Tree Adjoining Grammars

• one of the following three cases holds:7

1. w = xw1v1w2yw3v2w4z and xwn
1 v1w

n
2 yw

n
3 v2w

n
4 z is in the string lan-

guage for all n ≥ 0, or
2. w = xw1v1w2v2w3yw4z and xwn+1

1 v1w2v2w3(w2w4w3)nyw4z is in the
string language for all n ≥ 0, or

3. w = xw1yw2v1w3v2w4z and xw1y(w2w1w3)nw2v1w3v2w
n+1
4 z is in the

string language for all n ≥ 0.

Proof. Let G be a TAG and let m be the maximum length of the yield of trees
in the tree language of G where there is no β occurring twice on the same
path in the derivation tree. c1 := m+ 1.

For any word with length ≥ c1, a β′ as above can be iterated and one of
the three cases above holds.

If inside β′ and below the foot node of β′ there are no other derived
auxiliary trees adjoined into themselves (and one can always choose such a
β′), then there is a constant c2 such that |v1v2w1w2w3w4| ≤ c2 in all three
cases.

Furthermore, since the length of the word is > m, β′ can be chosen such
that at least one of the four iterated parts w1, w2, w3, w4 is not ε.

Let c := max{c1, c2}. Then the pumping lemma holds for G with the
constant c.

��

As a corollary, the following weaker pumping lemma holds:

Lemma 4.14 (Weak Pumping Lemma for TAL). If L is a TAL, then
there is a constant c such that if w ∈ L and |w| ≥ c, then there are
x, y, z, v1, v2, w1, w2, w3, w4 ∈ T ∗ such that

• |v1v2w1w2w3w4| ≤ c,
• |w1w2w3w4| ≥ 1,
• x = xv1yv2z, and
• xwn

1 v1w
n
2 yw

n
3 v2w

n
4 z ∈ L(G) for all n ≥ 0.

In this weaker version, the w1, w2, w3, w4 need not be substrings of the
original word w.

A pumping lemma can be used to show that certain languages are not in
the class of the string languages satisfying the pumping lemma.

7 According to Vijay-Shanker (1987) the second and third case can be reduced to
the first. But if this is true, it is not at all obvious: in the second and third case the
parts that are iterated are not present in the original word x: in case 2, w2w4w3 is
no substring of x and in case 3, w2w1w3 is no substring of x. This is why I prefer
to stay with the three cases. It is true however that cases 2 and 3 are somehow
weaker than case 1, i.e., a language not satisfying case 1 will probably not satisfy
cases 2 or 3 either.

4.1 Introduction to Tree Adjoining Grammars 63

Lemma 4.15. The double copy language L := {www |w ∈ {a, b}∗} is not a
TAL.

Proof. Assume that L is a TAL.
Then L′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm |n,m ≥ 0} is a TAL as

well. Assume that L′ satisfies the weak pumping lemma with a constant c.
Consider the word w = ac+1bc+1ac+1bc+1ac+1bc+1.
None of the wi, 1 ≤ i ≤ 4 from the pumping lemma can contain both as

and bs. Furthermore, at least three of them must contain the same letters and
be inserted into the three different ac+1 respectively or into the three different
bc+1. This is a contradiction since then either |v1| ≥ c+ 1 or |v2| ≥ c+ 1.

��

Another example of a language that can be shown not to be a TAL, us-
ing the pumping lemma, is L5 := {anbncndnen |n ≥ 0} (see the solution of
Problem 4.5).

Concerning mild context-sensitivity, we will see polynomial parsing algo-
rithms for TAG in the next chapter. Furthermore, in Chapter 6, we will show
that LCFRLs (the languages generated by LCFRSs) are semilinear and con-
tain TALs. Consequently, TALs are mildly context-sensitive.

4.1.3 Linguistic Principles for TAG

In the preceding sections, we have introduced the TAG formalism. When using
TAG for natural languages, we have additional linguistic principles that are
respected (Frank, 1992; Frank, 2002; Abeillé, 2002). These principles are not
part of the TAG formalism itself; some of them are even not formalized and
remain therefore rather vague. But there is a general understanding that these
principles should be more or less respected when designing a natural language
TAG.

The linguistic principles underlying TAG are the following:

• Lexicalization: Each elementary tree has at least one non-empty lexical
item, its lexical anchor. Elementary trees can even have more than one
anchor.8

• Predicate argument co-occurrence: each predicate contains in the
elementary tree associated with it argument slots (leaves with non-terminal
labels, i.e., substitution nodes or foot nodes) for each of its arguments, i.e.,
for each of the elements it subcategorizes for including the subject.

• Semantic anchoring: elementary trees are not semantically void.
• Compositionality principle: an elementary tree corresponds to a single

semantical unit.

8 Empty words are also allowed but only in combination with at least one non-
empty lexical element.

64 4 Tree Adjoining Grammars

Only on the first two principles is there general agreement. The third one is
adopted by most people but not completely respected in the XTAG grammar
(where we have separate auxiliary trees for complementizers). The fourth one
is very arguable since, in order to verify it, we need a definition of a single
semantical unit which is not available in TAG and which depends very much
on the semantic theory we use.

The fact that TAGs for natural languages are lexicalized enables us to
perform a lexical selection preceding parsing. In other words, given an in-
put string w, we first select all trees from our TAG that have lexical items
occurring in w. We then use the sub-TAG obtained in this way for parsing.

Besides there being a general consensus for lexicalization, there is a general
consensus on a condition on Elementary tree minimality (Frank, 2002), which
requires that an elementary tree contain argument slots only for the arguments
of its lexical anchor, and for nothing else. Most argument slots are substitution
nodes, in particular the nodes for nominal arguments. See (13) for an example.
(13b.) shows the elementary tree of the verb gives as used in (13a.).

(13) a. John gives a book to Mary

b.

S

NP↓ VP

V NP↓ PP

gives P NP↓

to

Sentential arguments however are realised by foot nodes (see (14) for an
example). The reason is that we want to be able to extract material from sen-
tential arguments (in long-distance dependencies such as (14c.)). Such extrac-
tions can be obtained by adjoining the embedding clause into the sentential
argument.

(14) a. John thinks that Mary comes

b.

S

NP↓ VP

V S∗

thinks
c. Whom does Paul think that Mary likes?

Modifiers always have auxiliary trees with the modified category being the
foot node. Examples are given in (15) and (16).

(15) a. John quickly read the book

4.1 Introduction to Tree Adjoining Grammars 65

b.

VP

AdvP VP∗

Adv

quickly

(16) a. John read the yellow book

b.

N

AP N∗

A

yellow

4.1.4 Extended Domain of Locality and Factoring of Recursion

Compared to CFGs, TAGs have larger elementary structures and they allow
for adjunction. Because of these two crucial properties, TAGs exhibit proper-
ties that are very useful for modelling natural languages.

In TAG, constraints such as the need of certain arguments for a predicate
can be stated only within the local domains of elementary trees. But elemen-
tary trees can be arbitrarily large (provided they are finite) and, furthermore,
because of the adjunction operation these local domains can comprise (slots
for) elements arbitrarily far away from each other in the final derived tree.
This is why TAG is often said to have an extended domain of locality. A related
aspect is that the adjunction operation allows us to put recursive structures
into separate elementary trees. This is often called factoring of recursion.

The extended domain of locality in combination with the factoring of re-
cursion is crucial for the way TAG deals with unbounded dependencies and
the constraints holding for them. The constraints are not explicitly stated in
the grammar in the form of some additional constraint on derived trees but
they follow from the form of the elementary trees (which is guided by the
above-mentioned linguistic principles) and the possibilities of adjunction.

As an example consider wh-movement. There are several constraints that
have been observed for wh-movement. These constraints are not equally
strong (Kroch, 1987; Frank, 1992; Frank, 2002); some of them are language-
dependent, others seem to be of a universal character.

• Subjacency: A moved element may not cross more than one category NP
or S (cyclic movement via intermediate traces is allowed). Examples are
given in (17):
(17) a. ∗ a book which Karen met the man that had written t

b. ? a book which I read Andy’s review of t
c. ? a book which Karen asked who had read t

66 4 Tree Adjoining Grammars

• Condition on Extraction Domains (CED): Extractions from con-
stituents not appropriately governed are not allowed. In particular, ex-
tractions from subjects and adjuncts are not possible. See (17a.) for an
example.

• Empty Category Principle (ECP): A trace must be properly governed.
This means in particular that extractions of subjects from tensed or in-
finitival clauses with overt complementizers are not possible. Examples are
given in (18).
(18) a. ∗ which book did Lenny say that t was very boring?

b. ∗ who did Lenny ask whether t had arrived yet?
c. ∗ whom would Lenny have preferred for t to have married his daugh-

ter?
Adjunct extractions out of islands such as in (19) are combinations of
subjacency and ECP violations.
(19) a. ∗ why did Karen ask who had read this book t?

b. ∗ why did Karen know that Steven had read the book t?

In the standard LTAG analysis (Kroch, 1987), the slot for moved element
and the trace (i.e., the empty word) at the original position (sometimes called
the gap) are in the same elementary tree. This follows from the linguistic
principles mentioned above. As an example, see Fig. 4.7 for the LTAG analysis
of (20). Note that the trees in this figure are not the elementary trees since
some of the substitutions have already been performed. Fig. 4.7 shows only the
adjunction that creates the long-distance dependency. As one can see here,
there is actually no wh-movement in TAG since the wh-element does not
change its position; it is already an extracted element with a trace left behind
in the elementary tree. The adjunction only inserts more material between
the extracted element and its trace.

(20) which book did Harvey say Cecile had read t

S

WHi SOA

which book COMP S

ε NP VP

Cecile Aux VP

had V NP

read εi

S

Aux S

did NP VP

Harvey V S∗

say

Fig. 4.7. Derivation for (20)

4.1 Introduction to Tree Adjoining Grammars 67

With this analysis and the principles for elementary trees, extraction from
adjuncts as in (21) is correctly blocked since adjuncts are not present in the
elementary trees of the lexical items they modify. Consequently, there is no
elementary tree that might lead to a derivation for (21).

(21) ∗ which movie did Georgette fall asleep after watching t?

For a wh-island violation as (22a.), the tree in (22b.) would be needed.9

(22) a. ? which book did Judy wonder who wrote t?

b.

S

WHi S

which book WHj SOA

who COMP S

ε NPj VP

ε V NP

wrote εi

This elementary tree satisfies the linguistic principles. But such an ele-
mentary tree is not allowed in English since multiple fronted wh-elements
are not possible in English. However, languages where such multiple fronted
wh-elements are possible, e.g., Romanian, also allow wh-extraction out of an
unbounded number of wh-islands.

So-called that-trace effects (ECP violations) also can be excluded by not
allowing the corresponding elementary tree. For the analysis of (23a.), we
would need the elementray tree given in (23b.). Such a tree does not exist in
our grammar; consequently, there is no derivation for (23a.).

(23) a. ∗ who did Alice say that t left?

b.

S

WHi SOA

who COMP S

that NPi VP

ε V

left

9 Actually, for (22b.) and (23b.) to be elementary trees, the wh-phrases must be
replaced with substitution nodes. We precompiled substitution here for better
readability.

68 4 Tree Adjoining Grammars

The examples in this section have shown that, for a large range of con-
straints for unbounded dependencies, it is possible to provide TAG analyses
respecting the linguistic principles of TAG such that these constraints follow
from the elementary trees, i.e., can be stated locally.

4.1.5 Constituency and Dependencies

As we have seen above, the derived tree gives the constituent structure of a
sentence. The derivation tree records how the elementary trees of the grammar
were put together in order to obtain the derived tree. In a lexicalized grammar,
each node in the derivation tree corresponds to (at least) one lexical item of
the input sentence.

For this section we adopt the linguistic principles explained above and
we assume following (Frank, 1992; Frank, 2002) that all functional elements
(complementizers, determiners, auxiliaries, negation) are part of the elemen-
tary trees of the lexical item they are associated with. Under this assumption,
each substitution or adjunction corresponds to the application of a predicate
to one of its arguments. Consequently, the derivation tree gives us the set
of predicate-argument dependencies of a sentence and therefore the deriva-
tion tree is close to a semantic dependency graph (see Candito and Kahane
(1998)).

This is the principal reason why in most approaches to LTAG semantics,
semantics is computed on the derivation tree (Candito and Kahane, 1998;
Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 2003; Kallmeyer and
Romero, 2008) or, if two synchronous TAGs are used, the derivation tree can
be considered the interface structure that links syntax to semantics (Shieber,
1994; Nesson and Shieber, 2006; Han, 2002).10

As an illustration, Figs. 4.8–4.13 show the analyses for the examples (24)–
(29). (24) and (25) are simple examples for substitutions of NP and PP ar-
guments. (26)–(28) are different constructions involving clausal complements.
(26) is an example of a tensed complement clause; (27) is an ECM construc-
tion, i.e., the verb selects for an infinitival complement while assigning an
accusative case to the subject of this complement.11 (28) is an example of a
control verb. Finally, (29) is a raising construction.

(24) John buys Bill a book

(25) John gives a book to Mary

(26) Bill hopes that John wins

(27) John expects [Bill to win]

10 Note, however, that in some cases the derivation tree is not exactly the semantic
dependency structure (Rambow, Vijay-Shanker, and Weir, 1995; Dras, Chiang,
and Schuler, 2004; Frank and van Genabith, 2001).

11 The case assignment is handled via features.

4.1 Introduction to Tree Adjoining Grammars 69

NP

John

elementary trees:
S

NP↓ VP

V NP↓ NP↓
buys

NP

Bill

NP

a book

derivation tree:
buys

1 22 23

John Bill a book

Fig. 4.8. Elementary trees and derivation tree for (24)

elementary tree for gives:
S

NP↓ VP

V NP↓ PP

gives P NP↓
to

derivation tree:
gives to

1 22 232

John a book Mary

Fig. 4.9. Elementary trees and derivation tree for (25)

NP

Bill

elementary trees:

S

NP↓ VP

V S∗

hopes

S

Comp S

that NP↓ VP

V

wins

NP

John

derivation tree:
wins

ε 1

hopes John

1

Bill

Fig. 4.10. Elementary trees and derivation tree for (26)

elementary trees:
S

NP↓ VP

V S∗

expects

S

NP↓ VP

to win

derivation tree:
to win

ε 1

expects Bill

1

John

Fig. 4.11. Elementary trees and derivation tree for (27)

(28) John persuades Bill [PRO to leave]

(29) John seems to like Bill

70 4 Tree Adjoining Grammars

elementary trees:
S

NP↓ VP

V NP↓ S∗

persuades

S

NP VP

PRO to leave

derivation tree:
to leave

ε

persuades

1 22

John Bill

Fig. 4.12. Elementary trees and derivation tree for (28)

elementary trees:

VP

V VP∗

seems

S

NP↓ VP

VP NP↓
to like

derivation tree:
to like

1 2 22

John seems Bill

Fig. 4.13. Elementary trees and derivation tree for (29)

4.2 Equivalent Formalisms

4.2.1 Tree-Local MCTAG

For a range of linguistic phenomena, it has been proposed to separate the
elementary trees of a TAG into distinct subtrees that can be adjoined to or
substituted into different nodes in an already derived tree. A TAG where
the elementary trees are grouped into sets is called a multicomponent TAG
(MCTAG) (Joshi, Levy, and Takahashi, 1975; Weir, 1988). Depending on how
the trees from a multicomponent are used, we distinguish different types of
MCTAGs.

Definition 4.16 (MCTAG).
A multicomponent TAG (MCTAG) is a tuple G = 〈N,T, S, I, A,A〉 where

GTAG := 〈N,T, S, I, A〉 is a TAG with elementary trees I ∪ A, and A is a
partition of I ∪A. A is called the set of elementary tree sets.12

For tree-local MCTAG we require that 1) whenever a tree from a tree set is
used, all other trees from the same set must be used as well and 2) all trees from
12 Note that this definition does not exclude the possibility that the same tree occurs

in different sets or even several times in the same set. In this case, we consider
that there are different trees that look exactly the same (i.e., that are isomorphic
while having identical labels).

Furthermore, this definition differs from the definition in (Weir, 1988) in the
sense that Weir defines elementary tree sets as sequences of elementary trees.
However, the usual practice in more recent MCTAG publications is a definition
as sets, which was actually already adopted by the first introduction of MCTAG
under the name of simultaneous TAG in (Joshi, Levy, and Takahashi, 1975).

4.2 Equivalent Formalisms 71

the same tree set must be added (adjoined or substituted) to nodes belonging
to the same elementary tree. In the following, we will give a formalization of
this property in terms of the underlying TAG derivation trees allowed in a
tree-local MCTAG. In this derivation tree, the root must be labelled by an
initial tree α such that the singleton {α} is in the grammar. Furthermore, for
every pair of trees γ1, γ2 from the same elementary set and for every node v
in the derivation tree, the number of γ1-nodes among the daughters of v must
be the same as the number of γ2-nodes among the daughters of v.

Definition 4.17 (Tree-locality condition).
Let G = 〈N,T, S, I, A,A〉 be an MCTAG, GTAG := 〈N,T, S, I, A〉. Let

D = 〈V,E, r〉 be the derivation tree of a saturated derived initial tree in GTAG.
D is a tree-local TAG derivation tree in G iff
(TL) {l(r)} ∈ A and for every Γ ∈ A, γ1, γ2 ∈ Γ and v ∈ V :
|{v′ | 〈v, v′〉 ∈ E and l(v′) = γ1}| = |{v′ | 〈v, v′〉 ∈ E and l(v′) = γ2}|.

Note that this characterization is different from the original definition of
tree-locality that is based on a grouping of the elementary tree instances
into instances of elementary tree sets. The original definition assumes that
elementary tree instances, when used during a derivation, come in a specific
set instance. The elements of such a set must all attach to nodes from the
same elementary tree. Clearly, if our condition (TL) is satisfied, then we can
partition the daughters of a node v into sets such that each set represents
a tree set instance and the original tree-locality constraint is satisfied with
respect to these sets.

Our formulation of tree-locality for MCTAG is taken from Kallmeyer
(2009). It is motivated by the fact that its checking requires only counting
and no grouping into tree sets. For parsing, our formulation of tree-locality is
therefore preferable.

The tree language of a tree-local MCTAG G is then the subset of the tree
language of GTAG that can be derived with a tree-local TAG derivation tree
with respect to G.

Tree-local MCTAGs are equivalent to TAGs since the possible adjunctions
in a single elementary tree can be precompiled and encoded in the adjunction
constraints. However, this transformation might considerably increase the size
of the grammar since, for a given elementary tree γ, we need a copy of γ in
the TAG for every possible combination of adjunctions in γ. This is the reason
why the universal recognition problem for tree-local MCTAG is NP-complete
(Søgaard, Lichte, and Maier, 2007; Nesson, Satta, and Shieber, 2008), i.e.,
recognition in the size of the grammar is NP-complete.

More recent proposals of MCTAG variants that are equivalent to TAG
are k-TT-MCTAG (Kallmeyer and Parmentier, 2008) and tree-local MCTAG
with flexible composition and k-delayed tree-local MCTAG (Joshi, Kallmeyer,
and Romero, 2003; Chiang and Scheffler, 2008). Kallmeyer (2009) presents an
extensive overview of different types of MCTAGs.

72 4 Tree Adjoining Grammars

4.2.2 Linear Indexed Grammars

Indexed grammars were introduced by Aho (1968). An indexed grammar looks
like a CFG except that the non-terminals are equipped with stacks of indices.

Definition 4.18 (Indexed grammar).
An indexed grammar is a tuple 〈N,T, I, P, S〉 where

• N , T and I are pairwise disjoint alphabets, non-terminals, terminals and
indices,

• P is a finite set of productions that are of the form
– A→ α or
– A→ Bf or
– Af → α
with A,B ∈ N, f ∈ I, α ∈ (N ∪ T)∗,

• S ∈ N is the start symbol.

In a derived sentential form x, non-terminals can be equipped with stacks
of indices, i.e., x ∈ (NI∗∪T)∗. The first kind of production works like context-
free productions while copying the stack of A to all non-terminals in α. The
second kind of production adds a symbol to the stack of A while replacing A
with B. The third kind of production deletes a symbol f from the stack of A
and then works like the first kind of production.

An indexed grammar is called a linear indexed grammar (LIG) (Gazdar,
1988; Vijay-Shanker, 1987) if in a production A→ α or Af → α the stack of
A is copied only to one non-terminal in α.

We write the productions in a LIG as follows:

• A[. . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j
= i, Xi ∈ N .
• A[. . .] → B[f . . .]
• A[f . . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j
= i, Xi ∈ N .

The intuition behind the equivalence of TAG and LIG is that, whenever
we perform an adjunction in a TAG, we have to keep track of the adjunction
site while traversing the adjoined tree since this is the node we have to go
back to after having passed the foot node. This keeping track can be done
on a stack. Since this stack needs to be available only at the foot node, it is
enough to pass it along the spine of the auxiliary tree (the path from root
to foot node). This can be modelled with a LIG where the single node in a
right-hand side that inherits the stack corresponds to the node on the spine.

4.2.3 Combinatory Categorial Grammars

Besides being shown to be equivalent to LIG, TAG has also been shown to
be equivalent to certain variants of Combinatory Categorial Grammar (CCG)
(Steedman, 2000). A CCG consists of a lexicon that maps terminal symbols
to categories of the form A/B or A\B. Depending on the categories, adjacent

4.2 Equivalent Formalisms 73

constituents can be combined in certain ways. The possible type of combina-
tions are specified by a set of combinatory rules.

Definition 4.19 (Combinatory Categorial Grammar).
A Combinatory Categorial Grammar is a tuple 〈N,T, f,R, S〉 where

• N and T are pairwise disjoint alphabets, the non-terminals (atomic cate-
gories) and the terminals (lexical items),

• R is a finite set of combinatory rules (see below),
• f is a function that maps elements of T ∪ {ε} to finite subsets of C(N),

the set of categories where
– N ⊆ C(N), and
– if c1, c2 ∈ C(N), then (c1/c2) ∈ C(N) and (c1\c2) ∈ C(N).

• S ∈ N is the start category.

Depending on which types of combinatory rules are allowed, we obtain
different types of categorial grammars. The version that is weakly equivalent
to TAG allows for four types of combinatory rules. Let x, y, z1, . . . be variables
over C(N) and |i a variable over {/, \}. Then the four rules are defined as
follows:

1. Forward application:
(x/y)y −→ x

2. Backward application:
y(x\y) −→ x

3. Generalized forward composition: for some n ≥ 1,

(x/y)(. . . (y|1z1)|2 . . . |nzn) −→ (. . . (x|1z1)|2 . . . |nzn)

4. Generalized backward composition: for some n ≥ 1,

(. . . (y|1z1)|2 . . . |nzn)(x\y) −→ (. . . (x|1z1)|2 . . . |nzn)

There are two possibilities to restrict these rules in a specific CCG: The ini-
tial category possible for values of x can be restricted and the entire category
to which y is instantiated can be restricted.

The language of a CCG is the set of strings such that, starting from the
start symbol S, it is possible to derive a sequence of categories of the string
symbols:

L(G) = {a1 . . . an |S ∗−→ c1 . . . cn, ci ∈ f(ai), ai ∈ T ∪ {ε}, 1 ≤ i ≤ n}.

The crucial observation for the construction of a LIG for a given CCG
is that CCG categories can be seen as non-terminals equipped with a stack.
Function application amounts to pushing items on a stack while function
composition is a combination of pushing and popping.

The weak equivalence between TAG, LIG and CCG has been shown in
(Vijay-Shanker and Weir, 1994). See also (Jäger and Michaelis, 2004) for an
overview of the relevant literature.

74 4 Tree Adjoining Grammars

4.3 Summary

In this chapter, we have seen Tree Adjoining Grammar (TAG), an extension
of CFG that is mildly context-sensitive. TAGs have been extensively used
to model natural languages, and large-coverage implementations such as the
XTAG grammar have shown that many natural language phenomena can be
adequately modelled with TAG.

TAGs are tree-rewriting grammars. In contrast to CFGs, TAGs allow for
larger elementary structures and they allow not only for substitution but
also for adjunction. We have shown that TAGs have a range of nice formal
properties; they are in particular a substitution-closed Full AFL and their
languages satisfy a pumping lemma. From a linguistic point of view, a crucial
property of TAG is their extended domain of locality which enables a local
description of unbounded dependencies.

Problems

4.1. L3 := {anbncn |n ≥ 0}

1. Give a TAG (with adjunction constraints) that generates L3.
2. Show that TAG without adjunction constraints cannot generate L3.

(Hint: Any elementary tree must contain equal numbers of as, bs and cs.
And each auxiliary tree can be adjoined at its own root.)

4.2. Show that {anbncnambmcm |n,m ≥ 0} is a TAL.
Hint: The language L3 = {anbncn |n ≥ 0} is a TAL.

4.3. Show that {aibjaibj | i, j ≥ 0} is a TAL.
Hint: The copy language is a TAL.

4.4. Show that L := {a2n |n ≥ 0} is not a TAL using the (weak) pumping
lemma.

4.5. L4 := {anbncndn |n ≥ 0}, L5 := {anbncndnen |n ≥ 0}
1. Give a TAG generating L4.
2. Show that L5 is not a TAL using the weak pumping lemma.

Hint: Consider the word w = ac+1bc+1cc+1dc+1ec+1 with c being the con-
stant from the pumping lemma.

4.6. Propose elementary trees for the following sentences:

(30) John saw a man with a telescope

(31) Mary took a decision

4.7. Consider sentential subjects as in

4.3 Summary 75

(32) That John wins perplexes Bill

Do you prefer adding them by substitution or adding the matrix verb to the
sentential subject by adjunction (similarly to sentential complements)? (Note
that extraction out of sentential subjects is not allowed.) Give the elementary
tree for perplexes that you would choose.

4.8. Give the derivation trees for

(33) John obviously is likely to win

(34) Who do you think Bill says will win the race?

4.9. Give a LIG that generates the language L = {anbncndn |n ≥ 0}.

5

Parsing Tree Adjoining Grammars

This chapter treats different parsing techniques for TAG. We will extend the
standard algorithms for CFG, i.e., present a CYK parser, different types of
Earley algorithms and LR parsing for TAG.

5.1 A CYK Parser for TAG

5.1.1 The Recognizer

As we have seen in Chapter 3, a CYK algorithm is a non-directional bottom-
up parser. The first CYK parser for TAG was proposed in (Vijay-Shanker and
Joshi, 1985). Here, we present a formulation of this algorithm using deduction
rules, similar to the one given in (Kallmeyer and Satta, 2009).

To simplify the deduction rules needed for our CYK algorithm, we assume
that the trees in our TAG are such that each node has at most two daughters.
Every TAG can be easily transformed into a TAG satisfying this condition,
similarly to the transformation into Chomsky Normal Form for CFG. This
way, instead of processing the daughters one after the other (as in a CYK with
dotted productions), we can move immediately from the set of all daughters
to their mother.

The algorithm simulates a bottom-up traversal of the derived tree. At each
moment, we are in a specific node in an elementary tree and we have already
traversed the part below. In particular, we know about the yield of this part.
In a TAG, either the subtree below a node contains a foot node, in which case
its yield is separated into two parts, the part on the left and the part on the
right of the foot node, or there is no foot node below, in which case the yield is
a single substring of the input. Furthermore, we need to keep track of whether
we have already adjoined at the node or not since at most one adjunction per
node can occur. For this, we can distinguish between a bottom and a top
position for the dot on a node. Bottom signifies that we have not performed
an adjunction. We can reach the top position either after having performed

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 5, c© Springer-Verlag Berlin Heidelberg 2010

78 5 Parsing Tree Adjoining Grammars

αn
NP

John

αs
S

NP↓ VPOA

V

to sleep

βinf

VPOA

V VP∗
NA

to try

βfin

VPNA

V VP∗
NA

seems

Fig. 5.1. The LTAG Graising for raising constructions

an adjunction or, if the node has no OA constraint, by moving upwards from
the bottom position.

In order to capture the relevant information about the current node and
the yield of the subtree below, our items have the following form:

[γ, pt, i, f1, f2, j]

where

• γ ∈ I ∪A,
• p is the address of a node in γ,
• subscript t ∈ {�,⊥} specifies whether substitution or adjunction has al-

ready taken place (�) or not (⊥) at p, and
• 0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indices with i, j indicating the left and right

boundaries of the yield of the subtree at position p and f1, f2 indicating the
yield of a gap in case a foot node is dominated by p. We write f1 = f2 = –
if no gap is involved.

For combining indices, we use the operator f ′ ⊕ f ′′ = f where f = f ′ if
f ′′ = –, f = f ′′ if f ′ = –, and f is undefined otherwise.

The algorithm walks bottom-up on the derivation tree. As an example let
us consider the trace for parsing (35) with the TAG Graising from Fig. 4.1,
repeated in Fig. 5.1. The trace is given in Fig. 5.2. It contains only the suc-
cessful items. While explaining the different rules of the CYK algorithm, we
will refer to this trace.

(35) John seems to sleep

We need two rules to process leaf nodes while scanning their labels, de-
pending on whether they have terminal labels or labels ε. These two cases are
covered by the two rules lex-scan and eps-scan. In both cases, the position
of the dot is the top since adjunction is not possible at these leaves.

Lex-scan: [γ, p�, i, –, –, i+ 1]
l(γ, p) = wi+1

Eps-scan:
[γ, p�, i, –, –, i]

l(γ, p) = ε

5.1 A CYK Parser for TAG 79

Item Rule

1. [αn, 1�, 0, –, –, 1] lex-scan (John)
2. [βfin , 11�, 1, –, –, 2] lex-scan (seems)
3. [αs, 211�, 2, –, –, 3] lex-scan (to sleep)
4. [βfin , 2�, 2, 2, 3, 3] foot-predict
5. [αn, ε⊥, 0, –, –, 1] move-unary from 1.
6. [βfin , 1⊥, 1, –, –, 2] move-unary from 2.
7. [αs, 21⊥, 2, –, –, 3] move-unary from 3.
8. [αn, ε�, 0, –, –, 1] null-adjoin from 5.
9. [βfin , 1�, 1, –, –, 2] null-adjoin from 6.
10. [αs, 21�, 2, –, –, 3] null-adjoin from 7.
11. [αs, 2⊥, 2, –, –, 3] move-unary from 10.
12. [βfin , ε⊥, 1, 2, 3, 3] move-binary from 4. and 9.
13. [αs, 1�, 0, –, –, 1] substitute 8.
14. [βfin , ε�, 1, 2, 3, 3] null-adjoin from 12.
15. [αs, 2�, 1, –, –, 3] adjoin 14. into 11.
16. [αs, ε⊥, 0, –, –, 3] move-binary from 13. and 15.
17. [αs, ε�, 0, –, –, 3] null-adjoin from 16.

Fig. 5.2. Trace for CYK parsing of (35) with Graising

•
wi+1
i i + 1

Lex-scan

•
ε

i i

Eps-scan

A

•
A∗
i j

Foot-predict

Fig. 5.3. Rules lex-scan, eps-scan and foot-predict

Our sample TAG Graising does not have leaves labelled ε; therefore eps-
scan is not applied here. The first three items in the trace in Fig. 5.2 result
from applications of lex-scan.

The rule foot-predict processes the foot node of auxiliary trees β ∈ A by
guessing the yield below the foot node, i.e., the portion of w spanned by the
gap. We use immediately the top position p� in the consequent item in order
to block adjunction at foot nodes, as usually required in TAG.

Foot-predict:
[β, p�, i, i, j, j]

β ∈ A, p foot node address in β, i ≤ j

The fourth item in our sample trace results from applying this rule. Note
that, besides this item, all other possibilities for the span of the gap below the
foot node (delimited by positions i and j) are guessed as well. We left them
out in the trace since they are not successful.

80 5 Parsing Tree Adjoining Grammars

The first three rules are the rules that introduce axioms, i.e., their an-
tecedent set is empty. They are depicted in Fig. 5.3.

When moving up inside a single elementary tree, we either move from
only one daughter to its mother, if this is the only daughter, or move from the
set of both daughters to the mother node. In the latter case, the two yields
must be adjacent. These two moves are performed by means of the operations
move-unary and move-binary:

Move-unary:
[γ, (p · 1)�, i, f1, f2, j]

[γ, p⊥, i, f1, f2, j]
node address p · 2
does not exist in γ

Move-binary:
[γ, (p · 1)�, i, f1, f2, k], [γ, (p · 2)�, k, f ′1, f

′
2, j]

[γ, p⊥, i, f1 ⊕ f ′1, f2 ⊕ f ′2, j]

The two rules for moving up in the tree are depicted in Fig. 5.4. If we want
to generalize this to TAGs with an arbitrary number of daughters per node,
we have to replace these two rules with a single new rule that moves from the
set of all completed daughter items to the mother node (see the solution of
Problem 5.1). Alternatively, we can of course introduce active items and add
the daughters one after another to the already completed part of a subtree
(see the solution of Problem 5.2).

Examples for such moves are the items 5–7 in our sample trace that are
obtained from unary moves, i.e., from moving from a unary daughter to its
mother. In the case of a unary move, the information about a gap below a
foot node is passed to the mother node. In the case of a binary move, either
none of the daughters contains a gap or one of them does and it needs to
be passed to the mother. This is obtained by using the operator ⊕ defined
above for combining the gap information from the two antecedent items. An
example for a binary move is item 12, resulting from combining item 9 (first
daughter of the root of βfin) and item 4 (second daughter of the root of βfin).

For nodes that do not require adjunction, we can move from the bottom
position of the node to its top position. This is done by the rule null-adjoin:

Null-adjoin:
[γ, p⊥, i, f1, f2, j]
[γ, p�, i, f1, f2, j]

fOA(γ, p) = 0

Examples for this are items 8–10 in Fig. 5.2
The following rule substitute performs a substitution. I.e., it is applied

when reaching the root of an initial tree that can be substituted at position
p in some elementary tree γ.

Substitute:
[α, ε�, i, –, –, j]
[γ, p�, i, –, –, j]

l(α, ε) = l(γ, p), γ(p) a substitution node

5.1 A CYK Parser for TAG 81

Move-unary:

γ A

•
B

i j

�
γ

A•

B

i j

Move-binary:

γ A

•
B C

i k

γ A

B
•
C

k j

�
γ

A•

B C

i j

Fig. 5.4. Rules move-unary and move-binary

Null-adjoin: γ
A•

i j

� γ
•
A

i j

Substitute:

•
A

α

i j

�
γ

•
A
i j

Adjoin:

•
A

β

A∗
i f1 f2 j

γ
A•

f1 f2

� γ
•
A

i j

Fig. 5.5. Rules null-adjoin, substitute and adjoin

An example is item 13 that results from substituting the completed αn

tree (item 8) into the node at position 1 in the tree αs.

82 5 Parsing Tree Adjoining Grammars

Similarly, the rule adjoin adjoins an auxiliary tree β at p in γ, under the
precondition that the adjunction of β at p in γ is allowed. This rule is applied
when reaching the root node of β, i.e., once β has been completely recognized.

Adjoin:
[β, ε�, i, f1, f2, j], [γ, p⊥, f1, f ′1, f

′
2, f2]

[γ, p�, i, f ′1, f
′
2, j]

β ∈ fSA(γ, p)

An example for adjoin is item 15., obtained form adjoining the tree βfin

(item 14) to the VP node (address 2) of the αs tree, item 11.
The goal items are all [α, ε�, 0, –, –, n] where α ∈ I with l(α, ε) = S. In

other words, the algorithm aims at finding an initial tree with root label S
that spans the entire input.

5.1.2 Complexity

In order to determine the complexity of this algorithm, we have to give an
upper bound for the number of applications of the adjoin operation. We have
|A| possibilities for β, |A∪I| for γ and m for p where m is the maximal number
of internal nodes in an elementary tree. The six indices i, f1, f ′1, f

′
2, f2, j range

from 0 to n. Consequently, adjoin can be applied at most |A||A∪I|m(n+1)6

times and therefore, the time complexity of this algorithm is O(n6).
A problem of the CYK algorithm is that it does not use any prediction

to restrict the number of parse trees obtained bottom-up. As a consequence,
as argued in (Joshi and Schabes, 1997), not only the worst-case but also the
best-case complexity is O(n6).

5.2 An Earley Parser for TAG

5.2.1 Introduction

As mentioned above, the CYK algorithm has worst-case and best-case time
complexity O(n6). The reason for this is that, just as in the CFG version
of the CYK algorithm, too many partial trees are produced that are not
pertinent to the final parse tree. This is due to the pure bottom-up approach.
No predictive information is used to restrict the search space during parsing.
In order to avoid this problem, we now add a predict operation. The technique
is the same as in the case of the Earley algorithm for CFG.

The overall idea of Earley parsing is to perform a left-to-right scanning
of the input string while building partial parse trees in a bottom-up fashion
and using top-down predictions to restrict the set of possible parse trees. The
first proposal of an Earley parsing algorithm for TAG is (Schabes and Joshi,
1988). In the following, we present the algorithm from (Joshi and Schabes,
1997).

Recall that in the case of CFG, we distinguish between predicted and
completed categories in the right-hand side of a production. Therefore, we

5.2 An Earley Parser for TAG 83

need a dot that marks the position up to which we have already recognized
a right-hand side: Everything to the left of the dot has been completed while
everything to the right of the dot has been predicted. A dotted production
S → NP • VP for instance signifies that we have predicted an S consisting
of an NP and a VP and, so far, we have already seen the NP. In order to
complete the S, we still need to find an adjacent VP.

In the case of TAG, we also use a dot that is positioned to the left or right
of some node in an elementary tree. Now, everything that is to the left and,
if the dot is already on the right, also everything that is below the node in
question has been completed while the rest of the elementary tree has been
predicted. However, in addition to being left or right of a node, we need to
keep track of whether we have performed an adjunction or not. Therefore,
just like in the CYK algorithm for TAG, we need to distinguish between top
and bottom and we end up with four different positions around a node: left
above (la), left below (lb), right above (ra) and right below (rb).

Let us for the moment assume a TAG without substitution nodes. Later,
we will extend the algorithm to deal with substitution. The parser starts
with predicting every initial tree with root symbol S. In the beginning, since
nothing has been recognized, we are in position la of the root node. The
general idea of how to traverse the derived tree during parsing and how to
move from one elementary tree γ to an adjoined tree β and back again is the
following: Whenever we are left above a node (position la), we can predict an
adjunction and start the traversal of the adjoined tree. Whenever we are left
below a foot node, we can move back to the adjunction site and traverse the
tree below it. Whenever we are right below an adjunction site, we continue the
traversal of the adjoined tree at the right of its foot node. Finally, whenever
we are right above the root of an auxiliary tree, we can move back to the right
of the adjunction site. This is depicted in Fig. 5.6.

5.2.2 Items

Partial results in our parsing algorithm consist of positions of dots in elemen-
tary trees plus the span of the part of the tree that we have already recognized.
Therefore, in our items we need to record the name of an elementary tree, a
node address in this tree, the position of the dot (la, lb, ra or lb) with re-
spect to this node, the indices delimiting the span of the part of the tree that
we have already seen and a flag telling us whether we have already adjoined
something to this node. This flag is only relevant when going back from an
adjoined auxiliary tree to the attachment site in the original tree. It makes
sure the corresponding operation can be performed only once per adjunction
site.

Our items have the form

[γ, p, pos, i, j, k, l, adj]

where

84 5 Parsing Tree Adjoining Grammars

← upper part of γ

•A•

•A•

← adjoined tree β

•A•

•A•
← lower part of γ

Fig. 5.6. Simulation of adjunction in the Earley algorithm

• γ ∈ I ∪A is an elementary tree,
• p is the Gorn address of a node in γ,
• pos ∈ {la, lb, rb, ra} is the position of the dot on this node,
• i, j, k, l are indices on the input string, where i, l ∈ {0, . . . , n}, j, k ∈

{0, . . . , n} ∪ {–}, n = |w|. As in the CYK case, i is the position preceding
the leftmost element in the span of our item and l the position following
the rightmost element. The indices j, k characterize the gap below a foot
node if there is such a gap. Otherwise, their values are –.

• adj ∈ {0, 1} is a flag. It prevents multiple adjunctions at a single node. A
value adj = 1 signifies that something has already been adjoined to the
dotted node.

The different positions of a dot on a node tell us about the part of the tree
that has been recognized: An item of the form [γ, p, la, i, j, k, l, 0] signifies that
in the tree γ, we have recognized the part on the left of the dotted node and
that the yield of the sisters of the dotted node to its left ranges from i to l. If
γ is an auxiliary tree, the gap in the yield of γ caused by the foot node ranges
from j to k. If an item has the form [γ, p, lb, i,−,−, i, 0], then this means that
the yield of the subtree of γ that is below the dotted node starts at position i.
An item of the form [γ, p, rb, i, j, k, l, adj] tells us that we have recognized the
part below the dotted node (except maybe for some adjunction at the node
itself) and the yield of this part ranges from i to l with, if applicable, a gap
between positions j and k. Furthermore, if adj = 0, nothing has been adjoined
so far to the dotted node, while if adj = 1, an adjunction has already taken
place. If an item has the form [γ, p, ra, i, j, k, l, 0], then we have completely
recognized the part below the dotted node, including any adjunction at the

5.2 An Earley Parser for TAG 85

• wl+1
wi+1 . . . wl

Fig. 5.7. Operation ScanTerm of the Earley algorithm

node itself. In γ, the part including the sisters to the left of the dotted node
and everything below it spans the part of the input that is characterized by
the indices i, j, k, l.

Note that within these items there is no information about the start index
of the entire tree γ. In positions above, we only know the yield of the node
and its sisters to the left.

5.2.3 Inference Rules

As a notation, in the following, for every tree γ and every node v in γ with
node address p, l(γ, p) = l(v) is the label of v and γ(p) denotes v. Similarly,
fSA(γ, p) = fSA(v) and fOA(γ, p) = fOA(v).

We start by predicting all initial trees with root symbol S. The dot is on
the root (node address ε) in the position left above (la).

Initialize:
[α, ε, la, 0, –, –, 0, 0]

α ∈ I, l(α, ε) = S

As in the CFG case, we have rules that predict, rules that scan and rules
that complete. Let us first consider the scanning rules that apply whenever
we are on the left of a leaf that might be scanned. If the label of the leaf is a
terminal, we can apply the operation scanTerm and if it is ε, we can apply
scan-ε. The operation scanTerm is depicted in Fig. 5.7.

ScanTerm:
[γ, p, la, i, j, k, l, 0]

[γ, p, ra, i, j, k, l + 1, 0]
l(γ, p) = wl+1

Scan-ε:
[γ, p, la, i, j, k, l, 0]
[γ, p, ra, i, j, k, l, 0]

l(γ, p) = ε

There are different types of predictions in this algorithm. The first predic-
tion operation occurs when being left above a node that allows for adjunction.
Then we can predict the corresponding auxiliary trees. This is done by the
operation predictAdjoinable, which is depicted in Fig. 5.8.

86 5 Parsing Tree Adjoining Grammars

•
A

wi+1 . . . wl

•
A

⇒

A∗

Fig. 5.8. Operation PredictAdjoinable of the Earley algorithm

•A

A
⇒

A∗
•

Fig. 5.9. Operation PredictAdjoined of the Earley algorithm

PredictAdjoinable:
[γ, p, la, i, j, k, l, 0]
[β, 0, la, l,−,−, l, 0]

β ∈ fSA(γ, p)

For nodes that do not require adjunction, we can also predict that no
adjunction occurs. In this case, we move simply from position left above to
position left below:

PredictNoAdj:
[γ, p, la, i, j, k, l, 0]
[γ, p, lb, l,−,−, l, 0]

fOA(γ, p) = 0

After having predicted an adjoined auxiliary tree β, we traverse β until we
reach the position left below its foot node. Then we have to predict the tree γ
in which the adjunction of β has taken place. Note that this prediction is done
without checking whether a matching γ-item exists that allowed previously
for the prediction of β. In other words, it can happen that we predict going
back to a node that we actually have not seen yet. This is why, as we will
explain later, this algorithm is not prefix valid.

The prediction of the possible adjunction site when reaching a foot node
is performed by the predictAdjoined operation that is depicted in Fig. 5.9.

PredictAdjoined:
[β, pf , lb, l,−,−, l, 0]
[γ, p, lb, l,−,−, l, 0]

pf foot node address in β,
β ∈ fSA(γ, p)

Once we have finished the recognition of the subtree below an adjunction
site, we combine this with the item of the adjoined auxiliary tree where every-
thing to the left of the foot node has been processed. This is the first complete
operation since here, we are not predicting anything. Instead, we can move
the dot over a foot node since we have finished the recognition of the subtree
below it. We call this operation completeFoot; it is depicted in Fig. 5.10.

5.2 An Earley Parser for TAG 87

•A ⇒

wi+1 . . . wl

A

A∗
•

A

A∗
•

Fig. 5.10. Operation CompleteFoot of the Earley algorithm

•A ⇒

wi+1 . . . wl

•
A

wf+1 . . . wi

•
A

wf+1 . . . wl

Fig. 5.11. Operation CompleteNode of the Earley algorithm

CompleteFoot :
[γ, p, rb, i, j, k, l, 0], [β, pf , lb, i,−,−, i, 0]

[β, pf , rb, i, i, l, l, 0]
pf foot node address in β
β ∈ fSA(γ, p)

The second complete operation, completeNode, combines the part to
the left of a node with the part below the node. As a result, we obtain an
item with the dot right above the node. If there is a gap in one of the two
items because of a foot node, this gap is passed to the new item by using
the combination operation ⊕ from the CYK algorithm. CompleteNode is
depicted in Fig. 5.11.

CompleteNode:
[γ, p, la, f, g, h, i, 0], [γ, p, rb, i, j, k, l, adj]

[γ, p, ra, f, g ⊕ j, h⊕ k, l, 0]
l(β, p) ∈ N

Once we have finished the traversal of an auxiliary tree, i.e., we have
completely recognized the tree and the dot is right above the root node, we
continue in the tree where this auxiliary tree has been adjoined. This is done
by the adjoin operation, depicted in Fig. 5.12.

Adjoin:
[β, ε, ra, i, j, k, l, 0], [γ, p, rb, j, g, h, k, 0]

[γ, p, rb, i, g, h, l, 1]
β ∈ fSA(γ, p)

Note that, contrary to what one might expect, we remain in the position
right below the adjunction site. This is why we need the flag adj to prevent
multiple adjunctions. This flag is required to be 0 in the antecedent γ-item
and it is set to 1 in the consequent item. The combination with material to
the left, i.e., the move to the position right above, is done by a subsequent
application of completeNode.

88 5 Parsing Tree Adjoining Grammars

•
A

A∗
wi+1 . . . wj wk+1 . . . wl

•A ⇒

wj+1 . . . wk

•Aadj=1

wi+1 . . . wl

adj = 1 prevents the new item from being reused in another adjoin operation.

Fig. 5.12. Operation Adjoin of the Earley algorithm

Besides these, we need four operations to move from a dotted node to the
leftmost daughter or to the next sister on the right or to the mother node.

MoveDown:
[γ, p, lb, i, j, k, l, 0]

[γ, p · 1, la, i, j, k, l, 0]
γ(p · 1) is defined

MoveRight:
[γ, p, ra, i, j, k, l, 0]

[γ, p+ 1, la, i, j, k, l, 0]
γ(p + 1) is defined

MoveUp:
[γ, p ·m, ra, i, j, k, l, 0]

[γ, p, rb, i, j, k, l, 0]
γ(p · m + 1) is not defined

Goal items are all items of the form [α, 0, ra, 0,−,−, n, 0], α ∈ I, l(α, ε) =
S. In other words, parsing is successful if we manage to obtain an item where
the dot is right above the root of an initial tree, this root node has label S,
and the tree spans the entire input.

For illustration, let us consider the example in Fig. 5.13, assuming a gram-
mar that contains the two trees in (36).

(36) α:
S

c
β:

S

a S∗

The first column of the table shows the item, the second depicts the dotted
tree of this item, i.e., the elementary tree with the dot at the position given
by the item, and the third column gives the rule that has led to the creation
of this item.

5.2.4 Extending the Algorithm to Substitution

At least for natural languages, we need the substitution operation. Otherwise,
it is not possible to respect the principle of elementary tree minimality that
excludes the existence of more than one lexical predicate in a single elementary
tree.

In the following, we will extend the above algorithm to cover substitution
as well. For this, we need an operation that predicts a substitution whenever

5.2 An Earley Parser for TAG 89

Item dotted tree rule

[α, ε, la, 0,−,−, 0, 0]

•S

c
Initialize

[β, ε, la, 0,−,−, 0, 0]

•S

a S∗ PredictAdjoinable

[β, ε, lb, 0,−,−, 0, 0]
•S

a S∗ PredictNoAdj

[β, 1, la, 0,−,−, 0, 0]
S

•a S∗ MoveDown

[β, 1, ra, 0,−,−, 1, 0]
S

a• S∗ ScanTerm

[β, 2, la, 0,−,−, 1, 0]
S

a •S∗ MoveRight

[β, 2, lb, 1,−,−, 1, 0]
S

a •S∗ PredictNoAdj

[α, ε, lb, 1,−,−, 1, 0]
•S

c
PredictAdjoined

[α, 1, la, 1,−,−, 1, 0]
S

•c
MoveDown

[α, 1, ra, 1,−,−, 2, 0]
S

c•
ScanTerm

[α, ε, rb, 1,−,−, 2, 0]
S•

c
MoveUp

[β, 2, rb, 1, 1, 2, 2, 0]
S

a S∗•
CompleteFoot

[β, 2, ra, 0, 1, 2, 2, 0]
S

a S∗• CompleteNode

[β, ε, rb, 0, 1, 2, 2, 0]
S•

a S∗ MoveUp

[β, ε, ra, 0, 1, 2, 2, 0]
S•

a S∗ CompleteNode

[α, ε, rb, 0,−,−, 2, 1]
S•

c
Adjoin

[α, ε, ra, 0,−,−, 2, 0]
S•

c
CompleteNode

Fig. 5.13. Sample Earley parse for input ac (only successful items)

90 5 Parsing Tree Adjoining Grammars

we are left of a substitution node and we need another operation that com-
pletes a substitution whenever we arrive at the right of the root node of the
substituted initial tree. Joshi and Schabes (1997) trigger the first operation
when being left above a substitution node and, once the substitution gets com-
pleted, they reach the position right above the substitution node. However,
since in our definition of a TAG, adjunction is not allowed for substitution
nodes anyway, we can just as well first move to the position left below the
substitution node, applying the rule predictNoAdj, and predict substitution
from here. The advantage is that there are less indices to consider and, in the
completion operation, we have even less antecedent items. When completing
the substitution, we move to the position right below the substitution node,
and then, using completeNode, the dot ends up right above the substitution
node.

The two additional rules for prediction and completion of substitutions are
predictSubst and substitute:

PredictSubst:
[γ, p, lb, i, –, –, i, 0]
[α, ε, la, i, –, –, i, 0]

γ(p) a substitution node,
α ∈ I, l(γ, p) = l(α, ε)

Substitute:
[α, ε, ra, i, –, –, j, 0]
[γ, p, rb, i, –, –, j, 0]

γ(p) a substitution node,
α ∈ I, l(γ, p) = l(α, ε)

Note that the substitute operation does not check whether a correspond-
ing γ-item which had triggered the prediction of α exists. This is why it is
actually not a true complete operation and we therefore call it substitute.
The check whether a corresponding γ-item exists is done in the next step,
when applying completeNode in order to combine the part to the left of the
substitution node with the part below it. If no appropriate part to the left
exists, we cannot generate more items from the result of our substitute.

We chose to define substitute this way because it follows the strategy
adopted in the case of adjunction where adjoin yields an item with position
right below the adjunction site and only the following completeNode moves
up and combines the part below with material to the left. This allows for a
higher degree of factorization in our parsing operations.

In contrast to this, in (Joshi and Schabes, 1997), the complete operation
for substitution is a true complete operation. It has two antecedent items since
it depends also on the γ-item with position left above the substitution node
that has triggered the substitution.

Now let us consider as a further example the TAG Graising from Fig. 5.1.
We take again the sentence (35), repeated here as (37).

(37) John seems to sleep

The CYK trace for parsing this sentence was shown in Fig. 5.2. The Earley
trace can be found in Fig. 5.14. Some of the items are left out. The items 3–12
show how substitution is done: In the substitution node, we first move to the

5.2 An Earley Parser for TAG 91

Item Rule

1. [αs, ε, la, 0, –, –, 0, 0] initialize
2. [αs, ε, lb, 0, –, –, 0, 0] predictNoAdj from 1.
3. [αs, 1, la, 0, –, –, 0, 0] moveDown from 2.
4. [αs, 1, lb, 0, –, –, 0, 0] predictNoAdj from 3.
5. [αn, ε, la, 0, –, –, 0, 0] predictSubst from 4.
6. [αn, ε, lb, 0, –, –, 0, 0] predictNoAdj from 5.
7. [αn, 1, la, 0, –, –, 0, 0] moveDown from 6.
8. [αn, 1, ra, 0, –, –, 1, 0] scanTerm from 7.
9. [αn, ε, rb, 0, –, –, 1, 0] moveUp from 8.
10. [αn, ε, ra, 0, –, –, 1, 0] completeNode from 9. and 7.
11. [αs, 1, rb, 0, –, –, 1, 0] substitute from 10.
12. [αs, 1, ra, 0, –, –, 1, 0] completeNode from 11. and 3.
13. [αs, 2, la, 0, –, –, 1, 0] moveRight from 12.

. . .
14. [βfin , 0, ra, 1, 1, 2, 3, 0] . . .
15. [αs, 2, rb, 1, –, –, 3, 1] adjoin
16. [αs, 2, ra, 0, –, –, 3, 0] completeNode from 15. and 13.

. . .
17. [αs, ε, ra, 0, –, –, 3, 0] moveUp, completeNode

Fig. 5.14. Trace for Earley parsing of (37) with Graising

position left below (with predictNoAdj), then we predict the substituted
tree αn, traverse it, and when reaching the position right above the root of
αn, we substitute this into an appropriate substitution node (here position
1 in αs) without checking whether the prediction was done from this node.
Only in the next step with completeNode do we combine this item with the
one where we were in position left above the substitution node.

5.2.5 The Parser

So far, we have seen an Earley-type recognition algorithm for TAG. We can
extend the recognizer to a parser by storing each new item together with
pointers to the antecedent items that lead to the creation of this item. In the
case of the complete operations and adjoin, we have two antecedent items, i.e.,
we have to store a pair of pointers. In all other cases we have one antecedent
item.

Note that it is possible that the same item can be obtained in different
ways. In this case, we store the item only once but for every new rule applica-
tion leading to this item, we add a new pointer/pair of pointers. Consequently,
we actually equip our items in the chart with sets (or lists) of sets of pointers.

The chart together with these pointers can be seen as a compact repre-
sentation of the parse trees. Starting from the goal items and following the
pointers, one can read off the single parse trees.

92 5 Parsing Tree Adjoining Grammars

5.2.6 Properties of the Algorithm

Complexity

The worst-case complexity can be reached by the adjoin operation:

[β, ε, ra, i, j, k, l, 0], [γ, p, rb, j, g, h, k, 0]
[γ, p, rb, i, g, h, l, 1]

β ∈ fSA(γ, p)

This rule can be applied at most |A||A ∪ I|m(n + 1)6 times where m is
the maximal number of internal nodes per elementary tree. This is because
we have at most |A| different possibilities for β, at most |A ∪ I| different
possibilities for γ and at most m different possibilities for p. The six different
indices i, j, g, h, k, l range from 0 to n, i.e., have n+ 1 possible values.

Consequently, the algorithm has an upper time bound of O(n6).
However, Joshi and Schabes (1997) report that the average complexity of

the parser is better. With unambiguous TAGs, the algorithm runs in time
O(n4), and on a large class of TAGs it takes even only linear time.

Valid Prefix Property

From the examples and from the explanations of what the algorithm does,
it can be seen that we obtain a goal item if and only if there is a successful
parse. More precisely, we obtain a goal item [α, ε, ra, 0, –, –, n, 0] if and only
if we can derive a tree γ from α such that γ ∈ T (G) and our input w is the
yield of γ.

However, it does not hold for every item in our chart that it is part of a
derivation starting from an initial α with root S such that the span of the
derived tree up to the dotted node is a prefix of a word in the language.
More concretely, we can have items [γ, p, rb, i, j, k, l, 0] such that there is no
derivation of a saturated derived tree α′ from an initial α involving γ where
the following holds: Let v′ be either the node v at position p in γ (if no
adjunction or substitution has occurred at v) or the root of the derived tree
that v has been replaced with (by adjunction or substitution). Then the yield
of α′ is such that the part to the left of v′ is between positions 0 and i, and
the part below v′ is between i and l.

The reason why this is so is that neither predictAdjoined nor adjoin
check for the existence of an item that has triggered the prediction of this
adjunction, i.e., the antecedent of the predictAjoinable rule that has first
introduced the auxiliary tree in question.

As a consequence, this Earley algorithm does not have the Valid Prefix
Property, i.e., we can have items [γ, p, pos, i, j, k, l, adj] such that there is no
word w′ in the string language of G with a prefix w1 . . . wl.

As an example, consider the TAG in Fig. 5.15 and the items for parsing
bccc given in this figure. None of the prefixes of bccc is a prefix of a word
in the string language since every word in the language has to start with a

5.2 An Earley Parser for TAG 93

α

S

d S

b

β
S

S∗ c

Every word in the language starts with d.
Input bccc leads (among others) to the following items:

Item Rule

1. [α, ε, la, 0, –, –, 0, 0] initialize
2. [β, ε, la, 0, –, –, 0, 0] predictAdjoinable from 1.

. . .
3. [β, 1, lb, 0, –, –, 0, 0]
4. [α, 2, lb, 0, –, –, 0, 0] predictAdjoined from 3.

. . .
5. [α, 2, rb, 0, –, –, 1, 0]
6. [β, 1, rb, 0, 0, 1, 1, 0] completeFoot form 3. and 5.

. . .
7. [β, ε, ra, 0, 0, 3, 4, 0] (after repeated adjunctions of β)
8. [α, 2, rb, 0, –, –, 4, 1] adjoin from 7. and 4.

Fig. 5.15. Non-prefix validity of the Earley parser

d. Therefore all items with an end position > 0, in particular the items 5–8,
violate the condition of prefix validity. Only after having processed the entire
input do we realize that the resulting parse tree must be a subtree of a larger
tree including a preceding d. The problem arises with the first application of
predictAdjoined, resulting in item 4. Here we predict that the adjunction
takes place at the lower S node (address 2) in the tree α, which was actually
not the case since the adjoinable tree β was predicted from the root (address
ε) of α.

5.2.7 Prefix Valid Earley Parsing

As illustrated with the example in Fig. 5.15, the interest of the valid prefix
property lies in the resulting capability of a left to right parser to detect
errors as soon as possible. However, ensuring this property for TAG might be
costly. Schabes and Joshi (1988) present a prefix valid Earley algorithm for
TAG. Essentially, the operation predictAdjoined and adjoin are defined
as complete operations, i.e., they check for the existence of the item that
has triggered the adjunction. Furthermore, adjoin moves immediately to the
position right above the adjunction site. In order to check for the existence
of the item triggering the adjunction, one needs to keep track not only of the
start of the yield of the sisters to the left but also of the yield of the entire
elementary tree. Schabes and Joshi (1988) report a complexity of O(n9) for
this Earley algorithm.

94 5 Parsing Tree Adjoining Grammars

Nederhof (1997; 1999) presents the first prefix valid Earley parser for TAG
with an O(n6) time bound. In his algorithm, Nederhof has deduction rules
with more than six different indices in the input. However, he argues that
some of these positions are not relevant for the application of the rule, i.e.,
the application of the rule does not depend on their value, they only occur
in one of the antecedents and therefore do not need to be compared to other
parts of the antecedent or copied to the consequent item. Consequently, these
indices do not increase the complexity of the algorithm. They can actually be
factored out since they are so-called don’t cares, and therefore this algorithm
has complexity O(n6).

In the following, inspired by (Nederhof, 1997; Nederhof, 1999), we modify
the above Earley parser such that the resulting algorithm is prefix valid while
still being of complexity O(n6). We need to introduce additional antecedents
in the rules predictAdjoined, completeFoot and adjoin. In all three rules
we have to check for the presence of the γ-item that has triggered the first
predictAdjoinable. For this check to be possible, it is not enough to know
about the start position of the span of a node and its sisters to the left, which
is what we currently encode as start position in items with position la. In
addition, we need to know the start position of the entire elementary tree. For
this reason, we add an additional index iγ to our items.

In order to factor out indices that are not relevant, we introduce values ∼
for “don’t care”. As a result, our item form is now

[γ, p, pos, iγ , i, f1, f2, j, adj]

with

• γ ∈ I ∪A, p a node position in γ;
• pos ∈ {la, lb, rb, ra} (iγ =∼ if pos = rb);
• iγ , i, f1, f2, j ∈ {0, . . . , |w|} ∪ {–,∼} indices;
• adj ∈ {0, 1} the adjunction flag.

As before, the index “–” indicates “undefined/not applicable” while an
index “∼” indicates “don’t care”. For the prefix valid algorithm, we extend
the deduction rules as mentioned above and, in addition, we introduce new
convert rules that factor out some of the indices, i.e., that replace them with
the value ∼ for “don’t care”.

The resulting deduction rules are listed in Fig. 5.16. The goal items are
all items of the form [α, 0, ra, 0, 0,−,−, n, 0], α ∈ I, l(α, ε) = S.

The only rule with more than six indices is completeNode. However, in
all applications of this rule, we have either g = – and h = – or j = – and
k = –; consequently there are never more than six indices involved. Therefore,
the time complexity of this algorithm is O(n6).

Note that it is crucial that, as in the non-prefix valid algorithm, after
having performed the adjunction, we are still in position right below the ad-
junction site. Only in the next complete step do we combine this with the

5.2 An Earley Parser for TAG 95

Initialize:
[α, ε, la, 0, 0, –, –, 0, 0]

α ∈ I, l(α, ε) = S

ScanTerm:
[γ, p, la, iγ , i, j, k, l, 0]

[γ, p, ra, i0, i, j, k, l + 1, 0]
l(γ, pγ · p) = wl+1

Scan-ε:
[γ, p, la, iγ , i, j, k, l, 0]

[γ, p, ra, iγ , i, j, k, l, 0]
l(γ, pγ · p) = ε

Convert-rb:
[γ, p, rb,∼, i, j, k, l, 0]

[γ, p, rb,∼, i,∼,∼, l, 0]
Convert-la I:

[γ, p, la, iγ , i, j, k, l, 0]

[γ, p, la, iγ ,∼,∼,∼, l, 0]

Convert-la II:
[γ, p, la, iγ , i, j, k, l, 0]

[γ, p, la,∼,∼,∼,∼, l, 0]

PredictNoAdj:
[γ, p, la, iγ , i, j, k, l, 0]

[γ, p, lb, iγ , i, j, k, l, 0]
fOA(γ, p) = 0

PredictAdjoinable:
[γ, p, la,∼,∼,∼,∼, l, 0]

[β, ε, la, l, l,−,−, l, 0]
β ∈ fSA(γ, p)

PredictAdjoined:

[β, pf , la, iβ , i,−,−, m, 0],
[γ, p, la, iγ ,∼,∼,∼, iβ , 0]

[γ, p, lb, iγ , m,−,−, m, 0]

β(pf) foot node,
β ∈ fSA(γ, p)

CompleteFoot:

[γ, p, rb,∼, i,∼,∼, l, 0],
[β, pf , la, iβ , m, –, –, i, 0],
[γ, p, la,∼,∼,∼,∼, iβ , 0]

[β, pf , rb,∼, m, i, l, l, 0]

β(pf) foot node,
β ∈ fSA(γ, p)

Adjoin:

[β, ε, ra, iβ , iβ , j, k, l, 0],
[γ, p, rb,∼, j, g, h, k, 0],

[γ, p, la,∼,∼,∼,∼, iβ , 0]

[γ, p, rb,∼, iβ , g, h, l, 1]

β ∈ fSA(γ, p)

CompleteNode:
[γ, p, la, iγ , f, g, h, i, 0], [γ, p, rb,∼, i, j, k, l, adj]

[γ, p, ra, iγ , f, g ⊕ j, h⊕ k, l, 0]
l(β, p) ∈ N

MoveDown:
[γ, p, lb, iγ , i, j, k, l, 0]

[γ, p · 1, la, iγ , i, j, k, l, 0]
MoveRight:

[γ, p, ra, iγ , i, j, k, l, 0]

[γ, p + 1, la, iγ , i, j, k, l, 0]

MoveUp:
[γ, p ·m, ra, iγ , i, j, k, l, 0]

[γ, p, rb,∼, i, j, k, l, 0]
γ(p · m + 1) is not defined

Fig. 5.16. Deduction rules for prefix valid Earley parsing in O(n6)

96 5 Parsing Tree Adjoining Grammars

part to the left and move to position right above. This is why in adjoin, all
indices except the end position iβ of the γ-item with the position left above
the adjunction site (the one that has triggered the adjunction) can be fac-
tored out. The algorithm in (Schabes and Joshi, 1988) moves immediately
to the position right above an adjunction site when finishing the adjunction.
Therefore, this algorithm has complexity O(n9).

As an example, Fig. 5.17 gives the trace of parsing aaaa with the TAG
for the copy language (only the successful items are listed). The trees in the
TAG for the copy language are repeated in (38):

(38) α
S

ε
βa

SNA

a S

S∗
NA a

βb

SNA

b S

S∗
NA b

Nederhof (1997; 1999) presents a slightly different Earley algorithm. But
he also keeps track of the start position of the yield of an entire elementary
tree and he argues in the same way that in his algorithm some of the indices
in the deduction rules can be factored out, since they are don’t cares, and
therefore his algorithm has complexity O(n6).

The prefix valid Earley algorithm presented here can be easily extended
to handle substitution as well (see the solution of Problem 5.4).

5.3 An LR Parser for TAG

5.3.1 Introduction

In the previous section, we have seen an Earley parser for TAG. The idea of
Earley is to restrict a bottom-up parser by top-down predictions. If we look
more closely at the different operations of the parser, we can see that only
some of the operations depend on the actual input. In particular, the top-down
predictions are made independently from the input. This observation (which
holds for the CFG case as well) leads to the idea to precompile predictions,
i.e., to compute them off-line, which results in LR parsing.

The acronym LR signifies the following: L stands for Left-to-right scanning
of the input while R stands for Right-to-left reduction. In other words, while
processing the input from left to right, we produce a rightmost derivation.

The bottom-up parsing technique used in an LR parser is a shift-reduce
parser: In the context-free case, we have a stack containing sentential forms
and the remaining input. There are two possible operations, an operation
shift that scans the next input symbol and pushes it onto the stack, and an
operation reduce that replaces the right-hand side of a production that can
be popped in reverse order from the stack by its left-hand side.

In an LR parser, we precompile predictions into states. Each state is a set
of dotted productions closed under prediction. The productions in a state tell

5.3 An LR Parser for TAG 97

Item Operation

1 [α, ε, la, 0, 0,−,−, 0, 0] Initialize

1-1 [α, ε, la, 0,∼,∼,∼, 0, 0] Convert-la I

1-2 [α, ε, la,∼,∼,∼,∼, 0, 0] Convert-la II

move into first βa

2 [βa, ε, la, 0, 0,−,−, 0, 0] PredictAdjoinable from 1-2

. . .
6 [βa, 2, la, 0, 0,−,−, 1, 0] PredictNoAdj, MoveDown, Scan, MoveRight

6-1 [βa, 2, la, 0,∼,∼,∼, 1, 0] Convert-la I

6-2 [βa, 2, la,∼,∼,∼,∼, 1, 0] Convert-la II

move into second βa

7 [βa, ε, la, 1, 1,−,−, 1, 0] PredictAdjoinable from 6-2

. . .
11 [βa, 2, la, 1, 1,−,−, 2, 0] PredictNoAdj, MoveDown, Scan, MoveRight

12 [βa, 2, lb, 1, 2,−,−, 2, 0] PredictNoAdj

13 [βa, 21, la, 1, 2,−,−, 2, 0] MoveDown

move back into lower part of first βa

14 [βa, 2, lb, 0, 2,−,−, 2, 0] PredictAdjoined from 13 and 6-1

15 [βa, 21, la, 0, 2,−,−, 2, 0] MoveDown

move back into lower part of α

16 [α, ε, lb, 2,−,−, 2, 0] PredictAdjoined from 15 and 1-1

. . .
19 [α, ε, rb,∼, 2,−,−, 2, 0] MoveDown, Scan-ε, MoveUp

19-1 [α, ε, rb,∼, 2,∼,∼, 2, 0] Convert-rb

move back into right part of first βa

20 [βa, 21, rb,∼, 2, 2, 2, 2, 0] CompleteFoot from 19-1, 15 and 1-2

21 [βa, 21, ra, 0, 2, 2, 2, 2, 0] CompleteNode from 20 and 15

. . .
24 [βa, 2, rb,∼, 2, 2, 2, 3, 0] MoveRight, Scan, MoveUp

24-1 [βa, 2, rb,∼, 2,∼,∼, 3, 0] Convert-rb

move back into right part of second βa

25 [βa, 21, rb,∼, 2, 2, 3, 3, 0] CompleteFoot from 24-1, 13, 6-2

26 [βa, 21, ra, 1, 2, 2, 3, 3, 0] CompleteFoot from 25, 13

. . .
29 [βa, 2, rb,∼, 2, 2, 3, 4, 0] MoveRight, Scan, MoveUp

30 [βa, 2, ra, 1, 1, 2, 3, 4, 0] CompleteNode 29, 11

31 [βa, ε, rb, 1, 1, 2, 3, 4, 0] MoveUp

32 [βa, ε, ra, 1, 1, 2, 3, 4, 0] CompleteNode 31, 7

second βa finished, back to first

33 [βa, 2, rb,∼, 1, 2, 2, 4, 1] Adjoin with 32, 24, 6-2

34 [βa, 2, ra, 0, 0, 2, 2, 4, 0] CompleteNode 33,6

35 [βa, ε,∼, rb, 0, 2, 2, 4, 0] Move Up

36 [βa, ε, ra, 0, 0, 2, 2, 4, 0] CompleteNode 35, 2

first βa finished, back to α

37 [α, ε, rb,∼, 0,−,−, 4, 1] Adjoin with 36, 19, 1-2

38 [α, ε, ra, 0, 0,−,−, 4, 0] CompleteNode 37, 1

Fig. 5.17. Sample trace for prefix valid Earley parsing of input word aaaa

98 5 Parsing Tree Adjoining Grammars

Productions: 1. S → a S b, 2. S → c

a

q0

S’ → •S
S → •a S b
S → •c

a q1
S → a • S b
S → •a S b
S → •c

S q2 S → a S • b

S c c b

q5 S’ → S• q4 S → c • q3 S → a S b•

Parsing table:
action goto
a b c S

q0 s1 s4 5
q1 s1 s4 2
q2 s3
q3 r1
q4 r2
q5 acc

Parsing trace:
stack remaining input next operation

q0 aacbb s1
q0aq1 acbb s1
q0aq1aq1 cbb s4
q0aq1aq1cq4 bb r2, goto 2
q0aq1aq1Sq2 bb s3
q0aq1aq1Sq2bq3 b r1, goto 2
q0aq1Sq2 b s3
q0aq1Sq2bq3 r1, goto 5
q0Sq5 accept

Fig. 5.18. A sample LR(0) automaton and parse table for a CFG

us whether reductions can be performed and the transitions between states
tell us about the shift operations and about the new states to move to after
a possible shift or reduce.

In the context-free case, we often use a lookahead to make LR parsing
more deterministic. For TAG, we present an LR parsing algorithm without
lookaheads.

To illustrate the idea of LR parsing, consider the LR(0) parser (zero looka-
heads) for a CFG in Fig. 5.18. The states of the automaton are sets of dotted
productions closed under prediction. The transitions correspond to moving
the dot over the next symbol of a right-hand side. The table is read off the
automaton as follows: whenever we have a transition with terminal a, there
is a corresponding shift operation si in the table where i is the number of the
new state. Whenever a state contains a dotted production with the dot at the
end of the right-hand side, we can reduce with this production and the table
contains an entry ri where i is the number of the production. Whenever there
is a transition with a non-terminal label, there is a corresponding entry in the
right part of the table (the goto table).

The sample parse trace for aacbb shows how this table is used to deter-
mine the different shift and reduce operations during parsing: we start with
a stack containing the start state q0. If, given the current state and the next

5.3 An LR Parser for TAG 99

input symbol, a shift is possible according to the table, then we push the new
terminal followed by the state indicated in the action table onto the stack.
If a reduction is possible, then we reduce using the production indicated in
the action table. We pop its right-hand side (in reverse order) and push its
left-hand side. The new state is the goto value of 1. the state preceding the
right-hand side of this production on the stack and 2. the left-hand side cat-
egory of the production.

This LR parsing algorithm is extended to TAG in (Nederhof, 1998). Neder-
hof’s algorithm is based on an LR parse automaton and it allows for three
different operations: an operation shift that scans the next input symbol and
two reduction operations, reduce subtree and reduce aux tree, which are per-
formed after having completed the tree below an adjunction site (the gap)
and after having completed an auxiliary tree respectively.

We assume that our TAG does not have substitution nodes and does not
contain empty words as node labels.

In order to formulate our algorithm, we extend the elementary tree with
artificial new nodes: For each t ∈ I ∪ A, we add a unique node � immedi-
ately dominating the root of t and for each t ∈ A, we add a unique node ⊥
immediately dominated by the foot of t.

We use the following notations:

• N (t) is the set of nodes of a tree t, Rt is the root node of t and Ft the foot
node (if it exists).

• children(N) is the list of the children of a node N , given in linear prece-
dence order.

• For a t ∈ I ∪ A, (t,N) denotes the subtree of t rooted in N . T = I ∪ A ∪
{(t,N)|t ∈ I ∪A,N ∈ N (t)} is the set of all subtrees of elementary trees,
including the elementary trees themselves.

5.3.2 Construction of the Automaton

Now we can start constructing our automaton. The states of the automa-
ton are sets of items and the transitions are labeled with terminals or non-
terminals. Each item represents a subtree of height 1 (mother node N and its
daughters) in one of the trees τ ∈ T together with a dot • that specifies up
to which daughter the subtree has been recognized. This subtree is notated
as a dotted production N → α • β where N is the root and αβ is the list of
the children.

Items therefore have the form [τ,N → α • β], where

• τ ∈ T ,
• N ∈ N (τ), and
• αβ = children(N) are the daughters of N .

We call an item completed if is has the form [t,� → Rt•], with t ∈ I ∪A,
or [(t,N), N → α•]. In other words, a completed item indicates either that we

100 5 Parsing Tree Adjoining Grammars

αs S1

John V1

to sleep

fOA(S1) = 0, fSA(S1) = ∅

fOA(V1) = 1,

fSA(V1) = {βinf , βfin}

βinf V2

to try V ∗
3

fOA(V2) = 1,

fSA(V2) = {βinf , βfin}

fOA(V3) = 0, fSA(V3) = ∅

βfin V4

seems V ∗
5

fOA(V4) = 0, fSA(V4) = ∅

fOA(V5) = 0, fSA(V5) = ∅

Fig. 5.19. A sample TAG G′
raising

have completely recognized an entire elementary tree and therefore our dot is
to the right of its root or that we have completely recognized a subtree below
a node N . In this latter case, there might be adjunctions at N that we have
not completed yet. In other words, the completed subtree can be the filler of
a foot node gap.

The construction of the set of states of the automaton starts with an initial
LR state qin = {[t,� → •Rt]|t ∈ I, l(t, ε) = S}. For each state, we compute its
closure under prediction and under moving down or up in an elementary tree.
Furthermore, from a given state, new states can be computed using functions
goto and goto⊥.

As a running example consider the TAG G′
raising in Fig. 5.19 that is ob-

tained from our TAG Graising by precompiling substitution and removing
some nodes that are not foot nodes and do not allow for adjunctions.

Let us first define the closure(q) of a state q. The intuition is that the
closure contains all items that can be obtained from an item [τ, . . .] in q by
moving down in τ or predicting an adjunction or predicting the part below
a foot node. The closure of a state q where q is a set of items can be de-
scribed with the deduction rules in Fig. 5.20. As a first example, consider
the initial state of the TAG in Fig. 5.19. It contains the items [αs,� → •S1]
and [αs, S1 → •John V1] where the second item is obtained by moving down.
Adjunctions are not predicted since there are no trees that can be adjoined
at S1.

New states are obtained from existing ones by moving the dot over a non-
terminal or a terminal node or over a foot node daughter ⊥. The first two
cases are covered by the goto function while the third case is covered by the
goto⊥ function. These functions are defined as follows.

Let q be a set of items and M be a node with either l(M) ∈ T or fSA
= ∅.
For q and M , we define

goto(q,M) = {[τ,N → αM • β]|[τ,N → α •Mβ] ∈ closure(q)}

and

goto⊥(q,M) = {[τ, Ft → ⊥•]|[τ, Ft → •⊥] ∈ closure(q) ∧ t ∈ Adj(M)}.

5.3 An LR Parser for TAG 101

x
x ∈ q

[τ, N → α •Mβ]

[τ, M → •γ]
fOA(M) = 0, children(M) = γ (move down)

[τ, N → α •Mβ]

[t,� → •Rt]
t ∈ fSA(M) (prediction of adjunction)

[τ, Ft → •⊥]

[(t′, N), N → •γ]
τ ∈ fSA(N), children(N) = γ (prediction of adjoined)

[τ, M → γ•]
[τ, N → αM • β]

[τ, N → αM • β] a possible item (move up)

Fig. 5.20. Definition of the closure of an item set q

With these definitions of the two goto functions, we can define the entire
set of states of our LR automaton. We start with the closure of the initial
state and repeatedly apply goto and goto⊥ and build the closure of the new
states. We continue this process until no more new states can be found:

The set Q of states is defined as follows:

• closure(qin) ∈ Q.
• For all q ∈ Q and every node M , if q′ = closure(goto(q,M))
= ∅, then

q′ ∈ Q.
• For all q ∈ Q and every node M , if q′ = closure(goto⊥(q,M)
= ∅, then

q′ ∈ Q.
• These are all states in Q.

Note that in (Nederhof, 1998), the states contain only the items obtained
from the goto function, not the ones obtained from the closure functions. The
two definitions amount to the same, since the goto function are in both cases
computed with respect to the closures of the states.

Parsing is successful if we have finished the recognition of an intial tree
with root symbol S. Whenever a state contains a completed item for some
initial tree with root label S, this is a possible final state. We call the set of
final states Qfin :

Qfin = {q ∈ Q|q ∩ {[t,� → Rt•]|t ∈ I, l(t, ε) = S}
= ∅}.

Figure 5.21 shows the states of the LR automaton for the TAG from
Fig. 5.19 with the transitions corresponding to the goto functions. If a new
state q′ is the value of goto(q,M), then there is a transition from q to q′ labeled
M . If a new state q′ is the value of goto⊥(q,M), then there is a transition
from q to q′ labeled ⊥(M).

5.3.3 The Recognizer

For the definition of the recognizer, we need the notion of reductions(q) for a
given state q. Roughly, reductions are defined as follows: If the state q contains

102 5 Parsing Tree Adjoining Grammars

q0
[αs,� → •S1]
[αs, S1 → •John V1]

John
q1

[αs, S1 → John • V1]
[βinf ,� → •V2]
[βfin ,� → •V4]
[βfin , V4 → •seems V5]

seems V1 V2

q2

[βfin , V4 → seems • V5]
[βfin , V5 → • ⊥]
[(αs, V1), V1 → •to sleep]
[(βinf , V2), V2 → •to try V3]

q4 [βinf ,� → V2•]

q3
[αs, S1 → John V1•]
[αs,� → S1•]

to try to sleep ⊥(V1),⊥(V2)

q5

[(βinf , V2), V2 → to try • V3]
[(βinf , V2), V3 → •⊥]
[(αs, V1), V1 → •to sleep]
[(βinf , V2), V2 → •to try V3]

q6

[βfin , V5 → ⊥•]
[βfin , V4 → seems V5•]
[βfin ,� → V4•]

to sleep q7 [(αs, V1), V1 → to sleep•]

to try
⊥(V1),⊥(V2)

q8
[(βinf , V2), V3 → ⊥•]
[(βinf , V2), V2 → to try V3•]

Fig. 5.21. LR automaton for the TAG G′
raising

a completed item, then either the left-hand side node of its dotted production
or, if this is a � in an auxiliary tree, the whole tree is part of the reductions
of q. The reductions of q7 for example are V1 while the set of reductions of q4
contains βinf . The set reductions(q) is needed for the two reduce operations,
reduce subtree and reduce aux tree: If a node N is in this set, then this means
that, in q, we have finished the subtree below N and we can move into the
right part of an auxiliary tree β that was adjoined at N . If an auxiliary tree
β is in this set, then this means that we have finished the entire auxiliary tree
β and we can move back to the node N to which β was adjoined.

We define the set reductions(q) for a given state q as follows:

reductions(q) = {t ∈ A|[t,� → Rt•] ∈ q} ∪
{N ∈ N|[(t,N), N → α•] ∈ q}.

Furthermore, we need the definition of cross-sections through a tree rooted
in some node N . Here, the intuition is that the sequences on the stack that

5.3 An LR Parser for TAG 103

can be reduced, i.e., that correspond roughly to the right-hand side of some
completed dotted production, are cross-sections. A cross-section of a node N
is either the node N or a sequence of cross-sections of the daughters of N
in linear precedence order. In addition, nodes in cross-sections that dominate
foot nodes are paired with a stack of nodes (indicating where subsequent
adjunctions took place).

This leads to the following definition of cross-sections CS(N) of a node
N :

We define M := N ∪ (N ×N ∗). Then, for a given node N ,

• N ∈ CS(N) if N does not dominate a foot node,
• (N,L) ∈ CS(N) for each L ∈ N ∗ if N dominates a foot node,
• x1 . . . xm ∈ CS(N) if children(N) = M1 . . .Mm and xi ∈ CS(Mi) for

1 ≤ i ≤ m.

Furthermore, CS+(N) := CS(N) \ ({N} ∪ {(N,L) |L ∈ N ∗}) (the cross-
sections without the node itself).

As an example, consider again the trees from our TAG G′
raising in Fig. 5.19.

We obtain
CS(S1) = {S1, John V1, John to sleep} and
CS(V3) = {(V3, L) |L ∈ N ∗} ∪ {(⊥, L) |L ∈ N ∗}.
During parsing, we use a stack Δ (as in the CFG case) that contains

states and symbols. The latter are either terminal nodes or non-terminal nodes
equipped with a stack. A configuration (Δ,w) of the parser consists of a stack
and the remaining part of the input string.

Parsing starts with the initial state (q0 in our example) on the stack and w
being the entire input. The parser changes from one configuration to another
by applying either a shift or a reduce. There is one shift operation and two
different reduce operations, reduce subtree and reduce aux tree, depending on
whether we have completed the part below a foot node (the gap) or an adjoined
auxiliary tree. We will now define the three different operations.

The operation shift pushes the next input symbol followed by a new state
on the stack. The new state depends on the goto function, i.e., if we are in
state q, the next input symbol is a, and q′ is the value of goto(q, a), then we
push first a and then q′ on the stack while reducing the remaining input. We
notate the transition from one configuration to another using �. The definition
of the shift operation is as follows.

For all a ∈ T,w ∈ T ∗ and q, q′ ∈ Q,

(Δq, aw) � (Δqaq′, w) if q′ = goto(q, a)
= ∅.

If we look at the difference between the states q and q′, then an operation
shift amounts to moving the dot over a terminal. This is depicted in Fig. 5.22.

For sample shift operations, see the first four steps in the parse in Fig. 5.23,
which is based on the automaton from Fig. 5.21.

104 5 Parsing Tree Adjoining Grammars

•a
�

a•

Fig. 5.22. Shift operation of the LR parser for TAG

Stack remaining input operation

q0 John seems to try to sleep
q0 John q1 seems to try to sleep shift
q0 John q1 seems q2 to try to sleep shift
q0 John q1 seems q2 to try q5 to sleep shift
q0 John q1 seems q2 to try q5 to sleep q7 shift
q0 John q1 seems q2 to try q5 ⊥[V1] q8 red. subtree
q0 John q1 seems q2 ⊥[V2 V1] q6 red. subtree
q0 John q1 V2[V1] q4 red. aux tree
q0 John q1 V1 q3 red. aux tree

Fig. 5.23. Sample LR parse trace with the TAG G′
raising

N [. . .]•

X1 . . . Xm

�

⊥[N . . .]•

Fig. 5.24. Reduce subtree operation of the LR parser for TAG

The reduce operation reduce subtree is applied when having completed a
subtree rooted in N such that an adjunction occurs at N . In other words, it
recognizes the part below a foot node. This is depicted in Fig. 5.24. For this
operation to apply, the node N must be in the set of reductions of the current
state and the stack must contain a cross-section of N . This tells us that the
subtree below N has been completely recognized. We can then remove this
cross-section from the stack and push the foot node ⊥ with a stack containing
N followed by a state that depends on the state preceding the cross-section and
on N . This is very much as in the CFG case, except that we use cross-sections
since the tree below N might have a height > 1. In addition, if the cross-
section contained a foot node, then the stack of this foot node is appended
to N on the stack of the foot node. We use the function goto⊥ to determine
the new state since the recognition of the subtree below a foot node (the gap)
enables us to move the dot over a foot node.

The operation reduce subtree is defined as follows.

(Δq0X1q1 . . . Xmqm, w) � (Δq0(⊥, [NL])q′, w)

5.3 An LR Parser for TAG 105

Rt•

X1 . . . Xj [N . . .] . . . Xm

�
N [. . .]•

Fig. 5.25. Reduce aux tree operation of the LR parser for TAG

if

• N ∈ reductions(qm),X1 . . . Xm ∈ CS+(N), q′ = goto⊥(q0, N)
= ∅, and
• L is defined as follows: if some Xj is of the form (M,L), then this provides

L; otherwise L = [].

The step following the first shifts in Fig. 5.23 is a reduce subtree step:
V1 is in the reductions of q7, one of its cross-sections is on the stack and
goto⊥(q5, V1) = q8.

The second reduce operation, reduce aux tree, is applied once an auxiliary
tree has been recognized. We then go back to the node where the adjunction
occurred, as depicted in Fig. 5.25. For this operation to apply, we must be in
a state q where there is an auxiliary tree β in the reductions of this state with
one of its cross-sections being on top of the stack. Then, among the elements
of the cross-sections, there will be a node equipped with a stack. The top of
this stack gives the node N that we will move to. The rest of the stack is
passed to N . We remove the cross-section from the stack, push N with its
new stack and push a state q′ that is obtained from q by following the N
transition (goto(q,N)).

The operation reduce aux tree is defined as follows.

(Δq0X1q1 . . . Xmqm, w) � (Δq0Xq′, w)

if

• there is a β ∈ A with β ∈ reductions(qm) and X1 . . . Xm ∈ CS+(Rt),
• q′ = goto(q0, N)
= ∅ where N is obtained from the unique Xj of the form

M [NL], and
• if L = [], then X = N ; otherwise X = N [L].

For an example see the last two steps in Fig. 5.23.
We start by initializing the stack with the initial state qin. The stack

always contains an alternation of states q ∈ Q and nodes or nodes with stacks
X ∈ M.

A parse is successful if, in a sequence of transitions (i.e., applications of
shift , reduce subtree and reduce aux tree), the input is completely consumed
and the automaton reaches a final state:

Some input w is recognized if (qin, w) �∗ (qinΔq, ε) such that q ∈ Qfin .

106 5 Parsing Tree Adjoining Grammars

α

S1

d S2

b

β
S3

S4
∗
NA c

The language is {dbcn |n ≥ 0}.
Some states and transitions of the corresponding LR automaton:

q0

[α,� → •S1]
[α, S1 → •dS2]
[β,� → •S3]
[β, S3 → •S4c]
[β, S4 → •⊥]
[(α, S1), S1 → •dS2]
[(α, S2), S2 → •b]
[(β, S3), S3 → •S4c]
[(β, S3), S4 → •⊥]

d
q1

[α, S1 → d • S2]
[α, S2 → •b]
[(α, S1), S1 → d • S2]
[(α, S1), S2 → •b]
[β,� → •S3]
[β, S3 → •S4c]
[β, S4 → •⊥]
[(α, S1), S1 → •dS2]
[(α, S2), S2 → •b]
[(β, S3), S3 → •S4c]
[(β, S3), S4 → •⊥]

d

q2

[(α, S1), S1 → d • S2]
[(α, S1), S2 → •b]
[β,� → •S3]
[β, S3 → •S4c]
[β, S4 → •⊥]
[(α, S1), S1 → •dS2]
[(α, S2), S2 → •b]
[(β, S3), S3 → •S4c]
[(β, S3), S4 → •⊥]

d

Fig. 5.26. Non-prefix validity of the LR parser from (Nederhof, 1998)

In our example, we end up in state q3 with the remaining input being
empty. q3 is a final state, so parsing is successful.

As we have seen in this section, Nederhof (1998) shows how to apply
LR parsing techniques to TAG. We obtain a shift-reduce parser guided by
a precompiled automaton. The overall idea is to precompile predictions and
moves that are independent from the actual input into states.

The problem with LR parsing is always that the automata get very large.
This holds also for TAG. However, Nederhof (1998) mentions an implementa-
tion of the parser generator that suggests that LR automaton generation for a
large grammar such as the XTAG grammar is feasible. Prolo (2000) proposes
a more efficient version of Nederhof’s LR parser with a much smaller size of
the parse table.

5.4 Summary 107

5.3.4 Valid Prefix Property

As observed in (Prolo, 2000; Prolo, 2003), the LR parser we have seen here
does not have the valid prefix property. This holds also for the algorithm in
(Prolo, 2000).

The lack of prefix validity is again due to the blind prediction of the
subtrees below foot nodes. To see this, we consider the TAG from Fig. 5.15,
repeated in Fig. 5.26. We construct the initial state q0 and two states q1 =
goto(q0, d) and q2 = goto(q1, d). goto(q2, d) yields again q2. We obtain the
three states given in Fig. 5.26. With these states, for an input of the form
ddw, we can reach a configuration 〈q0dq1dq2, w〉. In other words, we are able
to process the input up to position 2 (i.e., to recognize the first two input
symbols) even though there is no word in the language with dd as a prefix.
We can even process any sequence dk, k ≥ 1 as a potential prefix of a word
in the language. Only later, when trying to reduce, the recognizer would fail
because the elements on the stack would not match the required cross-sections.

Prolo (2003) proposes a variant of Nederhof’s algorithm that is more re-
strictive.

5.4 Summary

In this chapter, we have seen how the standard parsing algorithms for CFG
can be extended to TAG. We have presented CYK and Earley parsers for
TAG and also an LR parser. A crucial difference with CFG is that, because of
the adjunction, the yield of a node can consist of two different non-adjacent
portions of the input string. This is the case for all nodes dominating foot
nodes since the part to the left of the spine of an auxiliary tree is separated
from the part to the right of the spine. This leads to an increase of the parsing
complexity, compared to CFG. The algorithms we have seen have a time
complexity O(n6) (compared to O(n3) for CFG).

Problems

5.1. Generalize the CYK algorithm in order to make it work for a TAG which
has elementary trees with more than two daughters per node. To achieve this,
replace the two deduction rules MoveUnary and MoveBinary with a single
new rule.

5.2. Generalize the CYK algorithm with dotted items that allows arbitrary
numbers of daughters while requiring only rules with maximally two an-
tecedent items. Introduce new dotted items with a left-corner prediction.

5.3. Assume the following definitions:

108 5 Parsing Tree Adjoining Grammars

In a tree γ, a node n1 with address p1 linearly precedes a node n2 with
address p2 (notation n1 ≺ n2) iff there are prefixes pi and pj of p1 and p2

respectively (p ∈ IN∗, i, j ∈ IN) such that i < j.
Let us call an auxiliary tree β a left auxiliary tree iff there is no node in β

that is linearly preceded by the foot node.
Now define a left-auxiliary TAG as a TAG where all auxiliary trees are left

auxiliary trees.
Obviously, in a left-auxiliary TAG, the yield of an auxiliary tree comprises

only one substring of the input string. (Not two, as is the case in general in
TAG.) This makes parsing less complex.

Modify the Earley algorithm from Section 5.2 under the assumption that
we have a left-auxiliary TAG. (Give the modified deduction rules.)

5.4. Extend the prefix valid Earley algorithm for TAG from Fig. 5.16 to sub-
stitution.

5.5. How does the LR parsing algorithm for TAG prevent multiple adjunction
loops?

More precisely: What condition for applying the two reduce operations
ensures that the following holds? Starting from some subtree below a node
N , after 1) recognizing this tree as the tree below the foot node of some β
(application of reduce subtree) and, later, when β is completed, 2) going back
to the node N where β was adjoined (application of reduce aux tree), we
cannot start once again the same application of reduce subtree, recognizing
the subtree below N as the subtree below the foot of β.

5.6. Consider the following TAG:

α S1

c

β S2

a S∗
3NA b

1. Give the states and closures of states of the LR automaton for this gram-
mar, together with the transitions labelled with the corresponding sym-
bols (if the transition from one state q to another is via an application of
goto(q,M), then the label is M ; if it is via an application of goto⊥(q,M),
the label is ⊥(M)).

2. Give the trace of a sample parse using this automaton. The input word is
aacbb.

6

Multiple Context-Free Grammars and Linear
Context-Free Rewriting Systems

6.1 Introduction to MCFG, LCFRS and Simple RCG

Multiple Context-Free Grammars (MCFGs) have been introduced by Seki
et al. (1991) while the equivalent Linear Context-Free Rewriting Systems
(LCFRSs) were independently proposed by Vijay-Shanker, Weir, and Joshi
(1987). The central idea is to extend CFGs such that non-terminal symbols
can span a tuple of strings that need not be adjacent in the input string.
In other words, the yield of a non-terminal symbol can be discontinuous.
The grammar contains productions of the form A0 → f [A1, . . . , Aq] where
A0, . . . , Aq are non-terminals and f is a function describing how to compute
the yield of A0 (a string tuple) from the yields of A1, . . . , Aq.

The definition of LCFRS is slightly more restrictive than the one of MCFG
concerning the conditions for the functions describing the computations of
yields. However, Seki et al. (1991) have shown that the two formalisms are
equivalent.

Since discontinuities occur frequently in natural languages, MCFG and
LCFRS are interesting formalisms for natural language processing. Further-
more, as we will see, MCFG and LCFRS are equivalent to a range of for-
malisms used for natural languages, among others, set-local multicomponent
TAG (MCTAG) (Joshi, Levy, and Takahashi, 1975; Joshi, 1985; Weir, 1988)
and minimalist grammar (MG) (Stabler, 1997; Michaelis, 1998).

As a running example, consider an MCFG for the double copy language
where each copy contains as and bs. This MCFG is shown in Fig. 6.1.

One can think of the non-terminals as predicates that are true for certain
string tuples. Each non-terminal has a fixed dimension that determines the
number of discontinuous substrings in its yield. The start symbol S has always
dimension 1.

In our example in Fig. 6.1, the non-terminal A has dimension 3 and its yield
contains all triples of non-empty copies w over {a, b}. The last two rewriting
rules, together with the definitions of f4 and f5, signify that A yields 〈a, a, a〉
and 〈b, b, b〉. The second and third rules together with the definitions of f2 and

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 6, c© Springer-Verlag Berlin Heidelberg 2010

110 6 MCFG and LCFRS

Rewriting rules:

S → f1[A] A→ f2[A] A→ f3[A] A→ f4[] A→ f5[]

Operations:

f1[〈X, Y, Z〉] = 〈XY Z〉 f2[〈X, Y, Z〉] = 〈aX, aY, aZ〉 f4[] = 〈a, a, a〉
f3[〈X, Y, Z〉] = 〈bX, bY, bZ〉 f5[] = 〈b, b, b〉

Fig. 6.1. An MCFG for {www |w ∈ {a, b}+}

f3 specify that from a given triple that satisfies A, we can obtain a new one
by either concatenating an a to the left of all copies or concatenating a b to
the left of all three copies. Finally, the first rule together with the definition
of f1 signifies that we can obtain a word in the language (satisfying our start
symbol predicate S) from a triple in A by concatenating the three elements
of the triple.

Another formalism that is equivalent to MCFG and LCFRS and that
is based on the same idea of discontinuous yields of non-terminal symbols
is simple Range Concatenation Grammar (SRCG) (Boullier, 2000b). SRCGs
present a syntactic variant of LCFRS. Therefore, any algorithm for parsing
MCFG or LCFRS can be easily transferred to simple RCG and vice versa. The
CYK parsers presented in Section 7.1 are formulated in terms of MCFG and
LCFRS while in Section 7.3, we notate the MCFG as a simple RCG since the
incremental Earley parser presented there was developed with this notation.

6.1.1 MCFG and LCFRS

Definition of MCFG

An MCFG (Seki et al., 1991; Seki and Kato, 2008) consists of non-terminals,
terminals, functions and rewriting rules of the form described above. The
function are so-called mcf-functions that we will define below.

Definition 6.1 (Multiple Context-Free Grammar).
A multiple context-free grammar (MCFG) is a 5-tuple 〈N,T, F, P, S〉

where

• N is a finite set of non-terminals (predicates), and each A ∈ N has a
dimension dim(A) ≥ 1, dim(A) ∈ IN;

• T is a finite set of terminals;
• F is a finite set of mcf-functions;
• P is a finite set of rules of the form A0 → f [A1, . . . , Ak] with k ≥ 0, f ∈ F

such that f : (T ∗)dim(A1) × . . .× (T ∗)dim(Ak) → (T ∗)dim(A0);
• S ∈ N is the start symbol with dim(S) = 1.

An MCFG with maximal predicate dimension k is called a k-MCFG.

6.1 Introduction to MCFG, LCFRS and Simple RCG 111

The mcf-functions are such that each component of the value of f is a
concatenation of some constant strings and some components of its arguments.
Furthermore, each component of the right-hand side arguments of a rule is
not allowed to appear in the value of f more than once.

Definition 6.2 (mcf-function).
f is an mcf-function if there is a k ≥ 0 and there are di > 0 for 0 ≤ i ≤ k

such that f is a total function from (T ∗)d1 × . . .× (T ∗)dk to (T ∗)d0 such that

• the components of f(x1, . . . ,xk) are concatenations of a limited number of
terminal symbols and the components xij of the xi (1 ≤ i ≤ k, 1 ≤ j ≤ di),
and

• the components xij of the xi are used at most once in the components of
f(x1, . . . ,xk).

We can understand an MCFG as a generative device that specifies the
yields of the non-terminals. The language of an MCFG is then the yield of
the start symbol S.

Definition 6.3 (Language of an MCFG).
Let G = 〈N,T, F, P, S〉 be an MCFG.

1. For every A ∈ N :
• For every A→ f [] ∈ P , f() ∈ yield(A).
• For every A → f [A1, . . . , Ak] ∈ P with k ≥ 1 and all tuples τ1 ∈

yield(A1), . . . , τk ∈ yield(Ak), f(τ1, . . . , τk) ∈ yield(A).
• Nothing else is in yield(A).

2. The string language of G is L(G) = {w | 〈w〉 ∈ yield(S)}.

Linear Context-Free Rewriting Systems (LCFRSs) were introduced in
(Vijay-Shanker, Weir, and Joshi, 1987). Their definition is almost the same as
the one of MCFGs except that the conditions on mcf-functions are stricter. In
LCFRS, the mcf-functions f are required to use every component xij of the
xi exactly once (instead of at most once) in the components of f(x1, . . . ,xk).
However, this stronger condition does not change the generative capacity of
the grammars. Seki et al. (1991) show that for every k-MCFG, there is an
equivalent k-LCFRS.

Simple RCG

A formalism that is not only equivalent to MCFG and LCFRS but also rep-
resents a useful syntactic variant is simple Range Concatenation Grammar.
We will introduce Range Concatenation Grammars (RCGs) (Boullier, 2000b)
in Chapter 8. So-called simple RCGs (SRCGs) are a restricted form of RCG.
We can notate an MCFG as an SRCG if we encode the computation of the
mcf-functions inside the rules. To see how this can be done, consider again our
sample grammar from Fig. 6.1. In an RCG, the non-terminals are written as

112 6 MCFG and LCFRS

predicates with the components of the yields being their arguments. We use
variables X,Y, . . . from a specific set V for the components of the right-hand
side predicates of a rule. Writing our sample MCFG as an RCG leads to the
grammar in Fig. 6.2. The right-hand side arguments are single pairwise differ-
ent variables while the arguments of the left-hand side are concatenations of
the variables from the right-hand side and of a limited number of new termi-
nals. These concatenations describe how to obtain the yield of the left-hand
side predicate from the yields of the right-hand side predicate.

S(XY Z)→ A(X, Y, Z)
A(aX, aY, aZ)→ A(X, Y, Z)
A(bX, bY, bZ)→ A(X, Y, Z)
A(a, a, a)→ ε
A(b, b, b)→ ε

Fig. 6.2. The MCFG from Fig. 6.1 written as a simple RCG

Definition 6.4 (Simple RCG).

1. A simple RCG (SRCG) is a tuple G = (N,T, V, P, S) where
a) N is a finite set of predicate names with an arity function dim: N →

IN,
b) T and V are disjoint finite sets of terminals and variables,
c) P is a finite set of clauses of the form

A(α1, . . . , αdim(A))
→ A1(X

(1)
1 , . . . , X

(1)
dim(A1)

) · · ·Am(X(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 where A,A1, . . . , Am ∈ N , X(i)
j ∈ V for 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai), and αi ∈ (T ∪ V)∗ for 1 ≤ i ≤ dim(A), and
d) S ∈ N is the start predicate name with dim(S) = 1.

As a condition, for all c ∈ P , it holds that every variable X ∈ V occurring
in c occurs exactly once in the left-hand side and exactly once in the right-
hand side.

2. A simple RCG G = (N,T, V, P, S) is a simple k-RCG if for all A ∈
N, dim(A) ≤ k.

Because of the condition at the end of 1., in a simple RCG, the components
of right-hand side arguments are used exactly once in the left-hand side. This
amounts to the LCFRS condition on mcf-functions. The equivalence between
LCFRS and simple RCG has been shown in (Boullier, 2000b).

The way the string languages of SRCGs are defined is different from that of
MCFGs and LCFRSs. In SRCGs, the components of the arguments of predi-
cates are taken to denote portions of a given input string w, denoted by ranges.
However, both definitions are equivalent. Only when dropping the linearity

6.1 Introduction to MCFG, LCFRS and Simple RCG 113

constraint are the two definitions of string languages no longer equivalent, as
we will see in Chapter 8.

Definition of Ranges

When doing parsing, we are faced with a given input string w and we want
to determine which of the non-terminals A ∈ N is true for which vector of
substrings of w. For this, the definitions of ranges and of clause instantiations
in SRCGs is useful. We therefore introduce it here.

In order to relate non-terminals A to portions of the input string, we must
distinguish between different substrings of the input containing the same ter-
minal symbols. For illustration, consider the input word w = ababab of our
double copy language from Fig. 6.1. For a successful analysis of w, we ob-
tain A(1b2,3 b4,5 b6), A(0ab2,2 ab4,4 ab6) and S(0ababab6) where the subscripts
indicate the start and end positions of the substring in w.

In order to formalize these substrings, we introduce ranges. A range over a
given input string w is a pair 〈i, j〉 of a start and an end position of a substring
in w.

Definition 6.5 (Range).
Let w ∈ T ∗ be a word with w = w1 . . . wn where wi ∈ T for 1 ≤ i ≤ n.

• Pos(w) := {0, . . . , n}.
• We call a pair 〈l, r〉 ∈ Pos(w)×Pos(w) with l ≤ r a range in w. Its yield

〈l, r〉(w) is the substring wl+1 . . . wr.
• For two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉, if r1 = l2, then the concatenation

of ρ1 and ρ2 is ρ1 · ρ2 = 〈l1, r2〉; otherwise ρ1 · ρ2 is undefined.
• Two ranges 〈l1, r1〉, 〈l2, r2〉 are overlapping if

1. either l1 ≤ l2 < r1 and l1 < r2
2. or l1 < r2 ≤ r1 and l2 < r1.

For every a ∈ T , we define ranges(a,w) = {〈i − 1, i〉 | 1 ≥ i ≥ n, 〈i −
1, i〉(w) = a}.

In the context of MCFG, given a specific input w, the yields of the non-
terminals that might lead to a parse of w are tuples of ranges over w. Fur-
thermore, since our mcf-functions are concatenations of these ranges and new
terminals, the ranges are necessarily pairwise non-overlapping.1

Definition 6.6 (Range vector).
Let w ∈ T ∗.

• A ρ ∈ (Pos(w) × Pos(w))k is a k-dimensional range vector for w iff
ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 where 〈li, ri〉 is a range in w for 1 ≤ i ≤ k.

1 This will be different when dealing with Range Concatenation Grammars in Chap-
ter 8 where the different non-terminals of a right-hand side can have overlapping
yields.

114 6 MCFG and LCFRS

• For a k-dimensional range vector ρ for w we define the denotation of ρ as
ρ(w) := 〈〈l1, r1〉(w), . . . , 〈lk, rk〉(w)〉.

A range vector ρ is called simple iff its elements are pairwise non-
overlapping.

Now we can define the range vectors in the yield of a given predicate A with
respect to w, notated as r -yield(A). For this, we have to apply the functions
f directly to the range vectors while mapping the terminals to appropriate
ranges of length 1. This way, f is no longer a function and it is no longer defined
for all range vectors. (In some cases, it might yield undefined concatenations of
ranges.) We call the function that corresponds to f but applies to range vectors
fr. fr(ρ1, . . . ,ρm) concatenates the ranges of its arguments with appropriate
ranges from ranges(a,w) for every a occurring in the concatenation specified
in f . Here, “appropriate” means that the concatenation of the ranges should
be defined. Empty arguments ε in the result of f are replaced with empty
ranges 〈i, i〉, 0 ≤ i ≤ n.

Definition 6.7 (r-yield).
Let G = 〈N,T, F, P, S〉 be an MCFG.

1. For every A ∈ N :
• For every A → f [] ∈ P and every simple range vector ρ such that
ρ(w) = f [], ρ ∈ r-yield(A).

• For every A → f [A1, . . . , Ak] ∈ P with k ≥ 1 such that ρi ∈
r-yield(Ai) for 1 ≤ i ≤ k, and for all ρ ∈ fr(ρ1, . . . ,ρk), ρ ∈
r-yield(A).

• Nothing else is in r-yield(A).
2. The string language of an MCFG G is {w ∈ T ∗ | 〈〈0, n〉〉 ∈ r-yield(S)

wrt. w)}.

As a notation, we write A(ρ) for ρ ∈ r -yield(A).
As an example, consider again our MCFG from Fig. 6.1. Assume that our

input is w = abaabaaba, which is in the language. w is in the language because
with respect to w, we obtain A(〈〈2, 3〉, 〈5, 6〉, 〈8, 9〉〉) since f4() = 〈b, b, b〉.
Furthermore, 〈〈1, 3〉, 〈4, 6〉, 〈7, 9〉〉 ∈ f3r(〈〈2, 3〉, 〈5, 6〉, 〈8, 9〉〉) and therefore
A(〈〈1, 3〉, 〈4, 6〉, 〈7, 9〉〉). With 〈〈0, 3〉, 〈3, 6〉, 〈6, 9〉〉 ∈ f2r(〈〈1, 3〉, 〈4, 6〉, 〈7, 9〉〉)
we have A(〈〈0, 3〉, 〈3, 6〉, 〈6, 9〉〉). Finally, 〈〈0, 9〉〉 ∈ f1r(〈〈0, 3〉, 〈3, 6〉, 〈6, 9〉〉)
and therefore S(〈〈0, 9〉〉).

Note that the range vectors in the yield of the predicates are not necessarily
ordered. Therefore we also have for instance A(〈〈5, 6〉, 〈2, 3〉, 〈8, 9〉〉).

In contrast to MCFG/LCFRS, the definition of RCGs is such that they do
not have the generative perspective that is present in the definition of MCFGs.
I.e., their rules are not taken to describe how to compute the (larger) yield
of a left-hand side predicate from the yields of the right-hand side predicates.
Rather, the rules describe how to check whether a given tuple is in the yield
of a predicate. Consider Fig. 6.2. The first rule tells us that a tuple with a

6.1 Introduction to MCFG, LCFRS and Simple RCG 115

single component satisfies the predicate S if we can separate it into three
parts such that the triple of the three parts satisfies A. The second rule tells
us that a triple of three substrings (or, rather, ranges) satisfies A if, after
having removed an a to the left of each of the components, we obtain a
triple that again satisfies A. Rules with empty right-hand sides describe the
terminals that satisfy a predicate without further conditions. The last rule
for instance signifies that every simple 3-dimensional range vector with yield
〈b, b, b〉 satisfies A.

In order to formalize this (Boullier, 2000b), we introduce the concept of in-
stantiation of a rule. Roughly, an instantiated rule is a rule in which variables
and arguments are consistently replaced by ranges; its components are instan-
tiated predicates. For example A(〈g, h〉) → B(〈g + 1, h〉) is an instantiation of
the clause A(aX1) → B(X1) if the target string is such that wg+1 = a.

Definition 6.8 (Clause instantiation).
Let G = (N,T, V, P, S) be a simple RCG. For a given clause A(α) →

A1(α1) · · ·Am(αm) ∈ P (0 ≤ m),

1. an instantiation with respect to a string w = t1 . . . tn consists of a function
f : {t′ | t′ is an occurrence of some t ∈ T in the clause} ∪ V ∪ {Epsi | 1 ≤
i ≤ dim(A),α(i) = ε} → {〈i, j〉 | i ≤ j, i, j ∈ IN} such that
a) for all occurrences t′ of a t ∈ T in α, f(t′)(w) = t,
b) for all X ∈ V , f(X) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n,
c) for all x, y adjacent in one of the elements of α there are i, j, k with
f(x) = 〈i, j〉, f(y) = 〈j, k〉; we define then f(xy) = 〈i, k〉,

d) for all Eps ∈ {Epsi | 1 ≤ i ≤ dim(A),α(i) = ε}, there is a j, 0 ≤ j ≤
n with f(Eps) = 〈j, j〉; we define then for every ε-argument α(i) that
f(α(i)) = f(Epsi);

2. if f is an instantiation of c, then A(f(α)) → A1(f(α1)) · · ·Am(f(αm))
is an instantiated clause where f(〈x1, . . . , xk〉) = 〈f(x1), . . . , f(xk)〉.

We can then define that in each SRCG derivation step, we replace the
left-hand side of an instantiated clause with its right-hand side. The string
language of a simple RCG is the set {w |S(〈0, |w|〉 ∗⇒ ε}.

Derivation Trees

For a given input word w and a given SRCG, the set of instantiated clauses
with respect to w is a CFG whose non-terminals are the instantiated predi-
cates, whose set of terminals is empty and whose productions are the instan-
tiated clauses. The start symbol is S(〈0, |w|〉). The question whether w is part
of the language amounts to deciding whether S(〈0, |w|〉) ∗⇒ ε. Based on this
observation, Boullier (1998a) defines the parse forest of ε in this CFG as the
parse forest of w in the SRCG. In other words, for a given w, every derivation
tree of ε in the CFG of instantiated clauses with respect to w is an SRCG
derivation tree of w.

116 6 MCFG and LCFRS

Simple RCG for {wcwc |w ∈ {a, b}∗}:
S(XY)→ T (X, Y)
T (aY, aU)→ T (Y, U)
T (bY, bU)→ T (Y, U)
T (c, c)→ ε

Derivation tree (our definition)
for aacaac:

S

T

T

T

〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈4, 5〉 〈5, 6〉
a a c a a c

Derivation tree (Boullier’s definition)
for aacaac:

S(〈0, 6〉)
T (〈0, 3〉, 〈3, 6〉)
T (〈1, 3〉, 〈4, 6〉)
T (〈2, 3〉, 〈5, 6〉)

ε

Fig. 6.3. A sample derivation tree in a simple RCG

Alternatively, one can also define the SRCG derivation trees as trees whose
leaves are labelled with the terminals of the input and whose internal nodes
are labelled with predicate names. An edge between internal nodes tells us
about a rewrite relation while an edge between an internal node and a leaf
tells us that the leaf was used to compute one of the components of the yield
of the internal node. In the following, we will formalize this notion of SRCG
derivation trees. Note that the information we encode in these derivation trees
is also implicitly available in the derivation trees defined in (Boullier, 1998a).

The derivation trees are partially ordered; more particularly, only the leaf
nodes are ordered. The internal nodes are labelled with non-terminals and the
leaves are labelled with ranges that refer to terminals in a specific string w.
All internal nodes are licensed by rules in the grammar.

See Fig. 6.3 for a derivation tree in a simple RCG. As a convention, we
depict the leaves in the order of their labels, i.e., a leaf with label 〈i, j〉 precedes
a leaf with label 〈j, k〉. Furthermore, sister nodes are depicted in the order of
the left boundaries of the leftmost leaf that they dominate. This is why the
nodes labelled T are always depicted as the middle daughters in Fig. 6.3.

Definition 6.9 (Derivation tree of a simple RCG).
Let G = 〈N,T, VG, P, S〉 be a simple RCG (i.e., an LCFRS).

1. Let w = a1 . . . an with ai ∈ T, 1 ≤ i ≤ n.
Let D = 〈V,E, r〉 be a tree such that there are n pairwise different leaves
u1, . . . , un in D with l(ui) = 〈i − 1, i〉 (1 ≤ i ≤ n) and all other leaves
have a label 〈i, i〉 for some i with 0 ≤ i ≤ n.
a) We define r-yield(u) = {l(u)} for every leaf u.

6.1 Introduction to MCFG, LCFRS and Simple RCG 117

Clauses:
S(XY)→ A(X, Y)
A(aa, a)→ ε
A(a, aa)→ ε

derivation tree:
S

A

a a a

r-yield of the A-node:
{(〈0, 1〉, 〈1, 3〉),

(〈0, 2〉, 〈2, 3〉)}

Fig. 6.4. An example where a derivation tree node yields more than one range
vector

b) For every internal node v0 ∈ V , for every order v1, . . . , vk of the pair-
wise different daughters of v0 that are internal nodes such that l(vi) =
Ai for 0 ≤ i ≤ k, and for every rule A0(α0) → A1(α1), . . . , Ak(αk),
if there is an instantiation A0(ρ0) → A1(ρ1), . . . , Ak(ρk) of this rule
wrt w such that

i. ρi ∈ r-yield(vi), 1 ≤ i ≤ k, and
ii. there is a daughter u of v0 that is a leaf iff either one of the

terminals in α0 or an ε-argument in α0 is mapped to l(u) by this
instantiation,

then ρ0 ∈ r-yield(v0).
Nothing else is in r-yield(v0).

D is a derivation tree of w in G iff (〈0, n〉) ∈ r-yield(r) and l(r) = S.
2. The tree language of G is

LT (G) = {D |D is a derivation tree of some w ∈ T in G}.

The reason why there can be more than one possibility for the r-yield of
a node v is that adjacent terminals can belong to the same or to different
arguments as exemplified in Fig. 6.4.

A further example of an SRCG/LCFRS derivation tree can be found in
the solution of Problem 6.6.

Before we proceed, let us add a remark on how the three formalisms
LCFRS, MCFG and SRCG differ in their respective terminologies. In LCFRS
terminology, the dimension of a non-terminal and of a grammar is sometimes
called fan-out while, in the context of SRCG, we encounter the term arity for
the same concept. Furthermore, productions or rules in LCFRS and MCFG are
called clauses when dealing with SRCG. Finally, the non-terminals in MCFG
and LCFRS are called predicates in SRCG.

6.1.2 Formal Properties

String Languages

We will now list some important properties of the string languages generated
by MCFG and the equivalent LCFRS and SRCG.

Seki et al. (1991) show the following pumping lemma for k-MCFLs, the
class of languages generated by k-MCFGs.

118 6 MCFG and LCFRS

Lemma 6.10 (Pumping Lemma for k-MCFLs).
For any k-MCFL L, if L is an infinite set then there exist some uj ∈ T ∗

(1 ≤ j ≤ k + 1), vj , wj , sj ∈ T ∗(1 ≤ j ≤ k), which satisfy the following
conditions:

1. Σk
j=1|vjsj | > 0, and

2. for any i ≥ 0,

zi = u1v
i
1w1s

i
1u2v

i
2w2s

i
2 . . . ukv

i
kwks

i
kuk+1 ∈ L.

With this pumping lemma, one can show that k-MCFG can generate the
counting languages only up to 2k:

Lemma 6.11. L2k+1 = {an
1a

n
2 . . . a

n
2k+1 |n ≥ 1, ai ∈ T for 1 ≤ i ≤ 2k + 1} is

not a k-MCFL.

Since it is possible to find a (k + 1)-MCFG for L2k+1, we can conclude
that the class of k-MCFLs is a proper subset of the class of (k + 1)-MCFLs.

Note that the pumping lemma from (Seki et al., 1991) is only a weak
pumping lemma since it is existential. This means that it only tells us that
there exists a string in the language that is of a limited length and that con-
tains substrings that can be iterated. In contrast to this, the CFG pumping
lemma for instance is universal since it says that within every string of suffi-
cient length we find two pumpable substrings of a limited distance. Kanazawa
(2009) proves a stronger pumping lemma for a restricted class of k-MCFLs,
so-called well-nested k-MCFLs.

Since LCFRSs have a context-free backbone, the construction of a letter-
equivalent CFG for a given LCFRS is rather straightforward. This means that,
with Parikh’s theorem (see p. 25), MCFLs are semilinear and, consequently,
satisfy the constant growth property (Vijay-Shanker, Weir, and Joshi, 1987).
Furthermore, since every CFL is a 1-MCFL, they contain all context-free
languages. When introducing different parsing algorithms for MCFG, we will
see that the languages generated by MCFG are polynomially parsable. Finally,
MCFGs can generate the copy language (see the MCFG for the double copy
language given in Fig. 6.1) and therefore describe cross-serial dependencies.
Consequently, we have the following result:

Lemma 6.12.
The class of MCFL (LCFRL/SRCL) is mildly context-sensitive.

In fact, so far, no mildly context-sensitive language class has been identified
that contains languages that are not MCFLs. Therefore, without an actual
proof, MCFG and equivalent formalisms such as LCFRS and simple RCG
are taken to provide the best characterization of mildly context-sensitive lan-
guage classes. However, Kallmeyer and Satta (2009) suggest that there might
be other formalisms generating mildly context-sensitive languages as well that
are not comparable to MCFG. The grammar formalism they are investigating

6.1 Introduction to MCFG, LCFRS and Simple RCG 119

is TT-MCTAG, a certain type of multicomponent TAG introduced in (Lichte,
2007). TT-MCTAGs generate polynomial languages, as shown in (Kallmeyer
and Satta, 2009); they are more powerful than TAG and therefore can describe
cross-serial dependencies and include CFLs. Whether they generate only semi-
linear languages is an open question and also their relation to MCFG is not
clear yet. They can describe the type of permutations occurring in German
scrambling constructions. These phenomena have been argued to be beyond
the power of MCFG and LCFRS (Becker, Rambow, and Niv, 1992). On the
other hand, Kallmeyer and Satta (2009) suggest that TT-MCTAG might not
be able to generate the double copy language from Fig. 6.1. If this can be
shown and if the languages of TT-MCTAG are semilinear, then MCFLs would
no longer be the only mildly context-sensitive class for which we do not have
a larger class that is still mildly context-sensitive.

MCFLs have the following closure properties (Seki et al., 1991):

Lemma 6.13 (Closure Properties of MCFL).
For every k ≥ 1,

1. the class k-MCFL is closed under substitution.
2. the class k-MCFL is closed under union, concatenation, Kleene closure

and ε-free Kleene closure.
3. the class k-MCFL is closed under intersection with regular languages.

k-MCFLs being closed under substitution means that if L is a k-MCFL
over the terminal alphabet T and f assigns a k-MCFL to every t ∈ T , then
the language f(L) = {w1 . . . wn | there is a t1 . . . tn ∈ L with wi ∈ f(ti) for
1 ≤ i ≤ n} is also a k-MCFL. The k-MCFG for f(L) can be obtained from the
one for L and the ones for f(t), t ∈ T , as follows. Without loss of generality
we assume the sets of variables and non-terminals in the different grammars
to be pairwise disjoint. We then take the grammar for L and replace every
terminal a in a left-hand side (where the grammar is in RCG-style syntax)
with a new variable Xa and add Sa(Xa) to the right-hand side, where Sa is
the start symbol of the grammar of f(a).

For two k-MCFLs L1, L2 generated by the k-MCFGs G1, G2 with start
symbols S1, S2 respectively (and, again, without loss of generality disjoint
sets of non-terminals), the k-MCFGs for the union and concatenation can
be obtained in the following way. The union, L1 ∪ L2 is generated by the
grammar with the rules from G1 and G2 and additional rules S(X) →
S1(X), S(X) → S2(X) where S is a new start symbol. The concatenation
{w1w2 |w1 ∈ L1, w2 ∈ L2} is generated by the grammar with the rules from
G1 and G2 and an additional rule S(XY) → S1(X)S2(Y) where S is a new
start symbol.

Concerning the Kleene closure, for a k-MCFL L generated by the k-MCFG
G, if we add the rules S′(XY) → S(X)S′(Y) and S′(ε) → ε to G where S′ is
a new start symbol, we obtain a k-MCFG that generates the Kleene closure
L∗ of L. If we add the rules S′(XY) → S(X)S′(Y) and S′(X) → S(X) to G

120 6 MCFG and LCFRS

2-MCFG generating the copy language:
S(XY)→ A(X, Y) A(aX, aY)→ A(X, Y) A(bX, bY)→ A(X, Y) A(ε, ε)→ ε

Intersect with a∗b∗a∗b∗, generated by a DFA with Q = F = {q0, q1, q2, q3}, initial
state q0 and

δ(q0, a) = q0 δ(q0, b) = q1 δ(q1, b) = q1 δ(q1, a) = q2

δ(q2, a) = q2 δ(q2, b) = q3 δ(q3, b) = q3

Resulting k-MCFG: The new start symbol is S′.
S′-rules:
S′(X)→ S[q0, q0](X)
S′(X)→ S[q0, q1](X)
S′(X)→ S[q0, q3](X)
Words from a∗:
S[q0, q0](XY)→ A[q0, q0, q0, q0](X, Y)
A[q0, q0, q0, q0](aX, aY)→ A[q0, q0, q0, q0](X, Y)
A[q0, q0, q0, q0](ε, ε)→ ε

Words from b+:
S[q0, q1](XY)→ A[q0, q1, q1, q1](X, Y)
A[q0, q1, q1, q1](bX, bY)→ A[q1, q1, q1, q1](X, Y)
A[q1, q1, q1, q1](bX, bY)→ A[q1, q1, q1, q1](X, Y)
A[q1, q1, q1, q1](ε, ε)→ ε

Words from a+b+a+b+:
S[q0, q3](XY)→ A[q0, q1, q1, q3](X, Y)
A[q0, q1, q1, q3](aX, aY)→ A[q0, q1, q2, q3](X, Y)
A[q0, q1, q2, q3](aX, aY)→ A[q0, q1, q2, q3](X, Y)
A[q0, q1, q2, q3](bX, bY)→ A[q1, q1, q3, q3](X, Y)
A[q1, q1, q3, q3](bX, bY)→ A[q1, q1, q3, q3](X, Y)
A[q1, q1, q3, q3](ε, ε)→ ε

Fig. 6.5. Intersecting an MCFL with a regular language

where S′ is again a new start symbol, we obtain a k-MCFG that generates
ε-free Kleene closure L+ of L.

Finally, for the intersection of a k-MCFL L with a regular language, we
take the DFA that accepts the regular language and we enrich the non-
terminals A ∈ N in the k-MCFG of L with lists of states q1, q

′
1, . . . ,

qdim(A), q
′
dim(A) from the DFA. The path from qi to q′i is the path traversed

while processing the ith component of A. An example is given in Fig. 6.5.
There are languages that are polynomial and of constant growth and that

cannot be generated by LCFRS/SRCG:

Lemma 6.14. L = {(ambm)n |m,n ≥ 1} is not an MCFL.

Proof. In order to show the lemma, we assume that there is a fixed k such
that there is a k-MCFG generating L.

We now intersect L with the regular language (a+b+)k+1, which yields
the language L′ = {(ambm)k+1 |m ≥ 1}. This language does not satisfy the
pumping lemma for k-MCFL since the iterated parts in the pumping lemma
must each consist of either as or bs (otherwise we would increase the number

6.1 Introduction to MCFG, LCFRS and Simple RCG 121

of substrings am and bm when iterating). Furthermore, if we have at most 2k
iterated parts, the iterations necessarily lead to words where the am and bm

parts no longer have all the same exponent. Consequently, L′ and therefore
also L are not k-MCFLs. Since this holds for any k, L is not an MCFL.

��

The language from Lemma 6.14 is definitely of constant growth since all
words (ab)n are in the language, i.e., all words containing the same numbers
of as and bs. We will see in Chapter 8 an RCG for the language from Lemma
6.14 which proves that this language is polynomial.

Tree Languages

Borrowing notions from dependency grammar, Maier and Lichte (2009)
define different characteristic properties of trees with crossing branches.
Since these definitions can be applied immediately to the derivation trees
of SRCG/LCFRS, we list them here.

We can distinguish different types of LCFRS/SRCG derivation trees de-
pending on the number of discontinuities and the type of nesting described by
these trees. The types of trees we encounter in an SRCG tree language have
direct consequences for parsing.

Maier and Lichte (2009) redefine notions such as gap degree and well-
nestedness that have been introduced for dependency structures in a more
general way for syntactic structures such that they apply to both, dependency
trees and constituency trees.

In order to formulate the definitions of gap degree and well-nestedness,
we introduce the notion of projection of a node v in a derivation tree as
π(v) = {j | 1 ≤ j ≤ n and there is an m such that r -yield(v)(m) = 〈i, k〉 with
i < j ≤ k}. Intuitively, the projection is the set of indices of all terminals that
are in the r-yield of a node.

Then, following (Maier and Lichte, 2009), we can define the gap degree of
a derivation tree as follows:

Definition 6.15 (Gap degree).
Let G = 〈N,T, VG, P, S〉 be a simple RCG (i.e., a LCFRS).

• Let D = 〈V,E, r〉 be a derivation tree for a string w = a1 . . . an with
ai ∈ T, 1 ≤ i ≤ n.
1. For every node v ∈ V , we define that 〈i, j〉 is a gap in π(v) if i, j ∈ π(v),
i+ 1 < j and there is no k ∈ π(v) with i < k < j.
The gap degree of v is defined as the number of gaps in π(v).

2. The gap degree of D is the maximal gap degree of any of its nodes.
• The gap degree of G is the maximal gap degree of any of the trees in

LT (G).

122 6 MCFG and LCFRS

S

A B

a b ε b
〈0, 1〉 〈1, 2〉 〈2, 2〉 〈2, 3〉

π(A) = {1} ⇒ no gap
π(B) = {2, 3} ⇒ no gap

Fig. 6.6. A derivation tree with crossing branches that has gap degree 0

Note that this definition depends only on input symbols in the yield. It
does not take empty components into account. This is because Maier and
Lichte (2009) consider only constituent trees that do not have leaves with
label ε. In the case of ε-leaves, i.e., leaves labelled with a range 〈i, i〉, we can
have crossing branches that do not lead to a gap. See Fig. 6.6 for an example.

Besides considering gap degree, Maier and Lichte (2009) also transfer
the dependency-based notion of well-nestedness to syntactic structures. This
amounts to the following definition:

Definition 6.16 (Well-nestedness).
Let G = 〈N,T, VG, P, S〉 be a simple RCG.

• A derivation tree D = 〈V,E, r〉 ∈ LT (G) is well-nested if there are no
nodes v1, v2 ∈ V with π(v1) ∩ π(v2) = ∅ such that there are i1, i2 ∈ π(v1)
and j1, j2 ∈ π(v2) with i1 < j1 < i2 < j2.

• G is well-nested if all trees in LT (G) are well-nested.

Maier and Lichte (2009) are dealing only with SRCG derivation trees where
all leaves are labelled 〈i, i+ 1〉 for some 0 ≤ i < n (no ε-leaves) and, further-
more, for any node v in a derivation tree and any k, 1 ≤ k < |yield(v)|, we
have that the end position of the range ρ(k) is lower than the start position
of ρ(k + 1). In other words, whenever we have different arguments, there is
actually a gap in between.

In grammars G where the derivation trees satisfy these conditions, it holds
that the gap degree of the grammar plus 1 is its arity. Furthermore, such a
grammar is ill-nested iff it contains clauses with variables X1,X2,X3,X4 that
occur in this order in the left-hand side such that X1 and X3 are arguments of
some right-hand side predicate A and X2 and X4 are arguments of a different
right-hand side predicate B. This corresponds to the definition of well-nested
LCFRS given in (Kanazawa, 2009).

6.1.3 Applications

Biological Structures

Formal grammars have been proposed for RNA secondary structure predic-
tion techniques. For example, stem loop structures can be represented using
CFGs, and recognition (or secondary structure prediction) can be achieved in

6.1 Introduction to MCFG, LCFRS and Simple RCG 123

O(n3) where n is the length of the input sequence (or primary structure). For
the modelling of pseudoknot structures (see Fig. 6.7), which cannot be repre-
sented using CFG due to the crossing dependencies, among other formalisms,
stochastic MCFG has been proposed in (Kato, Seki, and Kasami, 2006).

C
5′ -C A G G

• • •
U C C A G U

• • •
G U C A G-3′

C

Pseudoknot

c a g g c u g a c c u g c u c a g
Arc depiction

Fig. 6.7. RNA secondary structure

Constituency Treebanks with Discontinuities

While most treebank annotation schemes rely on an annotation backbone
based on context-free grammar, in the German NeGra treebank, discontinuous
phrases are annotated directly using crossing branches. Figure 6.8 shows an
example tree from NeGra, involving two discontinuous VPs.

Fig. 6.8. A tree from NeGra

Maier and Søgaard present in (Maier and Søgaard, 2008) an algorithm for
the extraction of SRCGs from such treebanks, interpreting the trees as SRCG
derivation trees. This is almost immediate, except for the arity of the non-
terminal categories: In the treebank, we can have the same non-terminal with
different arities, for instance a VP without a gap (arity 1), a VP with a single
gap (arity 2), and so on. In the corresponding SRCG, we have to distinguish
these non-terminals by mapping them to different predicates.

124 6 MCFG and LCFRS

The algorithm first creates a so-called lexical clause P (a) → ε for each
pre-terminal P dominating some terminal a. Then for all other non-terminals
A0 with the children A1 · · ·Am, a clause A0 → A1 · · ·Am is created. The
arguments of theA1 · · ·Am are single variables where the number of arguments
is the number of discontinuous parts in the yield of a predicate. The arguments
of A0 are concatenations of these variables that describe how the discontinuous
parts of the yield of A0 are obtained from the yields of its daughters.

More precisely, the non-terminals (predicates) in our simple RCG are all
Ak where A is a non-terminal label in the treebank and k is a possible arity for
A. For a given treebank tree 〈V,E, r〉, the algorithm constructs the following
clauses. Let us assume that w1, . . . , wn are the terminal labels of the leaves
in 〈V,E, r〉 with wi ≺ wj for 1 ≤ i < j ≤ n. We introduce a variable Xi for
every wi, 1 ≤ i ≤ n.

• For every pair of nodes v1, v2 ∈ V with 〈v2, v2〉 ∈ E, l(v2) ∈ T , we add
l(v1)(l(v2)) → ε to the grammar. (We omit the arity subscript here since
pre-terminals are always of arity 1.)

• For every node v ∈ V with l(v) = A0 /∈ T such that there are exactly m
nodes v1, . . . , vm ∈ V (m ≥ 1) with 〈v, vi〉 ∈ E and l(vi) = Ai /∈ T for all
1 ≤ i ≤ m, we now create a clause

A0(x
(0)
1 , . . . ,x(0)

dim(A0)
)

→ A1(x
(1)
1 , . . . ,x(1)

dim(A1)
) . . . Am(x(m)

1 , . . . ,x(m)
dim(Am))

where for the predicate Ai, 0 ≤ i ≤ m, the following must hold:
1. The concatenation of all arguments of Ai is the concatenation of all
X ∈ {Xi | 〈vi, v

′
i〉 ∈ E∗ with l(v′i) = wi} such that Xi precedes Xj if

i < j, and
2. a variable Xj with 1 ≤ j < n is the right boundary of an argument of
Ai if and only if Xj+1 /∈ {Xi | 〈vi, v

′
i〉 ∈ E∗ with l(v′i) = wi}, i.e., an

argument boundary is introduced at each discontinuity.
As a further step, in our new clause, all right-hand side arguments of length
> 1 are replaced in both sides of the clause with a single new variable.
Finally, all predicates A in the clause are equipped with an additional
subscript dim(A) which gives us the final predicate in our simple RCG.

For the tree in Fig. 6.8, the algorithm produces for instance the following
clauses:

PROAV(Darüber) → ε
VMFIN(muß) → ε

VVPP(nachgedacht) → ε
VAINF(werden) → ε

S1(X1X2X3) → VP2(X1,X3) VMFIN(X2)
VP2(X1,X2X3) → VP2(X1,X2) VAINF(X3)

VP2(X1,X2) → PROAV(X1) VVPP(X2)

6.2 Equivalent Formalisms 125

root aux

pp aux

r Darüber muß nachgedacht werden

pp(Darüber) → ε
root(X1mußX3) → aux(X1,X3)

aux(X1,nachgedacht) → pp(X1)
aux(X1, X2werden) → aux(X1,X2)

Fig. 6.9. Clauses extracted from a dependency tree

Dependencies and LCFRSs

A similar algorithm has been proposed for the extraction of LCFRS from de-
pendency treebanks (Kuhlmann, 2007; Kuhlmann and Satta, 2009). Here, the
non-terminals of the RCG are the labels of the edges. Each clause is lexical-
ized where the lexical item is the label of the node to which the corresponding
edge is directed. See Fig. 6.9 for an example.

Maier and Lichte (2009) give a general formulation of both algorithms, the
one for constituency treebank grammar extraction and the one for dependency
treebank grammar extraction.

6.2 Equivalent Formalisms

LCFRS, MCFG and SRCG are important formalisms for natural language
processing, not only because they allow us to describe discontinuity phenom-
ena but also because they are equivalent to several other grammar formalisms
that have been motivated by linguistic considerations.

6.2.1 Set-Local Multicomponent TAG

In Chapter 4, we have introduced MCTAG, a special type of TAG where the
elementary trees are grouped into tree sets. Depending on the restrictions we
impose on the underlying TAG derivation trees, we obtain different types of
MCTAGs. Set-local MCTAGs are defined by the condition that, whenever a
tree set from the grammar is used, the trees from this set must adjoin to
(or substitute) nodes belonging to trees from a single tree set that has been
added previously. See Fig. 2.16, p. 34 for a sample set-local MCTAG. In order
to formulate this condition on the derivation tree, we require a partition of
the nodes into sets Vi (1 ≤ i ≤ n) such that the labels of each Vi form a tree
set from the grammar. A derivation is set-local if for each such set Vi, the set
of nodes immediately dominating nodes from Vi is contained in a single other
set Vj .

Definition 6.17 (Set-locality condition).
Let G = 〈N,T, S, I, A,A〉 be an MCTAG. Let D = 〈V,E, r〉 be the deriva-

tion tree of a saturated derived initial tree in GTAG.

126 6 MCFG and LCFRS

D is set-local iff
(SL) there is a partition V1, . . . , Vn of V such that for each Vi (1 ≤ i ≤ n):

Γi := {γ | l(v) = γ for some v ∈ Vi} ∈ A, |Vi| = |Γi|, and
for all Vi (1 ≤ i ≤ n), either Vi = {l(r)} or there is a Vj (1 ≤ j ≤ n) such

that for every v ∈ Vi there is a v′ ∈ Vj with 〈v′, v〉 ∈ E.

Note that in the literature, the term MCTAG is sometimes used as meaning
set-local MCTAG.

The equivalence between LCFRS and set-local MCTAG has been shown
in (Weir, 1988).

6.2.2 Minimalist Grammars

Minimalist Grammars (MGs) were proposed by Stabler (1997) as a formal-
ization of Chomsky’s Minimalist Program (Chomsky, 1995). Roughly, MGs
consist of a set of trees together with two operations, merge and move, that
allow us to transform these trees. Michaelis (2001a; 2001b) shows that MGs
are equivalent to LCFRS.

An MG consists of a set Lex of finite ordered binary trees τ = 〈V,E, r〉,
so-called expressions. In such expressions τ , there is an additional relation of
projection defined among sisters. For every v1
= v2 such that there exists a v
with 〈v, v1〉, 〈v, v2〉 ∈ E, either v1 projects over v2 or vice versa. Furthermore,
all leaves in τ are labeled with a finite sequence of features.

A node v ∈ V in an expression τ = 〈V,E, r〉 is called a maximal projection
if either v = r or its sister projects over v. The head of a node v ∈ V is the
leaf h(v) such that {v′ | 〈v, v′〉 ∈ E+, 〈v′, h(v)〈∈ E∗} does not contain maximal
projections, i.e., the path from v to its head contains only nodes that project
over their sisters.

In addition to the set Lex of expressions in the grammar, MG provides two
operations, merge and move to create new expressions. Merge builds a new
tree from two existing ones by considering them the two subtrees dominated
by a new root node. Its application depends on the head features of the two
trees and it modifies these features. Move transforms a single tree into a new
one. Roughly, it consists of extracting a subtree, replacing it with a trace ε
or deleting its phonetic material in the original place. The extracted subtree
and the result of deleting it in the original tree become sisters with a new root
node as mother.

For more details, see (Stabler, 1997).

6.2.3 Finite-Copying LFG

Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982) is a gram-
mar formalism that distinguishes between different structural levels. For
a sentence, we have a constituent structure (c-structure) that is a non-
transformational context-free derivation tree. In addition, the grammar defines

6.2 Equivalent Formalisms 127

a second level of description, the functional structure (f-structure) that rep-
resents grammatical functions and predicate-argument relations. F-structures
are represented with feature structures. Each node in the c-structure is linked
to exactly one f-structure. See Fig. 6.10 for an example. In order to depict
the link between c- and f-structures, every node in the c-structure carries the
name of its f-structure as a subscript.

C-structure F-structure

Sf1

NPf2 VPf1

Detf2 Nf2 Vf1 NPf3

thef2 manf2 atef1 Detf3 Nf3

thef3 applef3

f1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

subj
f2

⎡
⎢⎣pred ’man’

def +

num sg

⎤
⎥⎦

tense past

pred ’eat 〈 subj, obj〉’

obj
f3

⎡
⎢⎣pred ’apple’

def +

num sg

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6.10. C-structure and f-structure in LFG

In the grammar, c-structures are described with standard phrase struc-
ture rules, i.e., with context-free rewriting rules, such as S → NP VP and
NP → Det N. These rules are equipped with information about how the
mother node (left-hand side) f-structure and the f-structures of the daugh-
ter nodes (right-hand side) are related. For a given node, the symbols ↑ and
↓ refer to the f-structures of the mother node and of the node itself. Figure
6.11 shows some LFG rewriting rules equipped with f-structure equations that
yield structures as in Fig. 6.10.

S → NP VP
(↑ subj) = ↓ ↑ = ↓

NP → Det N↑ = ↓ ↑ = ↓
VP → V NP↑ = ↓ (↑ obj) = ↓

Fig. 6.11. Linking of c-structure and f-structure in LFG

Depending on the type of f-structure equations in a grammar, one obtains
more or less restricted types of LFG. Seki et al. (1993) define finite-copying
LFGs as grammars where, roughly, in a single derivation tree, only a limited
number of nodes can be linked to the same f-structure where the limit is given

128 6 MCFG and LCFRS

by a grammar constant. Seki et al. (1993) show that finite-copying LFG and
MCFG are weakly equivalent.

6.3 Summary

This chapter has introduced MCFG and the equivalent LCFRS and SRCG.
The underlying idea, in comparison to CFG, is to allow the yields of non-
terminals to be tuples of strings instead of single strings. The rewriting rules
specify how to compute the yield of the left-hand side non-terminal from
the yields of the right-hand side non-terminals. Depending on the number of
discontinuities we allow (i.e., depending on the arity or fan-out), we obtain a
hierarchy of grammar formalisms.

MCFGs are particularly interesting since their string language class is
the largest set of mildly context-sensitive string languages characterized by
a grammar formalism that we know of so far. MCFG have been shown to
be equivalent to set-local MCTAG, minimalist grammar and finite-copying
LFG, formalisms that have been motivated by the need for certain types
of linguistic descriptions in order to capture the syntax of natural languages.
Furthermore, dependency treebanks and constituency treebanks with crossing
branches allow us in a very natural way to extract MCFGs.

Problems

6.1. Give an MCFG for the counting language L4 = {akbkckdk | k ≥ 1}.

6.2. Consider the MCFG given by the following clauses (in SRCG notation):
S(XY Z) → A(Y)B(X,Z)
A(aX) → A(X) A(a) → ε
B(bX, bY b) → B(X,Y) B(ε, ε) → ε

1. Give the sets yield(A) and yield(B).
2. What is the string language generated by the grammar?
3. Given a word w = abbb, what is the set r -yield(B) with respect to w?

6.3. What are the languages generated by the following LCFRSs/simple
RCGs?

1. N = {S,A,B}, start symbol S, T = {a, b, c, d} and rules
S(XY ZU) → A(X,Z)B(Y,U) A(aXb, aY b) → A(X,Y) A(ε, ε) → ε

B(cXd, cY d) → B(X,Y) B(ε, ε) → ε
2. N = {S,A}, start symbol S, T = {a, b} and rules
S(XY) → A(XY) A(aX, bY) → A(X,Y)
A(X,Y) → A(Y,X) A(ε, ε) → ε

6.3 Summary 129

6.4. Consider again the second simple RCG from Problem 6.3.
Take the input word w = abba.

1. What are the instantiations of A(aX, bY) → A(X,Y) with respect to w
under the assumption that the two components of A are never overlapping
and have equal length?

2. Give the simple RCG derivation of w, i.e., the derivation S(〈0, 4〉) ∗⇒ ε
where each step consists of replacing the lhs of an instantiated clause with
its rhs.

6.5. Show that for every k > 0, the language {w2k+1 |w ∈ {a, b}∗} is not a
k-MCFL.

6.6. Give the language generated by the following simple RCG and give the
derivation tree for a string of length 9.

S-REL(XY Z) →VP-REL(X,Z)N-SUBJ(Y)
VP-REL(X,Y Z) →NP-REL(X,Z)V(Y)
NP-REL(X,a copy of Y) →NP-REL(X,Y)
NP-REL(X,a picture of Y) →NP-REL(X,Y)
N-SUBJ(Peter) → ε
V(painted) → ε
NP-REL(whom, ε) → ε

7

Parsing MCFG, LCFRS and Simple RCG

7.1 CYK Parsing of MCFG

In this section, we present different non-directional bottom-up parsing algo-
rithms for MCFG. The algorithms are described in (Seki et al., 1991; Ljunglöf,
2004; Burden and Ljunglöf, 2005).

7.1.1 The Basic Algorithm

We start with the basic CYK algorithm presented in (Seki et al., 1991). The
idea is roughly that once all predicates in the right-hand side of a rule have
been found, we can complete a left-hand side. We process the input from
left to right while, for every index i reached so far (i.e., we have seen the
input up to position i), we compute all tuples in the yield of any predicate A
whose rightmost component ends at position i. For the computation of these
tuples, we start with the terminating rules and obtain then further predicates
and yields by moving from completed right-hand sides to completed left-hand
sides. The input word w is in the language if and only if S with range vector
〈〈0, n〉〉 is in the final set of parsing results.

We can describe this algorithm using deduction rules. Seki et al. (1991)
give only a pseudo-code representation that shows also the order in which to
compute the different yields of the predicates.

Our items describe a predicate with its yield. Therefore they have the form

[A,ρ]

with A ∈ N ; ρ is a dim(A)-dimensional simple range vector in w.
While explaining the algorithm, we will illustrate the different steps with

the trace for parsing ababab with the grammar from Fig. 6.1, repeated in
Fig. 7.1. This trace is shown in Fig. 7.2.

The initial items are obtained from the terminating rules, i.e., the rules
with no predicates in the right-hand side. For a rule A→ f [], if we can find a

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 7, c© Springer-Verlag Berlin Heidelberg 2010

132 7 Parsing MCFG and LCFRS

Rewriting rules:

S → f1[A] A→ f2[A] A→ f3[A] A→ f4[] A→ f5[]

Operations:

f1[〈X, Y, Z〉] = 〈XY Z〉 f2[〈X, Y, Z〉] = 〈aX, aY, aZ〉 f4[] = 〈a, a, a〉
f3[〈X, Y, Z〉] = 〈bX, bY, bZ〉 f5[] = 〈b, b, b〉

Fig. 7.1. An MCFG for {www |w ∈ {a, b}+}

simple range vector ρ over the input w such that the denotation of this vector
in w (i.e., the vector of substrings of w corresponding to the ranges) is f(),
then this range vector is in the yield of A.

Axioms: [A,ρ]
A → f [], f() = ρ(w)

For an example, see the first five items in the trace in Fig. 7.2. Looking at
these items, we can already see an inconvenience of the definition of MCFGs,
namely that they are not ordered, i.e., that the order of the components of a
tuple is not necessarily their order in the input string. Of course, from looking
at our sample grammar, we can see that A is an ordered predicate. Based
on this knowledge, we could exclude the second and third items. We will see
later that the property to be ordered does not restrict the expressive power,
i.e., for a given MCFG, we can find an equivalent ordered MCFG. However,
for this section, we will follow the literature and present the algorithms for
unordered MCFG.

The second rule we need, complete, applies whenever, for a given rule, we
have found appropriate range vectors for all predicates of the right-hand side.
Appropriate means that their combination according to the function specified
in the rule is defined, i.e., all required concatenations are possible. Then we
can compute a range vector in the yield of the left-hand side predicate.

Complete:
[A1,ρ1], . . . , [Am,ρm]

[A,ρ]
A → f [A1, . . . , Am],
ρ ∈ f [ρ1, . . . ,ρm]

As an example for the application of complete, see the items 6–8 in
Fig. 7.2.

The goal item is [S, 〈〈0, n〉〉]. Item 8 in our example is a goal item.
As in the CFG CYK case, we can compute the items in the order of the

rightmost yield position while, each time, starting with the application of
the rule axiom and then doing all possible complete operations. We de-
fine the rightmost position of a range vector ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉 as
max{r1, . . . , rk}.

7.1 CYK Parsing of MCFG 133

Item Rule

1 [A, 〈〈0, 1〉, 〈2, 3〉, 〈4, 5〉〉] axiom with A→ f4[]
2 [A, 〈〈0, 1〉, 〈4, 5〉, 〈2, 3〉〉] axiom with A→ f4[]
3 [A, 〈〈2, 3〉, 〈0, 1〉, 〈4, 5〉〉] axiom with A→ f4[]

. . .
4 [A, 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉] axiom with A→ f5[]
5 [A, 〈〈1, 2〉, 〈5, 6〉, 〈3, 4〉〉] axiom with A→ f5[]

. . .
6 [A, 〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉] complete, with 4 and A→ f2[A]
7 [A, 〈〈0, 2〉, 〈4, 6〉, 〈2, 4〉〉] complete, with 5 and A→ f2[A]

. . .
8 [S, 〈〈0, 6〉〉] complete, with 6 and S → f1[A]

Fig. 7.2. Parse of the input ababab with the basic CYK algorithm

for all i = 0 to n do
apply all axiom rules with rightmost position i and add the new items to C and
A
repeat

for every item x in A do
for every complete step with x and items from C as antecedent items and
y as consequent do

if y /∈ C then
add y to C and A

end if
end for
remove x from A

end for
until A = ∅
if [S, 〈〈0, n〉〉] ∈ C then

return true
end if

end for

Fig. 7.3. Pseudo-code of the basic CYK algorithm

We can then implement the parser using a chart C and an agenda A. When
processing position i, the agenda contains all new items with rightmost index
i that still need to be processed for possible applications of complete. This
algorithm is sketched in Fig. 7.3.

The algorithm in Fig. 7.3 is a recognizer. As usual, we can extend it to
a parser by adding backpointers to the items we store in the chart: In ev-
ery complete step, we add a pointer from the consequent item to the set of
antecedent items. Then the final chart together with these backpointers repre-
sents the parse forest. The single parse trees can be obtained by following the
backpointers, starting from the goal item. In case of ambiguities there might
be more than one backpointer for a given item.

134 7 Parsing MCFG and LCFRS

S → f1[A] := 〈A(1)A(2)A(3)〉
A→ f2[A] := 〈aA(1), aA(2), aA(3)〉
A→ f3[A] := 〈bA(1), bA(2), bA(3)〉
A→ f4[] := 〈a, a, a〉
A→ f5[] := 〈b, b, b〉

Fig. 7.4. The MCFG from Fig. 7.1 with range constraint vectors

An obvious disadvantage of this basic CYK algorithm is that, in order to
perform a complete, one has to find items for all arguments of a right-hand
side of a rule at the same time.

7.1.2 The Näıve Algorithm

As a first strategy for binarization of the CYK algorithm, Burden and Ljunglöf
(2005) propose moving a dot through the right-hand side of the rules. They
call this the näıve algorithm since it is rather immediate when applying the
techniques known from CFGs to MCFG parsing. But, as we will see, there
are more efficient ways of binarizing the parsing operations.

The items of this algorithm have to encode dotted rules and all range
vectors for the already recognized predicates of the right-hand side.

We know that the arguments of the right-hand side predicates are taken
as single components of the arguments of the left-hand side. We refer to the
kth component of the ith element of the right-hand side as A(k)

i . Then we can
pair the rewriting rules with an explicit recipe of how to compute the yield of
the left-hand side from the yields of the right-hand side predicates as follows:

A0 → f [A1, . . . , An] := 〈x1, . . . , xk〉

where k = dim(A0), xi ∈ (T ∪{A(m) |A ∈ {A1, . . . , An}, 1 ≤ m ≤ dim(A)})∗.
The vector x = 〈x1, . . . , xk〉 is called a range constraint vector.
As an example, consider again the MCFG for the double copy language

from Fig. 7.1. With the encoding of the mcf-functions as a range constraint
vector, we obtain the rules in Fig. 7.4. The second rule for example tells us
that when applying f2 to a triple in the yield of A, we obtain a new triple in
the yield of A whose ith component (1 ≤ i ≤ 3) is a terminal a concatenated
with the ith component of the first triple.

The näıve algorithm starts by guessing the ranges corresponding to the
terminals in the range constraint vector of a rule. Later, when completing
the right-hand side predicates one by one, the ranges corresponding to the
component symbols A(i) will be found as well.

We now define the possible guesses for the terminals of a range constraint
vector. Given a w, we can map the terminal symbols to appropriate ranges in
w. Appropriate means that the yield of the range contains the terminal and
that all concatenations are well defined.

7.1 CYK Parsing of MCFG 135

Item Rule

1 [S → f1[•A] := 〈A(1)A(2)A(3)〉]] predict

2 [A→ f2[•A] := 〈〈0, 1〉A(1), 〈2, 3〉A(2), 〈4, 5〉A(3)〉] predict

3 [A→ f2[•A] := 〈〈0, 1〉A(1), 〈4, 5〉A(2), 〈2, 3〉A(3)〉] predict
. . .

4 [A→ f3[•A] := 〈〈1, 2〉A(1), 〈3, 4〉A(2), 〈5, 6〉A(3)〉] predict
. . .

5 [A→ f5[•] := 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉] predict
6 [A, 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉] convert 5
7 [A→ f2[A•] := 〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉] complete 2 with 6
8 [A, 〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉] convert 7
9 [S → f1[A•] := 〈〈0, 6〉〉]] complete 1 with 8
10 [S, 〈〈0, 6〉〉]] convert 9

Fig. 7.5. Parse of the input ababab with the näıve CYK algorithm

Definition 7.1. Let x be a range constraint vector and x be a component of
x. We define xw as follows:

• if x ∈ T ∗, then 〈x〉w = {〈l, r〉 | 〈l, r〉(w) = x}
• if x = yV z with V = A(m), then 〈x〉w = {α1A

(m)α2 |α1 ∈ 〈y〉w, α2 ∈
〈z〉w}.

xw is then obtained by applying this to all components of x such that the
ranges occurring in the result are all pairwise non-overlapping.

We use two different types of items in our algorithm, namely active items
containing a dotted rule and passive items. The latter have the same form
[A,ρ] as the items from the basic CYK algorithm. They can be obtained once
an entire right-hand side has been recognized.

The active items have the form

[A0 → f [A • A′];φ]

where the components of φ are concatenations of ranges and variables A(i).
As already explained, we start by predicting possible ranges for the ter-

minals in the range constraint vectors of the rules of our grammar. This is a
completely blind prediction; any rule is predicted as being potentially used.

Predict: [A→ f [•B];φ]
A → f [B] := x and φ ∈ xw

As an example consider the items 1–5 in Fig. 7.5. The trace shows only
a part of the items generated by the predict rule. It is obvious from this
example that a large number of items is predicted that never will be used.
One reason for this is again that in general, MCFGs are not ordered. Therefore
items such as 3 are predicted as well where the second component starts at
position 4 while the third component starts at position 2. The second reason is

136 7 Parsing MCFG and LCFRS

of course the completely unconstrained prediction strategy. All rules where we
can find ranges for the terminals occurring in the rule are predicted as being
potentially used. This can be ameliorated with more intelligent prediction
strategies such as top-down prediction (Earley) or left-corner prediction. We
will come back to this issue in Section 7.1.5.

The rule convert turns a completely recognized active item into a passive
item.

Convert:
[A→ f [B•];φ]

[A;φ]

An example is item 6 in our trace that is obtained from the completely
recognized item 5.

The complete rule moves the dot over a non-terminal if a corresponding
passive item exists. Corresponding means that the variables A(i) can be re-
placed with the ranges from the passive items and the ranges in the result are
all well defined and pairwise non-overlapping.

Complete:
[A→ f [B •BkB′];φ], [Bk;ψ]

[A→ f [BBk • B′];φ′]
φ′ = φ[Bk/ψ]

Here, φ[Bk/ψ] means replacing every occurrence of B(i)
k in φ with ψ(i)

for all i, 1 ≤ i ≤ dim(Bk).
An example is item 7 in Fig.7.5, which is obtained by moving the dot in

item 1 over the A predicate. This operation is licensed by the existence of the
passive item 6.

This algorithm is better than the basic one since in its complete oper-
ations, it combines only one completed predicate with an active item. How-
ever, the completed predicate has dim(Bk) ranges. Therefore, even this more
binarized complete operation combines 2dim(Bk) range boundaries (for the
dim(Bk) arguments of the passive items) with the active item, each of the
boundaries having a value between 0 and n. This can only be avoided if we
do not combine all the components of a passive items at once with an active
item. The active algorithm presented in the next section is a first strategy in
this direction.

7.1.3 The Active Algorithm

The idea of the active algorithm from Burden and Ljunglöf (2005) is to use the
dot to traverse the range constraint vector φ. This means that we process the
different parts of the components of the yield of the left-hand side from left to
right. Moving the dot over a terminal means scanning the next input symbol.
Moving the dot over a variable A(i) means that there is an A-predicate whose
ith component licenses this move. While moving the dot through the range
constraint vector, we replace terminals and component variables A(i) with
appropriate ranges.

7.1 CYK Parsing of MCFG 137

The passive items are of the form [A,ρ] as before. The active items contain
a rule with its dotted range constraint vector. Furthermore, every terminal
and every component variable to the left of the dot has been replaced with
its range. Finally, we have to keep track of the ranges found for the com-
ponent variables since, when finding further components of a predicate, we
have to check whether they match with the components we have already seen.
Therefore active items have the form

[A→ f [B]; (φ, ρ • x, ψ);Γ]

where φ is a list of ranges, ρ is a range, x contains terminals and component
variables, and ψ is a vector of words of terminals and component variables. Γ
encodes the bindings already found for the component variables of the clause;
it contains range vectors for the predicates in B if these are found; otherwise
it contains the variables B(i)

k for these ranges.
Such an active item indicates that the first arguments of A have been

recognized yielding the ranges φ and the next argument is recognized up to
the position marked by the dot so far yielding ρ. The rest of this argument
(range constraints x) and the following arguments (range constraints ψ) are
still waiting for completion.

The operation predict introduces a new rule with the dot on the left of
its range constraint vector.

Predict: [A→ f [B]; (•x, Ψ);ΓB]
A → f [B] := (x, Ψ)

We define that ΓB contains the range variables for the vector B.
See the first 5 items in Fig. 7.6 for examples of predict. Note that, in

contrast to the näıve algorithm, we do not guess the ranges corresponding
to the terminals during prediction. Instead, they are determined by the scan
operation that moves the dot over a terminal while replacing the terminal
with its range.

Scan:
[A→ f [B]; (Φ,α • ax, Ψ);Γ

[A→ f [B];Φ,α · 〈l, r〉 • x, Ψ);Γ]
〈l, r〉(w) = a

Examples are the items 6 and 7 in Fig. 7.6, which are both obtained by
scanning an a.

Once the dot has reached the end of a component of the left-hand side yield,
we can move the dot to the next component. This is done by the complete
operation.

Complete:
[A→ f [B]; (Φ,α•, x, Ψ);Γ]
[A→ f [B]; (Φ,α, •x, Ψ);Γ]

Examples of items obtained from complete are for instance the items 9
and 12 in Fig. 7.6.

138 7 Parsing MCFG and LCFRS

Item Rule

1 [S → f1[A] := 〈•A(1)A(2)A(3)〉, 〈〈A(1), A(2), A(3)〉〉] predict

2 [A→ f2[A] := 〈•aA(1), aA(2), aA(3)〉, 〈〈A(1), A(2), A(3)〉〉] predict

3 [A→ f3[A] := 〈•bA(1), bA(2), bA(3)〉, 〈〈A(1), A(2), A(3)〉〉] predict

4 [A→ f4[] := 〈•a, a, a〉, 〈 〉] predict

5 [A→ f5[] := 〈•b, b, b〉, 〈 〉] predict

6 [A→ f2[A] := 〈〈0, 1〉 •A(1), aA(2), aA(3)〉, 〈〈A(1), A(2), A(3)〉〉] scan a from 2

7 [A→ f2[A] := 〈〈2, 3〉 •A(1), aA(2), aA(3)〉, 〈〈A(1), A(2), A(3)〉〉] scan a from 2

. . .
8 [A→ f4[] := 〈〈0, 1〉•, a, a〉, 〈 〉] scan a from 4

. . .
9 [A→ f4[] := 〈〈0, 1〉, •a, a〉, 〈 〉] compl. 8

10 [A→ f4[] := 〈〈0, 1〉, 〈2, 3〉•, a〉, 〈 〉] scan from 9

. . .
11 [A→ f5[] := 〈〈1, 2〉•, b, b〉, 〈 〉] scan from 5

12 [A→ f5[] := 〈〈1, 2〉, •b, b〉, 〈 〉] compl. 11

. . .
13 [A→ f5[] := 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉•〉, 〈 〉] . . .
14 [A, 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉] convert 13

15 [A→ f2[A] := 〈〈0, 2〉•, aA(2), aA(3)〉, 〈〈〈1, 2〉, A(2), A(3)〉〉] combine 6 with 14

. . .

16 [A→ f2[A] := 〈〈0, 2〉, 〈2, 3〉 •A(2), aA(3)〉, 〈〈〈1, 2〉, A(2), A(3)〉〉] . . .

17 [A→ f2[A] := 〈〈0, 2〉, 〈2, 4〉•, aA(3)〉, 〈〈〈1, 2〉, 〈3, 4〉, A(3)〉〉] combine 16 with 14

. . .
18 [A, 〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉]
19 [S → f1[A] := 〈〈0, 2〉 •A(2)A(3)〉, 〈〈〈0, 2〉, A(2), A(3)〉〉] compl. 1 with 18

20 [S → f1[A] := 〈〈0, 4〉 •A(3)〉, 〈〈〈0, 2〉, 〈2, 4〉, A(3)〉〉] compl. 19 with 18

21 [S → f1[A] := 〈〈0, 6〉•〉, 〈〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉〉] compl. 20 with 18

22 [S, 〈〈0, 6〉〉] convert 21

Fig. 7.6. Parse of the input ababab with the active CYK algorithm

Once we reach the end of the last component of the left-hand side yield,
we can turn our active item into a passive one by applying the operation
convert.

Convert:
[A→ f [B]; (Φ,α•),Γ]

[A; (Φ,α)]

This leads for example to item 14 in our sample trace.
The most important operation in this algorithm is the combine operation

that moves the dot over a component variable if a corresponding passive item
has been found. In this case, the range of the component variable is stored in
the vector Γ . Furthermore, as a side condition, the components of the right-
hand side predicate whose ranges have been found in previous steps (i.e.,
who are already present in Γ) must be the same ranges as the corresponding
components of the passive item.

7.1 CYK Parsing of MCFG 139

Combine: [A→ f [B]; (Φ,α •B(i)
k x, Ψ),Γ], [Bk;ρ]

[A→ f [B]; (Φ,α · ρ(i) • x, Ψ);Γ′]
Γ(k) compatible with
ρ, Γ′ = Γ(k, i := ρ(i))

Here the term compatible means that for every 1 ≤ i ≤ dim(Bk), either
Γ(k)(i) = ρ(i) or Γ(k)(i) = B

(i)
k .

The item 15 is a first example for applying this operation.
The goal item is again [S, 〈〈0, n〉〉], which is item 22 in our trace.
A problem with this algorithm is that, even though in the combine opera-

tion we are moving the dot only over component variables B(i)
k , in order to do

so, we need an entirely recognized Bk predicate. However, since we need only
the ith component of this daughter predicate, we could just as well use an
active Bk item with a completed ith component to license the combination.
This idea leads to the incremental algorithm in (Burden and Ljunglöf, 2005)
that will be described in the next section.

7.1.4 The Incremental Algorithm

The idea of the incremental algorithm is to process the input from left to right
while, for every input position i, calculating all possible active and passive
items that span a part of the input with end position i. In particular, instead
of entirely completing a predicate before combining it with a higher predicate,
we can use its jth component as soon as it is finished without having to wait
for all the other components.

In the sample trace for the active item, we need for instance item 18 (which
ends at position 6) in order to obtain item 19 (which ends at position 2). This
is no longer the case in the incremental algorithm. As soon as we have seen
the first component of the daughter A predicate (this was the case in item
15), we can use it to move the dot in the mother predicate, i.e., with item 15,
we can immediately obtain item 19.

A difficulty with the general MCFG definition is, as already mentioned,
that these grammars are not ordered. Consequently, for a range vector ρ =
〈〈l1, r1〉, . . . , 〈lk, rk〉〉 in the yield of a predicate A it is not necessarily the case
that ri ≤ li+1 for all 1 ≤ i < k. Therefore, when processing the components
of a left-hand side predicate from left to right with respect to the input w, we
do not necessarily process them from left to right with respect to the order in
the rule.

In order to be able to process the left-hand side components in an order
different from the one in the rule, we now use explicit features R1, . . . , Rdim(A)

for the range constraints of the dim(A) ranges of a predicate A. This way, the
argument index is no longer given by the position in the range constraint
vector and we can process the arguments in any order.

For the incremental algorithm we use only active items of the form

[A→ f [B]; (φ,Ri = ρ • x, ψ);Γ]

140 7 Parsing MCFG and LCFRS

Item i Rule

1 [S → f1[A] := 〈R1 = 〈0, 0〉 •A(1)A(2)A(3)〉, 〈〈A(1), A(2), A(3)〉〉] 0 predict

2 [A→ f2[A] := 〈R1 = 〈0, 0〉 • aA(1), R2 = aA(2), R3 = aA(3)〉,
〈〈A(1), A(2), A(3)〉〉] 0 predict

3 [A→ f2[A] := 〈R2 = 〈0, 0〉 • aA(2), R1 = aA(1), R3 = aA(3)〉,
〈〈A(1), A(2), A(3)〉〉] 0 predict

4 [A→ f2[A] := 〈R3 = 〈0, 0〉 • aA(3), R2 = aA(2), R1 = aA(1)〉,
〈〈A(1), A(2), A(3)〉〉] 0 predict

. . .

5 [A→ f2[A] := 〈R1 = 〈0, 1〉 •A(1), R2 = aA(2), R3 = aA(3)〉,
〈〈A(1), A(2), A(3)〉〉] 1 scan

6 [A→ f5[] := 〈R1 = 〈1, 1〉 • b, R2 = b, R3 = b〉, 〈 〉] 1 predict
7 [A→ f5[] := 〈R1 = 〈1, 2〉•, R2 = b, R3 = b〉, 〈 〉] 2 scan

8 [A→ f2[A] := 〈R1 = 〈0, 2〉•, R2 = aA(2), R3 = aA(3)〉,
〈〈〈1, 2〉, A(2), A(3)〉〉] 2 combine 5,7

9 [S → f1[A] := 〈R1 = 〈0, 2〉 •A(2)A(3)〉,
〈〈〈0, 2〉, R2 = A(2), A(3)〉〉] 2 combine 1,8

10 [A→ f2[A] := 〈R1 = 〈0, 2〉, R2 = 〈2, 2〉 • aA(2), R3 = aA(3)〉,
〈〈〈1, 2〉, R2 = A(2), A(3)〉〉] 2 complete 8

11 [A→ f2[A] := 〈R1 = 〈0, 2〉, R2 = 〈2, 3〉 •A(2), R3 = aA(3)〉,
〈〈〈1, 2〉, R2 = A(2), A(3)〉〉] 3 scan 10

12 [A→ f5[] := 〈〈1, 2〉, R2 = 〈3, 3〉 • b, b〉, 〈 〉] 3 complete 7
13 [A→ f5[] := 〈〈1, 2〉, R2 = 〈3, 4〉•, R3 = b〉, 〈 〉] 4 scan 12

14 [A→ f2[A] := 〈R1 = 〈0, 2〉, R2 = 〈2, 4〉•, R3 = aA(3)〉,
〈〈〈1, 2〉, 〈3, 4〉, A(3)〉〉] 4 combine 11,13

. . .
15 [S → f1[A] := 〈R1 = 〈0, 6〉•〉, 〈〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉〉] 6

Fig. 7.7. Parse of the input ababab with the incremental CYK algorithm

that are defined as in the active algorithm except for the explicit names Ri

of the component range constraints. Furthermore, the order in the range con-
straint vectors need not be the same as in the original rule in the grammar.

As before, the predict operation introduces a new rule with the dot on the
left of one of the components of the left-hand side. In contrast to the active
algorithm, we now guess the starting index of this component by having the
dot preceded by a corresponding range.

Predict: [A→ f [B]; (Ri = 〈k, k〉 • x, Ψ1, Ψ2);ΓB]

A → f [B′] := (Ψ1, x, Ψ2)
with x the ith element,
1 ≤ i ≤ dim(A),
1 ≤ k ≤ n

Here, ΓB contains again the range variables for the vector B.
A sample parse with this algorithm is shown in Fig. 7.7 (i gives the cur-

rent input position). We restrict ourselves to the successful items. The first
four items arise from the predict operation. Here, again, the disadvantage of

7.1 CYK Parsing of MCFG 141

having a potentially unordered MCFG is visible: Any of the three components
of A could be the one starting at position 0.

Scan moves the dot over a terminal. A result of this operation is for
example item 3 in Fig. 7.7.

Scan:
[A→ f [B]; (Φ,Ri = 〈l, r〉 • ax, Ψ);Γ

[A→ f [B]; (Φ,Ri = 〈l, r + 1〉 • x, Ψ);Γ]
〈r, r + 1〉(w) = a

The combine operation moves the dot over a component variable B(i)
k

if there is an active Bk item whose ith component has been completed and
whose other completed components are compatible with the components seen
so far in the item with Bk in the right-hand side.

Combine:
[A→ f [B]; (Φ1, Rj = α •B(i)

k x, Ψ1),Γ]
[Bk → g[C]; (Φ2, Ri = β•, Ψ2),ΓC]

[A→ f [B]; (Φ1, Rj = α · β • x, Ψ1);Γ(k, i := β)]

Γ(k) compatible
with (Φ2)

Here, the term “compatible” means that for every 1 ≤ h ≤ dim(Bk), if
Rh = αh ∈ (Φ2), then Γ(k)(h) = αh.

The first application of combine in our trace in Fig. 7.7 leads to item 8.
The complete operation, as before, moves a dot that is at the end of

a component to another component. Again, as in the predict operation, it
guesses the starting position of this other component.

Complete:
[A→ f [B]; (Φ,Ri = 〈li, ri〉•, Ψ1, Rj = x, Ψ2);Γ]
[A→ f [B]; (Φ,Ri = α, rj = 〈k, k〉 • x, Ψ1, Ψ2);Γ]

ri ≤ k ≤ n

An application of complete leads for example to item 10.
Every item of the form [S → f [A] := 〈R1 = 〈0, n〉•〉,Γ] is a goal item. In

our example, item 15 is a goal item.

7.1.5 Prediction Strategies

A problem of these algorithms is that, as in the CYK case for CFG, the
predictions are blind and consequently, we predict and then compute a lot
of partial results that are actually not reachable given the predicates we are
looking for and the predicates we have already found.

As mentioned in (Burden and Ljunglöf, 2005), this problem can be avoided
by replacing the unrestricted prediction with a restricted prediction that takes
the parsing context into account. There are mainly two possibilities, namely a
top-down restricted prediction which amounts to an Earley parsing strategy,
or a left-corner restricted prediction.

More concretely, in the first case, a A → f [B] with a dot left of Ri = α
is only predicted (by predict or complete) if there is another item looking
for A(i). This leads to an Earley variant of the incremental parser. See the
solution of Problem 7.1 for the modified deduction rules.

142 7 Parsing MCFG and LCFRS

The second strategy amounts to checking the existence of a left corner
when predicting, i.e., A → f [B] with a dot left of Ri = α is only predicted
if either the first symbol in α is the next terminal in the input or there is an
item that has found the first symbol in α.

Besides the extension of the incremental algorithm to an Earley parser
(solution of Problem 7.1), another technique to do Earley parsing for MCFG
has been proposed in (Kanazawa, 2008). Kanazawa considers the MCFG as a
Datalog program and uses magic-sets rewriting to obtain a prefix valid Earley
parser.

7.2 Simplifying Simple RCGs

So far, we have assumed unconstrained MCFGs. However, as in the case of
CFGs, before parsing, we can eliminate useless symbols and empty arguments.
Furthermore, we can order the grammar and even binarize the rules, i.e.,
transform the MCFG into some kind of Chomsky Normal Form. This section
explains the different transformations. We will notate the grammars as SRCGs
since we have the impression that this notation is easier to read. Furthermore,
some of the transformations given below have been introduced for simple
RCGs.

7.2.1 Eliminating Useless Rules

Boullier (1998b) shows a range of useful properties of simple RCG that can
help to make parsing easier. First, Boullier defines rules that cannot be used
in reductions S(〈0, n〉) ∗⇒ ε for any w ∈ T ∗ as useless. For a simple RCG,
there exists an equivalent simple RCG that does not contain useless rules.

The removal of the useless rules can be done in the same way as in the
CFG case (Hopcroft and Ullman, 1979):

1. All rules need to be eliminated that cannot lead to a terminal sequence.
This can be done recursively: Starting from the terminating rules and
following the rules from right to left, the set of all non-terminals leading
to terminals can be computed recursively.
We can characterize this set NT with the following deduction rules:

[A]
A(α) → ε ∈ P

[A1], . . . , [Am]
[A]

A(α) → A1(α1) . . . Am(αm) ∈ P

All rules that contain non-terminals in their right-hand side that are not
in this set are eliminated.

7.2 Simplifying Simple RCGs 143

Original simple RCG rules:
S(XY)→ A(X, Y), A(a, ε)→ ε, A(ε, a)→ ε, A(a, b)→ ε

Set of pairs characterizing possibilities for ε-components:
Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}

Rules after ε-elimination:
S′(X)→ S1(X),
S1(X)→ A10(X), A10(a)→ ε,
S1(X)→ A01(X), A01(b)→ ε,
S1(XY)→ A11(X, Y), A11(a, b)→ ε

Fig. 7.8. Elimination of ε-rules in a simple RCG

2. In the resulting simple RCG, the unreachable rules need to be eliminated.
This is done starting from all S-rules and moving from left-hand sides to
right-hand sides. If the right-hand side contains a predicate A, then all A-
rules are reachable. Each time, the rules for the predicates in a right-hand
side are added.
We can characterize the set NS of non-terminals reachable from S with
the following deduction rules:

[S]
[A]

[A1], . . . , [Am]
A(α) → A1(α1) . . . Am(αm) ∈ P

Rules whose left-hand side predicate is not in this set are eliminated.

7.2.2 Eliminating ε-Rules

A second useful transformation given in (Boullier, 1998b) and already men-
tioned in (Seki et al., 1991) is the elimination of ε-rules that is possible in a
way similar to CFG. We define that a rule is an ε-rule (or ε-clause) if one of
the arguments of the left-hand side is the empty string ε.

A simple RCG is ε-free if it either contains no ε-rules or there is exactly
one rule S(ε) → ε and S does not appear in any of the right-hand sides of the
rules in the grammar.

First, we have to compute for all predicates A, all ways to have empty
ranges among the components of the yields. For this, we introduce vectors
ι ∈ {0, 1}dim(A) and we generate a set Nε of pairs (A, ι) where ι signifies that
it is possible for A to have a tuple τ in its yield with τ(i) = ε if ι(i) = 0 and
τ(i)
= ε if ι(i)
= 0. A pair (A, ι) is written Aι.

Take, for instance, an RCG with the rules in Fig. 7.8. In this RCG, the
yield of S cannot be empty. For A, either none of the components is empty or
only the first one or only the second one is empty. This would therefore lead
to a set Nε given in the figure.

The set Nε is constructed recursively:

144 7 Parsing MCFG and LCFRS

1. Nε = ∅.
2. For every rule A(x1, . . . , xdim(A)) → ε, add (A, ι) to Nε with, for all

1 ≤ i ≤ dim(A), ι(i) = 0 if xi = ε, else ι(i) = 1.
3. Repeat until Nε does not change any more:

For every rule A(x1, . . . , xdim(A)) → A1(α1) . . . Ak(αk) and all (A1, ι1),
. . . , (Ak, ιk) ∈ Nε:
Calculate a vector (x′1, . . . , x

′
dim(A)) from (x1, . . . , xdim(A)) by replacing

every variable that is the jth variable of Am in the right-hand side such
that ιm(j) = 0 with ε.
Then add (A, ι) to Nε with, for all 1 ≤ i ≤ dim(A), ι(i) = 0 if x′i = ε,
else ι(i) = 1.

Now that we have the set Nε we can obtain reduced rules from the ones
in the grammar where ε-arguments are left out. Consider again our sample
grammar in Fig. 7.8. The new predicate S′ is mainly for the case of ε being
in the language, which does not apply here. The new predicates A01 and A10

represent the former predicate A reduced to only the non-empty component.
A11 encodes the case where none of the components is empty.

To obtain this grammar, we roughly add to the new grammar for every
rule in the original grammar all reductions of that rule where components
that might be empty get deleted. For example, the rule S(XY) → A(X,Y) of
the original grammar together with (A, 10) ∈ Nε leads to the rule S1(X) →
A10(X) which covers the case where the second component of A is empty and
is therefore deleted. We must make sure that we do not add any A0...0-rules.
Such predicates get entirely deleted in the right-hand sides.

More precisely, to obtain the new set of rules Pε, we proceed as follows.

1. Pε = ∅
2. We pick a new start symbol S′ /∈ Nε.

If S0 ∈ Nε (i.e., ε ∈ L(G)), we add S′(ε) → ε to Pε.
If S1 ∈ Nε, we add S′(X) → S1(X) to Pε.

3. For every rule A(α) → A1(x1) . . . Ak(xk) ∈ P : add all ε-reductions of this
rule to Pε.

The ε-reductions of A(α) → A1(x1) . . . Ak(xk) are obtained as follows:
For all combinations of ι1, . . . , ιk such that Aιii ∈ Nε for 1 ≤ i ≤ k,

(i) for all i, 1 ≤ i ≤ k, replace Ai in the right-hand side with Aιii , and for
all j, 1 ≤ j ≤ dim(Ai): if ιi(j) = 0, then remove the jth component of
Aιii from the right-hand side and delete the variable xi(j) in the left-hand
side. Furthermore, if ιi ∈ 0+, then remove Ai with its arguments from the
right-hand side.

(ii) Let ι ∈ {0, 1}dim(A) be the vector with ι(i) = 0 iff the ith component of A
(in the left-hand side) is empty in the rule obtained from (i). If ι /∈ 0+, then
remove all ε-components in the left-hand side and replace A with Aι. Add
the resulting rule to the set of ε-reductions of A(α) → A1(x1) . . . Ak(xk).

7.2 Simplifying Simple RCGs 145

7.2.3 Ordered Simple RCG

As pointed out above, the fact that MCFGs in general are not ordered com-
plicates parsing considerably since when using a rule in parsing, the order of
the yield components of its left-hand side in the input is not necessarily the
order of the components in the rule.

Villemonte de la Clergerie (2002) mentions that every simple RCG (hence,
every MCFG) can be transformed into an equivalent ordered simple RCG. A
proof for LCFRS, where this property is called monotone, is given in (Kracht,
2003). First, let us think more closely about what ordered as a grammar
property means. To obtain that the order of the components of the left-hand
side predicate of a rule corresponds always to their order in the input, it
is enough to make sure that for every rule and every single right-hand side
predicate, the order of the variables for the components of this predicate in
the rule is the same as the order of these variables in the arguments of the
left-hand side predicate.

Definition 7.2 (Ordered simple RCG).
A simple RCG is ordered if for every rule A(α) → A1(α1) . . . Ak(αk) and

every Ai(αi) = Ai(Y1, . . . , Ydim(Ai)) (1 ≤ i ≤ k), the order of the components
of αi in α is Y1, . . . , Ydim(Ai).

In the literature, the fact that for every simple RCG, there is an equivalent
ordered simple RCG is taken to be obvious (Villemonte de la Clergerie, 2002).
However, we will sketch the construction here. It is roughly as follows: We
check for every rule whether the component order in one of the right-hand
side predicates A does not correspond to the one in the left-hand side. If so, we
add a new predicate that differs from A only with respect to the order of the
components. We replace A in the rule with the new predicate with reordered
components. Furthermore, we add a copy of every A-rule with A replaced in
the left-hand side by the new predicate and reordering of the components.

For the construction, we notate the permutations of components as vectors
where the ith element is the image of i. For a predicate A, id is the vector
〈1, 2, . . . ,dim(A)〉. The vector 〈2, 1, 3〉 for instance specifies a permutation of
three elements such that the first becomes the second, the second the first,
and the third remains the third. For two such permutations p1, p2 of the
same dimension (i.e., |p1| = |p2|), p1 · p2 is defined as the vector p with
p(i) = p2(p1(i)) for 1 ≤ i ≤ |p1|. p is the composition of p1 and p2.

We construct the set P ′ of new rules that is initialized as the original set
P . The algorithm is shown in Fig. 7.9.

Note that in general, this transformation algorithm is exponential in the
size of the original grammar, since for a given predicate it could be the case
that we need all predicates Ap where p is a permutation of the arguments.
Then, for each of these, we have to add copies of all the original A-clauses
with a modified left-hand side order. As a small example see Fig. 7.10.

146 7 Parsing MCFG and LCFRS

P ′ := P with all predicates A replaced with Aid;
N ′ := {Aid |A ∈ N};
repeat

for all rules r = Ap(α)→ Ap1
1 (α1) . . . A

pk
k (αk) in P ′ do

for all i = 1 to k do
if Api

i (αi) = Api
i (Y1, . . . , Ydim(Ai)) and the order of the Y1, . . . , Ydim(Ai)

in α is p(Y1, . . . , Ydim(Ai)) where p is not the identity then

introduce a predicate A
p′

i
i with p′

i = pi ◦ p

replace Api
i (αi) in r with A

p′
i

i (p(αi))

if A
p′

i
i /∈ N ′ then

add A
p′

i
i to N ′

for every Api
i -rule Api

i (γ)→ Γ ∈ P ′ do

add a new rule A
p′

i
i (p(γ))→ Γ to P ′

end for
end if

end if
end for

end for
until P ′ does not change any more

Fig. 7.9. Algorithm for transforming a simple RCG into an ordered simple RCG

Original clauses:
S(XY)→ A(X, Y) A(X, Y)→ A(Y, X) A(aX, bY)→ A(X, Y) A(a, b)→ ε

Clauses after transformation into ordered RCG:
S〈1〉(XY)→ A〈1,2〉(X, Y)

A〈1,2〉(X, Y)→ A〈2,1〉(X, Y) A〈2,1〉(X, Y)→ A〈1,2〉(X, Y)

A〈1,2〉(aX, bY)→ A〈1,2〉(X, Y) A〈2,1〉(bX, aY)→ A〈2,1〉(X, Y)

A〈1,2〉(a, b)→ ε A〈2,1〉(b, a)→ ε

Fig. 7.10. Example for transforming a simple RCG into an ordered simple RCG

In many applications this transformation is not needed since we are en-
countering only ordered simple RCGs, for instance when extracting simple
RCGs from treebanks, as described in Section 6.1.3. The extraction algorithm
from (Maier and Søgaard, 2008) algorithm produces ε-free ordered SRCGs.
The ε-freeness results from the fact that there are no traces in Negra, while
the ordering property is ensured by the ascending numbering of the variables.
Furthermore, since there are no empty words, whenever there is a gap, i.e.,
a separation between two arguments, this gap contains at least one input
symbol. All these properties are useful for parsing.

A further example that shows the whole chain of 1. ordering the clauses,
2. removing useless clauses and 3. removing ε-clauses is given in the solution
of Problem 7.2.

7.2 Simplifying Simple RCGs 147

for all rules r = A(α)→ A0(α0) . . . Am(αm) in P with m > 1 do
remove r from P
R := ∅
pick new predicate names C1, . . . , Cm−1

add the rule A(α)→ A0(α0)C1(γ1) to R where γ1 is obtained by reducing α
with α0

for all i = 1 to m− 2 do
add the rule Ci(γi) → Ai(αi)Ci+1(γi+1) to R where γi+1 is obtained by
reducing γi with αi

end for
add the rule Cm−1(γm−2)→ Am−1(αm−1)Am(αm) to R
for every rule r′ ∈ R do

replace right-hand side arguments of length > 1 with new variables (in both
sides) and add the result to P

end for
end for

Fig. 7.11. Algorithm for binarizing a simple ordered RCG

7.2.4 Binarization of the Rules

An additional transformation that might be useful for parsing is a binarization
of the parse trees, i.e., a transformation into some kind of Chomsky Normal
Form (CNF) where the rules contain at most two predicates in their right-hand
side. In LCFRS terminology, the length of the right-hand side of a production
is called its rank. The rank of an LCFRS is given by the maximal rank of its
productions. If the maximal dimension of the grammar is k, then the binariza-
tion limits the maximal number of variables per rule to 2k and, consequently,
the maximal number of range boundaries to 4k.

The transformation can be performed similarly to the CNF transformation
for CFG (Hopcroft and Ullman, 1979; Grune and Jacobs, 2008).

We define the reduction of a vector α1 ∈ [(T ∪ V)∗]k1 by a vector α2 ∈
(V ∗)k2 where all variables in α2 occur in α1 as follows: take all variables
from α1 (in their order) that are not in α2 while starting a new element in
the resulting vector whenever a variable is, in α1, in a different element than
the preceding variable in the result or in the same element but not adjacent
to it. For instance, 〈aX1,X2, bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉 and
〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉 as well.

The transformation is like the one for CFGs in the sense that for right-hand
sides longer than 2, we introduce a new non-terminal (i.e., a new predicate)
that covers the right-hand side without the first element. The algorithm is
given in Fig. 7.11, while Fig. 7.12 shows an example. In this example, there is
only one rule with a right-hand side longer than 2. In a first step, we introduce
the new predicates and rules that binarize the right-hand side. This leads to
the set R. In a second step, before adding the rules from R to the grammar,
whenever a right-hand side argument contains several variables, these are
collapsed into a single new variable.

148 7 Parsing MCFG and LCFRS

Original simple RCG:
S(XY ZUV W)→ A(X, U)B(Y, V)C(Z, W)
A(aX, aY)→ A(X, Y) A(a, a)→ ε
B(bX, bY)→ B(X, Y) B(b, b)→ ε
C(cX, cY)→ C(X, Y) C(c, c)→ ε

Transformation to CNF:
Rule with right-hand side of length > 2: S(XY ZUV W)→ A(X, U)B(Y, V)C(Z, W)
For this rule, we obtain
R = {S(XY ZUV W)→ A(X, U)C1(Y Z, V W), C1(Y Z, V W)→ B(Y, V)C(Z, W)}

Equivalent CNF RCG:
S(XPUQ)→ A(X, U)C1(P, Q) C1(Y Z, V W)→ B(Y, V)C(Z, W)
A(aX, aY)→ A(X, Y) A(a, a)→ ε
B(bX, bY)→ B(X, Y) B(b, b)→ ε
C(cX, cY)→ C(X, Y) C(c, c)→ ε

Fig. 7.12. Sample transformation of an ordered simple RCG to CNF

Note however that in principle there are different ways to binarize a given
simple RCG rule. We could choose every partition of the right-hand side
predicates into two sets and then introduce new predicates for each element
of the partition. The arities of the new predicates depend on the partitions
we choose.

To illustrate this, consider the clause

A(aXY, cZ, dU) → B(X)C(Y,Z)D(U).

There are three possibilities for binarization:

1. We can partition the right-hand side into B(X) and C(Y,Z)D(U). This
leads to a new clause with maximal right-hand side arity 3 and four vari-
ables:

A(aXY, cZ, dU) → B(X)E1(Y,Z, U), E1(Y,Z, U) → C(Y,Z)D(U).

2. We can partition the right-hand side into C(Y,Z) and B(X)D(U). This
leads to a new clause with maximal right-hand side arity 2 and four vari-
ables:

A(aXY, cZ, dU) → E2(X,U)C(Y,Z), E2(X,U) → B(X)D(U).

3. We can partition the right-hand side into D(U) and B(X)C(Y,Z). This
leads to a new clause with maximal right-hand side arity 2 and three
variables:

A(aV, cZ, dU) → E3(V,Z)D(U), E3(XY,Z) → B(X)C(Y,Z).

7.3 An Incremental Earley Parser for Simple RCG 149

The third possibility is the best one since it gives us a minimal arity and
a minimal variable number per clause.

Gómez-Rodŕıguez et al. (2009) have shown how to obtain an optimal bi-
narization for a given LCFRS. In the following, we will adapt their ideas to
our simple RCG notation. We assume that we are only considering partitions
of right-hand sides where one of the sets contains only a single predicate. The
extension to the general case is left to the reader.

For a given clause c = A0(x0) → A1(x1) . . . Ak(xk), we define the char-
acteristic string s(c, Ai) of the Ai-reduction of c as follows: Concatenate the
elements of x0, separated with new additional symbols $ while replacing every
component from xi with a $. We then define the arity of the characteristic
string, dim(s(c, Ai)), as the number of maximal substrings x ∈ V + in s(Ai).

Our binarization algorithm (see Fig. 7.13) first checks for a given clause
c with right-hand side length > 2 on all right-hand side predicates B for
the maximal arity (given by dim(s(c,B))) and the number of variables
(dim(s(c,B)) + dim(B)) we would obtain when binarizing with this predi-
cate. This check provides the optimal candidate. In a second step we then
perform the same binarization as before, except that we use the optimal can-
didate now instead of the first element of the right-hand side.

The fact that we have this binarization allows us a more efficient use of
the basic CYK algorithm from (Seki et al., 1991). We repeat the deduction
rules here using the simple RCG notation for LCFRS. Items have the form
[A,ρ] where A ∈ N ; ρ is a simple range vector of dimension dim(A).

Then the two deduction rules are

Scan [A,ρ]
A(ρ(w)) → ε ∈ P

Complete:
[B,ρB], [C,ρC]

[A,ρA]
A(ρA) → B(ρB)C(ρC)
is an instantiation of a c ∈ P wrt. w

The complexity of this parsing algorithm depends on the arity of the simple
RCG (see the solution of Problem 7.3 for the complexity). This confirms that
it is crucial to keep the arity (the fan-out in LCFRS terminology) as low as
possible while binarizing a given simple RCG.

7.3 An Incremental Earley Parser for Simple RCG

7.3.1 The Algorithm

For this algorithm, we assume that our simple RCGs are ordered and ε-free.
As a consequence, we can perform an incremental parsing while traversing the
arguments of left-hand side predicates from left to right.

The algorithm is a modification of the incremental CYK from (Burden and
Ljunglöf, 2005) and is very close to the strategy adopted by Thread Automata

150 7 Parsing MCFG and LCFRS

repeat
for all rules r = A(α)→ A0(α0) . . . Am(αm) in P with m > 1 do

cand = 0
arity = number of variables in r
vars = number of variables in r
for all i = 0 to m do

cand-arity = dim(s(r, Ai));
if cand-arity < arity and dim(Ai) < arity then

arity = max({cand -arity , dim(Ai)});
vars = cand-arity + dim(Ai);
cand = i;

else if cand-arity ≤ arity , dim(Ai) ≤ arity and cand-arity + dim(Ai) <
vars then

arity = max({cand -arity , dim(Ai)});
vars = cand-arity + dim(Ai);
cand = i

end if
end for
remove r from P
R := ∅
add the rule A(α) → Ai(αi)C(γ) to R where γ is obtained by reducing α
with αi

add the rule C(γ)→ A0(α0) . . . Ai−1(αi−1)Ai+1(αi+1) . . . Am(αm) to R
for every rule r′ ∈ R do

replace right-hand side arguments of length > 1 with new variables (in
both sides) and add the result to P

end for
end for

until P does not change any more

Fig. 7.13. Algorithm for binarizing a simple ordered RCG – optimized version

in (Villemonte de la Clergerie, 2002). It is given in (Kallmeyer and Maier,
2009; Kallmeyer, 2009) and has been implemented in the TuLiPA (Tübingen
Linguistic Parsing Architecture) framework.1

The general strategy is as follows: We process the arguments of the left-
hand sides of rules incrementally, starting from an S-rule. Whenever we reach
a variable, we move into the rule of the corresponding rhs predicate (predict
or resume). Whenever we reach the end of an argument, we suspend this
rule and move into the parent rule that has called the current one. In addition,
we treat the case where we reach the end of the last argument and move into
the parent as a special case. Here, we first convert the item into a passive
one and then complete the parent item with this passive item. This allows
for some additional factorization.

1 http://sourcesup.cru.fr/tulipa/

7.3 An Incremental Earley Parser for Simple RCG 151

In our SRCG, without loss of generality, we use variables {X1,X2, . . .} and
assume that each rule contains occurrences of all variables {X1,X2, . . . , Xk}
for some k.

Passive items have again the form [A,ρ] where A is a predicate of some
dimension k, and ρ is a simple range vector of arity k.

Active items contain rules with a dot in the left-hand side. The position
of this dot is given by a pair 〈i, j〉. Active items have the form

[A(φ) → A1(φ1) . . . Am(φm), pos, 〈i, j〉,ρ]

where

• A(φ) → A1(φ1) . . . Am(φm) ∈ P ;
• pos ∈ {0, . . . , n} is the position up to which we have processed the input;
• 〈i, j〉 ∈ IN2 marks the position of our dot in the arguments of the predicate

A; 〈i, j〉 indicates that we have processed the arguments up to the jth
element of the ith argument;

• ρ is a range vector containing the bindings of the variables and terminals
occurring in the left-hand side of the rule. (ρ(i) is the range the ith element
is bound to.) When first predicting a rule, it is initialized with a vector
containing only symbols “?” for “unknown”. We call such a vector (of
appropriate arity) ρinit.
As notations, we write ρ(X) for the range bound to the variable X in ρ;
furthermore, we write ρ(〈i, j〉) for the range bound to the jth element in
the ith argument of the rule left-hand side.

Applying a range vector ρ containing variable bindings for a given rule c to
the argument vector of the left-hand side of c means mapping the ith element
in the arguments to ρ(i) and concatenating adjacent ranges. The result is
defined iff every argument is thereby mapped to a range.

We start by predicting the S-predicate:

Initialize: [S(φ) → Φ, 0, 〈1, 0〉,ρinit]
S(φ) → Φ ∈ P

Whenever the next symbol after the dot is the next terminal in the input,
we can scan it.

Scan:
[A(φ) → Φ, pos, 〈i, j〉,ρ]

[A(φ) → Φ, pos+ 1, 〈i, j + 1〉,ρ′] φ(i, j + 1) = wpos+1

where ρ′ is ρ updated with ρ(i, j + 1) = 〈pos, pos+ 1〉.
Whenever our dot is left of a variable that is the first argument of some

rhs predicate B, we predict new B-rules:

Predict:
[A(φ) → . . . B(X, . . .) . . . , pos, 〈i, j〉,ρA]

[B(ψ) → Ψ, pos, 〈1, 0〉,ρinit]
φ(i, j + 1) = X,
B(ψ) → Ψ ∈ P

152 7 Parsing MCFG and LCFRS

Whenever we arrive at the end of an argument that is not the last argu-
ment, we suspend the processing of this rule and we go back to the item that
was used to predict it.

Suspend:
[B(ψ) → Ψ, pos′, 〈i, j〉,ρB],

[A(φ) → . . . B(ξ) . . . , pos, 〈k, l〉,ρA]
[A(φ) → . . . B(ξ) . . . , pos′, 〈k, l + 1〉,ρ]

where

• the dot in the antecedent A-item precedes the variable ξ(i),
• |ψ(i)| = j (the ith argument has length j and has therefore been com-

pletely processed),
• |ψ| < i (the ith argument is not the last argument of B),
• ρB(ψ(i)) = 〈pos, pos′〉, and
• for all 1 ≤ m < i, ρB(ψ(m)) = ρA(ξ(m)).

ρ is ρA updated with ρA(ξ(i)) = 〈pos, pos′〉.
Whenever we arrive at the end of the last argument, we convert the item

into a passive one:

Convert:
[B(ψ) → Ψ, pos, 〈i, j〉,ρB]

[B, ρ]
|ψ(i)| = j, |ψ| = i,ρB(ψ) = ρ

Whenever we have a passive B item we can use it to move the dot over
the variable of the last argument of B in a parent A-rule that was used to
predict it.

Complete:
[B,ρB], [A(φ) → . . . B(ξ) . . . , pos, 〈k, l〉,ρA]

[A(φ) → . . . B(ξ) . . . , pos′, 〈k, l + 1〉,ρ]

where

• the dot in the antecedent A-item precedes the variable ξ(|ρB |),
• the last range in ρB is 〈pos, pos′〉, and
• for all 1 ≤ m < |ρB |, ρB(m) = ρA(ξ(m)).

ρ is ρA updated with ρA(ξ(|ρB |)) = 〈pos, pos′〉.
Whenever we are left of a variable that is not the first argument of one of

the rhs predicates, we resume the rule of the rhs predicate.

Resume:
[A(φ) → . . . B(ξ) . . . , pos, 〈i, j〉,ρA],

[B(ψ) → Ψ, pos′, 〈k − 1, l〉,ρB]
[B(ψ) → Ψ, pos, 〈k, 0〉,ρB]

where

• φ(i)(j + 1) = ξ(k), k > 1 (the next element is a variable that is the kth
element in ξ, i.e., the kth argument of B),

7.3 An Incremental Earley Parser for Simple RCG 153

L = {anbn|n > 0}. An ordered simple ε-free RCG for L:
S(X1X2) −→ A(X1, X2) A(aX1, bX2) −→ A(X1, X2) A(a, b) −→ ε

Parsing Trace for input w = aabb:

pos item ρ action

1 0 S(•X1X2) −→ A(X1, X2) (?, ?) axiom

2 0 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict from 1

3 0 A(•a, b) −→ ε (?, ?) predict from 1

4 1 A(a •X1, bX2) −→ A(X1, X2) (〈0, 1〉, ?, ?, ?) scan from 2

5 1 A(a•, b) −→ ε (〈0, 1〉, ?) scan from 3

6 1 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict from 4

7 1 A(•a, b) −→ ε (?, ?) predict from 4

8 1 S(X1 •X2) −→ A(X1, X2) (〈0, 1〉, ?) susp. 5, back to 1

9 1 A(a, •b) −→ ε (〈0, 1〉, ?) resume 5, from 8

10 2 A(a •X1, bX2) −→ A(X1, X2) (〈1, 2〉, ?, ?, ?) scan from 6

11 2 A(a•, b) −→ ε (〈1, 2〉, ?) scan from 7

12 2 A(•aX1, bX2) −→ A(X1, X2) (?, ?, ?, ?) predict from 10

13 2 A(•a, b) −→ ε (?, ?) predict from 10

14 2 A(aX1•, bX2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, ?, ?) susp. 11, back to 4

15 2 S(X1 •X2) −→ A(X1, X2) (〈0, 2〉, ?) susp. 14, back to 1

16 2 A(aX1, •bX2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, ?, ?) resume 14, from 15

17 3 A(aX1, b •X2) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, ?) scan 16

18 3 A(a, •b) −→ ε (〈1, 2〉, ?) resume 11, from 17

19 4 A(a, b•) −→ ε (〈1, 2〉, 〈3, 4〉) scan 18

20 4 A(〈1, 2〉, 〈3, 4〉) convert 19

21 4 A(aX1, bX2•) −→ A(X1, X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉) compl. 17, from 20

22 4 A(〈0, 2〉, 〈2, 4〉) convert 21

23 4 S(X1X2•) −→ A(X1, X2) (〈0, 2〉, 〈2, 4〉) compl. 15, from 22

24 4 S(〈0, 4〉) convert 23

Fig. 7.14. Sample parse with the incremental Earley algorithm for ordered SRCG

• |ψ(k − 1)| = l, and
• ρA(ξ(m)) = ρB(ψ)(m) for all 1 ≤ m ≤ k − 1.

The goal items have the form [S(φ) → Φ, n, 〈1, j〉, ψ] with |φ(1)| = j (i.e.,
a dot at the end of lhs argument).

Extending this algorithm to grammars that are not ε-free requires the fol-
lowing changes: The vectors ρ that record the ranges bound to variables and
occurrences of terminals have to record also the ranges bound to ε-arguments
in the left-hand side. In other words, empty arguments are treated as argu-
ments containing special variables that require to be bound to ε. The bindings
are found through an additional rule scan-ε that moves the dot over such a

154 7 Parsing MCFG and LCFRS

special ε-variable while updating the range vector with 〈pos, pos〉 as the range
this ε is bound to.

7.3.2 Filters

Depending on what the grammar looks like, a range of filters can be applied to
decrease the number of items in the chart. A filter is an additional condition on
the form of items. For instance, in a ε-free grammar, the number of variables in
the part of the left-hand side arguments of a rule that has not been processed
yet must be less than or equal to the length of the remaining input.

We will discuss in the following some filters that are particularly useful
when dealing with natural languages.

Remaining Input Length Filter

If we are dealing with ε-free grammars, then we know that each variable must
cover at least one input symbol. Then, in a situation where we have i input
symbols left, it does not make sense to predict a clause with more than i
variables or terminals in the left-hand side since there is no way to instantiate
this clause with the remaining input. This idea to filter out items that predict
material that is longer than the remainig input goes back to (Kuno, 1965).

We obtain as an additional filtering condition on the validity of an active
item that the length of the remaining input must be greater than or equal
to the number of variables and terminal occurrences to the right of the dot
in the left-hand side of the clause. More formally, an active item [A(φ) →
A1(φ1) . . . Am(φm), pos, 〈i, j〉,ρ] satisfies the length filter iff

(n− pos) ≥ (|φ(i)| − j) +Σ
dim(A)
k=i+1 |φ(k)|.

The length filter is applied to results of predict, resume, suspend and
complete. Especially in cases where we have very large grammars, such a
condition avoids a considerable number of items.

The simple RCGs extracted from treebanks with crossing branches such
as Tiger and Negra are ε-free since they do not contain traces. Therefore, for
these grammars, the remaining input length filter can be applied.

Terminal Filter

A second filter, used for instance in (Langer, 1998; Klein and Manning, 2003),
checks for the presence of required pre-terminals. Assume that pre-terminals
are treated as terminals, so this filter amounts to checking for the presence
of all terminals in the predicted part of a clause (the part to the right of the
dot) in the remaining input. Furthermore, we check that the terminals appear
in the predicted order and that the distance between two of them is at least
the number of variables/terminals in between. In other words, an active item

7.4 Summary 155

[A(φ) → A1(φ1) . . . Am(φm), pos, 〈i, j〉,ρ] satisfies the terminal filter iff we
can find an injective mapping fT : Term = {〈k, l〉 |φ(k)(l) ∈ T and either
k > i or (k = i and l > j)} → {pos+ 1, . . . , n} such that

1. wfT (〈k,l〉) = φ(k)(l) for all 〈k, l〉 ∈ Term;
2. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 = k2 and l1 < l2, fT (〈k2, l2〉) ≥
fT (〈k1, l1〉) + (l2 − l1);

3. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 < k2, fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) +
(|φ(k1)| − l1) +Σk2−1

k=k1+1|φ(k)| + l2.

Checking this filtering condition amounts to a linear traversal of the part
of the left-hand side of the clause that is to the right of the dot. We start
with index i = pos + 1; for every variable or gap we increment i by 1. For
every terminal a, we search the next a in the input, starting at position i. If
it occurs at position j, then we set i = j and continue our traversal of the
remaining parts of the left-hand side of the clause.

7.4 Summary

This chapter has presented various parsing algorithms for MCFG and the
equivalent LCFRS and SRCG. Since MCFG is a straightforward extension of
CFG, the adaptation of CFG parsing algorithms is possible for this formalism.
However, the fact that we deal with discontinuities, increases considerably
the number of yield boundaries to consider in single parsing steps. We have
presented several ways to transform a given SRCG into an equivalent one
that satisfies some normal form condition such as orderedness, ε-freeness or
binary branching of rewriting rules. We have seen different CYK and Earley
algorithms where the transformation into grammars satisfying some of these
constraints helped to decrease the complexity of parsing.

Recently, LCFRS/SRCGs have started to get used in the context of data-
driven parsing as well (Levy, 1999; Kallmeyer and Maier, 2009; Kallmeyer and
Maier, 2010; Maier, 2010; Maier and Kallmeyer, 2010).

Problems

7.1. Give the deduction rules for the incremental CYK for MCFG with a
top-down prediction (i.e., for an Earley algorithm).

7.2. Consider the simple RCG with the following clauses:
S(XY ZU) → A(X,Z)B(U, Y) S(XY Z) → A(X,Z)C(Y)
A(aX, aZ) → A(X,Z) A(ε, c) → ε
B(Xb, Y b) → B(X,Y) B(ε, c) → ε
C(aXY) → D(X)C(Y) D(d) → ε

156 7 Parsing MCFG and LCFRS

1. Perform the following transformations on this simple RCG while obtaining
always weakly equivalent simple RCGs:
a) Transform the grammar into an ordered simple RCG.
b) Remove useless rules.
c) Remove ε-rules.

2. What is the string language generated by this grammar?

7.3. Take the CYK for binarized simple RCG given at the end of section 7.2.4.
Assume that we have a simple binary k-RCG. What is the time complexity
of this algorithm?

7.4. A deduction rule does not specify an order in which its antecedent items
must appear or its side conditions must be fulfilled. However, being able to
make such assumptions can be beneficial for an actual implementation.

Consider the incremental Earley parser from section 7.3. If we assume an
ε-free grammar, what assumption can we make with respect to the antecedent
items in the Suspend operation?

8

Range Concatenation Grammars

8.1 Introduction to Range Concatenation Grammars

8.1.1 Definition of RCG

In this chapter, we turn to Range Concatenation Grammars (RCGs) (Boullier,
1998a; Boullier, 1999b; Boullier, 2000b), the most powerful formalism treated
in this book.

In the previous chapter, we have already seen simple RCG, a syntactic
variant of LCFRS. As already mentioned, in a simple RCG, we can understand
non-terminals as predicates that are satisfied by all the string tuples that are
in their yields. A rewriting rule (clause) with left-hand side predicate A is
then the specification of a sufficient condition for a string tuple to satisfy the
predicate A.

Consider for example the clause A(aXa, Y, bZb) → B(X,Z)C(Y). It tells
us that a sufficient condition for a string triple 〈w1, w2, w3〉 to satisfy the
predicate A is that a) w1 has the form aw′

1a, b) w3 has the form bw′
3b, c) the

pair 〈w′
1, w

′
3〉 satisfies the predicate B, and d) 〈w2〉 satisfies the predicate C.

In the case of simple RCG, we require for each clause that the right-hand
side arguments are single variables and that every variable in the left-hand
side occurs exactly once in the right-hand side and vice versa. If we drop these
requirements, we obtain general RCGs. We can keep the same perspective of
the clauses formulating sufficient conditions for a string tuple for satisfying
the left-hand side predicate.

RCGs in general allow us for instance clauses of the following forms:

1. A(aX, bY) → B(X) that tells us that a pair 〈w1, w2〉 satisfies A if a) w1

has the form aw′
1, b) w2 has the form bw′

2, and c) w′
1 satisfies the predicate

B.
We say that clauses where the left-hand side contains variables that do
not occur in the right-hand side or vice versa are erasing clauses.

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 8, c© Springer-Verlag Berlin Heidelberg 2010

158 8 Range Concatenation Grammars

Clauses:
S(XY)→ S(X)eq(X, Y)
S(a)→ ε
eq(aX, aY)→ eq(X, Y)
eq(a, a)→ ε

Fig. 8.1. An RCG for {a2n | n ≥ 0}

Clauses:
S(XY ZU)→S2(X, U)Coord(Y)S2(Z, U)
S2(XY, Z)→N(X)VP(Y, Z)
VP(X, Y)→V(X)N(Y)
V(likes)→ ε V(hates)→ ε
N(John)→ ε N(Mary)→ ε
N(Bill)→ ε Coord(and)→ ε

L = {xy and zuv | y, u ∈ {likes, hates}, x, z, v ∈ {John, Mary, Bill}}

Derived structure for John likes and Bill hates Mary:

S

S2 S2

VP
VP

N V Coord N V N
John likes and Bill hates Mary

Fig. 8.2. An RCG for gapping constructions

2. A(aXa) → A(X)B(X) that tells us that 〈w1〉 satisfies A if a) w1 has the
form aw′

1a, b) 〈w′
1〉 satisfies the predicate A and c) 〈w′

1〉 satisfies also the
predicate B.
Clauses where either the left-hand side or the right-hand side contains
more than one occurrence of the same variable are called non-linear
clauses. Non-linear clauses allow to check more than one condition (pred-
icate) for a single string.

As an example for the use of non-linear clauses in RCGs, see the RCG in
Fig. 8.1 that generates the string language {a2n | n ≥ 0}. The first clause tells
us that for a string that contains not just a single a to be in the language, it
must be possible to separate the string into two parts such that the first part
is also in the language and the two parts satisfy the predicate eq. eq yields all
pairs of equal non-empty strings containing only as. Note that {a2n | n ≥ 0}
is a non-semilinear language, i.e., it is an example of a Range Concatenation
Language (RCL) that is not of constant growth.

As a further example consider the RCG in Fig. 8.2 for gapping construc-
tions. Here, we use material twice in the right-hand side of the first clause

8.1 Introduction to Range Concatenation Grammars 159

since the noun at the end of the sentence is supposed to fill the gap in the
first sentence of the coordination. Therefore it is part of two different VPs
(and of two different sentences).

Furthermore, besides the additional possibility of copying or erasing vari-
ables in one side of a clause, we are even allowed to have right-hand side argu-
ments that are sequences of terminals and variables, not just single variables.
We call such clauses combinatorial. The sequences denote concatenations. We
take terminals and variables to denote ranges in an input string. A concate-
nation xy denotes then the concatenation of the ranges corresponding to x
and y.

Take for instance a combinatorial clause such as A(X,Y) → B(XY) which
would be allowed in an RCG. This clause signifies in terms of ranges over a
given input string that a pair of ranges 〈〈l1, r1〉, 〈l2, r2〉〉 satisfies A if a) the
two ranges can be concatenated, i.e., are adjacent (r1 = l2) and b) their
concatenation 〈l1, r2〉 satisfies B.

The addition of combinatorial clauses does not give any extra expressive
power; as shown in (Boullier, 1998a), for any RCG there is an equivalent
non-combinatorial RCG.

We will now define RCGs (Boullier, 1998a; Boullier, 1999b; Boullier,
2000b).

Definition 8.1 (Positive Range Concatenation Grammar).
A positive Range Concatenation Grammar (PRCG) is a tuple G =

〈N,T, V, S, P 〉 such that

• N is a finite set of predicates, each with a fixed arity;
• T and V are disjoint alphabets of terminals and of variables;
• S ∈ N is the start predicate, a predicate of arity 1;
• P is a finite set of clauses

A0(x01, . . . , x0a0) → ε

or

A0(x01, . . . , x0a0) → A1(x11, . . . , x1a1) . . . An(xn1, . . . , xnan
) with n ≥ 1

where Ai ∈ N,xij ∈ (T ∪ V)∗ and ai the arity of Ai.

Besides the positive predicates occurring in PRCGs, Boullier (2000b) also
defines so-called negative RCGs (NRCGs). The negative variant allows for
negative predicate calls of the form A(α1, . . . , αn). Such a predicate is meant
to recognize the complement language of its positive counterpart.

Definition 8.2 (Negative Range Concatenation Grammar).
A negative Range Concatenation Grammar (NRCG) is a tuple G =

〈N,T, V, S, P 〉 like a PRCG except that some predicates in the right-hand sides
of clauses can have the form A(α1, . . . , αn) where A(α1, . . . , αn) is as in the
definition of positive RCG clauses.

160 8 Range Concatenation Grammars

An RCG with maximal predicate arity k is called an RCG of arity k (k-
RCG for short).

Throughout the book, we consider only PRCGs. Therefore, whenever we
use the term “RCG”, we actually mean “PRCG”.

When applying a clause with respect to a string w = t1 . . . tn, the argu-
ments of the predicates are instantiated with substrings of w, more precisely
with the corresponding ranges. Ranges have been introduced in Chapter 6. A
range 〈i, j〉 with 0 ≤ i < j ≤ n corresponds to the substring between positions
i and j, i.e., to the substring ti+1 . . . tj .

The definition of a clause instantiation introduced in Chapter 6 is now
extended to RCGs in general:

Definition 8.3 (Clause instantiation).
Let G = (N,T, V, P, S) be a RCG. For a given clause c = A0(α0) →

A1(α1) · · · Am(αm) (0 ≤ m) and a string w = t1 . . . tn,

1. an instantiation of c with respect to w consists of a function f : {t′ | t′ is
an occurrence of some t ∈ T in the clause} ∪ V ∪ {Epsi,j | 1 ≤ i ≤ m, 1 ≤
j ≤ dim(Ai),αi(j) = ε} → {〈i, j〉 | i ≤ j, i, j ∈ IN} such that
a) for all occurrences t′ of a t ∈ T in the clause, f(t′) := 〈i, i + 1〉 for

some i, 0 ≤ i < n such that ti = t,
b) for all X ∈ V , f(X) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n,
c) for all x, y adjacent in one of the elements of αi (0 ≤ i ≤ m), there are
l, j, r with f(x) = 〈l, j〉, f(y) = 〈j, r〉; we then define f(xy) = 〈l, r〉,

d) for all Eps ∈ {Epsi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai),αi(j) = ε}, there
is a k, 0 ≤ k ≤ n with f(Eps) = 〈k, k〉; we then define for every
ε-argument αi(j) that f(αi(j)) = f(Epsi,j),

2. if f is an instantiation of c with respect to w, then A0(f(α0)) →
A1(f(α1)) · · ·Am(f(αm)) is an instantiated clause where f(〈x1, . . . , xk〉)
= 〈f(x1), . . . , f(xk)〉.

Take for instance the clause S(aXY b) → B(X,X)C(cZ). Then a possible
instantiation of this clause with respect to some string w = acb is a function f :
{a(1),X, Y, b(1), c(1), Z} → {〈l, r〉 | 0 ≤ l ≤ r ≤ 3} where the superscripts mark
the number of the occurrence, i.e., c(1) is for example the first c occurring in
the clause. f in this case must be defined as follows: f(a(1)) = 〈0, 1〉, f(b(1)) =
〈1, 2〉, f(c(1)) = 〈2, 3〉. Furthermore, either f(X) = 〈1, 1〉 and f(Y) = 〈1, 2〉
or f(X) = 〈1, 2〉 and f(Y) = 〈2, 2〉. Finally, f(Z) = 〈3, 3〉. The corresponding
instantiated clauses are S(〈0, 2〉) → B(〈1, 1〉, 〈1, 1〉)C(〈2, 3〉) and S(〈0, 2〉) →
B(〈1, 2〉, 〈1, 2〉)C(〈2, 3〉).

In each RCG derivation step, the left-hand side of an instantiated clause
is replaced by its right-hand side. The derivation relation is defined as follows:

8.1 Introduction to Range Concatenation Grammars 161

G = 〈{S, A, B}, {a, b}, {X, Y, Z}, S, P 〉 with clauses
S(X Y Z)→ A(X, Z) B(Y)
A(a X, a Y)→ A(X, Y)
B(b X)→ B(X)
A(ε, ε)→ ε
B(ε)→ ε

First we apply the following clause instantiation:
S(X Y Z) → A(X, Z) B(Y)

〈0, 2〉 〈2, 3〉 〈3, 5〉 〈0, 2〉 〈3, 5〉 〈2, 3〉
aa b aa aa aa b

With this instantiation, S(〈0, 5〉)⇒ A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉). Then
B(b X) → B(X)

〈2, 3〉 〈3, 3〉 〈3, 3〉
b ε ε

and B(ε)→ ε

lead to A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉)⇒ A(〈0, 2〉, 〈3, 5〉)B(〈3, 3〉)⇒ A(〈0, 2〉, 〈3, 5〉).
A(a X a Y) → A(X, Y)

〈0, 1〉 〈1, 2〉 〈3, 4〉 〈4, 5〉 〈1, 2〉 〈4, 5〉
a a a a a a

leads to A(〈0, 2〉, 〈3, 5〉)⇒ A(〈1, 2〉, 〈4, 5〉). Then
A(a X a Y) → A(X, Y)

〈1, 2〉 〈2, 2〉 〈4, 5〉 〈5, 5〉 〈2, 2〉 〈5, 5〉
a ε a ε ε ε

and A(ε, ε)→ ε

lead to A(〈1, 2〉, 〈4, 5〉)⇒ A(〈2, 2〉, 〈5, 5〉)⇒ ε

Fig. 8.3. A sample RCG derivation for the input w = aabaa

Definition 8.4 (RCG derivation).

• For an A ∈ N with arity k and ranges 〈i1, j1〉, . . . , 〈ik, jk〉 with respect to
a given w, if there is an instantiated clause with respect to w whose left-
hand side is A(〈i1, j1〉, . . . , 〈ik, jk〉), then in one derivation step (notated
. . . ⇒G,w . . .) A(〈i1, j1〉, . . . , 〈ii, jk〉) can be replaced with the right-hand
side of this instantiated clause.

• ∗⇒G,w is the reflexive transitive closure of ⇒G,w.

For illustration, consider the RCG derivation in Fig. 8.3. This grammar is
a simple RCG whose string language is L(G) = {anbkan | k, n ∈ IN}.

We can define the yields of predicates as sets of string tuples or sets of
range vectors, both with respect to a given string w (Boullier, 1998a). The
first is the string language, the second the range language of the predicate.
The string language is defined via the range language.

Definition 8.5 (Range language and string language).

• The range language of an A ∈ N with dim(A) = k for some w ∈ T ∗ is

162 8 Range Concatenation Grammars

Clauses:
S(X)→M(X, X, X)
M(bX, Y, Z)→M(X, Y, Z) M(cX, Y, Z)→M(X, Y, Z)
M(X, aY, Z)→M(X, Y, Z) M(X, cY, Z)→M(X, Y, Z)
M(X, Y, aZ)→M(X, Y, Z) M(X, Y, bZ)→M(X, Y, Z)
M(aX, bY, cZ)→M(X, Y, Z) M(ε, ε, ε)→ ε

L(G) = MIX = {w |w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}
Fig. 8.4. A sample RCG for the MIX language

R(A,w) = {ρ |ρ is a k-dimensional range vector, and A(ρ) ∗⇒G,w ε}.

• The string language of an A ∈ N with dim(A) = k for some w ∈ T ∗ is

L(A,w) = {ρ(w) |ρ ∈ R(A,w)}.

• The string language of an RCG G is

L(G) = {w ∈ T ∗ | 〈〈0, |w|〉〉 ∈ R(S,w)}.

As a further example consider the RCG given in Fig. 8.4 (adapted from
Boullier (1999b)) that generates the so-called MIX language. MIX is a puzzling
language, since it is not clear which language class it belongs to. It has been
suggested that it cannot be generated by indexed grammars (Boullier, 1999b)
and there is a general suspicion that it is not in the class of LCFRL though
nobody has proven this so far. The RCG in Fig. 8.4 does the following: it
takes three copies of the input and goes through them while skipping all bs
and cs in the first copy, all as and cs in the second and all as and bs in the
third. Whenever we reach an a in the first copy, a b in the second and a c in
the third, these are taken to belong together and they are deleted. This way,
the three copies are entirely traversed while connecting the ith a in the first
copy with the ith b in the second and the ith c in the third for 1 ≤ i ≤ |w|a. If
it is possible to cover all as, bs and cs in the input in this way, then the word
is in the language.

Definition 8.6 (Simple Range Concatenation Grammar).
An RCG is

• non-combinatorial if for every clause c ∈ P , all the arguments in the right-
hand side of c are single variables.

• bottom-up linear if for every clause c ∈ P , no variable appears more than
once in the left-hand side of c.

• top-down linear if for every clause c ∈ P , no variable appears more than
once in the right-hand side of c.

• linear if it is top-down and bottom-up linear.
• bottom-up non-erasing if for every clause c ∈ P , each variable occurring

in the right-hand side of c occurs also in its left-hand side.

8.1 Introduction to Range Concatenation Grammars 163

Clauses:
S(X)→ A(X) S(XY Z)→ A(X)eq(X, Y)S(Y Z)

A(aXb)→ A(X) A(ab)→ ε

eq(aX, aY)→ eq(X, Y) eq(bX, bY)→ eq(X, Y) eq(ε, ε)→ ε

L(G){(ambm)n |m, n ≥ 1}
Fig. 8.5. RCG for a non-MCFL of constant growth

• top-down non-erasing if for every clause c ∈ P , each variable occurring in
the left-hand side of c occurs also in its right-hand side.

• non-erasing if it is top-down and bottom-up non-erasing.
• simple if it is non-combinatorial, linear and non-erasing.

Boullier (1998a) shows the following facts concerning equivalences between
the different types of RCG one obtains when imposing some of the above-
mentioned properties:

Lemma 8.7.

1. For any RCG, there is an equivalent non-combinatorial RCG.
2. For any non-combinatorial bottom-up erasing RCG, there is an equivalent

non-combinatorial bottom-up non-erasing RCG.
3. For any non-combinatorial bottom-up non-erasing top-down erasing RCG,

there is an equivalent non-combinatorial non-erasing RCG.

In other words, the possibilities of combinatorial clauses and erasing
clauses do not increase the generative capacity of the grammar. For every
RCG, there is an equivalent non-combinatorial non-erasing RCG. The crucial
property for RCG’s being more powerful than simple RCG is the possible
non-linearity of the clauses.

As already mentioned in Chapter 6, simple RCGs and Linear Context-
Free Rewriting Systems (LCFRSs) (Vijay-Shanker, Weir, and Joshi, 1987)
are equivalent (see Boullier (1998b)). Consequently, simple RCGs are mildly
context-sensitive (Joshi, 1985).

There are languages that are of constant growth and that cannot be gen-
erated by simple RCG. An example is L = {(ambm)n |m,n ≥ 1} for which we
have shown in Chapter 6 that it is not an MCFL. The RCG generating this
language is given in Fig. 8.5. The grammar works as follows: The predicate A
yields all words ambm. For a word to be in the language it must either have
the form ambm (first clause S(X) → A(X)) or the form w1w2w3 such that
w1 is of the form ambm, w2 is equal to w1 and w2w3 is also a word in the
language (second clause S(XY Z) → A(X)eq(X,Y)S(Y Z)).

RCGs in general have been shown to generate the entire class PTIME
(Bertsch and Nederhof, 2001), i.e., the class of all languages L such that the
problem whether w ∈ L for a given w ∈ T ∗ can be decided in an amount of
time polynomial in the length n = |w| of w.

164 8 Range Concatenation Grammars

Lemma 8.8. The set of string languages generated by RCGs is exactly the
class of all polynomial languages (Bertsch and Nederhof, 2001).

The fact that every language generated by an RCG is polynomial is con-
firmed by the existence of polynomial parsing algorithms (see Chapter 9).

The other direction, i.e., the inclusion of all polynomial languages in the
set of RCG string languages is shown in Appendix A of (Bertsch and Neder-
hof, 2001) by constructing an equivalent RCG for a given two-way alternating
finite automaton with k heads. It is known that two-way alternating finite
automata recognize exactly the class PTIME. The idea of the construction
is roughly as follows: Such an automaton is non-deterministic and alternates
between existential branching states (only one possibility needs to be success-
ful) and universal branching states (all possibilities must be successful). In the
corresponding RCG, the former is modelled by a set of different clauses while
the latter is modelled by single clauses with the predicates corresponding to
all possibilities in the right-hand side.

8.1.2 Applications

Phenomena Beyond LCFRS

A phenomenon in natural languages that LCFRS cannot deal with in a general
way is unbounded scrambling as found in German and other free word order
languages. As an example consider (39):

(39) a. ... dass er den Kühlschrank seinem Freund zu reparieren
... that he the fridgeacc his frienddat to repair

zu versprechen versucht
to promise tries
‘... that he tries to promise his friend to repair the fridge’

b. ... dass er seinem Freund den Kühlschrank zu reparieren
... that he his frienddat the fridgeacc to repair

zu versprechen versucht
to promise tries
‘... that he tries to promise his friend to repair the fridge’

Under the assumption that we consider only infinite verbs with a single
argument, we get a general configuration where k noun phrases are followed
by k verbs, each noun phrase depending on a single verb, and while having
the order of the verbs fixed, we allow for all permutations of the noun phrases.

As a formal language that captures this, the language of all strings
π(n[1] . . . n[m])v[1] . . . v[m] with m ≥ 1, π a permutation, and n[i] = n a nomi-
nal argument of v[i] = v for 1 ≤ i ≤ m has been proposed; nominal argument
is taken to imply that both come from the same element in the grammar.
Such a language cannot be generated by an LCFRS (Becker, Rambow, and
Niv, 1992; Rambow, 1994).

8.1 Introduction to Range Concatenation Grammars 165

Boullier (1999b) gives an RCG for this language that is a negative RCG.
Something similar can be done, though, also with only positive predicates
in the right-hand sides. The clauses roughly do the following with the input
string: First they separate it into two components, the nominal elements and
the verbal elements. Then, for each n in the first component, the clauses
search through the verbal elements until having found the head of this noun.
Similarly, for each v, the clauses search through the nominal components until
having found the appropriate argument. Note that this works only if there
is function that tells us for a given noun whether a given verb is its head.
Boullier (1999b) assumes this function to be previously defined. In general,
this function is however what we want to compute during parsing. It is not
unique, i.e., there can be more than one such function for a given string.

As mentioned earlier, there are also examples of natural language phenom-
ena that have been argued to be non-semilinear. These are Chinese number
names (Radzinski, 1991) and case stacking in Old Georgian (Michaelis and
Kracht, 1997). For the first, Chinese number names, Boullier (1999b) gives an
RCG that describes them.

Multiple Aspects of Linguistic Structure

RCGs allow us to describe different linguistic aspects of strings in a single
system (Sagot, 2005). This is due to the fact that RCGs are closed under
intersection. One can for example require that a sentence be syntactically
well formed and semantically well formed and describe the two conditions
within a single system, using syntactic predicates and semantic predicates.
Relations between the two can be captured as well since they are part of a
single grammar.

To see how the description of different linguistic layers within a single RCG
can be achieved, consider the following sample clause that captures constituent
structure and syntactic functions:

S(XZU) → NP(X) VP(ZU) Head(Z,ZU) Subject(X,Z).

RCG as a Pivot Formalism

Since the class of string languages of RCGs is the entire class PTIME, there
is a large range of formalisms that can be transformed into equivalent RCGs.
Examples are TAG (for which we will see the transformation to RCG as pro-
posed in (Boullier, 1999b) in the next section), tree-local and set-local MC-
TAG (Kallmeyer (2009) gives the transformation to RCG), a restricted form
of tree-local MCTAG with shared nodes (SN-MCTAG) (see (Kallmeyer, 2005)
for the transformation to RCG), and k-TT-MCTAG (the transformation can
be found in (Kallmeyer and Parmentier, 2008)). Note that all these examples
use only simple RCG, i.e., the sub-class of RCG that is equivalent to LCFRS.

166 8 Range Concatenation Grammars

S(X, Y)→ S0(X, Y)S′
0(X, Y)

S0(XY, Z)→ S1(X, Z)D(Y)
S1(aXc, abY)→ S1(X, Y)
S1(X, Y)→ B(X)CD(Y)

S′
0(XY, Z)→ S′

1(Y, Z)A(X)
S′

1(bXd, Y cd)→ S′
1(X, Y)

S′
1(X, Y)→ C(X)AB(Y)

A(aX)→ A(X), A(ε)→ ε
B(bX)→ B(X), B(ε)→ ε
C(cX)→ C(X), C(ε)→ ε
D(dX)→ D(X), D(ε)→ ε
CD(cdX)→ CD(X), CD(ε)→ ε
AB(abX)→ AB(X), AB(ε)→ ε

L(G) = {〈anbmcndm, (ab)n(cd)m〉 |n, m ≥ 0}

Fig. 8.6. A (2, 2)-BRCG for text alignment

Examples of formalisms that can be transformed into non-simple RCGs
are agreement grammar and right-linear unification grammar (Søgaard, 2007).
Here, again, the ability of RCG to describe different features and relations for
the same parts of the input within a single clause is crucial for the transfor-
mation.

Machine Translation

Søgaard (2008) proposes using RCGs to model the alignment between texts in
the context of machine translation. He uses RCGs with binary start predicate
names where the two arguments present the two strings whose alignment is to
be modelled. The maximal arity in general is 2. Furthermore, an argument in
the left-hand side of a clause contains at most two variables and the grammars
are bottom-up non-erasing, i.e., every variable in the left-hand side of some
clause occurs also in its right-hand side. Such RCGs are called (2, 2)-BRCG.

The fact that Søgaard uses non-simple RCGs, in particular non-linear
rules, allows to derive different alignment patterns for the same pair of strings
in parallel. The overall alignment structure is then the union of the single
alignments or, in other words, the different languages obtained according to
the single alignments are intersected.

Take for instance the language of pairs 〈anbmcndm, (ab)n(cd)m〉 where the
as and cs from the first string are aligned with the abs from the second string
while the bs and ds from the first are aligned with the cds from the second.
This can be achieved by the (2, 2)-BRCG in Fig. 8.6 that generates the first
alignment via the S0 predicate and the second via the S′

0 predicate.
Søgaard (2008) shows that in a similar way, inside-out alignments can be

obtained which is a type of alignment that occurs in about 5% of the sentence

8.2 Relations to Other Formalisms 167

S(XY ZUV) :−N(Y)Vinf (U)Object(U, Y)S(XZV)
S(XY) :−N(X)Vfin(Y)Subject(Y, X)

Fig. 8.7. LMG for scrambling constructions

pairs in a Chinese-English parallel corpus. The example from Fig. 8.6 is a
cross-serial alignment structure. Such structures occur frequently in aligned
corpora, for instance for language pairs such as English-Spanish and English-
Portuguese (see the overview in (Søgaard, 2008)). Both types of structure are
problematic for most formalisms proposed previously for machine translation.

8.2 Relations to Other Formalisms

8.2.1 Literal Movement Grammars

A formalism that is closely related to RCG is Literal Movement Grammar
(LMG) (Groenink, 1995; Groenink, 1996; Groenink, 1997) (see also (Kracht,
2003) for an introduction to LMG). Groenink’s work is actually the starting
point for defining RCGs in (Boullier, 1998a). The definition of LMG is exactly
the same as the one of RCG except that the predicates do not have a fixed
arity. This difference is not relevant for the generative capacity as long as the
set of clauses and therefore the set of arities for a non-terminal A ∈ N is
finite. Just like RCGs, LMGs consider non-terminals as predicates and their
clauses have the same syntax as the clauses of an RCG. They are written
A(α) :−A1(α1) . . . Am(αm) instead of A(α) → A1(α1) . . . Am(αm).

The difference lies in the way clauses are instantiated. As we have seen,
in an RCG, all occurrences of terminals, variables and empty arguments are
mapped to ranges in a given string w. This is different in LMG. Here, all
variables are mapped to sequences of terminals. This means that 1. different
occurrences of the same variable X can be mapped to different occurrences of
the same string, 2. a clause can contain terminals that are not present in the
input string, and 3. concatenations of strings not adajacent in the input are
allowed.

As an example, see the LMG in Fig. 8.7 for scrambling constructions.
This LMG picks in its first clause an arbitrary noun from the input and an
arbitrary verb such that the verb follows the noun in the string. If the noun is
a possible object of the verb, then it is considered to depend on it and the two
are deleted. The process continues with the concatenation of the remaining
parts. In the end, we are left with a last noun and a last verb such that the
noun is a possible subject of the verb. Note that this grammar does not require
all nouns to precede all verbs; the nouns only have to precede the verbs they
depend on. This is actually more close to what we find in natural languages.

According to what we have just seen, the instantiations of LMG clauses
are defined as mappings from variables to terminal strings, not to ranges:

168 8 Range Concatenation Grammars

Definition 8.9 (LMG clause instantiation).
Let G = 〈N,T, V, S, P 〉 be a LMG.
For a clause c = A(α) :−A1(α1) . . . Am(αm) ∈ P , every function f :

{x |x ∈ V, x occurs in c} → T ∗ is an instantiation of c.
We call A(f(α)) :−A1(f(α1)) . . . Am(f(αm)) then an instantiated clause

where f is extended as follows:

1. f(ε) = ε;
2. f(t) = t for all t ∈ T ;
3. f(xy) = f(x)f(y) for all x, y ∈ T ∗;
4. f(〈α1, . . . , αm〉) = (〈f(α1), . . . , f(αm)〉) for all (〈α1, . . . , αm〉) ∈ [(T ∪
V)∗]m, m ≥ 1.

The language is, as in the case of RCG, the set of all strings w such that
S(w) can be reduced to ε by subsequently replacing left-hand sides of instan-
tiated clauses by right-hand sides. Groenink (1996) formulates this adopting
a deductive perspective.

Definition 8.10 (LMG string language).
Let G = 〈N,T, V, S, P 〉 be a LMG.

1. The set Lpred(G) of instantiated predicates A(τ) where A ∈ N and τ ∈
(T ∗)k for some k ≥ 1 is defined by the following deduction rules:

•
A(τ)

A(τ) :− ε is an instantiated clause

• A1(τ1) . . . Am(τm)
A(τ)

A(τ) :−A1(τ1) . . . Am(τm) is an instantiated clause

2. The string language of G is

{w ∈ T ∗ |S(w) ∈ Lpred(G)}.

The crucial difference with RCG is that, in the derivation (or, rather de-
duction) for a string w, the string vectors we obtain in instantiated clauses
need not be part of w. In other words, from an automaton perspective, we
can not only read the input but even write on it. Furthermore, different oc-
currences of the same variable can be mapped to different occurrences of the
same string. This is why LMGs are more powerful than RCGs.

To illustrate the difference, consider the two sample grammars in Fig. 8.8.
Depending on whether we consider them as RCGs or LMGs, they yield differ-
ent string languages. In grammar 1, the crucial difference is that in the RCG,
because of XX being an argument in the first clause, X must necessarily be
mapped to an empty range 〈i, i〉; otherwise it is not possible to concatenate
it with itself. In the LMG, X is mapped to a string and two occurrences of
this string can be concatenated. In grammar 2, because of Xb being an argu-
ment in the right-hand side of the first clause, in an RCG, we require the Y
concatenated with X in the left-hand side to be mapped to a range starting
with a b. In the LMG, the b need not be part of the input string.

8.2 Relations to Other Formalisms 169

Grammar 1 Grammar 2

RCG clauses:
S(aXb)→ B(XX)
B(bX)→ B(X)
B(ε)→ ε

String language of the RCG:
{ab}
String language of the LMG
with the same clauses:

{abk | k ≥ 1}

RCG clauses:
S(XY)→ A(Xb)C(Y)
A(ab)→ ε
C(b)→ ε
C(c)→ ε

String language of the RCG:
{ab}
String language of the LMG
with the same clauses:
{ab, ac}

Fig. 8.8. String languages of RCG versus LMG

The definitions of bottom-up and top-down linear and non-erasing and of
non-combinatorial given above for RCGs can be applied to LMGs as well. In
fact, these terms were introduced first in (Groenink, 1996) for LMGs.

The class of string languages generated by LMGs that are linear, non-
erasing and non-combinatorial is exactly the class generated by simple RCGs
and LCFRSs. Groenink (1996) identifies another important sub-class of LMG,
so-called simple LMG. In a simple LMG, the right-hand side arguments are
single variables and each variable occuring in the right-hand side of a clause
occurs exactly once in its left-hand side. Groenink shows that these grammars
generate exactly the class of all polynomial languages. Consequently, simple
LMGs are equivalent to RCGs.

Definition 8.11 (Simple LMG).
An LMG is simple if it is non-combinatorial, bottom-up non-erasing and

bottom-up linear.

Lemma 8.12. For every RCG G there exists a simple LMG G′ such that
L(G) = L(G′) and vice versa.

If, instead of bottom-up non-erasing and bottom-up linearity as in simple
LMG, we require the grammar to be top-down non-erasing and top-down
linear, we obtain parallel multiple context-free grammars (PMCFGs) (Seki et
al., 1991; Seki et al., 1993).

Definition 8.13 (PMCFG).
An LMG is a parallel multiple context-free grammar (PMCFG) if it is

non-combinatorial, top-down non-erasing and top-down linear.

In other words, in a PMCFG, the right-hand side argumets of the clauses
are single variables and every variable occurring in the left-hand side of some
clause occurs exactly once in its right-hand side. This allows for clauses where

170 8 Range Concatenation Grammars

S(XXX) :−A(X)
A(aX) :−A(X)
A(bX) :−A(X)
A(ε) :−A(ε)

Fig. 8.9. PMCFG for {w3 |w ∈ {a, b}∗}

variables appear more than once in the left-hand side. A first example is given
in Fig. 8.9.

The class of languages generated by PMCFG is larger than the one gen-
erated by LCFRS, MCFG and simple RCG. Obviously, each MCFG is a PM-
CFG; therefore the class of MCFL is contained in the class of string languages
generated by PMCFG. Figure 8.10 gives an example from (Seki et al., 1991)
of a PMCFG generating a language that is not an MCFL.

S(a) :− ε
S(XX) :−S(X)

Fig. 8.10. PMCFG for {a2n |n ≥ 0}

Lemma 8.14.

• For every MCFG G, there is a PMCFG G′ such that L(G) = L(G′).
• There exists a PMCFG G such that there is no MCFG G with L(G) =

L(G′).

PMCFGs are less powerful than simple LMGs and RCGs (Boullier, 1998a).
Ljunglöf (2005) extends PMCFG with intersection, which leads to a formalism
equivalent to LMG and RCG.

Lemma 8.15.

• For every PMCFG G, there is a simple LMG G′ such that L(G) = L(G′).
• There exists a simple LMG G such that there is no PMCFG G with L(G) =

L(G′).

8.2.2 CFG, TAG and MCFG

It is immediate that every CFG is a simple 1-RCG and vice versa (Boullier,
2000a). All we need to do is to write a CFG production A → X1 . . . Xk as
an RCG clause A(Y1 . . . Yk) → γ (and vice versa) where for all 1 ≤ i ≤ k,
Yi = Xi, and γ is the concatenation of all Xi(Xi) where 1 ≤ i ≤ k and
Xi ∈ N . The start predicate is S. An example is given in Fig. 8.11.

8.2 Relations to Other Formalisms 171

CFG:
S → aSb
S → ε

Equivalent simple 1-RCG:

S(aSb)→ S(S)

S(ε)→ ε

Fig. 8.11. A CFG and the equivalent simple 1-RCG

Lemma 8.16. For a language L there is a CFG G with L = L(G) iff there is
a simple 1-RCG G′ with L = L(G′).

This does not hold for 1-RCGs in general. Since we can have more than
one right-hand side predicate for the same argument(s), it follows immediately
that k-RCGs are closed under intersection.

Lemma 8.17. For every k ≥ 1, the class of string languages of k-RCGs is
closed under intersection.

For the proof, assume that we have two RCGs with start symbols S1 and
S2. Then we can construct an RCG for the intersection of the two string
languages by taking the union of the two clause sets plus an additional clause
S(X) → S1(X)S2(X) where S is the new start symbol.

With this property, we obtain for instance that the non-context-free lan-
guage {anbncn |n ≥ 1} = {anbnck |n, k ≥ 1} ∩ {akbncn |n ≥ 1} is generated
by a 1-RCG since it is the intersection of two context-free languages. This
leads to the following lemma:

Lemma 8.18. The class of string languages of 1-RCG properly contains the
class of context-free languages.

Tree Adjoining Languages are contained in the set of languages of simple
2-RCGs (Boullier, 1999b). The two language classes are not equal, i.e., there
are simple 2-RCGs that generate languages that are not TALs (Seki et al.,
1991; Boullier and Sagot, 2009).

Lemma 8.19. The set of string languages of TAG is properly contained in
the set of string languages of simple 2-RCG:

1. For every TAG G there is a simple 2-RCG G′ such that L(G) = L(G′).
2. There is a simple 2-RCG G such that there is not TAG G′ with L(G) =
L(G′).

In order to show the first part of the lemma, we give the transforma-
tion from TAG to simple RCG, following Boullier (1998a; 1999b): The RCG
contains predicates 〈α〉(X) and 〈β〉(L,R) for initial and auxiliary trees re-
spectively. X covers the yield of α and all trees added to α by adjunction or
substitution, while L and R cover those parts of the yield of β (including all
trees added to β by adjunction or substitution) that are to the left and the
right of the foot node of β. The clauses in the RCGs reduce the arguments

172 8 Range Concatenation Grammars

of these predicates by identifying those parts that come from the elementary
tree α/β itself and those parts that come from one of the elementary trees
added by substitution or adjunction. A sample TAG with an equivalent RCG
is shown in Fig. 8.12.

TAG:

α1 SNA

a S F

ε

α2

F

d

α3

F

e

β S

b S∗
NA c

Equivalent RCG:

• S(X)→ 〈α1〉(X) (every word in the language is the yield of a tree derived from α1)

• 〈α1〉(aF) → 〈α2〉(F) | 〈α3〉(F) (either the yield of α1 is a followed by the yield of tree

that substitutes at F)

• 〈α1〉(aB1B2F)→ 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F) (or β adjoins to S in α;

then the yield is a followed by the left part of β, the right part of β and the tree substituted

at F)

• 〈β〉(B1b, cB2)→ 〈β〉(B1, B2) (β can adjoin to its root; then the left part is the left part

of the adjoined β follwed by b; the right part is c followed by the right part of the adjoined

β)

• 〈α2〉(d) → ε 〈α3〉(e) → ε 〈β〉(b, c) → ε (the yields of α2, α3 and β can be d, e and

the pair b (left) and c (right) resp.)

Fig. 8.12. A sample TAG and an equivalent RCG

In order to make the choice of an adjoined/substituted tree locally for ev-
ery node and not at once for the entire elementary tree, Boullier introduces
additional so-called branching predicates 〈adj, γ, p〉 and 〈subst, γ, p〉 that cor-
respond to the edges in derivation trees. E.g., in the example in Fig. 8.12, the
clauses 〈α1〉(aB1B2F) → 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F) would be
replaced with the clauses 〈α1〉(aB1B2F) → 〈adj, α1, 2〉(B1, B2)〈sub, α1, 3〉(F),
〈adj, α1, 2〉(X,Y) → 〈β〉(X,Y) and 〈sub, α1, 3〉(X) → 〈α2〉(X) | 〈α3〉(X).

Since the yields of initial trees require unary predicates while the yields
of auxiliary trees require binary predicates, the maximal predicate arity in
the resulting simple RCG is 2. Furthermore, since we encode the yields of
elementary trees always from left to right, we obtain an ordered simple 2-
RCG.

More precisely, the construction goes as follows:
We define the decoration string σγ of an elementary tree γ as in (Boullier,

1999b): each internal node has two variables L and R and each substitution
node has one variable X (L and R represent the left and right parts of the
yield of the adjoined tree and X represents the yield of a substituted tree).
In a top-down left-to-right traversal the left variables are collected during
the top-down traversal, the terminals and variables of substitution nodes are
collected while visiting the leaves and the right variables are collected during

8.3 Summary 173

bottom-up traversal. Furthermore, while visiting a foot node, a separating “,”
is inserted. The string obtained in this way is the decoration string.

1. We add a start predicate S and clauses S(X) → 〈α〉(X) for all α ∈ I with
root label S.

2. For every γ ∈ I ∪A, let Lp, Rp be the left and right symbols in σγ for the
node at position p if this is not a substitution node; let Xp be the symbol
for the node at position p if this is a substitution node.
We assume that p1, . . . , pk are the possible adjunction sites, and pk+1, . . . ,
pl are the substitution sites in γ. Then the RCG contains all clauses

〈γ〉(σγ) → 〈adj, γ, p1〉(Lp1 , Rp1) . . . 〈adj, γ, pk〉(Lpk
, Rpk

)
〈sub, γ, pk+1〉(Xpk+1) . . . 〈sub, γ, pl〉(Xpl

) .

3. For all predicates 〈adj, γ, p〉, the RCG contains all clauses

〈adj, γ, p〉(L,R) → 〈γ′〉(L,R)

such that γ′ can be adjoined at position p in γ.
4. For all predicates 〈adj, γ, p〉 where fOA(node(γ, p)) = 0 (adjunction not

obligatory), the RCG contains a clause

〈adj, γ, p〉(ε, ε) → ε.

5. For all predicates 〈sub, γ, p〉 and all γ′ that can be substituted into position
p in γ, the RCG contains a clause

〈sub, γ, p〉(X) → 〈γ′〉(X).

This construction yields a simple RCG whose predicates describe the nodes
and edges of TAG derivation trees. Therefore constructing such a simple RCG
for a given TAG and then uing the RCG for parsing amounts to doing TAG
parsing on the derivation tree. This can have advantages in particular for
parsing TAG variants where additional conditions on the derivation trees are
imposed, such as different types of multicomponent TAGs (Kallmeyer, 2009).
Following the same idea, Kallmeyer and Parmentier (2008) extend this con-
struction to TT-MCTAG (Lichte, 2007) and use the resulting RCG for parsing.

As already mentioned, the equivalence between k-LCFRS and simple k-
RCG is immediate (Boullier, 2000b).

Lemma 8.20. For a language L there is a k-LCFRS G with L = L(G) iff
there is a simple k-RCG G′ with L = L(G′).

8.3 Summary

In this chapter, we have introduced Range Concatenation Grammars, a gram-
mar formalism that can be seen as an extension of LCFRS and MCFG that

174 8 Range Concatenation Grammars

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
CFG, 1-SRCG

1-LCFRS
TAG

2-SRCG
2-LCFRS

. . .
SRCG
LCFRS

PMCFG RCG

�

�

�

�

�

�

�

�

�

�
�
�

�
�

�
�
�
	CFG 1-RCG 2-RCG . . .

RCG, simple LMG
(= PTIME)

LMG

Fig. 8.13. Hierarchy of different types of RCG and LMG string languages

drops the non-erasingness and linearity constraints. Crucially, the produc-
tions (clauses) of an RCG are instantiated with substrings of the input w,
determined by ranges. Because of this, RCGs are more limited than Literal
Movement Grammars, which look similar but do not require the instantiations
of arguments and variables in clauses to be part of the input string w.

Figure 8.13 summarizes the hierarchies of string languages for the different
formalisms considered in this chapter. Only for the inclusions k-RCL ⊆ (k +
1)-RCL (1 ≤ k) has it not been shown so far that these are proper inclusions,
although it seems plausible. All other inclusions are proper inclusions. The
entire class of string languages generated by RCGs is particularly interesting
since it contains all polynomial languages.

Problems

8.1. Consider the RCG with the following clauses:
S(XY) → A(X,Y)B(X,Y)

A(aX, aY) → A(X,Y) B(bX, bY) → B(X,Y)
A(bX, Y) → A(X,Y) B(aX, Y) → B(X,Y)
A(X, bY) → A(X,Y) B(X, aY) → B(X,Y)
A(ε, ε) → ε B(ε, ε) → ε

The language generated by this grammar is

{w1w2 |w1, w2 ∈ {a, b}∗, |w1|a = |w2|a, |w1|b = |w2|b}.

Give the derivation of w = abba with all clause instantiations using this RCG.

8.2. Consider the following RCGs G1 and G2:

• G1 = 〈{S,A,B}, {a, b}, {X,Y,Z, U, V }, S, P 〉 with P the following set of
clauses:

8.3 Summary 175

S(cXY cZUcV) → A(X,Z, V)B(Y,U)
A(aXa, aY a, aZa) → A(X,Y,Z)

A(aa, aa, aa) → ε
B(bX, bY) → B(X,Y)

B(ε, ε) → ε
• G2 = 〈{S, S1, S2, A,B,C,D,E}, {a, b, c}, {X,Y }, S, P 〉 with P the follow-

ing set of clauses:

S(X) → S1(X)S2(X) S1(XY) → D(X)C(Y)
D(aXb) → D(X)

D(ε) → ε
C(cX) → C(X)
C(c) → ε

S2(XY) → A(X)E(Y)
A(aX) → A(X)
A(a) → ε

E(bY c) → E(Y)
E(ε) → ε

Determine for each of G1 and G2

1. whether it is simple, and
2. what the string language is that it generates.

8.3. Give RCGs for the following string languages:

1. L1 = {w4 | w ∈ {c, d}∗};
2. L2 = {a3n | n ≥ 0}.

8.4. Give LMGs for the string languages from Problem 8.3.

8.5. Consider the following TAG:

α
S

ε
β

SNA

a S d

b S∗
NA c

Give the equivalent simple 2-RCG following the construction from Section
8.2.2.

9

Parsing Range Concatenation Grammars

9.1 Basic RCG Parsing

In the following, we will see different parsing algorithms for RCGs. Let us
consider a variant of the RCG for the MIX language from Fig. 8.4 as a running
example. This variant is given in Fig. 9.1.

Clauses:

S(XY Z)→ A(X, Z)M(Y, Y) M(cX, Y)→M(X, Y) A(aX, aY)→ A(X, Y)
M(bX, cY)→M(X, Y) M(X, bY)→M(X, Y) A(ε, ε)→ ε
M(ε, ε)→ ε

L(G) = {anwan |n ≥ 0, w ∈ {b, c}∗, |w|b = |w|c}
Fig. 9.1. RCG for a variant of MIX

The predicateM in this grammar takes two copies of a word w. It processes
both copies from left to right while ignoring (deleting) all cs in the first and
bs in the second and matching every b in the first with a c in the second copy.
This way, M checks whether w contains equal numbers of bs and cs.

We will first consider a basic CYK parser that passes from completely
recognized right-hand sides of clauses to completed left-hand sides. Then we
will see two basic Earley parsing algorithms, i.e., algorithms that have a top-
down prediction and a bottom-up completion. They have in common that at
prediction time they compute all instantiations of possible clauses.

All the three algorithms presented in this section are such that within the
items we only have to keep track of predicates/clauses whose instantiations
are fully determined.

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 9, c© Springer-Verlag Berlin Heidelberg 2010

178 9 Parsing Range Concatenation Grammars

9.1.1 CYK Parsing with Passive Items

CYK (Cocke, Younger, Kasami) parsing is a non-directional bottom-up pars-
ing technique. As in the case of TAG and LCFRS/SRCG, it is also possible
to apply this technique to RCG since, again, we are dealing with grammars
containing rewriting rules where a derivation step consists of replacing the
left-hand side of a rule with its right-hand side. Following the derivation in
reverse order amounts to CYK parsing.

We use only passive items, i.e., items consisting of a non-terminal and its
span. The items have therefore the form

[A,ρ]

where A is a predicate and ρ is a range vector of dimension dim(A) (containing
the ranges that the arguments of A are instantiated with). In contrast to
MCFG and SRCG, the range vector need not be non-overlapping since the
grammar can be non-linear.

Since we are proceeding bottom-up, we start with the rules that have an
empty right-hand side: The scan operation deduces an instantiated predicate
from these rules.

Scan: [A,ρ]
A(ρ) → ε an instantiated clause

Moving from the set of instantiated right-hand side predicates to the left-
hand side of a clause is done by the complete rule:

Complete:
[A1,ρ1] . . . [Ak,ρk]

[A0,ρ]
A0(ρ0) → A1(ρ1) · · ·Ak(ρk) an instantiated clause

The goal item is [S, (〈0, n〉)] since we want to be able to deduce an S
predicate spanning the entire input.

Concerning our example grammar from Fig. 9.1, for an input word w =
acbbca, we would (among others) deduce for instance the items in Fig. 9.2.
Instead of 〈i, j〉, we write ixj where x = wi+1 · · ·wj for better readability.

Note that this way of CYK parsing using instantiated clauses can be under-
stood as a two-step process: First we compute the set of instantiated clauses
for the input w from the grammar. The result is a CFG whose non-terminals
are instantiated predicates and whose terminal alphabet is empty. The start
symbol is S(〈0, |w|〉). In a second step, we perform a CFG CYK parsing for
the input ε, using this CFG.1

The computation of the CFG consisting of instantiated clauses with re-
spect to w is polynomial in the length n of w since for each of the |P | clauses,
we have to try for each range boundary in the clause (limited by a constant),
all possible values from 0 to n. For each of these combinations of values, we
1 Of course, in an efficient implementation, we would not compute all instantiated

clauses first but rather compute them only when needed.

9.1 Basic RCG Parsing 179

Trace (only successful items listed):
item op. inst. clause clause

[M, (5ε5, 5ε5)] scan M(5ε5, 5ε5)→ ε M(ε, ε)→ ε
[A, (1ε1, 6ε6)] scan A(1ε1, 6ε6)→ ε A(ε, ε)→ ε
[A, (0a1, 5a6)] compl. A(0a1, 5a6)→ A(1ε1, 6ε6) A(aX, aY)→ A(X, Y)
[M, (4c5, 5ε5)] compl. M(4c5, 5ε5)→M(5ε5, 5ε5) M(cX, Y)→M(X, Y)
[M, (3bc5, 4c5)] compl. M(3bc5, 4c5)→M(4c5, 5ε5) M(bX, cY)→M(X, Y)

. . .
[M, (1cbbc5, 1cbbc5)] compl. M(1cbbc5, 1cbbc5)

→M(2bbc5, 1cbbc5) M(cX, Y)→M(X, Y)
[S, (0acbbca6)] compl. S(0acbbca6) S(XY Z)

→ A(0a1, 5a6) → A(X, Z)M(Y, Y)
M(1cbbc5, 1cbbc5)

Fig. 9.2. Basic CYK parsing of w = acbbca

need to check whether the instantiation is valid in the sense of mapping adja-
cent elements to adjacent ranges and terminals to corresponding ranges. This
check can be done in constant time. Consequently, the fixed recognition prob-
lem for RCGs can be solved in polynomial time (Bertsch and Nederhof, 2001).
CYK parsing with the resulting grammar and w = ε amounts actually to re-
moving all non-terminals that cannot yield a string in T ∗, i.e., to removing all
useless symbols. The CFG non-terminals (instantiated predicates) X in the
chart are exactly those that allow us to derive ε, i.e., X ∗⇒ ε and {ε} = T ∗.
If S(〈0, n〉) is among the useful symbols, i.e., S(〈0, n〉) ∗⇒ ε, then w is in the
language.

In contrast to RCGs, in the case of LMGs, the number of possible in-
stantiations of a rewriting rule, given an input string w, is not polynomial in
the length of w since it is actually independent from w. There are in general
infinitely many possible instantiations.

9.1.2 Non-directional Top-Down Parsing

We now add a prediction operation to the basic CYK and then, in the third
algorithm in this section, we extend the algorithm further to an algorithm with
active items where we move a dot through the right-hand sides of instantiated
clauses.

The idea of top-down parsing is to instantiate the start predicate with the
entire string and to recursively check if there is a way to reduce all right-hand
side predicates to ε. Roughly, for each instantiated predicate, we compute all
instantiated clauses with this predicate being its left-hand side, and we then
predict all right-hand side elements of this clause. Once we have completed
all right-hand side elements of an instantiated clause, we can complete its
left-hand side element.

We use only passive items, i.e., items consisting of a non-terminal, its span
and a flag that marks whether the item is predicted or completed. The items

180 9 Parsing Range Concatenation Grammars

have therefore the form
[A,ρ,flag]

where A is a predicate, ρ is a range vector of dimension dim(A) (containing,
as before, the ranges that the arguments of A are instantiated with) and flag
∈ {c, p} indicates if the item has been completed (value c) or predicted (value
p).

As an axiom, we predict S ranging over the entire input. Therefore, the
initialize rule is as follows:

Initialize: [S, (〈0, n〉), p]

The predict operation predicts new items for previously predicted items.

Predict:
[A0,ρ0, p]

[A1,ρ1, p] . . . [Ak,ρk, p]
A0(ρ0) → A1(ρ1) · · ·Ak(ρk)
an instantiated clause

The scan operation switches the flag on an item describing a predicted
predicate to completed, given that there is a corresponding ε-clause:

Scan:
[A,ρ, p]
[A,ρ, c]

A(ρ) → ε an instantiated clause

The complete rule sets the flag on a completed left-hand side predicate
to completed.

Complete:
[A0,ρ, p], [A1,ρ1, c] . . . [Ak,ρk, c]

[A0,ρ, c]
A0(ρ0) → A1(ρ1) · · ·Ak(ρk)
an instantiated clause

Recognition is successful if there is a way to declare the start predicate
completed. Consequently, the goal item is [S, (〈0, n〉), c].

Figure 9.3 lists some of the successful items one obtains with this algo-
rithm parsing w = acbbca with the RCG from Fig. 9.1. Of course, besides the
successful predictions, a lot of instantiated predicates are predicted that do
not lead to a parse. In order to do a more efficient RCG Earley parsing, we
have to find ways to reduce the number of predicted items.

9.1.3 Directional Top-Down Parsing

The above algorithm can be improved by completing right-hand side predi-
cates from left to right and stopping further completion once a predicate fails.
This variant corresponds to the algorithm presented in (Boullier, 2000b).

For the directional top-down parsing algorithm, we need to distinguish
between passive items and active items. Passive items have the same form
and meaning as the items of the non-directional top-down parsing algorithm.
Active items allow us to move a dot through the right-hand side of an instan-
tiated clause. They have the form

9.1 Basic RCG Parsing 181

Some of the successful items:
item op. clause

[S, (0acbbca6), p] initial.
[A, (0a1, 5a6), p] pred. S(XY Z)→ A(X, Z)M(Y, Y)
[M, (1cbbc5, 1cbbc5), p]

. . .
[M, (5ε5, 5ε5), p]
[M, (5ε5, 5ε5), c] scan M(ε, ε)→ ε

. . .
[A, (0a1, 5a6), c]
[M, (1cbbc5, 1cbbc5), c]
[S, (0acbbca6), c] compl. S(XY Z)→ A(X, Z)M(Y, Y)

Fig. 9.3. Non-directional top-down parsing of w = acbbca

[A(ρ) → Φ • Ψ]

where A(ρ) → ΦΨ is an instantiated clause.
The axiom is the prediction of the start predicate ranging over the entire

input. The initialize rule is the same as in the non-directional top-down case.
We have two predict operations. The first one, predict-rule, predicts

active items with the dot on the left of the right-hand side for a given predicted
passive item.

Predict-rule:
[A,ρ, p]

[A(ρ) → •Ψ]
A(ρ) → Ψ an instantiated clause

Predict-pred predicts a passive item for the predicate following the dot
in an active item:

Predict-pred:
[A(ρ) → Φ •B(ρB)Ψ]

[B,ρB, p]

The scan operation is the same as in the non-directional case, i.e., it allows
us to turn a predicted instantiated predicate into a completed one if there is
a corresponding ε-clause.

Complete moves the dot over a predicate in the right-hand side of an
active item if the corresponding passive item has been completed.

Complete:
[B,ρB , c], [A(ρ) → Φ •B(ρB)Ψ]

[A(ρ) → ΦB(ρB) • Ψ]

Once the dot has reached the right end of a clause, we can convert the
active item into a completed passive item:

Convert:
[A(ρ) → Φ•]

[A,ρ, c]

182 9 Parsing Range Concatenation Grammars

The goal item is again [S, (〈0, n〉), c].
This algorithm performs a classical Earley parsing using the CFG of in-

stantiated clauses obtained from the RCG with respect to the specific input
w. It amounts to computing all instantiated predicates that are 1. reachable
from the start symbol S(〈0, n〉) and 2. useful in the sense that they allow us
to derive a string of terminals (the only possible terminal string is ε). The
completed passive items in the chart are exactly these predicates. Again, if
S(〈0, n〉) is among them, then w is in the language.

For illustration, see the items given in Fig. 9.4 that are some of the items
one obtains when parsing w = acbbca with the grammar from Fig. 9.1.

Some of the successful items:
item operation

[S, (0acbbca6), p] initialize
[S(0acbbca6)→ •A(0a1, 5a6)M(1cbbc5, 1cbbc5)] pred.-rule
[A, (0a1, 5a6), p] pred.-pred
[A(0a1, 5a6)→ •A(1ε1, 6ε6)] pred.-rule
[A, (1ε1, 6ε6), p] pred.-pred
[A, (1ε1, 6ε6), c] scan
[A(0a1, 5a6)→ A(1ε1, 6ε6)•] complete
[A, (0a1, 5a6), c] convert
[S(0acbbca6)→ A(0a1, 5a6) •M(1cbbc5, 1cbbc5)] complete
[M, (1cbbc5, 1cbbc5), p] pred.-pred

. . .

Fig. 9.4. Directional top-down parsing of w = acbbca

An obvious problem of the top-down algorithms seen in this section is
that they compute all possible instantiations of A-clauses, given the pre-
diction of an instantiated A-predicate. Take again our sample RCG from
Fig. 9.1 and the input word w = acbbca. Starting from the first prediction
of [S, (〈0, 6〉), p], predict-rule would predict all active items [S(〈0, 6〉) →
•A(〈0, i〉, 〈j, 6〉)M(〈i, j〉, 〈i, j〉)] for all 0 ≤ i ≤ j ≤ n.

The computation of all possible instantiations is very costly and will be
avoided in the algorithms that we present in Section 9.2. There, we will use sets
of constraints on range boundaries (instead of range vectors) and predict in the
Earley algorithm only one active item [S(XY Z) → •A(X,Z)M(Y, Y), {0 =
Xl, Xl ≤ Xr, Xr = Yl, Yl ≤ Yr, Yr = Zl, Zl ≤ Zr, 6 = Zr}]. (In the
constraints, for variable v, vl stands for the left and vr for the right boundary
of its range.)

9.1 Basic RCG Parsing 183

9.1.4 Optimizations

Filters

A closer look at an RCG can sometimes tell us something about the way the
arguments of certain predicates have to be instantiated. This knowledge can
be used to restrict the number of predicted clause instantiations.

Precompiled restrictions that can be useful concern information about
argument lengths, information about relations between range boundaries and
information about terminals occurring in the yields of certain predicates. Let
us consider some examples. We stay with our sample RCG from Fig. 9.1. For
this RCG, we can deduce the following constraints on instantiations from the
grammar:

1. Length constraints
Concerning the predicate A, the only clauses we have are A(aX, aY) →
A(X,Y) and A(ε, ε) → ε. From these clauses, it is obvious, that every
range vector (〈l1, r1〉, 〈l2, r2〉) in the yield of A, no matter what the input
w is, has to be such that r2 − l2 = r1 − l1.

2. Boundary relations
For the predicate A, in its first appearance in a right-hand side, in the
clause S(XY Z) → A(X,Z) . . ., its first argument precedes the second one
in the input. Since the A-clauses only remove material to the left of the
two argument, the arguments never get longer. Therefore, every range
vector (〈l1, r1〉, 〈l2, r2〉) in the yield of A, independently from the input w,
has to be such that r1 ≤ l2.
For the predicateM , we have the following clauses:M(cX, Y) →M(X,Y),
M(bX, cY) →M(X,Y), M(X, bY) →M(X,Y), M(ε, ε) → ε. Given that
the first appearance of M is as M(Y, Y) in a right-hand side and that all
M -clauses remove material on the left of their arguments, we can deduce
that every range vector (〈l1, r1〉, 〈l2, r2〉) in the yield of M , no matter what
the input w is, has to be such that r1 = r2.

3. Terminal constraints
Given the clauses in the RCG, it is obvious that the strings in the yield
of A, independently from w, can only contain terminals a and no bs or cs.
For M it holds that it yields only bs and cs and no as.

Given these constraints, we would for instance for the input w = acbbca
immediately guess the correct instantiation of the first S clause.

Some of these constraints are proposed in (Boullier, 1998a): Boullier pro-
poses the definition of the sets First and Last for every predicate A ∈ N that
can be used to check on the terminals at the beginning and the end of a range
vector.

Definition 9.1 (First and Last).
Let G = (N,T, V, P, S) be an RCG. For every A ∈ N and k, 1 ≤ k ≤

dim(A), we define

184 9 Parsing Range Concatenation Grammars

1. First(A, k) = {t |S(〈0, n〉) ∗⇒G,w Γ1A(ρ1, . . . , ρk, . . . , ρdim(A))Γ2
∗⇒G,w ε

for some w ∈ T ∗ such that either t ∈ T and ρk(w) = tv for some v ∈ T ∗

or t = ε and ρk(w) = ε}.
2. Last(A, k) = {t |S(〈0, n〉) ∗⇒G,w Γ1A(ρ1, . . . , ρk, . . . , ρdim(A))Γ2

∗⇒G,w ε
for some w ∈ T ∗ such that either t ∈ T and ρk(w) = vt for some v ∈ T ∗

or t = ε and ρk(w) = ε}.

See (Boullier, 1998a) for more details on the computation of the sets First
and Last. These sets can be used to constrain the possible instantiated clauses
that are predicted. For instance, for our sample grammar and the predicate
A, we obtain First(A, 1) = First(A, 2) = Last(A, 1) = Last(A, 2) = {ε, a}.
Therefore we predict only instantiations where the arguments of the predicate
A are either ε or start and end with an a.

Furthermore, Boullier also proposes precompiling length constraints for the
different arguments of a predicate. In our sample grammar, this would tell us
for instance that for the A-predicate, the argument lengths must always be
equal.

Reordering Right-Hand Sides

In contrast to CFG, in an RCG, the order of the right-hand side predicates is
not relevant. However, if we move a dot through the right-hand side, we fix an
order in which we process the elements of the right-hand side. A reordering of
the right-hand sides of clauses does not affect the language that is generated
and it might lead to a better parsing behavior in the sense that right-hand side
predicates about whose range vectors we know more are perhaps processed
earlier.

In his implementation of the directional top-down parser (2000b), Boullier
performs a dynamic reordering of right-hand sides, depending on which pred-
icate yields we know more about. This is one of the reasons why his parser is
actually very efficient.

Take for instance the following clause S(aXbY cZd) → A(X,Y)B(Z) and
assume an input string w = aaaabbbbcdd. Then, given this input string, in
an instantiation of this clause where S yields the entire string w (i.e., the
left-hand side is S(〈0, |w|〉)), we necessarily have Z mapped to 9d10; this is
the only possibility. Therefore, after having predicted this clause, one should
first check the B predicate whose range vector is uniquely specified.

9.2 Parsing with Constraint Propagation

As we have seen, the algorithms presented in Section 9.1 have in common that
even in predicted items, instantiations are fully specified. In other words, at
prediction time, all possible instantiations of all possible clauses have to be
computed. The computation of these instantiations is a constraint satisfaction

9.2 Parsing with Constraint Propagation 185

problem that is very costly to solve (Parmentier and Maier, 2008). Further-
more, this strategy of early instantiation computation leads to a high number
of items which, in turn, leads to an increased number of parsing operations
that do not contribute to a successful parse.

Kallmeyer, Maier, and Parmentier (2009b; 2009a) propose to avoid this
adopting a lazy computation of range boundaries: The computation of in-
stantiations is done only at completion time while at prediction time, only the
available constraints on the instantiations are accumulated. In other words,
as long as we predict, we use some kind of underspecified instantiations (sets
of constraints on range boundaries). Only in the scan and convert steps are
these constraints solved and the concrete range boundaries computed.

In the following, we first present a CYK algorithm with active items that
moves a dot through the right-hand sides of the clauses. This algorithm uses
range boundary constraints in order to achieve the desired underspecification.
After that, we extend this algorithm with a top-down prediction.

9.2.1 Range Constraints

Before presenting the algorithms, we will introduce the range constraint rep-
resentation that they use. It consists of a vector or pairs of range boundary
variables and a set of constraints on these variables. The syntax of the con-
straints allows us to express facts about equality (with another variable or a
constant), orderedness (with respect to another variable or a constant), exact
distance and minimal distance (between variables).

Definition 9.2 (Range constraint vector).
Let Vr = {r1, r2, . . .} be a set of range boundary variables.
A range constraint vector of dimension k is a pair 〈r, C〉 where

1. r ∈ (V 2
r)k; we define Vr(r) as the set of range boundary variables occurring

in r.
2. C is a set of constraints cr that have one of the following forms:

• r1 = r2 for r1, r2 ∈ Vr(r),
• k = r1 for r1 ∈ Vr(r) and k ∈ IN,
• r1 + k = r2 for r1, r2 ∈ Vr(r) and k ∈ IN,
• k ≤ r1 for r1 ∈ Vr(r) and k ∈ IN,
• r1 ≤ k for r1 ∈ Vr(r) and k ∈ IN,
• r1 ≤ r2 for r1, r2 ∈ Vr(r), or
• r1 + k ≤ r2 for r1, r2 ∈ Vr(r) and k ∈ IN.

We say that a range vector ρ satisfies a range constraint vector 〈r, C〉 iff
ρ and r are of the same dimension k and there is a function f : Vr → IN
that maps r(i).l to ρ(i).l and r(i).r to ρ(i).r for all 1 ≤ i ≤ k such that all
constraints in C are satisfied. Furthermore, we say that a range constraint
vector 〈r, C〉 is satisfiable iff there exists a range vector ρ that satisfies it.

186 9 Parsing Range Concatenation Grammars

The constraints we accumulate during parsing have different origins: Some
of them arise from the clauses themselves and are independent from the input
while others arise from the input and from already completed predicates. The
former can be precompiled as the range constraint vectors of the clauses.

In order to keep track of the constraints found for the range boundaries
of variables, occurrences of terminals and ε-arguments, we assume that in
a given clause, these elements are equipped with distinct subscript indices,
starting with 1 and ordered from left to right (where for variables, only the first
occurrence is relevant for this order). We then introduce a function Υ : P → IN
that gives the maximal index in a clause. Furthermore, we define Υ (c, x) for a
given clause c and x a variable or an occurrence of a terminal or an ε-argument
as the index of x in c.

The clause c1 = S(XY Z) → A(X,Z)M(Y, Y) for instance has Υ (c1) = 3
with Υ (c1,X) = 1, Υ (c1, Y) = 2, Υ (c1, Z) = 3; the clause c2 = A(aX, aY) →
A(X,Y) has Υ (c2) = 4 with Υ (c2, a(1)) = 1, and so on; and the clause c3 =
A(ε, ε) → ε has Υ (c3) = 2.

Definition 9.3 (Range constraint vector of a clause).
For every clause c, we define its range constraint vector 〈r, C〉 as follows:

1. r has dimension Υ (c) and all range boundary variables in r are pairwise
different.

2. For all 〈r1, r2〉 ∈ r, r1 ≤ r2 ∈ C.
3. For all occurrences x of terminals in c with i = Υ (c, x), r(i).l+1 = r(i).r ∈
C.

4. For all x, y that are variables or occurrences of terminals in c such that xy
is a substring of one of the arguments in c, r(Υ (c, x)).r = r(Υ (c, y)).l ∈ C.

5. For all occurrences x of ε-arguments with i = Υ (c, x), r(i).l = r(i).r ∈ C.
6. These are all constraints in C.

The range constraint vector of a clause c captures all information about
boundaries forming a range, ranges containing only a single terminal, and
adjacent variables/terminal occurrences in c.

Take for instance the first clause of our sample RCG from Fig. 9.1,
S(XY Z) → A(X,Z)M(Y, Y). As range constraints, we obtain for this clause
the range constraint vector 〈(〈r1, r2〉, 〈r3, r4〉, 〈r5, r6〉), {r1 ≤ r2, r3 ≤ r4, r5 ≤
r6, r2 = r3, r4 = r5}.

We say that an instantiation f of a clause c satisfies a range constraint
vector 〈r, C〉 of dimension Υ (c) if the following holds: let ρ be the vector
(ρ1, . . . , ρΥ (c)) such that for 1 ≤ i ≤ Υ (c) and x be the element (vari-
able/terminal occurrence or ε-argument) with Υ (c, x) = i, ρi = f(x). Then f
satisfies 〈r, C〉 iff ρ satisfies 〈r, C〉.

9.2.2 CYK Parsing with Active Items

An obvious disadvantage of the basic CYK algorithm is that, in order to
perform a complete step, all A1, . . . , Ak in the right-hand side must be checked

9.2 Parsing with Constraint Propagation 187

for appropriate items. This leads to many indices that need to be checked at
the same time.

To avoid this, we can again move a dot through the right-hand side of a
clause, as in the case of the previous formalisms seen in this book. Therefore,
besides passive items, we also need active items. Passive items are again of
the form

[A,ρ]

where A is a predicate and ρ is a range vector of dimension dim(A). The
active items we need are, however, different from the active items used in
the directional top-down algorithm seen above since we now use range con-
straint vectors instead of fully specified instantiations. In the active items,
while traversing the right-hand side of the clause, we keep a record of the po-
sitions already found for the left and right boundaries of variables and terminal
occurrences. This is achieved by subsequently enriching the range constraint
vector of the clause.

Active items have the form

[A(α) → Φ • Ψ, 〈r, C〉]

with A(α) → ΦΨ a clause, ΦΨ
= ε, Υ (A(α) → ΦΨ) = j and 〈r, C〉 a range
constraint vector of dimension j. We require that 〈r, C〉 be satisfiable.

Items that are distinguished from each other only by a bijection of the
range variables are considered equivalent. I.e., if the application of a rule
yields a new item such that an equivalent one has already been generated,
this new one is not added to the set of partial results.

The scan rule is the same as in the basic algorithm:

Scan: [A,ρ]
A(ρ) → ε an instantiated clause

In addition, we have an initialize rule that introduces clauses with the
dot on the left of the right-hand side:

Initialize:
[A(α) → •Φ, 〈r, C〉]

A(α) → Φ is a clause with range constraint vector 〈r, C ′〉, Φ
= ε, and C is
obtained from C ′ by adding 0 ≤ r for every left boundary variable r and r ≤ n
for every right boundary variable r.

The complete rule moves the dot over a predicate in the right-hand side
of an active item provided the corresponding passive item has been completed:

[B,ρB], [A(α) → Φ •B(x1...y1, ..., xk...yk)Ψ, 〈r, C〉]
[A(α) → ΦB(x1...y1, ..., xk...yk) • Ψ, 〈r, C ′〉]

where C ′ = C ∪ {ρB(j).l = r(Υ (xj)).l, ρB(j).r = r(Υ (yj)).r | 1 ≤ j ≤ k}.

188 9 Parsing Range Concatenation Grammars

Trace (only successful items listed):
item operation

1 [M, (5ε5, 5ε5)] scan
2 [A, (1ε1, 6ε6)] scan
3 [A(aX, aY)→ •A(X, Y), {a1.l + 1 = a1.r, a1.r = X.l, X.l ≤ X.r, initialize

a2.l + 1 = a2.r, a2.r = Y.l, Y.l ≤ Y.r}]
4 [A(aX, aY)→ A(X, Y)•, {. . . , 1 = X.l, 1 = X.r, 6 = X.l, 6 = X.r} compl. 3, 2
5 [A, (0a1, 5a6)] convert 4
6 [S(XY Z)→ •A(X, Z)M(Y, Y), {X.l ≤ X.r, Y.l ≤ Y.r, Z.l ≤ Z.r, initialize

X.r = Y.l, Y.r = Z.l, X.r ≤ Z.l}]
7 [S(XY Z)→ A(X, Z) •M(Y, Y), {. . . , 0 = X.l, 1 = X.r, , comp. 5, 6

5 = Z.l, 6 = Z.r}] comp. 5, 6
. . .

8 [M, (1cbbc5, 1cbbc5)]
9 [S(XY Z)→ A(X, Z)M(Y, Y)•, {. . . , 1 = Y.l, 5 = Y.r} comp. 7, 8
10 [S, (0acbbca6)] convert 9

Fig. 9.5. CYK parsing with active items and constraint propagation, w = acbbca

Note that the conditions on the items require the new constraint set for r
to be satisfiable.

Convert turns an active item with the dot at the end of the right-hand
side into a completed passive item:

Convert:
[A(α) → Ψ•, 〈r, C〉]

[A,ρ]

where there is an instantiation f of A(α) → Ψ that satisfies 〈r, C〉 such
that f(A(α)) = A(ρ).

The goal item is [S, (〈0, n〉)].
A sample parse trace is shown in Fig. 9.5. For the sake of readability, in-

stead of the range boundary variables, we use X.l and X.r respectively for the
left and right range boundary of the range associated with X. Furthermore,
the constraints 0 ≤ X.l and X.r ≤ 6 are left aside.

9.2.3 Earley Parsing

We now add a prediction operation to the CYK algorithm with active items,
which leads to an Earley-style algorithm. The passive items are different,
depending on whether they are predicted or completed. Predicted passive
items contain range constraint vectors since when predicting a category, the
left and right boundaries of its arguments might not be known. They therefore
have the form [A, 〈r, C〉], where 〈r, C〉 is a range constraint vector of dimension
dim(A). Completed passive items have the form [A,ρ] where ρ is a range
vector of dimension dim(A). The active items are the same as in the CYK
case in the preceding section.

9.2 Parsing with Constraint Propagation 189

Trace (only successful items listed):
item operation

1 [S, 〈(〈r1, r2〉), {0 = r1, 6 = r2}〉] initialize
2 [S(XY Z)→ •A(X, Z)M(Y, Y), {X.l ≤ X.r, Y.l ≤ Y.r, Z.l ≤ Z.r, pred.-rule

X.r = Y.l, Y.r = Z.l, 0 = X.l, 6 = Z.r}]
3 [A, (〈r1, r2〉, 〈r3, r4〉), {r1 ≤ r2, r3 ≤ r4, r2 ≤ r3, 0 = r1, 6 = r4}] pred.-pred
4 [A(aX, aY)→ •A(X, Y), {a1.l + 1 = a1.r, a1.r = X.l, X.l ≤ X.r, initialize

a2.l + 1 = a2.r, a2.r = Y.l, Y.l ≤ Y.r, . . . ,
0 = a1.l, 6 = Y.r}] pred.-rule

5 [A, (〈r1, r2〉, 〈r3, r4〉), {r1 ≤ r2, r3 ≤ r4, r2 ≤ r3, 1 = r1, 6 = r4}] pred.-pred
6 [A, (1ε1, 6ε6)] scan
7 [A(aX, aY)→ A(X, Y)•, {0 = a1.l, 1 = a1.r, 1 = X.l, 1 = X.r, compl. 4,6

5 = a2.l, 6 = a2.r, 6 = Y.l, 6 = Y.r}]
8 [A, (0a1, 5a6)] convert

. . .

Fig. 9.6. Earley parsing with constraint propagation, w = acbbca

The axiom is the prediction of an S ranging over the entire input, i.e., the
initialize rule is as follows:

Initialize: [S, 〈(〈r1, r2〉), {0 = r1, n = r2}〉]

We have two predict operations. The first one, predict-rule, predicts
active items with the dot on the left of the right-hand side for a given predicted
passive item:

Predict-rule:
[A, 〈r, C〉]

[A(x1 . . . y1, . . . , xk . . . yk) → •Ψ, 〈r′, C ′〉]

where 〈r′, C ′〉 is obtained from the range constraint vector of the clause
A(x1 . . . y1, . . . , xk . . . yk) → Ψ by taking all constraints from C, mapping all
r(i).l to r′(Υ (xi)).l and all r(i).r to r′(Υ (yi)).r, and then adding the resulting
constraints to the range constraint vector of the clause.

The second predict operation, predict-pred, predicts a passive item for
the predicate following the dot in an active item:

Predict-pred:
[A(...) → Φ •B(x1...y1, ..., xk...yk)Ψ, 〈r, C〉]

[B, 〈r′, C ′〉, p]

where r′(i).l = r(Υ (xi)).l, r′(i).r = r(Υ (yi)).r for all 1 ≤ i ≤ k and
C ′ = {c | c ∈ C, c contains only range variables from r′}.

Note that some (implicit) constraints get lost here since we do not inherit
constraints from the transitive closure of C.

The scan rule can be applied if a predicted predicate can be derived by
an ε-clause:

Scan:
[A, 〈r, C〉, p]

[A,ρ, c]

190 9 Parsing Range Concatenation Grammars

where there is a clause A(α) → ε with a possible instantiation f that
satisfies 〈r, C〉 such that f(A(α)) = A(ρ).

Finally, deduction rules for complete and convert are the ones from the
CYK algorithm with active items except that we add flags c to the passive
items occurring in these rules.

Again, the goal item is [S, (〈0, n〉), c].
To understand how this algorithm works, consider the example in Fig. 9.6.
The algorithm shows a great similarity to the directional top-down algo-

rithm, both of them being Earley algorithms where a dot is moved through
the right-hand side of a clause. The crucial difference is that while in the first
algorithm, we are using range vectors to record the variable bindings, in the
Earley-style algorithm presented here, we use range constraint vectors. Due
to the fact that range constraint vectors allow us to leave range boundaries
unspecified, we can compute values of range boundaries in a more incremen-
tal fashion since we do not have to guess all clause instantiations at once
as in the top-down algorithm. This becomes particularly clear when compar-
ing the complete rules of the non-directional top-down algorithm and the
Earley-style algorithm. In the former, we check the compatibility of the range
vector of the completed item with the range vector of the item which is to be
completed as a side condition. In the latter however, we add the information
contributed by the range vector of the completed item dynamically to the
range constraint vector of the item to be completed.

We can optimize the parsers with constraint propagation similarly to what
we have proposed at the end of the section on directional top-down parsing
with instantiated clauses. I.e., first we can precompile additional constraints
from the grammar that follow from the entire grammar, not only from single
clauses as is the case for the range constraint vectors of the clauses. Further-
more, by dynamically reordering the right-hand sides of clauses, we can extend
the operation predict-pred so as to predict always the predicate from the
remaining right-hand side whose yield boundaries are maximally specified.

Obtaining a Parse Forest

So far, we have described recognizers, not parsers. The way to obtain a parse
forest from the item set resulting from the Earley recognizer with range bound-
ary constraints is rather obvious. Whenever a convert is done, a fully instanti-
ated clause has been found. By collecting these clauses, we obtain a compact
representation of our parse forest. Starting from an S predicate ranging over
the entire input and following the clauses for the instantiated predicates in
the right-hand sides, we can read off the single parse trees from this forest.

9.3 Summary

We have seen in this chapter that a crucial property of RCGs is that in a
derivation, the variables, terminals and empty arguments of clauses must be

9.3 Summary 191

instantiated with actual substrings (ranges) of the input string. As a con-
sequence, the set of instantiated clauses for a given string w is a finite set.
We can consider these instantiated clauses as context-free rewriting rules. In
other words, the set of instantiated clauses for a given string w is a context-
free grammar, and we can apply CFG parsing techniques to this grammar in
order to determine whether ε is in the language generated by this grammar,
which is equivalent to w being in the language of the RCG. The first algo-
rithms seen in this chapter perform a CYK and an Earley parsing, using the
CFG of instantiated clauses.

Since the computation of clause instantiations is costly, it should be done
as late as possible. In the second part of this chapter, we have seen a technique
of constraint propagation during RCG parsing that allows a lazy computation
of clause instantiations. In the algorithms seen there, in active items, i.e., items
where only parts of the right-hand side of a clause have been completed while
parts of it have only been predicted, we collect all available constraints on the
clause instantiations. Only when reaching the end of a right-hand side do we
compute the actual instantiation.

We have seen different ways of optimizing the algorithms seen in this chap-
ter. Firstly, certain constraints on the yields of the predicates in the grammar
can be precompiled from the grammar. Secondly, a dynamic reordering of
right-hand sides during parsing can help to continue always with the predi-
cate with the maximally specified yield in the predicted part of a right-hand
side.

Besides the approaches mentioned in this chapter, Barthélemy et al. (2001)
propose obtaining, from a given RCG, a more general 1-RCG that, roughly,
treats the different arguments of a predicate as independent from each other.
This 1-RCG can be used as a guide for parsing with the original RCG.

In conclusion, one has to admit, though, that a general efficient RCG-
parsing is difficult. However, from the different examples and applications
that we have seen in the preceding chapter, it becomes clear that there are
useful subclasses of RCG that are beyond simple RCG. Examples are the
(2, 2)-BRCGs proposed by Søgaard (2008) for alignment and the non-erasing
bottom-up linear RCGs one might use to describe gapping and other elliptical
phenomena. Developing efficient parsers for restricted types of RCG might be
possible.

Problems

9.1. Consider the basic CYK algorithm seen at the beginning of the chapter.
Assume that we are dealing with binarized RCGs, i.e., with RCGs where the
right-hand sides of the clauses contain at most two elements. Furthermore,
assume that the RCGs are non-combinatorial and that the left-hand side
arguments in the clauses have length ≤ 2.

What is the complexity of the CYK algorithm, given these restrictions?

192 9 Parsing Range Concatenation Grammars

9.2. Give the range constraints for the clause A(aX, Y a, ε) → C(XY).

9.3. Consider the RCG G with the following clauses.
S(XY) → A(X,X)B(Y, Y)
A(aX, bY) → A(X,Y) B(cX, dY) → B(X,Y)
A(bX, Y) → A(X,Y) B(dX, Y) → B(X,Y)
A(X, aY) → A(X,Y) B(X, cY) → B(X,Y)
A(ε, ε) → ε B(ε, ε) → ε

1. What is the string language L(G)?
2. Compute the sets First(A, 1), First(A, 2), First(B, 1) and First(B, 2).
3. What are possible filters that might help to restrict the computation of

clause instantiations during top-down parsing?

10

Automata

We have seen the definitions of Finite State Automata (FSA) and of Push-
Down Automata (PDA) in Chapter 1. The former accept all regular languages
while the latter accept all context-free languages. In this chapter, we present
automaton models for different extensions of CFG, in particular for TAG and
LCFRS.

10.1 Embedded Push-Down Automata

Embedded Push-Down Automata (EPDA) have been introduced in (Vijay-
Shanker, 1987). EPDA recognize the class of Tree-Adjoining Languages (TALs)
and are a natural extension of push-down automata (PDA), the class of au-
tomata which recognizes CFG (Hopcroft and Ullman, 1979). The central idea
behind EPDA is to replace the single push-down store used in PDA with a
stack of non-empty push-down stores as depicted in Fig. 10.1. We can per-
form some nested rewriting on the top-most stack, i.e., besides treating it as a
PDA stack, we can wrap new stacks around it. This is crucial for the extended
power of EPDA, compared to PDA. While the single push-down store in a
PDA can only handle the nested dependencies of CFL, we will see that the
stack of push-down stores can handle the cross-serial dependencies of TAL.

10.1.1 Definition of EPDA

An EPDA consists of a finite state control, a one-way input tape and a stack
of non-empty stacks. The finite control sees always the top symbol of the top
stack and the current input symbol. Depending on these symbols and the
current state of the automaton, it performs a move. Such a move is divided
into two parts: In a first operation, the top-most stack Υ is treated as in the
PDA case. I.e., its top-most symbol is replaced by a new, possibly empty,
sequence of stack symbols. In a second operation, the entire stack (of stacks)
is then treated as in the PDA case, i.e., the new top-most stack Υ ′ that was

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 10, c© Springer-Verlag Berlin Heidelberg 2010

194 10 Automata

input tape

. . . a . . .

��
 !
q

PDA

input tape

. . . a . . .

��
 !
q

. . .

EPDA

Fig. 10.1. PDA and EPDA

obtained from the first operation is replaced by a sequence of k stacks that
includes Υ ′ (k ≥ 0).

As in the case of PDA, there are two equivalent ways of defining the
acceptance mode of an EPDA. Either an input w is accepted if, after having
read the entire input, the automaton finishes with an empty stack, or w is
accepted if, after having read the entire w, the automaton ends up in a final
state.

Before giving the formal definition, let us consider an example (taken
from (Vijay- Shanker, 1987)). An EPDA that accepts the language L4 =
{anbncndn |n ≥ 0} could work as follows: Assume that each input symbol
corresponds to a different state. Then the automaton can use the stacks to
keep track of the number of bs, cs and ds that are still required: For each a
encountered in the input, a symbol B is pushed on the top-most stack (to
ensure that the number of as is equal to the number of bs), and below the
top-most stack, an extra stack with a single D is introduced (this ensures
that the number of as equals the number of ds). For each b encountered in
the input, we have to find a top-most symbol B on the top-most stack which
is removed. Furthermore, to make sure we find later a corresponding c, be-
low the top-most stack, an extra stack with a single C is introduced. After
having read all as and bs, we have a sequence of stacks; each one contains a
single symbol x ∈ {C,D} where the number of C-stacks equals the number
of D-stacks (and the number of as encountered earlier) and all C-stacks pre-
cede (i.e., are higher than) all D-stacks. Now we process the remaining input
while deleting the stacks. For each c encountered in the input, if the top-most
symbol of the top-most stack is C, we delete this stack and proceed. For each
d encountered in the input, if the top-most symbol of the top-most stack is
D, we delete this stack and proceed. We accept if no input symbols are left
and the stack is empty.

10.1 Embedded Push-Down Automata 195

Definition 10.1 (Embedded Push-Down Automaton).
An Embedded Push-Down Automaton (EPDA) M is a 7-tuple 〈Q,Σ, Γ, δ,

q0, QF , Z0〉, where

• Q is a finite set of states, q0 ∈ Q is the start state and QF ⊆ Q is the set
of final states.

• Γ is the finite set of stack symbols and Z0 ∈ Γ is the initial stack symbol.
• Σ is the finite set of input symbols.
• δ is the transition function Q× (Σ ∪{ε})×Γ → Pfin(Q×Υ ∗ ×Γ ∗ ×Υ ∗),

where Υ = Γ ∗ correspond to push-downs of stack symbols.

We can give an instantaneous description of an EPDA by a configuration.
A configuration is of type Q×Υ ∗×Σ∗×Σ∗, i.e., it consists of the current state
q ∈ Q, the stack of stacks s ∈ Υ ∗, the already recognized part of the input
w1 ∈ Σ∗ and the part w2 ∈ Σ∗ which is yet to be recognized. Within Υ ∗,
we mark each start (bottom) of a stack with the symbol ‡ (assuming without
loss of generality that ‡ /∈ Γ) and, as a convention, the top is the rightmost
element. The initial configuration of an EPDA is

〈q0, ‡Z0, ε, w〉

where the automaton is in the start state q0, there is only one stack on the
stack, this single stack contains only the initial stack symbol Z0 and the entire
input is still to be recognized.

Definition 10.2 (EPDA transition).
Let 〈Q,Σ, Γ, δ, q0, QF , Z0〉 be an EPDA, Υ = {‡γ | γ ∈ Γ ∗}.

• For all q1, q2 ∈ Q, a ∈ (Σ ∪{ε}), w1, w2 ∈ Σ∗, α, α1, α2 ∈ Υ ∗, Z ∈ Γ, β, γ ∈
Γ ∗,
a) 〈q1, α‡βZ,w1, aw2〉 � 〈q2, αα1‡βγα2, w1a,w2〉

if 〈q2, α1, γ, α2〉 ∈ δ(q1, a, Z) and βγ
= ε.
b) 〈q1, α‡Z,w1, aw2〉 � 〈q2, αα1α2, w1a,w2〉

if 〈q2, α1, ε, α2〉 ∈ δ(q1, a, Z).

•
∗
� is the reflexive transitive closure of �.

Note that empty transitions are allowed (a ∈ (Σ ∪ {ε})), i.e., transitions
that do not read an input symbol. The case b) covers the special case where
the top-most stack is emptied. We then assume that this stack gets deleted
and therefore even its bottom-stack symbol ‡ disappears.

We now define the two modes of acceptance for EPDA:

Definition 10.3 (Language of an EPDA).
Let M = 〈Q,Σ, Γ, δ, q0, QF , Z0〉 be an EPDA.

1. M accepts the languages L(M) in its final states:

L(M) = {w | 〈q0, ‡Z0, ε, w〉
∗
� 〈qf , α, w, ε〉 for some qf ∈ QF , α ∈ Υ ∗}.

196 10 Automata

2. M accepts the languages N(M) by empty stack:

N(M) = {w | 〈q0, ‡Z0, ε, w〉
∗
� 〈q, ε, w, ε〉 for some q ∈ Q}.

Now we can specify the automaton for L4 as sketched above. It is given
in Fig. 10.2 and a sample run of this automaton for the input word aabbccdd
is shown in Fig. 10.3. The states q0, . . . , q3 serve to distinguish the a-reading
phase, b-reading phase and so on. Note however that we do not need all of
them; it would be enough to distinguish between a “stack-creating” phase
(during which the as are read) and then a “stack-reducing” phase that col-
lapses states q1, . . . , q3 into a single state.

EPDA M = 〈Q, Σ, Γ, δ, q0, QF , Z0〉 with
Q = {q0, q1, q2, q3}, QF = ∅, Z0 = #, Σ = {a, b, c, d}, Γ = {#, B, C, D}
Transition function δ:
δ(q0, a, #) = {(q0, ‡D, B, ε)} δ(q0, a, B) = {(q0, ‡D, BB, ε)}
δ(q0, b, B) = {(q1, ‡C, ε, ε)} δ(q1, b, B) = {(q1, ‡C, ε, ε)}
δ(q1, c, C) = {(q2, ε, ε, ε)} δ(q2, c, C) = {(q2, ε, ε, ε)}
δ(q2, d, D) = {(q3, ε, ε, ε)} δ(q3, d, D) = {(q3, ε, ε, ε)}

Fig. 10.2. An EPDA M with N(M) = L4 = {anbncndn |n ≥ 0}

Recognition of aabbccdd with M :
(q0, ‡#, ε, aabbccdd)
� (q0, ‡D ‡B, a, abbccdd)
� (q0, ‡D ‡D ‡BB, aa, bbccdd)
� (q1, ‡D ‡D ‡ C ‡B, aab, bccdd)
� (q1, ‡D ‡D ‡ C ‡ C, aabb, ccdd)
� (q2, ‡D ‡D ‡ C, aabbc, cdd)
� (q2, ‡D ‡D, aabbcc, dd)
� (q3, ‡D, aabbccd, d)
� (q3, ε, aabbccdd, ε)

Fig. 10.3. A sample run of the EPDA M from Fig. 10.2

As in the case of PDA, it holds also for EPDA that the set of languages
accepted by EPDA with the empty stack is the same as the set of languages
accepted by EPDA with a final state. This is shown in (Vijay- Shanker, 1987).

Lemma 10.4.

1. For every EPDA M , there is an EPDA M ′ such that L(M) = N(M ′).
2. For every EPDA M , there is an EPDA M ′ such that N(M) = L(M ′).

To show the first part, for a given M , we have to add transitions that move
into a new “stack-emptying” state q′ once we have reached a final state and

10.1 Embedded Push-Down Automata 197

that then empty the stack. For the second part, we add to M a new initial
state and a new initial stack symbol. From these we move to the original
initial symbols, perform the run of the automaton M and, once we reach a
configuration where only our new stack symbol remains on the stack, move
into a new final state. For an example of the latter, see the solution of Problem
10.1.

10.1.2 EPDA and TAG

Vijay- Shanker (1987) shows that EPDA accept exactly the class of all Tree
Adjoining Languages (TALs). Vijay-Shanker’s proof, however, does not give
direct constructions of equivalent TAGs for given EPDA and vice versa. In-
stead, he shows how to construct an equivalent Modified Head Grammar
(MHG) for a given EPDA and vice versa. Since the equivalence between MHG
and TAG has been established earlier, this proves the equivalence between
TAG and EPDA.

Lemma 10.5. For every TAG G there is an EPDA M and vice versa such
that L(G) = L(M) (Vijay- Shanker, 1987).

Let us nevertheless sketch the idea of how to construct an equivalent EPDA
for a given TAG. We let the moves of the EPDA correspond to the expansion
of nodes in a TAG derivation. We assume one stack symbol for each node.
The symbol corresponding to the next node to be expanded is the top-most
stack symbol of the automaton. When we adjoin to a node, we add the root
node symbol of the new auxiliary tree to the current top stack. When moving
down in a tree along the spine of an auxiliary tree, we place new stacks above
and below the current one. These encode the parts to the left and the right of
the spine of the adjoined auxiliary tree. This ensures that when recognizing
adjunction, we recognize the left part of the auxiliary tree, the subtree below
the node where the adjunction took place (i.e., below the foot node) and the
right part of the auxiliary tree. When moving down without being on the
spine of some auxiliary tree, we simply replace the mother node symbol by
the daughters (in reverse order, i.e., the leftmost daughter on top).

An example is given in Fig. 10.4. In order to separate adjunction from
moving to the daughters, we distinguish top and bottom (� and ⊥) node
names on the stack. For a node N , the symbol N� is replaced with N⊥ if
no adjunction is predicted and with the symbols N⊥Rβ if adjunction of β is
predicted and Rβ is the root node of β. A sample run for the input aacbb is
shown in Fig. 10.5.

10.1.3 Bottom-Up Embedded Push-Down Automata

Bottom-up Embedded Push-Down Automata (BEPDA) have been first pro-
posed in (Schabes, 1990; Schabes and Vijay-Shanker, 1990) as the “dual”

198 10 Automata

TAG:

Rα

c

Rβ

a F b
(Rα and Rβ allow for adjunction of β.)

Equivalent EPDA:
M = 〈Q, Σ, Γ, δ, q0, QF , Z0〉 with
Q = {q0, q1, q2, q3}, QF = ∅
Z0 = #, Σ = {a, b, c}, Γ = {#, Rα, Rβ , F, A, B, C}
Transition function δ:

〈q, ε, R�
α , ε〉 ∈ δ(q, ε, #) start initial tree

〈q, ε, R⊥
α , ε〉 ∈ δ(q, ε, R�

α) no adjunction at Rα

〈q, ε, C, ε〉 ∈ δ(q, ε, R⊥
α) move down

〈q, ε, R⊥
α R�

β , ε〉 ∈ δ(q, ε, R�
α) adjunction of β

〈q, ε, R⊥
β R�

β , ε〉 ∈ δ(q, ε, R�
β) adjunction of β

〈q, ε, R⊥
β , ε〉 ∈ δ(q, ε, R�

β) no adjunction at Rβ

〈q, ‡B, F, ‡A〉 ∈ δ(q, ε, R⊥
β) move down

〈q, ε, ε, ε〉 ∈ δ(q, ε, F) no adjunction at F , move back
〈q, ε, ε, ε〉 ∈ δ(q, a, A) match a with input
〈q, ε, ε, ε〉 ∈ δ(q, b, B) match b with input
〈q, ε, ε, ε〉 ∈ δ(q, c, C) match c with input

Acceptance with the empty stack.

Fig. 10.4. TAG and equivalent EPDA

Stacks remaining input

‡# aacbb

‡R�
α aacbb start traversal of α

‡R⊥
α R�

β aacbb predict adjunction of β

‡R⊥
α R⊥

β R�
β aacbb predict adjunction of β

‡R⊥
α R⊥

β R⊥
β aacbb predict no adjunction

‡B ‡R⊥
α R⊥

β F ‡A aacbb move down in β

‡B ‡R⊥
α R⊥

β F acbb scan a

‡B ‡R⊥
α R⊥

β acbb leave β

‡B ‡B ‡R⊥
α F ‡A acbb move down in β

‡B ‡B ‡R⊥
α F cbb scan a

‡B ‡B ‡R⊥
α cbb leave β

‡B ‡B ‡ C cbb move down in α
‡B ‡B bb scan c
‡B b scan b
ε ε scan b

Fig. 10.5. A sample run of the EPDA from Fig. 10.4

10.1 Embedded Push-Down Automata 199

of EPDA while (Rambow, 1994) gives a formal definition of this automaton
model. BEPDA accept all Tree Adjoining Languages. The EPDA we have
seen for TALs simulate TAG derivations in a top-down way, i.e., they perform
a top-down recognition. This is the only way an EPDA can recognize a TAL.1

In contrast to this, BEPDA simulate a bottom-up recognition of a TAL.
The idea of BEPDA is the following: In an EPDA, we have two types of

moves. The first type consists of manipulating the top-most stack and wrap-
ping new stacks around it. The second (see case b) in the transition defini-
tion) applies only when the top-most stack is empty and it consists of deleting
(popping) this stack. In a BEPDA, we reverse the two moves, i.e., we have
the following two moves: The first one is an operation of unwrapping where
sequences of stacks are removed around a designated stack which becomes the
new top stack and, furthermore, a sequence of symbols is popped from the
new top stack and replaced with a single stack symbol. The second possible
move consists of pushing a new empty stack onto the stack of stacks.

The BEPDA for a given TAG first shifts all terminals onto the stack of
stacks, each stored in a separate stack. Then it performs bottom-up reductions
where, when moving up along the spine of an auxiliary tree, the parts to the
left and to the right are stack sequences around the current stack that are
unwrapped.

For more details and a formal definition of BEPDA, see (Rambow, 1994).

10.1.4 k-Order EPDA

The concept of EPDA was extended in (Weir, 1988; Weir, 1992) to k-order
EPDA. In the first version, (1988), Weir called this automaton model Nested
Push-Down Automata (NPDA).

The generalization is as follows: For a given stack symbol alphabet Γ , a
simple stack γ ∈ Γ ∗ is called a first-order stack while a stack of first-order
stacks is called a second-order stack and so on. In general, a stack of (k − 1)-
order stacks is a k-order stack. Each move in a simple EPDA takes the top-
most first-order stack, manipulates it the way it is possible within a PDA and
then, on the second-order stack, wraps other first-order stacks around it. This
can be extended by defining that a move in a k-order EPDA manipulates a
k-order stack by taking its top-most (k − 1)-order stack, manipulating it the
way it is possible in a (k − 1)-order EPDA and then wrapping other k-order
stacks around it.

This definition leads to a hierarchy of automata, the so-called Weir Hier-
archy. The first class of this hierarchy, 1-order EPDA, are PDA, i.e., generate
exactly the context-free languages. The second class, 2-order EPDA, are the
EPDA from (Vijay- Shanker, 1987) that generate exactly the Tree Adjoining
Languages.
1 This differs from PDA and CFG where, for a given CFG, one can construct a

PDA that performs a top-down recognition or a PDA that performs a bottom-up
recognition.

200 10 Automata

10.2 Two-Stack Automata

Two-Stack Automata (2-SA) have been introduced by Becker (1994). They
constitute an alternative automaton model for TAG.

10.2.1 General Definition

input tape

. . . a . . .

��
 !
q

.

2-SA

Fig. 10.6. 2-SA

Compared to EPDA, 2-SA have not one but two stacks, both being stacks
of stacks (see Fig. 10.6). However, it is not possible to perform nested opera-
tions on these stacks as in EPDA where a set of new stacks can be wrapped
around the current top-most stack. In a 2-SA, both stacks are accessible and
one can freely push symbols onto the top-most stacks. Furthermore, one can
pop symbols from the top of stack 1 and, if stack 1 is empty, also pop sym-
bols from the top of stack 2. The restriction that for popping something from
stack 2, stack 1 must be empty is crucial for the limited generative capacity of
the automata. If we drop this restriction, 2-SA are much more powerful than
needed, more precisely, they are Turing complete. This is the case because we
can use the two stacks to simulate the moves of a Turing Machine.

In the following, we use again a special symbol that is not in the stack
alphabet Γ for the bottom of a stack. In 2-SA, this symbol is explicitly given
within the specification of the automaton. As in the EPDA case, if the top
stack of a stack is emptied, its bottom symbol gets deleted as well, except if
there is no other remaining stack. Then the bottom symbol remains and serves
to mark the empty stack. Consequently, we never have the bottom symbol as
the current stack symbol except when the entire stack is empty.

Definition 10.6 (Two-Stack Automaton).
A Two-Stack Automaton (2-SA) M is a 7-tuple 〈Q, q0, Σ, Γ, ‡, Z0, δ〉,

where

10.2 Two-Stack Automata 201

• Q is a finite set of states; q0 ∈ Q is the start state.
• Σ is the finite set of input symbols.
• Γ is the finite set of stack symbols, ‡ /∈ Γ is the bottom stack symbol and

Z0 ∈ Γ is the initial stack symbol.
• δ is the transition function, δ : Q× (Σ ∪ {ε}) × (Γ ∪ {‡}) × (Γ ∪ {‡}) →

Pfin(Q×Ξ ×Ξ) where Ξ = {‡} ∪ Γ ∗ ∪ {γ1 ‡ γ2 | γ1, γ2 ∈ Γ ∗}.
δ satisfies the following restrictions:
1. For all q ∈ Q, a ∈ Σ ∪ {ε}, s1 ∈ Γ and s2 ∈ Γ ∪ {‡}, all elements

in δ(q, a, s1, s2) are of the form 〈q′, ξ1, ξ2〉 with ξ1, ξ2 ∈ Γ ∗ ∪ {γ1 ‡
γ2 | γ1, γ2 ∈ Γ ∗} (we cannot pop from stack 2).

2. For all q ∈ Q, a ∈ Σ ∪ {ε}, s2 ∈ Γ , all elements in δ(q, a, ‡, s2) are of
the form 〈q′, ‡, γ〉 with γ ∈ Γ ∗ (if stack 1 is empty, we can pop from
stack 2).

An instantaneous description of a 2-SA is given by a tuple 〈y, s1, s2, w1, w2〉
where q ∈ Q is the current state, si ∈ {‡γ | γ ∈ Γ ∗}∗ is the ith stack (1 ≤ i ≤
2), w1 ∈ T ∗ is the already consumed input and w2 ∈ T ∗ is the remaining part
of the input.

Transitions are defined in the same way as for PDA, except that two stacks
are manipulated: 〈q′, ξ1, ξ2〉 ∈ δ(q, a, s1, s2) tells us that, if the automaton is
in state q, the next input symbol is a and the top-most stack symbols are s1
and s2 respectively, then, while reading input symbol a, we can change to q′

and replace s1 with ξ1 and s2 with ξ2. In addition, top-most symbols ‡ are
ignored, i.e., get deleted.

The language N(M) is defined as the set of words that the automaton
accepts with both stacks being empty.

(Becker, 1994) shows that 2-SA accept the same class of languages as
EPDA, namely the class of Tree Adjoining Languages.

Let us briefly sketch how to construct an equivalent 2-SA for a given TAG.
We simulate a top-down left-to-right traversal of the derivation tree, similarly
to what we have done with an EPDA. The top of stack 1 is the next node
to be expanded. It is replaced with its daughters if it is not on a spine. If it
is on a spine, it is replaced with the left part of its daughters and the next
node on the spine while the right part is stored on stack 2 for later processing.
Whenever stack 1 is empty, we have reached a point in our traversal where
we are to the right of a foot node, i.e., the left part of the auxiliary tree and
the part below have been processed. As an example, Fig. 10.7 shows the 2-SA
that accepts the language generated by the TAG from Fig. 10.4 and Fig. 10.8
shows a sample run of this automaton.

2-SA can be generalized to n-Stack Automata (n-SA). Depending on how
the accessibility of the n stacks is restricted, different types of hierarchies can
be obtained.

202 10 Automata

M = 〈{q}, {a, b, c}, Γ, δ, q, ∅, #〉 with Γ = {#, Rα, Rβ , F, A, B, C}
Transition function δ:

〈q, R�
α , ε〉 ∈ δ(q, ε, #, #) start initial tree

〈q, R⊥
α , X〉 ∈ δ(q, ε, R�

α , X) no adjunction at Rα

〈q, C, X〉 ∈ δ(q, ε, R⊥
α , X) move down

〈q, R⊥
α R�

β , X〉 ∈ δ(q, ε, R�
α , X) adj. of β at Rα

〈q, R⊥
β R�

β , X〉 ∈ δ(q, ε, R�
β , X) adj. of β at Rβ

〈q, R⊥
β , X〉 ∈ δ(q, ε, R�

β , X) no adjunction at Rβ

〈q, FA, XB〉 ∈ δ(q, ε, R⊥
β , X) move down

〈q, ε, X〉 ∈ δ(q, ε, F, X) no adj. at F , move back
〈q, ε, X〉 ∈ δ(q, a, A, X) match a with input
〈q, ‡, ε〉 ∈ δ(q, b, ‡, B) match b with input
〈q, ε, X〉 ∈ δ(q, c, C, X) match c with input

where X ∈ Γ ∪ {‡}
Acceptance with empty stacks.

Fig. 10.7. 2-SA for the TAG from Fig. 10.4

Stack 1 Stack 2 remaining input

‡# ‡# aacbb

‡R�
α ‡ aacbb start traversal of α

‡R⊥
α R�

β ‡ aacbb predict adjunction of β

‡R⊥
α R⊥

β R�
β ‡ aacbb predict adjunction of β

‡R⊥
α R⊥

β R⊥
β ‡ aacbb predict no adjunction

‡R⊥
α R⊥

β FA ‡B aacbb move down in β

‡R⊥
α R⊥

β F ‡B acbb scan a

‡R⊥
α R⊥

β ‡B acbb leave β

‡R⊥
α FA ‡BB acbb move down in β

‡R⊥
α F ‡BB cbb scan a

‡R⊥
α ‡BB cbb leave β

‡C ‡BB cbb move down in α
‡ ‡BB bb scan c
‡ ‡B b scan b
‡ ‡ ε scan b

Fig. 10.8. A sample run of the 2-SA from Fig. 10.7

10.2.2 Strongly-Driven Two-Stack Automata

Strongly-driven Two-Stack Automata (SD-2SA) are a variant of 2-SA intro-
duced in (Villemonte de la Clergerie and Pardo, 1998; Alonso Pardo, Nederhof,
and Villemonte de la Clergerie, 2000) explicitly aiming at an elegant repre-
sentation of different parsing strategies (top-down and bottom-up) for TAGs
and LIGs.

Let us first take an intuitive look at the working principle of SD-2SA. The
central idea is to assign different roles to the two stacks. An SD-2SA uses
a master stack (MS) for most of its operations and a auxiliary stack (AS)

10.2 Two-Stack Automata 203

for “bookkeeping”. Concretely, the AS is a stack of so-called session stacks.
At every moment, only the top-most stack can be accessed. This behavior is
similar to the behavior of EPDA, where at every moment, we can only access
the top-most stack in our push-down store of stacks. Furthermore, SD-2SA
show a linear behavior, since in every session, we are first in mode “write”
where we push elements on the master stack MS. At some point, we switch to
mode “erase” and then we start to pop elements form the MS. Once we have
done so, in the same session, we cannot go back to mode “write” and restart
pushing elements onto the MS. The only way to exit a session is to reach a
configuration with mode erase, an empty session stack (on top of the AS) and
the MS element that initiated the session. During a session, action marks are
pushed onto the MS. These ensure that the erase operations on the session
mirror exactly the previously executed writing actions.

An SD-2SA distinguishes the two alphabets for the two stacks and provides
an initial and a final stack symbol for the MS.

Definition 10.7 (Strongly-Driven Two-Stack Automata). A strongly-
driven Two-Stack Automaton (SD-2SA) M is a tuple 〈Σ,M,X , $0, $f , Θ〉
where

• Σ denotes a finite set of terminals,
• M denotes the finite set of master stack elements,
• X denotes the finite set of auxiliary stack elements,
• $0, $f ∈ M are two distinguished master stack elements, the initial and

the final symbol, and
• Θ is a finite set of transitions.

The master stack consists of elements from M where each of them is
preceded by an action mark. The action marks are D = {↗,↘,→, |=} where
they have the following meaning: ↗ indicates that an element has been pushed
onto the AS, ↘ indicates that an element has been popped from the AS, →
indicates that no action has been performed on the AS and |= indicates that
a new session has been started with a new empty session stack pushed onto
the AS. On the AS, new session starts are marked with |=w or |=e depending
on whether the corresponding session has been started in write or erase mode.
In other words, the master stack MS is a word of (DM)∗ and the auxiliary
stack AS is a word of ({|=w, |=e}X ∗)∗.

A configuration in an SD-2SA is a tuple (m, i,M,A) where m ∈ {w, e}
is the current mode, i the current input position, and M and A are the MS
and AS respectively. The initial configuration is (w, 0, |= $0, |=w) and the final
configuration is (e, n, |= $f , |=w) where n is the length of the input.

The transitions allow us to manipulate the two stacks, respecting the
above-mentioned restrictions. For more details see (Villemonte de la Clerg-
erie and Pardo, 1998).

Villemonte de la Clergerie and Pardo (1998) propose a compact represen-
tation of sub-derivations using so-called escaped context-free derivations. This

204 10 Automata

allows for a tabular implementation of SD-2SA and thereby, they achieve a
time complexity of O(n6) and a space complexity of O(n5).

10.3 Thread Automata

Thread Automata (TA) have been proposed by Villemonte de la Clergerie
(2002). They are the most powerful automaton model that we treat in this
book. TA accept the class of all LCFRLs. In the following, we will first sketch
the idea of TA by explaining how a TA can simulate a top-down recognition
of a TAL. Then we give the general definition and, finally, we show how to
obtain an equivalent TA for a given TAG and a given ordered simple RCG. The
latter amounts roughly to the incremental Earley parsing that we have seen
in Section 7.3. TA are non-deterministic and, if all possibilities are pursued
independently from each other, they are of exponential complexity. However,
in combination with a compact representation of sub-derivations as items and
with tabulation techniques, they become polynomial.

10.3.1 Idea

TA were developed in order to specify an automaton model for mildly context-
sensitive languages. In fact, they accept all LCFRLs, the largest mildly
context-sensitive class of languages we know of. However, as mentioned ear-
lier, there are probably other grammar formalisms that generate also only
mildly context-sensitive languages and that generate languages that are out-
side LCFRL.

The overall idea of TA is as follows: We have a set of threads, one of which
is the active thread. Each thread has a unique path that situates it within the
tree-shaped thread structure. Whenever a new thread is started, its path is a
concatenation of the parent thread path and a new symbol. This way, from a
given active thread, we can always find its parent thread (the one that started
it) and its daughter threads. The moves of the automaton are the following:
We can change the content of the active thread, start a new daughter thread
or move into an existing daughter thread, or move into the parent thread
while, eventually, terminating the active thread.

Take for instance a TAG. In the corresponding TA, we have a thread for
each elementary tree of a derivation. The content of this thread is a single
dotted node in this elementary tree. When predicting an adjunction, we start
a daughter thread; when reaching the left of the foot node, we suspend the
daughter thread and go back to the parent thread. When reaching the right
of the part below the adjunction site in the parent thread, we continue the
daughter thread of the adjoined tree, which gets terminated once the auxiliary
tree is completely traversed. We then go back to the parent thread.

The operations provided in a TA are SWAP (changes the content of the
active thread while possibly scanning a terminal), PUSH (creates a new sub-
thread while suspending its parent), POP (ends the active thread, returning

10.3 Thread Automata 205

control to its parent), SPUSH (resumes a suspended sub-thread), and SPOP
(resumes the parent of the active thread while changing its content). We write
a thread as p : A where p is its thread path (i.e., its address) and A its content.

Figure 10.9 shows the evolution of the thread set when running a TA
for the TAG from Fig. 10.4 with the input aacbb. The bold thread is always
the active one. The final configuration is defined as requiring to contain the
thread 1 : ret, i.e., if the automaton ends up in this configuration after having
consumed the entire input, the word is in the language. ret is a special symbol
that indicates that the elementary tree has been completely processed.

Elementary trees:
Rα

c

Rβ

a F b
(Rα and Rβ allow for adjunction of β.)

Sample thread set of corresponding TA:
thread set operation

[1 : •Rα]
[1 : •Rα], [11 : •Rβ] PUSH
[1 : •Rα], [11 : •Rβ], [111 : •Rβ] PUSH
[1 : •Rα], [11 : •Rβ], [111 : •Rβ] SWAP
[1 : •Rα], [11 : •Rβ], [111 : •a] SWAP
[1 : •Rα], [11 : •Rβ], [111 : a•] SWAP (scan a)
[1 : •Rα], [11 : •Rβ], [111 : •F] SWAP
[1 : •Rα], [11 : •Rβ], [111 : •F] SPOP
[1 : •Rα], [11 : •a], [111 : •F] SWAP
[1 : •Rα], [11 : a•], [111 : •F] SWAP (scan a)
[1 : •Rα], [11 : •F], [111 : •F] SWAP
[1 : •Rα], [11 : •F], [111 : •F] SPOP
[1 : •c], [11 : •F], [111 : •F] SWAP
[1 : c•], [11 : •F], [111 : •F] SWAP (scan c)
[1 : Rα•], [11 : •F], [111 : •F] SWAP
[1 : Rα•], [11 : F •], [111 : •F] SPUSH
[1 : Rα•], [11 : •b], [111 : •F] SWAP
[1 : Rα•], [11 : b•], [111 : •F] SWAP (scan b)
[1 : Rα•], [11 : Rβ•], [111 : •F] SWAP
[1 : Rα•], [11 : Rβ•], [111 : F •] SPUSH
[1 : Rα•], [11 : Rβ•], [111 : •b] SWAP
[1 : Rα•], [11 : Rβ•], [111 : b•] SWAP (scan b)
[1 : Rα•], [11 : Rβ•], [111 : Rβ•] SWAP
[1 : Rα•], [11 : Rβ•], [111 : Rβ

•] SWAP
[1 : Rα•], [11 : Rβ•], [111 : ret] SWAP
[1 : Rα•], [11 : Rβ

•] POP
[1 : Rα•], [11 : ret] SWAP
[1 : Rα

•] POP
[1 : ret] SWAP

Fig. 10.9. A sample run with a TA for the TAG from Fig. 10.4

206 10 Automata

Let us briefly explain the thread sets in Fig. 10.9. We use the position
left/right above/below (depicted with a dot) that we know from the TAG
Earley parsing. Whenever, in the active thread, we are left above a possible
adjunction site, we can predict an adjunction by starting a sub-thread. This
happens in the first two steps, the PUSH operations. When reaching the
position left above a foot node, we can suspend the thread and resume the
parent. This is the case in the SPOP steps. Whenever we arrive right below an
adjunction site, we can resume the daughter of the adjoined tree whose content
is the foot node (see the SPUSH steps in the example). Whenever we arrive
right above the root of an auxiliary tree, we do a POP, i.e., finish this thread
and resume the parent. We use a special symbol ret to mark the fact that
we have completely traversed the elementary tree and we can therefore finish
this thread. Besides moving this way from one elementary tree to another, we
can move down, move left and move up inside a single elementary tree (while
eventually scanning a terminal) using the SWAP operation.

This Thread Automaton simulates a top-down recognition since it per-
forms a top-down left-to-right traversal of the derived tree.

10.3.2 General Definition of TA

We will now give the formal definition of TA.

Definition 10.8 (Thread Automaton).
A Thread Automaton is a tuple 〈N,T, S, F, κ,K, δ,U , Θ〉 where

• N and T are non-terminal and terminal alphabets with S, F ∈ N the start
and end symbols;

• κ, the triggering function, is a partial function from N to some finite set
K

• U is a finite set of labels used to identify threads.
• δ is a partial function from N to U ∪ {⊥} used to specify threads that can

be created or resumed at some point.
• Θ is a finite set of transitions.

Every thread has a thread path p ∈ U and its content is a non-terminal
symbol.

Definition 10.9 (Thread, Configuration).
Let M = 〈N,T, S, F, κ,K, δ,U , Θ〉 be a TA.

• A thread is a pair p : A with p ∈ U∗, A ∈ N . p is the thread path, and A
is the content of the thread.

• A thread store is a set of threads whose addresses are closed by prefix.
• A configuration of M is a tuple 〈i, p,S〉 where i is an input position, S is

a thread set and p is a thread path in S.

10.3 Thread Automata 207

Note that a thread contains only a single non-terminal, not (like a stack
in a 2-SA) a sequence of symbols.

The transitions defined within Θ allow us to move from one configuration
to another. They implement the operations explained above.

Definition 10.10 (TA Transitions).
Let M = 〈N,T, S, F, κ,K, δ,U , Θ〉 be a TA. All transitions in Θ have one

of the following forms:

• B
α→ C with B,C ∈ N,α ∈ T ∗ (SWAP operation)

• b→ [b]C with b ∈ K, C ∈ N (PUSH operation)
• [B]C → D with B,C,D ∈ N (POP operation)
• b[C] → [b]D with b ∈ K, C,D ∈ N (SPUSH operation)
• [B]c→ D[c] with c ∈ K, B,D ∈ N (SPOP operation)

These operations allow the following moves: SWAP changes the content of
active thread from B to C while scanning α and augmenting input position
with |α|. PUSH, for an active thread p : B, creates a new sub-thread pu : C
and suspends the current one. pu has not been used yet and κ(B) = b, δ(B) =
u. POP ends the active thread pu : C and resumes the parent while replacing
B with D in the parent thread. It requires δ(c) to be ⊥. SPUSH resumes a
suspended sub-thread pu : C of the active thread p : B while replacing C with
D. As a condition, it requires that κ(B) = b, δ(B) = u. SPOP resumes the
parent thread p : B of the active thread pu : C while replacing B with D,
under the condition that κ(C) = c, δ(C) = ⊥.

We can define the set of possible configurations, based on these operations.
For this, we use deduction rules. The initial configuration is the active thread
ε : S with input position 0. The final configuration (i.e., the goal item) has
input position |w| = n and contains the thread u : F where u = δ(S) as active
thread and the still present initial thread ε : S.

Definition 10.11. Let M = 〈N,T, S, F, κ,K, δ,U , Θ〉 be a TA, and w ∈ T ∗

be an input word.
The set of configurations for w, C(M,w), is then defined by the following

deduction rules:

• Initial configuration: 〈0, ε, {ε : S}〉

• Swap:
〈i, p,S ∪ p : B〉

〈i+ |α|, p,S ∪ p : C〉 B
α→ C, wi+1 . . . wi+|α| = α

• Push:
〈i, p,S ∪ p : B〉

〈i, pu,S ∪ p : B ∪ pu : C〉
b→ [b]C, κ(B) = b, δ(B) = u,
pu /∈ dom(S)

208 10 Automata

• Pop:
〈i, pu,S ∪ p : B ∪ pu : C〉

〈i, p,S ∪ p : D〉 [B]C → D, δ(C) = ⊥, pu /∈ dom(S)

• Spush:
〈i, p,S ∪ p : B ∪ pu : C〉
〈i, pu,S ∪ p : B ∪ pu : D〉 b[C] → [b]D, κ(B) = b, δ(B) = u

• Spop:
〈i, pu,S ∪ p : B ∪ pu : C〉
〈i, p,S ∪ p : D ∪ pu : C〉 [B]c → D[c], κ(C) = c, δ(C) = ⊥

The language of a TA is the set of words that allow us, starting from
the initial thread set {ε : S}, to reach the set {ε : S, δ(S) : F} after having
scanned the entire input.

Definition 10.12 (Language).
Let M = 〈N,T, S, F, κ,K, δ,U , Θ〉 be a TA,
The language of M is defined as follows:

L(M) = {w | 〈n, δ(S), {ε : S, δ(S) : F}〉 ∈ C(M,w)}.

The intuition behind this definition is that, from the initial thread ε : S, we
can non-deterministically choose a sub-thread δ(S) : A to start our recogni-
tion. The recognition is successful if we manage to reach the final thread sym-
bol on this start sub-thread after having terminated all further sub-threads.
The only threads remaining in our thread set are then ε : S and δ(S) : F . In
the case of TAG, starting from ε : S, we can choose any initial tree and move
into a corresponding thread. Once the traversal of this tree is finished, we are
done. The thread set is then {ε : S, δ(S) : ret}.

Obviously, a direct application of transitions to configurations would lead
to an exponential time complexity and even looping in many cases. In order to
obtain an efficient implementation of TA, one has to find some way to tabulate
and share computations. For this purpose, Villemonte de la Clergerie (2002)
uses a compact representation of certain sub-derivations that can be stored
and retrieved for later reuse. This idea goes back to (Villemonte de la Clergerie
and Pardo, 1998). For more details, see (Villemonte de la Clergerie, 2002).

10.3.3 Constructing a TA for a TAG

We can now give the TA for the TAG from Fig. 10.4 for which we have already
seen a sample run in Fig. 10.9. The TA is shown in Fig. 10.10. There is only
one detail that actually differs from the thread sets given in Fig. 10.9: we add
an additional symbol S, the start thread is ε : S and this thread starts a sub-
thread 1 : •Rα. In the final configuration, we then obtain threads ε : S, 1 : ret
as required by the definition of the language of a TA. In other words, to obtain
thread sets that correspond to the TA given in Fig. 10.10, one has to add the
thread ε : S to all the thread sets in Fig. 10.9.

10.3 Thread Automata 209

The TA M = 〈N, T, S, ret, κ,K, δ,U , Θ〉 is as follows:

• N contains all symbols •X, •X, X•, X• where X is a node in one of the ele-
mentary trees, i.e., X ∈ {Rα, c, Rβ , a, F, b}. Furthermore, N contains a special
symbol ret and a special symbol S.

• T = {a, b, c}.
• S is the initial thread symbol and ret is the final thread symbol.
• K = N, κ(A) = A for all A ∈ N .
• U = {1}, δ(X) = 1 for all A ∈ N \ {•F , ret}, δ(ret) = ⊥, δ(•F) = ⊥.
• Transitions Θ:

S → [S]•Rα start initial tree
•Rα → •Rα, •Rβ → •Rβ predict no adjunction

•Rα → •c, •Rβ → •a move down
•c

c→ c•, •a
a→ a•, •b

b→ b• scan
a• → •F , F • → •b move right
c• → Rα•, b• → Rβ• move up
Rα• → Rα

•, Rβ• → Rβ
• move up if no adjunction

•Rα → [•Rα]•Rβ , •Rβ → [•Rβ]•Rβ predict adjoined tree
[•Rα]•F → •Rα[•F], [•Rβ]•F → •Rβ [•F] back to adjunction site
Rα•[

•F]→ [Rα•]F
•, Rβ•[

•F]→ [Rβ•]F
• resume adjoined tree

Rα
• → ret, Rβ

• → ret complete elementary tree
[Rα•]ret→ Rα

•, [Rβ•]ret→ Rβ
• terminate adjunction, go back

Fig. 10.10. A TA for the TAG from Fig. 10.4

Note that the parent thread is always uniquely determined and after hav-
ing finished the part below a foot node, the thread of the adjoined tree is
determined by the δ-value of the adjunction site. Each adjunction site in a
tree has to have a unique δ-value. In our case, we have only one adjunction site
per tree; therefore we chose 1 as the value. A second adjunction site could have
value 2, and so on. Furthermore, every sub-thread started for some adjunction
has to be terminated in order to finish with a thread set containing only a
single thread. Therefore, this TA traverses only valid derived trees of the tree
language of the original TAG and performs a prefix valid Earley recognition.

From this example, the general construction can be inferred. See (Villemonte
de la Clergerie, 2002) for more details. We obtain the following theorem for
the class of languages recognized by TA:

Lemma 10.13. For every TAG G, there is a TA M such that L(G) = L(M).

10.3.4 Constructing a TA for an Ordered SRCG

In this section, we will see how to construct a TA for a given ordered simple
RCG. Recall that SRCGs are equivalent to MCFGs and LCFRSs.

The overall idea of the construction is as follows. The TA simulates a top-
down left-to-right prefix valid recognition. (It can be seen as some kind of

210 10 Automata

incremental CYK recognizer with top-down prediction.) We have one thread
for each clause we process. We start with one of the S-clauses where S is
the start predicate of the SRCG. For each newly predicted clause, a thread
is started that will eventually traverse the entire left-hand side of the clause.
The automaton moves through the left-hand side arguments of the clauses.
Whenever it reaches a variable that is the first argument of some right-hand
side predicate, it predicts a clause for this predicate, which means that it
starts a corresponding new child thread. Whenever an argument has been
entirely recognized, the thread can be suspended and its parent thread can be
resumed. Whenever the automaton reaches a variable that is the kth argument
of some right-hand side predicate with k ≥ 1, we resume the child thread
corresponding to this predicate.

In order to keep track of our position within the left-hand side arguments
of some clause c, we introduce new symbols ck,i indicating that we are going
to process the (i+ 1)th element of the kth argument in the left-hand side of
c. In other words, we have processed everything up to the ith element of the
kth left-hand side argument. The non-terminal symbols N of the automaton
contain then all the predicate names, a special symbol ret and all the new
symbols ck,i.

U = {1, . . . ,m} where m is the maximal number of right-hand side predi-
cates in the clauses of the RCG. In other words, the daughter address indicates
the right-hand side element corresponding to this daughter thread.

K and the functions κ and δ are used to indicate, for a given variable in
the left-hand side (indicated by its position symbol ck,i), which of the right-
hand side elements contains this variable as an argument. This determines
the daughter thread that processes this variable. Furthermore, when starting
a daughter thread for the first time, the function κ indicates the corresponding
predicate. Therefore, K = N ∪ {void} and

• κ(ck,i) = A and δ(ck,i) = j if A is the jth predicate in the right-hand side
of c and c(k, i+ 1) is its first argument,

• κ(ck,i) = void and δ(ck,i) = j if c(k, i + 1) is an argument of the jth
predicate in the right-hand side of c but not its first argument,

• κ(ck,i) = void and δ(ck,i) = ⊥ if c(k, i + 1) does not exist, i.e., we have
reached the end of the kth argument and, instead of moving into a daughter
thread, we have to suspend this thread and resume the parent.

The final thread symbol is again ret with δ(ret) = ⊥; the start symbol is
a new symbol S′ with δ(S′) = 1 and therefore the final configuration has to
contain the thread set {ε : S′, 1 : ret}.

Before we explain how to define the transitions Θ of the TA in general,
let us have a look at an example. Figure 10.11 shows a small SRCG, the
corresponding TA and a sample run of this TA with only the successful con-
figurations listed. Let us go through the TA transitions in this example. From
the initial configuration, we predict the start predicate using the first transi-
tion. Whenever the dot precedes the variable X in one of the two first clauses,

10.3 Thread Automata 211

Clauses of the SRCG:
α : S(XY Z)→ A(X, Y, Z)
β : A(aX, aY, aZ)→ A(X, Y, Z)
γ : A(b, b, b)→ ε

Transitions of the corresponding TA (start symbol S′):
Call: S′ → [S′]S α1,0 → [α1,0]A β1,1 → [β1,1]A
Predict: S → α1,0 A→ β1,0 A→ γ1,0

Scan: β1,0
a→ β1,1 β2,0

a→ β2,1 β3,0
a→ β3,1

γ1,0
b→ γ1,1 γ2,0

b→ γ2,1 γ3,0
b→ γ3,1

Suspend: [α1,0]β1,2 → α1,1[β1,2] [α1,1]β2,2 → α1,2[β2,2] [α1,2]ret → α1,3

[α1,0]γ1,1 → α1,1[γ1,1] [α1,1]γ2,1 → α1,2[γ2,1]
[β1,1]β1,2 → β1,2[β1,2] [β2,1]β2,2 → β2,2[β2,2] [β3,1]ret → β3,2

[β1,1]γ1,1 → β1,2[γ1,1] [β2,1]γ2,1 → β2,2[γ2,1]
Resume α1,1[β1,2]→ [α1,1]β2,0 β2,1[β1,2]→ [β2,1]β2,0

α1,1[γ1,0]→ [α1,1]γ2,0 β2,1[γ1,0]→ [β2,1]γ2,0

α1,2[β2,2]→ [α1,2]β3,0 β2,1[β2,2]→ [β2,1]β3,0

α1,2[γ2,0]→ [α1,2]γ3,0 β3,1[γ2,0]→ [β3,1]γ3,0

Publish: α1,3 → ret β3,2 → ret γ3,1 → ret

Configurations for w = ababab:
thread set rem.

input

ε : S′ ababab
ε : S′, 1 : S ababab initialize
ε : S′, 1 : α1,0 ababab predict
ε : S′, 1 : α1,0, 11 : A ababab call
ε : S′, 1 : α1,0, 11 : β1,0 ababab predict
ε : S′, 1 : α1,0, 11 : β1,1 babab scan
ε : S′, 1 : α1,0, 11 : β1,1, 111 : A babab call
ε : S′, 1 : α1,0, 11 : β1,1, 111 : γ1,0 babab predict e
ε : S′, 1 : α1,0, 11 : β1,1, 111 : γ1,1 abab scan
ε : S′, 1 : α1,0, 11 : β1,2, 111 : γ1,1 abab suspend
ε : S′, 1 : α1,1, 11 : β1,2, 111 : γ1,1 abab suspend
ε : S′, 1 : α1,1, 11 : β2,0, 111 : γ1,1 abab resume
ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ1,1 bab scan
ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ2,0 bab resume
ε : S′, 1 : α1,1, 11 : β2,1, 111 : γ2,1 ab scan
ε : S′, 1 : α1,1, 11 : β2,2, 111 : γ2,1 ab suspend
ε : S′, 1 : α1,2, 11 : β2,2, 111 : γ2,1 ab suspend
ε : S′, 1 : α1,2, 11 : β3,0, 111 : γ2,1 ab resume
ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ2,1 b scan
ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ3,0 b resume
ε : S′, 1 : α1,2, 11 : β3,1, 111 : γ3,1 ε scan
ε : S′, 1 : α1,2, 11 : β3,1, 111 : ret ε publish
ε : S′, 1 : α1,2, 11 : β3,2 ε suspend
ε : S′, 1 : α1,2, 11 : ret ε publish
ε : S′, 1 : α1,3 ε suspend
ε : S′, 1 : ret ε publish

Fig. 10.11. A TA for a sample ordered simple RCG

212 10 Automata

we predict an A (second and third call transition). The predict transitions
predict, based on a given predicate, a clause for this predicate and the traver-
sal of this clause starts at the beginning of the first left-hand side argument.
Scan applies whenever the dot precedes a terminal. The dot is then moved
over this terminal while matching it with the next input symbol. Suspend is
applied when reaching the end of an argument, for instance after having pro-
cessed the first two elements of the first left-hand side argument in β (thread
content β1,2). In this case, we return to the parent thread where we can move
the dot over a variable. A special case is suspend operations where we have
finished the clause of a daughter thread (thread content ret). Whenever the
dot precedes a variable that is not a first argument in the right-hand side (for
instance α1,1, which indicates that the dot precedes Y in the first clause),
we can resume the corresponding daughter thread. Finally, publish applies
whenever the automaton reaches the end of a left-hand side (for instance β3,2,
which indicates that the dot follows the second element of the first argument
in the left-hand side of β). We then change the thread content to ret , which
indicates that this thread is ready to be terminated.

In general, in a TA for an ordered simple RCG, we have the following
transitions:

• Call starts a new thread, either for the start predicate or for a daughter
predicate:
S′ → [S′]S (initial call), γk,i → [γk,i]A if κ(γk,i) = A.

• Predict predicts a new clause for a predicted predicate:
A→ γ1,0 for all A-clauses γ.

• Scan moves the dot over a terminal in the left-hand side while scanning
the next input symbol:

γk,i
γ(k,i+1)→ γk,i+1 if γ(k, i+ 1) is a terminal.

• Publish marks the end of a predicate:
γk,j

ε→ ret where the arity of the left-hand side predicate in γ is k and the
kth argument in the left-hand side has length j.

• Suspend suspends a daughter thread and resumes the parent:
[γk,i]ret → γk,i+1 if γ(k, i+ 1) is a variable that is the last argument of a
right-hand side predicate in γ, and
[γk,i]βl,j → γk,i+1[βl,j] if γ(k, i + 1) is a variable X, β is a B-clause and
X is the lth argument of B in the right-hand side of γ but not its last
argument, and the lth argument of the left-hand side in β has length j.

• Resume resumes an already present daughter thread:
γk,i[βl,j] → βl+1,0 if γ(k, i+1) is a variable X, β is a B-clause and X is the
(l+ 1)th argument of B in the right-hand side of γ, and the lth argument
of the left-hand side in β has length j.

This is not exactly the TA proposed in (Villemonte de la Clergerie, 2002)
for SRCGs although the overall idea is the same. Our construction corresponds

10.4 Summary 213

more closely to the incremental Earley parser for ordered simple RCG from
Section 7.3.

With this construction, we obtain the following result:

Lemma 10.14. For every simple RCG G, there is a TA M such that L(G) =
L(M).

Whether there are languages that cannot be generated by simple RCG but
that can be recognized by a TA is an open question.

10.4 Summary

In this chapter, we have seen a variety of different automata that have been
proposed as extensions of PDA. The first group are automata that assume,
compared to PDA, either more than one stack or a stack with a richer struc-
ture, namely a stack of stacks. The more restricted versions of these automata
such as Embedded Push-Down Automata (EPDA) and 2-Stack Automata (2-
SA) are devices that accept exactly the class of Tree Adjoining Languages.

In the last section, Thread Automata (TA) have been presented. TA are
able to recognize all Linear Context-Free Rewriting Languages (LCFRLs), i.e.,
all languages generated by LCFRS or the equivalent simple RCG and MCFG.
We have seen how to construct equivalent TA for given TAGs or simple RCGs.
In both cases, the automaton simulates a top-down left-to-right traversal of
the derived trees, which amounts to an Earley-style recognition. Villemonte
de la Clergerie (2002) has presented a polynomial implementation of TA.

Problems

10.1. Consider the EPDAM from Fig. 10.2 withN(M) = {anbncndn |n ≥ 0}.
Give an EPDA M ′ such that N(M) = L(M ′).

10.2. Give an EPDA M that accepts the copy language {ww |w ∈ {a, b}∗}
with an empty stack, i.e., as N(M).

10.3. Consider the following TA: M = 〈N,T, S, ret , κ,K, δ,U , Θ〉 with N =
{S, S′, SA, SB , A,B, ret}, T = {a, b}, K = N and κ the identity, δ(S) =
δ(A) = δ(SA) = δ(B) = δ(SB) = 1, δ(ret) = ⊥ and the following transitions:

S → [S]S′,
S′ a→ A2, S′ a→ SA, SA → [SA]S′,
S′ b→ B2, S′ b→ SB , SB → [SB]S′,
A2

a→ ret , [SA]ret → A2,
B2

b→ ret , [SB]ret → B2

214 10 Automata

1. What is the string language accepted by this TA?
2. Choose a word of length 4 in this language and give the thread sets (only

successful items) that are generated for this word.

Appendix A: Hierarchy of Grammar
Formalisms

The following figure recalls the language hierarchy that we have developed in
the course of the book.�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
CFG, 1-MCFG, PDA
L1 = {anbn |n ≥ 0}

TAG, LIG, CCG, tree-local MCTAG, EPDA
L2 = {anbncn |n ≥ 0}, L3 = {ww |w ∈ {a, b}∗}

2-LCFRS, 2-MCFG, simple 2-RCG

3-LCFRS, 3-MCFG, simple 3-RCG
L4 = {an

1 an
2 an

3 an
4 an

5 |n ≥ 0}, L5 = {www |w ∈ {a, b}∗}

. . .

LCFRS, MCFG, simple RCG, MG, set-local MCTAG,
finite-copying LFG

Thread Automata (TA)

PMCFG

L6 = {a2n |n ≥ 0}

RCG, simple LMG (= PTIME)

mildly context-sensitive

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0, c© Springer-Verlag Berlin Heidelberg 2010

216 Appendix A

For each class the different formalisms and automata that generate/accept
exactly the string languages contained in this class are listed. Furthermore,
examples of typical languages for this class are added, i.e., of languages that
belong to this class while not belonging to the next smaller class in our hier-
archy. The inclusions are all proper inclusions, except for the relation between
LCFRS and Thread Automata (TA). Here, we do not know whether the in-
clusion is a proper one. It is possible that both devices yield the same class of
languages.

Appendix B: List of Acronyms

The following table lists all acronyms that occur in this book.

(2,2)-BRCG Binary bottom-up non-erasing RCG with at most two vari-
ables per left-hand side argument

2-SA Two-Stack Automaton
ACG Abstract Categorial Grammar
AFL Abstract Family of Languages
CCG Combinatory Categorial Grammar
CFG Context-Free Grammar
CNF Chomsky Normal Form
EPDA Extended Push-Down Automaton
FSA Finite State Automaton
GCFG Generalized Context-Free Grammar
GNF Greibach Normal Form
HPSG Head-Driven Phrase Structure Grammar
IG Indexed Grammar
LCFRS Linear Context-Free Rewriting System
LFG Lexical Functional Grammar
LIG Linear Indexed Grammar
LTAG Lexicalized TAG
LMG Literal Movement Grammar
MCFG Multiple Context-Free Grammar
MCTAG Multicomponent Tree Adjoining Grammar
MG Minimalist Grammar
NRCG Negative Range Concatenation Grammar
NPDA Nested Push-Down Automaton
PDA Push-Down Automaton
PMCFG Parallel Multiple Context-Free Grammar
PRCG Positive Range Concatenation Grammar
RCG Range Concatenation Grammar
SD-2SA Strongly-Driven Two-Stack Automaton

218 Appendix B

SNMCTAG tree-local MCTAG with shared nodes
SRCG Simple Range Concatenation Grammar
TA Thread Automaton
TAG Tree Adjoining Grammar
TSG Tree Substitution Grammar
TT-MCTAG Tree-Tuple MCTAG with Shared Nodes
V-TAG Vector-TAG

Solutions

Problems of Chapter 2

2.1 L2 := {anbn |n ≥ 0}
1. G = 〈N,T, P, S〉 with N = {S}, T = {a, b}, start symbol S and produc-

tions S → aSb, S → ε.
2. Assume that such a CFG exists. Its productions are then all of the form
X → αaβbγ with X ∈ N , α, β, γ ∈ N∗ such that if such a production is
applied when generating a string a1 . . . anb1 . . . bn, then the a and b of the
production necessarily end up at positions i and n+i for some i, 1 ≤ i ≤ n.
Then replacing each of these productions X → αaβbγ with X → αaβaγ
and X → αbβbγ leads to a CFG generating the copy language. This
contradicts the fact that the copy language is not context-free. ��

2.2 A first homomorphism can the homomorphism f from (Shieber, 1985).
After having applied f to Swiss German, we intersect with the regular lan-

guage w{a, b}∗x{c, d}∗y, which leads to {wv1xv2y | v1 ∈ {a, b}∗, v2 ∈ {c, d}∗
such that |v1| = |v2| and for all i, 1 ≤ i ≤ |v1|, if the ith symbol in v1 is an a
(a b), the ith symbol in v2 is a c (a d)}.

Finally we apply a second homomorphism g to the result of the intersection
with g(w) := g(x) := g(y) := ε, g(a) := g(c) := a, g(b) := g(d) := b.

This leads to the copy language.

2.3
There are several possibilities. The simplest one:

S

NP VP

John

VP

ADV VP

always

VP

V

laughs

220 Solutions

Linguistically, this is unsatisfying since the S node comes with the lexical
item John even though it is the maximal projection of the verb. A lexicalized
TSG for the given CFG where the S node comes with the verb is not possible.

2.4

1. The copy language L := {ww |w ∈ T ∗} is letter equivalent to L′ :=
{wwR |w ∈ T ∗ and wR is w in reverse order}, which is a CFL: It is
generated by the CFG with productions S → ε and S → xSx for all x ∈ T .
Consequently (with Parikh’s theorem) L′ and also L are semilinear. ��

2. Assume that {a2n |n ≥ 0} satisfies the constant growth property with c0
and C. Then take a w = a2m

with |w| = 2m > max({c0} ∪ C). Then,
according to the definition of constant growth, for w′ = a2m+1

there must
be a w′′ = a2k

with |w′| = |w′′| + c for some c ∈ C. I.e., 2m+1 = 2k + c.
Consequently (since k ≤ m) c ≥ 2m. Contradiction. ��

Problems of Chapter 3

3.1
The items can have the form [•A, i,−], 0 ≤ i ≤ n (for predicted categories)

and [A•, i, j], 0 ≤ i < j ≤ n (for completed categories). The goal item is
[S•, 0, n]. We need the following deduction rules:

1. An operation scan-predict that, starting from a predicted A-item, predicts
a B-item, based on the existence of a production A→ aB:

[•A, i,−]
[•B, i+ 1,−]

there is a production A → aB ∈ P with wi+1 = a.

2. An operation scan that turns a predicted A into a completed A based on
the existence of a production A→ a:

[•A, i,−]
[A•, i, i+ 1]

there is a production A → a ∈ P with wi+1 = a.

3. An operation complete that turns a predicted A into a completed A based
on the existence of a completed B and a production A→ aB:
[•A, i,−][B•, i+ 1, j]

[A•, i, j] there is a production A → aB ∈ P with wi+1 = a.

3.2
To show: If [A → α • β, i, j] then S

∗⇒ w1 · · ·wiAγ ⇒ w1 · · ·wiαβγ
∗⇒

w1 · · ·wjβγ for some γ ∈ (N ∪ T)∗.
We show this by an induction on the deduction rules:

• Axioms: [S → •α, 0, 0]
S → α ∈ P

Trivially, if [S → •α, 0, 0] is obtained by this rule, then S ∗⇒ εS ⇒ εα.

Solutions 221

• Predict:
[A→ α •Bβ, i, j]

[B → •γ, j, j] B → γ ∈ P

We assume that the claim holds for the antecedent item. We then obtain
(because of the productionB → γ) S ∗⇒ w1 · · ·wiAγ

′ ⇒ w1 · · ·wiαBβγ
′ ∗⇒

w1 · · ·wjBβγ
′ ⇒ w1 · · ·wjγγ

′.

• Scan:
[A→ α • aβ, i, j]

[A→ αa • β, i, j + 1]
wj+1 = a

Since the claim holds for the antecedent item, with the side condition, it
holds immediately for the consequent item.

• Complete:
[A→ α •Bβ, i, j], [B → γ•, j, k]

[A→ αB • β, i, k]
Since the induction claim holds for the antecedent items, we have in par-
ticular B ∗⇒ wj+1 · · ·wk. With this and the claim for the antecedent A-
item, we obtain S

∗⇒ w1 · · ·wiAγ
′ ⇒ w1 · · ·wiαBβγ

′ ∗⇒ w1 · · ·wjBβγ
′ ⇒

w1 · · ·wkβγ
′.

The algorithm is sound since, as a special case, we obtain for the goal
items that [S → α•, 0, n] implies S ⇒ α

∗⇒ w1 · · ·wn.

3.3
The space complexity of the CYK algorithm is determined by the memory

requirement for the chart. Since this is an |N |×n×n table, we obtain a space
complexity O(n2).

3.4
The most complex rule is complete with three indices ranging form 0 to

n and with |P |2 possible productions and lrhs = maxA→α∈P (|α| + 1) pos-
sible positions for the dot in the antecedent A-items. Note that, once the
A-production is fixed, the position of the dot determines the left-hand side
symbol of the second production. Let mrhs = maxA∈N |{A → α ∈ P}|. Then
we have ≤ lrhs · |P | ·mrhs(n+1)3 possible different applications of complete.
Consequently, as in the CYK case, the time complexity of the fixed recognition
problem is O(n3).

Problems of Chapter 4

4.1

1. TAG for L3:

S

ε

SNA

a S

b S∗
NA c

222 Solutions

2. Assume that a TAG G for L3 without adjunction constraints exists. As-
sume without loss of generality that G contains no substitution nodes.
G has at least one auxiliary tree β with leaves labeled with terminals. β
must contain equal numbers of as, bs and cs. (Otherwise one could de-
rive a word with different numbers of as, bs and cs.) One can adjoin β at
its root, which leads to a derived auxiliary β′. If the yield of β is aibici

(i ≥ 1), there are the following possibilities for the foot node:
a) The foot node is left of all as or right of all cs ⇒ using β′ a word with

substring aibiciaibici can be derived. Contradiction.
b) The foot node is right of the kth a for some k, 1 ≤ k ≤ i ⇒ using β′ a

word with substring ai−kbiciai−kbici can be derived. Contradiction.
c) The foot node is right of the kth b for some k, 1 ≤ k ≤ i ⇒ using

β′ a word with substrings aibkaibk and bi−kcibi−kci can be derived.
Contradiction.

d) The foot node is left of the kth c for some k, 1 ≤ k ≤ i ⇒ using β′ a
word with substring aibick−1aibick−1 can be derived. Contradiction.

Consequently, there is no TAG without adjunction constraints for L3. ��

4.2 L3 is a TAL ⇒ with closure under concatenation {w1w2 |w1, w2 ∈ L3} =
{anbncnambmcm |n,m ≥ 0} is a TAL. ��
4.3 The copy language is a TAL and a∗b∗a∗b∗ is a regular language ⇒
with closure under intersection with regular languages, {ww |w ∈ {a, b}∗} ∩
a∗b∗a∗b∗ = {aibjaibj | i, j ≥ 0} is a TAL. ��
4.4 Assume that L is a TAL. Then the weak pumping lemma holds for some
constant c. ⇒ For each word w ∈ L with |w| ≥ c there is a w′ ∈ L with
|w′| ≤ |w| + c. This is a contradiction since for all w ∈ L with |w| > c this
is not the case (for each w ∈ L the w′ ∈ L following it wrt word length has
twice its length). ��
4.5

1. TAG for L4:

α:
S

ε
β:

SNA

a S d

b S∗
NA c

2. Assume that L5 is a TAL and satisfies the weak pumping lemma with some
constant c. Take w = ac+1bc+1cc+1dc+1ec+1. According to the pumping
lemma one can find w1, . . . w4, at least one of them not empty, such that
they can be inserted repeatedly at four positions into w yielding a new
word in L5. At least one of the w1, . . . w4 must contain two different ter-
minal symbols since they altogether must contain equal numbers of as,
bs, cs, ds and es. Then, when doing a second insertion of the w1, . . . w4,

Solutions 223

the as, bs, cs, ds and es get mixed and the resulting word is not in L5.
Contradiction. ��

4.6
(30) John saw a man with a telescope

NP

John

S

NP↓ VP

V NP↓

saw

X

X∗ PP

P NP↓

with

X=N or X=VP
Concerning the determiners, there are three possibilities:

NP

Det N

a man

or

NP

Det N↓

a

N

man
or

N

man

N

Det N∗

a
(31) Mary took a decision

S

NP↓ VP

V N

took decision

4.7
Since extraction out of sentential subjects is not allowed, it makes sense to

add them by substitution. Otherwise one could adjoin them to a sentence with
wh-extracted elements. (Of course such an adjunction could also be prevented
with appropriate adjunction constraints.)

S

S↓ VP

V NP↓

perplexes

4.8

to win
1 2

John is likely
ε

obviously

will win
1 2 22222

who says the race
1 ε

Bill do think
221

you

224 Solutions

4.9
S0 → S[#]
S[..] → aSx[..]d Sx[..] → S[x..]
S → T T [x..] → bT [..]c
T [#] → ε

Problems of Chapter 5

5.1 Replace the deduction rules move-unary and move-binary with a
single new rule move-up:

[γ, (p · 1)�, i0, f11, f12, i1], . . . , [γ, (p ·m)�, im−1, fm1, fm2, im]
[γ, p⊥, i0, f11 ⊕ · · · ⊕ fm1, f12 ⊕ · · · ⊕ fm2, im]

As a side condition, we require that the node address p · (m+ 1) does not
exist in γ.

5.2
We keep the items [γ, pt, i, f1, f2, j] we had before (passive items) and add

new active items [γ, p, k, i, f1, f2, j] with

• γ an elementary tree, p a node position in γ, k the number of daughters
of the node at p in γ that we have already seen;

• i, f1, f2, j as before.

The rules move-unary and move-binary are replaced with the following
new rules:

1. A rule left-corner predict that, once we have seen the first daughter of
a node, predicts the appropriate active item for its mother with k = 1.

Left-corner predict:
[γ, (p · 1)�, i, f1, f2, j]

[γ, p, 1, i, f1, f2, j]

2. A rule complete that, from an item telling us that we have seen the first
k daughters of a node and another item telling us that we have the passive
item of the (k+ 1)th daughter, deduces the active item telling us that we
have seen the k + 1 daughters of the mother.

Complete:
[γ, p, k, i1, f1, f2, i2][γ, (p · (k + 1))�, i2, f3, f4, i3]

[γ, p, k + 1, i1, f1 ⊕ f3, f2 ⊕ f4, i3]

3. A rule convert that converts an active item where we have seen all the
daughters into a passive item.

Convert:
[γ, p, k, i, f1, f2, j]
[γ, p⊥, i, f1, f2, j]

address p · (k + 1) not defined in γ

Solutions 225

Anything else remains as before.

5.3
In our items we have only three indices, i, j, k, where i and k delimit the

total span of the relevant part of the tree (these were i and l in the original
algorithm). j gives the start position of the part below the foot node for left
auxiliary trees.

The Scan and Predict rules remain more or less the same except for the
reduced number of indices:

ScanTerm
[α, p, la, i, j, k, 0]

[α, p, ra, i, j, k + 1, 0]
α(p) = wk+1

Scan-ε
[α, p, la, i, j, k, 0]
[α, p, ra, i, j, k, 0]

α(p) = ε

PredictAdjoinable
[α, p, la, i, j, k, 0]
[β, 0, la, k,−, k, 0]

β ∈ fSA(α, p)

PredictNoAdj
[α, p, la, i, j, k, 0]
[α, p, lb, k,−, k, 0]

fOA(α, p) = 0

PredictAdjoined
[β, p, lb, k,−, k, 0]
[δ, p′, lb, k,−, k, 0]

p = foot(β), β ∈ fSA(δ, p′)

For the Complete rule, we obtain the following:
Complete
[α, p, rb, i, j, k, 1][β, p′, lb, i,−, i, 0]

[β, p′, rb, i, i, k, 0]
p′ = foot(β), β ∈ fSA(α, p)

Complete2 (remains the same)
[β, p, rb, i, j, k, sat?][β, p, la, h,−, i, 0]

[β, p, ra, h, j, k, 0]
β(p) ∈ N

For the Adjoin rule, we obtain the following:
Adjoin
[β, 0, ra, i, j, k, 0][α, p, rb, j, l, k, 0]

[α, p, rb, i, l, k, 1]
β ∈ fSA(α, p)

The Move rules and also the Initialize rule and the goal item remain the
same, except for the reduced number of indices.

5.4

PredictSubstituted:
[γ, p, la,∼,∼,∼,∼, i, 0]

[α, ε, la, i, i, –, –, i, 0]
α ∈ I, γ(p) substitution node,
l(γ, p) = l(α, ε)

Substitute:
[γ, p, la,∼,∼,∼,∼, i, 0], [α, ε, ra, i, i, –, –, j, 0]

[γ, p, rb,∼, i, –, –, j, 0]
α ∈ I, γ(p) substitution node,
l(γ, p) = l(α, ε)

Note that adjunction is not allowed at substitution nodes; therefore the
adjunction flag 0 in the consequent item does not cause any problems.

226 Solutions

5.5
Multiple adjunctions are avoided since reduce subtree is applied only if

X1 . . . Xm ∈ CS+(N), i.e., if the stack contains a cross-section of the node N
that is not N itself. After having traversed the tree adjoined at N and having
returned to the node N by applying reduce aux tree, it is the node N itself
that is on the stack.

5.6

1. q1

α,� → Rα•

q0

α,� → •Rα

α, Rα → •c
β,� → •Rβ

β, Rβ → •aFβb

q3

α, Rα → c•
α,� → Rα•

Rα c

Rβ a
q5

(α, Rα), Rα → c•
c c

q2

β,� → Rβ•

q4

β, Rβ → a • Fβb

β, Fβ → •⊥
(α, Rα), Rα → •c
(β, Rβ), Rβ → •aFβb

q6

(β, Rβ), Rβ → a • Fβb

(β, Rβ), Fβ → •⊥
(α, Rα), Rα → •c
(β, Rβ), Rβ → •aFβb

a

a⊥(Rα),⊥(Rβ) ⊥(Rα),⊥(Rβ)

q8

β, Rβ → aFβb•
β,� → Rβ•

b
q7

β, Fβ → ⊥•
β, Rβ → aFβ • b

q9

(β, Rβ), Fβ → ⊥•
(β, Rβ), Rβ → aFβ • b

q10

(β, Rβ), Rβ → aFβb•
(β, Rβ),� → Rβ•

b

2.
Stack remaining input operation

q0 aacbb shift
q0aq4 acbb shift
q0aq4aq6 cbb shift
q0aq4aq6cq5 bb reduce subtree
q0aq4aq6(⊥[Rα])q9 bb shift
q0aq4aq6(⊥[Rα])q9bq10 b reduce subtree
q0aq4(⊥, [Rβ , Rα])q7 b shift
q0aq4(⊥, [Rβ , Rα])q7bq8 ε reduce aux tree
q0(Rβ , [Rα])q2 ε reduce aux tree
q0Rαq1 ε accept

Problems of Chapter 6

6.1 There are of course different possibilities, for instance the following two
MCFGs:

Solutions 227

1. Rewriting rules: S → f1[A] A→ f2[A] A→ f3[]
Operations:

f1[〈X,Y,Z, U〉] = 〈XY ZU〉
f2[〈X,Y,Z, U〉] = 〈aX, bY, cZ, dU〉
f3[] = 〈a, b, c, d〉

2. Rewriting rules: S → f1[A] A→ f2[A] A→ f3[]
Operations:

f1[〈X,Y 〉] = 〈XY 〉
f2[〈X,Y 〉] = 〈aXb, cY d〉
f3[] = 〈ab, cd〉

6.2
Clauses:
S(XY Z) → A(Y)B(X,Z)
A(aX) → A(X) A(a) → ε
B(bX, bY b) → B(X,Y) B(ε, ε) → ε

1. yield(A) = {〈an〉 |n ≥ 1}
yield(B) = {〈bn, (bb)n〉 |n ≥ 0}.

2. {bman(bb)m |n ≥ 1,m ≥ 0}.
3. For w = abbb,

r -yield(B) = {(〈i, i〉, 〈j, j〉) | 0 ≤ i, j ≤ 4} ∪ {(〈1, 2〉, 〈2, 4〉), (〈3, 4〉, 〈1, 3〉)}.

6.3

1. {anbncmdmanbncmdm |n,m ≥ 0}
2. {w1w2 |w1 ∈ {a, b}∗, w2 is the image of w1 under the homomorphism f

with f(a) = b, f(b) = a}

6.4

1. Instantiations of A(aX, bY) → A(X,Y):
A(〈0, 1〉, 〈1, 2〉) → A(〈1, 1〉, 〈2, 2〉)
A(〈0, 1〉, 〈2, 3〉) → A(〈1, 1〉, 〈3, 3〉)
A(〈0, 2〉, 〈2, 4〉) → A(〈1, 2〉, 〈3, 4〉)
A(〈3, 4〉, 〈1, 2〉) → A(〈4, 4〉, 〈2, 2〉)
A(〈3, 4〉, 〈2, 3〉) → A(〈4, 4〉, 〈3, 3〉)

2. Derivation of abba:
S(〈0, 4〉) ⇒ A(〈0, 2〉, 〈2, 4〉)

⇒ A(〈1, 2〉, 〈3, 4〉)
⇒ A(〈3, 4〉, 〈1, 2〉)
⇒ A(〈4, 4〉, 〈2, 2〉)
⇒ ε

6.5 Let k > 0 be fixed.
We assume that the language L = {w2k+1 |w ∈ {a, b}∗} is a k-MCFL.
Then its intersection with the regular language (a+b+)2k+1 must be a

k-MCFL as well. This intersection yields L′ = {(anbm)2k+1 |n,m > 0}.

228 Solutions

If L′ is a k-MCFL, then it satisfies the pumping lemma for k-MCFLs. I.e.,
there must be a word (anbm)2k+1 for some m,n > 0 such that 2k substrings of
this word can be iterated. At least one of these strings is not empty and none of
them can contain different terminals, otherwise pumping would immediately
lead to strings not in L′. However, if at most 2k strings are pumped, each
of them containing only as or only bs, we necessarily obtain strings that are
not in the language L′. This contradicts the assumption that L′ satisfies the
pumping lemma for k-MCFLs.

Consequently, neither L′ nor L are k-MCFLs. ��
6.6 The string language is the regular language

whom Peter painted ((a copy of) + (a picture of))∗

For the string whom Peter painted a copy of a picture of (of length 9), we
obtain the following derivation tree:

S-REL

N-SUBJ

VP-REL

V

NP-REL

NP-REL

NP-REL

whom Peter painted a copy of a picture of ε

Problems of Chapter 7

7.1 The only unconstrained prediction concerns S predicates starting at
position 0:

Initialize:
[S → f [B]; (R1 = 〈0, 0〉 • x);ΓB]

S → f [B] := (x)

Predictions are now triggered by the dot preceding a component variable
B

(i)
k :

Predict: [A→ g[B]; (Φ1, Rl = α •B(i)
k x, Φ2);Γ]

[Bk → f [C]; (Ri = 〈j, j〉 • y, Ψ1, Ψ2);ΓC]

Bk → f [C] :=
(Ψ1, y, Ψ2)
with y the ith element,
j greatest range
boundary in α

The same holds for complete:

Solutions 229

Complete:
[A→ g[B]; (Φ1, Rj = α •B(i)

k x, Φ2);Γ],
[Bk → f [C]; (Ψ,Rl = 〈ll, rl〉•, Ψ1, y, Ψ2);Γ′]

[Bk → f [C]; (Ψ,Rl = 〈ll, rl〉, Ri = 〈m,m〉 • y, Ψ1, Ψ2);Γ′]

y is the ith element
in the range constraint
vector of Bk → f[C],
m is the greatest range
boundary in α

The other operations and the goal item are the same as in the incremental
algorithm with unconstrained prediction.

7.2
S(XY ZU) → A(X,Z)B(U, Y) S(XY Z) → A(X,Z)C(Y)
A(aX, aZ) → A(X,Z) A(ε, c) → ε
B(Xb, Y b) → B(X,Y) B(ε, c) → ε
C(aXY) → D(X)C(Y) D(d) → ε

1. Simplifying the grammar:
a) Transform the grammar into an ordered simple RCG. (If the super-

script is the identity, we omit it.)
The only problematic rule is S(XY ZU) → A(X,Z)B(U, Y). It trans-
forms into S(XY ZU) → A(X,Z)B〈2,1〉(Y,U).
Add B〈2,1〉(Y b,Xb) → B(X,Y) and B〈2,1〉(c, ε) → ε.
Then, B〈2,1〉(Y b,Xb) → B(X,Y) transforms into B〈2,1〉(Y b,Xb) →
B〈2,1〉(Y,X).
In the following, for reasons of readability, we replace B〈2,1〉 with a
new symbol E.
Result:
S(XY ZU) → A(X,Z)E(Y,U) S(XY Z) → A(X,Z)C(Y)
A(aX, aZ) → A(X,Z) A(ε, c) → ε
B(Xb, Y b) → B(X,Y) B(ε, c) → ε
E(Y b,Xb) → E(Y,X) E(c, ε) → ε
C(aXY) → D(X)C(Y) D(d) → ε

b) Remove useless rules.
• NT = {A,B,E,D, S}.

Consequently, remove S(XY Z) → A(X,Z)C(Y) and C(aXY) →
D(X)C(Y).

• In the result, NS = {S,A,E}.
Consequently, remove also D(d) → ε, B(Xb, Y b) → B(X,Y) and
B(ε, c) → ε.

Result:
S(XY ZU) → A(X,Z)E(Y,U)
A(aX, aZ) → A(X,Z) A(ε, c) → ε
E(Y b,Xb) → E(Y,X) E(c, ε) → ε

c) Remove ε-rules.
Nε = {A01, A11, E10, E11, S1}.
Resulting productions:

230 Solutions

S1(XY ZU) → A11(X,Z)E11(Y,U) S1(Y ZU) → A01(Z)E11(Y,U)
S1(XY Z) → A11(X,Z)E10(Y) S1(Y Z) → A01(Z)E10(Y)
A11(aX, aZ) → A11(X,Z) A11(a, aZ) → A01(Z)
A01(c) → ε
E11(Y b,Xb) → E11(Y,X) E11(Y b, b) → E10(Y)
E10(c) → ε

2. The string language generated by this grammar is

{ancbmancbm |n,m ≥ 0}.

7.3
We have to consider the maximal number of possible applications of the

complete rule.

Complete:
[B,ρB], [C,ρC]

[A,ρA]
A(ρA) → B(ρB)C(ρC)
is an instantiation of a c ∈ P wrt. w

Since the maximal arity is k, we have maximal 2k range boundaries in
each of the antecedent items of this rule. For variables X1,X2 being in the
same left-hand side argument of the clause c, X1 left of X2 and no other
variables in between, the right boundary of X1 gives us immediately the left
boundary of X2. In the worst case, A,B,C all have arity k and each left-
hand side argument contains only two variables. This leads to 3k independent
range boundaries and consequently a time complexity of O(n3k) for the entire
algorithm.

7.4
The antecedent of the Suspend operation
[B(ψ) → Ψ, pos′, 〈i, j〉,ρB], [A(φ) → . . . B(ξ) . . . , pos, 〈k, l〉,ρA]

[A(φ) → . . . B(ξ) . . . , pos′, 〈k, l + 1〉,ρ]
contains two active items, the A-item and B-item.
Since our grammar is ε-free, all daughters (here the B-item) have yields

with non-empty components. Therefore the position of the B-item is greater
than the one of the A-item, pos′ > pos, in a suspend operation. Consequently,
the A-item is always added first to the chart and it is therefore sufficient to
trigger suspend operations by the B-items.

Problems of Chapter 8

8.1 Clauses:
S(XY) → A(X,Y)B(X,Y)

A(aX, aY) → A(X,Y) B(bX, bY) → B(X,Y)
A(bX, Y) → A(X,Y) B(aX, Y) → B(X,Y)
A(X, bY) → A(X,Y) B(X, aY) → B(X,Y)
A(ε, ε) → ε B(ε, ε) → ε

Input: w = abba

Solutions 231

Instantiated clauses used:
instantiation clause

1. S(〈0, 4〉) → A(〈0, 2〉, 〈2, 4〉)B(〈0, 2〉, 〈2, 4〉) S(XY) → A(X,Y)B(X,Y)
2. A(〈0, 2〉, 〈2, 4〉) → A(〈0, 2〉, 〈3, 4〉) A(X, bY) → A(X,Y)
3. A(〈0, 2〉, 〈3, 4〉) → A(〈1, 2〉, 〈4, 4〉) A(aX, aY) → A(X,Y)
4. A(〈1, 2〉, 〈4, 4〉) → A(〈2, 2〉, 〈4, 4〉) A(bX, Y) → A(X,Y)
5. A(〈2, 2〉, 〈4, 4〉) → ε A(ε, ε) → ε
6. B(〈0, 2〉, 〈2, 4〉) → B(〈1, 2〉, 〈2, 4〉) B(aX, Y) → B(X,Y)
7. B(〈1, 2〉, 〈2, 4〉) → B(〈2, 2〉, 〈3, 4〉) B(bX, bY) → B(X,Y)
8. B(〈2, 2〉, 〈3, 4〉) → B(〈2, 2〉, 〈4, 4〉) B(X, aY) → B(X,Y)
9. B(〈2, 2〉, 〈4, 4〉) → ε B(ε, ε) → ε

Derivation:
S(〈0, 6〉) ⇒ A(〈0, 2〉, 〈2, 4〉)B(〈0, 2〉, 〈2, 4〉) (with 1.)

⇒ A(〈0, 2〉, 〈3, 4〉)B(〈0, 2〉, 〈2, 4〉) (with 2.)
⇒ A(〈1, 2〉, 〈4, 4〉)B(〈0, 2〉, 〈2, 4〉) (with 3.)
⇒ A(〈2, 2〉, 〈4, 4〉)B(〈0, 2〉, 〈2, 4〉) (with 4.)
⇒ B(〈0, 2〉, 〈2, 4〉) (with 5.)
⇒ B(〈1, 2〉, 〈2, 4〉) (with 6.)
⇒ B(〈2, 2〉, 〈3, 4〉) (with 7.)
⇒ B(〈2, 2〉, 〈4, 4〉) (with 8.)
⇒ ε (with 9.)

8.2

• G1 is simple since in all clauses, RHS arguments are single variables and
each variable occurring in the clause occurs exactly once in its LHS and
exactly once in its RHS.
L(G1) = {ca2nbkca2nbkca2n |n > 0, k ≥ 0}.

• G2 is a non-simple RCG, since the variable X is used twice in the RHS of
S(X) → S1(X)S2(X) and therefore the grammar is not linear.
L(G2) = {anbnck | n ≥ 0, k ≥ 1} ∩ {akbncn | k ≥ 1, n ≥ 0} = {anbncn |
n ≥ 1}

8.3

1. L1 can be generated by a simple RCG G1:
G1 = 〈{S,A}, {c, d}, {X,Y,U, V }, S, P 〉 with P the following set of clauses:

S(XY UV) → A(X,Y,U, V)
A(cX, cY, cU, cV) → A(X,Y,U, V)
A(dX, dY, dU, dV) → A(X,Y,U, V)

A(ε, ε, ε, ε) → ε
2. L2 can only be generated by a non-simple RCG G2.
G2 = 〈{S, eq}, {a}, {X,Y,Z}, S, P 〉 with P the following set of clauses:

S(XY Z) → S(X)eq(X,Y,Z)
S(a) → ε

eq(aX, aY, aZ) → A(X,Y,Z)
eq(a, a, a) → ε

232 Solutions

8.4

1. L1 can be generated by a linear non-erasing simple LMG G3 containing
the same clauses as the simple RCG for the same language.

2. L2 can be generated by the following simple LMG G4.
G4 = 〈{S}, {a}, {X}, S, P 〉 with P the following set of clauses:
S(XXX) → S(X)

S(a) → ε

8.5
Equivalent simple 2-RCG:
S(X) → 〈α〉(X)
〈α〉(LR) → 〈adj, α, ε〉(L,R)
〈β〉(aLb, cRd) → 〈adj, β, 2〉(L,R)
〈adj, α, ε〉(L,R) → 〈β〉(L,R)
〈adj, β, 2〉(L,R) → 〈β〉(L,R)
〈adj, α, ε〉(ε, ε) → ε
〈adj, β, 2〉(ε, ε) → ε

Problems of Chapter 9

9.1
Assume that we have a k-RCG.
For binarized RCGs, the complete rule amounts to the following:

Complete:
[A1,ρ1], [A2,ρ2]

[A0,ρ]
A0(ρ0) → A1(ρ1)Ak(ρ2) an instantiated clause

In contrast to simple RCG, we cannot assume that the variables in the
left-hand side occur also in the right-hand side. Therefore, in the worst case,
there is no relation at all between these variables. We then obtain for the left-
hand side that we have ≤ 3 range boundaries per argument and ≤ 3k range
boundaries per clause. For the right-hand side, we get ≤ 2 range boundaries
per argument and therefore ≤ 2·2k range boundaries per clause. Consequently,
we have a total of ≤ 3k + 4k = 7k range boundaries per clause that can have
values between 0 and n.

Therefore, parsing with this algorithm for the restricted type of RCG con-
sidered here is O(n7k).

9.2
Clause A(aX, Y a, ε) → C(XY).
Range constraint vector 〈r, C〉 with

• r = (〈r1, r2〉, 〈r3, r4〉, 〈r5, r6〉, 〈r7, r8〉, 〈r9, r10〉),

Solutions 233

• C = {r1 ≤ r2, . . . , r9 ≤ r10,
r1 + 1 = r2, r7 + 1 = r8,
r2 = r3, r4 = r5, r6 = r7,
r9 = r10}

9.3
Clauses of the RCG G:
S(XY) → A(X,X)B(Y, Y)
A(aX, bY) → A(X,Y) B(cX, dY) → B(X,Y)
A(bX, Y) → A(X,Y) B(dX, Y) → B(X,Y)
A(X, aY) → A(X,Y) B(X, cY) → B(X,Y)
A(ε, ε) → ε B(ε, ε) → ε

1. L(G) = {w1w2 |w1 ∈ {a, b}∗ with |w1|a = |w1|b and w2 ∈ {c, d}∗ with
|w2|c = |w2|d}.

2. First(A, 1) = First(A, 2) = {a, b, ε},
First(B, 1) = First(B, 2) = {c, d, ε}.

3. Possible filters:
• The components of A belong to {a, b}∗ while the components of B

belong to {c, d}∗.
• For every range vector (〈l1, r1〉, 〈l2, r2〉) in the yield of A or B, it holds

that r1 = r2.

Problems of Chapter 10

10.1
Let M = 〈Q,Σ, Γ, δ, q0, QF , Z0〉 be the original EPDA.
M ′ = 〈Q ∪ {q′0, qf}, Σ, Γ ∪ {Z ′

0}, δ′, q′0, {qf}, Z ′
0〉 with

• q′0
= qf , q
′
0, qf /∈ Q, Z ′

0 /∈ Γ ;
• δ′ extends δ as follows:

δ′(q′0, ε, Z
′
0) = {(q0, ε, Z ′

0, ‡#)}
δ′(q3, ε, Z ′

0) = {(qf , ε, Z ′
0, ε)}

In all other cases, δ′ is defined as the original δ.

10.2
M = 〈{q0, q1, q2, q3}, {a, b}, {#, A,B}, δ, q0, {q3},#〉 with
δ(q0, ε,#) = {(q3, ε, ε, ε), (q1, ε,#, ε)}
δ(q1, a,X) = {(q1, ε,XA, ε)}
δ(q1, b,X) = {(q1, ε,XB, ε)}
δ(q1, ε,X) = {(q2, ε,X, ε)}
δ(q2, ε, A) = {(q2, ‡A, ε, ε)}
δ(q2, ε, B) = {(q2, ‡B, ε, ε)}
δ(q2, ε,#) = {(q3, ε, ε, ε)}
δ(q3, a, A) = {(q3, ε, ε, ε)}
δ(q3, b, B) = {(q3, ε, ε, ε)}

234 Solutions

where X ∈ Γ

10.3

1. The language is {wwR |w ∈ {a, b}+}.
2. Successful configurations for w = abba:

thread set remaining input operation
ε : S abba
ε : S, 1 : S′ abba S −→ [S]S′

ε : S, 1 : SA bba S a−→ SA

ε : S, 1 : SA, 11 : S′ bba SA −→ [SA]S′

ε : S, 1 : SA, 11 : B2 ba S′ b−→ B2

ε : S, 1 : SA, 11 : ret a B2
b−→ ret

ε : S, 1 : A2 a [SA]ret −→ A2

ε : S, 1 : ret ε A2
a−→ ret

References 235

References

Abeillé, Anne. 1988. Parsing French with Tree Adjoining Grammar: some
linguistic accounts. In Proceedings of COLING, pages 7–12, Budapest.

Abeillé, Anne. 2002. Une Grammaire Électronique du Français. CNRS Edi-
tions, Paris.

Aho, A. V. 1968. Indexed grammars – an extension of context-free grammars.
Journal of the ACM, 15(4):647–671.

Alonso Pardo, M. A., M.-J. Nederhof, and E. Villemonte de la Clergerie. 2000.
Tabulation of automata for Tree-Adjoining Languages. Grammars, 3:89–
110.

Barthélemy, François, Pierre Boullier, Philippe Deschamp, and Éric de la
Clergerie. 2001. Guided parsing of Range Concatenation Languages. In
Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics, pages 42–49.

Barton, G. Edward, Jr. 1985. The computational difficulty of ID/LP pars-
ing. In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics, pages 76–81, Chicago.

Becker, Tilman. 1994. A new automaton model for TAGs: 2-SA. Computa-
tional Intelligence, 10(4):422–430.

Becker, Tilman, Aravind K. Joshi, and Owen Rambow. 1991. Long-distance
scrambling and Tree Adjoining Grammars. In Proceedings of ACL-Europe.

Becker, Tilman, Owen Rambow, and Michael Niv. 1992. The Derivational
Generative Power of Formal Systems or Scrambling is Beyond LCFRS.
Technical Report IRCS-92-38, Institute for Research in Cognitive Science,
University of Pennsylvania.

Bellman, Richard 1957. Dynamic Programming. Princeton University Press.
Bertsch, Eberhard and Mark-Jan Nederhof. 2001. On the complexity of some

extensions of RCG parsing. In Proceedings of the Seventh International
Workshop on Parsing Technologies, pages 66–77, Beijing, China, October.

Boullier, Pierre. 1996. Another facet of LIG parsing. In Proceedings of ACL
1996.

Boullier, Pierre. 1998a. A generalization of mildly context-sensitive for-
malisms. In Proceedings of the Fourth International Workshop on Tree Ad-
joining Grammars and Related Formalisms (TAG+4), pages 17–20, Uni-
versity of Pennsylvania, Philadelphia.

Boullier, Pierre. 1998b. A Proposal for a Natural Language Processing Syn-
tactic Backbone. Technical Report 3342, INRIA.

Boullier, Pierre. 1999a. Chinese numbers, mix, scrambling, and range
concatenation grammars. In Proceedings of the 9th Conference of
the European Chapter of the Association for Computational Linguistics
(EACL’99), pages 53–60, Bergen, Norway, June.

236 References

Boullier, Pierre. 1999b. On TAG Parsing. In TALN 99, 6e conférence an-
nuelle sur le Traitement Automatique des Langues Naturelles, pages 75–84,
Cargèse, Corse, July.

Boullier, Pierre. 2000a. A cubic time extension of context-free grammars.
Grammars, 3(2/3):111–131.

Boullier, Pierre. 2000b. Range Concatenation Grammars. In Proceedings of
the Sixth International Workshop on Parsing Technologies (IWPT2000),
pages 53–64, Trento, Italy, February.

Boullier, Pierre and Benôıt Sagot. 2009. Multi-Component Tree Insertion
Grammars. In Proceedings of Formal Grammar 2009, Bordeaux, France,
July. To appear in Lecture Notes in Computer Science, Springer.

Bresnan, Joan. 2001. Lexical-Functional Syntax, volume 16 of Blackwell Text-
books in Linguistics. Blackwell.

Bresnan, Joean, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen. 1982.
Cross-serial dependencies in Dutch. Linguistic Inquiry, 13(4):613–635.
Reprinted in (Savitch et al., 1987).

Burden, H̊akan and Peter Ljunglöf. 2005. Parsing linear context-free rewriting
systems. In IWPT’05, 9th International Workshop on Parsing Technolo-
gies, Vancouver, Canada, October.

Candito, Marie-Hélène and Sylvain Kahane. 1998. Can the TAG derivation
tree represent a semantic graph? An answer in the light of Meaning-Text
Theory. In Fourth International Workshop on Tree Adjoining Grammars
and Related Frameworks, IRCS Report 98–12, pages 25–28, University of
Pennsylvania, Philadelphia.

Chiang, David and Tatjana Scheffler. 2008. Flexible composition and delayed
tree-locality. In TAG+9 Proceedings of the Ninth International Workshop
on Tree-Adjoining Grammar and Related Formalisms (TAG+9), pages 17–
24, Tübingen, June.

Chomsky, Noam. 1956. Three models for the description of language. IRE
Transactions on Information Theory, 2:113–124.

Chomsky, Noam. 1995. The Minimalist Program. MIT Press.
Crabbé, Benoit. 2005. Représentation informatique de grammaires d’arbres

fortement lexicalisées : le cas de la grammaire d’arbres adjoints. Ph.D.
thesis, Université Nancy 2.

Cremers, Armin B. and Otto Mayer. 1973. On matrix languages. Information
and Control, 23:86–96.

Dassow, Jürgen and Gheorghe Pǎun. 1989. Regulated Rewriting in Formal
Languages Theory, volume 18 of EATCS Monographs on Theoretical Com-
puter Science. Springer.

de Groote, Philippe. 2001. Towards abstract categorial grammars. In As-
sociation for Computational Linguistics, 39th Annual Meeting and 10th

References 237

Conference of the European Chapter, Proceedings of the Conference, pages
148–155.

Dras, Mark, David Chiang, and William Schuler. 2004. On relations of con-
stituency and dependency grammars. Journal of Language and Computa-
tion, 2(2):281–305.

Frank, Anette and Josef van Genabith. 2001. GlueTag. Linear logic based
semantics for LTAG – and what it teaches us about LFG and LTAG. In
Miriam Butt and Tracy Holloway King, editors, Proceedings of the LFG01
Conference, Hong Kong.

Frank, Robert. 1992. Syntactic Locality and Tree Adjoining Grammar: Gram-
matical, Acquisition and Processing Perspectives. Ph.D. thesis, University
of Pennsylvania.

Frank, Robert. 2002. Phrase Structure Composition and Syntactic Depen-
dencies. MIT Press, Cambridge, Mass.

Gallo, G., G. Longo, S. Nguyen, and S. Pallottino. 1993. Directed Hyper-
graphs and Applications. Discrete Applied Mathematics, 42:177–201.

Gazdar, Gerald. 1988. Applicability of indexed grammars to natural lan-
guages. In Uwe Reyle and Christian Rohrer, editors, Natural Language
Parsing and Linguistic Theories. D. Reidel, pages 69–94.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullman, and Ivan Sag. 1985. Gener-
alized Phrase Structure Grammar. Harvard University Press, Cambridge,
Massachusetts.

Ginsburg, Seymour 1966. The Mathematical Theory of Context Free Lan-
guages. McGraw Hill, New York.

Gómez-Rodŕıguez, Carlos, Marco Kuhlmann, Giorgio Satta, and David Weir.
2009. Optimal reduction of rule length in linear context-free rewriting sys-
tems. In Proceedings of the North American Chapter of the Association
for Computational Linguistics – Human Language Technologies Confer-
ence (NAACL’09:HLT), pages 539–547, Boulder, Colorado.

Groenink, Annius Victor. 1995. Literal movement grammars. In Proceedings
of the 7th EACL Conference.

Groenink, Annius Victor. 1996. Mild context-sensitivity and tuple-based
generalizations of context-free grammar. Report CS-R9634, Centrum voor
Wiskunde en Informatica, Amsterdam.

Groenink, Annius Victor. 1997. Surface Without Structure. Word Order and
Tractability in Natural Language Analysis. Ph.D. thesis, Utrecht Univer-
sity.

Grune, Dick and Ceriel Jacobs. 2008. Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

Han, Chung-Hye. 2002. Compositional semantics for relative clauses in lex-
icalized Tree Adjoining Grammars. In Proceedings of the Sixth Interna-

238 References

tional Workshop on Tree Adjoining Grammars and Related Frameworks
(TAG+6), pages 1–10, Venice, May.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley.

Huang, Liang and David Chiang. 2005. Better k-best parsing. In Proceedings
of IWPT 2005, Vancouver, Canada.

Jäger, Gerhard and Jens Michaelis. 2004. An introduction to mildly context-
sensitive grammar formalisms. Course Material at ESSLLI 2004, Nancy,
France.

Joshi, Aravind K. 1985. Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural descriptions? In
D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Pars-
ing. Cambridge University Press, pages 206–250.

Joshi, Aravind K., Laura Kallmeyer, and Maribel Romero. 2003. Flexible
composition in LTAG: Quantifier scope and inverse linking. In Harry
Bunt, Ielka van der Sluis, and Roser Morante, editors, Proceedings of the
Fifth International Workshop on Computational Semantics IWCS-5, pages
179–194, Tilburg.

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975. Tree Adjunct
Grammars. Journal of Computer and System Science, 10:136–163.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-Adjoning Grammars. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages.
Springer, Berlin, pages 69–123.

Joshi, Aravind K. and K. Vijay-Shanker. 1999. Compositional semantics with
lexicalized Tree-Adjoining Grammar (LTAG): How much underspecifica-
tion is necessary? In H. C. Blunt and E. G. C. Thijsse, editors, Proceedings
of the Third International Workshop on Computational Semantics (IWCS-
3), pages 131–145, Tilburg.

Kahane, Sylvain, Marie-Hélène Candito, and Yannick de Kercadio. 2000. An
alternative description of extraction in TAG. In Proceedings of TAG+5,
pages 115–122, Paris.

Kallmeyer, Laura. 2005. Tree-local multicomponent tree adjoining grammars
with shared nodes. Computational Linguistics, 31(2):187–225.

Kallmeyer, Laura. 2009. A Declarative Characterization of Different Types
of Multicomponent Tree Adjoining Grammars. Research on Language and
Computation, 7(1):55–99.

Kallmeyer, Laura and Aravind K. Joshi. 2003. Factoring Predicate Argument
and Scope Semantics: Underspecified Semantics with LTAG. Research on
Language and Computation, 1(1–2):3–58.

Kallmeyer, Laura and Wolfgang Maier. 2009. An incremental Earley parser
for simple Range Concatenation Grammar. In Proceedings of IWPT 2009.

References 239

Kallmeyer, Laura and Wolfgang Maier. 2010. Data-driven parsing with prob-
abilistic Linear Context-Free Rewriting Systems. In Proceedings of the
23rd International Conference on Computational Linguistics (COLING
2010), Beijing, China.

Kallmeyer, Laura, Wolfgang Maier, and Yannick Parmentier. 2009a. An Ear-
ley Parsing Algorithm for Range Concatenation Grammars. In Proceedings
of ACL 2009, Singapore.

Kallmeyer, Laura, Wolfgang Maier, and Yannick Parmentier. 2009b. Un
algorithme d’analyse de type Earley pour grammaires à concaténation
d’intervalles. In Actes de la 16ème conférence sur le Traitement Automa-
tique des Langues Naturelles (TALN 2009), Senlis, France.

Kallmeyer, Laura and Yannick Parmentier. 2008. On the relation be-
tween Multicomponent Tree Adjoining Grammars with Tree Tuples (TT-
MCTAG) and Range Concatenation Grammars (RCG). In Carlos Mart́ın-
Vide, Friedrich Otto, and Henning Fernaus, editors, Language and Au-
tomata Theory and Applications. Second International Conference, LATA
2008, number 5196 in Lecture Notes in Computer Science. Springer, Hei-
delberg Berlin, pages 263–274.

Kallmeyer, Laura and Maribel Romero. 2008. Scope and situation binding in
LTAG using semantic unification. Research on Language and Computa-
tion, 6(1):3–52.

Kallmeyer, Laura and Giorgio Satta. 2009. A polynomial-time parsing algo-
rithm for TT-MCTAG. In Proceedings of ACL, Singapore.

Kanazawa, Makoto. 2008. A Prefix-Correct Earley Recognizer for Multiple
Context-Free Grammars. In Proceedings of the Ninth International Work-
shop on Tree Adjoining Grammars and Related Formalisms (TAG+9),
pages 49–56, Tübingen, June.

Kanazawa, Makoto. 2009. The pumping lemma for well-nested Multiple
Context-Free Languages. In V. Diekert and D. Nowotka, editors, DLT
2009, volume 5583 of LNCS, pages 312–325, Berlin Heidelberg. Springer.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional Grammar:
A Formal System for Grammatical Representations. In The Mental Rep-
resentation of Grammatical Relations. MIT Press, pages 173–281.

Kato, Yuki, Hiroyuki Seki, and Tadao Kasami. 2006. Stochastic multiple
context-free grammar for RNA pseudoknot modeling. In Proceedings of
The Eighth International Workshop on Tree Adjoining Grammar and Re-
lated Formalisms (TAG+8), pages 57–64, Sydney, Australia, July.

Kay, Martin. 1986. Algorithm schemata and data structures in syntactic
processing. In Barbara J. Grosz, Karen Sparck-Jones, and Bonnie Lynn
Webber, editors, Readings in Natural Language Processing. Morgan Kauf-
mann, Los Altos, pages 35–70.

Klein, Dan and Christopher D. Manning. 2003. A* Parsing: Fast exact
Viterbi parse selection. In HLT-NAACL.

240 References

Klein, Dan and Christopher D. Manning. 2004. Parsing and hypergraphs. In
New Developments in Parsing Technology. Kluwer Academic Publishers,
Norwell, MA, USA, pages 351–372.

Kracht, Marcus. 2003. The Mathematics of Language. Number 63 in Studies
in Generative Grammar. Mouton de Gruyter, Berlin.

Kroch, Anthony. 1989. Asymmetries in long-distance extraction in a Tree Ad-
joining Grammar. In Baltin and Kroch, editors, Alternative Conceptions
of Phrase Structure. University of Chicago.

Kroch, Anthony and Beatrice Santorini. 1991. The derived constituent struc-
ture of the West Germanic verb raising construction. In R. Freidin, editor,
Principles and Parameters in Comparative Grammar. MIT Press, Cam-
bridge, Mass., pages 268–338.

Kroch, Anthony S. 1987. Unbounded dependencies and subjacency in a
Tree Adjoining Grammar. In A. Manaster-Ramer, editor, Mathematics of
Language. John Benjamins, Amsterdam, pages 143–172.

Kroch, Anthony S. and Aravind K. Joshi. 1987. Analyzing extraposition in a
tree adjoining grammar. In Geoffrey J. Huck and Almerido E. Ojeda, edi-
tors, Syntax and Semantics: Discontinuous Constituency. Academic Press,
Inc., pages 107–149.

Kuhlmann, Marco. 2007. Dependency Structures and Lexicalized Grammars.
Ph.D. thesis, Saarland University.

Kuhlmann, Marco and Giorgio Satta. 2009. Treebank grammar techniques
for non-projective dependency parsing. In Proceedings of EACL.

Kuno, Susumu 1965. The predictive analyzer and a path elimination tech-
nique. Communications of the ACM, 8(7):453–462, July.

Langer, Hagen. 1998. Experimente mit verallgemeinerten Lookahead-
Algorithmen. In Bernhard Schröder, Winfried Lenders, Wolfgang Hess,
and Thomas Portele, editors, Computers, linguistics and phonetics between
language and speech / KONVENS 98, pages 69–82, Bonn.

Levy, Roger. 1999. Probabilistic Models of Word Order and Syntactic Dis-
continuity. Ph.D. thesis, Stanford University.

Lichte, Timm. 2007. An MCTAG with Tuples for Coherent Constructions
in German. In Proceedings of the 12th Conference on Formal Grammar
2007, Dublin, Ireland.

Ljunglöf, Peter. 2004. Expressivity and Complexity of the Grammatical
Framework. Ph.D. thesis, Department of Computer Science, Gothenburg
University and Chalmers University of Technology, November.

Ljunglöf, Peter. 2005. A polynomial time extension of parallel Multi-
ple Context-Free Grammar. In Logical Aspects of Computational Lin-
guistics, volume 3492 of Lecture Notes in Computer Science. Springer,
Berlin/Heidelberg, pages 177–188.

References 241

Maier, Wolfgang. 2010. Direct parsing of discontinuous constituents in Ger-
man. In Proceedings of the NAACL HLT 2010 First Workshop on Statisti-
cal Parsing of Morphologically-Rich Languages, pages 58–66, Los Angeles,
CA, USA, June. Association for Computational Linguistics.

Maier, Wolfgang and Laura Kallmeyer. 2010. Discontinuity and non-
projectivity: Using mildly context-sensitive formalisms for data-driven
parsing. In Proceedings of the Tenth International Workshop on Tree Ad-
joining Grammars and Related Formalisms (TAG+10), New Haven.

Maier, Wolfgang and Timm Lichte. 2009. Characterizing discontinuity in con-
stituent treebanks. In Proceedings of Formal Grammar 2009, Bordeaux,
France, July. To appear in Lecture Notes in Computer Science, Springer.

Maier, Wolfgang and Anders Søgaard. 2008. Treebanks and mild context-
sensitivity. In Proceedings of the 13th Conference on Formal Grammar
2008, Hamburg, Germany.

McAllester, David 2002. On the complexity analysis of static analyses. Jour-
nal of the ACM, 49(4):512–537.

Merlo, Paola, Harry Bunt, and Joakim Nivre. 2010. Current Trends in Pars-
ing Technology. Springer.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive.
In Proceedings. Logical Aspects of Computational Linguistics, Grenoble.

Michaelis, Jens. 2001a. Derivational minimalism is mildly context-sensitive.
In Michael Moortgat, editor, Logical Aspects of Computational Linguistics,
volume 2014 of LNCS/LNAI, pages 179–198, Berlin, Heidelberg. Springer.

Michaelis, Jens. 2001b. Transforming linear context-free rewriting systems
into minimalist grammars. In Philippe de Groote, Glyn Morrill, and Chris-
tian Retoré, editors, Logical Aspects of Computational Linguistics, volume
2099 of LNCS/LNAI, pages 228–244, Berlin, Heidelberg. Springer.

Michaelis, Jens and Marcus Kracht. 1997. Semilinearity as a syntactic invari-
ant. In Christian Retoré, editor, Logical Aspects of Computational Linguis-
tics. First International Conference, LACL ’96, Nancy, France, September
23-25, 1996. Selected Papers, volume 1328 of LNCS/LNAI, Berlin, Heidel-
berg. Springer.

Nederhof, Mark-Jan. 1997. Solving the correct-prefix property for TAGs. In
T. Becker and H.-U. Krieger, editors, Proceedings of the Fifth Meeting on
Mathematics of Language, pages 124–130, Schloss Dagstuhl, Saarbrücken,
August.

Nederhof, Mark-Jan. 1998. An alternative LR algorithm for TAGs. In Pro-
ceedings of ACL, Montreal, Canada.

Nederhof, Mark-Jan. 1999. The computational complexity of the correct-
prefix property for TAGs. Computational Linguistics, 25(3):345–360.

Nesson, Rebecca, Giorgio Satta, and Stuart Shieber. 2008. Complexity, pars-
ing, and factorization of tree-local multi-component tree-adjoining gram-

242 References

mar. Technical Report TR-05-08, School of Engineering and Applied Sci-
ences, Harvard University, Cambridge, MA.

Nesson, Rebecca and Stuart M. Shieber. 2006. Simpler TAG semantics
through synchronization. In Proceedings of the 11th Conference on Formal
Grammar, Malaga, Spain, 29–30 July.

Parikh, Rohit 1966. On context-free languages. Jounal of the ACM, 13:570–
581.

Parmentier, Yannick and Wolfgang Maier. 2008. Using constraints over finite
sets of integers for range concatenation grammar parsing. In Bengt Nord-
ström and Aarne Ranta, editors, Advances in Natural Language Processing,
volume 5221 of LNCS/LNAI, Gothenburg, Sweden, August. Springer.

Pereira, Fernando C. N. and David Warren. 1983. Parsing as deduction.
In 21st Annual Meeting of the Association for Computational Linguistics,
pages 137–144, MIT, Cambridge, Massachusetts.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Studies in Contemporary Linguistics. The University of Chicago Press,
Chicago, London.

Prolo, Carlos. 2000. An efficient LR parser generator for Tree Adjoining
Grammars. In Proceedings of the 6th International Workshop on Parsing
Technologies (IWPT-2000), pages 207–218, Trento, Italy.

Prolo, Carlos. 2003. LR Parsing for Tree Adjoining Grammars and Its Ap-
plication to Corpus-Based Natural Language Parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

Radzinski, Daniel. 1991. Chinese number-names, tree adjoining languages,
and mild context-sensitivity. Computational Linguistics, 17:277–299.

Rambow, Owen. 1994. Formal and Computational Aspects of Natural Lan-
guage Syntax. Ph.D. thesis, University of Pennsylvania.

Rambow, Owen, K. Vijay-Shanker, and David Weir. 1995. D-Tree Grammars.
In Proceedings of ACL.

Rambow, Owen, K. Vijay-Shanker, and David Weir. 2001. D-Tree Substitu-
tion Grammars. Computational Linguistics.

Sagot, Benôıt. 2005. Linguistic facts as predicates over ranges of the sentence.
In Proceedings of LACL 05, number 3492 in Lecture Notes in Computer
Science, pages 271–286, Bordeaux, France. Springer.

Savitch, Walter J., Emmon Bach, William Marxh, and Gila Safran-Naveh,
editors. 1987. The Formal Complexity of Natural Language. Studies in
Linguistics and Philosophy. Reidel, Dordrecht, Holland.

Schabes, Yves. 1990. Mathematical and Computational Aspects of Lexicalized
Grammars. Ph.D. thesis, University of Pennsylvania.

Schabes, Yves and Aravind K. Joshi. 1988. An Earley-type parsing algorithm
for Tree Adjoining Grammars. In Proceedings of the 26th Annual Meeting
of the Association for Computational Linguistics, pages 258–269.

References 243

Schabes, Yves and K. Vijay-Shanker. 1990. Deterministic left to right parsing
of tree adjoining languages. In Proceedings of ACL, Pittsburgh.

Seki, Hiroyuki and Yuki Kato. 2008. On the generative power of multiple
context-free grammars and macro grammars. IEICE Transactions on In-
formation and Systems, E91-D(2):209–221, February.

Seki, Hiroyuki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami.
1991. On multiple context-free grammars. Theoretical Computer Science,
88(2):191–229.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao
Kasami. 1993. Parallel multiple context-free grammars, finite-state trans-
lation systems, and polynomial-time recognizable subclasses of lexical-
functional grammars. In 31st Meeting of the Association for Computa-
tional Linguistics (ACL’93), pages 121–129.

Shieber, Stuart M. 1984. Direct parsing of ID/LP grammars. Linguistics and
Philosophy, 7(2):135–154.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural
language. Linguistics and Philosophy, 8:333–343. Reprinted in (Savitch
et al., 1987).

Shieber, Stuart M. 1994. Restricting the weak-generative capacity of
synchronous Tree-Adjoining Grammars. Computational Intelligence,
10(4):271–385.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. 1995. Princi-
ples and implementation of deductive parsing. Journal of Logic Program-
ming, 24(1 and 2):3–36.

Sikkel, Klaas. 1997. Parsing Schemata. Texts in Theoretical Computer Sci-
ence. Springer, Berlin, Heidelberg, New York.

Sippu, Seppo and Eljas Soisalon-Soininen. 1990. Parsing Theory, volume 20
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, Heidelberg.

Søgaard, Anders. 2007. Complexity, expressivity and logic of linguistic theo-
ries. Ph.D. thesis, University of Copenhagen, Copenhagen, Denmark.

Søgaard, Anders. 2008. Range concatenation grammars for translation. In
Proceedings of the 22nd International Conference on Computational Lin-
guistics, Manchester, England.

Søgaard, Anders, Timm Lichte, and Wolfgang Maier. 2007. The complexity of
linguistically motivated extensions of tree-adjoining grammar. In Recent
Advances in Natural Language Processing 2007, Borovets, Bulgaria.

Stabler, Edward P. 1997. Derivational Minimalism. In Christian Retoré,
editor, Logical Aspects of Computational Linguistics. First International
Conference, LACL ’96, Nancy, France, September 23-25, 1996. Selected
Papers, volume 1328 of LNCS/LNAI, pages 68–95, Berlin, Heidelberg.
Springer.

244 References

Steedman, Mark. 2000. The Syntactic Process. MIT Press.
Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis,

University of Pennsylvania.
Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some computational prop-

erties of Tree Adjoining Grammars. In Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics, pages 82–93.

Vijay-Shanker, K. and David J. Weir. 1993. Parsing some constrained gram-
mar formalisms. Computational Linguistics, 19(4):591–636.

Vijay-Shanker, K. and David J. Weir. 1994. The equivalence of four exten-
sions of context-free grammars. Mathematical Systems Theory, 27(6):511–
546.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi. 1987. Characterizing
structural descriptions produced by various grammatical formalisms. In
Proceedings of ACL, Stanford.

Villemonte de la Clergerie, Éric. 2002. Parsing mildly context-sensitive lan-
guages with thread automata. In Proceedings of COLING’02, August.

Villemonte de la Clergerie, Eric. 2006. Designing tabular parsers for various
syntactic formalisms. ESSLLI Lecture Notes.

Villemonte de la Clergerie, Éric and Alonso M.A. Pardo. 1998. A tabular
interpretation of a class of 2-stack automata. In Proceedings of COLING-
ACL, pages 1333–1339.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar For-
malisms. Ph.D. thesis, University of Pennsylvania.

Weir, David J. 1992. A geometric hierarchy beyond context-free languages.
Theoretical Computer Science, 104:235–261.

XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for
English. Technical report, Institute for Research in Cognitive Science,
Philadelphia.

Index

Abstract Categorial Grammar, 7

chart parsing, 46, 47
Combinatory Categorial Grammar, 7,

73
backward application, 73
backward composition, 73
forward application, 73
forward composition, 73

computation sharing, 46
constant growth property, 23
Context-Free Grammar, 11

Chomsky Normal Form, 12, 41
closure properties, 12
CYK parsing, 41, 42
derivation tree, 15
Earley parsing, 43
Greibach Normal Form, 12, 21
LR parsing, 98
parse tree, 15
pumping lemma, 12
string language, 11
tree language, 15
useful symbol, 11

cross-serial dependencies, 17
– in Dutch, 17
– in Swiss-German, 18
– with TAG, 28

CYK parsing
– for CFG, 42
– for MCFG, 131
– for RCG, 178
– for TAG, 77

dependency parsing, 8
dynamic programming, 44

Earley parsing
– for CFG, 43
– for MCFG, 141
– for RCG, 188
– for TAG, 82

Embedded Push-Down Automaton,
193, 195

k-order –, 199
bottom-up –, 197
language, 195
transition, 195

equivalence
strong –, 15
weak –, 15

Finite State Automaton, 13
finitely ambiguous, 21
fixed recognition problem, 49

graph
directed –, 14
in-degree, 14
out-degree, 14

Head-Driven Phrase Structure
Grammar (HPSG), 7

Indexed grammar, 31, 72
Linear –, 31, 72

language, 10

246 Index

alphabet, 10
empty word, 10
homomorphism, 11
length of a word, 11
letter equivalent, 24
Parikh mapping, 24
semilinear, 25
word, 10

Lexical Functional Grammar, 126
c-structure, 126
f-structure, 127
finite-copying –, 127

Lexical Functional Grammar (LFG), 7
lexicalization, 21

strong lexicalization, 21
weak lexicalization, 21

lexicalized grammar, 20
anchor, 20
multicomponent anchor, 21

Linear Context-Free Rewriting System,
24, 33, 111

fan-out, 117
CYK parsing, 131
monotone –, 145
rank, 147
well-nested –, 122

Literal Movement Grammar, 167
clause instantiation, 168
linear –, 169
non-combinatorial –, 169
non-erasing –, 169
simple –, 169
string language, 168

LR parsing
– for CFG, 98
– for TAG, 96

Matrix Grammars, 7
mildly context-sensitive, 23
Minimalist Grammar, 126
Multicomponent TAG, 33, 70

k-TT-MCTAG, 71
k-delayed tree-local –, 71
non-local –, 35
set-local –, 24, 35, 125
tree-local –, 35, 71
tree-local – with flexible composition,

71

Multiple Context-Free Grammar, 24,
36, 110

r -yield , 114
k-MCFG, 110
closure properties, 119
CYK parsing, 131
incremental CYK parsing, 139
incremental Earley parsing, 141
left-corner parsing, 142
mcf-function, 111
parallel –, 169
pumping lemma, 118
range, 113
string language, 111, 114

NP-complete, 50

Parikh Theorem, 25
parsing

LL(k), 44
– and hypergraphs, 48
– as deduction, 6, 41
active item, 44
chart –, 6
completeness, 48
complexity, 49
deduction rules, 44
dependency –, 8
dotted production, 43
item, 42
passive item, 44
soundness, 48

pseudo-code, 41
PTIME, 37, 50
pumping lemma

– for CFG, 12
– for MCFG, 118
– for TAG, 61

Push-Down Automaton, 13

Range Concatenation Grammar, 36,
157

(2, 2)-BRCG, 166
arity, 117
clause, 117
bottom-up linear –, 162
bottom-up non-erasing –, 162
clause instantiation, 160
combinatorial clause, 159

Index 247

CYK parsing, 178
derivation, 161
Earley parsing, 188
erasing clause, 157
filters for parsing, 183
linear –, 162
negative –, 159
non-combinatorial –, 162
non-erasing –, 163
non-linear clause, 158
positive –, 159
range, 113
range constraint vector, 185
range language, 161
simple –, 24, 37, 163
string language, 161
top-down linear –, 162
top-down non-erasing –, 163
top-down parsing, 179

Simple Range Concatenation Grammar,
111, 112

ε-free –, 143
ε-clause, 143
arity, 117
derivation tree, 115, 116
eliminating ε-rules, 143
gap degree, 121
ordered –, 145
tree language, 117
well-nested, 122
binarization, 147
clause instantiation, 115
eliminating useless rules, 142
filters for parsing, 154
simple k-RCG, 112
transformation into an ordered –, 146

substitution, 22
substitution node, 22

tabulation, 46
Thread Automaton, 204, 206

– for LCFRL, 209
– for TAL, 208
configuration, 206
language, 208

thread, 206
transitions, 207

tree, 14
completed –, 22
labeling, 15
ordered tree, 14
syntactic tree, 15

Tree Adjoining Grammar, 26, 55
adjunction, 55
adjunction constraints, 55
auxiliary tree, 54
closure properties, 58
Condition on Elementary Tree

Minimality, 64
cross-serial dependencies, 28
CYK parsing, 77
derivation tree, 56, 68
derived tree, 56, 68
Earley Parsing, 82
elementary tree, 55
extended domain of locality, 30, 65
factoring of recursion, 65
initial tree, 54
LR parsing, 96
Predicate Argument Co-occurrence

Principle, 63
prefix valid Earley parsing, 93
pumping lemma, 61
string language, 58
tree language, 58

Tree Substitution Grammar, 22
elementary tree, 22
tree language, 22

Two-Stack Automaton, 200
strongly-driven –, 203

two-stack automaton, 200

universal recognition problem, 50
unordered Vector Grammars, 7

valid prefix property, 51
Earley parser for TAG, 92
LR parser for TAG, 107

Vector-TAG with dominance links, 7

Weir Hierarchy, 199

	Cover
	Cognitive Technologies
	Parsing Beyond Context-Free Grammars
	Copyright
	9783642148453

	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Formal Grammars and Natural Languages
	1.2 Parsing Beyond CFGs
	1.3 What This Book Is Not About
	1.4 Overview of the Book
	1.4.1 Grammar Formalisms for Natural Languages
	1.4.2 Parsing: Preliminaries
	1.4.3 Tree Adjoining Grammars
	1.4.4 MCFG and LCFRS
	1.4.5 Range Concatenation Grammars
	1.4.6 Automata

	1.5 Some Basic Definitions
	1.5.1 Languages
	1.5.2 Context-Free Grammars
	1.5.3 Automata
	1.5.4 Trees

	2 Grammar Formalisms for Natural Languages
	2.1 Context-Free Grammars and Natural Languages
	2.1.1 The Generative Capacity of CFGs
	2.1.2 CFGs and Lexicalization
	2.1.3 Mild Context-Sensitivity

	2.2 Grammar Formalisms Beyond CFG
	2.2.1 Tree Adjoining Grammars
	2.2.2 Linear Indexed Grammars
	2.2.3 Linear Context-Free Rewriting Systems
	2.2.4 Multicomponent Tree Adjoining Grammars
	2.2.5 Multiple Context-Free Grammars
	2.2.6 Range Concatenation Grammars

	2.3 Summary

	3 Parsing: Preliminaries
	3.1 Parsing as Deduction
	3.1.1 Motivation
	3.1.2 Items
	3.1.3 Deduction Rules

	3.2 Implementation Issues
	3.2.1 Dynamic Programming
	3.2.2 Chart Parsing and Tabulation
	3.2.3 Hypergraphs

	3.3 Properties of Parsing Algorithms
	3.3.1 Soundness and Completeness
	3.3.2 Complexity
	3.3.3 Valid Prefix Property

	3.4 Summary

	4 Tree Adjoining Grammars
	4.1 Introduction to Tree Adjoining Grammars
	4.1.1 Definition of TAG
	4.1.2 Formal Properties
	4.1.3 Linguistic Principles for TAG
	4.1.4 Extended Domain of Locality and Factoring of Recursion
	4.1.5 Constituency and Dependencies

	4.2 Equivalent Formalisms
	4.2.1 Tree-Local MCTAG
	4.2.2 Linear Indexed Grammars
	4.2.3 Combinatory Categorial Grammars

	4.3 Summary

	5 Parsing Tree Adjoining Grammars
	5.1 A CYK Parser for TAG
	5.1.1 The Recognizer
	5.1.2 Complexity

	5.2 An Earley Parser for TAG
	5.2.1 Introduction
	5.2.2 Items
	5.2.3 Inference Rules
	5.2.4 Extending the Algorithm to Substitution
	5.2.5 The Parser
	5.2.6 Properties of the Algorithm
	5.2.7 Prefix Valid Earley Parsing

	5.3 An LR Parser for TAG
	5.3.1 Introduction
	5.3.2 Construction of the Automaton
	5.3.3 The Recognizer
	5.3.4 Valid Prefix Property

	5.4 Summary

	6 Multiple Context-Free Grammars and Linear Context-Free Rewriting Systems
	6.1 Introduction to MCFG, LCFRS and Simple RCG
	6.1.1 MCFG and LCFRS
	6.1.2 Formal Properties
	6.1.3 Applications

	6.2 Equivalent Formalisms
	6.2.1 Set-Local Multicomponent TAG
	6.2.2 Minimalist Grammars
	6.2.3 Finite-Copying LFG

	6.3 Summary

	7 Parsing MCFG, LCFRS and Simple RCG
	7.1 CYK Parsing of MCFG
	7.1.1 The Basic Algorithm
	7.1.2 The Naïve Algorithm
	7.1.3 The Active Algorithm
	7.1.4 The Incremental Algorithm
	7.1.5 Prediction Strategies

	7.2 Simplifying Simple RCGs
	7.2.1 Eliminating Useless Rules
	7.2.2 Eliminating -Rules
	7.2.3 Ordered Simple RCG
	7.2.4 Binarization of the Rules

	7.3 An Incremental Earley Parser for Simple RCG
	7.3.1 The Algorithm
	7.3.2 Filters

	7.4 Summary

	8 Range Concatenation Grammars
	8.1 Introduction to Range Concatenation Grammars
	8.1.1 Definition of RCG
	8.1.2 Applications

	8.2 Relations to Other Formalisms
	8.2.1 Literal Movement Grammars
	8.2.2 CFG, TAG and MCFG

	8.3 Summary

	9 Parsing Range Concatenation Grammars
	9.1 Basic RCG Parsing
	9.1.1 CYK Parsing with Passive Items
	9.1.2 Non-directional Top-Down Parsing
	9.1.3 Directional Top-Down Parsing
	9.1.4 Optimizations

	9.2 Parsing with Constraint Propagation
	9.2.1 Range Constraints
	9.2.2 CYK Parsing with Active Items
	9.2.3 Earley Parsing

	9.3 Summary

	10 Automata
	10.1 Embedded Push-Down Automata
	10.1.1 Definition of EPDA
	10.1.2 EPDA and TAG
	10.1.3 Bottom-Up Embedded Push-Down Automata
	10.1.4 k-Order EPDA

	10.2 Two-Stack Automata
	10.2.1 General Definition
	10.2.2 Strongly-Driven Two-Stack Automata

	10.3 Thread Automata
	10.3.1 Idea
	10.3.2 General Definition of TA
	10.3.3 Constructing a TA for a TAG
	10.3.4 Constructing a TA for an Ordered SRCG

	10.4 Summary

	Appendix A: Hierarchy of Grammar Formalisms
	Appendix B: List of Acronyms
	Solutions
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

