

Contents

Preface ix

1 Introduction 1
1.1 Motivation 2
1.2 Classes 4
1.3 Objects 7
1.4 Inheritance 10
1.5 Polymorphism 13
1.6 Case Study: Tetris 14

2 Semantic Basis 27
2.1 Object Identity 28

2.1.1 Types and values 28
2.1.2 Forward declaration 30
2.1.3 Self-reference 32

2.2 Objects 32
2.2.1 Objects vs. object identities 33
2.2.2 Forward declaration revisited 34

2.3 Modularity and Compositionality 36
2.3.1 Object coupling 36
2.3.2 Object aliasing 38
2.3.3 Object containment 39

3 Syntactic Constructs 43
3.1 Class Definitions 44
3.2 Visibility Lists 46
3.3 Inherited Classes 46

3.3.1 Cancellation and redefinition of features 49
3.4 Local Definitions 50

3.4.1 Basic types 50
3.4.2 Axiomatic definitions 50
3.4.3 Abbreviation definitions 51
3.4.4 Free types 51

3.5 State Schemas 52

v

vi The Object-Z Specification Language

3.6 Initial State Schemas 53
3.7 Operations 53

3.7.1 Operation schemas 54
3.7.2 Operation promotions 56
3.7.3 Operation operators 57
3.7.4 Distributed operators 63
3.7.5 Recursion 65

3.8 Predicates 68
3.8.1 Boolean-valued expressions 68
3.8.2 Promoted initial state predicates 69
3.8.3 Recursion 70

3.9 Expressions 71
3.9.1 Class names 71
3.9.2 Polymorphism 72
3.9.3 Class union 73
3.9.4 Object containment 73
3.9.5 Promoted attributes 74
3.9.6 Self 74

4 Language Definition 75
4.1 Meta-Functions 76
4.2 Global Paragraphs 78
4.3 Class Paragraphs 80
4.4 Operation Expressions 89
4.5 Predicates 106
4.6 Expressions 108

5 Concurrent Systems 115
5.1 Aggregation 116
5.2 Synchronization 118
5.3 Communication 119
5.4 Nondeterminism 120
5.5 Case Study: Hearts 122

6 Concrete Syntax 133
6.1 Specifications 134
6.2 Global Paragraphs 134
6.3 Class Paragraphs 135
6.4 Operation Expressions 136
6.5 Schema Expressions 137
6.6 Declarations 138
6.7 Predicates 138
6.8 Expressions 139

Bibliography 143

Preface vii

Index 145

viii The Object-Z Specification Language

Preface

The Object-Z specification language came into existence in late 1988 as part of
a collaborative project between the Department of Computer Science at the Uni-
versity of Queensland and the Overseas Telecommunications Corporation (OTC)
of Australia. A primary motivation was the need to enhance structuring in the Z
specification language (on which Object-Z is based) in order to more effectively
specify medium- to large-scale software systems. A more fundamental motivation
was the desire to investigate the integration of formal techniques with the method-
ology of object orientation: a methodology which at that time was gaining rapid
popularity in the programming community.

The development of Object-Z continued at the University of Queensland cul-
minating in 1991 with a technical report entitled The Object-Z Specification Lan-
guage: Version 1 which provided a complete description of the language including
a full concrete syntax and several illustrative case studies. This document quickly
became the de facto standard for Object-Z as its popularity increased both at the
University of Queensland and in other universities and research institutes through-
out the world.

Now, several years on, the popularity of Object-Z is still growing. However,
the language has undergone major changes and reached a new level of maturity
with the existence of axiomatic and denotational semantics and the first tools. It
is for this reason that a new standard is now needed. This book aims to provide
this standard by presenting a comprehensive description of the language in terms
of informal and semi-formal descriptions of all language constructs, type rules,
specification guidelines and a full formal syntax. Its format has been inspired by
J.M. Spivey’s highly successful The Z Notation (Prentice Hall, 1989 & 1992) and
the use of “manual pages” to enable easy access to definitions of constructs has
been adopted. For reasons of conciseness and avoiding reiteration, a knowledge of
Z is assumed throughout this book and only those constructs particular to Object-
Z are addressed in detail. For readers unfamiliar with Z, I highly recommend first
reading Spivey’s book or one of the other excellent textbooks available on the Z
notation.

This book is aimed at people requiring a deep understanding of the Object-Z
language: system developers, researchers and postgraduate students. It would also
be a valuable aid, however, to lecturers wishing to teach Object-Z in undergraduate
courses or, simply, to anyone wanting to learn or use Object-Z. The following
chapter summary will help you get the most from this book.

ix

x The Object-Z Specification Language

Chapter 1 — Introduction
This chapter motivates and introduces the Object-Z language. It begins with a
subsection outlining some of the benefits of adopting an object-oriented approach
to formal specification and then introduces the major object-oriented constructs
of Object-Z via the specification of simple data structures. The use of these con-
structs is then further illustrated by a small case study.

Chapter 2 — Semantic basis
This chapter informally describes the basis of the semantics of Object-Z. This
semantics is in terms of object identities, which act as references in much the
same way as pointers in a programming language. The consequences of adopting
such a semantics on both system design and the related notions of modularity and
compositionality are discussed.

Chapter 3 — Syntactic constructs
This chapter provides an informal definition of each of the syntactic constructs in
Object-Z which are not also in Z. Scope rules and the usage of the constructs is
detailed. The chapter’s goal is to assist the understanding of the more rigorous
descriptions of Object-Z in Chapters 4 and 6.

Chapter 4 — Language definition
This chapter has a “manual page” for each of the syntactic constructs introduced
in Chapter 3 comprising the name of the construct, its formal syntax, a brief de-
scription of the construct in English text, its type rules (also in English text) and a
semi-formal definition using a simple meta-language. The meta-language, intro-
duced at the beginning of the chapter, allows the meaning of Object-Z constructs
to be expressed in terms of constructs of Z.

Chapter 5 — Concurrent systems
This chapter presents guidelines for specifying concurrent systems comprising
arbitrary and variable sized collections of similar components in Object-Z. Tech-
niques for specifying aggregation, synchronization, communication and nondeter-
minism are introduced by simple examples. The use of these techniques is then
further illustrated by a small case study.

Chapter 6 — Concrete syntax
This chapter presents the full concrete syntax of Object-Z including operator
precedences.

Since a number of definitions of both Z and Object-Z have appeared over
the years, it is prudent to say a word about their relationship to this book. The
language presented in this book is based on Z as defined in the second edition of
J.M. Spivey’s The Z Notation (Prentice Hall, 1992). All other definitions of Z are
only consistent with the language in this book insofar as they are consistent with
Spivey.

Preface xi

The major difference with other recent definitions of Object-Z is the omis-
sion, in this book, of history invariants. The reason for this is the instability of
their definition. They are not included in the existing axiomatic and denotational
semantics of the language and not supported by the Wizard type checker. Rather
than excluding them from Object-Z, however, the aim of this book is to provide
a standard for Object-Z to which history invariants, and possibly other constructs,
can eventually be added.

Acknowledgements

I would like to thank Gordon Rose and Clemens Fischer for their detailed com-
ments on an earlier draft of this book.

Object-Z has been developed over a number of years by a changing team of
researchers and postgraduate students. It is the work of this team rather than any
individual which is presented in this book.

First and foremost, I must acknowledge the contributions of Roger Duke and
Gordon Rose who have led the development of Object-Z since its beginning. Their
deep insights and stimulating discussions have inspired most, if not all, of the
significant developments in the language. The following people must also be ac-
knowledged for their invaluable contributions to Object-Z — David Carrington,
Jin Song Dong, David Duke, Alena Griffiths, Paul King and Wendy Johnston.

Finally, I wish to acknowledge everyone, from student to visiting lecturer, who
has attended the Formal Methods Group meetings at the University of Queensland
over the last 9 years. By bringing along fresh perspectives and new ideas, they too
have contributed greatly to the Object-Z specification language presented in this
book.

Brisbane, Australia Graeme Smith
July, 1999

xii

1

Introduction

If I were writing a paper, or preparing slides for a lecture, and required a concise,
yet readable, definition of Object-Z, I would probably write something like this:

Object-Z is an extension of Z to facilitate specification in an object-
oriented style.

The first thing which should catch the reader’s eye is the word “extension”.
This captures the notion that Object-Z is based on another language, namely Z,
and that rather than modifying or adapting its definition, Object-Z extends it. In
fact, Object-Z is a conservative extension of Z in the sense that all Z’s syntax and
its associated semantics are also part of Object-Z. Therefore, any Z specification
is also an Object-Z specification.

The next important word in this definition is “facilitate”. This word is pur-
posely chosen to reflect the fact that Object-Z doesn’t enforce any particular style
of specification. Indeed, we have just seen that any Z specification is also an
Object-Z specification. Object-Z does, however, extend Z with constructs which
help the specifier, if he or she wishes, to specify systems in a particular fashion.

A hint as to what these constructs might be is given by the final key word in
the definition — “object-oriented”. This should bring to mind notions of classes
and objects, inheritance and polymorphism.

We begin this chapter by looking at the motivation behind Object-Z. We do
not discuss the benefits of formal methods, nor those of object orientation — this
has been done elsewhere. Instead, we examine some of the benefits of combining
the methodology of object orientation with formal methods.

The Object-Z language is then introduced through the specification of simple
data structures which allow us to compare Object-Z with Z and to illustrate the
major object-oriented constructs. The use of these constructs is then illustrated
further by the specification of a small case study — a simplified version of the
game of Tetris.

To introduce Object-Z completely, I would, of course, also need to introduce
the Z notation. However, there are a number of excellent books on Z already
available — a selection of these are listed in the bibliography — and I am certain
I could not improve on them. Therefore, I assume the reader has a sufficient
background knowledge of Z and confine my discussions in this chapter, as in the
rest of the book, to those constructs particular to Object-Z.

1

2 The Object-Z Specification Language

1.1 Motivation

Object orientation — see the bibliography for references — is a modular design
methodology based on the notion that a system is composed of a collection of in-
teracting objects. The behaviour of an object is determined by its class: a mecha-
nism for encapsulating an object’s state with the set of operations it may undergo.
Each class generally defines more than one object in a system and may also be
reused in the definition of other classes. The latter is achieved by a method of
incremental modification of classes known as inheritance. The classes which in-
herit a given class are known as its subclasses and, through inheritance, are often
in some way compatible with it. Hence it can be useful that an object belong,
rather than to a particular class, to a given class or any one of its subclasses. This
notion is referred to as polymorphism.

Object orientation emerged as a major programming paradigm due to the need
to handle complexity in large-scale software systems. It helped fulfill this need
through a combination of sound modular design and software reusability. In the
same way, object orientation can solve some of the scalability problems of formal
methods. Also, by providing a common methodology, object orientation can help
bridge the gap between the specification and implementation of software systems.

Modularity
Most of the benefits of object orientation stem from the modularity it brings to
system design. Modularity increases the clarity of specifications by allowing a
reader to focus on one part at a time. In a Z specification, for example, to de-
duce in which ways a particular state variable may change, the reader must search
the entire specification for any reference to the state schema of that variable in
an operation schema. In large specifications, this becomes impracticable without
appropriate tools or some informal organization of the schemas within the speci-
fication.

A fundamental idea of object orientation, however, is that the state of an object
may be changed only by the operations of its class. Hence by adopting the notion
of class in Z, the relationship between state and operation schemas can be made
explicit. In general, the reader of an object-oriented specification can concentrate
on one class at a time in isolation from the rest of the specification and then, when
he or she is familiar with each class, examine how objects of those classes are
arranged to form the specified system.

The reuse of classes via inheritance also improves readability by allowing the
reader to use his or her knowledge of existing classes (possibly from a class li-
brary) to understand a given class. Inheritance also aids the writer of the speci-
fication who can specify classes by drawing on similarities with existing classes
and, by so doing, avoid repeatedly specifying common class structures.

The modularity provided by classes, as well as helping in the specification
stage of a formal development, can also help in subsequent stages of verification
and refinement. Once again, this is achieved by allowing the system developer to
focus on one part of the specification at a time.

Introduction 3

The classes of a specification define the behaviours of the objects of the spec-
ified system. Therefore, behavioural properties of these objects can be deduced
from their classes in isolation. These properties can then be used, taking into ac-
count the system structure, to prove properties of the overall system. Such a com-
positional approach to verification can greatly reduce the complexity of proofs.

Similarly, a compositional approach can be taken to refinement. A system
specification can be refined by refining the classes of the specification in isolation.
Since the objects of the refined classes will only behave in ways which the objects
of the original classes could have behaved, the entire system will also only behave
in a way which the original system could have behaved.

Methodology
Another benefit of object orientation is that it provides a precise methodology
for system design. This methodology involves the specification of a system by
first specifying the behaviour of its constituent objects by classes, and by utilizing
inheritance and polymorphism where appropriate.

This methodology guides the specifier in the style in which the specification is
presented. Z offers no such methodology allowing specifications in many different
styles. Although this gives the specifier more flexibility, it also presents him or
her with an extra task when beginning a new specification: deciding upon an
approach or strategy for structuring the specification. This decision is not always
easy, especially for a novice, and is often only reached by a process of trial and
error.

This lack of methodology in Z, also presents the reader of the specification
with the task of becoming familiar with the specification structure. In general,
this will need to be done before the specification itself can be read. With an
object-oriented specification, on the other hand, the reader is aware in advance of
the approach the specifier has taken and is consequently better prepared to read
the specification.

“Seamless” development
The final benefit of object orientation we are going to discuss is that of “seamless”
development. What this means is the use of common concepts and system struc-
turing at each stage of system development: from the specification right through
to the implementation. This is possible when using an object-oriented approach
to specification and then implementing in an object-oriented programming lan-
guage. It makes the specification more accessible to the programmer, who may
not be a formalist, and facilitates his or her task of transforming the specification
to implementation.

In fact, the specification can be refined to represent the exact structure of the
implementation; so that there is a direct mapping, not only between classes, but
also between each operation, in the specification and those in the actual software.
This encourages a fully formal approach to the final refinement from specification
to code and, in the case of a rigorous, as opposed to formal, approach, reduces the
chance of error.

4 The Object-Z Specification Language

1.2 Classes

The remainder of this chapter introduces the Object-Z specification language by
the specification of simple data structures which could be used in the specification
of a larger system, and a small case study. As a preliminary, and in order to
compare Object-Z with Z, we start by specifying a generic queue in standard Z.

The state of the queue comprises a variable items denoting the items in the
queue and a variable count which records the total number of items which have
ever joined the queue. The latter could be used for statistical reasons, for example,
in the system in which the queue is used. The state is modelled by the state schema
Queue�Item� — the formal generic parameter Item is the type of the items in the
queue.

Queue�Item�
items : seq Item

count : N

Initially, the queue is empty and no items have been joined to the queue. This
is modelled by the schema QueueInit �Item�.

QueueInit �Item�
Queue�Item�

items � hi
count � 0

Items may join and leave the queue on a first-in/first-out basis. The operation
schema Join�Item� models the join operation. The item to be joined to the queue
is input as the variable item? and is appended to the state variable items . The
state variable count is incremented.

Join�Item�
ΔQueue�Item�
item? : Item

items � � itemsa hitem?i
count � � count�1

The operation Leave�Item� models the leave operation. The head of items is
removed and output as variable item!. The state variable count is unchanged.

Leave�Item�
ΔQueue�Item�
item! : Item

items � hitem!ia items �

count � � count

Introduction 5

Let us now consider specifying the same queue as a class in Object-Z. Object-
Z classes introduce, as well as modularity, a precise notion of interface. The
interface of a class defines the ways in which objects of that class interact with
their environment. It determines the ways in which objects of the class can be
used in a system specification. More precisely, it defines which state variables
may be accessed, whether initial conditions can be checked, and which operations
may be applied.

Z has no formal notion of interface. Usually, to allow for data refinement,
it is assumed that only the initial state schema and operations, and not the state
variables, of a specification are accessible in its environment. However, often a Z
specification will include auxiliary operation schemas, which are not themselves
operations of the specification, but used to build such operations. Such auxiliary
operation schemas are not intended to be part of the specification’s interface but
are not formally distinguished from those operation schemas that are.

In Object-Z, the notion of interface is made precise by the inclusion in a class
of a visibility list. Let us assume that the interface of the queue comprises the state
variable count , the initial state schema and the operations Join and Leave only.
That is, the state variable items of a queue object represents internal information
which cannot be accessed in the system which contains that object. The queue is
modelled by the class Queue�Item�.

Queue�Item�

��count �INIT�Join�Leave�

items : seq Item

count : N

INIT

items � hi
count � 0

Join

Δ�items �count�
item? : Item

items � � itemsa hitem?i
count � � count�1

Leave

Δ�items�
item! : Item

items � hitem!ia items �

The class is generic with the formal generic parameter Item representing, as
in the Z specification, the type of the items in the queue. The scope of this param-

6 The Object-Z Specification Language

eter is the entire class. Hence, unlike in the Z specification, there is no need to
introduce the formal generic parameter to each schema definition.

The first construct in the class is the visibility list. It specifies that the state
variable count , the initial state schema and the operations Join and Leave are
in the class’s interface. In general, the visibility list of a class explicitly lists
those features — constants (introduced in Section 1.4), state variables, initial state
schema and operations — of a class which are in the class’s interface and, hence,
“visible” to the environment of objects of the class. When all such features are in
a class’s interface then the visibility list is not required. That is, the absence of a
visibility list implies all features are visible.

Unlike in Z where the roles of schemas as modelling the state, initial state or
operations of a system are indicated only by informal conventions, the role of each
schema in an Object-Z class is formally indicated by its header. The first schema
of the class Queue�T � is the state schema. Its role as state schema is distinguished
by the fact that it has no name associated with it. The body of the schema is iden-
tical to that in the Z specification. In general, state schemas are not like standard Z
schemas since they may have their declarations partitioned according to the roles
of the declared variables. This is explained further in Section 1.3.

The second schema of the class is the initial state schema — indicated by the
name INIT. This name is a reserved word which cannot be used for any other
purpose in a specification. Since the initial state schema of a class can only refer
to one state schema — that which is encapsulated with it in the class — rather
than requiring the specifier to include the state schema in the initial state schema’s
definition, it is, instead, implicitly included. Hence, the initial state schema of
Queue�T � refers to the state variables items and count even though these are not
included explicitly in a declaration. In fact, an initial state schema never includes
declarations. It simply models a condition which holds initially and this condition
is specified entirely by its predicate.

All schemas in a class, apart from those distinguished as the state and initial
state schemas, are operations. Again the state schema is implicitly included in
any operation. Furthermore, the state schema in primed form is also implicitly
included. That is, the operations of class Queue�T � can refer to the variables
items , count , items � and count �.

A class operation extends the notion of a standard Z schema by adding to it
a Δ-list (read “delta-list”). The Δ-list is a list of state variables which may be
changed by the operation. In other words, all state variables not in the Δ-list
remain unchanged. The operation Join of class Queue�T � changes both the state
variables items and count , whereas the operation Leave changes only items .
Therefore, it is not necessary to include the predicate count � � count in Leave

as in the Z specification. In general, the primed form of a variable appearing in
an operation’s Δ-list need not be constrained by the predicate of the operation
allowing variables to be changed nondeterministically.

As this example shows, the Object-Z class notation can simplify the schema
definitions of even the most basic of Z specifications. The true power of classes is
only seen, however, when they are used to define systems of interacting objects.

Introduction 7

1.3 Objects

Although classes in Object-Z can be used to specify entire systems, they are more
often used to specify components of systems. The components of these systems
are not the classes themselves, but objects of the classes. An object is an instance
of a class in the sense that it can only be used according to the class’s interface
and that its behaviour is consistent with that defined by the schemas of the class.

Consider specifying a simple multiplexer which comprises three components:
two input queues and a single output queue of messages. The messages on the
input queues are merged onto the output queue. The multiplexer is either idle,
when both input queues are empty, or busy , otherwise.

The multiplexer is also specified by a class — a system class. Let its interface
comprise a variable status denoting the status of the multiplexer, its initial state
schema, operations Join1, modelling the joining of a message onto one of the
input queues, and Join2, modelling the joining of a message onto the other, an op-
eration Transfer modelling the transfer of a message from an input to the output
queue, and an operation Leave modelling a message leaving the output queue.

The type of messages and the type of the variable status are provided by the
following basic type and free type definitions.

�Message�

Status ::� idle j busy

The multiplexer is specified by the class Multiplexer .

Multiplexer

��status �INIT�Join1�Join2�Transfer �Leave�

input1� input2�output : Queue�Message�
Δ
status : Status

input1 �� input2 � input1 �� output � input2 �� output

status � idle �
output �count � input1�count� input2�count

INIT

input1�INIT � input2�INIT � output �INIT

Join1 b� input1�Join

Join2 b� input2�Join

Transfer1 b� input1�Leave k output �Join

Transfer2 b� input2�Leave k output �Join

Transfer b� Transfer1 �� Transfer2

Leave b� output �Leave

8 The Object-Z Specification Language

The state schema of this class has its variables partitioned by a Δ into primary
and secondary variables. The primary variables, above the Δ, are like the vari-
ables of class Queue�Item�: they may only be changed by an operation which
explicitly includes them in its Δ-list. Secondary variables, below the Δ, however,
are implicitly available for change in any operation. Usually the value of a sec-
ondary variable is uniquely defined in terms of the values of one or more primary
variables. Hence, it only changes to maintain its relationship with those primary
variables.

The primary variables input1, input2 and output are of typeQueue�Message�
— the class Queue�Item� with its generic parameter instantiated with the type
Message. When a class is used as a type, it denotes a set of object identities. These
uniquely identify objects of that class. Therefore, input1, input2 and output are
identities of objects of class Queue�Message�. The first predicate of the state
schema ensures that these identities are in fact distinct — that is, that the primary
variables identify different objects.

The secondary variable status models the multiplexer’s status. Its value is
uniquely defined by the second predicate of the state schema. This predicate uses
a dot notation to refer to the values of the count variables of the queue objects
identified by the primary variables. The variable status is idle if, and only if,
the count variable of the object identified by output is equal to the sum of the
count variables of the objects identified by input1 and input2. In other words, the
multiplexer is idle whenever the number of messages joined to the output queue is
equal to the total number of messages joined to the input queues. In general, the
dot notation can be used in this way to refer to any visible attribute — constant or
state variable — of a class.

The dot notation is also used to specify that an object is in its initial state
and to specify that an object undergoes an operation. The former is only possible
when INIT is in the visibility list of the object’s class and is illustrated by the initial
state schema of Multiplexer . This schema states that each of the queue objects
identified by the primary variables are in their initial states. That is, each identified
queue object contains no messages and its count variable is equal to zero.

The operations of the class are specified by operation expressions similar to
Z schema expressions. The operation Join1 uses the dot notation to model a
message being joined to the queue object identified by input1. Its input and output
variables are those of the Join operation of class Queue�Message�. That is, it has
a single input variable item? of type Message.

This operation does not change any primary variables of the class. Although
the object identified by input1 is changed — a message is joined to it — the
identity input1 is not. This distinction between an object and its identity is central
to Object-Z and is discussed in detail in Chapter 2. The secondary state variable
status will be changed by Join1 if it is idle before the operation.

In general, the application of any visible operation to an object can be specified
in this way. The operations Join2, modelling the joining of a message to the queue
object identified by input2, and Leave, modelling a message leaving the queue
object identified by output , provide further examples.

Introduction 9

The remaining operations of Multiplexer utilize, as well as the dot notation,
operation operators. These are analogous to the schema operators of Z and enable
the specification of more complex operations.

The parallel composition operator k used in operations Transfer1 and Trans-
fer2 enables the specification of inter-object communication. Its argument oper-
ations are conjoined and communication between them is achieved by equating
inputs of one with outputs of the other whenever the basenames of these inputs
and outputs are the same — that is, whenever the names of the inputs and outputs
are the same apart from the ? or ! decorations. The equated inputs and outputs
are then hidden in the resulting operation. The operator is similar to the piping
operator�� of Z except that it allows communication in both directions.

The operationTransfer1 models a message leaving the queue object identified
by input1 and joining the queue object identified by output . The transfer of the
message is achieved due to the output variable item! of input1�Leave having the
same basename (item) as the input variable item? of output �Join.

Similarly, the operationTransfer2 models a message leaving the queue object
identified by input2 and joining the queue object identified by output . Since
Transfer1 and Transfer2 are not in the class’s interface, they cannot be applied
to an object of class Multiplexer . They are used, however, in the definition of the
visible operation Transfer .

Transfer combines the operations Transfer1 and Transfer2 with the nonde-
terministic choice operator ��. This operator is used to model nondeterminism
within a class. The operation models either Transfer1 or Transfer2 occurring,
but not both. The choice depends on which of the operations are enabled. When
only one of the operations is enabled — that is, when only one of the input queues
is non-empty — then this operation will be chosen and applied. When both of the
operations are enabled — that is, both of the input queues are non-empty — the
operation to be applied is chosen nondeterministically. This operator is similar
to the schema disjunction operator � of Z except that only one operation can oc-
cur. With Z schema disjunction, when both operations are enabled, they can occur
simultaneously.

The choice operator is useful for modelling the internal behaviour of objects.
For example, although the occurrence of the Transfer operation can be controlled
by the environment — it could be made to synchronize, when enabled, with a sys-
tem clock, for example — the choice of which input queue to transfer a message
from when both are non-empty is controlled only by the multiplexer object itself.

Objects of class Multiplexer can, of course, be used in further system classes
as can those system classes themselves. This process can continue indefinitely,
resulting in highly structured specifications of systems which can be understood
in terms of their simpler components. An understanding of the behaviour of these
systems, however, needs to account for the possibility of object aliasing. Aliasing
occurs when two or more variables in the specification identify the same object.
Multiplexer is free of aliasing since the queue objects are distinct. This is not
always the case and, indeed, not always desired. The issues of aliasing will be
discussed in more detail in Chapter 2.

10 The Object-Z Specification Language

1.4 Inheritance

As well as being used to specify objects, Object-Z classes can be directly reused
in the definition of other classes. A class may be specified as a specialization
or extension of another class using inheritance. The inheriting class, or subclass,
implicitly includes all of the features of the inherited class, or superclass, and may
also modify and add to these features.

As an example of specialization of a class through inheritance, consider spec-
ifying a bounded queue. Such a queue can only contain up to a fixed number of
items. Therefore, after this number of items have been joined to the queue, an item
must leave before further items can be joined. The bounded queue is modelled by
the class BoundedQueue�Item�.

BoundedQueue�Item�

��count �INIT�Join�Leave�

Queue�Item�

max : N

#items �max

Join

#items �max

When a class inherits another, only the features — variables, constants, initial
state schema and operations — are inherited; the visibility list is not. Therefore,
it is necessary to specify the visibility list of the subclass. This enables visible
features of the superclass to be removed from the subclass’s interface, and features
of the superclass not in its interface to be visible in the subclass.

The class BoundedQueue�Item� inherits Queue�Item� maintaining the same
interface. It adds to the features of Queue�Item�, however, a constantmax denot-
ing the maximum number of items the queue can contain. Constants are specified
in Object-Z classes by axiomatic definitions in the same way global constants are
specified in Z. Their scope, however, is limited to the class in which they are de-
clared. A constant is associated with a fixed value which, unlike the values of
state variables, cannot be changed by any operation of the class. This value may,
however, differ for different objects of the class.

The inherited state schema of Queue�Item� is extended with a predicate stat-
ing that the number of items in the queue is less than or equal to max . The
explicitly specified state schema in BoundedQueue�Item� is conjoined with that
inherited from Queue�Item�. Similarly, an explicitly declared initial state schema
would be conjoined with the inherited initial state schema and any explicitly de-
clared operation would be conjoined with a identically named inherited operation.

The predicate added to the inherited state schema is implicitly included in the
inherited initial state schema and precondition and postcondition of each inherited

Introduction 11

operation. Hence, it alone is all that is needed to specify the bounded queue.
However, for clarity, a precondition is also added to the operation Join which
states that the number of items in the queue is less than max .

The class BoundedQueue�Item� is equivalent to the following class specified
without using inheritance.

BoundedQueue�Item�

��count �INIT�Join�Leave�

max : N

items : seq Item

count : N

#items �max

INIT

items � hi
count � 0

Join

Δ�items �count�
item? : Item

#items �max

items � � itemsa hitem?i
count � � count�1

Leave

Δ�items�
item! : Item

items � hitem!ia items �

As an example of specifying an extension of a class through inheritance, con-
sider specifying a queue whose count variable can be reset to zero. The resettable
queue is modelled by the class ResettableQueue�Item�.

ResettableQueue�Item�

��count �INIT�Join�Leave�Reset�

Queue�Item�

Reset

Δ�count�

count � � 0

12 The Object-Z Specification Language

This class also inherits Queue�Item� but, in this case, extends the interface to
include the new operation Reset .

The examples of inheritance so far have involved inheriting a single class.
However, it is possible for a class to inherit more than one class. The result is iden-
tical to inheriting each of the classes individually in an arbitrary order. As an ex-
ample of such multiple inheritance , consider specifying a bounded queue whose
count variable can be reset. This queue is modelled by the class Resettable-
BoundedQueue�Item�.

ResettableBoundedQueue�Item�

��count �INIT�Join�Leave�Reset�

BoundedQueue�Item�

ResettableQueue�Item�

This class inherits BoundedQueue�Item� and ResettableQueue�Item� and
hence includes the features of both classes. The state schemas of each inherited
class are conjoined to form the state schema of ResettableBoundedQueue�Item�.
Similarly, the initial state schemas and operations Join and Leave are also con-
joined to form the initial state schema and operations Join and Leave respectively
of ResettableBoundedQueue�Item�.

Each of the subclasses ofQueue�Item� specified above are behaviourally sim-
ilar toQueue�Item� in the sense that they all model queues — items join and leave
on a first-in/first-out basis. Inheritance, however, is really just a means of reuse of
existing specification text and it is possible to specify subclasses with behaviour
unrelated to their superclasses. This can be done through a combination of renam-
ing and cancellation of inherited features. Consider using the class Queue�Item�
to specify a generic stack. Although this is not a particularly intuitive way to
model a stack, it highlights the reuse of text through inheritance. Rather than
Join and Leave in the class interface, we require operations Push and Pop which
allow items to be added and removed on a first-in/last-out basis. The stack is
modelled by the class Stack �Item�.

Stack �Item�

��count �INIT�Push�Pop�

Queue�Item��Pop�Leave�

Push

Δ�items�
item? : Item

items � � hitem?ia items

This class inherits Queue�Item� with Leave renamed to Pop. Renaming
can be similarly applied to any feature of a class. The operation Join is effec-

Introduction 13

tively cancelled by its absence from the visibility list. It should be noted, how-
ever, that Join is still available and could be made visible again in a subclass of
Stack �Item�. The new operation Push models the addition of an item to the top
of the stack.

1.5 Polymorphism

Although each object of an Object-Z specification belongs to a unique class, it
is not always necessary to precisely identify that class. Polymorphism allows an
object to be declared as belonging to one class from a particular inheritance hier-
archy — a collection of classes comprising a given class and all the classes in the
specification which inherit, either directly or indirectly, the features of this class.
For expressions involving the object to be well-formed, it is necessary that the
interface of each subclass of the hierarchy include all the features of the interface
of the given class.

As an example of such an inheritance hierarchy, consider a specification which
includes the various queue classes of Section 1.4. This hierarchy is shown in
Figure 1.1 where arrows point from subclasses to superclasses. Note that we are
assuming the class Stack �Item� is not part of the specification and hence not in
the hierarchy.

Queue[Item]

BoundedQueue[Item] ResettableQueue[Item]

ResettableBoundedQueue[Item]

Figure 1.1: Queue hierarchy

Each class in this hierarchy includes in its visibility list the features in the
visibility list of Queue�Item� — count , INIT, Join and Leave. Therefore, if we
require a queue object in a specification and wish to allow the possibility that the
queue is bounded or resettable then we can declare it polymorphically as follows.

queue : �Queue�Item�

The class of the object identified by the variable queue is of one of those in
the inheritance hierarchy of Figure 1.1 — Queue�Item�, BoundedQueue�Item�,
ResettableQueue�Item� or ResettableBoundedQueue�Item�. Polymorphism in
Object-Z is similar to genericity in the sense that it allows a variable to be declared
which can be associated with more than one type. Therefore, as with genericity,

14 The Object-Z Specification Language

we can only use that variable in expressions that a variable of any of its possi-
ble types could be used. While the expression queue�count and the operation
expressions queue�Join and queue�Leave are well-formed, the operation expres-
sion queue�Reset is not — since the object identified by queue may be of class
Queue�Item� or BoundedQueue�Item�.

If we wished to be able to reset the queue, we could instead declare it as
follows.

queue : �ResettableQueue�Item�

The object identified by the variable queue, in this case, is of classResettable-
Queue�Item� or ResettableBoundedQueue�Item�. The accessible features are
the visible features of ResettableQueue�Item�.

1.6 Case Study: Tetris

In this section, we illustrate the usage of the object-oriented constructs introduced
in previous sections by specifying a small case study — a simplified version of
the game of Tetris. The game is played by a single player on a computer screen
— a typical snapshot is shown in Figure 1.2.

Figure 1.2: Game of Tetris

Introduction 15

The goal of the player of Tetris is to position falling blocks of various shapes so
that entire rows of the playing screen are filled. When a row is filled, it disappears
from the screen, the rows above it move down and the player’s score is advanced.
The game continues until the fallen blocks pile up to the top of the playing screen.

The blocks fall, one at a time, until they reach either the bottom of the play-
ing screen or another block which has previously fallen. The player positions the
falling blocks by moving them left and right and by rotating them. In this simpli-
fied version of the game, we will assume blocks can only be rotated in a clockwise
direction.

We begin the specification by specifying an abstract class Grid . Objects of
this class do not appear in the specification. Rather it is used as a basis for defining
other classes of the specification by inheritance.

The class Grid models a two dimensional grid which may have some of its
positions filled. It is used in the specification to define both the playing screen and
the various types of blocks of the game.

Grid

width�height : N

occupied : P�N�N�

�x �y : N j �x �y� � occupied 	
x � width �
y � height

This class has no initial state schema and no operations. It also has no explicit
visibility list indicating that all features are visible. The class has a single state
variable occupied which models the occupied positions of the grid by their x- and
y-positions in the grid. The permissible range of these positions is defined by the
constants width and height denoting the width and height of the grid respectively.

A diagrammatic representation of a grid object with width � 4, height � 6
and occupied � f�0�0���1�2���2�2���2�3�g is given in Figure 1.3.

1 2 30

0

1

2

3

4

5

Figure 1.3: Grid object

16 The Object-Z Specification Language

The playing screen is that portion of the actual computer screen in which
blocks can occur. It can be modelled by a grid object whose width is 10 and height
is 22. The occupied positions, corresponding to fallen blocks, form a contiguous
shape at the bottom of the screen. An example of an instance of the playing screen
is shown in Figure 1.4.

Figure 1.4: Playing screen

The playing screen is, therefore, modelled by a class Screen which inherits
Grid and adds predicates to the state schema equating width to 10 and height to
22. Rather than specify the condition on the occupied positions also as a predi-
cate of the state schema, we ensure it through the specification of the initial state
schema and operations. Initially, at the beginning of a game, the playing screen
will have no occupied positions. The class Screen has two operations: AddBlock
corresponding to a block being added to the screen and RemoveRow correspond-
ing to a fully occupied row of the screen being removed. The precondition of
AddBlock ensures that some position occupied by the block to be added is im-
mediately above either the bottom of the playing screen or a previously added

Introduction 17

block. The postcondition of RemoveRow ensures that all occupied positions of
the playing screen above the removed row are shifted down one position.

Screen

Grid

width � 10
height � 22

INIT

occupied ��

AddBlock

Δ�occupied�
occupied? : P�N�N�

x �y : N j �x �y� � occupied? 	
�y � 0
�
�x �y�1� � occupied�

occupied � � occupied
occupied?

RemoveRow

Δ�occupied�

y : 0 � �height �1 	
�x : 0 � �width�1 	 �x �y� � occupied �
occupied � � fi � j : N j �i � j � � occupied � j � y 	 �i � j �g

fi � j : N j

�i � j � � occupied � j � y 	 �i � j �1�g

The operation AddBlock has an input variable occupied? denoting the posi-
tions of the playing screen occupied by the block. The precondition requires that
there exists a position �x �y� occupied by the block which is either at the bottom
of the playing screen — y � 0 — or immediately above an occupied position —
�x �y �1� � occupied . The postcondition requires that the positions occupied by
the block are added to the occupied positions of the playing screen.

The precondition of the operationRemoveRow requires that there exists a row
y in which all positions are occupied — �x : 0 � �width � 1 	 �x �y� � occupied .
The postcondition requires that all occupied positions of the playing screen �i � j �
below this row — that is, with j � y — remain occupied and all occupied positions
�i � j � above the row — that is, with j � y — shift down one row to �i � j �1�. The
occupied positions in row y are effectively removed from the playing screen.

The blocks in Tetris come in seven different shapes. Each block can be mod-
elled as a square grid object comprising either 4, 9 or 16 positions and with four
positions occupied. The different blocks are shown in this form in Figure 1.5.

18 The Object-Z Specification Language

Figure 1.5: Blocks

To specify a general class Block from which other block classes can be de-
rived, we again inherit the class Grid . Predicates are added to the state schema
stating that the width and the height of the grid are equal and that there are four oc-
cupied positions. We also add state variables x position and y position denoting
the block’s position on the playing screen as shown in Figure 1.6.

y_position

x_position

Figure 1.6: Block

Introduction 19

Block

Grid

x position�y position :Z

width � height

#occupied � 4
�x �y : N j �x �y� � occupied 	

0� x position� x � 10 � 0� y position�y

INIT

y position � 22

MoveRight

Δ�x position�

x position � � x position�1

MoveLeft

Δ�x position�

x position � � x position�1

Rotate

Δ�occupied�

MoveDown

Δ�y position�

y position � � y position�1

BeAddedToScreen

occupied ! : P�N�N�

occupied ! � fx �y : N j �x �y� � occupied 	
�x position� x �y position�y�g

The state variables x position and y position denote the x- and y-positions
on the playing screen of the lower left-hand corner of the block. The type of
these variables is the set of integers, rather than natural numbers, since the lower
left-hand corner of a block can move outside of the playing screen — only the
occupied positions of the block must remain within the screen’s boundaries.

The predicate of the state schema places the necessary restrictions on the
block’s movement. The occupied positions of the block offset by x position and
y position must remain within the playing screen — that is, 0� x position�x �
10 and 0 � y position � y . Note that it is not necessary to place an upper limit
on y position � y because y position is initially 22 — so that the block is just
above the playing screen — and no operations of Block allow it to move up.

20 The Object-Z Specification Language

The operationsMoveRight and MoveLeft model the player moving the block
one position right or left respectively. This is done by simply incrementing or
decrementing the variable x position. Similarly, the operation MoveDown mod-
els the computer moving the block down one row by decrementing y position.
These operations will only be enabled when their postconditions satisfy the state
schema’s predicate. That is, they will only be enabled when, after the operation,
the occupied positions of the block remain within the playing screen.

The operation Rotate specifies that occupied is changed but not how it is
changed. This will vary depending on the type of block. The full definition of
the operation is deferred, therefore, until Block is inherited to specify a particular
type of block. Again it is only enabled if, after the operation, the block remains
within the playing screen.

The operation BeAddedToScreen does not change the state of Block — the
absence of a Δ-list is equivalent to the empty Δ-list — but simply outputs the
screen positions corresponding to the occupied positions of the block. That is, it
outputs the occupied positions of the block offset by x position and y position.

The first type of block we specify is the square block shown in Figure 1.7.

Figure 1.7: Square block

It is modelled by a class Square which inheritsBlock and adds to the state schema
the predicate stating that the width, and therefore the height, of the grid is 2.

Square

Block

width � 2

Rotate

occupied � � occupied

Since rotating a square block has no effect on the occupied positions — all
positions are occupied and remain so — the definition of the Rotate operation
is completed in this class by adding to it a predicate which states that occupied
is unchanged. This would necessarily be true even without this predicate, which
is added only for clarity, since the inherited state schema includes the predicate
#occupied � 4.

The next five types of blocks we specify are polygons. Each can be represented
by a grid whose width and height are 3. Hence, we define a general class Polygon
from which the individual polygon classes can be derived.

Introduction 21

Polygon

Block

width � 3

Rotate

occupied � � fx : N j �0�x � � occupied 	 �x �2�g

fx : N j �1�x � � occupied 	 �x �1�g

fx : N j �2�x � � occupied 	 �x �0�g

The operation Rotate, in this class, is extended with a predicate that moves
each occupied grid position to its new position after the block has been rotated in
a clockwise direction. Any occupied position �0�x �, where x is a number from 0
to 2, is moved to �x �2�. Similarly, any occupied position �1�x � or �2�x � is moved
to �x �1� or �x �0� respectively. For example, the position �1�0� will be moved
to �0�1� and the position �0�2� to �2�2�. This is represented diagrammatically in
Figure 1.8.

0 1 2

2

1

0

Figure 1.8: Polygon rotation

The class Polygon models more types of blocks than the five we wish to spec-
ify. To specify the individual blocks, we define subclasses of Polygon which have
a particular initial configuration of occupied positions. For example, consider the
T block, named after its resemblance to the letter “T”, shown in Figure 1.9.

Figure 1.9 T block

This block is specified by the class T as a Polygon whose initial set of occu-
pied positions is f�0�1���1�0���1�1���2�1�g.

T

Polygon

INIT

occupied � f�0�1���1�0���1�1���2�1�g

22 The Object-Z Specification Language

The other four blocks — the S, Z, L and reverse-L blocks — are shown in
Figure 1.10.

Figure 1.10: S, Z, L and reverse-L blocks

They are specified in a similar fashion by the classes S , Z , L and ReverseL

below.

S

Polygon

INIT

occupied � f�0�1���1�1���1�2���2�2�g

Z

Polygon

INIT

occupied � f�0�2���1�1���1�2���2�1�g

L

Polygon

INIT

occupied � f�1�0���1�1���1�2���2�0�g

ReverseL

Polygon

INIT

occupied � f�0�0���1�0���1�1���1�2�g

The final type of block to be specified is the rectangle block. This block has
two possible positions — vertical and horizontal — as shown in Figure 1.11.

Figure 1.11: Rectangle block

Introduction 23

It is modelled by a class Rectangle which inherits Block and adds to the state
schema a predicate stating that the width (and height) of the grid is 4, and a predi-
cate stating that the rectangle is in one of the two positions — vertical or horizontal
— shown in Figure 1.11.

Rectangle

Block

width � 4
�occupied � f�1�0���1�1���1�2���1�3�g
�
occupied � f�0�2���1�2���2�2���3�2�g�

INIT

occupied � f�1�0���1�1���1�2���1�3�g

Rotate

occupied � �� occupied

The class Rectangle makes the assumption that the rectangle block is in the
vertical position initially. The Rotate operation simply switches the position of
the block from vertical to horizontal or horizontal to vertical.

The inheritance hierarchy of the specification is presented in Figure 1.12.

Block

RectanglePolygonSquare

T S Z L ReverseL

Screen

Grid

Figure 1.12: Grid hierarchy

The class of the object representing the falling block in the game of Tetris will
be one of those modelling a type of block — Square, T , S , Z , L, ReverseL or
Rectangle. We will therefore require the following polymorphic declaration.

block : �Block

To ensure the actual class of block is not Block or Polygon, however, we will
also require the following predicate.

block �� Block � block �� Polygon

24 The Object-Z Specification Language

The game of Tetris is specified by a class Tetris whose interface includes six
operations. Three of these — MoveRight , MoveLeft and Rotate — model the
player’s options of moving the falling block left or right or rotating it respectively.
The other three operations — MoveDown, AddBlock and RemoveRow — mod-
elling a block moving down one row, a block being added to the screen, and a row
being removed, are controlled by the computer.

Tetris

��screen�block �score�INIT �MoveRight �MoveLeft �Rotate�
MoveDown�AddBlock �RemoveRow�

screen : Screen
block : �Block
score : N

block �� Block � block �� Polygon
�x �y : N j �x �y� � block �occupied 	

�block �x position� x �block �y position�y� ��
screen�occupied

INIT

screen�INIT

block �INIT

score � 0

MoveRight b� block �MoveRight

MoveLeft b� block �MoveLeft

Rotate b� block �Rotate

MoveDown b� block �MoveDown

NewBlock

Δ�block�

block ��INIT

AddBlock b� �block �BeAddedToScreen k screen�AddBlock�

�
NewBlock

AdvanceScore

Δ�score�

score � � score�10

RemoveRow b� screen�RemoveRow �AdvanceScore

The class has three variables — screen and block denoting the identities of the
objects representing the playing screen and falling block respectively, and score

Introduction 25

denoting the player’s score. The predicates of the state schema ensure that block
identifies an object whose class is one of the seven types of blocks of the game, and
that the block does not overlap with occupied positions of the screen. The latter
predicate restricts the operations which change the block’s position or orientation
— MoveRight , MoveLeft , Rotate and MoveDown.

Initially, at the beginning of a game of Tetris, both the screen and block ob-
jects identified by screen and block are in their initial states. The screen has no
occupied positions, the block’s occupied positions are configured according to its
class — that is, to the type of block it is — and the block is positioned just above
the playing screen. The player’s score is initially zero.

The operations MoveRight , MoveLeft , Rotate and MoveDown model the
block object undergoing operations MoveRight , MoveLeft , Rotate and Move-
Down of its class respectively.

The operationNewBlock changes the variable block so that it identifies a new
block object. The predicate of the operation requires that this new block object is
in its initial state. NewBlock is not in the class’s visibility list but is used in the
definition of the operation AddBlock . It is conjoined with a parallel composition
of the block object outputting its occupied positions, offset by its position on the
screen, and the screen object adding them to its occupied positions. The output
variable occupied ! of block �BeAddedToScreen is equated with the input variable
occupied? of screen�Addblock to achieve the necessary communication.

The operation AdvanceScore advances the player’s score by 10 points. It is
also not in the class’s visibility list but is conjoined with the operation expression
screen�RemoveRow to form the operation RemoveRow .

The Tetris case study has illustrated the use of the major object-oriented con-
structs of Object-Z. Classes were used to model the playing screen and blocks of
the game. Inheritance enabled these classes to be incrementally constructed from
a common grid class. Objects of the screen and block classes were used to specify
the Tetris game. Polymorphism was exploited to model the falling block as one of
a number of different types of blocks.

The remainder of this book provides a complete description of the Object-Z
language. It will enable you to confidently construct similar Object-Z specifi-
cations and also specifications of much greater complexity. It is intended as a
reference manual to keep by your side as you use and learn to use Object-Z.

26 The Object-Z Specification Language

2

Semantic Basis

Object-Z not only extends the syntax of Z but also the semantic universe in which
specifications are given meaning. In order to write correct Object-Z specifications
and fully utilize Object-Z’s expressive power, it is essential for the specifier to
have an understanding of the basis of this semantic universe. In particular, it is
necessary for the specifier to have a sound understanding of Object-Z’s notion of
object identity .

Support for object identity in Object-Z presents a major departure from the
semantics of Z. It allows variables to be declared which, rather than directly rep-
resenting a value, refer to a value in much the same way as pointers in a pro-
gramming language. A semantics supporting such variables is called a reference
semantics.

The reference semantics of Object-Z impacts on the use of the language in
two main ways. Firstly, it facilitates the refinement of Object-Z specifications to
code in an object-oriented programming language. Object-oriented programming
languages also have reference semantics and so similar system structuring can be
used in both the specification and implementation.

Secondly, the use of reference semantics profoundly influences system design.
When an object is merely referenced by another, it is not encapsulated in any way
by the referencing object. Hence, changes to a referenced object generally have
no effect on the state of the referencing object — objects are independent entities
and systems are structured as collections of such entities. Furthermore, more than
one variable can reference a given object allowing an object to play more than
one role. In addition, in Object-Z’s reference semantics, objects of a given class
can be referred to in a specification before that class is defined. This enables the
specification of systems in which self and mutual recursion are possible.

In this chapter, we provide an informal outline of the reference semantics of
Object-Z. It is not the intent of the chapter to present a mathematical model of
the Object-Z language but to explain the concepts on which such a mathematical
model can be built. The chapter has two main goals. Firstly, it details the differ-
ences between standard types and values in Z and those introduced into Object-Z
to support object identity and the notion of systems as collections of indepen-
dent entities. Secondly, it highlights the consequences of adopting a reference
semantics. In particular, the effects on system modularity and compositionality
are examined in the light of object coupling — that is, inter-object dependencies
— and object aliasing — that is, multiple references to the same object.

27

28 The Object-Z Specification Language

2.1 Object Identity

Object identity refers to that property of an object which enables it to be distin-
guished from all other objects. Generally, objects can be distinguished by their
class or, if they belong to the same class, by the values of their attributes — that
is, constants and state variables. However, to distinguish objects of the same class
and with the same attribute values, object identity is required.

Object identity also models the notion that objects are persistent entities which
continue to exist in a uniquely identifiable way despite changes to their state. That
is, the identity of an object can be continuously used to refer to that object as its
state is changed by the application of operations. With a reference semantics such
as that of Object-Z, object identity also ensures that objects persist even when the
variables that refer to them change.

2.1.1 Types and values

Object identity is modelled in Object-Z by associating with each class name a
countably infinite set of values. The sets for different classes are disjoint. For
any class other than one which has no objects (see Section 2.2), each of these
values identifies a distinct object of the class. That is, the values identify distinct
objects whose behaviours conform to the definitions within the class. The values
themselves, however, are independent of the definitions within the class.

An object identity is declared by using a class name as a type. For example
given a class name A, the declaration a : A defines a variable a whose value is
the identity of an object of class A. When class A has no objects, the declaration
is not satisfiable and, hence, introduces into the construct in which it occurs —
which may be an axiomatic definition, schema or global predicate — the predicate
false. In the remainder of this section, we ignore such classes. Their presence in
specifications is discussed at the beginning of Section 2.2.

In the case of classes with generic parameters, the declaration of an identity
requires the parameters to be instantiated. For example, given the class name
C �X �Y � where X and Y are generic parameters, c : C �N�B � declares c as the
identity of an object whose behaviour is consistent with that defined by C �X �Y �
when X is instantiated with the set of natural numbers and Y with the set of
Boolean values. Note that the parameters may be instantiated either with types —
as in this example — or with the generic parameters of the context — for example,
the system class — in which the object is declared.

An object identity can also be declared polymorphically — that is, so that
it can be assigned the identity of an object from one of a collection of classes.
For example, given an inheritance hierarchy where each subclass has at least the
visible features of the classA at the top of the hierarchy, a : �A declares an identity
a of an object of class A or one of its subclasses. Note that the subclasses to which
a can belong include those defined both before and after the declaration a : �A —
that is, all subclasses of A in the specification.

Semantic Basis 29

Object-Z also has another, more flexible, notion of polymorphism called class
union. Class union allows the declaration of an identity of an object of one of
an arbitrary set of classes. For example, given classes A and B , the declaration
a : A
B declares an identity a of an object of either class A or B .

The types associated with class names and those constructed from these using
class union are the only additional types in Object-Z. Types of the form �A are
just a special case of class union. These additional types correspond to sets of
object identities which makes them notably different to standard Z types.

In Z, types are either basic types — such as the set of integers Z — or con-
structed from basic types. The kinds of constructed types are set types, Cartesian
product types and schema types. All entities in a specification are given a type and
their values are, therefore, basic values — such as -1, 0 or 15 — or constructed
from basic values and the values of other entities within the specification. This
leads to specifications in which the entire system is a single entity whose value is
composed of the values of other entities. For example, consider the schema S .

S

a : A
b : B

This schema has two variables — a of type A and b of type B . If A and
B are standard Z types then an instance s of the schema S can be represented
diagrammatically as in Figure 2.1. Boxes in this diagram represent values in the
semantic domain. The name above a box represents the variable which has that
value and the name in the top left-hand corner of the box represents the variable’s
type.

a
A B

bS
s

Figure 2.1: Representation of standard Z values

The diagram emphasizes the fact that variables a and b are part of the schema
instance s . Any changes to either of these variables changes s as well.

Object identities differ from standard Z values in that they are used to reference
a value in the semantic domain rather than represent it directly. This leads to a
different way of structuring specifications.

If the types A and B of the schema S were class names then an instance s of
schema S could be represented diagrammatically as in Figure 2.2. The semantic
value of an object identity is represented by an arrow pointing from the variable
to which the identity is assigned to the object which it references.

30 The Object-Z Specification Language

a b

A B

S
s

Figure 2.2: Representation of object identities

The diagram, in this case, emphasizes the fact that the schema instance s is inde-
pendent of the objects referenced by a and b. The value of these objects are, in
fact, not directly represented by any variable of the specification. Their existence,
however, is indicated by the variables a and b whose values are their identities.
The reference semantics allows systems to be constructed, in this way, as collec-
tions of independent entities. An instance of the system specification, which could
be a schema but is more commonly a class, references either directly or indirectly,
via its referenced objects, all of the objects which constitute the system. This is in
contrast to the traditional structuring of systems in Z as single entities.

2.1.2 Forward declaration

Another difference with standard Z semantics arises from the fact that object iden-
tities may be declared in a specification before the class of the referenced object
is defined. For example, a variable declaration a : A may occur prior to the defi-
nition of class A. This is possible since the set of object identities associated with
the class name A is independent of the actual definition of the class A. We refer
to a : A as a forward declaration of a variable of A.

This feature provides greater flexibility when specifying systems than would
otherwise be possible. For example, an object may refer to an object of the same
class. To illustrate this, consider a system for recording information about people,
including who their father is. The specification of this system may use the class
Person below. (Details irrelevant to the example have been elided from the class.)

Person

father : Person
� � �

� � �

The class name Person is used as a type in the declaration of the state variable
father — that is, before the class Person has been fully defined. This structuring
is particularly useful for modelling recursive data types such as lists and trees. As
with these data types, some “null” value of the class Person would be required,
in this example, so that a finite system of records could be defined.

Semantic Basis 31

As a more obvious example of the use of a class name before the class defini-
tion, consider specifying a subclass Father ofPerson to model information about
people who are fathers. The record system could then use the following classes.

Person

father : Father
� � �

� � �

Father

Person

� � �

When a class is inherited by another, its definitions are included in the other
and combined with them where appropriate. Therefore, the definition of a super-
class, such as Person above, must always precede any subclass, such as Father .
Hence, the declaration father : Father , in this example, must precede the defini-
tion of Father .

As a final example, suppose the record system is for a school. Rather than
a class Person this system has a class Student and another class Father for
modelling the fathers of students.

Student

father : Father
� � �

� � �

Father

students : PStudent
� � �

� � �

In this case, there is no inheritance relation between the classes and they could
occur in any order. However, because the referencing is mutual — that is, Student
references an object of Father and Father references objects of Student — once
again this is only possible using a forward declaration. Note that the structuring in
this case is only possible with a reference semantics. It would not be possible to
have the value of a father entity as part of the value of a student entity and, at the
same time, the value of the student entity as part of the value of the father entity.

32 The Object-Z Specification Language

2.1.3 Self-reference

Another type of structuring that is only possible with a reference semantics is
that in which an object references itself. Consider, for example, a system which
records information about employees including who their boss is. The specifica-
tion of this system may use the class Employee below.

Employee

boss : Employee
� � �

� � �

The type of the variable boss is Employee to reflect the fact that a boss is
also an employee. Since this variable can identify any object of class Employee
it is possible that an employee is his or her own boss — that is, he or she is
self-employed. Self-referencing can be explicitly specified in Object-Z using a re-
served word self . This word can be used within a class definition and denotes the
object identity of an object of the class. For example, a self-employed employee
could be specified by the class SelfEmployed below.

SelfEmployed

Employee

boss � self

The Person class in the first example and the Father class in the second
would have similarly required a state predicate father �� self . It is important for
the specifier to be aware of the possibility of self-reference in a specification and
include such predicates where required.

2.2 Objects

The state of an object assigns values to the attributes — state variables and con-
stants — of its class which not only satisfy the class’s state predicate and any
predicates associated with the constant definitions, but also correspond to the val-
ues of a state which is reachable from the class’s initial state via the application
of its operations. A class which has an unsatisfiable initial condition — either
because the initial state schema’s predicate evaluates to false, or the class has no
initial state schema and its state schema’s predicate or a predicate associated with
a constant definition evaluates to false — has no objects. All other classes have
a countably infinite set of objects — one for each object identity associated with
the class name.

Semantic Basis 33

Object-Z does not support the creation and destruction of objects. Each object
which can be referenced by a specification exists throughout the evolution of the
specified system — even in the case when it is never actually referenced. While
this would not be feasible in a programming language where issues of memory
usage and efficiency are important, it is not a problem in the abstract world of a
specification.

2.2.1 Objects vs. object identities

The distinction between variables which denote object identities and the identified
objects themselves is central to Object-Z. While the former can be accessed and
changed directly by the specifier, the latter cannot. For example, consider the
following class B where A is another class in the specification.

B

a : A

Op

Δ�a�

a � �� a

The operation Op of this class directly changes the object identity referred to
by the state variable a. Before the operation, a refers to a particular object of class
A and after the operation it refers to a different object of class A. Both of these
objects are unaffected by the operation.

In contrast, the only way an object can be changed is via the application of one
of its class’s operations using the dot notation. The use of this notation is restricted
to respect the class’s interface. That is, an object can only be changed by visible
operations of its class. Similarly, information about the state of an object — the
value of an attribute or whether the object is in an initial state — can only be
accessed via the dot notation and only when the information is visible.

Accessing attributes
Selected attributes of a class are made visible by their inclusion in the class’s
visibility list. Given an object of the class, such visible attributes may be accessed
via the dot notation . For example, if class A has a visible attribute x , given the
declaration a : A, a�x denotes the value of the variable x in the state of the object
referenced by a.

It is not possible to access the attributes of referenced objects in the post-states
of operations. The notation a ��x denotes, not the post-state value of the variable
x of the object referenced by a, but the pre-state value of the variable x of the
object referenced by a �. If a � � a (for example, when a is the primary variable

34 The Object-Z Specification Language

of a class and not included in the operation’s Δ-list) then a ��x � a�x even when
the x value of the object identified by a is changed. Hence, it is not possible to
explicitly define a change to a referenced object’s state in terms of its attributes.

Checking initial conditions
The initial state schema of a class comprises a predicate stating the conditions of
being in an initial state in terms of the class’s attributes. When INIT is in the class’s
visibility list, this predicate may be accessed via the dot notation to check whether
or not an object of the class is in an initial state. For example, if a : A where A is
a class with INIT visible, then a�INIT denotes a predicate which is true whenever
the state of a satisfies the initial state predicate of A.

Although a predicate such as a�INIT is usually used to identify an object which
is in an initial state because it has not yet undergone any operations, it also evalu-
ates to true for an object which has undergone operations but returned to an initial
state — that is, returned to a state which satisfies the predicate of its class’s initial
state schema. In any Object-Z specification, using such an object is identical to
using an object which has not undergone any operations.

Applying operations
An operation definition in a class may include a Δ-list which lists which primary
variables of the class may change — secondary variables may be changed by any
operation — declarations of auxiliary variables such as input and output variables
and predicates defining the operation’s pre- and postconditions. A visible opera-
tion is applied to an object using the dot notation. For example, given a :A where
A is a class with a visible operationOp, a�Op denotes an operation which models
the application of Op to a.

The operation a�Op does not change any variables of the class in which it is
defined. Although the state of the object referenced by a is changed by a�Op,
the identity a itself is not. Therefore, the Δ-list of a�Op is empty. The auxiliary
variables of a�Op are the same as those of Op and are declared implicitly. The
pre- and postconditions reflect those of Op. The operation a�Op is applicable
whenever the state of a satisfies the precondition of Op and changes the state of
a to satisfy the postcondition of Op.

The operation a�Op cannot be used in the predicate part of another operation.
It may, however, be combined with other operations using the operation operators
of Object-Z detailed in Section 3.7.3.

2.2.2 Forward declaration revisited

When a forward declaration of an object identity is made in Object-Z, it is possible
to access the visible features of the identified object using the dot notation. This
allows the specification of systems in a top-down fashion. The class specifying a
system in terms of its component objects and their interactions can appear before
the classes specifying the components. This can increase the clarity of a specifi-

Semantic Basis 35

cation by providing the context in which the components occur as motivation for
their definitions. In can also provide a more intuitive development path for the
specifier.

Accessing the visible features associated with forwardly declared object iden-
tities is also useful in recursive specifications. In particular, it is useful for speci-
fying recursive data structures. For example, consider specifying a sorted binary
tree where each node has a value of type natural number and a left and right sub-
tree. Each value in the left subtree is less than that in the node and each value in
the right subtree is greater than or equal to that in the node. The sorted binary tree
is specified by the class Tree.

Tree

null : B
val : N
left tree�right tree : Tree
Δ
nodes : PTree

hleft tree�nodes �fself g�right tree�nodesi partitions nodes
� t : left tree�nodes 	 t �null � t �val � val

� t : right tree�nodes 	 t �null � t �val � val

INIT

null � left tree�INIT � right tree�INIT

Insert b� �Δ�null �val� v? : N j null � val � � v? � � null � �
��

�� null ���left tree�Insert �� right tree�Insert�

This class specifies the functionality of the sorted binary tree abstractly by
defining an infinite tree structure into which values can be inserted. This allows
us to avoid the details of the construction of the tree. Although we would need
to include these details when refining this specification to an implementation, it
is simpler to ignore them at this higher level of abstraction. To distinguish the
inserted values from those initially in the tree structure a Boolean-valued variable
null is used. When null is true the actual tree (or subtree) is empty — that is, no
values have been inserted.

Apart from null , the state of the tree is modelled by three primary variables
— val denoting the value of the root node of the tree, and left tree and right tree
denoting the root node’s left and right subtrees respectively. The class also has a
secondary variable nodes denoting the set of all nodes in the tree represented by
the subtrees of which they are the root.

The first predicate of the state schema defines nodes recursively in terms of the
variable nodes of left tree and right tree. The set nodes is partitioned by these
sets and the set containing the root node represented by self . The partitioning

36 The Object-Z Specification Language

ensures that the three sets are disjoint as required for a tree. The properties of the
tree are then specified in terms of nodes in the second and third predicates of the
state schema.

Initially, a tree is empty. This implies that all subtrees of the tree are empty.
Hence, as well as null being true for the root node, it must be true for all nodes
of the tree. This is specified recursively in the initial condition by stating that the
left and right subtrees are also in their initial states.

The operation Insert is also defined recursively as follows. If the tree is empty
— that is, null is true — the value of the tree’s root node is assigned to the in-
put value v? and null becomes false indicating that the tree is no longer empty.
If, on the other hand, the tree is not empty, the Insert operation is applied to
either left tree or right tree. Only one of the operations left tree�Insert and
right tree�Insert will be able to occur since the state schema’s predicate must be
true after the operation. That is, if the input value is less than the root node’s value
then only left tree�Insert will be able to occur and if it is greater than or equal to
the root node’s value than only right tree�Insert will be able to occur.

A technique for determining the meaning of recursive operations is presented
in Section 3.7.5 and recursive initial state schemas in Section 3.8.3.

2.3 Modularity and Compositionality

A modular specification is one which comprises a number of separate parts, or
modules, each of which can be understood in isolation. For example, an object-
oriented specification is modular due to the structure provided by its classes. Re-
lated to modularity is the notion of compositionality. A compositional specifica-
tion is one which is modular and where the meaning of the overall specification
can be determined from the meaning of its modules.

Compositionality enables the processes of refining and reasoning about speci-
fications to be simplified. A compositional specification can be refined by refining
one or more of its modules in isolation – that is, without reference to the rest of
the specification. Similarly, properties of such a specification may be derived from
the properties of the modules derived in isolation. Due to its reference semantics,
however, not all specifications in Object-Z are compositional.

2.3.1 Object coupling

Since a class may refer to the attributes of an object it references, it may place
constraints on that object’s state. When these constraints occur as part of the state
predicate, they must be maintained by each operation of the class. This can cause
the possible states an object can be in to be restricted, or a relationship between the
attributes of one object and those of another to be maintained. Such dependencies
between objects are referred to as object coupling.

Object coupling can be used to simplify specifications. Values derived from

Semantic Basis 37

the values of the attributes of one or more objects can be represented by a state
variable and, hence, accessed directly. This affects the behaviour of the objects,
however, and, in many cases, the compositionality of the specification. As an
example, consider the following class B where A is a class with a state variable
x : N.

B

a : A
y : N

a�x � y

IncrementY

Δ�y�

y � � y �1

If the operation IncrementY occurs, y is incremented and, so that the state
predicate holds in the operation’s post-state, a�x would need to be incremented as
well. Whether the operation can occur for an object identified by b : B , however,
depends on the operations of A and the specification in which b is declared.

The operation b�IncrementY cannot change the object identified by b�a –
this can only be done by the application of an operation to b�a. It requires, how-
ever, that the object does change and this is only possible if an operation which
changes it in the desired way occurs concurrently with b�IncrementY . For ex-
ample, if A has an operation IncrementX which increments the variable x then
b�IncrementY can occur in the following specified system.

C

a : A
b : B

b�a � a

IncrementXY b� a�IncrementX � b�IncrementY

The state predicate of class B restricts not only the behaviour of any object
identified by b :B but also the object identified by b�a. This object cannot undergo
any operation which changes its attribute x unless an operation which similarly
changes b�y occurs concurrently. This dependency does not allow a specification
including the class B to be refined in a compositional manner.

For example, consider the case when A, rather than having an operation to
increment x , has an operation IncreaseX to increase x by any amount. On appli-
cation of the operation, the amount by which x increases is chosen nondetermin-
istically. If this operation were applied to the object identified by b�a concurrently

38 The Object-Z Specification Language

with the application of IncrementY to the object identified by b then the amount
by which x is increased would effectively be constrained to 1. Therefore, any
refinement of A which reduced the nondeterminism of IncreaseX so that x could
no longer be increased by 1, would not lead to a refinement of the overall system.

Appropriate proof obligations related to object coupling need to be discharged,
therefore, before a specification is refined in a compositional manner. The exact
nature of these proof obligations and that of compositional refinement in Object-Z
are not discussed in this book.

2.3.2 Object aliasing

Object aliasing occurs whenever two or more variables in a specification refer to
the same object. These variables may be declared in a single class to identify
different roles of the object. For example, a person object may reference another
person object as both its “mother” and “next of kin”. The variables may also be
declared in different classes to model the object being shared between subsys-
tems of the specified system. For example, a memory component may be shared
between several processors in a multiprocessor system.

Although aliasing is useful for specifying such systems, it can also limit what
can be deduced about specified systems in a compositional manner. Often a sys-
tem comprises one or more subsystems — modelled by component objects which
reference other objects. The objects of a subsystem can also be referenced by
objects external to the subsystem — other subsystems or the system object itself.
Such external referencing can be used to effect changes on the objects other than
those changes specified by the subsystem’s operations. For example, consider the
following class A where C is a class with a visible operation Op.

A

a�b : C

a �� b

OpA b� a�Op

The class A models a system comprising two distinct objects of class C refer-
enced by the state variables a and b. The operation OpA changes the object ref-
erenced by a according to the operationOp of C . Although the object referenced
by b is not mentioned in the definition of this operation, if there is a possibility
of external referencing, we cannot deduce that it remains unchanged when OpA
occurs. For example, consider the case where an object of class A is a subsystem
of the system specified by the following class B .

Semantic Basis 39

B

a : A
c : C

OpB b� a�OpA � c�Op

The class has two state variables a and c referencing objects of classes A

and C respectively. When OpB occurs, the object referenced by a undergoes
the operation OpA and that referenced by c undergoes the operation Op. If a�b
and c reference the same object — that is, a�b and c are aliases — then, when
OpB occurs, the object referenced by a undergoes OpA and that referenced by
a�b undergoes the operation Op. Hence, when reasoning about OpA of class A,
the most we can deduce about the object referenced by b is that if it does change
then it changes according to an operation of class C .

This limitation on what can be deduced about the subsystems of a system ap-
ply also to the system itself. No formal distinction is made between those classes
which define subsystems and that which defines the entire system. However, often
there is an informal understanding that there are no further external object refer-
ences. That is, we have specified a closed system. In such cases, we may assume
that any object not changed by a particular operation remains unchanged.

2.3.3 Object containment

Often we wish to restrict the possibility of external referencing. For example,
consider a bank which references a set of customer objects and a set of account
objects. The bank is specified by the class Bank where Customer and Account
are classes defined elsewhere in the specification.

Bank

customers : PCustomer
accounts : PAccount

� � �

To specify a banking system comprising a set of banks, we need to restrict the
external referencing to each of the bank subsystems. Although a customer can be
a customer at a number of banks, the accounts at different banks are distinct. Such
a system is specified by the class BankingSytsem.

40 The Object-Z Specification Language

BankingSystem

banks : PBank

�b1�b2 : banks j b1 �� b2 	 b1�accounts � b2�accounts ��

� � �

The state predicate restricts referencing between the bank subsystems. That
is, while a customer object may be referenced by a number of bank objects, an
account object may only be referenced by one bank object. The conceptual dif-
ference between customers and accounts is that the customers of a bank interact
with the bank whereas the accounts are part of the bank. Therefore, we say that
the account objects are contained in the bank subsystem.

This notion of object containment can be captured by predicates such as that in
BankingSystem. However, such predicates become unwieldy in large specifica-
tions. Furthermore, the constraint is really one on banks and not banking systems.
That is, the notion that a bank contains its accounts should be specified as part of
the Bank class. To facilitate this, Object-Z has a specific notation to model object
containment. This notation enables the specifier to state that objects are contained
in a system when they are declared. For example, consider the system defined by
the schema S below.

S

a : C c�

b : C

The system comprises two objects of class C referenced by the variables a
and b. The object referenced by a is contained in the system as denoted by the
subscript c� appended to the class name. An instance s of the schema is repre-
sented diagrammatically in Figure 2.3. The contained object is represented by a
referenced, and hence independent entity, which is within the box defining the
schema instance.

CC

S

s

ba

Figure 2.3: Representation of object containment

The diagram emphasizes the fact that an object can only be directly contained
by one system. When an object a is contained by a system s and s is contained
by a larger system t , then t is said to indirectly contain a.

The bank could be respecified using the containment notation as follows.

Semantic Basis 41

Bank

customers : PCustomer
accounts : PAccount c�

� � �

Since the account objects of a bank system are contained, no two banks can
reference the same account. The banking system is hence respecified simply as
follows.

BankingSystem

banks : PBank

� � �

Although, in this example, there is no aliasing of account objects, it should be
noted that object containment does not, in general, prevent aliasing. Contained
objects may be referenced by many objects in a specified system. However, they
can only be directly contained by one object. Hence, when all referenced objects
of a certain class are contained, as in the example, aliasing between these objects
cannot occur.

42 The Object-Z Specification Language

3

Syntactic Constructs

An Object-Z specification, like a Z specification, comprises a list of formal para-
graphs — type definitions, axiomatic definitions, global predicates, schema def-
initions and class definitions — interleaved with informal explanatory text and
diagrams. As in Z, line breaks in axiomatic definitions and schema definitions,
including those that occur within class definitions, are interpreted as semicolons
— that is, as declaration or predicate separators — except when such an inter-
pretation is syntactically invalid, in which case they are, as in other parts of the
specification, ignored.

There are, however, two notable differences between the form of a Z specifi-
cation and one in Object-Z. The first is the strict ordering and roles of schemas
within a class definition. In Z, whether the initial state schema appears before
or after the operation schemas of a specification, for example, is, in most cases,
irrelevant. Also, the role of a schema is based on informal conventions. These con-
ventions can change between specifications. For example, the initial state schema
of a specification is usually defined by extending the state schema with additional
predicates defining the initial condition. However, some Z users prefer to spec-
ify the initial condition as the postcondition of an “initialization operation”. In
Object-Z, on the other hand, the role of each schema within a class and its order
with respect to other schemas is strictly defined.

The second difference is that the principle of “definition before use” of Z does
not hold for variables whose values are object identities. That is, variables which
reference objects of the specified system may be declared before the classes of
those objects are defined. Not only does this allow greater flexibility when struc-
turing specifications — for example, self and mutually recursive structures may
be specified — it also enables different design strategies to be employed. For ex-
ample, a system may sometimes be specified in a top-down fashion rather than by
the usual bottom-up approach.

This chapter details the rules of scope and usage of constructs in Object-Z
which determine the allowable forms of a specification. A formal syntax is given
for each construct of Object-Z which is not also in Z using an extended BNF the
extensions of which are described in Chapter 6. The goal of the chapter is to assist
the understanding of the more rigorous descriptions of Object-Z in Chapters 4
and 6. These chapters provide respectively summaries of the descriptions given in
this chapter along with type rules and semi-formal definitions, and a full syntax of
Object-Z including those constructs also in Z.

43

44 The Object-Z Specification Language

3.1 Class Definitions

Object-Z introduces to Z only one new kind of formal paragraph — the class def-
inition. A class definition captures the object-oriented notion of a class by encap-
sulating a single state schema with its initial state schema and all the operations
which can affect its variables. Class definitions are the basic building blocks of
specifications in Object-Z. They can be used to specify the state and operations of
the objects which constitute a system, as well as the system, and its subsystems,
in terms of references to such objects.

A class definition comprises a named box possibly with generic parameters. In
this box there may be, in the order in which they can occur, a visibility list defin-
ing the class’s interface (Section 3.2), inherited class designators (Section 3.3),
local type and constant definitions (Section 3.4), at most one state schema (Sec-
tion 3.5) and associated initial state schema (Section 3.6) and operations (Sec-
tion 3.7). Each of these constructs is local to the class and hence may have names,
where applicable, identical to constructs in other classes.

Paragraph ::�
ClassName [FormalParameters]
[VisibilityList]
[InheritedClass

...
InheritedClass]

[LocalDe�nition
...
LocalDe�nition]

[State]
[InitialState]
[Operation

...
Operation]

The header of a class definition comprises a class name and an optional list
of formal generic parameters. The class name is a word — that is, either it com-
prises an upper or lower case letter followed by a sequence of letters, digits and
underscores, or is a special symbol.

ClassName ::� Word

It is used to identify the class and, hence, must be distinct from all other global
names appearing in the specification. That is, it must be distinct from the names
of all global types and constants, schemas and other classes.

The formal generic parameters appear identically to those of generic schemas
in Z — that is, as a square-bracketed and comma-separated list of identifiers. An
identifier is word with an optional decoration. Decorations are, as in Z, sequences
of the characters �, ? and ! and subscript digits.

Syntactic Constructs 45

FormalParameters ::� �Identi�er� � � � � Identi�er�

Each formal generic parameter effectively introduces a basic type whose scope
comprises the constructs in the class box. It denotes a type whose value is not
yet defined. Therefore, a generic parameter can only be used in an expression
or predicate in which any possible type can be used. Similarly, constants and
variables declared in terms of a generic parameter can only be used in expressions
and predicates which are not type specific. For example, consider the following
generic class A�T �.

A�T �

x : T
y : PT

x � y

Op

Δ�x �
x? : T

x? � y
x � � x?

The state variables x and y are defined in terms of the formal generic parame-
ter T as is the input variable x? of the operation Op. The state predicate x � y is
valid for any instantiation of T . Similarly, the predicates of Op are valid for any
instantiation of T . A predicate such as x � 0 � � 10, however, would not be valid
unless T was instantiated by a type, such as the set of natural numbers, which
included the numbers 0 to 10. Hence, such a predicate cannot appear in this class.

Generic parameters promote class reuse by reducing the need to specify al-
most identical classes. They are particularly useful for specifying classes repre-
senting data structures — such as queues, arrays and trees — whose behaviours
are independent of their constituent elements. When a class is used — to define an
expression (Section 3.9) or as an inherited class (Section 3.3) — its formal generic
parameters must be replaced by actual generic parameters. These are expressions
which define the types represented by the formal generic parameters and, hence,
a particular instantiation of the class.

Each of the constructs which appear within the class box are optional. Hence,
the simplest class with name B and no generic parameters is as below.

B

Generally, however, a class box will include at least one, and usually more
than one, construct. These constructs are detailed in Sections 3.2 to 3.7.

46 The Object-Z Specification Language

3.2 Visibility Lists

The visibility list of a class defines the class’s interface. It explicitly defines which
features — constants, state variables, initial state schema and operations — are
able to be referred to in the environment of an object of the class. It enables
those features which are not external features of the class, but used to simplify the
definitions of the external features, to be hidden. For example, an operation may
be defined in terms of a number of simpler operations which themselves are not
visible. It is also the only construct of a class which is not inherited. Hence, a
subclass can change which features are visible enabling inherited features to be
cancelled or redefined as detailed in Section 3.3.1.

The visibility list precedes all other constructs in a class. It is a bracketed and
comma-separated list of identifiers preceded by the projection symbol �.

VisibilityList ::� � �Identi�er� � � � � Identi�er�

Each identifier is the name of a class feature. When no visibility list is given
in a class, all features are visible. To specify that no features are visible, the empty
visibility list ��� must be explicitly included in the class box.

3.3 Inherited Classes

When a class is inherited by another in Object-Z its definitions — local defini-
tions, state and initial state schemas and operations — are merged with those of
the inheriting class. That is, its definitions are either implicitly available in the in-
herited class or, when they have the same name as an explicit definition, implicitly
identified or conjoined with this definition. It is not always possible, therefore, for
one class to inherit another. Inheritance is only possible when all names common
to the inherited and inheriting classes are used for the same kind of definitions
— the name of an operation in one of the classes may not be the same as that
of a state variable in the other for example — and the definitions themselves are
compatible.

Inherited local types and constants are implicitly available to all definitions in
the class. That is, their names may appear in the predicates and expressions of
these definitions. Any types or constants with the same name occurring in both
the inherited and inheriting class are semantically identified and hence must have
compatible definitions. Two type definitions are compatible only when they define
identical sets. Two constant definitions are compatible when the base types of the
constants are the same. For example, P�X �Y �, where X and Y are basic types,
is the base type of c in the declaration c : X �Y . It is also, the base type of c in
the declaration c : X �Y . Hence, the declarations are compatible.

Base types are either basic types, including the types Z and B as well as the
basic types and class names of the specification, or constructed from these ba-
sic types. The kinds of constructed types are set types, Cartesian product types,

Syntactic Constructs 47

schema types, and, in the case of class names, polymorphic types constructed us-
ing class union. The base type of a type �C , where C is a class name, is a class
union type involving all of the subclasses of C .

The inherited class’s state schema and initial state schema are implicitly con-
joined with those defined explicitly in the inheriting class. Hence, common-named
state variables are identified and must have compatible types as is required for
schema conjunction.

An inherited operation whose name is distinct from those defined explicitly
in the class is implicitly available to the operation definitions. When an inherited
operation has the same name as an operation in the inheriting class, it is implicitly
conjoined with that operation. Hence, common-named input and output variables
of such operations must have compatible types.

It is important to note that conjoining an inherited operation Op with an op-
eration Op in the inheriting class does not affect the meaning of other inherited
operations which are defined in terms of Op. That is, these operations are still
defined in terms of the inherited operation Op, not Op of the inheriting class. For
example, if class A has operations Op1, Op2 and Op3 and Op3 is defined syntac-
tically as Op1�Op2, changing the meaning of Op1 in a subclass B of A does not
change the meaning of Op3 in B . This enables inheritance to be defined so that
replacing Op3 with a semantically equivalent definition in A which does not refer
to Op1 does not change the meaning of B . It also enables A to be replaced by a
refinement such that B , and any specification containing the classes A and B , is
also refined.

Inheritance is indicated in a class definition by the inclusion of inherited class
designators. The inherited class designators appear after the visibility list but
before all other constructs in a class definition. They comprise a class name, an
instantiation of that class’s generic parameters, if any, and possibly a rename list.

InheritedClass ::� ClassName [ActualParameters] [RenameList]

The class name must be that of a class which has been previously defined in
the specification. Forward usage of class names applies only to their use as ex-
pressions (Section 3.9) and not to inheritance. For each formal generic parameter
of the inherited class, the inherited class designator will have an actual generic
parameter in a square-bracketed, comma-separated list.

ActualParameters ::� �Expression� � � � �Expression�

The actual generic parameters are expressions defined in terms of previously
defined global types and constants, class names and, if the inheriting class is also
generic, in terms of its formal generic parameters. Inheriting an instantiation of a
generic class is identical to inheriting a class formed by textually substituting each
occurrence of a formal generic parameter by its corresponding actual generic pa-
rameter. For example, inheriting the class A�T � of Section 3.1 with T instantiated
with N — that is, A�N� — is identical to inheriting the class A1 below.

48 The Object-Z Specification Language

A1

x : N
y : PN

x � y

Op

Δ�x �
x? : N

x? � y
x � � x?

An inherited class designator may also have a rename list . Renaming enables
names to be given to inherited features and variables declared in inherited oper-
ations which are more meaningful for the inheriting class. It also enables name
clashes to be avoided when necessary. The rename list is syntactically identical
to the rename list of a schema in Z — that is, a square-bracketed and comma-
separated list of identifier pairs.

RenameList ::� �Identi�er�Identi�er� � � � � Identi�er�Identi�er�

Each pair of identifiers is of the form new name�old name where old name

is the name of either a feature of the inherited class or a variable declared in one
of its operations, and new name is the name to which it is to be renamed. In the
case where a variable name occurs in the declaration of more than one operation,
all occurrences are renamed.

Inheriting a renamed class is identical to inheriting a class formed by textually
substituting each occurrence of an old name by its corresponding new name.
For example, inheriting class A1 with x renamed to x2, Op renamed to Op2 and
the input variable x? of Op renamed to x2? — that is, A1�x2�x �Op2�Op�x2?�x?�
— is identical to inheriting the class A2 below.

A2

x2 : N
y : PN

x2 � y

Op2

Δ�x2�
x2? : N

x2? � y
x �2 � x2?

Syntactic Constructs 49

A name can only appear as an old name once in a rename list. A new name

can be used more than once or be the same as the name of a feature or operation
variable of the inherited class. Any features which have the same name after
renaming are identified and hence must also have identical types. Similarly, for
any variables occurring in the same operation.

3.3.1 Cancellation and redefinition of features

The only construct of a class which is not inherited is the visibility list. The
visibility list of the inheriting class is, therefore, totally independent of that of the
inherited class. Hence, inherited features can be effectively cancelled — that is,
removed from the class interface — and, through a combination of renaming and
cancellation, redefined.

The merging of common-named attributes and common-named operations in
the inherited and inheriting classes, enables limited redefinition. The constraints
on the values which constants and state variables can take can be strengthened.
Further input and output variables can be added to operations and pre- and post-
conditions can be strengthened.

Arbitrary redefinition of an inherited feature is effected by renaming the fea-
ture and then cancelling the renamed feature by not including it in the inheriting
class’s visibility list . For example, consider the following class B �T � which in-
herits the class A�T � of Section 3.1 and redefines the variable y to be a bag, rather
than a set, of elements of type T .

B �T �
��x �y �Op�

A�y1�y �Op1�Op�

y : bagT

x �� y

Op

Δ�x �
x? : T

x?�� y

x � � x?

The classA�T � is inherited byB �T � with its state variable y renamed to y1 and
its operation Op renamed to Op1. These features are not included in the class’s
visibility list and hence are effectively cancelled. The class defines a new state
variable y which is a bag of elements of type T of which x is a member, and a
new operation Op which changes x to another value in the bag y .

50 The Object-Z Specification Language

The interface of the class is identical to that of A�T � and the state variable
y and operation Op have been effectively redefined. Any feature of an inherited
class can be redefined in the same way. Since, in this case, there is only one feature
unaffected by the redefinition — namely x — the class could have just as easily
been defined without using inheritance. In classes with many features, this is not
always the case. Using inheritance also permits the inclusion of the inheriting
class in polymorphic types defined using the polymorphism operator �.

3.4 Local Definitions

The local definitions of a class define types and constants which may be used
within the class. They appear in a class definition after any inherited class desig-
nators and before the class’s state schema, initial state schema and operations.

The syntax of the local definitions of a class is the same as that of non-generic
global type and constant definitions in Z. All generic parameters required for the
definitions must appear in the class header. The name of a local type or constant
must be distinct from any names occurring before it in the class but may be the
same as any other names occurring in other classes and globally. In the case where
a local type or constant name is the same as a previously declared global name,
for the extent of its scope, the local definition overrides the global definition.

3.4.1 Basic types

A local basic type definition introduces one or more basic types by the inclusion
of their names in a square-bracketed, comma-separated list.

LocalDe�nition ::� �Identi�er� � � � � Identi�er�

The scope of a local basic type extends from its definition to the end of the
class. As with all local types, the value of a basic type is identical for all objects
of the class. This is necessary so that such objects can communicate via input and
output parameters declared in terms of such types.

3.4.2 Axiomatic definitions

A local axiomatic definition introduces one or more local constants by a list of
declarations and an optional list of predicates constraining their values.

LocalDe�nition ::�
Declaration

[
PredicateList]

The scope of a local constant extends from the end of the declaration part of

Syntactic Constructs 51

the axiomatic definition to the end of the class. Hence, as in Z, a constant may not
be used in the declaration of another constant in the same axiomatic definition.

The value a constant may take is constrained by its declared type and the
predicates of its axiomatic definition as well as the predicates of any axiomatic
definition following it in the class and the predicates of the class’s state and initial
state schemas. The value of constants may differ for different objects of the class.

3.4.3 Abbreviation definitions

A local abbreviation definition introduces a type whose name is the identifier on
the right-hand side of the definition and whose values are those of the expression
on the left-hand side.

LocalDe�nition ::� Identi�er �� Expression

The scope of a type introduced by a local abbreviation extends from its defi-
nition to the end of the class.

3.4.4 Free types

A local free type definition introduces a type whose name is the identifier on the
left-hand side of the expression and whose values are given by the branches of
the right-hand side of the definition. (The second occurrence of the symbol ::� is
Object-Z syntax and not part of the BNF notation.)

LocalDe�nition ::� Identi�er ::� Branch j � � � j Branch

A branch is an identifier followed by an optional expression enclosed in double
angle brackets.

Branch ::� Identi�er [hhExpressionii]

If a branch is just an identifier it represents a value of the free type. When
a branch comprises an identifier and an expression, it represents a subset of the
values of the free type. The identifier represents an injection — that is, a one-to-
one function — whose domain is defined by the expression and whose range is
the free type. The subset of values represented by the branch are those related to
values in the expression by the injection. The values of the free type represented
by each branch are distinct.

The scope of a free type includes its definition and extends to the end of its
class. The expression of a branch may, therefore, refer to the name of the free
type allowing recursive definitions. Such recursive definitions are interpreted as
they are in Z — the interested reader is referred to J.M. Spivey’s The Z Notation
(Prentice Hall, 1989 & 1992).

52 The Object-Z Specification Language

3.5 State Schemas

The state schema defines the state variables of a class. Along with any local
axiomatic definitions it defines the possible states of the class. Each of these
states also includes an implicit constant self (Section 3.9.6) denoting the object’s
identity. When a class has no state schema and no local axiomatic definitions,
each of its objects has a single state comprising only the constant self .

The state schema appears in a class definition after the local definitions and
before the initial state schema and operations. It is a nameless box with either
a declaration part and optional predicate part or just a predicate part. The dec-
laration and predicate parts are separated by a horizontal line as in Z. The state
schema’s declaration part may also be partitioned by a Δ into primary and sec-
ondary variables.

State ::� Declaration

[Δ
Declaration]

[
PredicateList]

j Δ
Declaration

[
PredicateList]

j PredicateList

Primary variables may only be changed by an operation when they are in-
cluded in the operation’s Δ-list (see Section 3.7). Secondary variables, on the
other hand, may be changed by any operation. Rather than representing an in-
dependent part of the state information, they are usually defined in terms of the
primary variables and used as a convenient means of accessing derivable informa-
tion. For example, the state schema of a “square” class may have side (denoting
the length of a side) as a primary variable and area and perim (denoting the area
and perimeter respectively) as secondary variables as shown below.

side : N
Δ
area�perim : N

area � side � side
perim � 4� side

The scope of a state variable extends from the end of the declaration part of

Syntactic Constructs 53

the state schema to the end of the class. Hence, as in Z, a state variable may not
be used in the declaration of another state variable.

A state variable’s name must be distinct from that of any inherited or explicitly
defined local definition but may be the same as names occurring in other classes
or globally. In the case where the name of a state variable is the same as that of
a previously declared global name, for the extent of its scope, the state variable
overrides the global definition.

A state schema can also be defined in horizontal form.

State ::� �Declaration [Δ Declaration] [j Predicate] �

j �Δ Declaration [j Predicate] �

j �Predicate �

For example, the state schema of the “square” class above could be written as
follows.

�side : N Δ area�perim : N j area � side � side � perim � 4� side �

3.6 Initial State Schemas

The initial state schema defines the initial states of a class. These are the pos-
sible states of the class that an object of the class which has not undergone any
operations may be in. It appears after the state schema and before any operation
definitions as a box with the special symbol INIT as its name. This symbol cannot
be used for any other purpose in a specification.

InitialState ::�
INIT

PredicateList

The initial state schema has no declaration part — the state variables and con-
stants of the class are available in the environment in which it is interpreted. The
predicates restrict the possible values of the state variables and constants of the
class. They implicitly include the state schemas predicates and any predicates as-
sociated with the constant definitions. When a class has no initial state schema,
the initial states of the class are any possible states of the class.

The initial state schema can also be defined in horizontal form.

InitialState ::� INIT b� �Predicate �

3.7 Operations

The operations of a class define the permissible changes in state that an object
of the class may undergo. Together with the initial state schema they define the

54 The Object-Z Specification Language

reachable states of the class — that is, the states which can be reached starting
from an initial state and applying a sequence of operations. These are the only
states of the class an object may be in.

The operations appear in a class definition after the initial state schema and are
defined either by operation schemas (Section 3.7.1), operation promotions which
model the application of an operation to an object referenced by the class (Sec-
tion 3.7.2), or operations constructed from operation schemas and operation pro-
motions using Object-Z’s operation operators (Section 3.7.3 and Section 3.7.4).
The environment in which operations are interpreted includes the constants and
state variables of the class. This environment is enriched with the state variables
of the class in primed form. The state schema’s predicate in both primed and un-
primed form along with any predicates associated with the constant definitions are
implicitly included in each operation definition.

The scope of an operation extends from its definition to the end of the class. Its
name must be distinct from any other name occurring before it in the class. It can
be the same as a name occurring globally or in another class. In the case where
the name of an operation is the same as that of a previously declared global name,
for the extent of its scope the operation definition overrides the global definition.

3.7.1 Operation schemas

An operation schema is a named box in which there may be a Δ-list, a declaration
part and a predicate part. Each part is optional allowing the entire definition of an
operation to be deferred That is, the operation’s definition may be given only for
subclasses of the class in which the operation occurs.

Operation ::�
OperationName

DeltaList

[Declaration]
[

PredicateList]

j
OperationName

Declaration
[

PredicateList]

j
OperationName

[PredicateList]

An operation name is an identifier.

OperationName ::� Identi�er

A Δ-list is a bracketed and comma-separated list of identifiers preceded by the
symbol Δ.

Syntactic Constructs 55

DeltaList ::� Δ�Identi�er� � � � � Identi�er�

The identifiers are primary variables which the operation may change when
it is applied to an object of the class — all other primary variables remain un-
changed. The absence of a Δ-list in an operation schema is equivalent to having
an empty Δ-list — that is, no primary variables can change.

The declarations are of auxiliary variables needed to define the operation.
They are generally input and output variables but may also include other (pos-
sibly undecorated) variables. The scope of an auxiliary variable comprises only
the operation schema’s predicate part. Therefore, it may not be used in the dec-
laration of another of the operation schema’s variable declarations. The types of
these variables may, however, be given in terms of the state variables of the class
(in both primed and unprimed form) since these are available to the operation def-
inition and not part of it. For example, the operation Op of the class A below
outputs a value from the set denoted by the state variable s .

A

s : PN

Op

Δ�s�
x ! : s

s � � s nfx !g

The name of an auxiliary variable must be distinct from the name of any inher-
ited type or feature and any name explicitly declared before it in the class. It may
be the same as a name declared globally, within another class or within another
operation of its class. In the case where an auxiliary variable’s name is the same as
that of a previously declared global name, for the extent of its scope, the auxiliary
variable overrides the global definition.

The predicates of an operation schema relate the possible states before the op-
eration — denoted by the constants and unprimed state variables — to the possible
states after the operation — denoted by the constants and primed state variables.
The precondition implicit in an operation’s predicate can be derived, as in Z, by
existentially quantifying over the primed state variables and output variables of
the operation. For example, the precondition of Op above is the following.

s � : PN; x ! : s 	 s � � s nfx !g

An operation can only occur when its precondition is satisfied. When its pre-
condition is not satisfied, the operation is said to be blocked — that is, it is not
available for application. This is in contrast to Z where an operation may oc-
cur when its precondition is not satisfied — the result of the operation, in such
cases, being undefined. There are two major consequences of this difference.

56 The Object-Z Specification Language

Firstly, there is no need for the specifier to check that operations are sufficiently
defined and, in the cases where they are not, combine them with appropriate error
schemas. It is, however, important for the specifier to be aware that the operation
definition is complete and explicitly add nondeterminism when required. Sec-
ondly, refinement of an operation by weakening its preconditions is generally not
applicable. Instead, a new operation often needs to be introduced during refine-
ment which, together with the original operation, provides the wider precondition.

An operation schema can also be defined in horizontal form.

Operation ::� OperationName b�OperationExpression

OperationExpression ::� �DeltaList [Declaration] [j Predicate] �

j �Declaration [j Predicate] �

j � [Predicate] �

For example, the operation Op above could have been written as follows.

Op b� �Δ�s� x ! : s j s � � s nfx !g �

3.7.2 Operation promotions

A system class which references a collection of objects can have, as well as opera-
tions which change its state, operations which model the application of operations
to the objects it references. Similarly, any class can have operations which model
the application of operations to objects whose identities are declared as global
constants. Such operations are said to promote the operations of the objects to
operations of the class. An operation promotion is defined using the dot notation
a�Op where a is an expression which evaluates to the identity of the referenced
object and Op is the name of a visible operation of the object’s class.

OperationExpression ::� Expression � Identi�er

Since the state variables in both primed and unprimed form are available to an
operation, they may be used in the expression identifying the object. For example,
the expression may be a state variable as in the class below (A is the class defined
in the previous section).

C

a : A

Op b� a�Op

As with other operations, an operation promotion has an associated Δ-list and
auxiliary variables. Since it does not change any primary variables of the class

Syntactic Constructs 57

in which it occurs the Δ-list is empty. The auxiliary variables are those of the
operation applied to the object. These are declared implicitly in the promoted
operation.

In the case of object identities declared using the polymorphism operator �
or class union, generally only operations in the polymorphic core — that is, op-
erations belonging to all classes which constitute the type — may be promoted.
Operations of a particular class which are not in the polymorphic core may only
be promoted in a scope where the object in question is qualified to be of that class.
This notion of qualification is discussed in Section 3.9.5.

3.7.3 Operation operators

Object-Z has a number of operation operators similar to the schema operators of
Z. These operators are used to modify and combine operation expressions which
include schema definitions and operation promotions. An operation expression
may also be an identifier with an optional rename list enabling previously defined
operations to be modified or combined.

OperationExpression ::� Identi�er [RenameList]

The identifier must be the name of an operation which has been inherited
or previously defined in the class, or the name of the operation being defined.
Recursive operation definitions are described in Section 3.7.5.

The rename list is a square-bracketed and comma-separated list of identifier
pairs.

RenameList ::� �Identi�er�Identi�er� � � � � Identi�er�Identi�er�

Each pair of identifiers is of the form new name�old name where old name

is the name of an auxiliary variable of the operation expression and new name

is the name to which it is to be renamed. Attributes and primed state variables
cannot be renamed as they are only available to the operation expression and not
part of it.

There are six binary operation operators — conjunction�, two kinds of paral-
lel composition k and k!, nondeterministic choice ��, sequential composition o

9 and
the scope enrichment operator 	 used to enrich the environment of one operation
expression with the auxiliary variables of the other.

When two operation expressions are combined to define a new operation their
Δ-lists are united so that the new operation can change any variable which ei-
ther of its constituent operations could have changed. Operation expressions can
only be combined when they are type compatible. That is, any auxiliary variables
common to both operation expressions must have the same base type. The auxil-
iary variables of the resulting operation expression includes all of those from the
arguments. The (base) types of these variables are the same as in the arguments.

58 The Object-Z Specification Language

There is also an operation operator for hiding auxiliary variables of operation
expressions. The hiding operator binds more tightly than the binary operators
which listed in decreasing order of binding power are �, k, k!, �� , o

9 and 	.

Conjunction
The conjunction operator� is a commutative and associative binary operator sim-
ilar to the schema conjunction operator, also denoted by �, of Z.

OperationExpression ::� OperationExpression�OperationExpression

It is used to model the simultaneous occurrence of two operations. For ex-
ample, in the following class the operation IncBoth has the same effect as the
operations IncX and IncY occurring together. That is, IncBoth increments both
x and y .

A

x �y : N

IncX

Δ�x �

x � � x �1

IncY

Δ�y�

y � � y�1

IncBoth b� IncX � IncY

The operation IncBoth of class A above is semantically identical to the oper-
ation schema IncBoth below.

IncBoth

Δ�x �y�

x � � x �1
y � � y�1

It is important to note that it is not always possible to express the operation
resulting from the conjunction of two operation schemas in this way. When one
of the operation schemas refers to a global constant and the other overrides that
global constant with an auxiliary variable of the same name, the predicate of the
first operation schema cannot be interpreted correctly in the presence of the dec-
larations of the second.

Syntactic Constructs 59

Parallel composition
The parallel composition operators k and k! are commutative binary operators sim-
ilar to the (non-commutative) schema piping operator�� of Z. The k ! operator is
associative and the k operator is not.

OperationExpression ::� OperationExpression kOperationExpression

j OperationExpression k! OperationExpression

These operators are used to model communication between simultaneously
occurring operations. They conjoin the operation expressions and, in addition,
identify and equate input variables in either operation with output variables in
the other operations having the same basenames — that is, apart from the ? or
! decorations. For example, if the operation Op1 has an output variable x ! and
the operation Op2 has an input variable x? then these variables are equated in the
operation Op1 kOp2. Similarly, if Op1 has an input variable y? and Op2 has an
output variable y! these are equated in Op1 kOp2. That is, communication occurs
in both directions in contrast to the unidirectional communication of the piping
operator of Z.

The identified input variables are hidden in the resulting operations. With the
k operator, the identified output variables are also hidden. With the k! operator,
the output variables are not hidden and so may be equated with other input vari-
ables in subsequent parallel compositions. For example, in the following class the
operation Op3 has no auxiliary variables while the operation Op4 has an output
parameter x !.

B

n : N

Op1

x ! : N

x ! � n

Op2

Δ�n�
x? : N

n � � n� x?

Op3 b�Op1 kOp2

Op4 b�Op1 k! Op2

The operationOp3 is semantically identical to the following operation schema.

60 The Object-Z Specification Language

Op3

Δ�n�

x : N 	
x � n �
n � � n� x

The existentially quantified variable x denotes the communicated value — x !
of Op1 and x? of Op2.

The operationOp4 is semantically identical to the following operation schema.

Op4

Δ�n�
x ! : N

x ! � n

n � � n� x !

In this case, the input variable x? of Op2 is simply identified with the output
variable x ! of Op1 and the resulting operation.

Parallel composition is particularly useful for modelling inter-object commu-
nication and synchronization — by composing promotions of the objects’ opera-
tions. This is discussed in more detail in Chapter 5.

Nondeterministic choice
The nondeterministic choice operator �� is a commutative and associative binary
operator similar to the disjunction operator� of Z.

OperationExpression ::� OperationExpression �� OperationExpression

It is used to model the occurrence of at most one of a pair of operations. When
only one of the operations is enabled, that operation will occur. When both op-
erations are enabled, the operation to occur is chosen nondeterministically. The
major difference between the nondeterminitic choice operator and the disjunction
operator of Z is that the nondeterministic choice operator is exclusive allowing
only one of its arguments to occur. For example, in the following class which
inherits class A above, IncEither has the effect of either operation IncX occur-
ring or operation IncY occurring but not both. Since both operations are always
enabled the choice as to which occurs is nondeterministic.

A1
A

IncEither b� IncX �� IncY

The operation IncEither of class A1 is semantically identical to the operation
schema IncEither below.

Syntactic Constructs 61

IncEither

Δ�x �y�

x � � x �1 � y � � y

�
y � � y�1 � x � � x

That is, either x is incremented and y is unchanged since y is not in the Δ-list
of IncX , or y is incremented and x is unchanged since x is not in IncY ’s Δ-list.

The use of the nondeterministic choice operator is restricted to argument op-
erations which have the same auxiliary variables. Hence, the resulting operation’s
input and output variables are independent of the argument operation which oc-
curs.

Sequential composition
The sequential composition operator o

9 is a binary operator similar to the schema
sequential composition operator, also denoted by o

9, of Z. It is neither commutative
nor associative.

OperationExpression ::� OperationExpressiono
9OperationExpression

It is used to model two operations occurring in sequence. The entire operation,
however, is atomic and is only enabled when the first operation — that occurring
on the left-hand side of the o

9 — can occur and result in a state from which the
second operation can occur. The operation differs from that of Z in that it also
allows communication between the argument operations. The output variables of
the first operation are identified and equated with the input variables of the second
operation having the same basenames. The identified input and output variables
are hidden in the resulting operation. For example, consider the operation Op5 in
the following class which inherits class B above.

B1
B

Op5 b�Op4
o
9Op2

The operation Op5 of class B1 is semantically identical to the following op-
eration schema. The existentially quantified variables n0 and x denote the value
of the variable n after Op4 and before Op2, and the communicated value respec-
tively.

Op5

Δ�n�

n0 : N; x : N 	
x � n �
n0 � n� x �
n � � n0 � x

62 The Object-Z Specification Language

Scope enrichment
The scope enrichment operator 	 is a binary operator used to introduce an addi-
tional level of scope within an operation. It is neither commutative nor associative.

OperationExpression ::� OperationExpression 	OperationExpression

Its primary purpose is to enable operation promotion to objects whose identi-
ties are not directly available as an attribute or global constant. The scope of any
variable declared in the operation expression on the left-hand side of the expres-
sion is extended to include the operation expression on the right-hand side. For
example, consider the following class where B is the class defined previously.

C

s : PB

Op b� �b1�b2 : s j b1 �� b2� 	 b1�Op1 jj b2�Op2

The operationOp models the parallel composition of two objects whose iden-
tities are in the set s undergoing the operations Op1 and Op2. The left-hand side
of the definition introduces the identities of the objects, b1 and b2, and ensures that
they are distinct. The right-hand side specifies the parallel composition using the
introduced variables b1 and b2.

Hiding
The hiding operator is similar to the hiding operator of Z. The variables to be
hidden appear as a bracketed and comma-separated list of identifiers.

OperationExpression ::� OperationExpressionn�Identi�er� � � � � Identi�er�

The identifiers must be the names of auxiliary variables declared in the opera-
tion expression. Constants and state variables in both unprimed and primed form
cannot be hidden since they are only available to the operation and not part of it.

The resulting operation is identical to the argument operation except that the
hidden variables are no longer accessible in its environment. For example, con-
sider the following class which inherits class B defined previously.

B2
B

Op5 b�Op2 n �x?�

The operationOp5 of class B2 is semantically identical to the following oper-
ation schema.

Op5
Δ�n�

x? : N 	 n � � n� x?

Syntactic Constructs 63

In general, the Δ-list of the resulting operation expression is the same as that
of the argument operation expression. The auxiliary variables of the resulting op-
eration expression are those of the argument operation expression other than the
hidden variables. Their types are the same as in the argument operation expres-
sion.

3.7.4 Distributed operators

Object-Z has three distributed operation operators based on the binary operators
�, �� and o

9. They are used to apply these operators to a collection of similar
operation expressions when this collection is either large — and, therefore, the
use of the binary forms of the operators is unwieldy — or of arbitrary size — and,
therefore, the use of the binary forms of the operators is not possible. In the case
of � and ��, they can also be used to apply these operators to an infinite set of
operation expressions.

The collection of operation expressions to which the operators are applied are
those formed by evaluating a given operation expression for each set of values
assignable to a given declaration and satisfying a given predicate.

OperationExpression ::�� Declaration [j Predicate] 	OperationExpression

j �� Declaration [j Predicate] 	OperationExpression

j o
9 Declaration [j Predicate] 	OperationExpression

The scope of a variable in the declaration comprises the predicate and opera-
tion expression. The types of these variables may be given in terms of the state
variables of the class in both primed and unprimed form.

The name of a variable in the declaration must be distinct from the name of
any inherited type or feature and any name explicitly declared before it in the
class. It may be the same as a name declared globally, within another class or
within another operation of its class. In the case where it is the same as that of a
previously declared global name, for the extent of its scope, it overrides the global
definition.

As an example, consider the following class where B is the class defined pre-
viously.

D

s : PB

Op1 b�� b : s 	 b�Op2

Op2 b� �� b : s j b�n � 10 	 b�Op2

Op3 b� o
9 b : s j b�n � 10 	 b�Op2

64 The Object-Z Specification Language

The operation Op1 of class D models each of the objects of class B whose
identity is in the set s undergoing the operation Op2. For example, if s was the
set fx �y �zg where x , y and z were global constants of type B , then Op1 would
be semantically identical to the following operation.

Op1 b� x �Op2�y �Op2� z �Op2

Operation expressions involving the distributed conjunction operator can al-
ways be expressed in this expanded form except when there is an infinite set of
values assignable to the declaration — for example, when s is infinite in class D .

The operation Op2 of class D models exactly one of the objects of class B
whose identity is in the set s and whose n attribute has a value less than 10 un-
dergoing operation Op2. For example, if s was the set fx �y �zg where x , y and z
were global constants of type B such that x �n and y �n were less than 10 and z �n
was greater than 10, then Op2 would be semantically identical to the following
operation.

Op2 b� x �Op2 �� y �Op2

Operation expressions involving the distributed choice operator can also al-
ways be expressed in this expanded form except when there is an infinite set of
values assignable to the declaration.

The operation Op3 of class D models each object of class B whose identity is
in the set s and whose n attribute has a value less than 10 undergoing the operation
Op2 in turn. The order in which the objects undergo the operation is arbitrary. For
example, if s was the set fx �y �zg where x , y and z were global constants of type
B and x �n and y �n were less than 10 and z �n was greater than 10, thenOp2 would
be semantically identical to the following operation.

Op3 b� �x �Op2
o
9y �Op2����y �Op2

o
9 x �Op2�

In this case, the order doesn’t make a difference and, in fact, the sequential
composition is identical to conjunction since the composed operations affect dis-
tinct objects. Sequential composition is more useful when one or more objects is
affected by subsequent composed operations. For example, consider the following
class D1 which inherits class D above.

D1
D

b1 : B

b1 � s

Op4 b� o
9 b2 : s j b2 �� b1 	 b2�Op1 k b1�Op2

The operation Op4 of D1 models an object of class B whose identity is in the
set s — denoted by the state variable b1 — undergoing operation Op2 in parallel

Syntactic Constructs 65

with each other object of class B whose identity is in s , in turn, undergoing oper-
ation Op1. That is, the object identified by b1 is affected by every operation in the
sequential composition.

When there is an infinite set of values assignable to the declaration of a dis-
tributed sequential composition, there is, in general, no possible postcondition —
since there is no state representing the termination of the sequence of operations.
Hence, the precondition, which requires the existence of a postcondition, is false
and such an operation can never occur.

3.7.5 Recursion

A recursive operation definition is one in which the operation expression defining
the operation is given in terms of the operation it is defining. The operation’s name
may appear as the applied operation in an operation promotion or as an argument
to an operation operator. Operation names, unlike Z schema names, cannot occur
in the declarations and predicates of operation schemas.

Recursive operation definitions risk being circular and, hence, having no real
meaning. Such circular definitions are interpreted as having a false precondition
— that is, they can never occur. For example, consider the following class A.

A

n : N

Op1 b� �Δ�n� j n � � n�1 �o
9 Op1

Op2 b� ��Δ�n� j n � � n�1 �o
9 Op2�

��

�n � 10 �

The recursion in the operation Op1 of class A never terminates. Each occur-
rence of operation Op1 involves another occurrence of Op1. Such an operation
has a false precondition and, therefore, is not really useful in a specification.

The recursion in the operationOp2, on the other hand, can terminate whenever
the value of the state variable n is greater than 10. The operation increments n a
nondeterministic number of times before terminating with n � 10. That is, it is
semantically identical to the following operation.

Op2 b� �� i : N 	 �Δ�n� j n � � n� i � n � � 10 �

A general technique for constructing an operation which is semantically iden-
tical to a recursively defined operation involves transforming the recursive opera-
tion definition into a non-recursive function whose domain and range values are
operations. For example, the recursive definition of Op2 in class A is transformed
into the following function φ.

66 The Object-Z Specification Language

φ � λx 	 ��Δ�n� j n � � n�1 �o
9 x � �� �n � 10 �

An occurrence of Op2 which terminates without any recursion is semantically
identical to an occurrence of the operation denoted by φ�� false ��.

φ�� false ��� ��Δ�n� j n � � n�1 �o
9 �false �� �� �n � 10 �

� �n � 10 �

That is, an occurrence of Op2 without recursion is identical to an occurrence
of an operation which does not change n but requires (as a precondition) that n is
greater than 10.

An occurrence of Op2 which terminates after at most one recursion is seman-
tically identical to an occurrence of the operation denoted by φ�φ�� false ���.

φ�φ�� false ���� φ��n � 10 ��
� ��Δ�n� j n � � n�1 �o

9 �x � 10 �� �� �n � 10 �
� �Δ�n� j n � � n�1 � n � � 10 � �� φ�� false ��

Continuing in this fashion, and noting that the operation expression �n � 10 �
resulting from φ�� false �� is semantically identical to �Δ�n� j n � � n � 0 � n � �
10 �, we can deduce a general form for φi�1�� false �� (where i is any natural num-
ber). That is, we can deduce a general form for an operation which is semantically
identical to an occurrence of Op2 which terminates after at most i recursions.

φi�1�� false �� � �Δ�n� j n � � n� i � n � � 10 � �� φi�� false ��

An operation semantically identical to Op2 is given by the limit as i ap-
proaches infinity of φi �� false ��. This limit can be expressed as follows.

limiti�∞ φi �� false �� � �� i : N 	 �Δ�n� j n � � n� i � n � � 10 �

This technique can be used to interpret any recursive operation definition. For
example,Op1 of class A can be similarly transformed into the following function.

χ � λx 	 �Δ�n� j n � � n�1 �o
9 x

The successive application of χ to the operation � false � produces the following
results.

χ�� false �� � �Δ�n� j n � � n�1 �o
9 � false � � � false �

χ�χ�� false ��� � �Δ�n� j n � � n�1 �o
9 � false � � � false �

χi�1�� false �� � �false �� for all i � N

The limit of χi �� false �� as i approaches infinity is simply the schema �false �.
Therefore, the recursive definition of Op1 in A is semantically identical to the
following operation definition.

Syntactic Constructs 67

Op1 b� � false �

As another example involving operation promotion consider the class B be-
low.

B

b : B
n : N

Op b� b�Op �� �Δ�n� j n � � n�1 �

The operationOp of class B will either increment the state variable n or apply
Op to the object of classB identified by the state variable b. To construct a seman-
tically identical non-recursive operation in this case requires first transforming B
to a semantically identical class definition.

B

��b�n�Op�

b : B
n : N
Δ
s : N � B

s�0� � self

� i : N 	 s�i��b � s�i �1�

False

false

Increment

Δ�n�

n � � n�1

Op b� b�Op �� Increment

This definition ofB introduces a secondary variable s — modelling the infinite
sequence of object references self � b� b�b� b�b�b� � � � — and two operationsFalse
and Increment . These features are not in the class’s visibility list and hence do
not affect B ’s interface. The recursive operation Op can be transformed into the
following function.

ψ � λx 	 b�x �� Increment

Rather than applying ψ to � false �, we apply it to the semantically identical
operation False. This is necessary so that the result of the function application is
a syntactically valid operation expression.

68 The Object-Z Specification Language

ψ�False� � b�False �� Increment � Increment

ψ�ψ�False�� � b�Increment �� Increment

ψi�1�False� � s�i��Increment �� ψi �False�� for all i � N

Op is semantically identical to the limit as i approaches infinity of ψi �False�.
That is, its definition in B is semantically identical to the following.

Op b� �� i : N 	 s�i��Increment

The technique illustrated by the examples above is representative of a general
technique of fixed-point theory for interpreting recursive definitions — the non-
recursive definitions of the operations are the least fixed points of the operations’
representative functions. The technique requires that the function representing the
recursive definition is continuous and that there exists a complete partial order on
its domain — that is, a partial order on its domain which has a least upper bound
for all subsets of its domain and a minimum member.

The complete partial order required for Object-Z operations � is defined be-
low (A and B are any operations).

� false � � A

A� A �� B

A� � true �

The least upper bound for a set s of operations is �� x : s 	 x . The minimum
member is � false �. The proof of continuity of functions such as φ, χ and ψ above
is straightforward but not included in this book.

3.8 Predicates

Two new kinds of predicates are introduced in Object-Z — Boolean-valued ex-
pressions and predicates that state that an object is in an initial state.

3.8.1 Boolean-valued expressions

A new basic type B is introduced in Object-Z to enable the declaration of variables
constructed from Boolean values. A Boolean value is a logical value — that is,
it is either true or false. Therefore, an expression which evaluates to a Boolean
value can be used as a predicate.

Predicate ::� Expression

For example, consider the following class A. The operationOp ofA can occur
whenever the Boolean-valued variable a is true. After the operation, a is false.

Syntactic Constructs 69

A

a : B

Op

Δ�a�

a

� a �

Boolean-valued expressions can also be used in the same ways as other ex-
pressions — given a�b : B , for example, a � b is a valid predicate. It is important
to note, however, that a � true and a � false are not valid predicates — true and
false are predicates in Z, not expressions. The correct way to express the value of
a Boolean-valued variable a is by a � true or a � false, or simply by a or � a.

3.8.2 Promoted initial state predicates

The initial state predicate of a class whose initial state schema is visible may be
promoted to any scope in which an object identity of the class may be referenced.
The promoted predicate states that the identified object is in an initial state. The
promotion is specified using the dot notation a�INIT where a is an expression
which evaluates to the identity of the object.

Predicate ::� Expression �INIT

For example, consider the following class A which has a state variable a iden-
tifying an object of the class.

A

a : A
n : N

INIT

n � 0

Op

Δ�n�

a�INIT

n � � n�1

The operationOp ofA increments the state variable n. It can only occur when
the object identified by the state variable a is in its initial state — that is, the state

70 The Object-Z Specification Language

variable n of the object identified by a is equal to 0. It is semantically identical to
the following schema.

Op

Δ�n�

a�n � 0
n � � n�1

The predicate a�INIT evaluates to true when the object identified by a has
not yet undergone any operations or has undergone one or more operations and
returned to a state satisfying the initial state predicate of its class.

It is important to note that this notation cannot be used in an operation to define
the post-state of an object. The notation a ��INIT refers to the pre-state values of the
object referenced by a � — that is, for the class A above it is semantically identical
to a ��n � 0. The notation a�INIT � is not valid.

3.8.3 Recursion

Consider replacing the initial state schema in the class A above with the following
recursively defined initial state schema.

INIT

n � 0 � a�INIT

As with operations, recursive definitions of initial state schemas risk being cir-
cular and, hence, having no real meaning. Such circular definitions are interpreted
as having a true predicate — that is, they place no constraints on the initial states
of the class.

A general technique, similar to that described for operations in Section 3.7.5,
can be used for constructing an initial state schema which is semantically identical
to one defined recursively. Firstly, the class in which the definition occurs must
be extended with a Boolean-valued constant b which is true. The recursive defi-
nition is then transformed into a non-recursive function whose domain and range
values are initial state schemas. For example, the initial state schema above is
transformed into the following function φ.

φ � λx 	 �n � 0 � a�x �

The initial state schema is semantically identical to that given by the limit as i
approaches infinity of φi �b�.

φ�b� � �n � 0 � a�b � � �n � 0 �

φ�φ�b�� � �n � 0 � a�n � 0 �

Syntactic Constructs 71

Hence, the initial state schema above is semantically identical to the following.

��s : N � A j s�0� � self � �� i : N 	 s�i��a � s�i �1�� 	
� i : N 	 s�i��n � 0 �

Note that the expression self�n is equivalent to n.

3.9 Expressions

Object-Z introduces two new kinds of types — those corresponding to the object
identities of a single class and those constructed from the object identities of a
collection of classes using the polymorphism operator � and class union �. Ad-
ditional expressions are introduced which represent these types and refer to their
instances.

3.9.1 Class names

A class name can be used as an expression and evaluates to the set of identities
of objects of the class. This set is either countably infinite or, when the class has
no initial states, empty. The latter occurs when the class’s initial state predicate
evaluates to false, or the class has no initial state schema and its state schema’s
predicate or a predicate associated with a constant definition evaluates to false.

The class name is followed by an instantiation of the class’s generic parame-
ters, if any, and possibly a rename list.

Expression ::� ClassName [ActualParameters] [RenameList]

The class name must be that of a class in the specification. It is possible that
the expression occurs prior to the class’s definition. In such cases the usage of the
class name is referred to as forward usage. Such usage facilitates the specification
of recursive structures and enables systems to be specified in a top-down fashion.

Each formal generic parameter of the class is replaced by an actual generic
parameter in a fashion identical to that described for inherited class designa-
tors (Section 3.3). The actual generic parameters appear in a square-bracketed,
comma-separated list. They are defined by expressions which may refer to any
names, including those of any formal generic parameter, whose scope includes
the class name expression.

ActualParameters ::� �Expression� � � � �Expression�

Renaming enables more meaningful names to be given to the visible features
and auxiliary variables of visible operations of particular instances of a class. The
rename list is a square-bracketed, comma-separated list of identifier pairs.

RenameList ::� �Identi�er�Identi�er� � � � � Identi�er�Identi�er�

72 The Object-Z Specification Language

Each pair of identifiers is of the form new name/old name where old name
is the name of a visible feature of the class or an auxiliary variable of one of its
visible operations and new name is the name to which it is to be renamed. Each
old name is replaced by its corresponding new name in a fashion identical to that
described for inherited class designators (Section 3.3).

A name can only appear as an old name once in a rename list but can appear
as a new name more than once provided that any features or variables of the same
operation which have the same name after renaming also have identical types.

It is important to note that renaming does not introduce a new type — the
set of object identities of A�y�x �, where A is a class with a feature or auxiliary
variable x , is identical to that of A. Renaming simply introduces new names for
referring to particular visible features of the class.

3.9.2 Polymorphism

The polymorphism operator � facilitates the specification of systems using tra-
ditional, inheritance-based polymorphism. It is used to define the set of object
identities of a given class together with the object identities of all classes derived,
either directly or indirectly, from that given class via inheritance. (Examples of
the use of the polymorphism operator are given in Chapter 1.)

Expression ::� �Expression

The expression following the � is a class name followed by an instantiation of
its formal generic parameters, if any, and possibly a rename list. The syntax and
interpretation of the actual generic parameters and rename list are as described for
class name expressions above.

The class name must be that of a class in the specification and may occur
either before or after the expression. All subclasses of the class — that is, those
classes derived either directly or indirectly via inheritance and occurring either
before or after the expression — must have the same formal generic parameters
as the class and include, for each visible feature of the class, an identically named
visible feature. Furthermore, these common-named visible features must be type
compatible and, in the case of operations, have identical auxiliary variables. Type
compatibility of constants and state variables was described in Section 3.3 and
type compatibility of operations was described in Section 3.7.3.

The restriction on the subclasses ensures that each can be used in the same way
as the given class. In particular, any expression applicable to an object of the given
class is also applicable to objects of each of the subclasses. Any expression valid
for an object of the given class is hence valid for an object of the polymorphic
type. Expressions which are valid for objects of particular subclasses but not for
the given class are not valid for objects of the polymorphic type unless the type of
these objects is further qualified. This is discussed in Section 3.9.5 below.

Syntactic Constructs 73

3.9.3 Class union

Class union enables the definition of a set comprising the object identities of a
collection of classes. It is a more general form of polymorphism than that of the
polymorphism operator � since the classes need not be related by inheritance nor
have any restrictions on their features. The expression constructs a set of object
identities which is the union of the sets of identities of its constituent classes. Like
set union, class union is commutative and associative.

Expression ::� Expression� Expression

Each constituent expression of a class union is either a class union expression
or a class name followed by an instantiation of its formal generic parameters, if
any, and possibly a rename list. The syntax and interpretation of the actual generic
parameters and rename list are as for a class name expression.

The class names must be of classes in the specification and may occur either
before or after the expression. The classes need not be related at all. However,
expressions involving object identities of a class union type are only valid when
they are valid for object identities of each constituent class of the class union
expression, or when the class of the object identity is further qualified. This is
discussed in Section 3.9.5 below.

3.9.4 Object containment

The object containment notation facilitates the specification of systems where ob-
jects are “contained” within others — that is, where objects are uniquely associ-
ated with another object of which they are conceptually a component. This notion
can be used to restrict access to objects since they can only be directly contained
by one object. An object can be indirectly contained by another object — when
the other object contains the object’s containing object — and can be referenced
by any object. However, direct containment is unique. (An example of the use of
object containment is given in Chapter 2.)

Expression ::� Expression c�

The expression preceding the c� subscript is a class name followed by an in-
stantiation of its formal generic parameters, if any, and possibly a rename list. The
syntax and interpretation of the actual generic parameters and rename list are as
for a class name expression.

The containment expression does not introduce a new type — the type A c�,
where A is a class name, is identical to the type A (both represent the same set
of object identities). However, implicitly associated with A c� is a global predicate
which restricts distinct declarations of this type from having the same value and a
global predicate which prevents an object either directly or indirectly containing
itself.

74 The Object-Z Specification Language

3.9.5 Promoted attributes

The visible attributes of an object may be promoted to any scope in which that
object’s identity may be referenced. This is done using the dot notation.

Expression ::� Expression � Identi�er

The expression on the left-hand side of the dot must evaluate to a variable
whose type is the set of object identities of a single class or the set of object iden-
tities of a collection of classes (formed either by the polymorphism operator or
class union). In the former case, the identifier on the right-hand side of the dot is
the name of a visible attribute of the class. In the latter case, the identifier on the
right-hand side of the dot must, in general, be the name of a visible attribute in the
polymorphic core of the collection of classes. The polymorphic core is the set of
features — attributes and operations — common to all objects in a polymorphic
collection. For those collections of classes formed using the polymorphism oper-
ator, the polymorphic core is simply the set of attributes (and operations) of the
root class of the hierarchy (see Section 3.9.2).

The values which constitute a polymorphic type are the union of those which
constitute each of its constituent class types. Hence, it is possible to compare
such types — for example, in predicates such as A�A
B . It is also possible to
indicate that a variable of a polymorphic type belongs to a particular constituent
class of that type. For example, given the declaration a : A
B , the predicate
a � A is valid. We say that a is qualified by this predicate to be an identity of
class A.

Any visible features of such a class A can be promoted within a scope where
a variable of the polymorphic type is qualified to be of that class. For example,
if class A has attribute x : N and class B does not then, given the declaration
a : A
B , the predicate a�x � 10 is valid in any scope where a is qualified to be
of class A— for example, the operation expression �a �A � 	 �a�x � 10 � is valid.

3.9.6 Self

Each class has an implicit constant self whose value is an object identity of the
class. The value of this constant for a given object is the identity of that object.
Hence, it is used for specifying objects which reference themselves. (An example
of the use of self is given in Chapter 2.)

Expression ::� self

The constant self can be used in the same way as any other constant of a class
except that it never appears in the class’s visibility list — it is implicitly visible —
and cannot be renamed. self is a reserved word and cannot be used for any other
purpose.

4

Language Definition

This chapter provides a reference manual for the Object-Z language. It is intended
to be kept on hand when using the language for clarification and reinforcement of
the meaning and use of Object-Z constructs. The chapter includes a “manual
page” for each of the syntactic constructs introduced in Chapter 3. Each manual
page comprises a brief description of the construct, its concrete syntax, its type
rules — stated informally in English text — and a semi-formal definition of the
construct in a simple meta-language.

The meta-language enables each Object-Z construct to be defined in terms of
constructs of Z which intuitively capture its meaning. The definitions are stated in
terms of meta-variables representing syntactic constructs of Object-Z, and meta-
functions which relate meta-variables. The meta-variables are not explicitly de-
clared in the definitions. Rather, the following naming conventions are adopted
and used throughout the chapter.

A�B classes
X generic types
VL visibility lists
LD local definitions
ST state schemas
IN initial state schemas
Op operation names
OP operations
S �T schemas
d declarations
p�q predicates
s � t expressions
a�b object references
x �y �z variables

Note that a and b are only used for variables whose values are object identities —
x , y and z are used for any variables.

The meta-functions are denoted by names in bold print — for example, visible
is a meta-function that returns the set of visible features of a class it is applied to.
We begin the chapter by providing a complete list of the meta-functions and their
meanings.

75

76 The Object-Z Specification Language

4.1 Meta-Functions

The meta-language used in this chapter uses a set of meta-functions to facilitate
the expression of the meaning of Object-Z constructs in a semi-formal way. Each
meta-function maps a subset of syntactic constructs of Object-Z to syntactic con-
structs of Z. They enable complex constructs to be decomposed into simpler ones.
For example, an Object-Z operation can be decomposed into a Z schema and a
set of variables representing the Δ-list. These components of an operation can
then be used, for example, to give the meaning of applying that operation to an
object. Below we provide complete lists of the meta-functions that can be applied
to particular constructs.

The meta-functions that can be applied to a class are

visible which returns the set of visible features,
inherited which returns the set of inherited classes,
types which returns the set of local types,
state which returns a Z schema representing the state, and
init which returns a Z schema representing the initial state.

Also, given a name Op of an operation of a class, Op is a meta-function which
returns a tuple comprising a set of variables representing the contribution to the
Δ-list of the operation — in addition to that of any inherited operations of the
same name — and a Z schema representing the contribution to the schema of the
operation.

The only meta-function that can be applied to a visibility list is

visible which returns the set of features in the list.

The meta-functions that can be applied to a local definition are

types which returns the set of declared types, and
state which returns a Z schema representing the contribution to

the state of the class. The contribution of local definitions
is of the form of constant declarations and predicates con-
straining constants and types.

The only meta-function that can be applied to a state schema is

state which returns a Z schema representing the contribution to
the state of the class.

Similarly, the only meta-function that can be applied to an initial state schema
is

init which returns a Z schema representing the contribution to
the initial state of the class.

Language Definition 77

The meta-functions that can be applied to an operation are

schema which returns a Z schema representing the operation,
delta-list which returns the set of variables in the operation’s Δ-list,
inputs which returns the set of basenames of input variables, and
outputs which returns the set of basenames of output variables.

The meta-language also has two meta-functions which can be applied to Z
constructs — that is, to schemas, declarations, predicates and expressions. The
first, vars, returns the set of variables declared in a schema or declaration. It is
defined as follows. (The definitions for schema expressions can be deduced from
the definition for their expanded form.)

vars��d j p �� � vars�d�
vars�d1; d2� � vars�d1�
vars�d2�
vars�x1� � � � �xn : t� � fx1� � � � �xng

The second meta-function subs is an infix function used for substituting syn-
tactic constructs corresponding to expressions with other syntactic constructs cor-
responding to expressions. The substitution can be made to a schema, declara-
tion, predicate or expression and applies to all expressions in the construct except
names of bound variables. For example,

�a�x�x �a�y�y �a�z�z � subs ��x : z 	 x � y�

is �x : a�z 	 x � a�y .
There is no guarantee that the result of substitution is well-formed.
The meta-function subs is defined as follows. (The definitions for schema

expressions can be deduced from the definition for their expanded form. Only
indicative examples of substitution into predicates and expressions are given.)

�x�y � subs �d j p �� ��x�y � subs d j �x�y � subs p � if x �� vars�d�
� ��x�y � subs d j p � if x � vars�d�

�x�y � subs �d1; d2� � �x�y � subs d1; �x�y � subs d2

�x�y � subs �x1� � � � �xn : t� � x1� � � � �xn : �x�y � subs t
�x�y � subs ��d j p 	 q�� ��x�y � subs d j �x�y � subs p 	 �x�y � subs q

if x �� vars�d�
� ��x�y � subs d j p 	 q if x � vars�d�

�x�y � subs �p � q� � �x�y � subs p � �x�y � subs q
�x�y � subs �λd j p 	 q�� λ�x�y � subs d j �x�y � subs p 	 �x�y � subs q

if x �� vars�d�
� λ�x�y � subs d j p 	 q if x � vars�d�

�x�y � subs �s t� � �x�y � subs s �x�y � subs t
�x�y � subs fs1� � � � �sng� f�x�y � subs s1� � � � � �x�y � subs sng
�x�y � subs �s �y� � �x�y � subs s �y
�x�y � subs y � x

�x�y � subs z � z where z is distinct from y

78 The Object-Z Specification Language

4.2 Global Paragraphs

Name

Class definition

Description

A class definition introduces a class in terms of its states, initial states and
operations. The states are defined by a state schema together with local type
and constant definitions. An initial state schema and operations define the
initial states and permissible state changes respectively. Together they define
the reachable states which an object of the class may be in.

A class may be defined in terms of one or more other classes via inheritance
— the inherited classes’ local definitions, state and initial state schemas and
operations are merged with those in the class.

All features of a class which are visible features of its objects are listed in a
visibility list.

Syntax

Paragraph ::�
ClassName [FormalParameters]
[VisibilityList]
[InheritedClass

...
InheritedClass]

[LocalDe�nition
...
LocalDe�nition]

[State]
[InitialState]
[Operation

...
Operation]

Type Rules

A class’s name must be distinct from the names of all global variables and
constants, (global) schemas and other classes in the specification. The formal
generic parameters can only be used in expressions in the class body in which
any possible type could be used. A type or feature of an inherited class and a
type or feature defined explicitly with the same name must be type compatible.

Language Definition 79

Definition

Consider the following class definition.

A�X1� � � � �Xn �
VL

A1
...
Am

LD1
...
LDi

ST

IN

Op1 b�OP1
...
Opj b�OPj

visible�A�X1� � � � �Xn �� � visible�VL�

inherited�A�X1� � � � �Xn �� � s
fA1� � � � �Amg
where s � inherited�A1�
 � � �
 inherited�Am�

types�A�X1� � � � �Xn �� � s
 types�LD1�
 � � �
 types�LDi �
where s � types�A1�
 � � �
 types�Am�

state�A�X1� � � � �Xn �� � �self : A�X1� � � � �Xn � ��S 	 state�ST �

where S � state�A1�� � � �� state�Am� 	 state�LD1� 	 � � � 	 state�LDi�

init�A�X1� � � � �Xn �� � S 	 init�IN �

where S � init�A1�� � � �� init�Am�

Opk�A�X1� � � � �Xn ��� � �s
 t �S 	 schema�Opk b�OPk ��
where k � 1 � � j

s � �rst�Opk�B1��
 � � �
�rst�Opk�Bl ��
t � delta�Opk b�OPk �

S � second�Opk�B1��� � � �� second�Opk�Bl ��
fA1� � � � �Amg�domOpk � fB1� � � � �Blg

Op�A�X1� � � � �Xn �� � �s �S �
where Op �� fOp1� � � � �Opj g

s � �rst�Opk�B1��
 � � �
�rst�Opk�Bl ��

S � second�Opk�B1��� � � �� second�Opk�Bl ��
fA1� � � � �Amg�domOp � fB1� � � � �Blg ���

80 The Object-Z Specification Language

4.3 Class Paragraphs

Name

Visibility list

Description

The visibility list defines the interface of a class — that is, those features of
objects of the class which are visible. When no visibility list is given in a class,
all features are visible.

Syntax

VisibilityList ::� � �Identi�er� � � � � Identi�er�

Type Rules

Each name in the visibility list of a class must be the name of a feature —
possibly an inherited feature — of the class.

Definition

visible���x1� � � � �xn �INIT�Op1� � � � �Opm�� �
fx1� � � � �xn �INIT�Op1� � � � �Opmg

Language Definition 81

Name

Inherited class

Description

An inherited class designator is used to specify a class being inherited by an-
other class. The inherited class must have any generic parameters instantiated
by actual parameters and may have one or more features renamed.

Syntax

InheritedClass ::� ClassName [ActualParameters] [RenameList]

Type Rules

An inherited class’s name must be that of a class defined previously in the
specification. A class cannot inherit itself. The number of actual parameters
must match the number of generic parameters in the class definition. The “old”
names in the rename list must be of attributes or operations of the defined
class, or of auxiliary variables of its operations. The “old” names must also
be distinct. If a “new” name appears twice in a rename list then the features
corresponding to the associated “old” names must be type compatible. If a
“new” name is the same as that of an existing feature of the class then that
feature and the feature corresponding to the associated “old” name must be
type compatible.

Definition

Let class A�X1� � � � �Xn � have operations Op1� � � � �Opi and consider the fol-
lowing inherited class designator B .

B �A�t1� � � � � tn ��x1�y1� � � � �xm�ym �Opi�1�Op1� � � � �Opi�j �Opj �
where j � i

types�B� � types�A�

inherited�B� � inherited�A�X1� � � � �Xn ��

state�B� � �t1�X1� � � � � tn�Xn � subs �state�A��x1�y1� � � � �xm�ym ��

init�B� � �t1�X1� � � � � tn�Xn � subs �init�A��x1�y1� � � � �xm�ym ��

Opi�k�B� � �t1�X1� � � � � tn�Xn �x1�y1� � � � �xm�ym � subs Opk�A�
where k � 1 � � j

Opk�B� � �t1�X1� � � � � tn�Xn �x1�y1� � � � �xm�ym � subs Opk�A�
where k � j �1 � � i

82 The Object-Z Specification Language

Name

Basic type

Description

A local basic type definition introduces one or more basic types which are
local to the class.

Syntax

LocalDe�nition ::� �Identi�er� � � � � Identi�er�

Type Rules

The names of the basic types must be distinct from any names occurring before
them in the class.

Definition

types��t1� � � � � tn �� � ft1� � � � � tng

state��t1� � � � � tn �� � � true�

Language Definition 83

Name

Axiomatic definition

Description

A local axiomatic definition introduces one or more constants which are local
to the class.

Syntax

LocalDe�nition ::�
Declaration

[
PredicateList]

Type Rules

The names of the constants must be distinct from any names occurring before
them in the class.

Definition

types�d j p� ��

state�d j p� � �d j p �

84 The Object-Z Specification Language

Name

Abbreviation definition

Description

A local abbreviation definition introduces a type which is local to the class.

Syntax

LocalDe�nition ::� Identi�er �� Expression

Type Rules

The name of the type must be distinct from any name occurring before it in
the class.

Definition

types�t �� s� � ftg

state�t �� s� � � t � s �

Language Definition 85

Name

Free type

Description

A local free type definition introduces a free type which is local to the class.

Syntax

LocalDe�nition ::� Identi�er ::� Branch j � � � j Branch

Type Rules

The name of the type must be distinct from any name occurring before it in the
class. The identifiers in the branches of the definition must be distinct from
the name of the type, each other, and all names occurring before the definition
in the class.

Definition

A local free type definition introduces, as well as a type, a constant for each
branch. These constants represent the complete set of values of the type as
detailed in J.M. Spivey’s The Z Notation (Prentice Hall, 1989 & 1992).

types�t ::� x1 j � � � j xn j y1hhs1�t �ii j � � � j ymhhsm �t �ii� � ftg

state�t ::� x1 j � � � j xn j y1hhs1�t �ii j � � � j ymhhsm �t �ii� �

x1� � � � �xn : t
y1 : s1�t �� t ; � � � ; ym : sm �t �� t

disjointhfx1g� � � � �fxng� rany1� � � � � ranymi
�z : Pt 	

fx1� � � � �xng
y1�j s1�z � j�
 � � �
ym�j sm �t � j�� z � t � z

86 The Object-Z Specification Language

Name

State schema

Description

The state schema defines the state variables of the class. Together with the
local axiomatic definitions, it defines the states of the class. The state vari-
ables are partitioned into primary and secondary variables — the latter may
be implicitly changed by any operation and are generally used to conveniently
access otherwise derivable information.

Syntax

State ::� �Declaration [Δ Declaration] [j Predicate] �

j �Δ Declaration [j Predicate] �

j �Predicate �

Type Rules

The names of the state variables must be distinct from any names occurring
before them in the class.

Definition

state��d1Δd2 j p �� � �d1; d2 j p �

Language Definition 87

Name

Initial state schema

Description

The initial state schema of a class defines the initial states of a class — that
is, the states its objects are in before they undergo any operations. It has
no declarations but may refer to the implicitly available state variables of the
class.

Syntax

InitialState ::� INIT b� �Predicate �

Definition

An initial state schema in class A is defined as follows.

init�INIT b� �p �� � �state�A� j p �

88 The Object-Z Specification Language

Name

Operation

Description

An operation defines one or more permissible changes of state that an object
of its class may undergo. Together with the initial state schema, the operations
define the reachable states of the class — that is, the states of the class that an
object of the class may be in.

An operation’s declarations and predicates may refer to the implicitly available
pre- and post-values of state variables of the class.

Syntax

Operation ::� OperationName b�OperationExpression

Type Rules

An operation’s name must be distinct from any name occurring before it in the
class.

Definition

An operation in class A is defined as follows.

delta�Op b�OP� � delta�OP�

schema�Op b�OP� � Δstate�A� 	 schema�OP�

Note

The meaning of ΔS in Object-Z differs from that in Z — it is not simply
S � S �. Given that a is an object identity declared in S , expressions of the
form a�x in S are replaced by a ��x in S �. However, a ��x refers to the pre-state
value of the x variable of a �, not its post-state value.

Object-Z does not have a notation to refer to the post-state value of a variable
of an object identified by a variable such as a �. Hence, it is generally not pos-
sible to expand ΔS in terms of declarations and predicates. For the purposes
of the definitions in this chapter, however, we will let this value be denoted by
a ��x � so that ΔS can be expanded as in the following example.

Given S � �a : A j a�x � 10 �, ΔS � �a�a � : A j a�x � 10 � a ��x � � 10 �.

Language Definition 89

4.4 Operation Expressions

Name

Operation schema

Description

An operation schema is used to specify an operation of a class in terms of
its attributes and a set of declared auxiliary variables. Any primary variables
which the operation may change are included in its Δ-list.

Syntax

OperationExpression ::� �DeltaList [Declaration] [j Predicate] �

j �Declaration [j Predicate] �

j � [Predicate] �

Type Rules

The Δ-list may only include primary variables of the class.

Definition

delta��Δ�x1� � � � �xn� d j p �� � fx1� � � � �xng

schema��Δ�x1� � � � �xn � d j p �� � �d j p �

90 The Object-Z Specification Language

Name

Operation promotion

Description

Operation promotion is used to specify that an identified object undergoes a
particular operation. The resulting operation has an empty Δ-list because it
doesn’t change any of the variables of the class in which it occurs — although
the object is changed, the identity itself is not. Its auxiliary variables are iden-
tical to those of the operation applied to the object.

Syntax

OperationExpression ::� Expression � Identi�er

Type Rules

The first argument must be an object identity and the second argument must be
the name of a visible operation in the class of the identified object. In the case
where the type of the object identity is a polymorphic type or a class union
and is not further qualified, the operation must be visible in all classes of the
type.

Definition

Let a � A and Op be the name of a visible operation in A such that
second�Op�A�� � �d j p� where p is not expressed in terms of INIT — that
is, all predicates of the form INIT and b�INIT have been expanded.

The definition of a�Op requires the introduction of the notation a�t to rep-
resent a type t defined in A. Also, as discussed on page 88, we use a�x � to
denote the post-state value of a�x .

delta�a�Op� ��

schema�a�Op� � �S j a�x �1 � a�x1 � � � � � a�x �i � a�xi �
where types�A� � ft1� � � � � tng

vars�Δstate�A�� � fx1� � � � �xmg
vars�state�A��n�rst�Op�A�� � fx1� � � � �xig

T � �d �n�x1� � � � �xm�
S � �a�t1�t1� � � � �a�tn�tn �a�x1�x1� � � � �a�xm�xm �

subs �T j p �

Language Definition 91

Illustrative example

As an example of the definition of operation promotion, consider defining the
schema part of a�Op where a identifies an object of the following class.

A

�t �

x �y : t

Op

Δ�x �
in? : t

x � � in?

second�Op�A�� � �x �x ��y �y �� in? : t j x � � in? �
types�A� � ftg
vars�Δstate�A�� � fx �y �x ��y �g
vars�state�A��n�rst�Op�A�� � fyg

Therefore,

T� �x �x ��y �y �� in? : t �n�x �x ��y �y ��
� � in? : t �

and

S� �a�t�t �a�x�x �a�y�y �a�x ��x ��a�y ��y �� subs �T j x � � in? �
� � in? : a�t j a�x � � in? � �

Therefore,

schema�a�Op�� �S j a�y � � a�y �
� � in? : a�t j a�x � � in? � a�y � � a�y �

92 The Object-Z Specification Language

Name

Operation identifier

Description

An operation may be defined in terms of another operation with its auxiliary
variables possibly renamed.

Syntax

OperationExpression ::� Identi�er [RenameList]

Type Rules

The identifier must be the name of a previously defined operation of the class.
The “old” names in the rename list must be of auxiliary variables of the oper-
ation. The “old” names must also be distinct. If a “new” name appears twice
in a rename list then the auxiliary variables corresponding to the associated
“old” names must be type compatible. If a “new” name is the same as that
of an existing auxiliary variable of the operation then that auxiliary variable
and the auxiliary variable corresponding to the associated “old” name must be
type compatible.

Definition

An operation identifier in class A is defined as follows.

delta�Op�x1�y1� � � � �xn�yn �� � �x1�y1� � � � �xn�yn � subs �rst�Op�A��

schema�Op�x1�y1� � � � �xn�yn �� � second�Op�A���x1�y1� � � � �xn�yn �

Language Definition 93

Name

Conjunction

Description

The conjunction operator is a binary operator which can be used to specify
simultaneous occurrence of operations. It is commutative and associative.

Syntax

OperationExpression ::� OperationExpression�OperationExpression

Type Rules

Common-named variables declared in the arguments must be type compatible.

Definition

delta�OP1�OP2� � delta�OP1�
delta�OP2�

schema�OP1�OP2� � schema�OP1�� schema�OP2�

94 The Object-Z Specification Language

Name

Parallel composition

Description

The parallel operator is a binary operator which may be used to specify inter-
object communication. The operator identifies and equates input variables in
either argument with output variables in the other having the same basename,
i.e. apart from the ? or !. The identified input and output variables are hidden
in the resulting operation. The operator is commutative but not associative.

Syntax

OperationExpression ::� OperationExpression kOperationExpression

Type Rules

Common-named variables declared in the arguments must be type compati-
ble. Inputs and outputs with common basenames declared in different argu-
ments must be type compatible. Inputs and outputs with common basenames
declared in the same argument must be type compatible when an output pa-
rameter with the same basename is declared in the other argument.

Definition

Provided z1� � � � �zn�m do not appear as free variables in OP1 and OP2, paral-
lel composition is defined as follows.

delta�OP1 kOP2� � delta�OP1�
delta�OP2�

schema�OP1 kOP2� �
�schema�OP1��z1�x1?� � � � �zn�xn?�zn�1�y1!� � � � �zn�m�ym !�
�
schema�OP2��z1�x1!� � � � �zn�xn!�zn�1�y1?� � � � �zn�m�ym?��
n�z1� � � � �zn�m�

where inputs�OP1��outputs�OP2� � fx1� � � � �xng
inputs�OP2��outputs�OP1� � fy1� � � � �ymg

Language Definition 95

Name

Associative parallel composition

Description

The associative parallel composition operator is a binary operator which can
be used to specify inter-object communication. The operator identifies and
equates input variables in either argument with output variables in the other
having the same basename, i.e. apart from the ? or !. The identified input
variables are hidden in the resulting operation; the output variables are not
hidden and so may be equated with other input variables in subsequent parallel
compositions. The operator is commutative and associative.

Syntax

OperationExpression ::� OperationExpression k! OperationExpression

Type Rules

Common-named variables declared in the arguments must be type compati-
ble. Inputs and outputs with common basenames declared in different argu-
ments must be type compatible. Inputs and outputs with common basenames
declared in the same argument must be type compatible when an output pa-
rameter with the same basename is declared in the other argument.

Definition

delta�OP1 k! OP2� � delta�OP1�
delta�OP2�

schema�OP1 k! OP2� � schema�OP1��x1!�x1?� � � � �xn !�xn?�
�
schema�OP2��y1!�y1?� � � � �ym !�ym?�

where inputs�OP1��outputs�OP2� � fx1� � � � �xng
inputs�OP2��outputs�OP1� � fy1� � � � �ymg

96 The Object-Z Specification Language

Name

Nondeterministic choice

Description

The nondeterministic choice operator is a binary operator which may be used
to specify internal — that is, non-environmentally controlled — choice be-
tween operations. It is associative and commutative.

Syntax

OperationExpression ::� OperationExpression �� OperationExpression

Type Rules

The declared variable names in each argument must be the same and common-
named variables must be type compatible.

Definition

delta�OP1 �� OP2� � delta�OP1�
delta�OP2�

schema�OP1 �� OP2� � �schema�OP1� j x
�

1 � x1 � � � � � x �n � xn �
�
�schema�OP2� j y

�

1 � y1 � � � � � y �m � ym �
where delta�OP2�ndelta�OP1� � fx1� � � � �xng

delta�OP1�ndelta�OP2� � fy1� � � � �ymg

Language Definition 97

Name

Sequential composition

Description

The sequential composition operator is a binary operator used to model two
operations occurring in sequence. The resulting atomic operation is only en-
abled when the first operation in the sequence can occur and result in a state
from which the second operation can occur. The operations also communicate
— the output variables of the first operation in the sequence are equated with
those in the second operation having the same basename — that is, apart from
the ? and !. Such equated input and output variables are hidden in the resulting
operation. The operator is neither commutative nor associative.

Syntax

OperationExpression ::� OperationExpressiono
9OperationExpression

Type Rules

Common-named variables declared in the arguments must be type compatible.
Inputs declared in the first argument and outputs in the second with the same
basenames must be type compatible.

Definition

The definition of sequential composition is complicated by the possibility of
object aliasing. An intermediate state — between the two operation occur-
rences — needs to be defined such that any aliasing is taken into account.
Here we present a partial definition in which the argument operations OP1

and OP2 are such that

schema�OP1�� �d1 j p1 � such that there does not exist a bound object identity
— occurring in the declaration of an existential or universal quantifier or the
left-hand side of a let definition — in p1, and
schema�OP2�� �d2 j p2 � such that there does not exist a bound object identity
in p2.

Let a5 : A5� � � � �an : An be all the object identities appearing in OP1 either as
a primed variable or as an output variable for which an input variable with the
same basename appears in OP2. For each ak where k � 5 � � �n, we require
auxiliary variables z �1� � � � �z

�

m (which do not already appear free in OP1) to
represent the post-state values of the variables of the object identified by ak
in OP1. Also, we require auxiliary variables z1� � � � �zm (which do not already
appear free in OP2) to represent the pre-state values of these variables inOP2.
Given that vars�state�Ak �� � fx1� � � � �xmg and ak �x1 � t1 � � � �� ak �xm � tm ,
let dk � z �1 : t1; � � � ; z �m : tm and dn�k � z1 : t1; � � � ; zm : tm .

98 The Object-Z Specification Language

Let a5 : A5� � � � �al : Al be all the object identities appearing in OP1 or OP2.
If the value of ak in the post-state of OP1 is aliased with an object identity
a5� � � � �al then any conditions on the post-state values of that object identity
also hold for values of the auxiliary variables z �1� � � � �z

�

m . This is captured
by a predicate pk as follows. (The predicate uses the notation for post-state
values of identified objects described on page 88 and allows object identities
of possibly different classes to be compared as discussed on page 108.)

��ak � a5 � �z �1�a5�x
�

1� � � � �z
�

m�a5�x
�

m � subs p1�
�
...
�
�ak � al � �z �1�al �x

�

1� � � � �z
�

m�al �x
�

m � subs p1��

For each ak above, let aj be the corresponding unprimed variable (in the case
where ak is a primed variable) or input variable (in the case where ak is an
output variable) in OP2. If aj is aliased with an object identity a5� � � � �al in
OP2 then any conditions on the pre-state values of the identified object also
hold for the auxiliary variables z1� � � � �zm . This is captured by a predicate
pn�k defined as follows.

�aj � a5 � �z1�a5�x1� � � � �zm�a5�xm � subs p2�
�
...
�
�aj � al � �z1�al �x1� � � � �zm�al �xm � subs p2�

Given these definitions and provided y �1� � � � �y
�

i and z1� � � � �zm do not appear
free in OP1 and y1� � � � �yi do not appear free in OP2, sequential composition
in class A is defined in terms of Z sequential composition as follows. (Let all
the expressions representing post-state values of identified objects in OP1 be
b1�x

�

1� � � � �bn �x
�

m with types t1� � � � � tm respectively.)

delta�OP1
o
9OP2� � delta�OP1�
delta�OP2�

schema�OP1
o
9OP2� � �d3 j p3 ��y �1�x1!� � � � �y �i�xi !�

o
9
�d4 j p4 ��y1�x1?� � � � �yi�xi?�

where d3 � d1; d5; � � � ; dn
d4 � d2; dn�5; � � � ; d2�n

p3 �
z1 : t1; � � � ; zm : tm 	 �z1�b1�x1� � � � �zm�bn �xm � subs
p5 � � � � � pn � x

�

i�1 � xi�1 � � � � � x �j � xj
p4 � pn�5 � � � � � p2�n

outputs�OP1�� inputs�OP2� � fx1� � � � �xig
vars�state�A��ndelta�OP1� � fxi�1� � � � �xjg

Language Definition 99

Illustrative example

As an example of the definition of sequential composition, consider the fol-
lowing classes.

B

x : N

Op

Δ�x �
y?�y! : N

x � � x �y?
y! � y?

A

a�b : B

Op b� a�Op o
9b�Op

schema�a�Op� � �y?�y! : N j a�x � � a�x �y? � y! � y? �
schema�b�Op� � �y?�y! : N j b�x � � b�x �y? � y! � y? �
vars�state�A��ndelta�a�Op� � fa�bg
outputs�a�Op�� inputs�b�Op� � fyg

Let z1 represent the intermediate value of a�x — that is, after a�Op has oc-
curred and before b�Op has occurred — and z2 represent the intermediate
value of b�x . Therefore,

�d3 � � �y?�y!�z �1�z
�

2 : N �

and

�d4 � � �y?�y!�z1�z2 : N �

Also,

�p3 �� �
z : N 	 �z�a�x �� subs
��a � � a � �z1�a�x

�� subs �a�x � � a�x �y? � y! � y?�� �
�a � � b� �z1�b�x

�� subs �a�x � � a�x �y? � y! � y?�� �
�a � � a �� �z1�a

��x ��subs �a�x � � a�x �y? � y! � y?�� �
�a � � b�� �z1�b

��x ��subs �a�x � � a�x �y? � y! � y?�� �
�b� � a � �z2�a�x

�� subs �a�x � � a�x �y? � y! � y?�� �
�b� � b� �z2�b�x

�� subs �a�x � � a�x �y? � y! � y?�� �
�b� � a �� �z2�a

��x ��subs �a�x � � a�x �y? � y! � y?�� �
�b� � b�� �z2�b

��x ��subs �a�x � � a�x �y? � y! � y?�� �
a � � a � b� � b� �

100 The Object-Z Specification Language

� �
z : N 	
z1 � a�x �y? � y! � y? �
�a � � b� z � a�x �y? � y! � y?� �
z � a�x �y? � y! � y? �
�b� � a � z2 � a�x �y? � y! � y?� �
a � � a � b� � b �

� �z �1 � a�x �y? � y! � y? � a � � a � b� � b �

�b� � a � z �2 � a�x �y?� �

and

�p4 �� ��a � a � �z1�a�x � subs �b�x � � b�x �y? � y! � y?�� �
�a � b� �z1�b�x � subs �b�x � � b�x �y? � y! � y?�� �
�a � a �� �z1�a

��x � subs �b�x � � b�x �y? � y! � y?�� �
�a � b�� �z1�b

��x � subs �b�x � � b�x �y? � y! � y?�� �
�b � a � �z2�a�x � subs �b�x � � b�x �y? � y! � y?�� �
�b � b� �z2�b�x � subs �b�x � � b�x �y? � y! � y?�� �
�b � a �� �z2�a

��x � subs �b�x � � b�x �y? � y! � y?�� �
�b � b�� �z2�b

��x � subs �b�x � � b�x �y? � y! � y?�� �
� �b�x � � b�x �y? � y! � y? �

�a � b� b�x � � z1 �y? � y! � y?� �
�b � a � b�x � � b�x �y? � y! � y?� �
b�x � � z2 �y? � y! � y? �

� �b�x � � b�x �y? � b�x � � z2 �y? � y! � y? �
�a � b� b�x � � z1 �y?� �

Therefore,

schema�a�Op o
9 b�Op�

� ��y?�y!�z �1�z
�

2 : N j z �1 � a�x �y? � y! � y? � a � � a � b� � b �

�b� � a � z �2 � a�x �y?� ��y ��y!�
o
9
�y?�y!�z1�z2 : N j b�x � � z2 �y? � y! � y? �

�a � b� b�x � � z1 �y?� ��y�y?��
� ��y?�y ��z �1�z

�

2 : N j z �1 � a�x �y? � y � � y? � a � � a � b� � b �

�b� � a � z �2 � a�x �y?� ��
o
9
�y �y!�z1�z2 : N j b�x � � z2 �y � y! � y �

�a � b� b�x � � z1 �y� �
� �y?�y! : N j y! � y? �

�
z1 : N 	 z1 � a�x �y?� �
�
z2 : N 	 b�x � � z2 �y?� �
�a � b� b�x � � a�x �y?�y?� �

� �y?�y! : N j y! � y? � b�x � � y? �
�a � b� b�x � � a�x �y?�y?� �

Language Definition 101

Name

Scope enrichment

Description

The scope enrichment operator is a binary operator which enables the scope of
the declarations in one operation to extend to the declarations and predicates
of another.

Syntax

OperationExpression ::� OperationExpression 	OperationExpression

Type Rules

Common-named variables declared in the arguments must be type compatible.

Definition

delta�OP1 	OP2� � delta�OP1�
delta�OP2�

schema�OP1 	OP2� � �schema�OP1�; d j p �
where schema�OP1�� �schema�OP2�� �d j p ��

for all v � vars�schema�OP1���v does not occur free in d

Illustrative example

Let OP1 b� �y : PN � and OP2 b� �x : y �.

schema�OP1�� y � PN
schema�OP2�� x � y

Since

schema�OP1�� �schema�OP2�� �x : N j x � y ��

and

vars�schema�OP1�� � fyg and y does not occur free in x : N�

OP1 	OP2 � �y : PN; x : N j x � y � �

102 The Object-Z Specification Language

Name

Hiding

Description

The hiding operator is used to hide auxiliary variables of an operation.

Syntax

OperationExpression ::� OperationExpressionn�Identi�er� � � � � Identi�er�

Type Rules

The variables to be hidden must be auxiliary variables of the operation.

Definition

delta�OP n �x1� � � � �xn�� � delta�OP�

schema�OP n �x1� � � � �xn �� � schema�OP�n �x1� � � � �xn�

Language Definition 103

Name

Distributed conjunction

Description

The distributed conjunction operator is used to conjoin a (possibly infinite) set
of operations.

Syntax

OperationExpression ::� � Declaration [j Predicate] 	OperationExpression

Type Rules

The variables in the declaration following the distributed operator must be
type compatible with those in the operation expression.

Definition

delta�� d j p 	OP� � delta�OP�

schema�� d j p 	OP� � �d j p 	 schema�OP�

104 The Object-Z Specification Language

Name

Distributed nondeterministic choice

Description

The distributed nondeterministic choice operator is used to specify nondeter-
ministic choice between a (possibly infinite) set of operations.

Syntax

OperationExpression ::� �� Declaration [j Predicate] 	OperationExpression

Type Rules

The variables in the declaration following the distributed operator must be
type compatible with those in the operation.

Definition

Since the Δ-lists of the operations in the set over which the choice is made are
identical, the choice is equivalent to standard disjunction (see page 96).

delta��� d j p 	OP� � delta�OP�

schema��� d j p 	OP� �
d j p 	 schema�OP�

Language Definition 105

Name

Distributed sequential composition

Description

The distributed sequential composition operator is used to sequentially com-
bine a (finite) set of operations.

Syntax

OperationExpression ::� o
9 Declaration [j Predicate] 	OperationExpression

Type Rules

The variables in the declaration following the distributed operator must be
type compatible with those in the operation.

Definition

delta�o
9 d j p 	OP� � delta�OP�

schema�o
9 d j p 	OP� � schema��OP ; d j p1 � o

9 � � �
o
9 �OP ; d j pn ��

where �d j p � � fs1� � � � �sng

�d j p1 � � fs1g
...
�d j pn � � fsng

106 The Object-Z Specification Language

4.5 Predicates

Name

Boolean-valued expressions

Description

A Boolean-valued expression evaluates to a logical value — that is, either true
or false. Therefore, it can be used as a predicate.

Syntax

Predicate ::� Expression

Definition

The set B contains exactly two values — one corresponding to true and one to
false.

�x �y �z : B j x � � y 	
x �� y

z � z � x

� z � z � y

Language Definition 107

Name

Promoted initial state predicates

Description

Initial state predicate promotion is used to specify that an identified object is
in its initial state.

Syntax

Predicate ::� Expression �INIT

Type Rules

The first argument must be an object identity and the class of the identified
object must have INIT in its visibility list. In the case where the type of the ob-
ject identity is a polymorphic type or a class union and is not further qualified,
INIT must be visible in all classes of the type.

Definition

Let a � A such that INIT is in A’s visibility list.

a�INIT � �a�t1�a�t1� � � � �a�tn�tn �a�x1�x1� � � � �a�xm�xm � subs init�A�
where types�A� � ft1� � � � � tng

vars�state�A�� � fx1� � � � �xmg

108 The Object-Z Specification Language

4.6 Expressions

Name

Class names

Description

A class name can be used as an expression representing the set of all identities
of objects of the class. This set is either empty, when the class has no possible
initial states, or countably infinite. If the class has formal generic parameters
then these must be instantiated by either a previously declared type or a formal
generic parameter of the environment in which the expression appears. Some
or all of the class’s visible features may be renamed. Renaming has no affect
on the object identities represented by the expression — it only affects the
names used to access the features of identified objects.

Syntax

Expression ::� ClassName [ActualParameters] [RenameList]

Type Rules

The number of actual parameters must match the number of generic param-
eters in the class definition. The “old” names in the rename list must be of
attributes or operations of the defined class, or of auxiliary variables of its op-
erations. The “old” names must also be distinct. If a “new” name appears
twice in a rename list then the features corresponding to the associated “old”
names must be type compatible. If a “new” name is the same as that of an
existing feature of the class then that feature and the feature corresponding to
the associated “old” name must be type compatible.

Definition

init�A� ���A��

init�A� ����
s : N � A 	 true
A �� B �A�B ��

A�t1� � � � � tn ��x1�y1� � � � �xm�ym ��A

t1 �� tn�1 � � � � � tn �� t2�n � A�t1� � � � � tn ��A�tn�1� � � � � t2�n � ��

A�x1�y1� � � � �xm�ym � �A

Note

For the purposes of the definitions in this chapter, we assume the existence
of a base type of which all class types are subsets. This allows us to write
expressions relating different classes or object identities of different classes.

Language Definition 109

Name

Polymorphism

Description

The polymorphism operator � is used to define the set of object identities
belonging to a given class or any one of its subclasses (defined either before
or after the given class in the specification). It can only be applied to a class
name expression where each subclass has the same formal generic parameters
as the given class, and at least all of the visible features of the given class.

Syntax

Expression ::� �Expression

Type Rules

The expression must be a class name expression. All subclasses of the asso-
ciated class must have the same formal generic parameters as it and include,
for each of its visible features, an identically named visible feature. Further-
more, these common-named visible features must be type compatible and, in
the case of operations, have identical auxiliary variables.

Definition

The definition assumes the existence of a base type of which all class types
are subsets as discussed on page 108.

�A�A
A1
 � � �
An

where inherited��j fAg j� � fA1� � � � �Ang

110 The Object-Z Specification Language

Name

Class union

Description

The class union operator is used to define the set of object identities belonging
to two or more classes.

Syntax

Expression ::� Expression� Expression

Type Rules

The expressions must be class name expressions or class union expressions.

Definition

The definition assumes the existence of a base type of which all class types
are subsets as discussed on page 108.

A1� � � ��An �A1
 � � �
An

Language Definition 111

Name

Object containment

Description

The object containment notation enables the specification of a set of object
identities identical to that of a given class name expression but such that iden-
tities declared from this set are distinct when they occur as attributes of distinct
objects. In this way, the concept of an object being a component of another
object — and only of that object — can be captured.

Syntax

Expression ::� Expression c�

Type Rules

The expression must be a class name expression.

Definition

An object cannot be directly contained within two distinct objects. An object
cannot directly or indirectly contain itself.

A c� �A

a�x � A c� � b�x � A c� � a �� b� a�x �� b�x
a � A � sn �an � A c�� sn �an �� a

where s1 � a

s2 � s1�a1
...
sn � sn�1�an�1

112 The Object-Z Specification Language

Name

Promoted attributes

Description

Attribute promotion is used to access the visible attributes of an identified
object.

Syntax

Expression ::� Expression � Identi�er

Type Rules

The expression must be an object identity and the identifier must be a visible
attribute of the class of the identified object or the constant self . In the case
where the type of the object identity is a polymorphic type or a class union
and is not further qualified, the identifier must be a visible attribute which is
common to all classes of the type or the constant self .

Definition

Promoted attributes are constrained by the property of the state of their class.

a �A� �a�x1�x1� � � � �a�xn�xn � subs state�A�
where vars�state�A�� � fx1� � � � �xng

Language Definition 113

Name

Self

Description

The constant self enables the specification of objects which reference them-
selves.

Syntax

Expression ::� self

Definition

a�self � a

114 The Object-Z Specification Language

5

Concurrent Systems

Concurrent systems are systems comprising a collection of independent compo-
nents which may perform operations concurrently — that is, at the same instant of
time. Examples include distributed systems and systems implemented in terms of
parallel processes for reasons such as efficiency. Although concurrency is essen-
tially an implementation issue, for many systems, even functionality at the highest
level of abstraction is best specified in terms of concurrent components.

Traditionally, state-based specification languages such as Z have not been used
for the specification of concurrent systems. This is partly because they lack a
means of conveniently specifying systems in terms of components. The struc-
turing of systems as collections of distinct, interacting objects inherent to object
orientation, however, makes Object-Z well suited to modelling concurrent sys-
tems.

We have already seen an example of concurrent system specification in Object-
Z — the multiplexer specification of Chapter 1. The three queues could, in an im-
plementation of this specification, potentially operate in a concurrent fashion. For
example, the queue input1 could perform a Join operation at the same instant as
the queue output performing a Leave operation. This is evident from the fact that
the state of the system after the two operations are performed is independent of the
order in which they occurred. This fashion of modelling concurrency is referred
to as interleaving concurrency — since the operations occurring concurrently are
interleaved in an arbitrary order.

In order to specify that two operations, possibly from distinct objects, must
synchronize, we make use of Object-Z’s operation operators. In the multiplexer
specification, the parallel composition operator k is used to specify synchroniza-
tion of, and communication between, the queue output and the queues input1 and
input2 in operations Transfer1 and Transfer2 respectively. Similarly nondeter-
ministic choice of operations, possibly from distinct objects, can be specified by
the nondeterministic choice operator �� as in the multiplexer operation Transfer .

In the multiplexer example, the number of concurrent components is known
and fixed. In many cases, however, we wish to abstract away from the number
of components in the specification and require that the number of components is
variable rather than fixed. In this chapter, we present guidelines for specifying
systems comprising such arbitrary and variable sized collections of objects. We
refer to these collections as aggregates. The guidelines are illustrated at the end
of the chapter by a small case study based on the card game Hearts.

115

116 The Object-Z Specification Language

5.1 Aggregation

Aggregates of objects occur in Object-Z specifications when we have a collection
of similar components making up the system — for example, the exchanges of
a telephone network or the processors of a multiprocessor system. Ideally, the
number of components in such systems should be dealt with in the design and
implementation of the system and left arbitrary in its specification. We may, in
addition, also require that components be able to be added or removed from the
system.

Such arbitrary and variable sized aggregates can be specified in Object-Z by
sets of object references. The use of a reference semantics, as opposed to a value-
based semantics, in Object-Z means that there is no possibility of distinct objects
being identified in such a set — even when they have the same attribute values.
Furthermore, when an operation is applied to an object in such a set, the set itself
is unchanged and, hence, there is no need for framing schemas often used in Z to
indicate that all elements but one in a set are unchanged.

To illustrate the use of aggregation in Object-Z, we specify a system of elec-
tronic diaries used by the members of a software engineering laboratory. Given
free types Time and Event representing the sets of all times and events respec-
tively, we specify a diary as follows.

Diary

schedule�additions : Time �� Event

INIT

schedule � additions ��

AddEvent

Δ�additions�
t? : Time
e? : Event

t? �� domschedule
domadditions

additions � � additions
f�t?�e?�g

Commit

Δ�schedule�additions�

schedule � � schedule
additions
additions � ��

Abort

Δ�additions�

additions � ��

Concurrent Systems 117

The diary includes a schedule of events schedule and a set of additions to the
schedule made by the user additions . Initially, both are empty and the user makes
additions modelled by the operation AddEvent . Such additions must not clash
with events already in the schedule or existing proposed additions. At any time,
the user can decide to commit the current additions to the schedule or abort them
modelled by the operations Commit and Abort respectively.

Each member of the software engineering laboratory has a dairy. In later sec-
tions, we will show how, through synchronization and communication, the dairies
of individual members can be kept consistent. For now, we assume each labora-
tory member is solely responsible for his or her diary.

The laboratory is specified as follows. We specify the aggregate of diaries
polymorphically in anticipation of the extensions to the example in the following
sections.

Laboratory

diaries : P�Diary

INIT

diaries ��

AddDiary

Δ�diaries�
d? : Diary

d? �� diaries
d?�INIT

diaries � � diaries
fd?g

RemoveDiary

Δ�diaries�
d? : Diary

d? � diaries
diaries � � diaries nfd?g

AddEvent b� �d : diaries � 	 d �AddEvent
Commit b� �d : diaries � 	 d �Commit
Abort b� �d : diaries � 	 d �Abort

Initially, the aggregate diaries is empty. The operations AddDiary and Re-
moveDiary allow diaries to be added and removed, respectively, as members join
and leave the laboratory. Each user can add an event to his or her diary modelled
by the operation AddEvent , and commit and abort additions modelled by the
operations Commit and Abort respectively.

The latter three operations illustrate the use of the scope operator 	 for specify-
ing operations on individual objects in aggregates. In general, one or more object

118 The Object-Z Specification Language

references can be declared in the operation on the left-hand side of the scope op-
erator and used in an operation expression on its right-hand side. Note that these
operations have an empty Δ-list and do not change the attribute diaries .

5.2 Synchronization

When systems are designed and implemented in terms of concurrently operating
components, the usual intention is that the components will in some way interact.
Such interaction occurs when distinct components undergo operations simultane-
ously. This is referred to as synchronization.

In Object-Z synchronization can be expressed using the conjunction operator
�. That is, given object identities a and b, to specify that the object identified by
a undergoes an operation OpA in synchronization with the object identified by b
undergoing an operation OpB we write a�OpA� b�OpB .

When dealing with aggregates of objects, the distributed conjunction operator
is often useful since we may want to specify that all objects in the aggregate,
or some subset of it, undergo a particular operation. This is illustrated by the
following extensions to the diaries example.

Diary1
Diary

request : Time �� Event

INIT

request ��

ReceiveRequest

Δ�request�
r? : Time �� Event

request ��

request � � r?

CommitRequest

Δ�schedule�request�

�domschedule
domadditions�� domrequest ��

schedule � � schedule
 request
request � ��

AbortRequest

Δ�request�

request � ��

Concurrent Systems 119

As well as additions made by the user of the diary, the diary may receive
external requests for events to be added to the schedule. These requests may, for
example, be from the laboratory’s coordinator in order to schedule meetings. As
with additions made by the user, the user may decide to commit or abort such
requests. He or she can only commit a request when it does not lead to a clash
with either the schedule or existing proposed additions.

We assume that such requests are broadcast to all members of the laboratory.
Furthermore, so that individual diaries are kept consistent, a user can only commit,
or abort, a request when all other users do the same. This situation is specified by
the class Laboratory1.

Laboratory1
Laboratory

diaries : PDiary1

Request b�� d : diaries 	 d �ReceiveRequest

CommitRequest b�� d : diaries 	 d �CommitRequest

AbortRequest b�� d : diaries 	 d �AbortRequest

The operation Request specifies a request being broadcast to all members of
the laboratory. The operations CommitRequest and AbortRequest specify all
members of the laboratory committing or aborting a request respectively. The
actual mechanism by which such synchronization is achieved is not presented at
this level of abstraction. For example, it may involve all members of the laboratory
acknowledging the request by a vote and then, if one or more votes is negative,
the broadcast of an abort order or, otherwise, a commit order.

5.3 Communication

One of the main uses of synchronization is to allow concurrent components to
communicate information. In Object-Z communication is modelled using the par-
allel composition operator k. To illustrate this, we extend the diary example again.

Diary2
Diary1

SendRequest

Δ�additions �request�
r ! : Time �� Event

request ��

r ! � additions

additions � ��

request � � additions

120 The Object-Z Specification Language

The operation SendRequest outputs the additions made by the user of a diary
and moves the additions to the diary’s request variable. This places the diary in
the same state as if it had received a request. It can therefore participate in the
decision to commit or abort the request along with the other laboratory members.
This behaviour is captured by the class Laboratory2.

Laboratory2
Laboratory

diaries : PDiary2

Request b� �c : diaries � 	
�c�SendRequest k �� d : diaries nfcg 	 d �ReceiveRequest��

CommitRequest b�� d : diaries 	 d �CommitRequest

AbortRequest b�� d : diaries 	 d �AbortRequest

The operationRequest models a single diary c, belonging to the coordinator of
the request, sending a request in parallel with all other members of the laboratory
receiving the request. The operations for committing or aborting the request are
as in Laboratory1.

As well as k, the associative version of the parallel composition operator k! and
the sequential composition operator o

9, in both its binary and distributed forms, may
be useful for modelling communication. Since k! does not hide the communicated
values, it may be necessary to use it in conjunction with the hiding operator. Its
advantage over the other operators is that it enables three, or more, operations to
be composed such that each can receive all communications from the others.

Since communication is only effected by any of these operators when there
are inputs and outputs with matching basenames, it is often useful to use them
in combination with renaming. For example, given that Op1 has an output x !
which we wish to communicate with an input y? of operationOp2 we write Op1 k
Op2�x?�y?�.

5.4 Nondeterminism

Synchronization and communication allow the components of a concurrent sys-
tem to influence the behaviour of other components. However, components are
also capable of choosing between the possible behaviours they can undergo in-
dependently of their environment. For example, a telephone exchange may di-
vert certain calls to different exchanges depending on the time of day. The other
exchanges have no way of influencing this behaviour nor of even observing the
decisions being made as to which exchange the calls should be diverted to. Such
nondeterminism is referred to as internal nondeterminism.

In Object-Z, internal nondeterminism can be modelled using the nondeter-
ministic choice operator ��. To illustrate this, we again extend the diaries example.

Concurrent Systems 121

Since not all members of the diary need attend every meeting, we allow a user to
ignore a request. This is different from the user committing — so as not to cause a
meeting he or she is not interested in to be aborted — as it allows his or her diary
to have events which clash with the request.

Diary3
Diary2

Ignore

Δ�request�

request � ��

The laboratory is respecified as follows.

Laboratory3
Laboratory

diaries : PDiary3

Request b� �c : diaries � 	
�c�SendRequest k �� d : diaries nfcg 	 d �ReceiveRequest��

CommitRequest b�� d : diaries 	 �d �CommitRequest �� d �Ignore�

AbortRequest b�� d : diaries 	 �d �AbortRequest �� d �Ignore�

The operationRequest is as in Laboratory2. The operationsCommitRequest
and AbortRequest now allow each member of the laboratory to ignore any re-
quest. The choice to participate in the acceptance of the request or to simply
ignore it is made internally and is not influenced by the choices of other members.
This abstract representation of the choice at the system level would, in practice,
be refined to a single operation of the class Diary3.

The distributed version of the nondeterministic choice operator is also useful
for specifying a choice between components which cannot be influenced by the
environment of a concurrent system. For example, the RemoveDiary operation
of the laboratory could be redefined as follows.

RemoveDiary b� �� d : diaries 	 �Δ�diaries� j diaries � � diaries nfdg �

The diary to be removed is now not input from the environment but chosen
internally. Note that there is a subtle difference between this definition and the
following.

RemoveDiary b� �d : diaries � 	 �Δ�diaries� j diaries � � diaries nfdg �

This second definition represents a choice which can be influenced externally
since, given lab : Laboratory , d may be further constrained by operations con-
joined with lab�RemoveDiary . Unlike internal nondeterminism, the nondeter-
minism in such operations cannot be reduced during refinement.

122 The Object-Z Specification Language

5.5 Case Study: Hearts

To illustrate the specification of concurrent systems involving aggregates of ob-
jects, we present, in this section, a small case study based on the card game Hearts.
The system we specify comprises a number of computer terminals via which play-
ers can participate in the game.

Hearts is a trick taking game played by three of more players. A trick is a set
of cards of which one card is contributed by each player. One of the players leads
— that is, plays the first card of the trick — by placing a card from his or her hand
face up on the table. The other players, in turn, add a card from their hands to the
trick following the suit of the first card when this is possible — that is, if the first
card was of the suit Clubs, each player must play a Club if he or she holds a Club,
otherwise the player can play any card. When all players have played, the player
who played the highest card of the same suit as the first card wins the trick.

Normally, the objective of Hearts is not to win tricks which contain any Hearts
or the Queen of Spades. For each Heart won the player receives one point. For the
Queen of Spades the player receives 13 points. Each time the players run out of
cards, the points in the tricks they have won are added to their scores and the cards
are redealt. This continues until one player’s score reaches 100 at which time the
player with the lowest score is declared the winner.

An alternative strategy to not winning tricks containing Hearts or the Queen
of Spades is to win all such tricks — this is referred to as “shooting the moon”.
Then, when the players run out of cards, the player with all the points may choose
either to reduce his or her score by 26 points, or to have all other players’ scores
increased by 26.

Each player in our specification sits in front of a screen which displays his or
her hand of cards, the cards in the current trick being played and the scores of each
player. A typical snapshot is shown below.

Opponents’ scores

Player 2: 27
Player 3: 5

Your score: 7

2 Q A 33 6

Player 1: 13

A
5

Figure 5.1: Hearts screen

3

�

������ �

�
�

A

�
�

�
�

Concurrent Systems 123

We begin the specification by specifying the types Suit and Value represent-
ing the possible suits and values of cards respectively.

Suit ::� Clubs j Spades j Diamonds jHearts
Value ::� numberhh2 � �10ii j Jack jQueen jKing jAce

The type Card denoting the set of all cards is defined as follows.

Card �� Suit�Value

For convenience, we also define the following functions which return the suit
and value of a card.

suit of : Card � Suit

value of : Card � Value

�s : Suit ; v : Value 	
suit of �s �v� � s �
value of �s �v� � v

We make use of inheritance to specify the game of Hearts incrementally. We
begin by specifying an abstract classCardPlayer which can be used in the specifi-
cation of other card games as well as Hearts. Its state comprises a set of opponents
— other card players — and a set of cards denoting the player’s hand.

CardPlayer

opponents : P�CardPlayer
hand : PCard

self �� opponents

INIT

hand ��

OpponentJoins

Δ�opponents�
p? : ��CardPlayer�nopponents

opponents � � opponents
fp?g

ReceiveDeal

Δ�hand�
cards? : PCard

hand ��

hand � � cards?

The set of opponents is specified polymorphically in anticipation of the use
of subclasses of CardPlayer in the specification of specific card games such

124 The Object-Z Specification Language

as Hearts. Undesirable aliasing caused by CardPlayer ’s recursive structure is
avoided by ensuring a player’s identity is not included in the set of opponents.

Initially, the player’s hand is empty. An initial value is not specified for the set
of opponents as other players may have previously joined the game. The operation
OpponentJoins corresponds to an opponent joining the game and ReceiveDeal

to a hand being dealt to the player.
A card game is specified as an aggregate of players. Players may continue to

join the game until it is started when the cards are dealt.

CardGame

��players �cards �INIT �Join�ReceiveDeal �Redeal�

players : P�CardPlayer
cards : PCard

INIT

players ��

cards � Card

NewPlayer

Δ�players�
p? : �CardPlayer

cards � Card

p?�INIT

p?�opponents � players

players � � players
fp?g

AllocateCards

Δ�cards�
cards! : Pcards

#cards! � #Card div #players
cards � � cards n cards!

Join b�NewPlayer � �� p : players 	 p�OpponentJoins�
Deal b� o

9 p : players 	AllocateCards k p�ReceiveDeal
Redeal b� �Δ�cards� j cards �� Card � cards � � Card �o

9Deal

The set of players of a card game is denoted by the variable players and the
set of cards not currently dealt to any player by the variable cards . The latter
variable is not associated with any of the concurrent components. Such variables
are often useful for specifying concurrent systems at a high level of abstraction as
they allow constraints about the whole system to be captured. This can be used
to reduce the number of concurrent components in the high-level specification,
or to simplify the state and behaviour of specified components. For example, an
implementation of CardGame would require the information modelled by cards

Concurrent Systems 125

to be incorporated in either an additional coordinating component, or in each of
the player components. In the latter case, the cards variable would be replicated
in each of the players and consistency of its value maintained through synchro-
nization.

Initially, the set of players is empty and no cards have been dealt — that
is, cards � Card . The visibility list of CardGame indicates that the operations
NewPlayer and AllocateCards are not in the class’s interface. These operations
cannot, therefore, occur in isolation. They can occur, however, in synchronization
with operations of the players.

The operationNewPlayer enables a new player to be added to the set players
provided the game has not started — indicated by the fact that no cards have been
dealt. The new player must be in an initial state and its set of opponents must be
the current set of players of the game. To ensure all players recognize the new
player, this operation can only occur in synchronization with all players perform-
ing an OpponentJoins operation as specified by the visible operation Join.

The operationAllocateCards models a set of cards being allocated to a player
and removed from cards . The predicate ensures that each player gets the same
number of cards equal to the the total number of cards divided by the number of
players (the cards constituting any remainder are not dealt). This operation is used
in the visible operations Deal and Redeal .

The operation Deal models each player in players receiving a distinct set of
cards. This is specified by each player performing the ReceiveDeal operation of
CardPlayer in synchronization with AllocateCards . Communication is effected
by the use of the parallel composition operator. Since AllocateCards changes the
variable cards from which the allocated cards are drawn, the operation is specified
using the distributed sequential composition operator.

The operation Redeal models the cards being redealt after the game has al-
ready started — indicated by the fact that some cards have been dealt. It is speci-
fied as the sequential composition of an operation which returns the dealt cards to
the set cards , and the operation Deal .

We continue our specification by specializing the classes CardPlayer and
CardGame for trick taking games. As a preliminary, we define the relation
higher than which relates each card value to those values higher than it.

higher than : Value� Value

�n1�n2 : 2 � �10 	 number�n1� higher than number�n2�� n1 � n2

�v1 : Value; v2 : Value n rannumber 	
v2 higher than v1 �

�v1 � rannumber
� v1 � Jack � v2 � fQueen�King �Aceg
� v1 �Queen � v2 � fKing �Aceg
� v1 �King � v2 �Ace�

Let Trick �� seqCard denote the set of all tricks. The player of a tricks
taking game is specified by the class TricksPlayer .

126 The Object-Z Specification Language

TricksPlayer

CardPlayer

opponents : P�TricksPlayer
tricks : PTrick
trick : Trick
played : PCard

#played � 1

INIT

tricks ��

trick � hi
played ��

Play

Δ�hand � trick �played�
card ! : hand

played ��

trick �� hi � suit of �trick�1�� � suit of �j hand j��
suit of �card !� � suit of �trick�1��

hand � � hand nfcard !g

trick � � trick a hcard !i
played � � fcard !g

OpponentPlays

Δ�trick�
card? : Card

trick � � trick a hcard?i

TakeTrick

Δ�trick �played � tricks�

c1 : played j suit of �c1� � suit of �trick�1�� 	
�c2 : fsuit of �trick�1��gC �rantrick nfc1g� 	

value of �c1� higher than value of �c2�
tricks � � tricks
ftrickg
trick � � hi
played � ��

OpponentTakesTrick

Δ�trick �played�

played ���

trick � � hi
played � ��

Concurrent Systems 127

The classTricksPlayer is a subclass ofCardPlayer . The state variable tricks
denotes the set of tricks won by the player and the state variable trick denotes the
current trick being played. Initially, both are empty.

The state variable played denotes the card played by the player in the current
trick. It is represented by a set of cards which is either empty or has one element.
Initially, it is empty. The variable is used for two purposes: to indicate whether a
player can play a card — this can only be done when played is empty — and to
indicate whether a player can take a trick — this can only be done when played is
the highest card of the suit of the leading card of the trick.

The playing of a card is modelled by the operationPlay . The predicate ensures
that the card played is of the suit of the leading card of the current trick when this
is possible. The played card is removed from the player’s hand and added to the
trick and to the set played . Cards may also be played by other players as modelled
by the operation OpponentPlays .

The taking of a trick is modelled by the operation TakeTrick . The predicate
ensures that a player only takes a trick when he or she has played a card of the
same suit as the leading card and, furthermore, that his or her card is the highest of
that suit in the trick. The trick is added to the player’s set of won tricks and trick
and played are made empty in order that another trick may be played. Another
player may also take a trick as modelled by the operation OpponentTakesTrick .
Note that this operation can only occur when the player has played a card.

Whenever one player plays a card — operation Play — all other players need
to add this card to their copy of the current trick — operation OpponentPlays .
Similarly, whenever a player takes a trick — operation TakeTrick — all other
players need to set their their copy of the trick and their played variable to empty
in order to play the next trick — operationOpponentTakesTrick . This behaviour
is specified by the following class TricksGame.

TricksGame

��players �cards �INIT �Join�Deal �Redeal �Play �TakeTrick�
CardGame

players : P�TricksPlayer

Play b� �p : players � 	 p�Play
k

�� q : players nfpg 	 q �OpponentPlays�
TakeTrick b� �p : players � 	

p�TakeTrick

�
�� q : players nfpg 	 q �OpponentTakesTrick�

The classTricksGame is a subclass ofCardGame with two additional visible
operations — Play and TakeTrick — modelling the playing of a card and taking
of a trick respectively.

128 The Object-Z Specification Language

To complete the specification of the game of Hearts we need to add to Tricks-
Game the details of scoring. The order in which players play a card has also
not been specified but will be ignored for the purposes of this case study — the
specification can be thought of as an abstract representation of the game into which
these details could be later added.

To add the details of scoring, we extend the player and game classes again
using inheritance. As a preliminary, we introduce a function points which returns
the number of points in a set of tricks.

points : PTrick � N

�tricks : PTrick ; cards : PCard ; hearts : N 	

�cards � rana�tricks �
hearts � #�fHeartsgC cards���

�Spades �Queen� �� cards � points�tricks� � hearts �
�Spades �Queen� � cards � points�tricks� � hearts�13

In the above definition, cards represents the set of cards and hearts the number
of cards of suit Hearts in a set of tricks denoted by tricks . If the Queen of Spades
is not included in cards then the points of tricks is equal to hearts . If the Queen
of Spades is included in cards then an additional 13 points is included in tricks .

To consistently update the scores at each player’s terminal in our system re-
quires communication of the points won by each player to each other player. This
could be specified as a number of broadcast operations — one for each player. Al-
ternatively, it can be specified at a higher level of abstraction by a single operation
in which all players synchronize and produce a common output detailing the new
scores of all players. Each player partially restricts this output depending on the
points in the tricks that he or she has won.

To facilitate specifying the class of such a player, we define a schemaUpdate-
Scores as an abbreviation of a set of declarations and predicates common to all
operations for updating the players’ scores.

UpdateScores

hand : PCard
trick : Trick
tricks � : PTrick
score � : HeartsPlayer �� N

new score! : HeartsPlayer �� N

hand ��

trick � hi
tricks � ��

score � � new score!

The schema includes a precondition that the player’s hand and the current
trick are empty — that is, all cards have been played and the final trick has been

Concurrent Systems 129

taken — and a postcondition that the set of tricks the player has won becomes
empty, and the scores of all players is updated according to the output variable
new scores!.

A player of the game of Hearts is specified by the class HeartsPlayer .

HeartsPlayer

TricksPlayer

opponents : PHeartsPlayer
score : HeartsPlayer �� N

domscore � opponents
fself g

INIT

�p : domscore 	 score�p� � 0

OpponentJoins

Δ�score�

score � � score
fp? �� 0g

Score

Δ�score�
UpdateScores

points�tricks� �� 26
�new score!�self � � score�self ��points�tricks�
�
points�tricks� � 0 �
�
p : opponents 	

new score!�p� � score�p� �
��q : domscore nfpg 	

new score!�q� � score�q��26���

ReduceScore

Δ�score�
UpdateScores

points�tricks� � 26
new score!�self � � score�self ��26

IncreaseOpponentsScores

Δ�score�
UpdateScores

points�tricks� � 26
new score!�self � � score�self �
�p : opponents 	 new score!�p� � score�p��26

130 The Object-Z Specification Language

The class HeartsPlayer is a subclass ofTricksPlayer with an additional state
variable score denoting the scores of the player and his or her opponents. Initially,
all scores are zero and if a new opponent joins the game he or she is given a score
of zero.

The scores can be updated in three ways.

1. If the player has not won all the Hearts and the Queen of Spades and, there-
fore, has less than 26 points, his or her score is either increased by his or
her points, or by 26. In the former case, the scores of all other players are
left undetermined. In the latter — corresponding to an opponent “shoot-
ing the moon” — a single opponent’s score is unchanged and all others are
increased by 26. This is modelled by the operation Score.

2. If the player has won all the Hearts and the Queen of Spades and, therefore,
has 26 points, he or she may decide to decrease his or her score by 26. This
is modelled by the operation ReduceScore.

3. Alternatively, if the player has won all the Hearts and the Queen of Spades,
he or she may decide to increase all other players’ scores by 26. This is
modelled by the operation IncreaseOpponentsScores .

The game of Hearts is specified as a subclass of TricksGame in which the
players are of class HeartsPlayer and their scores can be updated either by each
player concurrently performing the operation Score or one player “shooting the
moon” — performing either the operation ReduceScore or IncreaseOpponents-
Scores — in synchronization with all other players performing Score.

HeartsGame

��players �cards �INIT �Join�Deal �Redeal �Play �TakeTrick �
Score�ShootTheMoon�

TricksGame

players : PHeartsPlayer

Score b�� p : players 	 p�Score
ShootTheMoon b� �p : players � 	

�p�ReduceScore
��
p�IncreaseOpponentsScores�

�
�� q : players nfpg 	 q �Score�

The operation Score models the case where all the Hearts and the Queen of
Spades are not won by a single player. The common output new scores! is re-
stricted by the distributed conjunction so that the score of each player is increased
by his or her points.

Concurrent Systems 131

The operation ShootTheMoon models the case where all the Hearts and the
Queen of Spades are won by a single player p. This player can decide to either
reduce his or her score or to increase those of all other players. This decision is
specified in terms of the nondeterministic choice operator to model the fact that it
is internal and is not affected by the player’s opponents.

132 The Object-Z Specification Language

6

Concrete Syntax

The concrete syntax of Object-Z extends that of Z with productions for class para-
graphs and their associated definitions — visibility lists, inherited class designa-
tors, state schemas, initial state schemas and operations. In addition, the produc-
tions for predicates are extended to include initial state predicate promotions and
(Boolean-valued) expressions, and the productions for expressions are extended to
include class names, expressions involving polymorphism, class union and object
containment, attribute promotion and the constant self .

This chapter presents the full concrete syntax of Object-Z in a top-down fash-
ion. The syntax is described using an extended BNF based on that used for the
syntax of Z in J.M. Spivey’s The Z Notation (Prentice Hall, 1989 & 1992). Lists
of one of more instances of a particular construct are denoted using ellipses. For
example, a vertical list of one or more paragraphs is denoted

Paragraph
...
Paragraph

and a horizontal list of identifiers as

Identi�er� � � � � Identi�er

In the latter case, the identifiers are separated by commas. Optional constructs are
enclosed by slanted square brackets [] .

The precedence of operation operators, schema operators and logical operators
is indicated by the order in which they appear. Each operator binds tighter than
those it precedes. The association of these operators is indicated by an upper-case
letter at the right margin — ‘L’ indicates that the operator is left-associative, ‘R’
indicates that the operator is right-associative and ‘U’ indicates that it is a unary
operator.

The same upper-case letters are also used to indicate the associativity of infix
generic names — that is, names of generic infix symbols such as � and �� —
and infix function names — that is, names of infix function symbols such as � and

. Infix generic symbols all have equal binding power. The precedence of infix
function symbols is indicated by a number from one to six at the right margin with
higher numbers representing tighter binding.

133

134 The Object-Z Specification Language

6.1 Specifications

Specification ::� Paragraph
...
Paragraph

6.2 Global Paragraphs

Paragraph ::� BasicTypeDefinition
j AxiomaticDefinition
j GenericDefinition
j AbbreviationDefinition
j FreeTypeDefinition
j Schema
j Class
j Predicate

BasicTypeDefinition ::� �Identi�er� � � � � Identi�er�

AxiomaticDefinition ::�
Declaration

[
PredicateList]

GenericDefinition ::�
[FormalParameters]
Declaration

[
PredicateList]

AbbreviationDefinition ::� Abbreviation �� Expression

Abbreviation ::� VariableName [FormalParameters]
j PrefixGenericName Identifier
j Identifier InfixGenericName Identifier

FreeTypeDefinition ::� Identi�er ::� Branch j � � � j Branch

Branch ::� Identifier
j VariableNamehhExpressionii

Schema ::�
SchemaHeader

Declaration
[

PredicateList]

j SchemaHeader b� SchemaExpression

Concrete Syntax 135

SchemaHeader ::� SchemaName [FormalParameters]

Class ::�
ClassName [FormalParameters]
[VisibilityList]
[InheritedClass

...
InheritedClass]

[LocalDe�nition
...
LocalDe�nition]

[State]
[InitialState]
[Operation

...
Operation]

SchemaName ::� Word

ClassName ::� Word

FormalParameters ::� �Identi�er� � � � � Identi�er�

6.3 Class Paragraphs

VisibilityList ::� ��DeclarationNameList�

InheritedClass ::� ClassName [ActualParameters] [RenameList]

LocalDefinition ::� BasicTypeDefinition
j AxiomaticDefinition
j AbbreviationDefinition
j FreeTypeDefinition

State ::� Declaration

[Δ
Declaration]

[
PredicateList]

136 The Object-Z Specification Language

j Δ
Declaration

[
PredicateList]

j PredicateList

j �Declaration [Δ Declaration] [j Predicate] �

j �Δ Declaration [j Predicate] �

j �Predicate �

InitialState ::�
INIT

PredicateList

j INIT b� �Predicate �

Operation ::�
OperationName

DeltaList

[Declaration]
[

PredicateList]

j
OperationName

Declaration
[

PredicateList]

j
OperationName

[PredicateList]

j OperationName b� OperationExpression

OperationName ::� Identifier

DeltaList ::� Δ�DeclarationNameList�

6.4 Operation Expressions

OperationExpression ::� �Declaration [j Predicate] 	OperationExpression

j ��Declaration [j Predicate] 	OperationExpression
j o

9Declaration [j Predicate] 	OperationExpression
j OperationExpression1

Concrete Syntax 137

OperationExpression1 ::� �DeltaList [Declaration] [j Predicate] �
j �Declaration [j Predicate] �
j � [Predicate] �
j Expression � Identi�er
j Identi�er [RenameList]
j OperationExpression�n � DeclarationNameList � L
j OperationExpression��OperationExpression� L
j OperationExpression� kOperationExpression� L
j OperationExpression� k! OperationExpression� L
j OperationExpression� �� OperationExpression� L
j OperationExpression� o

9OperationExpression� L
j OperationExpression� 	OperationExpression� L
j �OperationExpression�

6.5 Schema Expressions

SchemaExpression ::� �SchemaText 	 SchemaExpression
j
SchemaText 	 SchemaExpression
j
1SchemaText 	 SchemaExpression
j SchemaExpression1

SchemaExpression1 ::� �SchemaText�
j SchemaReference
j � SchemaExpression� U
j preSchemaExpression� U
j SchemaExpression��SchemaExpression� L
j SchemaExpression��SchemaExpression� L
j SchemaExpression�� SchemaExpression� R
j SchemaExpression�� SchemaExpression� L
j SchemaExpression��SchemaExpression� L
j SchemaExpression�n �DeclarationNameList� L
j SchemaExpression� o

9SchemaExpression� L
j SchemaExpression���SchemaExpression� L
j (SchemaExpression)

SchemaText ::� Declaration [j Predicate]

SchemaReference ::� SchemaReference1 [RenameList]

SchemaReference1 ::� SchemaName Decoration [ActualParameters]

RenameList ::� � RenameItem � � � � � RenameItem �

RenameItem ::� DeclarationName�DeclarationName

ActualParameters ::� � Expression � � � � � Expression �

138 The Object-Z Specification Language

6.6 Declarations

Declaration ::� BasicDeclaration ; � � � ; BasicDeclaration
j Declaration

...
Declaration

BasicDeclaration ::� DeclarationNameList : Expression
j SchemaReference

DeclarationNameList ::� DeclarationName � � � � � DeclarationName

DeclarationName ::� Identifier
j OperatorName

6.7 Predicates

PredicateList ::� Predicate;. . . ;Predicate
j PredicateList

...
PredicateList

Predicate ::� � SchemaText 	 Predicate
j
 SchemaText 	 Predicate
j
1 SchemaText 	 Predicate
j let LetDefinition ; � � � ; LetDefinition 	 Predicate
j Predicate1

Predicate1 ::� Expression Relation � � � Relation Expression
j PrefixRelationName Expression
j SchemaReference
j pre SchemaReference
j Expression �INIT

j true
j false
j � Predicate1 U
j Predicate1 � Predicate1 L
j Predicate1 � Predicate1 L
j Predicate1� Predicate1 R
j Predicate1� Predicate1 L
j (Predicate)

Concrete Syntax 139

Relation ::� �
j �
j Identifier
j InfixRelationName

LetDefinition ::� VariableName �� Expression

6.8 Expressions

Expression0 ::� λ SchemaText 	 Expression
j µ SchemaText 	 Expression
j let LetDefinition ; � � � ; LetDefinition 	 Expression
j Expression

Expression ::� if Predicate then Expression else Expression
j Expression1

Expression1 ::� Expression1 InfixGenericName Expression1 R
j Expression2� Expression2� � � �� Expression2
j Expression2

Expression2 ::� Expression2 InfixFunctionName Expression2 L
j P Expression4
j PrefixGenericName Expression4
j � Decoration Expression4
j Expression4 �j Expression0 j� Decoration
j Expression3

Expression3 ::� Expression3 Expression4
j Expression4

Expression4 ::� VariableName [ActualParameters]
j self

j Number
j SchemaReference
j ClassName [Actual Parameters] [RenameList]
j � Expression4
j Expression4
 Expression4
 � � �
 Expression4 L
j Expression4 c�

j SetExpression
j h [Expression � � � � � Expression] i
j �� [Expression � � � � � Expression] ��
j � Expression � � � � � Expression �
j θ SchemaName Decoration [Renamelist]
j Expression4 � VariableName

140 The Object-Z Specification Language

j Expression4 PostfixFunctionName
j Expression4Expression

j (Expression0)

SetExpression ::� f [Expression � � � � � Expression] g
j f SchemaText [Expression] g

VariableName ::� Identifier
j � OperatorName �

Identifier ::� Word Decoration

OperatorName ::� InfixFunctionName
j InfixGenericName
j InfixRelationName
j PrefixGenericName
j PrefixRelationName
j PostfixFunctionName
j �j j� Decoration
j Decoration

InfixFunctionName ::� InfixFunctionSymbol Decoration

InfixGenericName ::� InfixGenericSymbol Decoration

InfixRelationName ::� InfixRelationSymbol Decoration

PrefixGenericName ::� PrefixGenericSymbol Decoration

PrefixRelationName ::� PrefixRelationSymbol Decoration

PostfixFunctionName ::� PostfixFunctionSymbol Decoration

InfixFunctionSymbol ::� �� 1
j � � 2
j � 3
j � 3
j
 3
j n 3

j a 3
j � 3
j
- 3
j � 4
j div 4
j mod 4
j � 4

Concrete Syntax 141

j � 4
j � 4
j o

9 4
j � 4
j � 4
j � 5
j # 5
j C 6
j B 6
j �C 6
j �B 6

PostfixFunctionSymbol ::� �

j �

j �

InfixRelationSymbol ::� ��
j ��
j �
j �
j �
j �
j �
j �
j prefix
j suffix
j in
j ��
j v
j partition

PrefixRelationSymbol ::� disjoint

InfixGenericSymbol ::� �
j ��
j �
j ��
j �
j ���
j ��
j ��
j � ��
j � ��

PrefixGenericSymbol ::� P1
j id

142 The Object-Z Specification Language

j F

j F1
j seq
j seq1
j iseq
j bag

Decoration ::� [Stroke � � � Stroke]

Stroke ::� �

j ?
j !
j Number

Word Undecorated name or special symbol

Number Unsigned decimal integer

Bibliography

Object Orientation

Booch, G. (1994) Object-Oriented Analysis and Design with Applications, Add-
ison-Wesley.

Meyer, B. (1988 & 1997) Object-Oriented Software Construction, Prentice Hall.

Z

Davies, J. and Woodcock, J.C.P. (1996) Using Z: Specification, Refinement and
Proof , Prentice Hall.

Hayes, I. (ed) (1987 & 1993) Specification Case Studies, Prentice Hall.

Potter, B., Sinclair, J. and Till, D. (1992) An Introduction to Formal Specification
and Z, Prentice Hall.

Spivey, J.M. (1989 & 1992) The Z Notation: A Reference Manual, Prentice Hall.

Object Orientation and Z

Lano, K. and Haughton, H. (eds) (1994) Object-Oriented Specification Case Stud-
ies, Prentice Hall.

Stepney, S., Bardon, R. and Cooper, D. (eds) (1992) Object Orientation in Z,
Prentice Hall.

143

144 The Object-Z Specification Language

Index

actual generic parameters, see generic pa-
rameters, actual

ActualParameters, 47, 71, 137
aggregation, 115, 116
aliasing, see object aliasing
attribute, 8
auxiliary variable, 34, 55, 89

renaming, 48–49, 57, 71–72, 92,
120

base type, 46
basenames, 9
Boolean variable, 68–69, 106
Branch, 51, 134

class, 2, 5–6, 44–45, 78–79
type, 8, 28, 29, 32, 71–72, 108

class union, 29, 73, 110
ClassName, 44, 135
communication, 9, 94, 95, 97, 119
compositionality, 3, 36
conjunction (�), 58, 93, 118

distributed, 63, 64, 103, 118
containment, see object containment
coupling, see object coupling

Declaration, 138
deferred operation, 54
Δ convention, 88
Δ-list, 6, 54–55, 89

absence of, 55
DeltaList, 54, 136
dot notation

attribute, 8, 33, 74
initial state schema, 8, 34, 69
operation, 8, 33, 34, 56

Expression, 71–74, 108–113, 139
external referencing, 38

restricting, 39

feature, 6
cancellation, 12–13, 49
renaming, 12, 48–49, 71–72, 81

formal generic parameters, see generic
parameters, formal

FormalParameters, 44, 135
forward declaration, 30–31, 34–35, 43,

71

generic parameter
actual, 8, 45, 47, 71, 81
formal, 5, 28, 44–45

hiding, 62–63, 102, 120
features, 46

Identifier, 140
identity, see object identity
inheritance, 2, 10–13, 46–49, 81

cancellation, 12–13, 49
extension, 11
multiple, 12
redefinition, 49
renaming, 12, 48–49, 81
specialization, 10
textual reuse, 12

inheritance hierarchy, 13
InheritedClass, 47, 81, 135
INIT, 6, 53
initial state schema, 6, 53, 87

horizontal, 53
recursion, 70–71

InitialState, 53, 87, 136
interface, 5, 46
interleaving concurrency, 115

local definition, 50
abbreviation, 51, 84
basic type, 50, 82
constant, 10, 50–51, 83

145

146 The Object-Z Specification Language

free type, 51, 85
LocalDefinition, 50, 51, 82–85, 135

modularity, 2–3, 36
multiple inheritance, 12
mutual reference, 31

nondeterminism, 9, 120
nondeterministic choice (��), 9, 60–61, 96,

120
distributed, 63, 64, 104, 121

object, 7, 32–33
object aliasing, 9, 27, 38, 97
object containment, 39–41, 73, 111
object coupling, 27, 36
object identity, 8, 27–28, 33
object orientation, 2

methodology, 3
operation, 6, 53–54, 88

recursion, 65–68
Operation, 54, 56, 88, 136
operation expression, 8
operation operator, 9, 57–58

distributed, 63
operation schema, 54–56, 89

horizontal, 56
OperationExpression, 56–63, 89, 90, 92–

97, 101–105, 136
OperationName, 54, 136

Paragraph, 44, 78, 134
parallel composition (k), 9, 59–60, 94,

119
associative (k!), 59–60, 95, 120

persistence, 28
polymorphic core, 57, 74
polymorphism, 2, 13–14, 28, 72, 109
precondition, 55
Predicate, 68, 69, 106, 107, 138
PredicateList, 138
primary variable, 8, 52, 86
promotion

attribute, 33–34, 74, 112
initial state schema, 34, 69–70, 107
operation, 34, 56–57, 90–91

qualification, 74

reachable states, 32, 53–54, 78, 88

recursive data structure, 35
reference semantics, 27, 29–30, 116
RenameList, 48, 57, 71, 137

scope (�), 101, 117
scope enrichment (�), 62
seamless development, 3, 27
secondary variable, 8, 52, 86
self , 32, 52, 74, 113
self-reference, 32
sequential composition (o9), 61, 97–100,

120
distributed, 63–65, 105, 120

State, 52, 53, 86, 135–136
state schema, 6, 52–53, 86

horizontal, 53
subclass, 2, 10
superclass, 10
synchronization, 118
system class, 9

top-down specification, 34
type compatibility, 46

operation, 57

visibility list, 5, 46, 80
absence of, 6, 46, 80

VisibilityList, 46, 80, 135

Word, 142

Z
comparison with, 1–6, 29–30, 43,

55–56, 88, 116, 133

Object-Z Home Page

The Object-Z Specification Language

by Graeme Smith.

Advances in Formal Methods Series, Kluwer Academic Publishers, 2000.
ISBN 0-7923-8684-1. 160 pages.

Errata

page 7, To avoid the types of the output parameters clashing the operation Leave of class Multiplexer should be
defined as follows.

Leave = output.Leave /\ source.Leave\ (item!)

page 65, The value of phi([false]) should be [delta(n) | n> 10 /\ n'=n].

page 66, The values of chi([false]), chi(chi([false])), chii+1([false]) and Op1 should be

[delta(n) | false].

page 99, To appropriately constrain variables which are changed by only the first operation of a sequential
composition, the predicate of the second schema in the definition should include the following.

w1'=w1 /\ ... /\ wp'=wp where delta(Op1) \ delta(Op2) = {w1,...,wp}.

page 137, The scope enrichment operator should bind less tightly than all other binary operators. The hiding
operator should bind more tightly than all binary operators except sequential composition.

page 143, The final reference should be the following.

Stepney, S., Barden, R. and Cooper, D. (eds) (1992) Object Orientation in Z, Springer-Verlag.

These pages are maintained by Graeme Smith.
Comments, corrections and suggestions welcome (smith@svrc.uq.edu.au).

