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Foreword

Over time, basic research tends to lead to specialization — increasingly narrow top-
ics are addressed by increasingly focussed communities, publishing in increasingly
confined workshops and conferences, discussing increasingly incremental contribu-
tions. Already the community of programming languages is split into various sub-
communities addressing different aspects and paradigms (functional, imperative,
relational, and object-oriented). Only a few people manage to maintain a broader
view, and even fewer step back in order to gain an understanding about the basic
principles, their interrelation, and their impact in a larger context.

The pattern calculus is the result of a profound re-examination of a 50-year de-
velopment. It attempts to provide a unifying approach, bridging the gaps between
different programming styles and paradigms according to a new slogan — computa-
tion is pattern matching.

It is the contribution of this book to systematically and elegantly present and
evaluate the power of pattern matching as the guiding paradigm of programming.
Patterns are dynamically generated, discovered, passed, applied, and automatically
adapted, based on pattern matching and rewriting technology, which allows one
to elegantly relate things as disparate as functions and data structures. Of course,
pattern matching is not new. It underlies term rewriting — it is, for example, incor-
porated in, typically functional, programming languages, like Standard ML — but it
has never been pursued as the basis of a unifying framework for programming.

It is surprising how this elementary principle allows one to uniformly and ele-
gantly cover the various programming paradigms, not only concerning execution
but also typing, which itself is also realized following the idea of pattern matching.
The author plays this game of giving and extracting semantics from syntax with
virtuosity.

Full appreciation of the mastery of this presentation requires deep knowledge of
numerous theoretical areas of computer science, like lambda-calculus, term rewrit-
ing, and type theory. This is, however, not necessary to appreciate the fruits in terms
of generalized typing and the new path and pattern polymorphisms. Even though
the bondi environment presented is still in its infancy, it provides already a strong
hint of its potential power.

VIL



VIII Foreword

Integrating the new technology in established settings in order to enhance their
expressive power may well have a significant practical impact. People are much
more prepared to accept new functionality in their known settings than totally chang-
ing paradigm. Another approach would be to use the pattern calculus as an “embed-
ded technology* for dealing with matching and adaptation. Promising application
scenarios for such an enterprise include Web Service discovery and mediation.

The described multiple dimensions of impact of the pattern calculus indicate the
potential audience. It may range from students who want to get a deeper insight into
the basic principles, to language designers interested in enhancing the power of their
languages, to tool and service designers in need of new, powerful technologies. The
“How to Read This Book* chapter shows that the author wants to address all these
communities, and he stands a good chance of being successful.

It should not be forgotten, however, that the book focuses on foundations, and
that it assumes a good theoretical background. Therefore interpreters will be needed
so that the technology reaches the places where it will eventually have the largest
impact, and I hope that the book will inspire this kind of technology transfer, whose
value cannot be overestimated.

Dortmund, Bernhard Steffen
March, 2009



Preface

The pattern calculus is a new foundation for computation, in which the expressive
power of functions and of data structures are fruitfully combined within pattern-
matching functions. The best of existing foundations focus on either functions (in
the A-calculus) or on data structures (in Turing machines) or compromise on both
(as in object-orientation). By contrast, a small typed pattern calculus supports all
the main programming styles, including functional, imperative, object-oriented and
query-based styles. Indeed, it may help to support web services, to the extent that
these are generic functions applied to partially specified data structures.

This book is an elaboration of the idea that computation is pattern matching.
As with all such ideas, it must be made to work hard. New sorts of patterns and
polymorphism are developed, culminating in the possibility that any term can be a
pattern. Types and subtyping must be construed in novel ways, too. The develop-
ment is incremental, using over a dozen calculi. Finally, the practicality of pattern
calculus is illustrated in a programming language, bondi.

While the results could be spread over a series of papers, this would certainly
diminish the overall impact, as experience shows that no one paper can be both for-
mal enough to be convincing and comprehensive enough to be motivating. Rather,
the book has been conceived as a whole, starting with an initial, motivating problem
and ending with its implemented solution.

The primary audience for this book is thus the experts in fields related to the
foundations of computation, including A-calculus, rewriting theory, type theory or
programming language design. The formal development is created with them in
mind. However, it has also been used as the main reference in a course for research
students and senior undergraduates. The many examples and the introduction to the
bondi programming language are developed with them in mind. Some care has been
taken to allow exploration of bondi without having to address the formalisms.

In addition, the book may come to be of interest to other communities interested
in patterns. For example, it may be possible to represent some design patterns using
the powerful patterns here. Also, since patterns can now be computed and not just
written by a programmer, it should be possible to automate the process by which the

IX



X Preface

patterns generated by pattern recognition software in, say, image processing or data
mining, are used to produce pattern-matching functions.

My interest in pattern matching arose from the realisation that the shapes of data
structures were best described as patterns. This led to a series of calculi of increas-
ing sophistication: the constructor calculus (2001); the higher-order pattern calcu-
lus and the first version of bondi (2004); and, with Delia Kesner, the pure pattern
calculus (2005-6). In the Fall of 2004, I gave a series of seminars on pattern calcu-
lus in North America and Europe, at which point the need for a book became clear.
After some false starts, the initial draft of Parts I and II was produced while visit-
ing Simon Peyton Jones at Microsoft Research (Cambridge) in the second half of
2006. Part III was produced in 2007 at the University of Technology, Sydney. Most
of the material was presented to the pattern calculus seminar in Sydney, in 2007,
and in the subject Recent Advances in Software Engineering at the the University of
Technology, Sydney in 2008.

Assumed Knowledge

For the most part, the book is self-contained, aside from some rudimentary knowl-
edge of set theoretical notation. Of greater importance is mathematical or logical
maturity. Prior knowledge of A-calculus, type theory or programming will be an
advantage.

Acknowledgements

Many people have provided useful feedback on both the ideas in this book and its
drafting, especially Marco Bakera, Henk Barendregt, Luca Cardelli, Germain Faure,
Marcelo Fiore, Thomas Given-Wilson, Daniele Gorla, Bob Harper, Ryan Heise,
Freeman Huang, Neil Jones, Simon Peyton Jones, Jean-Pierre Jouannaud, Delia
Kesner, Robin Milner, Eugenio Moggi, Clara Murdaca, Tony Nguyen, Jens Pals-
berg, Richard Raban, Matt Roberts, Don Sannella, David Skillicorn, Tony Sloane,
Bernhard Steffen, Eelco Visser, Joost Visser, Yiyan Wang and members of the pat-
tern calculus seminar. My special thanks go to Eugenio Moggi and Bernhard Steffen
for their careful reading of the second draft, and to David Broman for his painstaking
efforts while reading the final draft. All remaining errors are the sole responsibility
of the author.

I am particularly indebted to Microsoft Research (Cambridge) for their support
while writing this book, and to the University of Technology, Sydney for giving me
the freedom to pursue my thoughts.

Sydney, Barry Jay
December, 2008



Contents

PartI Terms

1

Introduction . ....... ... ... . . .. 3
1.1 Programming Styles .............. .. i 3
1.2 A Motivating Problem ....... ... ... ... .. 5
1.3 Pattern Matching ........... ... 6
L4 TYPeS ettt 7
LS boNdi. . ..o 8
1.6 SYNOPSIS o v vttt e 10
1.7 HowtoRead ThisBook ............... ... .. ... ... iiiia... 11
Functions ....... ... 13
2.1 SUDbSHEUHON .. ettt e e 13
2.2 Pure A-Calculus. .. ...t 14
2.3 B-Reduction.......o.ouuuriiteeii e 17
24 ConfluenCe .. ...ttt 18
2.5 FIXPOINES ottt e 20
2.0 NOES . vttt et e e e 22
Data Structures . ... ... ... 23
3.1 Constructors and Operators . ............c.uoeeuumeeineennnenn.. 23
3.2 AdHOCOPErators . .....ooutt et i 24
3.3 Data Structures as Abstractions .. ..............uuuiineinaen... 26
34 Compound Calculus ......... ..., 28
3.5 Defined Operators . ... .....uuuunee ettt 30
300 NOES . ¢ e vttt ettt e e e 31
Static Patterns . ............ ... ... 33
4.1 Patterns . ... ooou 33
4.2 Static Pattern Calculus .............. it 34
4.3 StaticMatching . ...... ... o e 35

X1



XII Contents
4.4 Constructor Patterns ............ ... .. 36
4.5 Generic Mapping. ...... ...t 39
4.6 Generic QUETIES . . . oottt ettt e e e 40
4.7 Relating to Compound Calculus .......... .. ... ... 43
48 NS . . ettt et e 44

5 DynamicPatterns .......... ... . ... . ... 45
5.1 First-Class Patterns . ......... .. 45
5.2 Dynamic Pattern Calculus ............ ... i, 47
5.3 Matching . ... 48
5.4 Confluence of Matching ......... ... ... ... ... . ... .. 50
5.5 String Matching . ........... . 52
5.6 Encoding Static Patterns . . ........... ... o i i 53
5.7 Wildcards .. ..o 54
5.8 VIBWS Lttt 55
5.9 NOES . ettt et e 56

6 ODbBjJects ... .o 59
6.1 Records. ... ... 59
6.2 Inheritance and Method Specialisation ......................... 61
6.3 ObjectCalculus . ...t 62
6.4 NOES. ..ottt 64

Part II Types

7  Parametric Polymorphism ........... ... ... . ... ... .. L. 67
7.1 Simply Typed A-Calculus. ........covviiiiiiiiin ... 67
7.2 Data Structures as Typed Abstractions ......................... 70
7.3 Quantified TYPES . ... oott 71
74 System F. ..o 72
7.5 Reduction of Type Applications ........... ..., 73
7.6 Listsas Functions ................iiiiiiiiiinniiiiinnaaan. 74
7.7 Strong Normalisation .................oiiiiinneiinnninnnann. 77
T8 NOES . vttt t et e e e e e e 79

8 Functor Polymorphism ............. ... ... ... . ... ... ... 81
8.1 AdHoc Polymorphism ........... .. ... .. ... .. ... 81
8.2 TYPECASES . .. vttt et 82
83 System FM .. ... 84
8.4 Typecase Calculus . ...ttt i 87
8.5 Combinatory TYPeS . ..o vvi et 88
8.6 Functorial Mapping.......... ... 89

8.7 NOLES . .ot e 90



Contents XIIT

9  Path Polymorphism ........... ... ... . ... ... ... . ........ 91
9.1 Typing Components . ...............uiiiiiuuinneeunnnnneann. 91
9.2 Query Calculus ...ttt 93
9.3 Selecting. . ..covnn i 94
9.4  Terminating QUETIES . . ... .vuure ettt 96
9.5 Typed Static Pattern Calculus .......... ... ... ... ... 99
9.6 Selectorsby Patterns . .......... ... ... 102
0T NOLES . e ettt et e e e e e 103
10 Pattern Polymorphism ....................... ... ... .......... 105
10.1 Matchable Type Symbols ......... ... ... .. ... . ..., 105
10.2 Typed Pattern Calculus . ........... i 107
10.3 Matching Typed Patterns .......... . ... oo, 108
10.4 Generic Equality .. ..... ..ot 109
TO5 NOES . .ottt e e e e e 111
11 Inclusion Polymorphism ............... ... ... . ... ... ........ 113
11.1 Methods Without Objects . .........oiiiiiiiiniinanenn.. 113
T1.2 Subtyping . ..o vt e 116
11.3 Simply Typed Method Calculus. ................... .. ........ 117
11.4 Method TYPES .o vttt 118
11.5 Parametric Method Calculus .............. .. ... ..., 123
11.6 Subtyped Pattern Calculus .......... ... ..., 124
11.7 Coloured Circles . ..........uiiiimii e 126
1.8 NOES . . o ettt ettt e 128
12 Implicit Typing . ... i e 129
12.1 Extension Calculus ......... ... i i 129
12.2 Linear Types ... ...t 131
12.3 Typing Special Cases . .........ouiiuinee i, 132
12.4 Typing the Extension Calculus ............ .. ... .. ........ 133
12.5 Datum TYPES . oottt et e et 135
12.6 Constrained Subtyping .. .......oouuitineii i 136
12.7 Subtyped Extension Calculus. ............. .. .. ... ... ....... 137
12.8 NOES . . oottt et et e e e e e 140

Part ITI Programming in bondi

13 Higher-Order Functions ............... ... ... ... ... ......... 145
13.1 From Calculus to Programming Language . ..................... 145
132 Let-Terms . . ..o oottt e e 146

13,3 NO ES . .ottt e 147



X1V Contents
14 Algebraic Data Types . .............. ittt 149
14.1 Type Declarations ............ ... ..iiiiiiiiiinniiinnnnn... 149
14.2 Pattern-Matching Functions . .............. .. ... .. ........ 151
14.3 PolymorphisminData ........... ... ... . oo, 154
14.4 Generic Functional Programming ................. ... ......... 155
14.5 Adding Cases to Existing Functions ........................... 157
14.6 The Expression Problem.......... ... ... ... o ... 159
LA 7 NOES . .« ot e 160
15 QUEries . ... 161
15.1 Numerical Functions. ........ ... ... i 161
15.2 Polymorphic Recursion ........... ... ... . i, 164
15.3 Searching and Modifying ......... .. ... i 165
I5:4 NOES . o o vttt e e e e 168
16 Dynamic Linear Patterns ........... ... ... . ... .. ... .. ... 169
16.1 Generic Elimination ...............ooiiiiiiiiiiniennnn... 169
16.2 Salaries or Wages . .....oouiiine i 171
10.3 NOES . .ottt e e e 171
17 State . ... ... 173
17.1 References . ... e 173
17.2 Linked LiStS . . ..ot 175
17.3 NOES . . o e ettt e e e e e e e e 178
18 Object-Oriented Classes ..................oiiiiineiiiiinnnnn. 179
18.1 Classifying Objects . ...ttt 179
18.2 CIaSSeS . v vttt ettt e e e 180
18.3 Subclasses .. ...ttt 183
18.4 Specialised Methods . ... 184
18.5 Parametrised Classes. ..........ooiiuiinniiinneen... 186
18.6 Buildingon Standards. ............ ... ... . i ... 189
18.7 Updating Salaries ........... ... i, 192
18.8 NOES . . o vttt e 197
A SYNEAX ... 199
A.l Untyped Terms ........ ... oo 199
AL Y PeS et 200
A3 Typed Terms ... ... 202
References . ... ... 205



List of Figures

2.1
2.2
2.3

3.1

4.1

5.1
5.2

7.1
7.2

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4

10.1
10.2
10.3

11.1
11.2
11.3
11.4

Rewriting for pure A-terms .. .........oeeeiiiieee ... 18
General 1eduction . ...t 19
Simultaneous reduction for pure A-calculus ....................... 20
Compound calculus . ... ... i 30
Staticmatching . ........ ... . 35
Dynamic matching . ...t i 49
Simultaneous reduction for dynamic patterns ...................... 50
Simply typed A-calculus ....... ... ... 68
System F ... 73
Type unification .............o oo 83
Typematching. ... 84
System FM . ... 85
ChoICeS ...ttt 87
Novel typing rules of the query calculus .......................... 93
Novel reduction rules of the query calculus ....................... 94
Typed static pattern calculus ............ .. ... .. ... .. 101

Basic matching and reduction rules for typed static pattern calculus ... 102

Type matching with matchable symbols .......................... 106
Typed dynamic pattern calculus .......... .. ... . ... ... ... 108
Basic matching and reduction rules for typed pattern calculus ........ 109
SUDLYPING . oot 116
Type specialisation for simple types ........... ...t 117
Simply typed method calculus .............. . ... .. ... 118
Reduction rules for simply typed method calculus . ................. 119

XV



XVI

11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

12.1
12.2
12.3
12.4
12.5
12.6

14.1
14.2

15.1
15.2
15.3
15.4

17.1
17.2
17.3

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13

A.l
A2
A3
A4

List of Figures

Submatching . ... 120
Relating ... ..o oo 121
Type specialisation . . .........ouiiint e 122
Parametric method calculus. . ...... ... .. .. i 123
Reduction rules for method calculus ..................... ... .... 124
Subtyped pattern calculus ........ ... 125
Basic matching for subtyped pattern calculus ...................... 126
Reduction rules for subtyped pattern calculus . ..................... 127
Value matching . ..... .. oo 130
Operational semantics of the extension calculus . ................... 131
Linear terms . . ... ...ttt 134
Typed extension calculus . ......... ... i i 135
Constrained SUbLYPING . ... oot e 137
Subtyped extension calculus .......... ... i 138
Generic MAPPING. « . ..o vttt e e et et 156
Some generic functional programs ..............c.ooviiiieiaaa... 157
Generic equality ... .....oo ot 163
Generic addition . . ... e 164
Generic search. . ... 165
Applying toall ... ... e 168
Linked Lists .. ...t 175
Doubly linked 1iSts ... ...t 177
The generic iterator .......... ... iiiiiinneiiianeeeennn. 178
NAMES .« .ottt et e e e 180
Persons. . ... 181
Proper persons. . ...... ... 183
Points and coloured points. .. ... 185
Circles and coloured circles. . ... 186
NOAES . ..ttt 187
Doubly linked nodes. . .......ooui i 188
Findingasolution.......... ... ... i, 190
Customers and valued CUStOMErs . ..........c.ooeuniiiinneennnen... 191
Banks and corporations ................. il 192
Employees . .« oot 193
MANAZETS . o o vttt e e e e e e 194
Departments . ... ...ttt e 195
Grammars of untyped terms . ............oiiiiiiinniiiii. 199
Free variables and matchables of untyped terms.................... 200
Substitution for variable term symbols............... ... ... . ... 200

Substitution for matchable term symbols.......................... 201



List of Figures XVII

A5
A6
A7
A8
A9
A.10
A.ll
Al12
A13
A.14

a-conversion for untyped terms . ....... ..o i 201
TYPE SYNEAX . ettt et e e e et e e 201
Free type variables and matchables of types ....................... 201
Type substitutions applied tO types . ... ...coevnneeinneen.. 202
o-equivalence Of tyPesS . . ..o vttt e 202
Grammars of typed terms . ...t 202
Free type symbolsof terms .......... ... ... ... .. ... L. 203
Applying type substitutions to terms . ...............c.c..oieeeon... 203
Applying term substitutions . ..............c...oiiiiiiiiini.. 204
O-conversion Of terMS ... ....oouuunn et 204



Chapter 1
Introduction

Abstract This book develops a new programming style, based on pattern matching,
from pure calculus to typed calculus to programming language. It can be viewed as
a sober technical development whose worth will be assessed in time by the program-
ming community. However, it actually makes a far grander claim, that the pattern-
matching style subsumes the other main styles within it. This is possible because it
is the first to fully resolve the tension between functions and data structures that has
limited expressive power till now. This introduction lays out the general argument,
and then surveys the contents of the book, at the level of the parts, chapters and
results.

1.1 Programming Styles

Why are there so many programming styles? Functional, imperative, relational and
object-oriented styles are all widespread, running on the same hardware, and yet
hardly interacting. Since a large project typically employs several programming
styles, it has been necessary to link them through fragile middleware that, over time,
grows in complexity and cost. These difficulties are compounded when producing
web services, which in turn motivate the creation of yet more styles. Thus, any
progress in relating programming styles may have substantial practical implications.

Stylistic differences are most obvious in syntax, but this is not, of itself, a bar-
rier to communication, but rather a reflection of deeper differences. It is productive
to identify each programming style with its central concept, whose manipulation
supports a distinctive approach to program reuse, or polymorphism. For example:
functional languages such as Lisp, ML and Haskell apply functions; imperative lan-
guages such as FORTRAN and C assign to locations holding data; relational lan-
guages such as SQL access fields; object-oriented languages such as C++ and Java
invoke methods. In this light, the original question can be re-expressed more posi-
tively. How compatible are the central concepts of programming? Can these various
forms of polymorphism coexist?

B. Jay, Pattern Calculus, 3
DOI 10.1007/978-3-540-89185-7_1, (©) Springer-Verlag Berlin Heidelberg 2009



4 1 Introduction

There are three tempting reasons to dismiss the question. Perhaps it was answered
at the very beginning, in the 1930s, when Alonzo Church and Alan Turing showed
the equivalence of A-calculus (for functions) and Turing machines (for imperative
programming). However, this equivalence says merely that both approaches support
the same functions on natural numbers, without in any way addressing programming
style or program reuse. Indeed, the latter concepts did not properly arise until the
late 1950s with the advent of the high-level languages Lisp and FORTRAN.

Perhaps stylistic differences arise only in practice. However, the differences are
well established in theory, too. Over and above the communities devoted to each
style, there is the more fundamental division between those studying program com-
plexity, as measured by Turing machines, and those concerned with program mean-
ing, as emphasised in A-calculus.

Finally, perhaps the fragmentation of styles is caused by differences between
type systems. After all, since any one computation can be expressed in A-calculus, a
programming language can do no more than restrict the expressive power of pure A-
calculus. However, supporting individual computations is not the same as supporting
a style. Also, types did not become important in programming until after the stylistic
differences were well established. Again, types are not diverse enough to generate
the variety of polymorphic styles, as will be discussed in Sect. 1.4.

The oldest source of stylistic tension appears to be that between functions and
data structures. At one extreme, functional programming considers everything to be
a function, even a number or a pair. At the other extreme, imperative programming
considers everything, even a function, to be a structure built from assignable compo-
nents, such as squares on a tape. In between are various compromises or mixtures.
For example, relational programming combines a limited range of data structures
(tables of records) with a limited range of functions (queries and updates). Again,
object-orientation wraps a mixture of data and functionality into a self-contained
object. Thus, the original question can be further narrowed. Is there a single concept
able to support a uniform treatment of both functions and structures, within which
the various other styles can be expressed?

The desired concept is pattern matching, as embodied in pattern calculus. Pat-
terns describe data structures while matching supports functionality. By making the
class of patterns sufficiently generous, all the main programming styles can be ex-
pressed within a single, small calculus.

Although pattern matching is a very well known programming technique, it has
generally been used to add convenience without increasing expressive power. By
contrast, the most general pattern calculus allows any term to be a pattern, so that
patterns are dynamic: they can be generated by an algorithm for pattern recognition,
or discovery, passed as parameters, and then applied in a pattern-matching function.
This is expressive enough to support the existing programming styles, and to suggest
some new ones, based on new forms of polymorphism.
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1.2 A Motivating Problem

The importance of balancing functions and structures can be illustrated through an
example. The problem is to award a salary increase to all employees of a large
organisation. Salaries are represented by floating point numbers, which are to be
increased according to some formula.

The possibilities for the formula are determined by the style. Query programming
would limit the formula to those expressible as queries. Object-orientation is more
flexible, allowing any existing method to be used. The functional style allows the
formula to be represented by a parameter, which can be instantiated by functions yet
to be defined.

Now consider the data structure representing the organisation. Of concern is
the location of employees within the structure, and the representation of employ-
ees therein. In a relational database, or using the functional style, the location and
representation must both be given in almost complete detail. This can be quite a
burden. In a large organisation, employees are likely to appear in departments, units
or divisions, etc. which must be handled explicitly. Similarly, employees may have
different roles, or belong to different classes, e.g. of managers or temporary em-
ployees, with corresponding differences in the way their salaries are reckoned. The
resulting programs are complex, and must be maintained. This is a significant bur-
den since dynamic organisations restructure fairly frequently. Object-oriented lan-
guages can reduce the representation issues by using a root class of employees,
whose subclasses describe different roles. This requires prior agreement on the em-
ployee class, and employee locations within departments, etc. must still be encoded
explicitly. Recent work on programming with semi-structured data, such as XML,
addresses the location problem, but still struggles to represent employees and the
formula in a flexible manner.

In short, none of the existing styles are able to provide a solution to the salary up-
date problem without additional information about the data structures involved. The
curious thing is that this structural detail is absent from the original problem. The
specification itself is unambiguous, since it is easy to check any particular solution.
What is lacking is a sufficiently general programming style.

This is achieved by providing a uniform account of data structures. The necessary
account is surprisingly simple. Every data structure is either an indivisible atom or a
compound built from two components. Hence a program that is to act on an arbitrary
data structure requires just two cases, one for atoms and one for compounds. This
style is used to produce generic queries.

This approach can be used to define a generic iterator that recursively applies its
procedure argument to every component of a structure. When applied to a proce-
dure for increasing salaries, the location problem is solved. When this procedure is
defined using an object-oriented method for increasing salaries, the representation
problem is also solved within the employee class framework. Finally, by allowing
the pattern for an employee to be generated dynamically, the nature of the employee
class itself (its ontological status) can be described using a program parameter. This
yields a completely general solution to the salary update problem. It is able to han-
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dle arbitrary employee subclasses within a dynamically determined employee class
within an arbitrary company structure. This problem is typical of those that can be
solved using pattern matching in its most general form.

1.3 Pattern Matching

To find the balance between functions and structures, let us begin with the theory
of functions, the A-calculus. In brief, every term of the pure A-calculus is either
a variable, application or A-abstraction. Evaluation is given by a single rule that
substitutes the function argument for the bound variable. Pure A-calculus is able to
encode data structures as abstractions, but the encoding is not uniform since there is
no means of distinguishing atoms from compounds.

The first step is thus to add some constructors ¢ which are atoms from which
data structures can be built, by application. Then add some operations that act on
data structures, e.g. to compare constructors, or recover components. The resulting
compound calculus is enough to define the generic queries of interest.

Actually, the required operations are already present in Lisp. For example, its car
and cdr recover the components of a compound (there called a pair). So compound
calculus can be seen as a core of Lisp, in which the variables and constructors are
carefully distinguished. While effective, the compound calculus looks rather ad hoc,
since it is not quite clear whether the new operations are well chosen.

An alternative means of acting on data structures is to use pattern matching.
Patterns can be used to describe the internal structure of data, i.e. its shape, and to
name its parts, which are then available for use.

Till now, patterns have been used to represent particular sorts of data, such as
pairs or lists. For example, the pattern for an employee in a small business might
be Employee n s where n represents their name and s represents their salary. In this
approach, a nontrivial pattern is always headed by a constructor, such as Employee.

More generally, the pattern x y can be used to represent an arbitrary compound,
where car and cdr yield x and y, respectively. Now x can match against any (par-
tially applied) constructor such as Employee n without knowing anything more of
its nature. In this manner, all of the seemingly ad hoc operations of the compound
calculus are subsumed within the single process of matching. The pattern x y above
is a typical static pattern, in that it is ready to be matched without being evaluated.
When used in a recursive function, such patterns allow for traversal of an arbitrary
data structure, by following all paths. This path polymorphism is enough to find all
employee records within an arbitrary database, provided the pattern for an employee
is known to the programmer. Static patterns offer more expressive power than exist-
ing, constructor patterns, at little cost to the programmer.

Even greater expressiveness comes from dynamic patterns, which contain a mix
of variable symbols and matchable symbols. A typical example is given by the pat-
tern x ¥ in which y is a matchable symbol, or matchable (that is among the binding
symbols of the enclosing case) and x is a variable symbol or variable. If y is to
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represent a salary then x can be instantiated by a (partial) pattern for an employee,
worker, or other salary earner. Pursuing this approach to its limit yields pattern poly-
morphism, in which any term can be a pattern. Now patterns are first-class citizens
which can be taken as arguments, evaluated, and returned as results, just like any
other term. For example, patterns generated by data mining to identify, say, high-
value customers could be exploited directly by pattern-consuming functions without
any programmer intervention, thus allowing for a positive feedback loop from pat-
tern generation to pattern consumption and back again. To the extent that pattern
generation and matching are fundamental to intelligence, one can speculate about
the development of software agents and web services, whose exploration, interac-
tion and strategies are all expressed in the language of patterns, the pattern calculus.

1.4 Types

Given that the compound calculus, or Lisp, is able to express such useful queries, it
is natural to wonder why this expressive power is not more widely available. Perhaps
the main reason was that later languages are predominantly typed, and it was not
clear how to type components in a uniform manner. To put this more sharply, the
importance of types in computation has been buttressed by a variety of principles
that have served us well, but are now inhibiting development. This section explores
some of the issues while trying to keep technicalities to a minimum.

As noted earlier, pure A-calculus has been viewed as the acme of expressiveness,
in that it supports all computation, whether meaningful or not. From this viewpoint,
known as the Curry style, types serve to characterise the meaningful terms. For
example, an abstraction may have a function type. An alternative approach is the
Church style, in which the types come first, and the terms are used to describe the
types. For example, an abstraction is just a means of introducing a function type.
Here the only well-formed terms are those that have a type, so the expressiveness
of the type system determines that of the terms, and the nature of any polymor-
phism. For example, type variables can be used to support parametric polymor-
phism, while subtyping supports inclusion polymorphism. In its strongest form, the
types are identified with the propositions of a logic, and the terms with their proofs,
using the so called Curry—Howard Correspondence. Since Curry is already repre-
sented, we may call this the Howard style. Now a function type corresponds to an
implication in the logic, a product type to logical conjunction, etc.

Unfortunately, the latter approaches have had the effect of excluding some forms
of polymorphism. For example, path and pattern polymorphism are not expressible
in A-calculus which is, after all, a theory of functions. Further, they can be typed
using the existing machinery of type variables and function types introduced for the
A-calculus. For example, the size of a data structure is given by a function of type
X — nat where X is a type variable and nat is a type of natural numbers. This
make no sense in the Church and Howard styles, where this type supports constant
functions only.
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This raises an interesting point. Data structures are intrinsic to the pattern calcu-
lus and yet need not have their own types (or their own logic). That said, there are
significant benefits to be had by introducing such data types, built from type con-
stants, such as Int (for integers) and List (for lists), and type applications such as
List Int. Here are three such benefits.

First, the query calculus supports path polymorphic versions of the queries and
updates familiar from query languages such as SQL. Unfortunately, this path poly-
morphism can also be used to define fixpoints as pattern-matching functions, so
that functions need not terminate. This is an unattractive feature for a database lan-
guage to have. The difficulties arise when constructors have higher types, such as
(X — X) — X. When all types are function types, such things cannot be avoided,
but with data types available the necessary restrictions are easily enforced.

Second, the data types themselves suggest a new form of polymorphism, called
Sfunctor polymorphism in which terms are polymorphic in the choice of functor, or
structure used to hold the data. In this manner, the familiar mapping for lists, of
type (X —Y) — List X — List Y can be generalisedto (X -Y) = FX —FY
where F is a type variable representing the unknown structure type. Once again, the
terms are not merely a reflection of the type structure, since the generic mapping is
a complex pattern-matching function developed from the representation theory of
data types.

Third, the most popular accounts of subtyping focus on the function types, which
leads to numerous difficulties, especially concerning argument types. However,
since objects now have data types, it is natural to make function argument types
invariant under subtyping, so that the difficulties with argument types all vanish.
Now specialised methods can be represented as pattern-matching functions, so that
inclusion polymorphism can be added with a minimum of disruption.

Thus, a fairly simple type system, rather similar to those well known for decades,
can support a variety of old, neglected, and new forms of polymorphism. To the path
and pattern polymorphism visible in the untyped calculi can be added parametric
polymorphism (from type variables), plus two forms of polymorphism that combine
elements from both the types and the terms, namely inclusion polymorphism (from
subtyping) and functor polymorphism (from data types). This makes a total of five
sorts of polymorphism that can be supported by the pattern calculus.

1.5 bondi

The programming language bondi is based on an implicitly typed pattern calculus
called extension calculus. Its source code is freely available. Much of the syntax
will be familiar to functional programmers. For example, the generic size function
is given by

let rec (size : a -> Int) =
| x y -> (size x) + (size y)
| x > 1
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It declares size to be a recursive function of type a -> Int (here a is a type vari-
able) defined as a pattern-matching function with two cases, as indicated by the
symbol |. The first case has pattern x y to handle an arbitrary compound, while the
second case has pattern x that matches anything else.

Also, data types can be declared in the usual manner. For example,

datatype List a = Nil | Cons of a and List a

introduces a type constant List and two constructors Nil: List a for empty lists
and Cons: a -> List a -> List a. for adding new entries.

Object-orientation is supported through classes whose syntax is similar to that of
Java. For example,

class Name {
name : String;

get_name = { | () -> !this.name }
set_name = { fun n -> this.name = n }
with

toString += | Name x y -> !y

}

declares a class of names, with a field name of type String and the usual get- and
set- methods. Note the use of the assignment this.name = n and the use of ! to
de-reference fields. Also, the syntax +- is used to add a case to an existing function
toString that does not belong to any class.

This shows that bondi is able to augment existing functions (e.g. toString)
with cases for new data structures (e.g. names), as well as augment existing data
structures with new functions, as is usual with algebraic data types. Of course, aug-
menting existing functions changes their meaning, so that this violates referential
transparency. However, by restricting this capacity for adding cases to newly de-
clared structures, this can be achieved without ever changing the behaviour of ex-
isting programs, so that one has behavioural continuity. In the past, the difficulty
of achieving both sorts of augmentation has been seen as evidence that one must
choose between a data-centric or a function-centric programming style, but bondi
provides more evidence that functions and data structures are fully compatible.

This brings us back to the original question of programming styles. There will
always be a need for syntax that is customised to simplify different sorts of program
reuse. However, the pattern calculus and bondi show that the main existing styles are
all quite compatible. They can be realised in a single, small, typed calculus, based
on pattern matching, and be combined freely. Indeed, the potential of this approach
to support new programming styles is not exhausted. In sum, pattern calculus pro-
vides a foundation for computing that does more than just describe the computable
functions, as it is able to account for the polymorphism of programming styles in a
quite general manner, allowing them to be combined freely and confidently.
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1.6 Synopsis

Part T considers terms without types. It starts with a brief introduction to the well
known pure A-calculus in Chap. 2.

Chapter 3 introduces data structures. They are built from constructors, a class
of inert term constants. While commonly viewed as syntactic sugar for the corre-
sponding A-terms, the compound calculus shows how they may support additional
expressive power, such as the ability to compute the size of a data structure. The
compound calculus provides a new account of the core of Lisp, which describes its
data structures as well as its functions, the main point of difference being that com-
pound calculus maintains a clear distinction between variables and constructors.

Chapter 4 introduces pattern matching through a class of static patterns. The
static pattern calculus generalises the standard approaches to pattern matching by
allowing a pattern that matches an arbitrary compound. Hence it is able to support
algorithms that traverse arbitrary data structures.

In passing from A-calculus to compound calculus to static patterns, the size of
the calculus has expanded to include new term constants, and then a new syntactic
class of patterns. Chapter 5 purifies the syntax while further increasing expressive
power, by identifying constructors with matchable symbols, and patterns with terms,
in the dynamic pattern calculus. The main challenge then is to control matching, so
it cannot get stuck, and so its results are stable under reduction of either pattern or
argument (reduction is confluent), as established in joint work with Delia Kesner.

Chapter 6 shows how pure static pattern calculus can support records and objects.
There is a translation to it from Abadi and Cardelli’s pure object calculus.

Part II develops type systems that can support the program reuse introduced in
Part I. The main theorems in Part II show that reduction is confluent, preserves
typing and progresses. There are also some results on termination of reduction.

Chapter 7 describes the type variables (or parameters) of the typed A-calculus,
System F with its parametric polymorphism. Jean-Yves Girard’s proof of strong
normalisation is recalled.

Chapter 8 describes functor polymorphism, in which functions that are able to
act on general collections are defined by giving cases for each sort of primitive
structure. By contrast with earlier accounts, the combination of cases is here given
by a typecase which branches according to the value of a type argument. In turn,
typecases can be seen as performing pattern matching on types. This is described in
a new account of type variable quantification in which instantiation is handled by
type matching, in System FM.

Chapter 9 uses the typecases to type a variant of the compound calculus as the
query calculus. It generalises queries from records to arbitrary data structures. By
controlling the types of constructors in ranked query calculus, it can be proved that
reduction always terminates, an important property for a query language. The same
types can be used to type the static pattern calculus.

Chapter 10 types the dynamic pattern calculus, introducing matchable type sym-
bols in parallel with the matchable term symbols.
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Chapter 11 introduces a structural subtyping relation. This provides a radical
alternative to existing approaches, which is simpler (subtyping is structural), more
expressive (type variables are in play) and more closely aligned with class-based ap-
proaches to object-oriented programming (no contravariance in function argument
types). This is exploited by the method calculus, in which method choices are added
to A-calculus, and then in the subtyped pattern calculus.

Chapter 12 introduces the extension calculus. It is an implicitly typed calculus
that underpins bondi. It can be seen as a dynamic variant of the pattern calculus that
preceded all the calculi presented here. It surrenders a little expressive power of the
(sub)typed pattern calculus to eliminate the need for types during evaluation.

Part III presents the main examples of the earlier parts within the bondi program-
ming language. Chapter 13 introduces the language, which is based on the exten-
sion calculus, and illustrates higher-order functions and parametric polymorphism.
Chapter 14 introduces algebraic data types and pattern-matching functions upon
them. Generic functional programming is also introduced. Chapter 15 introduces
generic queries. Chapter 16 introduces dynamic patterns. Chapter 17 adds state in
the form of references. Chapter 18 adds classes to support object-orientation.

Perhaps surprisingly, the proof techniques in the book are all adapted from A-
calculus and rewriting theory. The most delicate of these is the proof of strong nor-
malisation for the ranked query calculus, which adapts the familiar technique of
reducibility candidates to the presence of data structures. The chief contribution of
the work lies in the novelty of the definitions, of constructors and data structures, of
type invocation and specialisation, etc., which in turn derive from pursuit of a single
observation, that functions and data structures are not interchangeable, but rather
can be related through pattern matching.

1.7 How to Read This Book

The book is designed to be read in a number of ways. Of course, the clearest account
is obtained by reading from the beginning to the end. Other approaches provide
shorter routes to the most developed systems, leaving some explanations behind
along the way. For example, each of the three parts, on terms, types and programs,
may be read in isolation. As well as this “horizontal” structure, there is also a “ver-
tical” structure, exhibited by the following table of chapters:

Concept 2 functions |3 data 4 static |5 dynamic |6 objects
Polymorphism |7 parametric|8 functor |9 path [10 pattern |11 inclusion
Style 13 functional |14 algebraic|15 query |16 pattern |18 object-or.

Here, “static” and “dynamic” refer to patterns,“algebraic” is a contraction of “alge-
braic data types” and “object-or.” contracts “object-oriented.” For example, Chaps 4,
9 and 15 address static patterns, showing how they behave as terms, how their path
polymorphism can be typed, and their use in defining generic queries in bondi. A
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safe approach is to read all of the chapters above and to the left of the chapter of
interest. For example, before Chap. 9, read Chaps. 2, 3,4, 7 and 8. It may even be
possible to read advanced chapters in isolation, if one is after the main ideas only.
Highlights among the calculi include those of Chaps. 5, 10 and 11. Three chapters do
not appear in the table above: Chap. 1 provides an overview of the book as a whole;
Chap. 12 provides a bridge from the calculi to programming, and Chap. 17 intro-
duces imperative features. Finally, the appendix contains a brief account of each
calculus that appears in Parts I and II and a technical summary of all the shared
syntactic definitions, e.g. of free variables.



Chapter 2
Functions

Abstract This chapter provides an overview of the pure theory of functions, the
pure A-calculus. It is used to introduce general notions that will recur throughout
the book. Grammars, meta-variables, free variables, substitutions and a-equivalence
are all necessary to define the term syntax precisely. Computation is characterised
by reduction rules. Unique results of computation are guaranteed by confluence
of reduction. In A-calculus, reduction is defined using the -rule, which evaluates
functions by substitution. Its expressive power is illustrated by some basic examples,
culminating in the characterisation of general recursion through fixpoints.

2.1 Substitution

The use of functions is so familiar that on first consideration they may appear un-
worthy of serious study. This view is understandable if the functions involved have
simple arguments which are, say, numbers or words, but there are many situations in
which functions are themselves the arguments of other, higher-order functions. One
of the commonest examples in mathematics is the differential operator of differential
calculus, which converts a function producing values into a function producing the
rate of change of values. Similarly, in playing games or proving theorems, one may
develop complex tactics (functions from game positions to moves) built from sim-
pler tactics. Within programming, routines may be viewed as functions, so that sub-
routines become function arguments. Again, database queries are commonly built
by applying an operator to, say, a predicate (a boolean function) that tests values. In
such settings, the functional machinery must be described with more care.

Further, when functions are first-class, i.e. able to be passed as parameters, evalu-
ated and returned as results, then the functional machinery can represent both natural
numbers, and any function on them which is (Turing) computable. That is, the pure
functional view is not only compact but self-contained.

The elements of a theory of functions can be illustrated by a trivial example.
Consider a function f that is defined by the equation

B. Jay, Pattern Calculus, 13
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fx)=x+1

so that f(1) is 2 and f(3) is 4, etc. This declaration combines the description of
the function for adding one, and its naming as f. The issues can be separated by
considering nameless functions, using the Greek letter A instead of the symbol f
and rearranging the syntax to produce

Axx+1.
Now the definition of f above can be rewritten as
f=Axx+1

in which the function construction (by A) and naming (by =) are clearly separated.
When this function is applied to, say, 3 to get

(Axx+1)3

then its evaluation, or reduction replaces x by 3 in x+ 1 to get 3+ 1 which evaluates
to 4.

The naming of functions is useful for reasoning about them, or for creating an
environment for programming, but is not central to the study of functions in compu-
tation, whose key elements are abstraction, application and reduction. The reduction
has two aspects, substitution of 3 for x and simplification of the addition. In the pure
theory of functions, the nature of terms such as, say, 3 or + is put to one side (until
Chap. 3) to focus on the application of abstractions to arguments, and the nature of
substitution.

2.2 Pure A-Calculus

Throughout the book, calculi will be introduced by first giving their syntax and then
their semantics. The syntax will be given by one or more grammars followed by
a description of basic syntactic manipulations, such as substitution, and perhaps an
equivalence relation which determines when two syntactic forms represent the same
term, e.g by renaming of bound symbols. Since much of this machinery is shared
between calculi, repetition is avoided by providing a complete account of the syntax
in the appendix. The semantics will describe how evaluation is to proceed. This will
typically be given by a reduction relation. No attempt will be made to consider deno-
tational semantics in which the meaning of terms is described without reference to
evaluation. Although denotational semantics is well developed for the A-calculus it
has not yet been addressed for the pattern calculi. The phrase “Throughout the book”
at the beginning of this paragraph is used to flag conventions that apply throughout.
They are listed in the index, under the heading “conventions.”
The term syntax of the pure A-calculus is described by the following grammar:



2.2 Pure A-Calculus 15

ti= (term)
X (variable symbol)
tt (application)
Ax.t (abstraction).

Its first line asserts that ¢ is a meta-variable for a term. Meta-variables appear in
meta-languages that are used to describe object languages. In logic, object languages
make statements about the world while meta-languages make statements about ob-
ject languages. They can be used to resolve paradoxes arising from statements such
as “This sentence is false.” Here, the calculus or programming language is the object
language, which is described using a meta-language.

Throughout the book, the meta-variables b and m,n, o0, p,q,r,s,t,u and v may be
used for terms, as may their subscripted variants such as s3 and #5 and their primed
versions s’ and #”. Typically, b will represent a boolean, m and n will represent
object-oriented methods, and p and g will represent patterns.

Each succeeding line in the grammar above describes a possible form for terms,
and its name. The system requires a countable collection of symbols which must
be easily distinguished from each other, but apart from that, their exact nature does
not matter as they are merely identifiers, or place-holders. Throughout the book, the
meta-variables for symbols are the italic lower case roman letters f,g,h,i, j,k and
w, x,y,z. The latter carry no particular associations, but f, g and & will be used when
they are to be thought of as functions, and i, j and k are typically used for numbers.

In the pure A-calculus every symbol is also a term, namely a variable symbol or
variable. The distinction between symbols and variables is not crucial here, but later
calculi will admit matchable symbols as well as variable symbols.

If r and u are terms then r u is the application of the function r to the argument u.
The head head(t) of a term ¢ is the term at the root of the (possibly empty) sequence
of applications that make 7. More precisely, it is given by

head(r u) = head(r)
head(r) = t otherwise.

For example head((Ax.x) uv) = Ax.x.

If s is a term then Ax.s is an abstraction, the abstraction of s obtained by binding
the symbol x. Although every term of the pure A-calculus may be used as a function,
this is not true of A-calculi in general, so it is sometimes useful to characterise the
abstractions as explicit functions, since their structure reveals their nature. Variants
of this concept will be important in later calculi.

To the extent that binding symbols are place-holders, their actual name is not
important. For example, Ax.x and Ay.y are both the identity function. The actual
terms will be defined as equivalence classes in the term syntax under renaming of
binding symbols, once the machinery for renaming has been introduced. However,
the distinction between the terms and their syntax will not be emphasised in the
development unless relevant.

Application is left-associative, so that s ¢ u is (s #) u. Also, it binds tighter (has a
higher precedence) than abstraction, so that Ax.r u is Ax.(z u) not (Ax.t) u.
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The basic reduction rule of A-calculus is that an application (Ax.s) u yields the
substitution of u for x in s. The first step is to determine which occurrences of x are
to be replaced. For example, if s is x (Ax.x) then the substitution yields u (Ax.x) and
not u (Au.u) or u (Ax.u) since the copy of x in the body of Ax.x is bound locally, and
not by the outer binding of Ax.s. To clarify this, it is necessary to specify the scope
of bindings, by defining the free variables of a term (those available for substitution).

The free variables fv(t) of a term ¢ is the set of symbols defined by

f(x) = {x}
fv(ru) = fv(r)Ufv(u)

fv(Ax.s) = fv(s) \ {x}

where {x} is the singleton set containing x and fv(r) Ufv(u) is the union of the sets
fv(r) and fv(u) and fv(s) \ {x} is the set-theoretic difference of fv(s) and {x} given
by removing x from fv(s) if it is present. The key point is that the binding symbol is
not free in an abstraction, i.e. x is not free in Ax.s as Ax binds all free occurrences of
x in s. Throughout the book, a term 7 is closed if it has no free variables. Here, this
means fv(¢#) = {} but later when terms contain type variables, they must not have
free type variables either.

Throughout the book, a term substitution (meta-variable ¢) is a partial function
from term symbols to the relevant term syntax. If its domain dom(o) is given by
the symbols xp,...,x, and maps x; to u; then it may be written {u; /x1,...,u, /X, }.
The set of free variables of ¢ is given by the union of the sets fv(ox) where x €
dom(o). The symbols sym(c) of a substitution o are given by dom(o)Ufv(o). The
substitution ¢ avoids a symbol x (respectively, a set of symbols B) if x ¢ sym(o)
(respectively, BNsym(o) = {}).

The application of a substitution o to syntax ¢ of the pure A-calculus is given by

ox =u if o maps x to u
ox =x if x ¢ dom(o)
o(ru) = (or) (ou)

o(Ax.s) = Ax.os if o avoids x.

The composition 6, o o1 of two substitutions o] and 03 is defined by the function
(02001)x = 02(01x).

The requirement above that ¢ avoid x is necessary to avoid a symbol clash that
will cause symbol capture or scope violations. The necessity of the restriction is
illustrated by two examples. {u/x}(Ax.x) is not Ax.u since the inner occurrence
of x is bound. Also, {y/x}(Ay.x) is not Ay.y since the free occurrence of y in the
substitution would become bound by the abstraction with respect to y. It follows
that, as a function on term syntax, the application of a substitution to a term is a
partial operation. However, it will prove to be a total operation on terms since the
clashes can be avoided by renaming binding symbols as follows.

The actual terms are to be defined as equivalence classes of term syntax under
renaming of binding symbols. In set theory an equivalence relation = is a relation
that is reflexive, symmetric and transitive. That is:
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e [ =1,
e ifs=rthent =s;and
e ifr=sands=tthenr=r.

The equivalence class of some 1 is the set of all s such that s =1.
A relation R is a congruence if it is also closed under the relevant formation rules.
For term syntax of the pure A-calculus this means:

e if riRry and ujRu, then (r; uy)R(rp up); and
o if s1Rsy then (Ax.s1)R(Ax.572).

Define the a-equivalence relation =, to be the congruence generated by
Axit =g AyA{y/x}tify & fu(t)

(assuming that the right-hand side is defined). The terms of the pure A-calculus are
equivalence classes of term syntax under x-equivalence.

The definitions of free variables and of substitution extend naturally from term
syntax to terms. Further, substitution is always defined on terms since a-equivalence
can always be applied to avoid symbol clashes. For example

{u/x}(Axx) = {u/x}(Ayy) = Ay.y

and
{/x}Ayx) =a {y/x}(Azx) = Azy.

Lemma 2.1. For every substitution ¢ and term t| there is a term tp that is o-
equivalent to t| such that oty is defined. If t; and ty are a-equivalent terms then
fv(t)) =fv(rr) and if uy = oty and uy = oty are both defined then u; = us.

Proof. The proofs are by straightforward inductions. a

2.3 [-Reduction

Now let us consider the semantic equality of terms. The f-equality
(Ax.s) u={u/x}s
formalises the original description of abstractions as functions. The n-equality rule
t=Axtxifx &fv(r)

asserts that every pure A-term is a function. The fn-equality of terms is the con-
gruence relation s = ¢ generated by these rules.

In computation, the n-rule is not so interesting, since it does not hold when data
structures are added as primitives. Rather than study full fn-equality, let us focus
on f-reduction as the basis of computation. It is given by the rule
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n—rh r——rn Uy ——u S| —— 82

H—nb nu—rnru rup —ru Ax.s1 — Ax.5

Fig. 2.1 Rewriting for pure A-terms

(Ax.s) u —, {u/x}s  (B)

which says that the left-hand side, or redex (Ax.s) u can be replaced by the right-
hand side, or reduct {u/x}s.

From this rule can be built a rewriting relation t{ — t, which holds if #, is
obtained by applying the rule to an arbitrary subterm of #; as described in Fig. 2.1.
That is, the rewriting relation is the congruence generated by the reduction rule(s).
A similar process will be applied with each calculus in the book. Each rule can be
used as a step in a proof: given derivations of all the premises appearing above the
line there is a derivation of the conclusion appearing below the line. For example, a
derivation of (Ax.x) u v — u v is given by

(Axx) u —,u

(Ax.x) u — u

Axx)uv—uv

Further, one may chain together zero or more such rewrites or reductions t; —
tp — ... — 1, to get a general reduction t| — t,, as defined in Fig. 2.2. When
discussing general reductions, a mere rewrite may be called a one-step reduction for
emphasis. Unless it is relevant, the notation — will be used indiscriminately for
the rule, the relation and general reduction.

Now a computation can be defined as a general reduction t — . v where v cannot
be reduced any further, i.e. v is irreducible or a normal form.

It often happens that a single term will contain two or more subterms that are
available for reduction, so that there is some choice in how to proceed. Does one
choice preclude the other? Can a single term have two normal forms?

2.4 Confluence

Without knowing if a term has any normal forms, the question of their uniqueness
must be generalised to arbitrary terms.

A reduction relation — is confluent if for any term ¢ and pair of reductions
t —, t; and t —, 1» there is a term #3 and a pair of reductions #; — 73 and
tp —, 13. It follows that if #; and £, are both irreducible then they must both be #3.
That is, if reduction produces a normal form then it is unique.

One of the simplest ways of establishing confluence is to show the diamond
property, namely if ¢ reduces to both #; and t, in one step then there are one-step



2.4 Confluence 19

r—1 N —x«ly

t——ut t—yly

Fig. 2.2 General reduction

reductions from #; and #, to some t3:

r —— 1

L

Hh — 3.

Lemma 2.2. If a reduction relation satisfies the diamond property then it is conflu-
ent.

Proof. The proof begins with a sub-lemma. If # — ¢ in one step and t —, , for

some terms ¢ and #; and #, then there is a term t3 such that 1; —, 13 and 1, — 13.

The proof is by induction on the length of the reduction from 7 to . If this takes no

steps then let 73 be #1. Suppose that the reduction sequence is of the form t — s and

s — tr. By the diamond property, there is a term s3 such that #; and s both reduce

to it in one step. Now apply induction to s and s3 and ;.

The main result is now by induction on the length of the derivation of t —, #;.

O

Unfortunately, one-step reduction for the A-calculus does not satisfy the diamond
property since f-reduction may multiply redexes. For example, if u — uy then
(Ax.f x x) u — f u u (if x is not free in f) which now takes two steps to reduce
to f up up. The argument can be repaired by replacing reduction by simultaneous
reduction in which the two reductions of # above can be performed in one step.

The simultaneous reduction relation > for pure A-calculus is given in Fig. 2.3.
It allows distinct subterms to be reduced simultaneously (by the first rule for appli-
cations) and also allows identical subterms to be reduced within a term that is itself
being reduced (in the rule that generalises B-reduction).

Lemma 2.3. The reflexive-transitive closure >, of > is the general reduction rela-

tion —..

Proof. The point is that every one-step reduction is a simultaneous reduction, while
every simultaneous reduction is a general reduction. The proofs are by straightfor-
ward induction on the definitions. O

Lemma 2.4. Let s1,52,u; and up be terms. If s1 >> sy and uy > uy then {u; [x}s; >

{ua/x}s7.

Proof. The proof is by a straightforward induction on the structure of s;. O
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rn>rn oup > u 51> 82 S1>8) U > up
xX>x o> up Ax.s1 > Ax.s; (Ax.si)uy > {ur/x}so

Fig. 2.3 Simultaneous reduction for pure A-calculus

Theorem 2.5. The relation > has the diamond property.

Proof. Suppose thatt > ¢ and # > t5. The proof is by induction with respect to the
derivation of r > 1. If r is x then let 13 be 1,. If ¢ is of the form Ax.s then #; is of the
form Ax.s; and 1, is of the form Ax.sy where s > s; and s > s,. Hence, by induction,
there is a term s3 such that s; > s3 and s, > s3 and so let #3 be Ax.s3. Suppose that
t is of the form r u and ¢ is r; u; where r > r; and u > uy. If 1, is of the form
ry up where r > ry and u > u; then, by induction, there are terms r3 and u3 such
that r; and r, both simultaneously reduce to r3 and u; and u; both simultaneously
reduce to us so let 73 be r3 uz. Suppose that r is an abstraction Ax.s and #, is of the
form {uy/x}sy where s >> 52 and u >> up. Then r; must be of the form Ax.s; where
s > s1. By induction, there are terms s3 and u3 such that s; > s3 and s, > s3 and
uy > uz and up > us and so let 13 = {u3/x}s3. Finally, suppose that 7 is of the form
(Ax.s) u and 1y is of the form {u; /x}s; where s > s; and u > u;. If 1, is of the form
ry uy where Ax.s > ry and u > uy then the previous case applies, with the roles of
t1 and 1, reversed. The remaining alternative is that #, is {uz/x} s, where s > s, and
u > u>. By induction there are terms s3 and u3 such that s; > s3 and s, > s3 and
also u; > u3 and up > u3. Now apply Lemma 2.4. g

Corollary 2.6 (Confluence). The reduction relation is confluent.

Proof. The relation > has the diamond property and so Lemma 2.2 implies that >
is confluent. Hence >, is confluent and so —, and — are too, by Lemma 2.3.
O

Confluence holds for all of the calculi and systems presented in Parts I and II.
Throughout the book, it can be proved by a variant of the simultaneous reduction
technique above but usually the proof is omitted.

2.5 Fixpoints

Here are some examples of pure A-terms, including some that do not have normal
forms. Throughout the book, words in monospace font with a leading lower-case
letter will be used in examples, either as meta-variables for terms, such as compose
or £ix, or as keywords such as if, then and else in if b then s else .

Example 2.7. Function Composition
The identity function has already been mentioned. The composition of two func-
tions f and g can be defined by Ax.g (f x). More generally, composition can be
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represented by the term compose = Ag.A f.Ax.g (f x). It is convenient to write this
as

compose g fx=g (f x)

in which the initial bindings on the right are converted to applications (to symbols)
on the left.

Example 2.8. Conditionals

Define the booleans
true = Ax.Ayx

false = Ax.Ay.y

to be the functions that return the first or second of two arguments. Then the condi-
tional
if b thenselset

is just b s t since true st reduces to s and false st reduces to . Boolean operators
can then be defined in the usual way. For example, the conjunction of terms s and ¢
is given by

conjunction st = if s thent else false.

Example 2.9. Non-termination
The simplest example of a term without a normal form is

(Ax.x x) (Ax.x x)

which reduces to itself. It contains two examples of self-application, of x to itself,
and then of Ax.x x to itself. The nature of self-application is rather curious. Is it
reasonable for a function to be able to self-apply? One way of investigating this is
by considering type systems, the subject of Part II, since they can be used to block
such constructions.

Example 2.10. Recursion

Non-termination is not always bad, however, as it is essential for general re-
cursion. This can be expressed in various ways but the focus here is on fixpoints.
Mathematically, ¢ is a fixpoint for a function f if

t=ft.

Here, it is enough that both sides have a common reduct. To get a fixpoint fix f of
a A-term f define
fix0 = Af Ax.f (xx)
fix = Af.(£ix0 f) (£ix0 f) .
Now fix f reduces to (£ix0 f) (£ix0 f) which reduces to f ((£ix0 f) (£ix0 f))

i.e. to f applied to itself.
It is convenient to write

fx=...f...
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instead of fix (Af.Ax....f...). That is, if the declared symbol f appears free in
the right-hand side then it refers to the defined function itself, so that the definition
is given by a fixpoint.

Of course, reduction of fix f need not terminate since expansion of fix f can
be repeated indefinitely. In practice, one must adopt an evaluation strategy in which
one seeks to evaluate f first, only evaluating the inner copy of fix f if forced to do
0. A curious aspect of this construction is the self-application x x appearing in £ix.

2.6 Notes

The first paper to use the A-binding was written by Alonzo Church in 1932 [18].
The following quotation gives the flavour of the work, and its relationship to logic
(~ denotes negation):

The formula which leads to the paradox may be written, in the notation explained below,
{2¢.~¢(9)}(A¢. ~ d(¢)). It has the property that if we assume ~ P then we can infer P
and if we assume P then we can infer ~ P.

He reformulated the ideas in 1936 [19] as an approach to computation, to produce
an undecidability result. It also established the Church—Rosser theorem on unique-
ness of normal forms. At about the same time, Turing published his seminal paper
on computability by Turing machines [99] which was seen to be computationally
equivalent to the A-calculus, as expressed by Church’s Theorem [100]. The first
book on A-calculus was published by Church in 1941 [21]. The most comprehen-
sive book on A-calculus is by Barendregt [6]. Other, more accessible books are by
Hindley and Seldin [42] and Hankin [38]. Rosser [91] wrote a history of the subject.

A-calculus underpins the design of the untyped programming language Lisp in
1958 (but see also Chap. 3). Its theoretical importance for functional programming
was crystallised by Landin [71] whose language ISWIM was described using the
SECD machine. Later developments tended to emphasise typed A-calculus.

Finding mathematical models of pure A-calculus is not easy since there is nothing
to stop a function being applied to itself. Set-theoretic models are not adequate, but
Dana Scott developed models using lattices and ordered sets, which became the
mathematical (or denotational) semantics of [93].

Although the original proof of the Church—Rosser property by Church and Rosser
was reported by Church [19] there have been many other proof techniques developed
since then. The use of simultaneous reduction was developed by Tait and Martin-Lof
in the late 1960s, as explained in [6].

Reduction in the A-calculus can be seen as an important example of term rewrit-
ing (e.g. [3, 102]) in which the concepts of confluence, the Church—Rosser property,
etc. can be explored in a way that allows general results to be established for classes
of calculi.

There are many ways of defining fixpoint functions in pure A-calculus. The one
given here is Curry’s Y combinator [25].



Chapter 3
Data Structures

Abstract This chapter begins with a basic account of data structures, with their
constructor and operators. These can be encoded in pure A-calculus by treating a
data structure as a higher-order function that acts on functions that require the data
in the structure. Compound calculus simplifies the presentation by using generic
operations (derived from Lisp) to provide a uniform collection of operators.

3.1 Constructors and Operators

Having introduced functions, the next step is to consider data structures upon which
functions can act, such as numbers, pairs, lists and various sorts of trees (but not
arrays, sets or graphs). The simplest way to add data structures to the A-calculus is
by introducing an ad hoc collection of term constants, which are a mix of construc-
tors and operators. Operators come with associated reduction rules in which they
appear at the head of the redex (the left-hand side of a reduction rule). All other
constants are constructors. This approach has the disadvantage that each new oper-
ator increases the number of reduction rules. Hence, to prove results about such a
system, e.g. confluence, it is necessary to make assumptions about the operators.
One way to avoid this is to encode the data structures within the A-calculus. The
most direct approach is to treat each data structure as a higher-order function us-
ing the Church encoding. For example, a pair can service any function needing two
arguments while a list can service any function accepting a finite sequence of argu-
ments. This approach does away with additional reduction rules, so that properties
of the pure A-calculus suffice. However, it is quite unable to support operations that
apply uniformly to all data structures, unless these also apply uniformly to all func-
tions. In particular, operations such as equality, or searching or querying, that make
perfectly good sense for arbitrary data structures, cannot be defined for arbitrary
abstractions, so that these must be defined separately for pairs, lists and trees.
Another way of containing the calculus is to accept an unspecified collection of
constructors but to act on them using a fixed collection of operators. The result is the
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compound calculus. Its operators correspond to the fundamental operations of the
programming language Lisp, the main difference being that in Lisp symbols serve
as both variables and constructors, so that its notion of data structure is not stable.
Although the collection of constructors is unspecified, it is possible, in principle, to
manage with just one constructor, since its compounds can be used to encode all the
others.

3.2 Ad Hoc Operators

Throughout the book, constructors and operators will be represented by words in
monospace font: constructors will have a leading upper-case letter, as in True or
Nil, while operators will lead with a lower-case letter, as in isZero. The letter ¢
is a meta-variable for a constructor. Church encodings of the booleans, true and
false, conditionals, fixpoints etc. are as given in Sect. 2.5.

Here are some examples of constructors and operators and their use in A-
calculus. The notation exploits the conventions developed in Sect. 2.5.

Example 3.1. Pairs

Fairs can be constructed using the constructor Pair so that the pair of terms s
and ¢ is given by Pair s r. The corresponding eliminators are £st and snd (the first
and second projections, respectively) with the reduction rules

fst (Pairst) — s
snd (Pairst) — 1.

Example 3.2. Natural Numbers

The unary natural numbers can be constructed from a constructors Zero rep-
resenting zero, and a constructor Successor for creating successors, so that the
numeral two can be defined as Successor (Successor Zero). Let 71 be shorthand
for the nth numeral, so that 0 = Zero and 1 = Successor Zero, etc. The most fun-
damental query for numbers is the zero test operator isZero with reduction rules

isZero Zero — true
isZero (Successort) — false.

The other basic operator is the predecessor given by the constant pred whose
reduction rule is
pred (Successort) — 1.

Now addition can be defined by the recursive function
plusNat x y = if isZero y then x else plusNat (Successor x) (predy) .

An example of the use of plusNat is given by
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plusNat 12 —, plusNat 2 1
—, plusNat 30

—y 3.

Example 3.3. Lists

Every list is either an empty or nil list, given by the constructor Nil or has a
head and a tail, combined using the constructor Cons. The associated operators are
isNil, head and tail with reduction rules

isNil Nil — true
isNil (Cons ht) — false
head (Cons ht) — h
tail (Cons ht) —t.

For example, the append of lists is given by
append x y = if isNil x then y else Cons (head x) (append (tail x)y)

5o that, for example, append (Cons 2 Nil) (Cons 1 (Cons 0 Nil)) reduces to the
list Cons 2 (Cons 1 (Cons 0 Nil)).

Example 3.4. Binary Trees
Binary trees can be built from constructors Leaf and Node with eliminators
isLeaf, getLeaf, left and right with reduction rules

isLeaf (Leaf 1) — true
isLeaf (Node st) — false
getLeaf (Leaft) — ¢
left (Nodest) — s
right (Node st) — ¢
Example 3.5. Alternatives
Just as natural numbers are either zero or successors, lists are either empty or
have a head, and trees are either leaves or nodes, one may consider alternatives in a
more general way, by introducing constructors Inl and Inr (left and right inclusion,
respectively) and an alternative operator alt with reduction rules

alt fg (Inls) — fs
alt f ¢ (Inrt) — gt.
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3.3 Data Structures as Abstractions

Although the pure A-calculus is a theory of functions, it supports encodings of data
structures. The traditional encoding describes data structures as functions that de-
scribe how to use the data stored within them. Here are some examples.

Example 3.6. Pairs
The pair of the term s and ¢ is given by pair st where

pair =Ax.Ay.Af.fxy.

If f acts on two arguments then it can be converted into a function that acts on a
pair, namely

rAzz f.

Note how the constructor Pair (with a leading uppercase letter) is represented by
the function pair (with a leading lowercase letter). For example, the first and second
projections are given by

fst = Az.ztrue

snd = Az.z false

since fst (pair st) —, (Af.f st) true —, true st —,s.

Example 3.7. Alternatives
Similarly, define coproduct inclusions and alternatives by

inl = AxAfAg.fx
inr = Ay.AfAg.gy
alt =AfAgAzzfg.

Then
alt fg(inls) —, inlsfg—. fs
alt fg(inr?) —, inrs fg—. gt

as expected.

Example 3.8. Natural Numbers
The natural numbers can be represented as Church numerals where the numeral
n is represented by the nth iterator, so that

n=AfAx.f"(x)

where f"(x)is f (f ...(f x)...) that applies f some n times. In this way, Zero and
Successor are represented by

zero = Af.Ax.x
successor = An.AfAx.f (n fx).

Now addition can be defined by
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plusNat = AmAnAf Ax.m f (n f x)

since this gives the iterator which applies f n times and then m times. Similarly,
multiplication is given by

times = Am.AnAf.m (n f)

as it iterates the n-fold iterate of f some m times.

The operator isZero is given by Am.m (Ax.false) true in which the iterated
function will convert true to false if it is applied at all. The predecessor of a
number m is surprisingly hard to define by iteration. A naive attempt would be like
the following instructions for leaving a train: “Upon arrival at station m, get off at
the previous stop.” For this to work, you need two co-ordinated trains, one travelling
a station behind the other. Now the instructions become “When the first train gets to
station m, get off the second train.” That is, the iterated function must act on pairs.
Define

g=Az.z (Ax.Aypairy (successory))

so that g (pair s ) reduces to pair ¢ (successor t) from which s has been dis-
carded. Then, given a Church numeral m it follows that

(successor m) g (pair zero zero)

reduces to pair m (successor m) whose first component is the predecessor of
successor m. In general, the predecessor is given by

pred = Am.fst (m g (pair zero zero)) .

For example, subtraction is defined by minus = Am.An.n pred m which maps m
and n to the nth predecessor of m. Also, the factorial function can be defined by

factorial n=if isZeronthen 1 else times n (factorial (predn))).
Its behaviour is illustrated by:

factorial 2 — (An.if isZeron then 1
else times n factorial (predn)) 2
— if isZero 2 then |
else times 2 (factorial (pred2))
— times 2 (factorial 1)
— times21—2.

Example 3.9. Lists
Lists are constructed using

nil = Az.Af.z
cons = AxAyAzAf fx(yz f).
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Thus cons x y is a function of two arguments z and f. The term z acts as a seed
value, to be returned if the list is empty, while f acts on the head x of the list, and
then the result y z f of “iterating” f over y. For example, cons x nil z f reduces
to f x z. The corresponding operators are defined much as are those for natural
numbers, with the tail of the list being defined much like the predecessor.

Example 3.10. Binary Trees
Similarly, binary trees can be constructed using

leaf = Az.Afz
node = AxAyAzAf.f (xz f) (yz f).

Now “iteration” employs a function of two arguments, representing the results com-
ing from the left and right subtrees of a tree.

3.4 Compound Calculus

The approaches of the last two sections are able to handle all pairs in a uniform
manner, and all lists in a uniform manner, etc. but are not able to handle all data
structures together in a uniform manner. For example, there is no mechanism for
computing the size of an arbitrary structure that could be a pair or a list or a tree.

Such examples require a uniform account of data structures, which arises from
the following observation. Every data structure is either an atom (such as Zero, Nil,
Cons, Leaf or Node) or a compound (such as Cons u or Cons u v or Leaf u) built
by application. This structure can be exploited by operations that test for constructor
equality, for being a compound, and for extracting the components of a compound.

For example, the second component operator, cdr, recovers the second projec-
tion from a pair, the tail of a list, a leaf value, or the right branch of a tree. Binary
constructors require a little more work. For example, car (Cons u v) is Cons u so
that cdr must be applied to recover the head u of the list. Constructors with more
arguments can be handled similarly. Of course, car and cdr are famous as operators
of Lisp, but the treatment here will be slightly different.

As well as extracting components, it is necessary to be able to recognise con-
structors and compounds. For each constructor ¢ and term ¢ the term ¢ eqa 7 tests to
see if t is ¢. Also, pair? ¢t is true if # is a compound. This is enough to proceed.

The term syntax of the compound calculus is given by
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t = (term)
X (variable)
tt (application)
Ax.t (abstraction)
c (constructor)

ceqat (constructor equality)
pair? ¢ (compound test)
cart  (first component)
cdrt  (second component).

The novel term forms do not bind any symbols, so that the syntactic machinery
generalises that of the pure A-calculus in the obvious manner, as described in the
appendix. Once again the explicit functions are the abstractions. The key point is to
characterise the atoms and compounds. This is not quite trivial as application is now
being used to build data structures as well as to eliminate abstractions. In principle,
one could distinguish these two uses of application. For example, the compound
of terms u and v could be written u.v but actually the “dot” then behaves just like
a constructor (written between its two arguments), so it seems more natural not to
give it a special status.

Throughout the book, the data structures (meta-variable d) are given by the terms
whose head is a constructor. For untyped calculi these are given by

d:= (data structure)
¢ (constructor)
d t (compound).

Throughout the book, a matchable form is either a data structure or an explicit func-
tion. Matchable forms which are not compounds are afoms. Note that any term can
appear within a data structure simply by applying a constructor to it. This allows
pairs or lists of functions to be data structures. Also, every explicit function is an
atom. This is a little counter-intuitive, but it is appropriate here since, unlike com-
pounds, explicit functions are indivisible. The alternative names, of “divisibles” and
“indivisibles”, don’t have the same ring. A pure data structure is a data structure
built purely from constructors. Many generic operations, such as equality, will only
succeed on pure data structures.

The reduction rules of the compound calculus are given in Fig. 3.1. Then the re-
duction relation is the corresponding congruence (defined by augmenting the rewrit-
ing relation of Fig. 2.1 with rules for the new term forms) and general reduction are
defined as in Figs. 2.1 and 2.2.

Theorem 3.11 (Confluence). Reduction in the compound calculus is confluent.

Proof. The proof is by simultaneous reduction, much as in Theorem 2.6. Note that
the side conditions on the reduction rules are essential here. For example,

pair? ((Ax.false) false) — pair? false — false
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(Ax.s) u — {u/x}s B
car (uv) — u if u v is a compound (car)
cdr (uv) — v if u v is a compound (cdr)
pair? (uv) — true if uvisacompound (ispair)
pair? u — false if uis anatom (isatom)
cegac — true (same)
ceqau — false otherwise, if u is matchable (different).

Fig. 3.1 Compound calculus

but this would also so reduce to true if rule (ispair) were unrestricted. O

3.5 Defined Operators

The operators of the compound calculus are expressive enough to represent the var-
ious operators considered in Sect. 3.2. For example, the second projection of a pair
t is given by cdr ¢. Of course, this does not check to see if the argument actually
is a pair, so that cdr Zero is “stuck”, being an irreducible closed term that is not
a matchable form. This can be avoided by defining some error term error and re-
placing cdr t by

if pair?f then cdr f else error.

Of course, this approach quickly becomes cumbersome. For example, to safely ob-
tain the head of a list (built using Cons) requires

Ax. if pair?x
then if pair? (car x)
then if Cons eqa (car (car x))
then cdr x
else error
else error
else error.

In the next chapter, the compound calculus will be shown to be equivalent to the
static pattern calculus, in which the head of a list can be written as the case

Consxy—x.

Given the dramatic simplification of terms that this entails, all further examples will
be postponed until Sect. 4.6.
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3.6 Notes

The encodings of pairs, etc. as abstractions formed part of the original account of A-
calculus, as described by Church in 1936 [19]. The Lisp programming language was
developed by McCarthy in 1958 [74]. The second oldest programming language still
in use, it has had a major impact in diverse areas of computing, and has given rise to
various dialects, such as Scheme [92, 27]. Although the syntax is almost identical,
Lisp uses symbols for both variables and constructors, so that the latter are not stable
under reduction.

A distinction between constructors and operators can be found in constructor
term rewriting systems [78] which constrain their rewriting rules to have redexes
of the form f(r1,...,t,) where f is an operator and each ¢; is either a variable or
a constructor. Here it is enough to ensure that f is not a constructor. A detailed
treatment of the compound calculus has been developed by Given-Wilson in [36].



Chapter 4
Static Patterns

Abstract Traditional accounts of pattern matching require nontrivial patterns to
be headed by a constructor, but these are not expressive enough to model the com-
pound calculus. The static pattern calculus admits a pattern that can match an ar-
bitrary compound, and so can model generic queries. A new class of examples is
introduced, led by generic mapping that generalises mapping on lists and trees. The
static pattern calculus is slightly superior to compound calculus since its notation is
more compact, and its treatment of match failure is more comprehensive. Also, it
supports developments in subsequent chapters.

4.1 Patterns

Patterns provide a concise means of describing data structures of unlimited com-
plexity, such as lists having at least three entries, or pairs of nonempty lists. Patterns
are used to build cases of the form p — s where p is the pattern and s is the body.
When such a case is applied to an argument « then p is matched against u to find a
substitution that maps p to u. If successful, the substitution is applied to s. More gen-
erally, pattern-matching functions are built from sequences of cases. Then matching
is attempted with each case in turn, until successful.

Pattern matching for data structures appears to have emerged as a mechanism to
handle data of algebraic data type, so that pattern matching was constrained to fit the
current understanding of types. In particular, all cases in a pattern-matching func-
tion were required to have the same type, and all nontrivial patterns were headed by
a constructor. Unfortunately, this excludes the generic queries defined in the com-
pound calculus, and much else besides. This chapter will show how the expressive
power of the compound calculus can be captured by static patterns, i.e. patterns that
are not evaluated, postponing the typing issues to Part II. The main novelty here will
be showing how careful management of match failure allows a sequence of cases in
a pattern-matching function to be represented by a single case, much as conditionals
may be represented by an abstraction in pure A-calculus.
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4.2 Static Pattern Calculus

The static pattern calculus has pattern syntax (meta-variables p,q) given by the
grammar
p = (static pattern)
x  (matchable symbol)
¢ (constructor)
p p (application).

As patterns are partial descriptions of data structures, they should include the con-
structors and be closed under application. Also, there must be symbols to represent
those components of the data structure which are not specified. Such symbols are
not available for substitution — they are static — and so are not variables, but match-
able symbols or matchables used in matching to create substitutions. In most calculi
and programing languages, the context makes it clear whether a symbol is variable
or matchable, but in Chap. 5 they will appear together, in dynamic patterns, so it is
best to separate them clearly from the beginning.

The term syntax (meta-variables r,s,t,u,v) is given by the grammar

t = (term)
X (variable)
c (constructor)

tt (application)
p — 1t (case).

Most of the syntax is the same as in the A-calculus and compound calculus. A
case p — s has pattern p and body s. The explicit functions are the cases. The free
matchable symbols fm(p) of a pattern p are defined in the obvious way. Note that
it is a set of symbols, just as the free variables of a term form a set of symbols. The
free variables of a case are given by

fv(p —s) =fv(s) \ fm(p).

a-equivalence is the congruence generated by

p—s=q{y/x}p—{y/x}s ifxefm(p)andy¢&fm(p)Ufv(s).

A case of the form x — s corresponds to the abstraction Ax.s. A case of the
form ¢ — s has a pattern ¢ which successfully matches only with itself. The pattern
Pair x y represents a pair, and Cons x y represents a nonempty list. Most approaches
to pattern matching are limited to the sorts of patterns above. By contrast, the static
pattern calculus also allows patterns headed by a matchable symbol. These are used
to represent car and cdr by

xy—x and
xXy—=y

respectively. That is, the pattern x y represents an arbitrary compound.
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{u/x} = some {u/x}
{c/c} = some {}

{uv/pq} ={u/p}w{v/q} ifuvisacompound
{u/p} = none otherwise, if u is matchable
{u/p} = undefined otherwise

Fig. 4.1 Static matching

4.3 Static Matching

Reduction is based on the match rule, which first generates a match and then applies
it. A match is either a successful match, of the form some ¢ where o is a term sub-
stitution, or a failure, denoted by none. A failed match is distinct from an undefined
match, which may evolve to a success or failure. The application of a match to a
term is defined by
some ot = Ot
nonet = Nomatch

where Nomatch is a designated constructor.

It may happen that a pattern contains two occurrences of the same matchable
symbol, as in Pair x x. It is tempting to allow this to match any term of the form
Pair u u but this is more trouble than it is worth. If u is a case then it is hard
to determine its equality with another term while if u is a pure data structure then
the equality test can be incorporated into the body of the case. On top of this, such
nonlinearity can break confluence of reduction. For these reasons, unions of matches
are required to be disjoint, as will now be defined.

If 01 and o, are term substitutions with disjoint domains then their disjoint union
01 W 0, is the substitution whose action on a symbol x is given by o7 (x) if defined,
and by 0, (x) otherwise. The disjoint union of two matches (written using infix W)
is given as follows. some 0] Wsome 0, = some (0] W 0,) if 07 and 6, have disjoint
domains. Otherwise, the disjoint union of (defined) matches is none. If either match
is undefined then so is their disjoint union.

As in the compound calculus, a matchable form is either a data structure (headed
by a constructor) or an explicit function (a case).

The matching {u/p} of a pattern p against a term u is defined by applying the
rules in Fig. 4.1 in order: In the middle three rules, the term must be a matchable
form, i.e. either a data structure or an explicit function. This restriction is not im-
posed in the first rule as it corresponds to -reduction in the A-calculus, where any
term u may be substituted for x. If none of the first four rules apply then matching
is (temporarily) stuck, until evaluation of u produces a matchable form.

The reduction rule of the static pattern calculus is the match rule

(p—s)u—{u/p}s (match).
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Throughout the book, if the reduct of a rule is undefined then the rule cannot be
applied. In particular, if the match {u/p} is undefined then the rule above does not
apply. The rule induces a corresponding reduction relation and rewriting relation in
the usual way.

Theorem 4.1 (Confluence). The reduction relation of the static pattern calculus is
confluent.

Proof. Use the simultaneous reduction technique as in Sect. 2.4. Alternatively, the
later proof of Theorem 5.4 can be simplified. O

Theorem 4.2 (Progress). Every closed irreducible term of the static pattern calcu-
lus is a matchable form. In particular, a closed term of the form (p — s) u is always
reducible. That is, pattern matching cannot get stuck.

Proof. The proof is by induction on the structure of the term. The only nontrivial
situation is an application of a case as in the theorem. Now u is a closed irreducible
term and so is matchable by induction, as are all of its components. Hence {u/p} is
defined. a

Note, by contrast, that reduction of the compound calculus can become stuck, as
when evaluating cdr ¢ for some constructor c.

4.4 Constructor Patterns

The most common sorts of patterns are constructor patterns, being those which are
headed by a constructor. Here are some examples.

Example 4.3. Fixpoints Through Patterns

Clearly, the pure A-calculus embeds into the static pattern calculus. However,
many features can be expressed in novel ways. For example, any constructor can be
used to define fixpoints, as follows. Let Rec be a designated constructor. Define

omega = Rec x — x (Rec x).

Now omega (Rec omega) reduces to itself. This can be used to define a fixpoint
operator, by
fix = f — omega (Rec (x — f (omega x)))

since then

fix f — omega (Rec (x — f (omega x)))
— (x— f (omega x)) (Rec (x — f (omega x)))
— f (omega (Rec (x — f (omega x))))

which is a reduct of f (fix f).
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This will be of particular interest in Part II, since, unlike the fixpoint functions
of pure A-calculus, Rec will have a type, the same type as the fixpoint function it
defines.

Example 4.4. Extensions

Pattern matching functions are frequently built from several cases. If the first case
produces a successful match then it is used, else the next case is attempted. This can
be expressed as a sequence of cases

P1— 51
|P2—>S2

| Pn — Sn

where | binds less strongly that application, and associates to the right so that this
pattern-matching function is just p; — s; | r where r is given by the remaining
cases. Hence it is enough to consider extensions of the form p — s | r. Here p is
the pattern, s is the body which together make the special case p — s and r is the
default. Extensions should support the following reductions

(p—s|r)u— os if{u/p}=someoc
(p—s|r)u—ru if{u/p}isnone.

This behaviour can be captured by defining extensions as follows:
p—s|r=x— (Nomatchy—y) ((p — z— Nomatch s) x (r x))

where x,y and z are fresh symbols, i.e. not free in p,s or r. When applied to a
matchable term u it reduces via

(p—s|r)u — (Nomatchy —y) ((p — z — Nomatchs) u (ru))
— (Nomatchy —y) ({u/p}(z — Nomatch s) (r u)).

Now if {u/p} is some ¢ for some substitution ¢ then the term reduces to

(Nomatch y — y) ((z — Nomatch os) (ru)) — (Nomatchy — y) (Nomatch o)
— O

as desired. Alternatively, if {u#/p} is none then this reduces to
(Nomatch y — y) (Nomatch (ru)) — ru

as desired. When using implicit types in Chap. 12, extensions will replace cases as
the primitive term form, since they can carry more type information.
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Example 4.5. Pairing
The projections associated to the constructor Pair can be given by

fst =Pairxy—x
snd =Pairxy —y.

Example 4.6. Lists

Now introduce constructors Nil for the empty list and Cons for adding a new en-
try to the head of a list. For example, singleton = x — Cons x Nil builds singleton
lists and the append of lists is defined by

append =
Nil—z—zZ
| Cons x y — z — Cons x (append y 7)).

For example,
append (Cons 7 Nil) (Cons s (Cons ¢ Nil)) — Cons r (Cons s (Cons 7 Nil)).
Mapping over a list is given by
maplList f =
Nil — Nil
| Cons x y — Cons (f x) (mapList fy).

For example, mapList f (Cons s (Cons # Nil)) — Cons (f s) (Cons (ft) Nil)).
Folding over a list is given by

foldleftlist fx =
Nil —x
| Cons yz — foldleftlList f (fxy)z

For example, foldlefList f r (Cons s (Cons t Nil)) — f (f rs) t.

Example 4.7. Binary trees
Given constructors Leaf and Node for binary trees then one may define mapTree
analogously to mapList by

mapTree f =
Leaf x — Leaf (f x)
| Node x y — Node (mapTree f x) (mapTree fy)

so that mapTree f (Node (Leaf 5) (Leaf 6)) — Node (Leaf (f 5)) (Leaf (f6)).
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4.5 Generic Mapping

The two mapping functions mapList and mapTree of Sect. 4.4 can be combined
into a single function

mapListTree f =
Leaf x — Leaf (f x)
| Node x y — Node (mapListTree f x) (mapListTree fy)
| Nil — Nil
| Cons x y — Cons (f x) (mapListTree f y)

that will map over lists or trees. Of course, this is rather ad hoc. There is no apparent
reason why the list and tree cases should be combined in this way, and it will cre-
ate challenges for the type systems (see Sect. 8.6). More generally, it would seem
that each new data type will require yet more cases, so that the terms like that for
mapping will be large and unstable.

However, it is possible to define a single mapping function that works for a large
class of data structures. This will be achieved by deconstructing the data structure to
its representing data structure, then applying a structural version of mapping, called
mapO, and finally reconstructing the resulting data structure from its representation.
Let us consider this through the example of lists.

If the list is of the form Cons x y then the mapping should apply f to x and map
f over y. Introduce a constructor

Ths

to indicate that its argument is data to be acted on. That is, mapping f over the
representing structure Ths x returns Ths (f x). For the tail, y apply the constructor

Ok

so that applying mapO f to Ok y returns Ok (map f y) in which the standard mapping
is applied to y. That is, y must now be deconstructed, etc.
The representations of x and y are combined by applying the parametrised pairing

ParamPair

both of whose arguments are to have mapping applied. Thus, the underlying data
structure representing Cons x y is

ParamPair (Ths x) (0k y).

Although this has captured the structure of the data, it fails to distinguish data struc-
tures that have the same representation. The structure must be tagged with this in-
formation, using the constructor

Tag

so that the representation of our cons-list is
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Tag Cons_name (ParamPair (Ths x) (Oky)) .

Now the mapping ignores the tags so that mapO f (Tag n x) is Tag n (mapO f x).
Finally, consider the representation of Nil. That it contains no data to be acted
upon is expressed by the constructor

Evr
so that the representation of Nil is
Tag Nil_name (Evr Un)

where Un is used to indicate that Nil does not contain any data at all, whether to be
acted upon or not.
Summarising, the representing, or primitive constructors required for lists are

Evr, Ths, ParamPair, Ok, Tag.

This list is not truly comprehensive, since it only considers the most common uses
of data to be mapped.
The definition of map and of mapO are given by mutual recursion. That of map is

map f x = reconstruct (deconstruct x (map0 f)).

The terms deconstruct and reconstruct are given by pattern-matching func-
tions with a case for each constructor. Their nature will be discussed in more detail
when describing algebraic data types in bondi. The definition of mapO is given by

map0 f =
Evr x — Evr x
| Ths x — Ths (f x)
| Ok x — Ok (map f x)
| ParamPair x y — ParamPair (mapO f x) (mapO f y)
| Tag n x — Tag n (mapO f x).

Many other list functions, such as foldleftList, can be similarly generalised,
as described in Chap. 14.

4.6 Generic Queries

Till now, the examples in this chapter have all involved patterns headed by a con-
structor, so that a nontrivial pattern may match against a pair or a list, but not both.
Here are some examples of queries that treat all compounds uniformly.
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Example 4.8. Size
The simplest measure of a data structure is given by

size =
xy — plusNat (size x) (sizey)
|x— 1.

As mentioned before, this can be modified so that natural numbers all have size 1
by
size =
Successor x — 1
| xy — plusNat (size x) (sizey)
|x—1.

Example 4.9. Selecting
Selecting is achieved by

select fx=
(if fx
then Cons x
else (y—)) ((
zy — append (select fxz) (select fxy)
|y —Nil)x).

The last two lines perform the path polymorphism. For example, if the argument is
a compound then the results of selecting on each component are appended. Then the
test f is applied to the whole term x. If f x holds then x is added to the head of the
list of results.

Example 4.10. Applying to All
The function apply2all is given by

apply2all f =
| xy— f ((apply2all f x) (apply2all fy))
f.

This is like select in that the function f is applied to the whole argument, as well
as any components it might have.

Example 4.11. Updating Salaries

When f is a function for increasing salaries, as in the motivating example of
Sect. 1.2, then apply2all f could increase all employee salaries in the organisa-
tion’s data structure. In a sense, this is the heart of the solution, but there are several
unresolved issues. One is that this solution makes a copy of the data, rather than up-
dating it, as will be addressed in Chap. 17. A second is that the solution is not typed,
as will be addressed in Part II. A third is that it does not accept an object-oriented
method for increasing salaries, as developed in Chap. 6.
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Example 4.12. Folding
The examples size and select and apply2all can all be thought of as folds
in the following sense. Define a generic fold operation

fold f g=

xy— f(fold fgx) (fold fgy)
| x— gx

Now, we have the derived reduction rules

fold f g (uv) — f (fold f gu) (fold f gv) ifuvisacompound
fold f gu — guif uis an atom

and the examples above can be redefined by

size = fold plusNat (Ax.1)
apply2all f = fold (Ax.Ay.f (xy)) f .

Further, select can be defined by
select f x =snd (fold g h (Pair x Nil))

where
h=Pair xxs — if f x then Cons x Nil else Nil

but g is a little harder to define. Informally, it is given by

g = Pairxxs —Pairyys —
Pair (xy)
((if f (xy) then Cons (xy) else Az.2)
(append xs ys)) .

That is, if both its arguments are pairs, then extract their components x, xs, y and ys
and proceed as in the right-hand side. Otherwise, return error. The pairs are here
used to maintain information about the argument of select as well as the results, so
that components are available for recombination and testing. This is in the spirit of
the earlier encoding of predecessor.

Although the generic fold is here defined using fixpoints it can be thought of as
a form of primitive recursion, in which special cases for zero and successors are
generalised to atoms and compounds. This will be formalised in the query calculus
of Chap. 9.
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4.7 Relating to Compound Calculus

The operators of the compound calculus can be interpreted in the static pattern cal-
culus by
ceqat = (¢ — true |x — false)t
pair?t = (xy — true | x — false)t
cart = (xy—x)t
cdrt = (xy—y)t.

Conversely, there is a translation of the static pattern calculus into the compound cal-
culus so that the two calculi are almost identical in expressive power. The main ben-
efit of the pattern calculus is that a single mechanism, pattern matching, supplants
a family of (apparently, ad hoc) operators in the latter calculus, while providing a
more compact notation.

Theorem 4.13. There is a translation of the static pattern calculus to the compound
calculus that preserves reduction and maps distinct normal forms to distinct normal
forms.

Proof. In the translation below, compound patterns will be decomposed in a way
that risks losing track of matchable symbols that appear twice in a pattern. Call such
patterns nonlinear.

The translation is given by

[x]] = x
e} = ¢
[r u]]l = [r]} ul
[p — s] = Ax.Nomatch if p is nonlinear
e = s] = Ax.[s]
[c — s] = Ax.if ¢ eqa x then [s] else Nomatch
[pg—s] = Ax.if pair?x
then [p — g — s] (car x) (cdr x)
else Nomatch.

If o is a term substitution then [[o]] is the substitution defined by [o] (x) = [[o(x)].
That the translation preserves reduction amounts to showing that [(p — s) u]
reduces to {[[u/p] }[s]]. The proof is by induction on the structure of p. If the match
{u/p} is none or p is a variable or constructor or is nonlinear then the result follows
directly. If p is a linear application p; p, and u is an application u| u, then

[(p =) u]l — [(p1 — p2 —5) ur ua]

— {lur/ 1]} [(p2 — 5) ua]]

— {1/ pi]}{[u2/p2] }[s]
= {lu/pl} [s]

by two applications of induction.
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That the translation preserves (distinct) normal forms follows by induction on the
structure of the form which is a matchable form by Theorem 4.2. g

4.8 Notes

Patterns are a popular concept in computing and programming. This chapter is con-
cerned with pattern matching as distinct from pattern recognition (which extracts
patterns from data, commonly by means of heuristics) or design patterns (semi-
formal programming paradigms) [32].

The earliest work on pattern matching concerned string matching, which will be
addressed in the Sect. 5.5.

The logic programming language Prolog [73] developed around 1972 is based on
resolution of Horn clauses, which can also be viewed as a form of pattern matching.

Pattern matching on trees [46] arose to support the use of algebraic data types,
which will be addressed in Chap. 14. Partly in response to the work in typed lan-
guages, pattern matching was encoded in Scheme [107]. By this time, the typed
view was so entrenched that the connection to car and cdr was not noticed.

Pattern matching is also central to rewriting theory [102, 3] when developed as
a basis for programming. Given a rewriting rule [ — r then o/ — or for any sub-
stitution o. To base a programming language on this requires pattern matching to
discover the appropriate substitution. Such languages include Mathematica, first
released in 1988 [106] and also Maude developed in the early 1990s [24]. In the
same spirit, Tom [98, 5] allows rewriting rules to be added to existing languages,
especially Java.

In the 1990s there were various attempts to put pattern matching on a more gen-
eral footing. These will be considered in the notes for Chap. 5.

Stratego [101] supports a rich class of strategies for traversing data structures,
especially syntax trees of programs. Many of these, if not all, will be representable
in static pattern calculus.

The definition of fixpoints by pattern matching can be found in [23].

Folding began as a concept in list programming where it comes in two flavours:
foldleft is tail-recursive and foldright is head-recursive [9]. The fold of this
chapter is a form of foldleft since the left component of a compound is used first.
One could equally employ a right fold.



Chapter 5
Dynamic Patterns

Abstract This chapter simplifies the conceptual framework of pattern calculus by
identifying the syntactic classes of patterns and terms, and of constructors and sym-
bols. Now patterns are first-class entities that may be passed as parameters, evalu-
ated and returned as results. Since variable scope is required to be static, this requires
that symbol binding be handled separately from pattern formation. Also, extra care
is required to ensure confluence of reduction. Examples include generic functions
for equality, elimination, and for string matching. Wildcards and views are also con-
sidered.

5.1 First-Class Patterns

The static pattern calculus is able to handle some key aspects of the salary update
problem. The generic apply2all is able to act on employees wherever they are
found. Now let us add a new twist. Suppose that salary increases are to be limited
to employees within groups. If groups are a fixed part of the organisation’s struc-
ture, represented by a constructor Group, then it is enough to write patterns of the
form Group x just as before. The more interesting possibility is that the concept of
group is dynamic. At one time it may be a department, at another time it may be a
division, or even a department within a division. Using the existing, static patterns,
each notion of a group must have its own case, so that all possibilities must be ad-
dressed explicitly, in an ad hoc manner. The alternative developed here is to replace
the constructor Group by a variable group in the pattern.

Once patterns contain variables, it is natural to ask what they can be replaced
by, what syntactic class they refer to. One option is to maintain the separation of
patterns and terms present in the static pattern calculus, using two sorts of symbols.
Although feasible, this option is conceptually unattractive and limits our ability to
compute patterns. The decision as to the meaning of group may be as complex
as any other computation, drawing on contextual information, dynamic inputs, and
perhaps other calculations. For this reason, we are led to identify the syntactic class
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of patterns with that of terms, so that any term can be a pattern. Patterns are now
first-class, able to be passed as arguments, evaluated, and returned as results.

This treatment of patterns is quite similar to the treatment of first-class functions
that underpins A-calculus. Along with a dramatic reduction in syntactic overheads
comes a number of subtle issues, especially concerning symbol scope, as can be
seen when considering patterns involving group.

A first attempt at a pattern for a group is group x. Now substitution for the
variable group can replace it by constructors such as Department or Division
to produce the familiar static patterns. The difficulty is that while group and x are
both symbols, group is to be a variable while x is to be a matchable. In the static
calculus, all symbols in a pattern are matchable but now both kinds of symbols are
terms in their own right (patterns are terms) and so must be clearly distinguished.
The solution adopted is to allow each symbol x to appear as either a variable x or as
a matchable %. For example, the dynamic pattern for a group is now

group X

in which group is free and x will be bound. Much of the flexibility of this approach
comes from the ability to compute patterns, but this brings the possibility of elimi-
nating matchable symbols. In the static pattern calculus, the free matchables of the
pattern are used for both matching and binding, but this is unacceptable when reduc-
tion can eliminate bindings, as this would change the scope of the affected symbols.
That is, bindings must be static, even though patterns are dynamic. To reflect this,
each case is now of the form
6] p— s

where 0 is a sequence of distinct binding symbols. If the pattern p is for the group
above, then this becomes
[x] group £ — 5.

This notation may seem a little heavy. If x is known to be binding, then perhaps
this is enough to isolate the matchable symbols. While true of simple examples,
recall that any term can appear in a pattern now. For example, consider

b (1£—=p)£—s

in which the pattern is itself the application of a case. Now X is able to match itself,
so that the pattern reduces to p. However, without the markings, there is no local
mechanism for determining that it is safe to match x with itself. For this to happen
would require reduction to be context sensitive. To avoid this it is necessary for
variables and matchables to be distinguished as terms, and not just within the context
of a case.

Actually, the match rules for matchables are identical to those for constructors.
This leads to another identification, of constructors with matchables. That is, a con-
structor is a matchable symbol which is not bound in the current context.

Summarising, greater expressive power, and simplicity, comes by identifying the
syntactic classes of constructors and symbols, and of patterns and terms. The re-
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sulting calculus can be seen as an heir to the A-calculus in which abstractions are
generalised to cases, and matchable symbols are used to seed data structures. These
small changes nevertheless generate a significant increase in polymorphism.

5.2 Dynamic Pattern Calculus

Let 6 be a meta-variable for a finite sequence of distinct term symbols. A sequence
may also be used to denote the underlying set, when convenient. The ferm syntax of
the dynamic pattern calculus is given by

t = (term)
X (variable symbol)
X (matchable symbol)
tt (application)

[0]t — 1 (case).

The case [0]p — s has binding symbols 0 and pattern p and body s. The A-
abstraction Ax.s is shorthand for [x]£ — s. Similarly, car = [x,y]£ § — x. A match-
able £ may also be called a constructor if its binding is not under consideration.
As before, these may be represented by capitalised words in monospace font. For
example, Pair is £ for some unspecified symbol x, as is Nomatch. Well-formed
term syntax does not bind the symbol for Nomatch. Throughout the book, we shall
restrict our attention to well-formed syntax. The explicit functions are the cases.
Free variables of the new term forms are defined by:

() = ()
([6] p— 5) = F(p) U (Fu(5) \ ).

Hence the binding symbols of a case bind their free variable occurrences in the

body but not those of the pattern. For example, in [x] £ x — x the occurrence of the

matchable £ in the pattern and the variable x in the body are both bound by [x] but

the occurrence of the variable x in the pattern is free in the case as a whole.
Similarly, the free matchable symbols fm(t) of terms are defined by

fm(x) = {}
fm() = {x}
fm(ru) = fm(r)Ufm(u)
fm([6] p —s) = (fm(p)\ ) Ufm(s)

Note that the free matchables of the body are always free in its case. Also, the
definition of closed terms is unchanged: they may have free matchables even though
they have no free variables. The symbols sym(c) of a substitution ¢ are given by
dom(o)Ufv(o)Ufm(o).
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The application of a term substitution ¢ is defined as before, with rules for the
new term forms given by

A

ox =x
o([0] p—s)=1[0] op— os if o avoids 6.

Since binding symbols appear as matchables in patterns, it is necessary to be able
to substitute for matchables, as well as variables, when renaming binding symbols.
Given a substitution ¢ define the function & on terms as follows.

67 =z

opi = ox if x € dom(0o)
5% =X if x ¢ dom(0o)
G(ru) = (67) (6u)

6([0]p—s) =1[0)6p— 6s if o avoids 6.

When o is of the form {u;/x;} we may write {u;/%;} for 6.

To define a-equivalence requires a little more machinery. Let 8 be a sequence of
symbols and let x and y be symbols. Then {y/x} 0 is defined to be the set obtained
by replacing x by y in 0 if x € 6 and y ¢ 0, and to be undefined otherwise. -
equivalence is the congruence relation generated by the following axiom

[0 p =5 =a {y/x}01{9/2}p — {y/x}s ify ¢ fm(p) Ufv(s).

For example, [y|x § — x (f y) =4 [zJx 2 — x (f 2) if zis not free in x or f. A term is
an a-equivalence class in the term syntax.

5.3 Matching

Matching is similar to that of the static pattern calculus but modified to take into ac-
count the explicit binding of symbols, and generalising from constructors to match-
able symbols. In particular, the successful match of a term p against a term u with
respect to binding symbols 6 will yield a substitution ¢ whose domain is 6 such
that 6p = u

The data structures are defined by

d==x|dt

where the head is now a matchable symbol. Note that this symbol may either play
the role of a constructor or be bound if the data structure is used as a pattern. Thus,
typical patterns are themselves data structures. The matchable forms are the data
structures and cases, as before.

In the static pattern calculus, binding variables in patterns were guaranteed to
appear in patterns, and so to appear in the domain of a successful match. Now this
must be checked explicitly after the matching rules have been applied.
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{u//[6]%} = some {u/x} xeb
{#//6]%} = some {} ifx¢ o

{uv//[6]pq} = {u//|6]p}w{v//[0]q} if pqand u v are matchable
{u//[0] p} = none otherwise, if p and u are matchable
{u//|6] p} = undefined otherwise.

Fig. 5.1 Dynamic matching

The basic matching {u //[0] p} of a term p (called the pattern) against a term
u (called the argument) relative to a sequence 8 of binding symbols is the partial
operation defined by applying the rules in Fig. 5.1 in order. A matchable which
is a binding symbol matches anything. Any other matchable matches itself only.
Matching of compound data structures is component-wise, using disjoint union as
before. If these rules do not apply then match failure occurs provided that the pattern
and argument are matchable forms. Otherwise basic matching is undefined.

These rules correspond to those of the static pattern calculus, which may be a
little surprising since there are many more patterns than before. These new patterns
can be used during pattern computation, but successful matching has been limited
to the familiar static patterns used to match against data structures. It is worth di-
gressing to consider the alternative possibilities, if successful matching is to extend
to arbitrary patterns.

It may well be feasible to match cases, provided sufficient care is taken with their
binding symbols. Another possibility is to allow free variables to match themselves,
by adding the rule {x //[6]x} = some {}. However, without additional restrictions
this will destroy confluence. For example, if x,y and z are distinct symbols then
{x 2 //|] x $} would be none but substitution of Ay.Z for x would cause both pattern
and argument to reduce to Z so that matching would succeed.

Even though successful matching is limited to patterns for data structures, it is
also necessary to check that all binding symbols are accounted for. Let u be a meta-
variable for a match. The check of a match p on a set of symbols 0 is u if u is some
substitution whose domain is exactly 6 and is none otherwise.

Let p and u be terms and let 6 be a sequence of symbols. Define the matching

{u/16]p}

of p against u with respect to binding symbols 6 to be the check of {u//[6] p} on
0. The check is necessary to ensure that reduction does not allow bound symbols to
become free. For example, {£ /[y] £} = none since the basic matching is not defined
on y.

By requiring that unions of term substitutions be disjoint and applying the check,
successful matching guarantees that each binding symbol appears exactly once in
the pattern, i.e. that the pattern is linear in the binding symbols. It is tempting to
make this a requirement of a well-formed case, but if arbitrary terms are to be al-
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rn>rn u>u
x> x > % LU > u
p1>p2 S1>8 pL>p2 S1>8 U >up
[0]p1 — 51> [0]p2 — 52 ([8] p1 — s1) ur > {u2 /(6] p2} 52

Fig. 5.2 Simultaneous reduction for dynamic patterns

lowed in pattern then it is very difficult to enforce, and ends up excluding some
perfectly good nonlinear patterns that reduce to a linear form.
The dynamic pattern calculus has match rulereduction given by

([6]p — s)u— {u/[6]p} s (match).

That is, if matching of the pattern against the argument produces a substitution
whose domain is the binding symbols then apply this to the body. If the match-
ing fails then return Nomatch as in the static calculus. Of course, if {u/[0]p} is
undefined (because p or u needs to be evaluated) then the match rule does not apply.

Theorem 5.1 (Progress). Every closed irreducible term of the dynamic pattern cal-
culus is a matchable form. Hence, pattern matching cannot get stuck.

Proof. The proof is by induction on the structure of the term. Without loss of gen-
erality, it suffices to consider the form ¢ given by ([0] p — s) u. Neither p nor u has
free variables since these would be free in the overall form. Similarly, p and u are
irreducible. So, by induction, p and u are matchable forms. Hence the basic match-
ing of p against u is defined and so ¢ is reducible. O

5.4 Confluence of Matching

Confluence of reduction is established using the simultaneous reduction technique
as in Sect. 2.4. As before, it is enough to prove confluence of simultaneous reduc-
tion, as defined in Fig. 5.2.

The simultaneous reduction relation > between matches is defined as follows.
Given two substitutions 0} and 0, then some 0] >> some o, if dom(6;) = dom(o3)
and o1x > ox for every x € dom(o);. Also none >> none.

Lemma 5.2. Let 1 be a match and let 0 be a sequence of symbols that are avoided
by w. If p and u are terms such that {u //|0] p} is defined then so is {{t u //[0] U p}

and {4t u//[8] 1t p} o = po{u/[6] p}. Hence
{iu/10]p pYop =pofu/6]p} .

Proof. The second statement follows directly from the first, so consider the latter.
If i is none then both sides are none. So without loss of generality, assume that
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U is some substitution ¢. The proof is by induction on the structure of p. If pis a
matchable symbol X where x € 0 then both sides map x to ou and behave as ¢ on all
other symbols since ( avoids 0. If p is some other matchable symbol and u is the
same then both sides are u. If p and u are compounds then apply induction twice.
If {u//[6] p} = none then {cu//[6]cp} = none and so both sides of the match
equation are none.

O

Lemma 5.3. If u; > up is a simultaneous reduction on terms and {u; /[0] p} is
defined then so is {u, /|0] p} and {uy /[0] p} > {uz2 /0] p}.

Proof. The proof is by induction on the structure of p. If p is a matchable (whether
binding or not) then the result follows directly. If p is a case then both matches will
fail. Otherwise p must be a compound g; g2 and u must be a matchable form. If u
is an atom then both matchings will fail. Alternatively, if u = v v, is a compound
then v, is a data structure and thus u, = v3 v4 where v; > v3 and v, > v4. Hence
induction applies.

O

Lemma 5.4. If i} > W and t; > tr are simultaneous reductions of matches and
terms respectively then L t} > U b.

Proof. If 11 is none then (5 is none and so the result is immediate. So assume that 1
and U, are some o7 and 0, respectively. The proof is by induction on the derivation
of #; > 5. The only nontrivial case is when t; = ([0] p1 — s1) u1 > {u2 /(0] p2} 52
where p| > p; and u; > up and 51 > 5,. Without loss of generality, assume o7 and
0, both avoid 6. Thus, o1 (([0] p1 — s1)u1) = ([6] 61(p1) — 01(s1)) (O1(u1)) >
{02(u2) /(0] 02(p2) } (02(s2)) by three applications of induction. In turn, this result
is also 62 ({u /[6] p2}s2) by Lemma 5.2.

Theorem 5.5. The relation > has the diamond property. That is, if t > t; andt >,
then there is t3 such that t| > t3 and tp) > t3.

Proof. The proof is by induction on the definition of simultaneous reduction. Sup-
pose ([0]p — s) u>> {u1/[0]p1}s1 and ([0]p — s) u > {us/[6] p2}s2 where
p>prand p> py and s > 51 and s > 52 and u > wu; and u > wup. By in-
duction, there are terms p3 and s3 and u3 such that p; > p3 and p» > p3 and
s1 > s3 and s > s3 and u; > uz and up > us. Now {u; /[0]p} > {u3/[0] p3}
by Lemma 5.3 and so {u; /[0] p}si > {u3/[0] p3}s3 by Lemma 5.4. Similarly,
{uz2 /0] p2} 52 > {u3 /[0] p3}s3 which completes the diamond. The other cases are
equally straightforward. O

Corollary 5.6 (Confluence). The reduction relation of the dynamic pattern calculus
is confluent.

Proof. Theorem 2.5 shows that >> has the diamond property and so the reflexive-
transitive closure of > is confluent. Hence the reduction relation is confluent, too.
]
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5.5 String Matching

Example 5.7. Generic Eliminator
Static patterns can be used to eliminate any particular constructor. This “design
pattern” can be captured within a single term, namely the generic eliminator given
by
elim=[x]£— [y]x 9 —y.
Equally, it may be written as Ax.[y]x § — y or
elimx=[y]Jxy—y.

Note how the first argument x is used as a free variable in the pattern x y. For exam-
ple, let ‘a’ be a constructor for the character ‘a’. Then

elim (Cons ‘a’) (Cons ‘a’ (Cons ‘b’ Nil)) — Cons ‘b’ Nil.

Allowing the usual string syntax in which the list of characters above is given by
"ab" this example becomes

elim (Cons ‘a’) "ab" — "b".
The generic eliminator can be iterated to yield
elimx x = ([y] x§ — elim* xy | Ay.y) .

For example,
elim* (Cons ‘a’) "aaabca" —" "bca" .

Now consider a pathological example.
elim (Ax.Nil) Nil — ([y|Nil — y) Nil.

If matching did not check that all binding symbols are given values then this closed
term would reduce to the variable y!

Example 5.8. Extensions
These are defined as in Sect. 4.4, using

[0]p — s | r=Ax.([y]Nomatch § — y) (([0] p — Az.Nomatch s) x (r x))
where x,y and z are fresh symbols.

Example 5.9. Generic Equality
This is given by

equal = Ax.([]x — true | Ay.false).
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For example, if u and v are pure data structures then equal (Pair u v) (Pair u v)
reduces to true since {Pair u v/[] Pair u v} = {}.

Example 5.10. Updating
The functions select and apply2all of the static pattern calculus can equally
be supported here. A common application of apply2all is to a function of the form

[ ex—c(fx)
| Ay.y

in which terms built from ¢ have their argument modified by f. This algorithm can
be described exactly by update ¢ f where update is defined by

update z f =
2t —z(fx)
| [x,y] 9 £ — (update z f y) (update z f x)
| 2] £ — x.

Note how the variable z is used in the pattern instead of a matchable. Updating
at a constructor is easily defined in the static pattern calculus, but here it is more
general. For example, if singleton = Ax.Cons x Nil creates singleton lists then
update singleton f reduces to an extension whose first case is

[x] Cons £Nil — Cons (f x) Nil.

Special forms of selecting can be defined in the same manner.

For example, consider the problem of updating salaries by some function f. If
salaries are represented by terms of the form Salary s where s is a number then
the updated salary should be Salary (f s). In this setting update Salary f does
the job. However, if salaries are represented by terms such as Wage Euro s or
Wage Dollar s then the required function is update (Wage Euro) f or perhaps
update (Wage Dollar) f.

The general solution is to use update salary f where salary is a variable that
can be instantiated to Salary or Wage Euro or Wage Dollar.

5.6 Encoding Static Patterns

There is a translation of the static pattern calculus into the dynamic pattern calculus.
Define the alphabet of symbols of the dynamic pattern calculus to be the disjoint
union of the alphabets of symbols and constructors of the static pattern calculus.
The translation [[p]],, of a pattern p and [[¢]}; of a term ¢ are given by
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. [xlle = x
(<]l -1 Iel, = ¢
[ Hcﬂp Ll g, - e =Dl
palp =Pl Wllp 1, = ], = [fm(p)] [, — [s]

where fm(p) is here used informally to denote the sequence of free matchables of
p given in order of first occurrence in p, from left to right. Similarly, the translation
[o]] of a substitution o is given by the substitution that maps a variable x to [[ox]);.

Lemma 5.11. Let {u/p} be a defined match in the static pattern calculus. Then
{[u]l;/ifm(p)] [pllp} is defined in the dynamic pattern calculus and is [{u/p}].

Proof. The proof is by straightforward induction on the structure of p. O

Lemma 5.12. Ift is a term and © is a substitution of the static pattern calculus then
[ot]l = (o]

Proof. The proof is by straightforward induction on the structure of ¢. O

Theorem 5.13. The translation from the static pattern calculus to the dynamic pat-
tern calculus preserves reduction and (distinct) normal forms.

Proof. Consider the translation of the match rule:

[(p—=s)ulle = ([fm(p)] [P, — [slle) [ull
— {[le)e/[fm(p)] [Pl }[s]:

= [{u/p}] sl

[{u/p}sl

where the last two equations are applications of Lemmas 5.11 and 5.12. It is easy to
verify that normal forms are preserved and distinct normal forms remain distinct.
O

5.7 Wildcards

This section and the next introduce some useful additions to the calculus.

It is interesting to add a new constant denoted _ to the dynamic pattern calculus,
the wildcard. It has no free variables or matchables, and is unaffected by substitu-
tion. It is a data structure and has the basic matching

{u//i6] 3 ={}

for any 0. That is, it behaves like a fresh binding symbol in a pattern but like a
constructor in a body. For example, the second and first projections from a pair can
be encoded as elim (Pair _) and elim (Ax.Pair x _).

The following example uses recursion in the pattern. Define the function for the
extracting list entries by
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entrypattern =
[n] Successor i — Ax.Cons _ (entrypattern n x)
| Zero — Ax.consux_

entry n=elim (entrypatternn) .

For example, entry 2 reduces to [x] Cons _ (Cons _ (Cons £ _)) — x which recovers
the second entry from a list (counting from 0). Note that the standard approach, in
which each occurrence of the wildcard represents a distinct binding symbol, cannot
support such recursion.

5.8 Views

Views allow a data structure to support virtual constructors. For example, suppose
floating-point arithmetic is given, and the usual trigonometric operations such as
sine sin and cosine cos. Consider a constructor Cart for building complex num-
bers from their real and imaginary parts. It is easy to define addition of complex
numbers in this representation, by

[x1,y1] Cart £ $1 — [x2,y2] Cart £, $» — Cart (x; +x2) (y1 +)2)
but multiplication is given by the more complicated formula
[x1,v1] Cart £1 1 — [x2,y2] Cart £ §2 — Cart (x1+y1 —x2%y2) (X1 *y2+x2%y1) .

However, every complex number can be represented in polar coordinates, in terms
of their length r and their angle 0 (not to be confused with the meta-variable for
binding symbols). The corresponding cartesian coordinates are given by

polar2cart = [r,0] Pair 7 § — Pair (rcos ) (rsin 6).

For convenience, let us write (s,#) for Pair s ¢. The polar coordinates can be recov-
ered by

cart2polar = [x,y] (£,9) — (V2 +2, tan ' (y/x)) ifx#0

with special cases for when x is 0 that need not concern us here.

Given two complex numbers with polar coordinates (ri,0;) and (r;,6,) then
their product has polar coordinates (r; * 2,01 + 6,). The goal is to be able to write
a pattern-matching function for multiplying complex numbers, as follows

[r1,01] polar2cart (71,0;) — [r2,6,] polar2cart (7,6,) —
polar2cart (ry xrp, 0+ 62))
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in which the conversion between views is hidden from the programmer. The problem
is that the arithmetic functions used to define polar2cart will fail when applied to
the matchables such as 7| as they only evaluate when given floating-point numbers
to act upon. The desired behaviour is that the arguments to this pattern-matching
function be converted to polar coordinates, rather than attempt to convert the pattern
to cartesian coordinates, so that

{u/[r, 0] polar2cart (#,6)} = {cart2polar u/[r,0] (7,6)} .

This is achieved by replacing polar2cart in the pattern by view cart2polar and
the rule

{u/[r,6] view cart2polar (7 0)} = {cart2polar u/[r,0] (7,6)} .
The general rule for matching views is thus
{u//16]view f p} ={f u//[6]p}.
By defining polar = view cart2polar the multiplication case can be written
[r1,61]polar (71,0;) — [r2,6:] polar (72, 6) — polar2cart(ry * 1,6 +6,)) .

Another application of views is to parametrise divide-and-conquer algorithms
by their technique for dividing. For example, let divideList X — List X x
List X be a symbol representing a means of splitting a list in two, so that
append (divide x) = x. The corresponding divide-and-conquer program is then

divide-and-conquer divide combine conquer =
let f=
[x] singleton £ — conquer x
| [x,y] view divide (%,¥) — combine (f x) (fy).

5.9 Notes

Perhaps the earliest exploration of the general issues was in van Oostrom’s gener-
alised A-calculus [81] now known as the A-calculus with patterns [67]. It gener-
alises the usual A-abstraction Ax.M to AN.M so that any term N can be a pattern,
but all free symbols of the pattern N are implicitly bound. That is, it is not possible
to substitute into a pattern. Also, to ensure confluence, patterns are required to sat-
isfy the Rigid Pattern Condition (RPC). This is justified in the original paper above
by

As patterns are meant to be fixed constructs which can not be evaluated, we should allow
as patterns only terms which can not be (partially) destroyed by evaluating parts of the term
they are in. We give a restriction, the rigid pattern condition (RPC), for this to hold.
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(emphasis in the original). This excludes nontrivial reduction of patterns, and also
patterns such as x y in which the variable x appears in an active position. Even
then, confluence is not easily established. In practice, one appears to be confined to
patterns that are headed by a constructor.

This approach to pattern matching has been pursued through the p-calculus or
rewriting calculus [47, 22]. The basic mechanism of the calculus is

(AA.B) C — Solve(A,C) B.

Its left-hand side is usually as in the generalised pattern calculus but Solve(A,C) is
a place-holder for a substitution which is the “solution” to making A match C. The
nature of this solution is open-ended, to allow for different solving mechanisms. As
well as performing computations through pattern matching, it may be used to search
for proofs of theorems. Since a single theorem may have distinct proofs, one does
not wish to impose confluence at the outset but this flexibility is not so interesting for
programming. Also, at this level of generality there is not much that can be proved.
For example, since solutions may be developed modulo some equivalence relation,
it is not obligatory to ensure even that Solve(A,C)A = C. Even when this equation
is assumed, there is not much to be said without adding the Rigid Pattern Condition
mentioned above.

Also, it is rare for patterns in p-calculus to be allowed free variables. The chief
exception is a typed rewriting calculus of [8] where an abstraction A & : .7 binds
only the variables in % allowing other variables in the pattern & to be available
for substitution. However, there is no nontrivial version of the calculus which is
confluent [30].

The first attempt to make patterns more dynamic was by the author [56]; it was
realised in the first version of the typed programming language bondi [10]. The
motivation was to support generic searches and updates. Although fundamental to
query languages, it seems they had not been considered before in the context of
pattern matching. The original bondi enforced the requirement that free variables
in patterns could only be replaced by /inear functions, so that reduction could never
duplicate or eliminate binding variables. Of course, such an approach will never be
able to describe all of the interesting linear functions.

The first account in which any term can be a pattern was developed with Delia
Kesner in the pure pattern calculus [52]. It represented binding variable occurrences
in patterns as free variables (as described in the introduction to this chapter) but
struggled with pathological examples. Its proof of confluence using simultaneous
reduction provided the template for subsequent calculi, including the dynamic pat-
tern calculus. Our second account avoided the pathology by using context-sensitive
information to identify what are now called the matchable symbols. Our third pa-
per [53] provides a systematic and detailed account of all the main calculi for pat-
tern matching, including a proof that the dynamic pattern calculus presented here is
equivalent to the context-sensitive pattern calculus mentioned above.

String processing is exemplified by the string processing language SNOBOL [29]
introduced in 1964. Later approaches emphasised the use of regular expressions, as
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in sed, a string editor [75] produced in 1973—4 and awk in 1979 [2]. Popular to-
day is the Perl scripting language, first released in 1987 [104] as a string matching
language. String matching can be expressed in the static pattern calculus using op-
erations such as elim* defined earlier.

In the same spirit as string matching one can develop patterns corresponding to
arbitrary regular expressions or to arbitrary XML paths [48].

Wildcards are probably as old as pattern matching. Usually, a wildcard is just
syntactic sugar for a fresh binding symbol. The idea of allowing wildcards as first-
class terms, that can be passed as parameters, appears to be new.

Views are commonly used in database theory, but can also be considered as a
means to provide more than one interface to an algebraic data type [103]. They may
also be referred to as active patterns [28, 95]. The mechanism used here to support
views appears to be quite different from other approaches, as it exploits the freedom
to insert arbitrary functions into patterns.



Chapter 6
Objects

Abstract This chapter considers the relationships between records, tuples and the
objects of the object calculus, a representative calculus for object-orientation. The
main challenge is how to define functions (or methods) that can act on records which
have only some fields in common. The object-oriented approach adds the functional-
ity to the record to produce an object. The pattern calculus approach treats methods
as pattern-matching functions, adding special cases only when required to do so.

6.1 Records

Many accounts of data are based on records, of the form {/; =#,,...l, =1,}, whose
field /; has value ¢;. The field values can be accessed using the “dot” notation and
the reduction rule

{ll =1,...1, Zl‘n}.li — 1.

A direct translation of records into tuples is given by interpreting such a record as a
tuple
(t1,. . tn)

which is shorthand for Pair ¢; (Pair #; (...7,)). Then access to the field /; becomes
a case given by
(XpyeeeyXn) — X

For clarity, one can add a constructor c to the outside, to get
(X1, Xn) = X; .

The limitation of this approach is that one would like the use of record labels to be
stable under the inclusion of additional fields. The solution is to allow a spare label
to represent any additional fields, so that the interpretation of the original record
above is

¢ (Un,ty,...,t)

B. Jay, Pattern Calculus, 59
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where Un is the unit constructor used to indicate the absence of data. Then additional
fields can be slotted into the first component of the tuple, in place of Un.

Example 6.1. Employees
For example, an employee given by

{number = 1234,name = "John Smith",salary = 567}
can be represented by the tuple
Employee (Un, 1234, "John Smith",567)
with fields given by

number = Employee (xg,X1,%2,X3) — X|
name = Employee (xo,xl,xz,x3) — X3
salary = Employee (xq,X],X2,X3) — X3.

Now, to find the sum of all salaries in an organisation, it is enough to select all
employees, and then foldleft with respect to the addition of the function salary
across the resulting list. More directly, one can employ a generic fold without creat-
ing the intermediate list.

Salary increases can be given by a function

incrSalary f = Employee(xp,x],X2,n) — Employee(xo,X1,%2, f n).

Suppose now that some employees are managers who get a bonus. Such an em-
ployee can be represented by replacing Un by a new constructor Bonus applied to
the number representing the bonus, as in

Employee(Bonus 3,2345,"H. Houdini",6789).
Now the function for increasing salaries can be given by

incrSalary f =
Employee (Bonus r,x|,x2,n) — Employee(Bonus (f r),x1,x2, (f n))
| Employee(xp,x1,X2,n) — Employee(xo,X1,%2, f 1)

where bonuses, if any, are also increased.

This example suggests how pattern matching can be used to handle extensible
records, since records with additional fields are represented by elaborations of the
patterns for basic records.
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6.2 Inheritance and Method Specialisation

Some patterns match more terms than others. This natural hierarchy makes it is easy
to manage inheritance and method specialisation. For example, suppose people are
to be represented by giving their name, a position, a list of their friends (also people)
and perhaps some other data (the rest). For this it suffices to have a constructor
Person so that

Personr (n,p, f)

represents a person whose name is 7, has position p, has friends f and additional
data r. The “method” get_name can be given by the case

| Personr (n,p,f) —n

so that homer = Person Un ("Homer",1,Nil) maps to "Homer". Similarly,
get_position can be defined by

| Person r (n,p, f) — p.

Now some people may also have a family or proper name. One way of represent-
ing such people is ProperPerson (pn,n,p,f) in which pn is the proper name.
However, this will not support inheritance: if get_position is applied to such a
representation then matching will fail. A better approach is to represent a proper
person by

Person (ProperPerson r2 pn) (n,p, f)

so that a proper person is a person, by definition. Now the function get_position
works uniformly on proper people, too. On the other hand, the function get_name
is no longer satisfactory, since it ignores the proper name. So add a new case to it,
to get
Person (ProperPerson 2 pn) (n,p,f) —n """ "~ pn)
| Personr (n,p,f) —n

so that harry = Person (ProperPerson 12 "Joy") ("Harry",3,Nil) maps to
"Harry Joy". Note that the meaning of get_name is determined by the data struc-
ture to which it is applied, i.e. by the object that invokes it, For example, given

honey = Person Un ("Honey",4, [homer, harry])

then

get_name honey ~ " knows " ~ foldleft (Ax.Ay.x "~ get_namey ™~ ",")""
(get_friends honey)

yields "Honey knows Homer, Harry Joy,".
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6.3 Object Calculus

Continuing on with the example of employees in Section 6.1, an alternative ap-
proach to representing the method for updating salaries is to make it part of the
employee, which is then a self-contained object, as in

Employee (Un,1234,"John Smith",567,h)
where £ is a function that acts on the whole record, say,
Employee (xp,Xx],X2,X3,%1) — Employee (xo,X1,%2, (f x3),x4) .
By contrast, an example of a manager might be
Employee (Bonus 3,2345,"H. Houdini",6789,k)
where k is
Employee (Bonus r,x1,X2,y3,X4) — Employee (Bonus r,x1,x2,(g r y3),X4) .

Generalising from this, one can consider every attribute to be a method, i.e. a
function able to act on the whole object. That is, a method becomes a function of
the form

li = {(x).bi

where /; is the method name, x is a variable bound to the object as a whole, the self
parameter, and b; is a term, possibly containing x, that describes the method body.
For example, the first employee above becomes

Employee ({(x).Un,{(x).1234,{(x)."John Smith",{(x).567),{(x).b)

where b = Employee (xq,X|,%2,X3,%4) — Employee (xo,X1,Xx2, f X3,X4).
Abadi and Cardelli [1] defined the pure object calculus with syntax

a,b = (object)
X (variable)
[l; = £ (x).b;])'=1" (record)
a.l (invocation)
a.l;={(x).b; (update)

where [ is a meta-variable for a label taken from some fixed set . and x is a vari-
able, as usual. The labels /y,. ../, are required to be distinct. The reduction rule for
invocation is

[l = §(0)-bil = 0y — ([l = () b =" )b

body b; of the method with its self parameter x replaced by a itself. The reduction
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rule for updating is

where b, = b and b} = b; otherwise.

The interpretation of the object calculus into the pattern calculus maps labels to
constructors and variables to variables. One way of interpreting records is as pattern-
matching functions from labels to terms. That is,

a=[l;=C(x).b]=l"=
i x — b

|1, x— by, .
Now an invocation a./ is defined to be a (I a) so that the invocation rule is just an

instance of the match rule.
An object update is just an extension, viz

ali=C(x).bi=1l;x—b;|a

since the new description of /; takes precedence over the old one. Unfortunately, the
update rule does not translate directly, since the pattern calculus has no mechanism
for removing redundant cases from pattern-matching functions.

The main difficulty with this approach is that it is no longer possible to apply
generic queries to records, since generic queries are built to act on data structures,
not functions.

An alternative approach is to model records as tuples, just as before. Now

a=[l;=¢(x).b])="" = (I, (Ax.by),...,I, (Ax.by))

with
a.lj=elim/; (head (select test;a))a

where test; picks out terms constructed by /;. Similarly,
a.li = {(x).b =update [; (Ay.Ax.b) a
where update is defined in Sect. 5.5.

Theorem 6.2. This translation from pure object calculus to pure static pattern cal-
culus preserves reduction and normal forms, and the distinctness of normal forms.

Proof. The proof is by straightforward induction on the structure of the reduction.
O



64 6 Objects

6.4 Notes

The use of a placeholder for any additional fields of an object is probably quite
old, but it is usually employed in the context of extensible records, rather than mere
tuples. The first account of this pattern-matching approach was in [57]. The object
calculus is developed in [1].



Chapter 7
Parametric Polymorphism

Abstract This chapter considers two ways of typing the A-calculus. Simple types
are easy to understand, but are not very expressive. Greater power is obtained by
introducing type symbols and their quantification, in System F. Now the Church
encodings of data structures can be typed. Also, reduction is strongly normalising.

7.1 Simply Typed A-Calculus

The types of the simple type system are given by the grammar

T = (types)
° (base)
T — T (function type).

The base type is used to type numbers, booleans, etc. More such type constants will
be added in later calculi but here the focus is on the function types. The arrow is
right associative.

A typed symbol x” is given by a term symbol x and a type T. The term syntax of
the simply typed A-calculus is given by the grammar

t = (term)
X (variable)
tt (application)
AxT .t (abstraction).

Note that all symbols are typed, both the variables and the binding symbols. This is
done to ensure that every expression in this grammar has at most one type, which
is independent of the context within which the term is found. Such unique typing is
not strictly necessary for A-calculus, but will be essential later, when types play an
active role in reduction.

B. Jay, Pattern Calculus, 67
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I'tr:U—S T'tu:U rxYts:s
Cxl =X 'kru:sS 'caxVs:U—S

Fig. 7.1 Simply typed A-calculus

When constructing well typed terms it is important to ensure that all occurrences
of a free variable have the same type, as indicated by the term context, which is a
set I of (typed) term symbols in which no symbol appears twice, e.g. I" may not
contain both x5 and x”. A term context is sometimes represented as a sequence.
In particular, I",xV denotes the disjoint union of the term context I" with the term
context {x}. The judgement I" I~ t : T asserts that ¢ is a term of type T in the term
context I'".

The type derivation rules for the simply typed A-calculus are in Fig. 7.1. The first
rule asserts that if x” is in the context then x” has type T. The second rule types an
application r u by requiring that the type of r be a function type whose argument
type is the type of u. The third rule types an abstraction AxU.s with type U — S if s
has type S when x : U is added to the context.

It is easy to type simple examples such as the identity function on a type T

FAxI ol T —T.
Similarly, function composition compose®7:V for types §,7 and U is given by
- AgTﬂU.A’fS*?T.AxS.gTHU (fS*)T xS) . (T s U) — (S—> T) —S—=U.

These examples show how polymorphic functions of the pure A-calculus, such as
the identity function Ax.x, correspond to families of simply typed functions. An-
other example is given by the conditional. In the pure A-calculus, the conditional
if b then r else s was given by b r 5. Now if r and s have type T then b must
have type T — T — T. That is, there is no one type of booleans here, but rather a
family of branching constructions. If such families of functions are to be avoided
then the simply typed calculus requires additional types, such as a type Bool of
booleans, and corresponding term forms, such as conditionals, each with their own
type derivation rules.

It is clear from the rule for typing variables that judgements often contain redun-
dant type information, but this simplifies the development: the context ensures that
all occurrences of a term variable have the same type, while the explicit typing of
variables in terms makes the terms more self-contained, so that we may speak of the
type of a term, as justified by the following lemma.

Lemma 7.1 (Unique Typing). Ler t be a term of the simply typed A-calculus. If
there are derivations T' =t : T and I'' =t : T for some types T and T' and term
contexts I and T"' then T =T'.

Proof. The proof is by a straightforward induction on the structure of the derivation.
O
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Most of the typed calculi to be developed will have the unique typing property.
Throughout the book, the unique type T of a term ¢ may be denoted ¢ . This will
indicate that there exists a term context I with a derivation of I' 17 : 7. Also,
it will prove convenient to elide the types from symbols when these are specified
elsewhere. In this way, the identity function on T is written Ax” .x: T — T.

Fundamental to reduction is the B-reduction rule

(),xU.s) u— {u/x}s (PB)

just as in the pure A-calculus, except that symbols are now decorated with types. As
in Fig. 2.1, the reduction rule is used to define a rewriting relation and then general
reduction, as in Fig. 2.2.

In a typed calculus, it is crucial that reduction should preserve typing. For the
(B)-rule above, the key point is that substitution of a term of type U for a symbol of
type U in a term s preserves the type of s. Throughout the book, each typed calculus
will require a Substitution Lemma such as the one that follows.

Lemma 7.2 (Substitution Lemma). Suppose that there are derivations of ", xV -
s:Sand of T' & u: U for some term context I',xY and terms s and u. Then there is
a derivation of ' = {u/x}s : S.

Proof. The proof is by induction on the structure of the term s. If s is xV then §
is U and {u/x}s = u : U as required. If s is an application s; s, then examining
the derivation of the type of s shows that there is a type S, such that s; : S — S and
57 :S>. Hence {u/x}sy : S — S and {u/x}sy : Sp by induction and so {u/x}(s; s2) =
{u/x}sy {u/x}sy : S as required. If s is an abstraction Ay".r (for some y not free in
u) then S is of the form V — R for some type R. Hence {u/x}r : R by induction and
so {u/x}(AyY.r) = Ay {u/x}r:S. O

Theorem 7.3 (Type Preservation). If I' -t : T and there is a reduction t; — t,
then there is a derivation of ' 1t : T.

Proof. The proof is by induction on the structure of the rewriting step. This reduces
the problem to consideration of the reduction relation and then to the reduction rule,

in which case apply the Substitution Lemma. a
There is a type-erasing translation | — | from the simply typed A-calculus to the
pure A-calculus given by
| =x
rul = [r] |ul

|AxU.s| = Ax.|s| .

Theorem 7.4 (Type Erasure). Type erasure preserves the general reduction rela-
tion. That is, if t — 1’ in the simply typed A-calculus then |t| — || in the pure
A-calculus. Further, if [t| — 1" then there is a term t' such that t — t' in the simply
typed A-calculus and |t'| = |t"|.

Proof. The type erasure of () is the B-rule for pure A-calculus. O
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Theorem 7.5 (Confluence). Reduction is confluent in the simply typed A-calculus.

Proof. Suppose that 7 is a term that reduces to both ¢’ and ”. Then |¢| reduces to
both |¢'| and |¢"|. Now confluence of the pure A-calculus shows |¢'| and |¢”| have a
common reduct u which must be the erasure of some common reduct " of ' and ¢’
by the Type Erasure Theorem. g

7.2 Data Structures as Typed Abstractions

The Church encoding of data structures in the pure A-calculus does not work with
simple types. A representative example is given by pairing. The Church encoding
of pairs can be given a typed form as

AR S AT fxy: RS- (R—S—T)—T.

Here, the desired product type R« S is supplanted by the type (R — S — T) — T in
which an extraneous type 7 has appeared. The direct solution is to introduce a new
type form, for product types R + S and to add constructors for pairing. Further, these
must be parametrised by the types R and S to get the constructors

Pair® :R— S — RxS.

In the same spirit, one must add operators for the projections, namely £st®S : R
S — R and snd®S : R+ S — § with associated parametrised families of reduction
rules £st®S (Pair®S r s) — r and snd®S (Pair®S r s5) — 5. Of course, the
process must be repeated for lists, binary trees, etc.

This approach is easy to understand but relatively inexpressive compared to the
pure A-calculus. Since the difficulties arose from the need for extraneous type pa-
rameters, a better solution is to control the parameters by introducing type variables
and their quantification.

For example, to type typing pairing, replace the type T above by a type variable
Z to get

R—-S—(R—S—Z)—Z.

Finally, since Z is independent of R and S it may be quantified, to produce a term of

type
R—S—VZ(R—-S—Z)—2Z

in which the original type parameter 7 is replaced by a bound variable Z. So, define
the product type R* S to be VZ.(R — S — Z) — Z so that pairing has type

R—S§S—RxS.

Indeed, R and S are themselves parameters which may be replaced by bound type
variables X and Y so that it is enough to define a term
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pair:VX.VY. X —Y — X %Y .

In this manner, data types can be represented as quantified function types, whose
constructors and eliminators have typed encodings.

These are central ideas of Jean-Yves Girard’s System F of variable types, and
their use in computation, as presented by John Reynolds. It is able to support all of
the usual inductive data types without requiring any special constants or reduction
rules, and all in a strongly normalising calculus. These data types are defined using
type parameters to represent the types of the data. Such parametric polymorphism
will underpin several other sorts of program reuse, too.

7.3 Quantified Types

Throughout the book, there is a collection of type symbols (meta-variables F,G,H
and W, XY and Z). A type context (meta-variables A, @, V) is a sequence of distinct
type symbols (not a context that provides types for term symbols). If X € A and
Y & A then define {Y /X }A to be the result of replacing X by ¥ in A.

The syntax of the quantified types is given by the grammar

T = (type)
X (variable)
T — T (function)
VX.T (quantified).

Each type symbol is also a type variable. Function types are as before. A quantified
type VX.S binds the symbol X in S, much as a A-abstraction binds a term symbol.
Note the absence of type constants or product types, etc. It will emerge that these
are not necessary for fundamental examples, which can now be interpreted using
just these forms.

The machinery for manipulating type symbols (free variables, substitutions, o-
equivalence, etc.) is similar to that for handling term symbols.

The free type variables FV(T') of a type T are given by

FV(X) = {X}
FV(U — S) = FV(U) UFV(S)
FV(VX.S) = FV(S)\ X .

Throughout the book, a fype substitution (meta-variables p, v) is a function from
type symbols to types, following the same conventions as the term substitutions in
Chap. 2. For example, a type substitution p avoids a set of symbols if these symbols
are neither in the domain nor the range of p.

The union p; U p; of type substitutions p; and p; is defined to be their union as
relations, if this is a function. That is
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(P1Up2)X = p1X if p1X = poX

(p1Up2)X = p1X if X € dom(p;) \ dom(p2)
(p1Up2)X = p2X if X € dom(pz) \ dom(py)
(p1 Upz)X = undefined otherwise.

A type substitution is applied to a type using the following rules:

pX = pX if X € dom(p)

pX =X if X & dom(p)
p(U—S8) =pU—pS

p(VX.S) =VX.pS if p avoids X.

The o-equivalence of types is the congruence generated by the following relation
VX.S =¢ VYA{Y/X}S

provided that Y ¢ FV(S). The types are equivalence classes of type syntax under
a-equivalence.

7.4 System F

Now let us consider the corresponding terms. These will support abstraction and
application with respect to both types and terms. The term syntax of System F is
given by
to= (term)

X (variable)

tt (application)

AxT .t (abstraction)

t T  (type application)

AX.t (type abstraction) .

Note that a type application is here the application of a term fo a type, not of a type
to something. Now terms have free type and term variables, and can be affected by
both type and term substitutions, etc.

The set of free type variables FV/ (t) of a term ¢ is defined in the obvious manner,
in the appendix. Similarly, the set of free type variables FV(I") of a term context I"
is given by the union of the sets of the free type variables of the types of all the term
variables in I".

Throughout the book, a typed term ¢ is closed if FV(¢) = {} and fv(¢) = {}.

The o-equivalence of terms is the congruence relation generated by the renaming
of binding type and term symbols by fresh symbols as follows:

AxU.s =g AV .3V /x)sify & fu(s)
AX.s =q AYAY /X }sif Y € FV(s).
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I'tr:U—S T'tu:U rxYts:s
Cxl =X 'kru:sS 'caxVs:U—S
I'Er:vX.S I'bet:T X ¢FV(I)
TFrU:{U/X}S TFAX.1:VX.T

Fig. 7.2 System F

Define a term to be an equivalence class of the term syntax under a-equivalence.

The type derivation rules are given in Fig. 7.2. The first three are as for the simply
typed A-calculus. Type application triggers a type substitution in the type of the
term itself. Type abstraction comes with a side condition which is designed to avoid
binding of type symbols before binding the free term variables that use them. A
typical binding arises in the example

AX XX VXX — X

of the polymorphic identity function whose derivation first binds x¥ and then X. A
typical example of an illegal binding is AX.xX in which the free term variable x no
longer has a meaningful type. Once again, terms have unique typing.

Lemma 7.6 (Substitution).

1. If there is a derivation of I =1t : T and p is a type substitution then there is a
derivation of pI' - pt : pT.
22IfTyx:Uks:Sisatermand T’ u:U then T+ {u/x}s: S.

Proof. The proofs are by straightforward induction on the structure of the terms. O

7.5 Reduction of Type Applications

The reduction rules of System F are given by two forms of f3-reduction, for terms

and types:
(AxV.s)u — {u/x}s  (B1)
(AXs)U — {U/X}s (B2).

Theorem 7.7 (Type Preservation). In System F, if there is a derivation of ' =1t : T
andt — t' then there is a derivation of ' =t : T.

Proof. Without loss of generality the reduction is given by a rule and now the Sub-
stitution Lemma applies. O

There is a natural translation from System F to the pure A-calculus given by
erasing types where the type erasure |t| of a term ¢ is defined by
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x| = x

[rul = [r |ul
|AxU.s| = Ax.|s|

[rUl = |r|
[AX.s| = |s]|.

Theorem 7.8 (Type Erasure). Type erasure in System ¥ preserves the general re-
duction relation. That is, if t —* 1" in System F then |t| —* |'| in the pure -
calculus.

Proof. The type erasure of (1) is the B-rule for pure A-calculus while the type
erasure of (32) is the identity. Now apply induction. O

Theorem 7.9 (Confluence). Reduction in System F is confluent.

Proof. The proof is by simultaneous reduction. O

7.6 Lists as Functions

Here are some examples in System F.

Example 7.10. Functions
The polymorphic identity is

identity = AX.Ax ¥ x:VX.X - X .
The identity can be applied to its type and itself to get
identity (VX.X — X) identity :VX.X — X

and reduces to identity in two steps. This shows that self-application can some-
times be typed.
Polymorphic application is given by

apply = AX AYAxX "X Ay xy VX VY.(Y - X) —»Y = X.
Composition is given by
compose = AX.AY.AZAgY =D AFX=Y AxX g (f x)
P VXVYNVZ(Y —-Z)—- (X —=Y)— (X —2).

Example 7.11. Pairs
Fairing is given by the term
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pair = AX AYAXX Ay AZAfXY=2) fxy:
VXVYX —Y =VZ.X—>Y—2Z)—>Z.

For example, if r : R and s : S are terms then pair R S r s reduces to the term
AZAfRS=Z frs:VZ.(R— S —Z)— Zsothat R+SisjustVZ.(R— S —Z) — Z.
The projections are given by

fst = AXAY ALY £ X (AN Ay x) : VX VY. X +Y — X
snd = AXAYALXY £y (AKX Ay y) : VX VY X +Y — Y

so that

fst RS (pairRSrs) —r
sndR S (pairRSrs) — s.

Example 7.12. Booleans and Conditionals
The type bool of booleans is given by
bool=VZ7Z—7Z—Z7
with truth values

true = AZAx?. Ay x
false = AZAx?. Ay%.y

and conditionals given by
if bthenr! elses! =bTrs.

For example, the conjunction of booleans is given by

lxbool'lybool

conjunction = .if x then y else false.

Example 7.13. Alternatives
More generally, the coproduct type of types R and S is defined by

R+S=VZ(R—2Z)—(S—Z)—Z.
The left inclusion is given by
inl = AXAY AKX AZAFED QW2 fx VX VY.X X +Y .
Similarly, the right inclusion and the case analysis term are given by

inr = AX.AYAY AZAFE=2) Qg0 =2 oy VX VY.Y - X +Y
alt = AXAYAZAXZ AV =2 A5V 22 f g
VXYY NVZ.(X—-Z)—» (Y —>Z)— (X+Y —2Z).

For example, when alt Bool (Bool *Bool) Bool identity fst of type Bool +
Bool:#xBool — Bool is applied to inr (pair false true) it reduces to false.
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Example 7.14. Natural Numbers
The natural numbers are given by the type

nat =VX.(X - X) > X —-X
with zero and successor given by

zero = AX.A XX AxX x
suce = AnPAC AX A XXX fF(n X x f).

For example, the number one is given by
one = succ zero
and addition of natural numbers is given by

plusnat = Ax"2% 1,12t y nat x succ .

Example 7.15. Lists
Parametrised data types can also be handled. For example, given a type T define
the type of lists of T by

list T=VZ2Z—->(T—Z—272)—Z
with the empty list given by
nil = AXAZAZAf 7477 7: VX 1ist X
and the operation of adding a new entry to the head of a list is given by

cons = AX AKX AyLISEX AZ AZ A X272 £ x (v f2)
VXX —1list X — list X .

For example, the append of lists is given by
append = AX Ax11St X listx o (list X) (cons X) y.
Case analysis on lists of X is given by
foldright = AXAZAZAfX727Z 138X s 7 42
For example, to map a function across all the entries of a list is given by the function

maplist = AX.AY.AfXY,
foldright X ¥ (nilY) (Ax¥ A8 consy (fx)2)
VX VY. (X —-Y)—1list X — 1listY.
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Example 7.16. Existential Types
The existential type 3X.T can be defined by

WT=VZ.X.T—2)—Z
If U is atype and 7 : {U /X }T then the package (U,t) : 3X.T is given by

AZAFXT=Z Ut

7.7 Strong Normalisation

The strong normalisation theorem here uses Girard’s technique of reducibility can-
didates inspired by Tait’s reducibility predicates. Although all the proofs are by
structural induction, the delicacy of the argument is in the interplay between in-
duction on the type structure, induction on the term structure, and induction on the
length of the reduction sequence. In particular, substitution may expand the struc-
ture of a type or term, so that the constructions employed in the argument must be
parametrised by substitutions.

A term is neutral if it is not an abstraction.

A reducibility candidate of type U is a set Z of terms of type U such that:

(CR1) Ifr € Z thent is strongly normalisable.
(CR2) IfreZandt — tythenty € Z%.
(CR3) Ifris neutral, and every one-step reduct of ¢ is in & then t € Z.

Observe that if 7 : U is neutral and normal then it is in Z. In particular, every term
variable of type U is in Z.

A reducibility substitution is given by a type substitution p and a reducibility
candidate %; of type p(X;) for each symbol X; in its domain. If 7 is a type whose
free variables are in the domain of p then define the reducibility candidate REDr[p]
for pT by induction on the structure of 7', as follows.

e If T is X; then REDy [p] =%,.

e IfTisU — Sthenaterm¢isin REDr[p]if u € REDy[p] implies r u € REDs[p].

e If 7 is VX.S then a term ¢ is in REDy[p] if for every type U and reducibility
candidate . for U thent U € REDs[p,U/X].

Lemma 7.17. REDr[p] is a reducibility candidate for pT.

Proof. The proof is by induction on the structure of 7. If T is a variable then the
result is immediate. Suppose that T is of the form U — S.

(CR1) Ift € REDr[p]thent xU € REDg|p] for any term variable x. Hence ¢ xV is
strongly normalising by induction and (CR1), which implies that ¢ is too.

(CR2) Ifr€ REDr[p] and t — ¢’ then consider some u € REDy[p]. Now t u €
REDs[p| and r u — t' u which implies that ' u € REDg[p] by induction and
(CR2). Hence ¢’ € REDr[p].



78 7 Parametric Polymorphism

(CR3) Suppose that 7 is neutral and + — ¢’ implies that /" € REDr[p]. Given
u € REDy[p] then t u is neutral. Hence, by induction and (CR3) it suffices to
prove that every reduct of it is in REDg[p] by induction on the reduction rank
of u. Since ¢ is neutral, a reduction of ¢ u is either by a reduction of ¢ to some ¢’
(in which case t u € REDg[p] by assumption) or of u in which case the rank is
decreased.

Finally, suppose that 7 is of the form VX.S.

(CR1) Ifr € REDr[p] then t X € REDg[p,X /X] for any choice of reducibility
candidate for X, e.g. its strongly normalising terms. Hence ¢ X is strongly nor-
malising, and so ¢ is too.

(CR2) Ift € RED7[p]andt — ' then for all types U and reducibility candidates
# for U we have t U € REDs[p,U /X] and so its reduct t' U € REDs[p,U /X]
by induction and (CR2). Hence ¢’ € RED7|[p].

(CR3) Lett be neutral and suppose all the ' one step from 7 are in REDy [p]. For
each type U with reducibility candidate .# it suffices to prove that all one-step
reducts of the neutral term ¢ U are in REDs[p,U /X] (by induction and (CR3)).
Since 7 is neutral such reducts are given by reduction of 7 to some 1’ € REDr[p]
and so ' U € REDy /x}s[p] as required.

O

Lemma 7.18. For all types T and V and type symbol X and reducibility substitution
p it holds that
RED(y x)slp] = REDs[p,pU /X]

where pU has reducibility candidate REDy [p].
Proof. The proof is by straightforward induction on the structure of S. a

Lemma 7.19. Let t : T be a term and p be a reducibility substitution whose domain
includes FNV(T) let and & be a term substitution with domain fv(t) such that Gpx €
REDy [p] for each xV free in t. Then opt € REDr[p).

Proof. The proof is by induction on the structure of ¢. If ¢ is a symbol then opx is
reducible by assumption. If 7 is an application r u then opr and opu are reducible
by induction and so op(r u) is reducible by the definition of REDy[p]. If  is an
abstraction Ax s then it suffices to show that op (AxU.s) u is reducible for each u €
REDy [p]. Since it is neutral, it suffices to prove that all of its reducts are reducible.
Now s and u are reducible and hence strongly normalising. The proof is by induction
on the sum of the ranks of s and u. Now consider a reduction of ¢ u. If it is of s or
u then apply induction on the sum of ranks. If it is the -reduction rule then apply
induction on s and 6’ = 6 U {u/x}.

If  is a type application r U then op(r U) = opr pU which is reducible since
opris. If ¢ is a type abstraction AX.s then it suffices to show that for each type
U with reducibility candidate . the term opt U is in REDg[p,U /X]. Since t U
is neutral, it suffices to prove that all reducts of opt U) are in REDy /X}S[p].
By Lemma 7.18, this set is also REDg[p,U /X]. Since ops is reducible and hence
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strongly normalising, the proof can proceed by induction on its reduction rank. Now
consider a reduction of opt U. If it is of ops then apply induction on the rank. If
it is the B-reduction rule then let p’ be the substitution p,U/X. Now {U /X }ops is
op’s and induction implies that this is in REDg[p,U /X] as required. O

Theorem 7.20. All terms in System F are strongly normalising.

Proof. Apply the lemma above to the identity type and term substitutions on the
free variables of ¢ with reducibility candidates consisting of all strongly normalising
terms of the required types. O

7.8 Notes

Alonzo Church introduced the simply typed A-calculus in 1940 [20] to avoid para-
doxical uses of the untyped A-calculus. In 1967, Tait [96] showed that its -
reduction is strongly normalising. There is an extensive literature on simply typed
A-calculus and related issues, but they are not central to the concerns of this book.

System F was introduced by Jean-Yves Girard in his 1972 thesis [34] which
proved strong normalisation. The standard reference is now [35]. John Reynolds
independently discovered this use of quantified types for parametrically polymor-
phic programming [89]. System F appears within programming languages such as
HASKELL [84] and F# [31] and supports the typing of theorem provers such as Coq
[97].

An overview of typed A-calculi is given by [7].



Chapter 8
Functor Polymorphism

Abstract Functorially polymorphic terms such as map (defined in Chap. 4) require
additional type machinery to support them. Type matching is used to choose the
correct term for the type of the argument, while the overall type of map requires a
type application F X to describe an arbitrary structure (or functor) F' containing data
of type X.

8.1 Ad Hoc Polymorphism

The earliest discussions of polymorphism distinguished the parametric polymor-
phism of append and other functions in System F from the ad hoc polymorphism
of operations such as + which employs different algorithms for integers or floats
or booleans, etc. A common view, as proposed by Strachey, is that ad hoc polymor-
phism is rather superficial, in that it is resolved statically, e.g. during type inference,
before the real computation begins. However, this viewpoint does not allow for any
dynamic choice between the algorithms being driven by the values of types.

Consider a function toString which converts its argument into a string, suitable
for printing. It may have special cases of type nat — string and bool — string
as well as a default that yields an error message, of type X — string that is para-
metrically polymorphic in X. Suppose that toString is applied to some term vari-
able y : Y where Y is a type variable. Until the value of Y is known, it is impossible
to determine whether to use the special case for natural numbers, or booleans, or
the default. Hence it is necessary to be able to combine the various cases as a term,
and use type information to choose between them, so that toString nat reduces
to the special case for nat and toString (nat +nat) reduces to the default case.
Note that toString Y will not reduce at all, until the value of the type variable Y is
known.

Although these intentions are fairly clear, they are not so easy to realise. Suppose
that the default case of toString has type VX.X — string. When toString is
applied to nat *nat then X is instantiated to nat *nat and the resulting term has
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type nat *xnat — string as expected. However, now suppose that there is a special
case for products, of type VX.VY.X xY — String. Now it is necessary to match the
type X * Y against nat *nat to find values for the type symbols X and Y.

The first step in the solution is to generalise System F so that type symbol instan-
tiation is handled by type matching in System FM. Then it is a simple matter to add
machinery for choosing between such typecases in the typecase calculus. Note the
inversion of the order of development, in that this chapter will add pattern matching
to the type system, even though terms do not yet contain patterns.

8.2 Typecases

The types of System FM are given by the grammar

T = (type)
X (variable)
T — T (function)
Vr[A].T (typecase).

Type variables and function types are as in System F. The fypecase Vp[A].S quan-
tifies the type S by the type symbols in the sequence A under the restriction that
instantiation of symbols in A will be achieved by matching of P, in the sense to
be explained later in this section. The usual quantified type VX.S can be defined as
Vx[X].S since the variable X will match any type. Similarly, if A = X, ..., X, then
VA.S is defined to be VXj..... VX,.S.

The free type variables of a typecase are given by

FV(Vp[A].S) = (FV(P) UFV(S))\ A.

A typecase Vp[A].S is well-formed if ANFV(S) C FV(P). More generally, a type
T is well-formed if every typecase within it is. The restriction on well-formed types
will be necessary to ensure that bound variables do not become free after type
matching.

The o-equivalence of types is the congruence generated by

VplALS =a Viy/xyp[{Y /X}A]{Y /X}Sif X € A and Y fresh.

The types are o-equivalence classes of well-formed type syntax.

A unifier for types S and T is a type substitution p such that pS = pT i.e. that
solves the equation S = T. A most general unifier for them is a unifier v of S and
T through which any other such unifier factors. That is, for any unifier p there is a
type substitution ¢ such that o o v = p. For example, the types X and ¥ — Y are
unified by the substitution {U — U /X,U /Y } for any type U, and have most general
unifier {Y — Y /X}.
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(X=X} ={}
{S=X} = {S/X}if X £FV(S)
(X=T} = {T/X}ifX ¢ FV(T)
{P—=S=0—T}=letvy={P=Q}in
let vy ={viS=v;T}in
V2 0 Vg
{Vp|A].S =Vp[A].T} = letv; ={P=Q} in
let v, ={viS=vT}in
VoV if this avoids A
{§ =T} = undefined otherwise

Fig. 8.1 Type unification

Define the substitution {S = T'} by applying the rules in Fig. 8.1 in order. Some
care is required to apply the rule for typecases so here are some examples:

{Vx[X].Y ZVx[X].Z — Z} = {Z — Z/Y}
{Vx[X].Y = Vz_z[X].Y = undefined
{Vx[X].Y = Vx[X].X} = undefined
{Vx[X].X =Z — Y} = undefined.

The three undefined substitutions arise because substitutions cannot: eliminate
bound symbols; introduce bound symbols; or eliminate quantifiers. In general, to
unify types given by the syntax Vp[A;].S and Vg[A,].T it is necessary to first re-
name bound variables so that both bind the same type context A.

Theorem 8.1. Tivo types S and T have a unifier if and only if {S = T} exists, in
which case it is their most general unifier.

Proof. The proof is by straightforward induction on the type structure. O

It is also useful to have a one-sided form of unification called type matching. A
type match is either a successful match, of the form some p where p is a type sub-
stitution, or a failure, denoted by none. A failed match is distinct from an undefined
match, which may evolve to a success or failure.

The three possible outcomes of the process of type matching will be some type
substitution, representing success, or none, representing definite failure, or unde-
fined, where the result depends on the values of free type variables not currently
available for substitution. When deriving types, being undefined will be akin to fail-
ure. This is captured by defining the application of none to a type to be undefined.
However, matching will also be used during reduction, in which case match failure
triggers default behaviour, while undefined matches will block reduction until the
type match has a definite value.

Operations on substitutions are extended to matches of the form some p in the
obvious manner. Indeed, the distinction between the match and the substitution will
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{U/[A] X} =some {U/X}ifX € A
{X/|A] X} = some {}ifX £ A
{U/[A] X} = undefined, otherwise
{X/[A] P} = undefined, otherwise
{P—S/[A]Q =T} = {P/[A] Q}U{S/[A] T}
{Vp[@].S/[A] Vo ®@].T} = {P/[A] Q}U{S/[A] T} if this avoids @
{U/|A] P} = none otherwise

Fig. 8.2 Type matching

typically be suppressed when there is no risk of ambiguity. Operations involving un-
defined matches are undefined; otherwise, operations involving none produce none.
Also, none avoids all type symbols.

Given a type context A and types P and U a match of P against U with respect
to A is some type substitution p whose domain is within A such that pP =U. It is
most general if any other such factors through it. The algorithm for the most general
match {U/[A] P} of a type P against a type U with respect to a type context A is
given in Fig. 8.2.

Theorem 8.2. Let A be a type context and let P and U be types. There is a match
of P against U with respect to A if and only if {U/[A] P} is some substitution, in
which case it is their most general such.

Proof. The proof is a routine induction on the structure of P, given the care already
taken with typecases. For example, suppose that p(Vp[®].S) = Vo[®].T where p
has domain within A. Then, without loss of generality, p avoids @, too. O

Lemma 8.3. Let {U /[A]P} exist for some type context A and types U and P. If p is
a type substitution which avoids A then {pU /[A]pP} exists and

{pU/[AlpP}op =po{U/[A]P}.
Proof. The proof is by induction on the structure of P. If P is a variable X in A
then pP =X and {pU/[A]pP}op ={pU/X}op =po{U/X}.If P is any other
variable then U is P and so both sides are p. If P is a function type or typecase then
so is U so apply induction twice. O

8.3 System FM

The term syntax of System FM is given by the grammar
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I'tr:U—S T'tu:U rxYts:s
Cxl =X 'kru:sS 'caxVs:U—S
I'r:VplA]lS I'ks:S
r:velAl : ANFV(T) = {}
T'ErU:{U/[A]P}S TF[A]P—s:Vp[A]l.S
Fig. 8.3 System FM
t= (term)
xT (variable)
tt (application)
AxT .t (abstraction)
t T (type application)

[A] T —t (typecase) .

This is almost the same as that of System F, the only difference being the replace-
ment of type abstractions by typecases. A typecase [A] P — s abstracts s with respect
to the type symbols in A with P representing a constraint upon how the type sym-
bols may be instantiated. It is well-formed if ANFV(s) C FV(P). More generally, a
term ¢ is well-formed if all typecases within it are.

The free type variables of a typecase are given by

FV([A] P —s) = (FV(P)UFV(s))\ A .

Then the definitions of free type and term variables, substitutions and ¢-conversion
are as expected.

The type derivation rules for System FM are given in Fig. 8.3. The first three
rules are the same as those of the simply typed A-calculus but the rules for type
applications and match abstractions are new. A term r : Vp[A].S may be applied to
a type U only if {U/[A] P}S is some substitution. That is, the type P provides a
constraint upon how the type variables in A may be instantiated. Note that since all
variables in A are free in P, the domain of the resulting substitution contains all of A.
The rule for typecases is the natural generalisation of the rule for type abstractions
in System F.

The reduction rules of System FM are given by the -reduction of terms plus a
rule for typecases, namely

(AxY.s) u — {u/x}s (B1)
([A]P—s)U — {U/[A] P}s (match2).

Note that if the redex is well-typed then the type match {U/[A] P} is some substi-
tution.

Theorem 8.4 (Type Preservation). In System FM, if there is a derivation of I' -t :
T andt — t' then there is a derivation of ' =1’ : T.
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Proof. Without loss of generality the reduction is given by a rule. For (1) the
Substitution Lemma applies. For (32) above let p = {U/[A] P} and suppose that
I'ts:S.Now ANFV(I') = {} implies that pI" =T and so I" - ps : pS as required,
by the Substitution Lemma. O

Theorem 8.5 (Confluence). Reduction in System ¥M is confluent.
Proof. The proof is by simultaneous reduction. O

There is a natural embedding of System F to System FM given by identifying
VX .S with Vx [X].S and identifying A X .s with [X] X — s. It preserves reduction since
the B-rule for types becomes an instance of the rule for typecases.

(X]X —=s)U —{U/X]X}s={U/X}s.

Conversely, there is a translation [—] of System FM to System F. Let A be
some Xi,...X,. In System F define VA.T to be VXj..... VX,.T and AA.t to be
AXy..... AX,.t. Then the translation is given by

[X] =x
[U—S]) = [U] —[S]
[Vp [A[[] }9% - VTA-[[S]]
[ru] = [r] [u]
rielals U% =[] Ui ... U, where U; = [{U/]A] P}Xi]

Note how the constraints embodied by the type P are captured in the translation of
type applications, not of match abstractions. Reduction of a type application trans-
lates to a sequence of reductions of System F whose length is the number of bound
type symbols

(AAs) U, ... U, —" [{U/]A] P}]s

where the translation of the type substitution is defined in the obvious manner. This
coarser granularity will prove useful later when the nature of A is determined dy-
namically.

Theorem 8.6. The translation from System ¥M to System F maps terms from System
F to themselves, and preserves type erasure.

Proof. The proof is by a straightforward induction on the syntax of types and terms.
O

The most common use of typecases arises when the type to be matched is the ar-
gument type of a function, so that it is convenient to introduce some special notation.
Define the quantified function type

[A]P—S

to be Vp[A].P — S and the quantified abstraction A[A] x*.s to be [A] P — AxP.s.
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I'ks:S T'HFr:R S=R
I's#r:R

Fig. 8.4 Choices

8.4 Typecase Calculus

It is a simple matter to add choices between typecases to System FM. The basic idea
is that when such a choice s # r is applied to some type U it reduces to either s U
or r U according to the success or failure of some type matching. When creating a
choice it is essential that any potential type ambiguity be harmless. That is, if both
terms can apply to arguments of the same type then they must produce results of the
same type. This will be guaranteed by requiring that the types of the two alternatives
be similar.

Consider two typecases Vp[A].S and Vo [®].T where A and @ are assumed dis-
joint. These types are similar (written Vp[A].S ~ Vo [®P].T) if any solution of P = Q
is also a solution of S = T. That is, if v = {P = Q} exists then vS = vT.Note
that if P and Q do not have a unifier then the typecases are automatically sim-
ilar, since there is no ambiguity to be concerned about. For example, [] nat —
nat =~ [] bool — bool — bool. The more common situation is represented by
[| nat — nat ~ [X] X — X while [] nat — nat is not similar to [X] X — bool.

Lemma 8.7. If S ~ R and p is a type substitution then pS ~ pR.

Proof. Let S be ¥p[A].S] and R be Vp[®@].R;. Without loss of generality, p avoids A
and @. If pP and pQ can’t be unified then there is nothing to prove, so suppose that
v = {pP = pQ} exists. Then v o p factors through {P = Q} by some substitution
candso vpS=0{P=0}S=0c{P=0}T =vpT. |

The type derivation rules for the typecase calculus are given by those of System
FM plus the rule for choices in Fig. 8.4. In a choice s # r the term s is its special
case while r is its default. Note that although similarity is a symmetrical relation,
the type of a choice is the type of its default.

The reduction rules for choices are given by

(s7PAIS# U — sU  if {U/[A] P} =somep  (left)
(s7PAlS# U — rU  if {U/[A] P} = none (right).

Of course, if {U/[A] P} is undefined then the left-hand side above does not reduce.

Theorem 8.8 (Type Preservation). In typecase calculus, if there is a derivation of
I'tt:T andt —t' then there is a derivation of T =1 : T.

Proof. Without loss of generality the reduction is given by a rule. For the rules of
System FM proceed as before. To show that type substitutions preserve typing, note
that type substitutions preserve similarity of types, by Lemma 8.7, and preserve type
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matching, by Lemma 8.3. For the reduction of a choice to its left branch, exploit
similarity. For the reduction of a choice to its right branch, the result is immediate.
O

Example 8.9. Addition
A simple example of a choice is to define plus : Vx[X].X — X — X by

[] nat — plusnat
#[] bool — conjunction

#[X] X — AKX A% x

When applied to nat or bool then it reduces to plusnat or conjunction. On
other types it defaults to the first projection (though one can use some error term if
preferred).

8.5 Combinatory Types

Till now, types of lists and trees, such as 1ist nat and btree X have been defined
as function types. In particular, the expression 1ist is not a type. At best, it is a
meta-function for constructing types from type arguments. However, the syntax is
suggestive, since it reinforces the view that the list structure is separate from the
nature of its entries. To some extent, this is already captured by parametric poly-
morphism, but the latter concerns only the type of the list entries, without allowing
for any polymorphism in the choice of the structure.

This section introduces type constants and type applications as primitives. For
example, given type constants List and Int one can create the type List Int of
lists of integers. Types so constructed will be loosely referred to as data types. To
be sure, the type List does not have any associated closed terms. Rather, its appli-
cations to types has values. If desired, this distinction can be reflected in a system
of kinds for classifying types, but it is not essential. Again, if inhabited types such
as Int correspond to objects in a category then types such as List correspond to
functors between categories. This approach allows for the creation of types such as
F X where F is a type variable as well as X. The ability to instantiate F by differ-
ent functors, such as List or Btree leads to functor polymorphism. The canonical
example of functor polymorphism is

map:VX,Y.(X -Y) >VFFX —>FY

where F is a type variable representing an unknown structure, or functor. Other
examples will be given for folding or zipping.

Such data types will have several other uses in the chapters ahead, in establishing
strong normalisation, and in typing object-orientation. Hence they may be included
in any subsequent type systems, even though they are not essential to typing of
pattern calculus.
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The combinatory types are given by the grammar

T = (type)
X (variable)
T — T (function)
Vr[A].T (match)
C (constant)
TT (application).

It is obtained by adding fype constants (meta-variable C) and type applications S T
to the types of System FM. The type constants and applications can be used to
represent datum types, such as Int and Float of integers and floats, or a unit type
Unit or List or Product. For example, we may write S* 7 for Product S 7. Since
type applications do not bind any type symbols, the definitions of type unification
and matching are extended in the obvious manner.

8.6 Functorial Mapping

To create terms whose type is a constant or application requires some associated
term constants. Constructors are enough when pattern matching is available, but till
then some operators are required too. For example, suppose the following boolean
and list constants are given :

True : Bool
False : Bool
cond : VX.Bool - X - X — X
fix :VX.(X - X) — X
Nil:VX.List X
Cons : VX.X — List X — List X
isNil : VX.List X — Bool
head : VX.List X — X
tail : VX.List X — List X

with reduction rules

cond True — Ax.Ay.x
cond False — Ax.Ay.y
fixT f — f (fix T f)
isNil T (Nil T) — True
isNil T (Cons T ht) — False
head T (Cons T ht) — h
tail T (Cons T ht) — ¢
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Now the usual list operations, for appending, mapping and folding, in Sect. 4.4
can be defined to be polymorphic in the choice of list entry type. More generally,
one can use choices between typecases to define generic mapping so that it is poly-
morphic in the choice of “functor” as well as the choice of “data” type. That said,
the details are far too tedious to be illuminating. Rather, this generic mapping will
be defined in bondi in Sect. 14.4.

8.7 Notes

Branching on the value of a type is an idea almost as old as typed programming
and occurs in various guises. For example, intentional type analysis [39] uses dy-
namic analysis of type structure to generate specialised code for unboxed data. Also,
[80] considers type-indexed functions as a design pattern. However, the use of type
matching (substitution), rather than equality, may be new, especially at the level of
a calculus, rather than a programming language. In particular, System FM appears
to be new. Other variants of System F have been developed recently [51].
Robinson’s original unification algorithm [90] is here generalised to handle quan-
tified symbols, by introducing the concept of a substitution avoiding a symbol.



Chapter 9
Path Polymorphism

Abstract Typing terms that act uniformly on all data structures is challenging be-
cause the type of a compound does not determine the types of its components, so
that direct attempts to type car or cdr produce ill formed types. The query calculus
can be seen as a typed version of the compound calculus, in which the operators car
and cdr are replaced by folds built from functions that are polymorphic enough to
handle whatever components may arise. Such folds are expressive enough to repre-
sent many path polymorphic functions including the usual generic queries. Further,
by constraining the types of constructors to avoid higher types, reduction becomes
strongly normalising. When typing the static pattern calculus, the challenges are met
by careful characterisation of the local type symbols that are implicitly bound in a
case.

9.1 Typing Components

The types of System F (or System FM) are expressive enough to type the generic
queries of Chap. 4. For example, the query size that counts the number of atoms in
its argument has type

size :VX.X — nat.

Nevertheless, there are some challenges to be addressed.
Consider the problem of typing cdr of some compound u v. Its type is that of
v but there is no general mechanism for determining this from the type of u v. For
example, if the compound is a tree then v could be a leaf or a subtree. In a simply
typed setting, cdr could be given by a family of operators cdr?-" with the reduction
rule
cdr?V (uv) — vifv:V

that checks the type of the components during evaluation. However, it is not appro-
priate to give cdr the type VX.VY.X — Y since the choice of Y cannot be determined
by the environment. Slightly better is the type

B. Jay, Pattern Calculus, 91
DOI 10.1007/978-3-540-89185-7_.9, (©) Springer-Verlag Berlin Heidelberg 2009
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cdr:VX.X —3drY

where the unknown type of the second component is represented by an existential
type, as defined in Sect. 7.6. While correct, the existential type is rather unhelpful,
since it provides no detailed type information. In particular, if car is given type

car :VX.X —3JYY — X

then the relationship between the types of the components is lost. A better solution
is to combine car and cdr into a single term

VXX — 3. (Y - X)*Y

in which the sharing is recorded. To exploit such existentials requires a function of
type VY.(Y — X)*Y — S.

Rather than proceed directly, this suggests a way to type the folds introduced at
the end of Sect. 4.6. If d v is a compound then a term fold(d v, s, r) reduces to apply
r to the result of folding on d and v. For example, when defining size then r is ad-
dition of natural numbers while when defining apply2all then r is application, of
type VX.VY.(Y — X) — Y — X. These possibilities can be generalised by requiring
that r have type

r: VX.VY.{Y —>X/Z}T — {Y/Z}T — {X/Z}T

for some type 7. The examples above are handled by setting 7' to be nat or Z.
Similarly, the type of s above must be

s:VZ2.Z—-T.

Given u : U then
fold(u,s,r): {U/Z}T

has reduction rules

fold(uV s,r) — sUu if u is an atom
fold(u’ =Y v,s,r) — rUV fold(u,s,r) fold(v,s,r) if u vis a compound.

In this manner, one can add folds to System F and use them to define generic
queries such as size, apply2all and select. Since size cannot be defined in
System F itself, this shows the potential for additional expressive power in the terms
without changing the type system. That said, to gain significant expressive power
requires choice terms, so typecase calculus will provide the foundation.
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c:T c:T Tku:U
I'c:T I''t-ceqau:bool
I'u:U I'ts:VZZ—T

CEr:VXVYA{Y - X/Z}YT —{Y/Z}T —{X/Z}T
't fold(u,s,r) : {U/Z}T

X,Y ¢ FV(T)

Fig. 9.1 Novel typing rules of the query calculus

9.2 Query Calculus

The query calculus adds constructors, constructor equality and folds to typecase
calculus with combinatory types. The terms of the query calculus are given by the
grammar

ti= (term)
X (variable)
tt (application)
AxT ¢t (abstraction)
t T (type application)
[A]T —1t (typecase)
t#t (choice)
T (constructor)
ceqat (constructor equality)

fold(t,z,t) (fold).

The constructors and constructor equality are as in the compound calculus. Folds
are as described above.

The type derivation rules are given by those of the typecase calculus in Figs. 8.3
and 8.4 plus the new rules in Fig. 9.1. The rules for constructors and their equality
are straightforward. Note that constructor equality does not require the constructor
and term to have the same type. Note too that the type bool of System F is used
rather than a type constant Bool but this is more for convenience than anything else.
The rule for a fold fold(u,s,r) produces something of type {U/Z}T for some type
T parametrised by Z. The function s must be able to act on an arbitrary atom and
produce something of type 7, so its type is VZ.Z — T. The function r must be able
to act on the results of folding the components of u. These will have types {Y —
X/Z}T and {Y /Z}T for some types X and Y and so r must have type VX.VY.{Y —
X/Z}T —{Y/Z}T — {X/Z}T. The use of substitution in the rule prevents 7 itself
being replaced by a type parameter.

The data structures are the terms headed by a constructor, as before. The explicit
functions are the abstractions, typecases and choices. The compounds are the match-
able forms which are term applications, while all other matchable forms, including
type applications, are aroms.

The reduction rules for the query calculus are given by those of the typecase
calculus plus the novel rules in Fig. 9.2.
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¢! eqac! — true (same)
c’eqaulU — ceqau if u U is matchable (strip)
ceqau — false otherwise, if u is matchable  (different)
fold(uu,s, r)— sUu if u is an atom (atom)
fold(u’ Y v,5,r) — rU V £old(u,s,r)
fold(v,s,r) if u v is a compound (compound).

Fig. 9.2 Novel reduction rules of the query calculus

Theorem 9.1 (Type Preservation). Reduction preserves typing in the query calcu-
lus.

Proof. Without loss of generality the reduction is a rule. The proofs for the novel
rules are routine. O

Theorem 9.2 (Progress). The closed irreducible terms of the query calculus are
matchable forms.

Proof. The proof is by straightforward induction on the structure of the term. O

Theorem 9.3 (Confluence). The reduction relation of the query calculus is conflu-
ent.

Proof. Use simultaneous reduction techniques once again. O

9.3 Selecting

Here are some generic queries and other examples in the style of Sect. 7.6.

Example 9.4. Size
The size of a data structure can be given by

size:VYZ.Z — nat = AZ.Az%.fold(z,AZ.Az*.one,AX.AY.plusnat) .

A variant on the size function is to count occurrences of some constructor c. Define
is_c = AX.AxX.if ¢ eqa x then one else zero and then

count_c:VZ.Z — nat = AZ.Az%.fold(z,is_c,AX.AY.plusnat)
where one and zero take the obvious meanings.

Example 9.5. Applying to All
The function apply2all is given by
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apply2all: (VX.X —X)— (VZZ—Z) =
AfXX=X AZ A7 (f0ld(z, fLAX AY A =X AT f X (x)))

with applications proceeding as before.

Example 9.6. Selecting
The generic selector is defined by

select :VX.(VY.Y — list X) - VZ.Z — list X =
AX A fY=11StX A7 32 £61d(z,VZ.A7% nil, append)

where nil and append are the familiar list operations.

Example 9.7. Operations of the Compound Calculus
The operation pair? : VZ.Z — bool is easily defined as the function

AZAZZ £0ld(z,AZ.AZ% false, AX.AY.AxPO0L ) yPOOL £rye).

The operations car and cdr are not so easily expressed since the types of com-
ponents are not determined by that of the compound, as discussed in Sect. 9.1. Even
the simply typed versions are not so easy to express. For example, suppose types
U and V are given and consider how to define car”"V and cdr?+" using a fold. For
atoms some error term is required. For compounds, with first component of type
Y — X it is necessary to test that Y — X is V — U and then return something of
type (V. — U) x V. Since both ¥ — X and V — U are required in the result, the
required fold must have type VZ.Z — Z* (V — U) xV given by

AZ.A7? fold(z,error,r)

where

W=(V—-U)sV

r=AXAY AxY W AW paiv X W ry (r#13) (V — U))
ri=(Est (Y —=X)Wx) (fst Y Wy)

=[] —=X)—>pair (Y - X)Y (fst (Y = X) Wx) (fst Y W y))
r3 =[] (V—-U)—pair (V —U)V error error.

That is, r; recreates the original structure, while r, produces the components of
type Y — X and Y and r3 produces the error terms of type (V — U)*«V.IfY — X
is V. — U then the pair of components is produced, else an error term results. Now
carV" and cdr?" are defined by projecting from the pair produced by the fold
above.

A polymorphic version of this fold can be created by introducing an existential
quantifier to produce

cleave :VX.X — FY.(Y = X)*Y .
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In brief, given a compound u v it first produces two pairs, of « and its components,
and v and its components. Then it returns the pair of u v and the package of pair u v,
discarding the components of u and of v. This elaborate machinery is analogous to
that for defining the predecessor of a natural number by primitive recursion.

Example 9.8. Fixpoints

Fixpoints can be defined in a manner similar to Sect. 4.4 Suppose a constructor
Rec of type (T — T) — T is given (though one of type VX.(X — X) — X would
also do). Define

fixl:Vig_p)r[]. (T =T)—=T) = (T —-T)—T
= (T —=T)—=T)— AxT=T=T L fT=T f (x f)
fix2:Vy_x[X,Y].(Y = X) =Y =X
=X, Y] (Y = X) = AV X AV xy
fix3:VX.Y.(Y - X) =Y =X
=AX.AY.(fix1 #£ix2) (Y — X)
fix0: T —T
= Ay’ fold(y,identity,fix3)
fix: (T—>T)—>T=
AfT=T £ix0 (Rec (AxT.f (£ix0x))) .

The function £ix1 embodies the recursion by mapping x and f to x (f x) as usual.
This can only be applied to a compound x f if the types are appropriate; otherwise,
fix2 must be applied, to reconstitute the original compound. In £ix3, these two
possibilities are combined using a choice, whose type must be restored to one ap-
propriate for folding to produce £ix0: T — T. Then fix is defined as in Sect. 2.5.

9.4 Terminating Queries

The existence of fixpoints means that query calculus is not strongly normalising.
This can be distracting in practice, since typical query languages guarantee that
their queries on databases will terminate. However, one can constrain the types of
constructors to obtain strong normalisation.

The source of the difficulties is constructors with higher-order types, such as

Rec: (T —>T)—T.

Constructors with such types cannot be avoided if one is to represent data types
as function types, but with type applications available, it is possible to restrict the
types of constructors to exclude those such as Rec. The required restrictions are
more subtle than a direct comparison of type structures. For example, it is useful to
support a tree type whose nodes take any finite number of branches, as expressed by
a constructor of type

List Tree — Tree.
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That is, the restrictions should ignore type constants and applications. These restric-
tions are used to define the ranked constructors. If all constructors are ranked then
reduction is strongly normalising.

Summarising, the ranked query calculus generalises the typecase calculus to sup-
port path polymorphic queries while maintaining good properties such as strong
normalisation found in System F.

Define the atoms <7 (T) of a type T to be a set of types defined by induction on
the structure of 7" as follows

o (X) = {X}
A (C) ={}

%(Tl Tz) = 42)7(T1) U%(Tz)
o/ (T) = {T} (otherwise) .

The atomic order on types is given by S < T if each type A in <7 (S) is a subexpres-
sion of a type Bin &7 (T). Write S ~ T if S < T < S.
A constructor c is ranked if its given type is of the form

VA.Dy—...—D;—...—»D,—D

where <7 (D;) C A for each i and .7 (D) = A and D is not a variable. The arity of ¢
is n.

For example, all of the constructors familiar from data type declarations are
ranked but Rec : VX .(X — X) — X is not. The restriction that D not be a variable is
necessary to avoid simulating Rec. For example, if Error : VX.X were ranked then
it could be used to define fixpoints.

A ranked query calculus is a query calculus in which all constructors are ranked.
Assume this for the rest of the chapter.

Lemma 9.9. If u : U is a component of a data structure d : D then U < D.

Proof. Letd=cVy ... Vyuy ... up. If uis d then the result is immediate. Otherwise,
u is a component of some u; : U;. If k is the arity of ¢ then U; < D by the definition
of ranked constructors. Otherwise U; is a subexpression of D and so U; < D. Now
apply induction with respect to u and u;. O

The proof that every term of the ranked query calculus is strongly normalis-
ing adapts the reducibility candidates technique of Sect. 7.7 in two ways. First, the
neutral terms were defined to be those which are not abstractions but here they
are all terms that are not explicit functions, i.e. neither abstractions nor typecases
nor choices. The second change is that induction with respect to types will use the
atomic order on types rather than the type structure.

A reducibility candidate of type U is a set Z of terms of type U such that:

(CR1) [Iftr € Z thent is strongly normalisable.
(CR2) IfteZandt — tythenty € %.
(CR3) Iftis neutral, and every one-step reduct of ¢ is in % thent € %.
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From (CR3) we have in particular that if 7 : U is neutral and normal then t € #.
Hence & must contain all the variables of type U, and all the data structures in
normal form.

A reducibility substitution is given by a type substitution p and a reducibility
candidate Zx for pX for each type symbol X € dom(p).

If T is a type whose free variables are in the domain of p then the reducibility
candidate REDr[p] for pT will be defined by induction on the atomic ordering.
More precisely, REDg|[p] will be defined simultaneously for all types S ~ T'. Within
the definition below, a term ¢ : pT is a data reducible term if it is of the form pd
for some data structure d each of whose components u : U satisfies pu € REDy[p].
Note that Lemma 9.9 implies that U < T so this definition will be well founded.

e If T has no atoms (e.g. is a type constant) thenz € RED7[p] if ¢ is data reducible.

e If T has a unique atom which is a type symbol X then 7 : pT is in REDr[p] if
either ¢ is data reducible or t € %y.

e If T has a unique atom which is a function type U — Sthent : pT € REDr[p] if
either 7 is datareducible or ¢ : p(U — S) and u € REDy [p] implies t u € REDg|p].

e If T has a unique atom which is of the form Vp.[A]S then r € RED7|p] if either
t is data reducible or 7 : p(Vp.[A]S) and the following condition holds: for all
types U such that {U/[A] P} is some substitution v with .y being a reducibility
candidate for pY for each symbol Y € A it follows that 7 pU € REDs[p U v].

e If T has two or more atoms then t € REDy[p] if it is data reducible.

Lemma 9.10. If p is a reducibility substitution with respect to % then REDr[p] is
a reducibility candidate for T.

Proof. The proof is by induction on the atomic order, and secondarily on the struc-
ture of the terms involved. If t € REDyp] is data reducible then its reductions must
be of components, so apply induction. The other possibilities are handled just as in
Lemma 7.17 for System F. a

Lemma 9.11. Ifd € REDr[p] is a data structure then it is data reducible.

Proof. Apply d to term variables (which are necessarily reducible) to produce a
reducible term 7 : T where T is not a function type. Now 7" cannot be a variable or
typecase since all constructors are ranked. Hence ¢ is data reducible, whence d is
too. O

Lemma 9.12. Let p be a reducible type substitution whose domain includes all free
type variables of some type T and lett : T be a term and let © be a term substitution
whose domain is the free variables of t such that cpx € REDy|[p] for each XYV free
int. Then opt € REDy[p].

Proof. The proof is by induction on the structure of 7.

If ¢ is a variable x then opx is reducible by assumption. If ¢ is an application r u
then opr and opu are reducible by induction and so op(r u) is reducible by the
definition of REDr[p].
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If ¢ is an abstraction AxU.s then it suffices to show that for all reducible u €
REDy [p], the term op(AxY.s) u is reducible. Since this term is neutral, it suffices
to show that all one-step reducts of it are reducible. Now pos and u are reducible
and hence strongly normalising. The proof is by induction on the sum of the ranks of
pos and u. Now consider a reduction of opt u. If it is of s or u then apply induction
on the sum of ranks. If it is the B-rule then apply induction to s and p and {u/x} o C.

If 7 is a type application r U then opr is reducible by induction and so opt is
reducible by definition.

If 7 is a typecase [A] P — s then it suffices to show that for all types U such that
{U/[A] P} is some substitution v then ¢ U is reducible. Since this term is neutral, it
suffices to show that all one-step reducts of it are reducible. Now pos is reducible
and hence strongly normalising. The proof is by induction on the rank of pcs. Now
consider a reduction of opr U. If it is of s then apply induction. If it is the 3-rule
then apply induction to s and p U v and ©.

If 7 is a choice s # r then it suffices to show that # U is reducible for all types
U such that r U is well-typed. Since ¢ U is neutral, it suffices to show that all one-
step reducts of it are reducible. Now po's and por are reducible and hence strongly
normalising. The proof is by induction on the sum of their ranks. Now consider a
reduction of opr U. If it is of s or r then apply induction. If it produces s U or r U
then these are reducible by induction.

If ¢ is a constructor ¢ then opt = c is data reducible.

If 7 is a constructor equality ¢ eqa u then it is neutral and opu is reducible by
induction, and so proceed by induction on its rank.

If ¢ is a fold fold(u,s,r) then it is neutral, so it suffices to show that all one-step
reductions of opt are reducible by induction on the sum of the reduction ranks of
opu,ops and opr (and then the complexity of u). The interesting cases are when
a rule is applied. If opu : U is an atom then opt reduces to 6p(s U u) which is
reducible since ops and cpu are. If cpu : U is a compound d v for some d and
v :V then opt reduces to cpr U V fold(d,cps,opr) fold(v,ops,cpr). Now d
and v are reducible by Lemma 9.11 and so their folds are reducible by induction.
Now reducibility of opr yields the result.

O

Theorem 9.13 (Strong Normalisation). All terms in the ranked query calculus are
strongly normalising.

Proof. Apply the lemma above to the identity type substitution with each type vari-
able taking the reducibility candidate of strongly normalising terms and the identity
term substitution. Hence ¢ is strongly normalising. O

9.5 Typed Static Pattern Calculus

The query calculus shows how path polymorphism can be supported by adding con-
structors and operations such as folding to the A-calculus, albeit with some awk-
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wardness. This section will show how to explicitly type the static pattern calculus,
to achieve similar functionality. The types are as for the query calculus.
The patterns (meta-variables, p,q) of the typed static pattern calculus are given
by the grammar
pi= (pattern)

xT (variable)

¢! (constructor)

p p (application)

p T (type application).

Define the local type symbols LV (p) of a pattern p of type P to be
LV(p") =FV(p) \FV(P) .

In a case p — s the local type symbols of p will be implicitly bound, just as its free
term symbols are.
The terms are given by the grammar

to= (term)
xT (variable)
e’ (constructor)
tt (application)
p—t (case)
t T (type application)
[A] T — 1t (typecase)
t#t (choice).

It can be obtained from that of the query calculus by generalising term abstractions
to cases, and deleting the constructor equality and folds. A case p — s will implicitly
bind the free term symbols of p and its local type symbols, so that matching must
find values for all of them.

The free type symbols FV(t) of a case are given by

FV(p" —s) = (FV(s)\FV(p))UFV(P).

Note how the free type variables of a case p — s depends upon the type P of its
pattern.
The application of a type substitution p to a case is defined by

p(p—s)=pp — ps (if p avoids LV(p)).

The judgement I" ¢ : T asserts that ¢ is a term of type T in term context I, as
usual. The derivation rules for (patterns and) terms are given in Fig. 9.3.

Lemma 9.14. Type derivations are stable under type substitution.

Proof. The proof is by induction on the structure of the derivation, using the stability
of type matching (Lemma 8.3) and of type similarity (Lemma 8.7). O
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TCox:THx":T kel T
I'-r:U—S TI'tu:U BFp:P T,Bbs:S FV(p)NFV(S)
Thru:S r-p—s:P—S C FV(P)

I'Fr:VplA]l.S I'ts:S
r:ve[A] ! FV(I)na ={}
'trU:{U/[A] P}S I'[A]P—s:Vp[A]LS

I'ts:S TEFr:R S=R
I'ks#r:R

Fig. 9.3 Typed static pattern calculus

The definition of matchable forms is as usual, consisting of the data structures
(terms headed by a constructor) and the explicit functions (cases, typecases and
choices).

Matching must be adapted to consider local type symbols as well as term sym-
bols. That is, a typed match [ is a pair of a term match and type match. The union
of typed matches is given by

(some o7,s0me p;) U (some 0,,s0me py) = (some (0] W 0z),some (p1Up2))

if this is defined, and is (none, none) otherwise, e.g. if 01 and o, are not disjoint.
Match failure is given by the constructor Nomatch : VX.X. The application of a
typed match i to a term ¢ is defined by

(some o,some p) t = o(pt)
pt’ = Nomatch T otherwise.

The basic typed match {u //|A]p} of a static pattern p against an argument u
relative to a type context A is defined in Fig. 9.4. Define {u /p} tobe {u //[LV(p)] p}
if this is of the form (some ¢,some p) where dom(c) =fv(p) and dom(p) =LV (p),
and to be (none,none) otherwise. The reduction rules for the types static pattern
calculus are in the same figure.

Lemma 9.15. Let B p : P be a pattern and I' = u : U be a term in some context I"
where I', B is well formed and ANFV/(I') = {}. If {u/p} is a pair of some substitu-
tions & and p then for each free term symbol x" in p then T’ - ox: pV.

Proof. The proof is by straightforward induction on the typing of p. a

Theorem 9.16 (Type Preservation). In the typed static pattern calculus, reduction
preserves typing.

Proof. Without loss of generality the reduction is a rule. If the reduction is a suc-
cessful term match then apply Lemma 9.15. If the reduction is a term match failure
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{MU //14] } = (some {u/x},{U/[A]P})
{c" //[A]"} = (some {},some {})
{uv//[Alp q} = {u//[A]p}U{v//[Alq} if uv is matchable
{uU//|Alp P} = {u//[A] p} U (some {},{U/[A]P}) if uU is matchable
{u//[A] p} = (none,none) otherwise, if u is matchable
{u//[A] p} = undefined otherwise.

(p—s)u — {u/p}s. (matchl)
([A]P—s) U — {U/[A] P}s (match2).
(sPAS# U — sU if {U/[A] P} =somep  (left).

(sPAS g U — ru if {U/[A] P} =none.  (right).

Fig. 9.4 Basic matching and reduction rules for typed static pattern calculus

then the correct typing is immediate. If the reduction is a type match then apply the
Substitution Lemma. The rules for choices are straightforward. g

9.6 Selectors by Patterns

This section reworks some of the examples of Sect. 9.3 using static patterns.

Example 9.17. Fixpoints
Given Rec: (T — T) — T define

£ix0: T — T =xT=1=T fT=T ¢ (x f)
fix: (T —T)— T = Af.£ix0 (Rec (Ay"~T.f (£ix0y))) .

This is much simpler than the previous definition since the pattern matching checks
types as well as terms, so £ix0 can be given by a single case.
Recursion in the examples below will be implicit.

Example 9.18. Extensions
If p: Pands: Sandr: P — S then the extension p — s | r: P — S is defined by

p—s|r=x"— (Nomatch Sy° —y) ((p — 2* — Nomatch S s) x (rx)) .

Note that the special case and the default are here required to have the same type.

Example 9.19. Size
The size of a data structure can be given by

size:VZ.Z — nat = AZ.
KXY s plusnat (size (Y — X)x) (sizeYy)

| 7% — one.
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Example 9.20. Applying to all
The function apply2all is given by

(apply2all: (VXX - X)— (VZZ—2)) fZ=
X'=ZyY — £ 7 ((apply2all f (Y — Z) x) (apply2all f Y y))
|2 —fZz.

Example 9.21. Selecting
The generic selector is defined by

(select :VX.(VY.Y — 1list X) »VZ.Z—1listX) fZ=
x' %2 yY — append X (select f (Y — Z) x) (select fY y)
|z~ fZz.

9.7 Notes

The folding of the query calculus can be seen as the computational analogue of
structural induction. If this can be formalised then it will strengthen the correspon-
dence between proofs and programs.

The ranked constructors are related to ideas in the Calculus of Constructions [87],
except that constructors there are only introduced in the context of type declarations,
whereas the constructors here are freestanding. Their combination with the generic
fold, as opposed to ad hoc operators, is new, as is the proof that reducibility candi-
dates can be employed in the presence of data structures. For example, the strong
normalisation result is not an immediate consequence of the techniques based on
higher-order recursive path orderings of Jean-Pierre Jouannaud and Albert Rubio in
[64].

The Curry—Howard Correspondence motivated some early work on typed pattern
calculus by Val Breazu-Tannen, Delia Kesner and Laurence Puel [11].



Chapter 10
Pattern Polymorphism

Abstract This chapter types dynamic patterns. Cases bind both type and term sym-
bols, any of which may appear as either variables or matchables. Once this machin-
ery is all in place, the development is quite routine.

10.1 Matchable Type Symbols

The syntax of the matchable types is given by the grammar

T = (type)
X (variable)
X (matchable)

T — T (function)
Vr[A].T (typecase).

This adds matchable type symbols to the types of System FM. One could equally

add type constants and applications but these are not essential to the development.
The free variable type symbols FV(T) of a type T are defined as before, with

FV(X) = {}. The free matchable type symbols FM(T) of a type T are given by

M(X) = {}

M(X) = {X}
FM(P—>S) = FM(P)UFM(S)
FM(Vp[A].S) = FM(P) UFM(S) .

Note that typecases do not bind matchable symbols. Rather, these behave like type
constants within types, being bound only within case terms introduced in Sect. 10.2.

The type syntax Vp[A].S is well-formed if ANFV(S) C FV(P) as before. Type
substitutions are defined as usual. A substitution avoids a symbol X if X is not in
the domain of p and is not a free variable or free matchable of its range. A type
substitution is applied to a type using the following rules:

B. Jay, Pattern Calculus, 105
DOI 10.1007/978-3-540-89185-7_10, (© Springer-Verlag Berlin Heidelberg 2009
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{U/[A]R} = some {U/X}if X € A

{X/]A]R} = some {}if X ¢ A
{X/[A]X} = some {}
{U/[A]X} = undefined, otherwise
{X/|A]P} = undefined, otherwise

{P—S/[A]Q =T} = {P/[AJO}U{S/[AIT}

{Vp[@].§/[A] Vo ®@].T} = {P/[A]Q}U{S/[A]T }if it avoids @ and AN P = {}

{U/[A]P} = none otherwise.

Fig. 10.1 Type matching with matchable symbols

p(X)=pX if X € dom(p)
pX)=X if X & dom(p)
p(R) = %
p(P—S8)=pP—pS
p(Vp[A].S) = V,p[A].pS  if p avoids A.

Similarly, p is applied using the following rules:

pOX) = X
p(X)=pX if X € dom(p)
pX)=X if X & dom(p)
p(P—S)=pP—pS
p(Vp[A].S) = Vpp [ ]pS if p avoids A.

Given a type context A define {A/A} to be the type substitution that substitutes
X for X for each symbol X in A. Conversely, define {A/A} to be p where p maps
each X € A to itself. When A is understood from the context, the notation S de-
notes {A /A}S and the notation P denotes {A /A }P. For example, given a quantified
function type [A] P — S = [X|1ist X — X then Pis 1ist X and S is X.

Theorem 10.1. Tivo matchable types S and T have a unifier if and only if they have
a most general unifier.

Proof. The most general unifier {S = T} of types S and T can be defined much as
in System FM, by adding a clause for matchable symbols to the rules in Fig. 8.1.
Then the proof is by straightforward induction on the type structure. O

The rules for type matching require more care, since now the binding symbols
are represented by matchable symbols in the type P being matched, not variables. A
match of a matchable type P against a type U with respect to a type context A is a
type match some p such that pP = U. It is the most general such if any other such
match factors through it.

The algorithm for the most general match {U /[A]P} is given in Fig. 10.1. Note
that when matching quantified function types, the bound symbols @ are replaced by
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matchable symbols in the result types S and 7" to ensure that match failures are not
confused with undefined matches.

Theorem 10.2. Let A be a type context and let P and U be types. There is a match
of P against U with respect to A if and only if {U/[A|P} is some substitution, in
which case it is their most general such.

Proof. The proof is a routine induction on the structure of P. O

Lemma 10.3. Let {U/[A]P} be some substitution for some type context A and types
U and P. If p is a type substitution which avoids A then {pU /[A]pP} exists and

{pU/[A]pP}op =po{U/[A]P}.

Proof. The proof is by induction on the structure of P. O

10.2 Typed Pattern Calculus

A context 0 is given by a pair A;B where A is a type context and B is a term con-
text. The application to it of a type substitution p is given by A;pB if p avoids A
and is undefined otherwise. Operations that are common to all sequences and sets,
such as concatenation and union, will be applied to contexts point-wise. For exam-
ple, (A;B),(®;By) = (A, ®;By,B,). Given A, the term context B is obtained as
follows. Each symbol xV in B is replaced by £V where U = {A/A}U. For example,
if A;Bis X;x¥*7 then B is xX*Y |
The term syntax of the typed pattern calculus is given by the grammar

tu=xT (variable)
b (matchable)
tt (application)
[6]t — 1t (case)
t T (type application)
[A] T — 1t (typecase)
t#t (choice).

Now AxY.s is given by [ ;xV]#V — s. The explicit functions are given by cases,
typecases and choices. As before, Nomatch is a constructor, now of type VX .X, that
does not appear in well-formed contexts.

The free type variables and free type matchables of a case are defined by

FV([A:B]p — ) = FV(p) U((FV(B) UFV(s))\ A)
FM([4:Blp — ) = (PM(p) \ ) UPM(3) LPM()
f([A:Blp — 5) = fv(p) U (Fv(s) \ B)
fm([A:Blp — ) = (fm(p) \ B) Ufm(s)
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Cx:THx':T r&T+3".T1

I'tr:U—S T'tu:U T,Brp:P I'BFs:S

(FV(P — S)UFV(I))NA = {}

I'tru:S I't[A;Blp—s:P—S
I'tr:Vp[A]lS I'ks:S B
TEru:{U/[A]P}S T P—s:vpa)s L nA=1

I'Fs:S T'HFr:R S=R
I's#r:R

Fig. 10.2 Typed dynamic pattern calculus

The type derivation rules of the typed dynamic pattern calculus are given in
Fig. 10.2. The rules for cases combine several elements. The pattern is typed us-
ing the binders as matchable type and term symbols. The body is typed using the
binders as variables. The bound type symbols must be local to the case, in the sense
that they are not free in the context, or the overall type of the case. For example, the
naive term syntax [Y;x¥ 7% y¥] £ § — y for cdr has no type since the type symbol

Y is free in the result type of the function type X — Y.

10.3 Matching Typed Patterns

The definition of matchable forms is as usual, consisting of the data structures (terms
headed by a matchable symbol) and the explicit functions (cases, typecases and
choices).

Let 6 = A; B be a context of binding symbols. Let p and u be terms. The basic
matching {u //[0] p} is the match defined by applying the rules in Fig. 10.3, in order.
These rules mimic those of the dynamic pattern calculus, except that they perform
type matching as well as term matching. The match {u /[0] p} of p against u relative
to binding symbols 0 is defined as follows. If {u //[6] p} = (some &,some p) where
dom(o) = B and dom(p) = A then it is the desired match. Otherwise, the match is
(none, none). The reduction rules for the types dynamic pattern calculus are given
in the same figure. They are identical with the rules for the static calculus, except
for the rule (matchl), which now has explicit binding symbols.

Lemma 10.4. Let [0]p — s: U — S and u : U be terms in some context I'. If
{u/[08] p} is of the form some (0, p) then there is a derivation of Gps : S.

Proof. First note that there is a derivation of I' - [ ;pB] pp — ps : P — S so without
loss of generality the type context in A is empty. The proof is by induction on the
typing of p. If p is a matchable £” in B then apply the Substitution Lemma. If p is
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(u 101} = (some {u/a}, {U/[A1PY) it ¢ B
{37 JJ[6]5} = (some {},s0me {}) it ¢ B
{uv//[0]lpq} = {u//[6]ptU{v//[6]q} if pg and uv are matchable
{uU//16]p P} = {u//[0] p} U(some {},{U/[A]P}) if pP and uU are matchable
{u//|0] p} = (none,none) otherwise if p and u are matchable
{u//[6] p} = undefined otherwise.
(16] p—5) u — {u/[6] p}s. (match)
([A]P—s)U — {U/[A] P}s (match2).
(s7PAS YU — sU if {U/[A] P} =somep  (left).
(sPAS U — rU if {U/[A] P} = none. (right).

Fig. 10.3 Basic matching and reduction rules for typed pattern calculus

any other matchable then u is p and all substitutions are identities. If p and u are
applications then divide B in two and apply induction twice. O

Theorem 10.5 (Type Preservation). Reduction in the typed pattern calculus pre-
serves typing.

Proof. Without loss of generality the reduction is the match rule. If the reduction is
a successful term match then apply Lemma 10.4. If the reduction is a match failure
then the correct typing is immediate. The other cases are routine. a

Theorem 10.6 (Progress). The closed irreducible terms of the typed pattern calcu-
lus are matchable forms.

Proof. The proof is by straightforward induction on the structure of the term. For
example, suppose 7 is some application ([6] p — s) u. Then p is a closed irreducible
term (since the symbols in 6 are all matchables in p) and so is a matchable form.
Similarly, u is a matchable form. Hence {u //[0] p} is defined and (matchl) can be
applied. O

Theorem 10.7 (Confluence). Reduction in the typed pattern calculus is confluent.

Proof. The proof is by simultaneous reduction. g

10.4 Generic Equality

This section presents some examples.

Example 10.8. Applying to all
The generic apply2all is given by
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(apply2all: (VX.X —X) — (VZ.Z—Z)=Af.AZ.
[Yi2"7y"] 29 — f Z (apply2all f (Y — Z) z (apply2all f Y y))
| fZ.

It requires a local type symbol Y to type the second component y of the unknown
compound Z y. Note how Y is free in the body of the case, but not in its type Z.

Example 10.9. Generic Eliminator
The generic eliminator is typed by

(elim:VX.VY.(Y = X) = X —Y) = AXAY A X [y ] x 9 — .
Also
(elim* : VX.(X — X) — X = AX . AxXX X,

[5¥]x§— elimxy
Y ]y—y.

Example 10.10. Equality
The generic equality of the dynamic pattern calculus can now be typed by

(equal:VX.X — X — bool) = AX.AxY.
[;]x— true
| [;y¥]y— false.

As before, it uses its first argument x as the pattern to match against its second
argument.

Example 10.11. Updating
Define the typed update by

(update : VX.VY.(X = Y) — (X = X) = VZ.Z—Z) = AX.AY.AgXV L X=X,
(=[x g2 —g(fx)

IBUNES)
#
AZ(WixV =2 yW] £ — (update X Y g f (W — Z) x) (update X Y g f W y)
| [32%] % = x).

It is a choice between a case for the type Y and a case for all other types Z. Each
case is given by an extension: that for ¥ has a special case for the “constructor” ¢
while that for Z has a special case for a compound.

As before, the salary update problem can be handled using a variable to denote
the unknown pattern for salaries.

Example 10.12. Wildcards
Now let us consider how to type wildcards, as described in Sect. 5.7. Let the

wildcard have type
VXX
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and add the match rule

{u” //14:B] P} = (some {}.{U/[A]P}) .

Example 10.13. Views
Views are created by an operator view as in Sect. 5.8. Given aterm f: 7T — S
and a term p : S then

view(f,p):T.

10.5 Notes

A variant of the system presented in this chapter appeared in a workshop paper
[59]. Earlier presentations combined cases and typecases into a single construction.
Although possible, it mixes the construction of function types and quantified types
(i.e. typecases) by mixing the implicit and explicit binding of type symbols.



Chapter 11
Inclusion Polymorphism

Abstract Subtyping provides an alternative to type variables as a means of support-
ing polymorphism: together they generate type inequalities. These do not always
have most general solutions, so some care is required to solve those of interest. In-
deed, this is difficult, if not impossible, if functions are central to the development,
but the issues become tractable when subtyping is seen as a property of data types,
and function types are invariant under subtyping. The approach is developed through
three calculi that add methods to a simply typed A-calculus, a parametrically poly-
morphic A-calculus, and the pattern calculus.

11.1 Methods Without Objects

Subtyping allows a single term to have more than one type. If 7 is of some type
S and S is a subtype of some type T (written S < T') then ¢ is also of type 7. For
example, if the type colourpoint is a subtype of the type point of points, then a
coloured point has all the attributes of any point, and also those that are special to
coloured points. This is particularly useful when handling a collection containing
a mix of coloured points and mere points since each point in the collection may
behave differently, according to its nature. For example, coloured points may display
in colour, while mere points display in black and white. This phenomenon is known
as dynamic dispatch: a point whose known or static type is point may evaluate to
a coloured point, which then determines how it is to be displayed.

A natural way of thinking about this is to represent the display method as a func-
tion with several cases, including a default case that works for any point, and a spe-
cial case for coloured points. This is much as in the typecase calculus of Chap. 8.4
but now with subtyping.

For example, let the default display method be m : point — Unit where Unit
is used as a type of commands. Then the special case is some 7 : colourpoint —
Unit. These cases can be combined as the method choice term

B. Jay, Pattern Calculus, 113
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n & m: colourpoint — Unit & point — Unit

whose type is a choice type. Now let u : point be a point and consider the invo-
cation u.(n & m) of n & m by u. If u is (or reduces to) a coloured point v then the
invocation should reduce to v.n but if u reduces to a mere point w then the invocation
should reduce to w.m. It is relatively easy to identify the coloured points, so the cen-
tral question is how to determine of a point that it cannot reduce to a coloured point.
The standard approach is to insist that u be fully evaluated before tackling the invo-
cation but this severely limits any reduction strategy. The approach adopted here is
to require that the type U of u be minimal in the sense that the only subtype of U is
U itself, and use this type to reduce the invocation. Then u.(n & m) reduces to u.n
if the latter is well-typed, and to u.m otherwise. Of course, this approach requires a
plentiful supply of minimal types.

In particular, the type point of all points is not minimal, so that it requires a
subtype merepoint to represent the mere points, that have no auxiliary attributes.
Rather than add several type constants for points, it is easier to introduce a new type
constant, the fop type Top and the subtyping rules

S<T
T < Top FS<FT

which assert that Top is a supertype of every type, and relate type applications. That
merepoint is a subtype of point can be captured by

Point Unit < Point Top .

Similarly, the type colourpoint is of the form Point 7 for some type 7T that
involves the colour. The simplest choice for T is some type constant Colour of
colours, but a type of the form ColourPoint Top allows for different sorts of
coloured points.

When subtyping the A-calculus, the natural approach is to make function types
covariant in their result types but contravariant in their arguments, so that P —
S<Q—=Tif Q<PandS <T.However, this would imply that point — point
is not minimal, since it would have subtype Top — point. That is, no interesting
function type would ever be minimal and ordinary functions would not be allowed
to invoke methods. To stop this, function argument types must be invariant, so that
P—S<Q—Tonlyif P=0.

Less clear is how to handle result types. To make them covariant would not ac-
tually help much, since attaining the minimum type of an abstraction would require
reduction of its body, which is not very practical. Even if this is done, the mini-
mum type of a closed irreducible term could be Bool — point which would not
be minimal in the subtype order. Thus, for the reduction systems of this chapter,
the simplest approach is to make function result types invariant, too. In Chap. 12,
various simplification will eliminate these concerns, and a more generous, and con-
venient, subtyping will be admitted.
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In the simply typed setting the approach taken here is easily understood. For
example, the invocation by a term of type U of a method whose special case has
type P — S has type S if U < P. Although quite simple, it is not as expressive as
desired. For example, if is useful to be able to define a method for points whose
result has exactly the same type as the invoking point, i.e. that maps a coloured
point to a coloured point, a mere point to a mere point, etc. The obvious solution is
to introduce type symbols, and give such a method the type

VX.Point X — Point X

which was defined to be Vx [X].Point X — Point X in Sect. 8.3. Slightly betters is
that a simple method has type Vp[A].P — S. It can be invoked by a term of type U
if the inequality U < P can be solved by substituting for symbols in A, i.e. if there
is a submatch of P against U with respect to A.

submatching is relatively straightforward but the situation is even more delicate
when specialising a method of type [@] Q — T by a special case of type [A] P — S.
Ambiguity arises if such a method is invoked by a term of type U where both U < P
and U < Q can be solved. The resulting substitutions relate P and Q so the goal is
to define their most general relator.

For these to exist imposes further constraints upon the subtyping relation. For
example, suppose that P is F X Y and Q is F' Z Z where F is some type and X,Y
and Z are type symbols in A and @. The obvious rule for relating type applications
reduces the problem to two inequalities, namely X < Z and Y < Z but these can be
solved in two unrelated ways, either by identifying X,Y and Z or by mapping Z to
Top. Using this approach, there is no most general relator. Note, however, that this
approach does not follow from the displayed subtyping rules above, since there the
left-hand side of a type application is invariant. Thus, original inequality reduces to
the equation F X = F Z and the relation of ¥ and Z. These have a most general
solution that identifies all three symbols.

One way of appreciating the success of these rules is to observe that the super-
types of a type always form a linear order, so that if types P and Q have a lower
bound U then either P < Q or Q < P holds. Without this property, there is a ten-
dency for problems to reduce to sets of inequalities, such as S < X < T, for which
there is no general solution. As it stands, a general inequality P < Q can be simpli-
fied to a substitution plus a single constraint of the form R < X. This constraint is
not very appealing, but it is manageable in practice.

Since the whole approach is unfamiliar, it will be developed by adding to three
existing calculi, of increasing complexity: the simply typed A-calculus; System FM;
and pattern calculus. Then examples follow in Sect. 11.7.
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S<T
T < Top FS<FT T<T

Fig. 11.1 Subtyping

11.2 Subtyping

The subtyping rules are given in Fig. 11.1. Every type is a subtype of Top. Type
applications are invariant on the left and covariant on the right. Every type is a
subtype of itself. Although several type systems will be considered in this chapter,
the same subtyping rules will apply throughout. Types P and Q are related (written
P~Q)if P<QorQ<P.AtypeT is minimal if it has no subtypes other than itself.

Lemma 11.1. The subtyping relation is a partial order. The supertypes of a type
form a finite linear order. Hence, if two types P and Q have a lower bound then they
are related.

Proof. The proofs of antisymmetry and transitivity, etc. are by straightforward in-
duction. Finally, note that proper supertypes of a type are always smaller expres-
sions, of which there are finitely many. g

The simple combinatory types are given by the grammar

T = (type)
C (constant)
TT (application)
T — T (function) .

The constants include the top type Top and the constant & (written infix) for building
choice types of the form N & M.

In general, the type of a method will be a choice between those of its various
cases, from which the type of a method invocation will be created. Given simple
combinatory types U and M define the type invocation U.M by

U(P—S)=S ifu <P
UN&M)=UM if defined
U(N&M)=U.N otherwise

U.M = undefined otherwise .

In general, type invocation is not stable under subtyping. For example, if M is
some P — § & Q — T where P < Q then there is no reason why P.M = § should be
a subtype of Q.M = T. Ratehr, this will be ensured if P — S is a specialisation of
Q — T, as defined in Fig. 11.2. From now on, choice types N & M will be required
to satisfy N < M.

Lemma 11.2. Let V < U be types and let M be a type. If U.M is defined then V.M
is defined and is a subtype of U.M.
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S<T PO TN T<M
P—-S<0—T P—-S<0—T T<KN&M

Fig. 11.2 Type specialisation for simple types

Proof. The proof is by routine induction on the structure of M, given the restriction
on choice types above. O

11.3 Simply Typed Method Calculus

The simply typed method calculus adds invocations and method choices to a variant
of the simply typed A-calculus of Chap. 7.1.
The terms of the simply typed method calculus are given by the grammar

ti= (term)
X (variable)
tt (application)
(Ax.t)T  (abstraction)
t.t (invocation)
t&t (method choice) .

The term variables, applications and abstractions are just as in the simply typed A-
calculus except that abstractions now carry their type as an explicit superscript, just
like term variables. The invocation u.m of m (the method) by u is a generalisation
of function application used when m is a method choice. A method choice n & m
combines a special case n with a default m. The type derivation rules are given
in Fig. 11.3. Term invocations are typed by type invocations. Method choices are
typed by type choices if the specialisation relation holds. The subsumption rule is
standard.

A minimum type for a term ¢ is a type T such that there is a derivation of the form
I' ¢ : T and any derivation of the form I" -7 : S has the property that 7 < S. Note
that the minimum type U of a term need not be minimal as a type, as in xTOP_That
t has minimum type T may be denoted by 7.

Lemma 11.3. Every well-typed term of the simply typed method calculus has a min-
imum type.

Proof. The proof is by induction on the structure of 7. Consider an invocation u.m :
U.M. The minimum type of U is some subtype V of U. Now V.M is a subtype of
U.M by Lemma 11.2, and so is minimum for u.m. The other cases are routine. [

The reduction rules for the simply typed method calculus are in Fig. 11.4.
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I'tr:U—S T'kFu:U rx"rFs:s
raxl=xt.r I'bru:S I'cAxs)P>S:P—S
I'Fu:U TTkEkm:M I'tn:N I'tm:M N<KM I'kFt:S S<T

I'cum:UM I'n&m:N&M I'e:T

Fig. 11.3 Simply typed method calculus

Theorem 11.4 (Type Preservation). If there is a derivation of the form I' -1 : T
in the simply typed method calculus and t reduces to some term t' then there is a
derivation of T =1 : T.

Proof. The proof is by routine induction on the nature of reduction. a

Theorem 11.5 (Progress). The closed irreducible terms of the simply typed method
calculus are abstractions and method choices. Also, their minimum types are mini-
mal as types.

Proof. The proof is by induction on the structure of the term. Suppose that there is
an irreducible, closed invocation u.m. By induction, m is an abstraction or method
choice and the minimum type of « is minimal, so a reduction can be performed. The
other clauses of the induction are routine. a

Theorem 11.6 (Confluence). Reduction of the simply typed method calculus is con-
fluent.

Proof. The proof is by simultaneous reduction. O

11.4 Method Types

Now consider the combinatory types of Chap. 8.5 equipped with the subtyping rules
of Fig. 11.1.

Lemma 11.7. [fV < U are types and p is a type substitution then pV < pU.
Proof. The proof is by a straightforward induction on the structure of U. a

In this setting, the type of a method m is a quantified type M = Vp[A] P — S such
as Vpoint x[X] Point X — Unit so that its invocation by some u : U must solve
the inequality U < P by a substitution on A.

Let U and P be types and let A be a type context. A submatch of P against U
with respect to A is some type substitution p whose domain is within A such that
U < pP. A substitution v is a general such if VP < pP for any other such submatch
p. If vy and v, are both general then v P = v, P but this does not necessarily imply
that v; and v, are equal since they may differ on symbols in A that are not free in
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(Aes) u — {ufx} s 8)

ul PS5 — ru (invoke)
u¥.(nN & m) — u.n it U is minimal and U.N defined (special)
uY.(nN & m) — um if U is minimal and U.N undefined  (default) .

Fig. 11.4 Reduction rules for simply typed method calculus

P. A submatch v is most general if it is the unique general submatch. Uniqueness
follows if A consists of free variables of P that are not free in U. An algorithm for a
general submatch {U < [A]P} of P against U with respect to A is given in Fig. 11.5.

Theorem 11.8. Let U and P be types and let A be a type context. Then U and P
have a submatch relative to A if and only if {U < [A|P} is some substitution v, in
which case it is a general submatch. If P is minimal then U = VP.

Proof. Suppose that there is a submatch p. The proof that {U < [A]P} exists and is
general is by induction on the structure of P. If P is Top then VP =pP. If Pis a
type application G Q then U must be a type application F V. Now pG = F and so
factors through {F /[A]G}. Hence, without loss of generality, F is G and now apply
induction. Otherwise, p must be a match.

The proofs of the rest are routine. O

Lemma 11.9. Let U and P be types and let A be a type context such that {U <
[A] P} exists. If p is a type substitution which avoids A then {pU < [A] pP} exists
and

{pU <[A] pP}op =po{U <[A] P}.

Proof. The proof is by straightforward induction on the structure of P. O

Type invocation will be defined so that, if it exists, U.([A] P — S) is {U <
[A] P}S. However, it is not enough that the submatch exist, since type invocation
must be stable with respect to subtyping, so that if U.M is defined and V is a sub-
type of U then V.M is defined and a subtype of U.M. For example, taking A to
be some symbol X and letting P be X, this implies that {V /X}S is a subtype of
{U/X}S. However, this is not true in general, as S may contain invariant occur-
rences of X. For example, V *V is not a subtype of U x U. To restore order requires
some additional concepts and constraints.

Define the covariant variables CV(T) of a type T by

CV(X) = {X}
CV(FU) =CV(U)\FV(F)
CV(U) = {} otherwise .

For example, X is a covariant variable of Point X and Point (ColourPoint X)
and List X but not of X xPoint X. Define the invariant variables of a type T to be
IV(T)=FV(T)\ CV(T).
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{U < [A]Top} = {}
{FU<[A]GP} =letv, ={F/[A]G} in
let v, = {U < [A]vi P} in
V2 0 Vg
{U < [A]P} = {U/[A] P} otherwise

Fig. 11.5 Submatching

Lemma 11.10. Let V < U and S < T be types. If a type variable X is covariant in S
then {V/X}S <{U/X}T.

Proof. The proof is by induction on the structure of 7. If T is an application F T}
then S is an application F' S; where S} < 71. Now X is not free in F so apply
induction to V,U,S;, T and X. The other nontrivial cases are similar. a

A simple method type
P=S

is a match type of the form Vp[CV(P)] P — S where any covariant variable of P that
is free in S is a covariant variable of S, i.e. CV(P)NFV(S) C CV(S). Examples of
simple method types include:

Int = Float ;

point = point ;

X = Float ;

X=X;

Point X = Point X ; and
Point X = List X .

Counter examples include:

Vpoint x |A] Point X —Point X  (if A #X);
point — point  (no quantification)
Vx[X] X — XX (X invariant in X *X) .

It is convenient to define {U <1 P} to be {U < [CV(P)]P} for types U and P. For
example U.(P = S) will be defined to be {U <1 P}S.

Lemma 11.11. Let V < U be types and let P be a type. If {U <1 P} exists then {V <
P} exists. Further, if X is a covariant variable of P then {V < P}X < {U < P}X.

Proof. The proof is by routine induction on the structure of P.

The second challenge is to define type specialisation. If a term of type U is choos-
ing between a special case of type P = S and a default of type Q = T then ambiguity
arises if v} = {U <P} and vy = {U < Q} are both defined. Assume henceforth that
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{P~Top} = {}
{Top~ 0} = {}
{FU~X}={U~Y}o{FY/X} (Y fresh)
(X ~FU} = {Y ~U}o{FY/X} (Y fresh)
{FP~GQ} =letv,={F=G}in
let v = {vi P~ v;Q} in
V2001
{P~Q} = {P=Q} otherwise

Fig. 11.6 Relating

P and Q are separated, in the sense that the covariant type symbols of one are not
free in the other, i.e.

CV(P)NFV(Q)={} and CV(Q)NFV(P)={}.

To maintain type safety, it is necessary that V1S < V27 holds. The challenge is to
find a substitution v such that P and vVQ share a lower bound that can serve in
place of all possible such U. Since sharing a lower bound is equivalent to being
related in the subtype order, the goal is to find a relator v. Further, it should have
the property that for all types U, if {U <P} U{U <1 Q} exists then it factors through
V.

That is, a most general relator for separated types P and Q is a relator v for them,
such that for all types U if {U <P} U{U < Q} exists then it factors through v.

The algorithm for the most general relator {P ~ Q} of separated types P and Q
is given in Fig. 11.6, whose rules must be applied in order. Some care must be taken
with type variables. For example, when relating C Top and X it is important to map
X to C'Y for some fresh variable Y and not to C Top.

Theorem 11.12. Let P and Q be separated types. They have a relator if and only if
they have a most general relator, given by {P ~ Q}. If P and Q are both minimal
then {P ~ Q} unifies P and Q.

Proof. The proofs are by straightforward induction on the structure of Q and P. O

Lemma 11.13. Let P and Q be separated types such that {P ~ Q} exists. If p is a
type substitution which avoids CV (P)UCV(Q) then {pP ~ pQ} exists and

{pP~pQtop=po{P~Q}.
Proof. The proof is by straightforward induction on the structure of Q. O

Now type specialisation is defined in Fig. 11.7. Implicit in the definition is the
assumption that P and Q are separated. From now on, all choice types N & M are
required to satisfy N << M.

Now define type invocation by
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{P~Q0}S<{P~0Q}T {P ~ Q} undefined TN T<M
P=S<K0=T P=S<K0=>T T<KN&M

Fig. 11.7 Type specialisation

U.(P=S)={U<P}S

U(N&M)=U.N if defined

UN&M)=UM otherwise
U.M = undefined otherwise.

Lemma 11.14. Let M and U be types such that U.M exists and let p be a type
substitution. Then pU.pM < p(U.M).

Proof. The proof is by induction on the structure of M. The only nontrivial situation
is when M is of the form P = S & N and U.M = U.N but pU.pM = pU.p(P = S).
Without loss of generality, N is of the form Q = T where P and Q are separated and
p avoids their covariant variables. Then pU.pM = {pU <1pP}pS = p{U < P}S <
p{U<Q}T =p(U.M) by Lemma 11.9. O

Lemma 11.15. Let V < U be types and let M be a method type. If U.M is defined
then V.M is defined and is a subtype of U.M.

Proof. The proof is by induction on the structure of M. If it is a simple method type
P = S then proceed by induction on the structure of P. If P is a variable X then
apply Lemma 11.10. The rest is routine.

Now suppose that M is of the form P = S & N. If U.M is U.(P = S) then
V.N is V.(P = S), by induction, and the result follows by induction. Alternatively,
suppose that U.M is U.N. If V.M is V.N then apply induction, so assume that V.M is
V.(P = S). Without loss of generality, N is of the form Q = T where P and Q are
separated.

That {U <1 Q} exists implies that {V <1 Q} exists by Lemma 11.11. Now p =
{V <P}U{V <« Q} relates P and Q and so factors through {P ~ Q}. Hence V.M =
{V<aP}S=pS<pT ={V IQ}T. This last is a subtype of {U <Q}T = U.M by
Lemmas 11.11 and 11.7. O

Lemma 11.16. If P = S < M and p is a type substitution then p(P = §) < pM.

Proof. The proof is by induction on the structure of M. If M is a simple method
type Q = T then without loss of generality, P and Q are separated. If pP and pQ
cannot be related then there is nothing to prove, so suppose that they can. Then
{pP=pQ}op=po{P~ Q} by Lemma 11.13. Hence

{pP ~pQipS=p{P~Q}S <p{P~Q}T ={pP~pQ}pT.

If M is a method choice then apply induction twice. g
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'tr:U—S T'kFu:U r''xYts:s
Calexl:T I'bru:S Ir'-Axs)V=5:U—S

I'=r:VplAlS I'ks:S
rErU:{U/[A] P}S '+ (JA] P — s)7PlA15 . vp[A]LS

ANFV(I) = {}

I'tn:NT'tkm:M N<M I'tu:U TTkm:M I'ks:S S<T
I''Fn&m:N&M I'Fum:UM I'ks:T

Fig. 11.8 Parametric method calculus

11.5 Parametric Method Calculus

The terms of the parametric method calculus are obtained by adding invocations
and method choices to those of System FM, and giving abstractions and typecases
explicit types. The type derivation rules are given in Fig. 11.8.

Lemma 11.17. Every well-typed term of the parametric method calculus has a min-
imum type.

Proof. The proof is by a routine induction on the structure of 7. Note that the explicit
types of abstractions are necessary to ensure minimality. a

Lemma 11.18. If there is a derivation of I =t : T and p is a type substitution then
there is a derivation of pI' - pt : pT.

Proof. The proof is by straightforward induction on the structure of the deriva-
tion of I' ¢ : T since all of the type constructions are preserved (or become
smaller) under type substitution. For type applications, use Lemma 8.3. For method
choices, use Lemma 11.16. For invocations, use Lemma 11.14. For subsumption,
use Lemma 11.7. O

The reduction rules for the parametric method calculus are given in Fig. 11.9.
They combine the rules of System FM with those of the simply typed method cal-
culus, except that the rule (invoke) now introduces a type application as well as a
term application. This type application employs the minimum type U of the invok-
ing term, which must be minimal. To ensure minimality under substitution U must
also be closed.

Theorem 11.19 (Type Preservation). If there is a derivation of t : T in the para-
metric method calculus and t reduces to some term t' then there is a derivation of
¢ T.

Proof. The proof is routine. O

Theorem 11.20 (Progress). The closed irreducible terms of the parametric method
calculus are abstractions, typecases and method choices whose minimum types are
closed and minimal.
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(hs)! u — {u/x}s (B1)
([A]P— )T U — {U/[A] P}s (match2)
u mP=S — mUu if U is closed, minimal (invoke)
u¥.(nN & m) — u.n if U is closed, minimal and U.N defined (specialise)
uV.(nN & m) — um if U is closed, minimal and U.N undefined  (default)

Fig. 11.9 Reduction rules for method calculus

Proof. The proof is by a straightforward induction on the structure of the term. O

Theorem 11.21 (Confluence). Reduction of the parametric pattern calculus is con-
fluent.

Proof. The proof is by simultaneous reduction. Note that all of the reduction rules
are stable under the application of type or term substitutions. a

11.6 Subtyped Pattern Calculus

The subtyped pattern calculus adds invocations and method choices to the typed
pattern calculus. Most things develop as expected. The only subtlety is that dur-
ing pattern matching, types must be handled by submatching. For example, if a
A-abstraction of the form [;xT°P] £T9P —,  is applied to some integer u : Int then
type matching should proceed since Int < Top.

The terms of the subtyped pattern calculus are given by the grammar

tu=xl & [t | (0]t =) |t T | (AT =) |t#1|tt |t &t.
The type derivation rules are given in Fig. 11.10.

Lemma 11.22. Every well-typed term of the subtyped pattern calculus has a mini-
mum type.

Proof. The proof is by a routine induction on the structure of ¢. g

Lemma 11.23. If there is a derivation of I =1t : T and p is a type substitution then
there is a derivation of pI" = pt : pT.

Proof. The proof is by straightforward induction on the structure of the type deriva-
tion. O

Let 6 = A; B be a context of binding symbols. Let p and u be terms. The basic
submatching {u //[0] p} is the match defined by applying the rules in Fig. 11.11 in
order. This is just as in typed pattern calculus, except that the first clause has been
modified to employ submatching instead of matching.
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CxlFxT.T riTezT.r
'cr:U—S Thtu:U I Brp:P I',Bts:S
e ! b A (FV(P — S)UFV(I)NA = {}
'tru:S I'(ABlp—s)F>:P—=S
I'Er:Vp[A]l.S I'ks:S
rla] i FV(I)nA = {}
r+rU:{U/[A]P}S '+ (J[A] P — 5)7PA15 . vp[A]LS
I'ts:S I'kr:R I'ks:S S<T
I'ks#r:R - I'ks:T
I'tu:UTFm:M I'tm:MT'tFn:N M<XN
I'Fum:UM I'Fm&n:M&N

Fig. 11.10 Subtyped pattern calculus

The submatch {u < [0] p} of p against u relative to binding symbols 6 and result
type T is defined as follows. If {u //[0] p} is of the form (some 0,some p) whose
domain is 6 then the submatch is the same. Otherwise, the match is (none, none).
When (none, none) is applied to a term s° then it yields Nomatch S as before, except
that now S is the minimum type of s.

Lemma 11.24. Let u: U and ([8] p — )V be terms. If {u < [0] p} is some pair
of substitutions (G, p) then there is a derivation of Gps : S.

Proof. Without loss of generality, p is the identity and 6 = ;B does not bind any
type symbols. The proof is by induction on the structure of p. If it is a binding
symbol X then U is a subtype of P so u : P and the Substitution Lemma applies. If p
is any other matchable then u is p and o is the identity. If p and u are applications
then divide 0 in two and apply induction twice. O

The reduction rules for the method calculus are given in Fig. 11.12, where
the matchable forms are the data structures, cases, typecases, choices and method
choices.

Lemma 11.25 (Substitution). If t — ¢’ is a reduction of terms and p is a type
substitution then pt — pt’.

Proof. Without loss of generality, the reduction is a rule. For most rules, the result
follows since type substitution preserves type matching and submatching. For term
invocations, observe that the minimal type of a data structure is stable under type
substitutions. a

Theorem 11.26 (Type Preservation). If there is a derivation of t : T and t reduces
to some term t' then there is a derivation of t' : T.
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{uY J/[0]:'} = (some {u/x},{U < [A]P}) ifx € B
{27 //16]£7} = (some {},some {}) ifx” ¢B
{uv//[6]p q} ={u//[0] p}U{v//[6]4} if pg and uv are matchable
{uU//[6]p P} = {u//|6] p}U(some {},{U/[A]P}) if pPand uU are matchable
{u//[6] p} = none otherwise if p and u are matchable
{u//|6] p} = undefined otherwise.

Fig. 11.11 Basic matching for subtyped pattern calculus

Proof. Without loss of generality the reduction is a rule. If the rule is a match then
apply Lemma 11.24. The other cases are straightforward. a

Theorem 11.27 (Progress). The closed irreducible terms of the method calculus
are matchable forms.

Proof. The proof is by a straightforward induction on the structure of the term. O

Theorem 11.28 (Confluence). Reduction of the subtyped pattern calculus is con-
fluent.

Proof. The proof is by simultaneous reduction. Note that all of the rules are stable
under the application of type or term substitutions. a

11.7 Coloured Circles

Here are some examples.

Example 11.29. Names and Proper Names
The different ways of naming a person can be used to illustrate dynamic dispatch.
Suppose there are constructors

Person : X = String+ Int «List (Person Top) — Person X
ProperPerson : Z = String — ProperPerson Z

where Person x (n,p, f) denotes a person with name n and position p and friends
f and additional fields x and,

Person (ProperPerson znl) (n,p, f)

is such a person with a proper name nl as well as name n. The use of Top allows
various classes of friends to mix.
Define friends : Person X = List (Person[Top]) by
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([6]p— )T u — {u<[6]p}s (match1)
([A]P—s)U — {U < [A] P}s (match2)
(s"PAS# YU — sU if {U < [A] P} =somep (left)
(sPAS U — rU if {U < [A] P} = none (right)
u mf=S — mUu if U is closed, minimal (invoke)
ul.(nN & m) — u.n if U is closed, minimal and U.N defined (specialise)
uY.(nN & m) — um if U is closed, minimal and U.N undefined  (default) .

Fig. 11.12 Reduction rules for subtyped pattern calculus

Person x* (nString,pInt’fList (Person Top)) —f

(using static pattern notation). It works equally well for both a person and a proper
person. Now define the pattern-matching function name by

(name : Person ProperPerson Y = String & Person X = String) =
Person (ProperPerson ynl) (n,p, f) — n"nl
& Personx (n,p,f) —n

where ~ concatenates strings. It is well-typed since both cases have the same return
type. The type of the special case can be hidden by abstraction, using

[ Person X]

namel = X — name x : Person X — String.

When name1 is mapped across some list of friends, it will produce a list of strings
that includes proper names as well as names.

Example 11.30. Circles and Coloured Circles
The previous example did not stretch the typing since name will always produce
a string. Here is an example in which the specialised method uses subtyping.
Suppose there are constructors

Point : (Float xFloat)+X = Point X
CPoint : Int*Y = CPoint Y
Circle : (Point Top*Float)*X = Circle X
CCircle : Int*Z = CCircle Z

where Int is used to represent colours. As with names, coloured points and circles
are built using combinations of constructors. As with the friends above, the point
argument of Circle has type Point Top so that the centre can be any sort of point.

Now consider a method get_centre which is to get the “centre” of a circle. In
default, this is just the centre field, defined in the usual manner, but for coloured
circles, it will return a coloured point, built from the position of the centre field and
the colour of the circle. It is defined by a method choice
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get_centre:
Circle (CCircle Y) = Point Int
& Circle X = Point Top =
[Y] Circle (CCircleY) —
Circle (CCircle y¢) (Point ((x1,y1),x) — Point ((x1,yl),CPoint Un c¢)
& [X] Circle X — Circle ((p,r),x) —p.

This is well-typed since

Circle (CCircle Y) = Point Int < Circle X = Point Top.

11.8 Notes

There is a huge literature on subtyping which cannot be given justice here. However,
most of it is informed by the functional viewpoint, in which the types of objects are
either type constants or are represented as quantified function types. The latter re-
quire nontrivial subtyping on function argument types which blocks consideration of
minimal types for controlling method specialisation. Further, in such a setting, type
inequalities quickly become unmanageable, so that type variables must be severely
constrained, either to avoid subtyping altogether, or by introducing complex ma-
chinery involving self types. By contrast, the treatment of subtyping here is closely
aligned with that of popular object-oriented languages such as Java.

Here are three representative approaches that employ contravariance. System F
[14] adds subtyping to System F in which function types are contravariant in their
argument types and there is no dynamic dispatch. Abadi and Cardelli’s typed object
calculus (see also Sect. 6.3) treats object behaviour directly, using self parameters
and self types, but still with contravariance in function types. Similar remarks apply
to Bruce’s PolyTOIL [12, 13]. Closest to the approach taken here is Castagna’s A &-
calculus [16, 15] which combines contravariance in function types with covariant
method specialisation that is quite similar to that of the simply typed method calcu-
lus. A type of the form P — § & Q — T must have the property that if P < Q then
S < T. Type parameters are not supported. Ocaml [72] uses row variables [88] to re-
late types in the same manner that Point Colour is here used to represent coloured
points.

An alternative approach is taken by Featherweight Generic Java (FGJ) [49]. Its
types are closely identified with its classes, so that the types of methods are not
first class. This results in a form of invariance in the types of method arguments.
However, class declarations create subtyping relations, so that quantification is by
variables having an upper bound, as in F_.



Chapter 12
Implicit Typing

Abstract The extension calculus provides a bridge between the typed and untyped
pattern calculi, and underpins the bondi programming language. Its evaluation is
type-free, but preserves typing. In turn, this requires that term matching implies type
matching, so that patterns must have their most general, or principal types. For static
patterns this is easily enforced, but general evaluation may increase or decrease type
information, so free variables and functions in patterns are required to be linear, in
the sense that they use their arguments exactly once. Central to the type discipline
are the rules for typing extensions, which make delicate use of type equations and
inequalities. Method specialisation is represented by extensions in which the pattern
is an object pattern.

12.1 Extension Calculus

The typed pattern calculus was designed to be as clear as possible. In particular,
reduction is confluent and every term has a unique type. However, this has come at
the price of a heavy syntax, laden with matchable symbols, types, and the rest. This
chapter will lighten the syntax and simplify evaluation, at the cost of some trans-
parency, by introducing the extension calculus, and showing how it can be typed
(and subtyped) without changing the terms or evaluation algorithm. Let us take the
dynamic pattern calculus of Sect. 5.2 as a starting point.

The first simplification is to eliminate the matchable symbols. Recall that these
were introduced to identify symbols in patterns that could not be instantiated. How-
ever, the evaluation strategy will guarantee that instantiation occurs before evalu-
ation, so no ambiguity is possible. In other words, every symbol appearing in an
evaluated pattern must be available for matching.

The second change is to generalise cases to extensions of the form [6] p — s | 7,
as described in Sect. 5.5. Although a little more complex, extensions will be used in
place of cases, typecases and choices in a typed setting.

The terms of the extension calculus are given by the grammar

B. Jay, Pattern Calculus, 129
DOI 10.1007/978-3-540-89185-7_12, (© Springer-Verlag Berlin Heidelberg 2009
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{v/x} = some {v/x}
{c¢/c} = some {}
i /dido} = {vi/di}wiv: /do}

{v/vi} = none otherwise.

Fig. 12.1 Value matching

t = (term)
X (variable)
c (constructor)
tt (application)

[6]t — 1|t (extension).
Free variables of an extension are defined by
fv([0] p—s|r) = (fv(p) Ufv(s))\ O Ufv(r) .

Evaluation in the extension calculus employs a big-step operational semantics
rather than a reduction relation. The relation r = v asserts that the term ¢ evaluates
to the value v. Working with values rather than arbitrary terms simplifies the rules.
The data values (meta-variable d) and values (meta-variable v) are subsets of the
terms given by the grammar

d:= (data value)
(variable)
c (constructor)
dv (compound)
V= (value)
d (data value)

[6]v—1t|v (extension).

The data values and values play the role of the data structures and matchable forms
of the dynamic pattern calculus. The former are more constrained than the latter in
that components are required to be values.

The match algorithm will be simpler than that of the dynamic pattern calculus.
First, the evaluation strategy will guarantee that all free variables found in the pattern
are to be bound, so there is no need to keep track of the binding symbols. In this
sense, the algorithm is more like that of the static pattern calculus in Sect. 4.3.
Second, since the pattern and argument are known to be values, there is no need to
check for matchable forms. The value matching {v/v,} of a value v against a value
v is defined by the rules in Fig. 12.1.

It is convenient to redefine the application of a match so that it is applied to a pair
of terms, as follows:
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r=d u=v
X=X c=c ru=dv
r=[0]vi—s|va u=vy {v3/vi}s(av)=v r=vy, p=wm
ru=v B]p—s|r=[0]vy—s]|w

Fig. 12.2 Operational semantics of the extension calculus

some o st = 0(s)
nonest =1.

The evaluation rules are given in Fig. 12.2.

Theorem 12.1 (Progress). If ¢ is a term of the extension calculus then there is an
evaluation rule which can be applied to it.

Proof. The proof is by a straightforward induction on the structure of 7. The most
interesting point is that matching cannot get stuck since it is always defined for
values. O

12.2 Linear Types

To provide a type system for the extension calculus that reflects the understanding
developed for the typed pattern calculus, it is essential to ensure that term matching
implies type matching, which can be achieved if the pattern does not contain any
type information beyond that which can be inferred from its term structure.

If the pattern is static then this can be easily enforced during type derivation, but
in general, instantiation of free variables in patterns may increase type information,
while reduction may lose it. To avoid this, it is necessary to restrict the patterns
so that evaluation does not change the type information. That is, patterns will be
required to be linear terms whose free variables can be replaced by linear terms
only.

The linear type system has grammar

T:=X|C|TT|T—T|VXT|IlinT.

The variables, constants, type applications, function types and quantified types are
all as before. The linear type lin T represents linear terms of type T, as will be
defined in the next section. Matchable type symbols are not required because of
the evaluation strategy, and match types are not necessary as instantiation of type
symbols will be implicit.
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12.3 Typing Special Cases

Typing the extension calculus is complicated by the absence of type matching during
evaluation. For example, suppose the first projection function fst : X «Y — X and
the negation not : Bool — Bool are given and consider the extension

[x,y] Pair x y — not x | fst.

Since the body requires x to be a boolean, the natural typing of the binding symbols
is x : Bool,y : Y. However, when this extension is applied to Pair 3 4 then it will
evaluate to not 3 which is ill typed. In the typed pattern calculus, matching would
involve type matching as well as term matching: as Bool and Int do not unify
the matching would fail, and the extension would reduce to fst (Pair 3 4). Since
terms of the extension calculus do not have any types to match, it follows that this
extension cannot be allowed to have a type. To put it more positively, term matching
must imply type matching. This can be ensured by requiring patterns to take their
most general types. That is, the term context for the pattern Pair x y must type x
and y by distinct fresh variables X and Y so that not x is ill typed.

Hence, the type derivation rules for patterns must be constrained to ensure that
the pattern takes its most general, or principal type, using judgements of the form
I';BE p: P where I' provides a context for the free variables in the pattern, and B
provides one for its binding symbols. With this in mind, a natural approach to typing
extensions uses the following rule

I'r:P—S TI';BFp:P TI',BFs:S
I'E[Bl|]p—s|r:P—S

(where |B| is the result of removing the types from the term context B).

The rule above is quite safe, but it forces all cases in a pattern-matching function
to take the same type. In the typed pattern calculus, cases of different types are
combined using typecases of the form s # t whose branching is determined by type
matching. Here, all branching is through extensions, so it is necessary to allow the
special case to have a special type.

A more subtle approach is to use type similarity (as defined in Sect. 8.4) to get
the rule

'r:Q—T TI';BFp:P TI',BFs:S
'E[Bl]lp—s|r:0—T

P—-S~Q—T.

This works for many examples but does not support the typed A-calculus! Recall
that a A-abstraction Ax.s has type U — S if s can be given type S in a context where
x has type U. In extension calculus, the abstraction above is syntactic sugar for
[x] x — s | Nomatch. Now the most general type for x is a variable, not an arbitrary
type U, so the rule above is too restrictive.
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The problem with the type derivation rule above is that the typing of the body s is
not taking advantage of the type information provided by the argument. If the body
is evaluated then it must be that P and Q are the same type, so this type information
should be available when typing the body. The resulting rule is

I'tr:Q—T T;BFp:P vu(l,B)Fs:vT
'E[Bl]lp—s|r:0—T

v={P=0}.

It is unusual to have a unifier in a type derivation rule, as opposed to one for type
inference, but it is a consequence of making types implicit in terms.

Actually, the rule above is not quite enough. Type derivations should be stable
under application of a type substitution p but this one need not be. If pP and pQ
have a unifier then all is well, but in general they will not. For example, consider
the extension [x] x — ([] True — not x | [y] y — y). It has type : X — X — X since
unifying the most general type Bool for the pattern with the type variable X forces
x to be a boolean so that not x : Bool is of type X, as required. However, if X is
instantiated to Nat then it has no unifier with Bool. Even more problematic is that
not x is ill typed. In a rewriting system, the presence of not x would be disturbing,
but here there is nothing to worry about. After all, True cannot match against a
natural number, and so not x will never be evaluated. That is, when P and Q cannot
be unified then there is no need to type the body. The corresponding rule is thus

I'+r:Q—T TI;BFp:P
r'=[Bl]p—s|r:Q—T

{P = Q} is undefined.

12.4 Typing the Extension Calculus

Having typed the extensions, now consider the patterns in more detail. If the pattern
is static then it is easy to give it a principal type. In general, however, the pattern
may contain free term variables and be reduced. Instantiating free term variables
may introduce more type information, while reduction may lose it, in either case
modifying the principal type. To avoid this, patterns will be required to be linear
terms in which free variables occur exactly once. Now reduction cannot lose type
information. Also, instantiation cannot gain type information provided that the in-
troduced term is itself linear.

A pattern term context is a pair I'; B of a term context I (for the free variables)
and a term context B (for the free matchables).

A judgement of the form I'; B¢ : T asserts that ¢ is a linear term of type T in the
linear context I'; B. The type derivation rules for linear terms are given in Fig. 12.3.
In a derivation of I';B = p : P the variables in I" of linear type may be used any
number of times. By contrast, the variables in B must occur exactly once, and must
take their most general type. That is, on first appearance, variables in B are assumed
to be typed by a fresh type variable, with unification employed to type applications.
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in T c:VA.S
—x" ' er ————— x,X fresh for I —— A fresh
I bx:T X Fx:X I';kFe:S
I'Bibr:R I'iBobu:U v={R=U —X} I''BaxVFs:S
v(l;By,By) Fru:vX X fresh ;B [x] x — s | Nomatch:U — S

Fig. 12.3 Linear terms

There is some freedom in deciding how many linear terms to allow. At a min-
imum, it is necessary to admit the data values built from variables and construc-
tors. At the maximum, one could admit any function which can be proven linear
in its argument, including general recursive functions. As a compromise, linear A-
abstractions, of the form [x] x — s | Nomatch are allowed.

The judgement I -7 : T asserts that ¢ is a term of type T in the context I". The
type derivation rules for the terms of the extension calculus are given in Fig. 12.4.
The restrictions on free type variables in the rules for extensions are required to
ensure that type variables introduced in the typing of the pattern are fresh.

Lemma 12.2. If there is a derivation of I &=t : T then there is a derivation of pI" -
t: pT for any type substitution p.

Proof. The proof is by induction on the structure of the derivation, applying the var-
ious lemmas ensuring stability under substitution. Suppose that the type derivation
is for an extension as in the figure, in which {P = Q} exists. If {pP = pQ} does not
exist then the result is immediate, and otherwise it factors through {P = Q} and the
result follows by induction. The other cases are routine, given the various lemmas
ensuring stability under substitution.

The following lemma implies that any typing of an extension can be assumed to
end with one of the two associated rules, rather than by instantiating of bound type
symbols.

Lemma 12.3. Suppose that there are type derivations ;BtFvy:Pand ' v :U for
values vy and v such that the two derivations do not share any free type variables.
If {v/vo} is some substitution then there is a type substitution p that avoids I" such
that pP=U and I' - {v/vo}x: pV for eachx:V € B.

Proof. The proof is by induction on the structure of vg. If it is a variable then the
result is immediate. If it is a constructor ¢ then so is v and p is given by the type
derivation of v : U. If v is a compound v; v, then v is a compound d v3. Now apply
induction twice to obtain type substitutions p; and p, whose union is the required
type substitution. O

Theorem 12.4 (Type Preservation). If there is a derivation of \-t : T and there is
a value v such that t = v then there is a derivation of Fv:T.
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I';bFu:U

- —xTer —:T
I'tu:linU I'kFx:T I'kc:T
I't:VX.T I'tet:T I'r:U—S T'Fu:U
X ¢FV(I)
ree:{U/x}r I'-t:vX.T I'-ru:S§

F'br:Q—T I'iBEp:P v(I,B)Fs:vT FV(Q— T)NFV(T;BEp:P) CFV(I)
re(Bllp—s|r:Q—=T v={P=0}

I'tr:Q—T T;BFp:P FV(Q—T)NFV(I';BF p:P) CFV(I)
T'H[|B]]p—s|r:0—T {P=Q} undefined

Fig. 12.4 Typed extension calculus

Proof. The proof is by induction on the derivation of ¢ = v. Without loss of gener-
ality the reduction is by successful matching, as in Fig. 12.2 and the type derivation
takes the form

Fv:Q—T ;BFvi:P vBFs:vT
FlO]vi—s|vn:0—T

v={P=0}

with F v3 : Q. Note that {P = Q} must exist since Lemma 12.3 implies that there
is a type substitution p with domain within FV( ;B F p : P) such that pP = Q and
{v3/vi}x: pV for each x : V in B. Hence p factors through v by some p; which
can be applied to the derivation of VB s: T to get pB+ s: T. Now apply the
Substitution Lemma to get {v3/v| }s: vT as required. |

12.5 Datum Types

Plentiful examples of terms in the extension calculus will be given in Part III using
bondi. However, there is an important, and illustrative example that is worth men-
tioning here. Consider the problem of adding a special case to a function r of type
X — X. For natural numbers this is easy. For example, the extension

[] Zero — Zero
| [x] Successor x — x

| r

has type X — X. However, the extension [x] x — plusint x 1 | r is ill typed since
the principal type of x is a variable. The constructors for the type of integers are the
unbounded collection of numerals, so it is impractical to give a case for each one.
The solution adopted is to introduce a wildcard for each primitive type, e.g. _Int
for integers, that will match any integer value. Now the example above becomes
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Ax.([] _Int — plusintx 1]|r)x.
A convenient shorthand for this is
[x] x as _Int — plusint (Intx) 1|r

in which a pattern of the form p as g requires matching against both p and q. This
pattern may also be written as (x : Int) on the understanding that this is a syntactic
convenience; no type matching will occur during reduction. A similar approach is
taken to floating point numbers, and other datum types.

12.6 Constrained Subtyping

To support implicit subtyping requires a deeper understanding of type inequalities
than that required for the method calculus, since there interaction between subtyping
and choices was limited to method types. In the extension calculus, however, sub-
typing arises when trying extend a function of type Q — T using a pattern of type P.
Without subtyping, ambiguity can arise only if P and Q are unified, but now it arises
whenever P is a subtype of Q. Since P and Q are arbitrary types, it is necessary to
consider the general problem of solving type inequalities.

A sub-unifier of types U and P is a substitution p such that pU < pP.

In general, types may have a sub-unifier without having a most general one, since
“occurrence errors” need not block the existence of solutions. For example, C X <X
has solutions given by mapping X to Top or C Top or C (C Top), etc. where each
succeeding type is a subtype of the one before, so there is no smallest solution. This
situation arises for any inequality U < X where X is covariant in U. By contrast, an
inequality of the form U < X in which X is invariant in U (such as U is X % X) has
a unique solution, given by mapping X to Top.

Even the definition of a most general sub-unifier is problematic as it is unrea-
sonable to require that any other sub-unifier factor through a most general one. For
example, the inequality Int < X is solved by mapping X to either Int or Top but
neither substitution factors through the other. A more relaxed approach is to require
of a general sub-unifier v of U and P that, for any other sub-unifier p there is a
substitution o such that pU < ocvU < 6 0P < pP. However, this is not very useful
in practice. In particular, such general sub-unifiers are not unique. For example, the
inequality X < Top has two such, the identity substitution and that mapping X to
Top.

The approach adopted here is to parametrise subtyping by subtyping contexts
(meta-variable X) which are sequences of constraints of the form S < T. Then a
judgement of the form X =S < T asserts that S is a subtype of 7" in context X.

Such subtyping contexts will be added to the typing judgements for terms. To
type an extension of a default of type Q — T using a pattern of type P requires that
the body have type 7T in a context including the constraint P < Q. Such constraints
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S<TeX JHEFF<G XFG<F XES<T
XES<T X ET <Top YEFS<GT XET<T
YFEFS<GT YFEFS<GT YFEFS<GT
HEF<G YFG<F XES<T

Fig. 12.5 Constrained subtyping

are exploited by the subsumption rule, which allows a term of type S to be a term of
type T if the constraints imply that S is a subtype of 7.

The derivation rules for constrained subtyping are given in Fig. 12.5. The first
rule asserts that X~ implies all of the constraints within it. The next three rules are
the analogues of the subtyping rules in Fig. 11.1, except that the identity F = G
has been generalised to derivations of F < G and G < F. By antisymmetry, if both
inequalities hold then F is G. The last three rules are used to draw inferences from
complex constraints: if F S<GT then F=Gand S < T.

Lemma 12.5. There is a derivation of = S < T if and only if there is a derivation of
S<T.

Proof. The proof is by a routine induction on the structure of the derivation.

Lemma 12.6. If there is a derivation of the judgement X = S < T then there is one
of pX +pS < pT for any type substitution p.

Proof. The proof is by a routine induction on the derivation of the premise.

One might now expect to rework the definitions of type invocation and type spe-
cialisation to exploit constraints, but this is not so easy. For example, type invocation
requires knowing when inequalities are insoluble, which is more difficult when con-
straints are present. Fortunately, it does not appear to be necessary in practice: the
unconstrained definitions are safe, and good enough for the examples of interest.

12.7 Subtyped Extension Calculus

Subsumption is not used when typing linear terms, so their derivation rules are un-
changed, but type derivations for terms will use judgements of the form

X:I'kt: T

where X is a subtyping context, I" is a term context, ¢ is a term and 7 is a type. The
associated rules are given in Fig. 12.6. They adapt the rules for typing the extension
calculus in Fig. 12.4 and add three new rules adapted from the subtyped pattern
calculus.
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I';bu:U
_ —— x:Tel — c¢: T
X I'tu:linU X I'kx:T XI'kce: T
2t vX.T ke T XIr'rr:U—S X I'tu:U
X ¢FV(Z;T)
I+ {U/X}T ZI't-t:vX.T ZI'tru:S

2 Itr:Q—T I'sBEp:P P<QXI'Bbs:T FV([;BFp:P)NFV(Q—T)

S CH[Bllp—s|r:Q—T C FV(I)
XI'ks:S XHS<T X:I'tr:R 2;I'tu:U
X IEs: T X;I'tru:UR

I'tm:M ;Bto:P X;I',Bks:S P=S<KM
ZI'H[Bllo—s|m:P=S&M

Fig. 12.6 Subtyped extension calculus

Note that the two previous rules for typing extensions have been replaced by a
single rule, in which the constraint P < Q has been added to the context. This is
possible because the new rule is stable under type substitution; if it should happen
that the constraints are no longer solvable then this does not invalidate the rule.
Thus, to a function r : Float — Float one can still add a case of type Int — Int.
However, no longer may one add to r a case of type Int — Bool since Int < Float
does not imply Bool < Float. This is probably a good thing. Looking back, it is
possible to rework the typed extension calculus to replace the unifiers in its type
derivation rules by equational constraints. Further, note that the inequality Q < P is
not considered since the nature of linear typing will will imply that Q is P.

The new rules are for subsumption, invocation and method extensions. Then an
application can be typed by a type invocation, in which case the term may be called
an invocation. Also, an extension can be typed using type specialisation, in which
case it is called a method extension, but now the pattern o must restricted, as the
following example illustrates.

Suppose that s: Sand 7 : T and S < T and consider the extension

True — s
| False — ¢
| Nomatch.

If the rule for method extensions is unconstrained then this can be given type
Bool — § & Bool — T. When applied to False then the derived type would be
S but the result would have type T'. To avoid such errors it is necessary that for
methods, type matching implies term matching as well as the converse.

Such difficulties will be avoided by requiring that the pattern in a method exten-
sion be an object pattern. These will have the property that type matching implies
term matching.



12.7 Subtyped Extension Calculus 139

A constructor is an object constructor for a type constant C if it is the unique
constructor whose given type is of the form

VAT, —-Th—...—»T,—-CS8 S ... S
and its actual type is of the form
vXi..... VX,.DxX, - CX; ... X
for some type D in which X, is not free. A typical example is
Point : VX.(Float xFloat)*X — Point X .
An object pattern (meta-variable o) is given by the grammar
oux=x | Un | Pairoo | co cisan object constructor

where Un : Unit is the unit constructor of unit type, and Pair : VX.VY.X — Y —
X «Y is for pairing.

Lemma 12.7. Let ;B o: P where o is an object pattern and let = v : V be a closed
value. If the type substitution {V <1 P} exists then {v/o} is some term substitution.

Proof. The proof is by straightforward induction on the structure of 0. Let o be of the
form ¢ oy where ¢ is an object constructor for some type constant C. Since {V <1 P}

exists, the type of v is a data type C V| ... V,, and so the value v must be a data
structure. Further, since c is an object constructor, v must be of the form ¢ v;. Now
apply induction to o; and v;. The other possibilities for o are similar. O

Lemma 12.8. If there is a derivation of X;I" &t : T then there is a derivation of
p2;pI' 1t :pT for any type substitution p.

Proof. The proof is by routine induction on the structure of the derivation, given the
various lemmas ensuring stability under substitution.

Lemma 12.9. Suppose that there are derivations ;B vy:Pand I -v: Q of values,
where Q is not a quantified type, and that these derivations do not share any type
symbols. If {v/vo} is a substitution then there is a type substitution p that avoids
I'bv: Q such that pP is a subtype of Q and {v/vo}x: pV foreachx:V € B.

Proof. The proof is by induction on the structure of vg. If it is a variable then the
result is immediate. If it is a constructor ¢ then so is v and p is given by the type
derivation of v : Q. If vy is a compound then so is v. Now apply induction twice to
obtain type substitutions p; and p>. Now p; U p; factors through the unifier used in
typing vy. O

Theorem 12.10 (Type Preservation). If there is a derivation of ; -t : T and there
is a value v such that t = v then there is a derivation of ; Fv: T.
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Proof. The proof is by induction on the derivation of t = v. Without loss of gener-
ality the reduction is by successful matching, as in Fig. 12.2. Suppose that the type
derivation takes the form

iFv:Q0—T Brvi:P P<Q)BFks:T FV(;BFp:P)N
FB|Jvi—=s|v:0—T FV(Q—T)={}

with ; Fv3: Q. Now Lemma 12.9 implies that there is a type substitution p whose
domain is within FV( ;B p: P) such that pP < Q and {v3/v;}x: pV for each
x:'V € B. Hence there is a derivation of p(P < Q;B) \- s : T. Further, since p solves
P < Q there is a derivation of ;pBF s:T. Now apply the Substitution Lemma to
get 5 F{v3/vi}s: T asrequired.

Alternatively, suppose that the extension is a method extension. Then the argu-
ment is typed by a type application and so must be a data value. Hence, Lemma 12.7
implies that the method invocation is typed using the special case if and only if
matching succeeds. Now proceed as above. a

12.8 Notes

The constructor calculus [55] appears to be the first attempt to combine cases hav-
ing different types in an implicitly-typed calculus. This evolved via a static pattern
calculus [58] to the higher-order typed pattern calculus [56] in which dynamic pat-
terns were implicitly typed. In turn, this was overtaken by the development of the
pure pattern calculus.

It is tempting to include here a formal account of type inference for the extension
calculus, in the style of Algorithm W for ML [76, 26]. However, terms of extension
calculus do not always have principal types, so there is some choice in the details of
the algorithm, and no particular reason to favour the choices developed for bondi.
The lack of principality has several causes. First, quantified argument types are al-
lowed, and System F does not support type inference or indeed type checking [105].
Support for polymorphic recursion arises in various systems (see, e.g. [41]). Further,
type inference must here handle general inequalities just to type the application of a
function of type P — S to an argument of type U. Yet, as seen earlier, these do not
have most general solutions. The solution adopted in bondi is to simplify inequal-
ities as much as possible, making aggressive assumptions when it is safe to do so,
e.g. by rejecting some occurrence errors.

In Chap. 11, function types were made invariant in their result types to avoid
having to reduce abstractions. Here, however, all reduction is driven by the terms,
so that this difficulty does not arise. Hence, one may allow that S < T' implies both
U—S<U—TandVX.S <VX.T without introducing new difficulties. This proves
convenient when typing methods. In the style above, a method taking parameters of
type D must be given a type of the form D x P = S but in bondi this will have the
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more convenient type P = D — S. In particular, the body of the method, of type
D — S, can be given by an extension.



Chapter 13
Higher-Order Functions

Abstract This chapter introduces Part III and bondi, focusing on its approach to
higher-order functions. It is short because functions alone can’t express much.

13.1 From Calculus to Programming Language

Having developed the pattern calculus as a theory, it is time to consider how it can be
exploited in programming, using the bondi programming language as the medium.
bondi implements the extension calculus of Chap. 12 with its type-free evaluation
rules. To this core is added algebraic data types in the style of functional program-
ming, queries in the style of relational databases, dynamic patterns, imperative fea-
tures such as assignment and loops, and object-oriented classes. It may well prove
that some, or all of the new sorts of polymorphism can be supported by the evolution
of an existing language, but the desire to combine a variety of programming styles
without biasing towards one or the other is best achieved by making a fresh start.
The presentation is driven by examples, since theoretical issues were addressed in
Parts I and II.

This chapter introduces the language itself, and its use in the functional style,
including let-declarations. The chapter is short, primarily because one cannot do
very much with functions alone. Chapter 14 introduces algebraic data types, and
the corresponding pattern-matching style, in which each pattern is headed by a con-
structor. Its novelty arises from the ability to combine cases having different types,
as illustrated by functor polymorphic programs. Chapter 15 introduces path poly-
morphic queries, in which patterns may be headed by a binding symbol. Chapter 16
illustrate the use of dynamic patterns. Chapter 17 introduces imperative features,
supporting state through assignment to references. Now path polymorphism can be
used to define iterators, though some care is required to avoid infinite loops gener-
ated by cycles. Chapter 18 combines subtyping and state to support object-oriented
programming. It concludes with the motivating example of Chap. 1.

B. Jay, Pattern Calculus, 145
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13.2 Let-Terms

bondi provides an interactive environment. When started, some preliminary output
is followed by the message

Welcome to bondi version 2.0

No warranty expressed or implied
See README for details

type ‘%quit;;’ to exit

The ~~ is the prompt, representing the waves at Bondi Beach in Sydney, Australia.
All inputs are terminated with a double semicolon. For example, typing 1+2; ; after
the prompt displays

o125,
it: Int
it = 3

The system inputs the term (or program) 1+2 which is inferred to be an integer of
type Int and have value 3. The identifier it is used here to refer to a nameless
value. The infix function + is not actually a primitive operation, but rather a generic
operation, as will be described in Chap. 15. The trailing prompt is omitted from now
on.

bondi supports function definitions as follows

“7 fun x -> x+1;;

it: Int -> Int

" let plusOne x = x+1;;
plusOne: Int -> Int

“” plusOne 2;;
it: Int
it = 3

The first term fun x -> x+1 corresponds to the abstraction Ax.x+ 1. Its type is
Int -> Int. Since it is an abstraction its value is not printed. The let binding
binds plusOne to the same A-abstraction, with the bound variable x now appearing
on the left.

Higher-order functions are defined in exactly the same way. For example,

"~ let twice f x = f (f x);;
twice: (a -> a) -> a -> a
7 twice plusOne 3;;

it: Int

it = 5

The function twice applies its first argument twice to its second argument. It has
a polymorphic type, as indicated by the type variable a. Recursion is supported by
the syntax let rec. For example
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~~ let rec (factorial: Int -> Int) n =
if n <=1
then 1
else n*x(factorial (n-1));;
factorial: Int -> Int
~“~ factorial 5;;
it: Int
it = 120

Generally speaking, it is necessary to provide explicit types for recursive functions
since the possibility of polymorphic recursion makes it harder to infer types, as will
be demonstrated in Sect. 15.2.

The function twice above is parametrically polymorphic in that the type variable
a can be instantiated to any type. A more subtle example is given by the polymorphic
identity
let identity x = x in identity identity 3;;
The second occurrence of identity takes the type Int -> Int while the first
occurrence takes the type (Int -> Int) -> Int -> Int so thatit can act on the

function identity. Thus, unlike the parameter £ of twice, the two occurrences of
identity have different instantiations of their type parameter.

13.3 Notes

bondi is not very well documented, but the source code and some examples are
available [10]. The current interpreter is written in Ocaml [72], a member of the ML
family of languages, and reuses many of its syntactic conventions.



Chapter 14
Algebraic Data Types

Abstract Algebraic data types are the natural target of pattern-matching functions.
When the type is parametric then the pattern-matching functions typically support
parametric polymorphism. In addition, bondi supports generic functional program-
ming by introducing a small family of primitive, or representing data types, which
can be used to define generic functions such as map, with one case for each prim-
itive constructor. Each resulting case has a different type, so type specialisation is
involved, too. During a type declaration, additional cases can be added to existing
functions.

14.1 Type Declarations

A type declaration either declares a type synonym or an algebraic data type. An
example of algebraic data types are binary product types. The product type of pairs
is declared as part of the standard prelude using the declaration

” datatype Binprod a b = Pair of a and b;;
Pair: a -> b -> a * b

It introduces the type constant Binprod and term constructor Pair whose type is as
displayed. Since pairs play such an important role, they have their own syntax. For
example,

“~ Pair 2 3;;
it: Int * Int
it = (2,3)
T (3,4);;
it: Int * Int
it = (3,4)

Here the infix * is used to represent Binprod and the infix comma is used to repre-
sent Pair. The output (2,3) for Pair 2 3 is obtained by modifying the function

B. Jay, Pattern Calculus, 149
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toString as explained in Sect. 14.5. The input (3,4) for a pair is hardwired into
the parser. Future work may well see the parser written in bondi too.
An example of a type synonym is

~ type Cmplex = Float * Float ;;
type Cmplex = Float * Float

in which complex numbers are exactly pairs of floats. Here is how it can be used

“~ let (z: Cmplex) = (3.3,4.4);;
z: Float * Float
z = (3.3,4.4)

Type inference checks that (3.3,4.4) is indeed of type Cmplex but reports the
type Float * Float, which is not especially helpful. Another difficulty is that
operations cannot be made to treat complex numbers differently from any other
pairs of floating point numbers, as used to define, say an interval on the number
line.

By contrast, an algebraic data type of complex numbers is given by the declara-
tion
7 datatype Complex = Cartesian of Float and Float;;
Cartesian: Float -> Float -> Complex

Here is an example:

"~ let z = Cartesian 1.1 2.2;;
z: Complex
z = Cartesian 1.1 2.2

Now the complex values cannot be confused with other pairs of floats.
Algebraic data types may employ type parameters, as in

“~ datatype List a = Nil | Cons of a and List a ;;
Nil: List a
Cons: a -> List a -> List a

~7 [1,2,3];;
it: List Int
it = [1,2,3]

The parser supports syntax in which lists are represented by comma-separated se-
quences of entries, enclosed in square brackets. This syntax is also incorporated into
the printing of lists, as defined in the standard prelude.

Here is a data type that is not already known to the system

~ datatype Tree a = Leaf of a | Node of Tree a and Tree a ;;
Leaf: a -> Tree a
Node: Tree a -> Tree a -> Tree a
~“~ let trl = Node (Leaf 3) (Leaf 4);;
trl: Tree Int
trl = Node (Leaf 3) (Leaf 4)
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Here is an example with two type parameters, of coproduct (or sum) types, de-
clared by

~~ datatype Coproduct a b = Inl of a | Inr of b ;;
Inl: a -> Coproduct a b
Inr: b -> Coproduct a b

“~ Inl 3;;
it: Coproduct Int a
it = Inl 3

Now let us define some polymorphic functions on these new types.

14.2 Pattern-Matching Functions

The usual means of accessing data of algebraic type is by pattern matching. For
example, the projections of pairs can be written as the cases

"7 let fst = | (x,y) -> x;;
fst: a * b > a

“~ let snd = | (x,y) -> y;;
snd: a * b -> b

7 fst (2,3);;

it: Int

it = 2

Each case begins with a vertical bar |. Sequences of cases can be combined to form
pattern-matching functions. For example, to avoid dividing by 0 use safeDivInt
defined by

"7 let safeDivInt n =

| 0 -> Exception "divide by O"
| m => n divideint m
safeDivInt: Int -> Int -> Int
~~ safeDivInt 4 2 ;;

it: Int
it = 2
“~ safeDivInt 4 0 ;;
it: Int

it = Exception "divide by 0"
The exception Exception "divide by 0" is given by applying the constructor

“"Exception;;
it: a
it = Exception
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to the string "divide by 0". Exceptions can be handled by pattern matching
against the constructor Exception.

In the examples so far, all cases have had the same type. In general, bondi takes a
more liberal view, allowing cases to have different types provided that no ambiguity
can arise concerning the type of the result.

Here is a simple example. The booleans True,False : Bool are given as con-
structors.

"7 let isZero =

| 0 -> True

| 0.0 => True

| _ -> False;;
isZero: a -> Bool
~ isZero 0;;

it: Bool

it = True

~~ isZero 0.0;;

it: Bool

it = True

~7” isZero Pair;;
it: Bool

it = False

isZero tests for being either the integer O or the floating point 0. 0. Type inference
handles the cases in reverse order. The final case discards its argument (represented
by the wildcard _) and returns a boolean, and so has type a -> Bool. The second
case has type Float -> Bool which is a specialisation of a -> Bool (as defined
in Sect. 11.4). The first case is similar. It is interesting to observe what happens if
the the last case is deleted, as in

“7 ] 0 -> True

| 0.0 => True ;;

Warning: useless pattern detected
it: Float -> Bool

Now the overall type is Float -> Bool, being the type of the last case. Note that
the first case has type Int -> Bool whose argument type Int cannot be unified
with Float. While not strictly illegal, this case cannot ever be evaluated, and so a
warning is displayed. Further, reversing these two cases will produce a function of
type Int -> Bool. Since the typing is so sensitive to the choice and ordering of
cases, it is good style to include an explicit type when cases of different types are
involved, as in

~“~ let (isZero: a -> Bool) =

| 0 -> True
| 0.0 -> True
| _ -> False;;

isZero: a —-> Bool
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Now deleting or permuting cases cannot change the type.
Similar to isZero is the test for pairs

let isPair =

| Pair _ _ -> True

| _ -> False ;;

isPair: a -> Bool

Testing for integers, however, is not so easy, since there is not a single constructor

for them all. Various alternatives have been considered, but the preferred option is to
create another wildcard _Int which matches integers only. For example, consider

let isInt =

| _Int -> True

| _ -> False ;;
isInt: a -> Bool
~~ isInt 3;;

it: Bool

it = True

“7 isInt True;;
it: Bool

it = False

Similarly, there are wildcards _Float and _Char and _String for floats, characters
and strings.

(| _Char -> True) ’a’;;

it: Bool
it = True
~~ (| _String -> True) "abc";;
it: Bool

it = True

In general, one would like to use the integer, not just detect its presence, as in
fun x -> (| _Int -> x +1) x
This function first tests its argument to see if it is an integer, then uses it again in

the body of the case. A convenient syntax for this is given by patterns of the form
p as qgsuchas

| _Int as x -> x +1

in which matching succeeds if the argument matches both _Int and x. Yet more
syntactic sugar is exploited by the example

let incrInt =
| (x :Int) -> x+1
| x > x

Its first case is syntactic sugar for the one already given above. Note that the type
Int does not appear during execution, so that this use of types in patterns is strictly
limited to those where the type has a characteristic pattern, such as _Int. This con-
cept will reappear when considering object-oriented classes.
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14.3 Polymorphism in Data

The main use of parametric polymorphism in functional programming has been to
define functions that are tailored to some given structure, independent of the type
of data that is stored within them. For example, the projections fst and snd act on
arbitrary pairs. Similarly, data of coproduct type is accessed by case analysis, given
by the higher-order function

let (alt: (a => ¢) -> (b -> ¢c) -> Coproduct a b -> ¢c) f g =
| Inl x -> £ x

| Int y > gy

alt: (a -> b) -> (¢ -> b) -> Coproduct a ¢ -> b

"7 alt (fun x -> x+1) (fun y -> 0) (Inl 3);;

it: Int
it = 4
7 alt (fun x -> x+1) (fun y -> 0) (Inr True);;
it: Int
it =0

Similarly, a typical list program is that for appending lists.

% let rec (append: List a -> List a -> List a) =
| Nil => fun y > y

| Cons x xs -> fun y -> Cons x (append xs y)
append: List a -> List a -> List a

~ append [1,2,3] [4,5];;

it: List Int

it = [1,2,3,4,5]

It uses recursion as well as pattern matching. Mapping over lists is given by

~~ let rec (mapList : (a -> b) -> List a -> List b) f =
| Nil -> Nil

| Cons x xs -> Cons (f x) (mapList f xs)

mapList: (a -> b) -> List a -> List b

“~ mapList plusOne [1,2,3];;

it: List Int

it = [2,3,4]

Similarly, mapping over binary trees is given by

“~ let rec (mapTree: (a -> b) -> Tree a -> Tree b) f =
| Leaf x -> Leaf (f x)

| Node x y -> Node (mapTree f x) (mapTree f y)

’
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mapTree: (a -> b) -> Tree a -> Tree b
" mapTree plusOne tri;;

it: Tree Int

it = Node (Leaf 4) (Leaf 5)

14.4 Generic Functional Programming

The mapping functions above for List and Tree can be generalised to a single
function map by representing data types in terms of a small family of primitive
constructors. For most purposes, it is enough to employ the following primitives:

datatype Konstant a b = Evr of a ;;

datatype Identity a = Ths of a ;;

datatype ParamProduct f g a = ParamPair of f a and g a ;;
datatype Okay f a = Ok of f a ;;

datatype Nested g £ a = Nest of g (f a);;

datatype Represent a b ¢ = Tag of a -> b and a ¢ ;;

Evr is used to represent structures without any data. Ths represents a single piece of
data. ParamPair combines data structures. Ok recognises a data structure. Nested
handles nested structures. Tag is used to add labels to structures. The functions
deconstruct and reconstruct are used to convert data structures into their prim-
itive representations and back again. For example,

deconstruct [] print;;
it: Unit
Tag Nil_name (Evr Un)
shows that the empty list is given by the structure Evr Un (having no data) tagged by
the name Nil_name associated to Nil. Deconstruction produces something whose
exact type is not known in advance, and so has an existential type as described in
Chap. 7. That is, deconstruct [] is a function that takes as argument a polymor-
phic function, such as print that is able to handle whatever type turns up in the
existential.

Converse to deconstruct is reconstruct, as in

~ reconstruct(Tag Nil_name (Evr Un));;
it: List a
it = []
which rebuilds the original structure. Similarly,

~ deconstruct [2] print;;
it: Unit
Tag Cons_name (ParamPair (Ths 2) (0Ok [1))
~ reconstruct (Tag Cons_name (ParamPair (Ths 2) (0k [1)));;
it: List Int
it = [2]
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“~ let rec (map : (a ->b) -> ca ->cb) =

let rec (map0: (a -> b) ->ca ->cb) £ =

| Evr x -> Evr x

| Ths x -> Ths (f x)

| 0k x => 0k (map f x)

| ParamPair x y -> ParamPair (mapO f x) (mapO f y)
| Nest x -> Nest (map (map f) x)

| Tag n x -> Tag n (map0 f x)

in

fun f x -> reconstruct (deconstruct x (mapO £f))

map: (a -> b) ->ca->cb

Fig. 14.1 Generic mapping

Note that deconstruction only proceeds to one level, so that Ok is applied to the
empty list, not its representation.

~~ deconstruct (Leaf 3) print;;

it: Unit

Tag Leaf_name (Ths 3)

"7 deconstruct trl print;;

it: Unit

Tag Node_name (ParamPair (0k (Leaf 3)) (0Ok (Leaf 4)))

These representations can now be used to define generic functions that act on
any structures upon which deconstruct can be applied. For example, the mapping
functions above for List and Tree can be generalised to a single function map de-
fined in Fig. 14.1. Although the presence of the existential type is unusual, it has
little material effect: where one might expect to write mapO f (deconstruct x)
the actual program uses deconstruct x (mapO f) in which mapO f is the argu-
ment instead of the function.

However it is achieved, the use of map is quite straightforward. For example,

map plusOne [1,2,3];;
it: List Int

it = [2,3,4]

" map plusOne tri;;

it: Tree Int

it = Node (Leaf 4) (Leaf 5)

In the same style, one can define generic versions of left and right folds and
zipwith as in Fig. 14.2. For example, foldleft (+) 0 [1,2,3] evaluates to
6, as does foldright (+) [1,2,3] 0. Similarly, zipwith plus ([1,2,3],
[4,5,6]) evaluates to [5,7,9].
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~~ let rec (foldleft : (a -> b ->a) ->a ->cb ->a) =
let rec (foldleftO: (a => b ->a) ->a ->cb ->a) f z=
| Evr x => z

| Ths x => f z x

| 0k x -> foldleft f z x

| ParamPair x y -> foldleftO f (foldleftO f z x) y

| Nest x -> foldleft (foldleft f) z x

| Tag n x -> foldleftO f z x

in

fun f z x -> deconstruct x (foldleftO f z)

foldleft: (a -=> b ->a) ->a ->cb ->a

~~ let rec (foldright : (a => b ->b) ->ca ->b ->b) =
let rec (foldrightO: (a -> b ->Db) ->ca ->b ->Db) f =

| Evr x => fun z -> z

| Ths x -> £ x

| Ok x -> foldright f x

| ParamPair x y -> fun z -> foldrightO f x (foldrightO f y =z)
| Nest x -> foldright (foldright f) x

| Tag n x -> foldrightO f x

in

fun f x z -> deconstruct x (foldrightO f) =z

foldright: (a -> b ->b) ->ca ->b ->b

~“~let rec (zipwith: (a * b ->¢c) ->da*xeb ->dc) =
let rec (zipwithO: (a * b -> c) ->d a*eb->dc) f =
| (Evr x,_) -> Evr x
| (Ths x,Ths y) -> Ths (£(x,y))
| (0k x,0k y) -> Ok(zipwith f (x,y))
| (ParamPair x1 x2, ParamPair yl y2) ->
ParamPair (zipwithO f (x1,y1)) (zipwithO f (x2,y2))
| (Nest x,Nest y) -> Nest (zipwith (zipwith f) (x,y))
| (Tag m x, Tag n y) -> Tag m (zipwithO f (x,y))
in
fun £ -> | (x,y) ->
reconstruct (deconstruct x (fun x1 ->
deconstruct y (fun y1 -> zipwithO f (x1,y1))))

zipwith: (a * b ->¢c) ->da*xeb ->dc

Fig. 14.2 Some generic functional programs

14.5 Adding Cases to Existing Functions

Using algebraic data types, it is easy to write new functions for existing types, but
it often happens that one would like to add a new case to an existing function, e.g.
to modify isZero so that it is true of the complex number Complex 0.0 0.0. The
direct solution is to redeclare isZero by
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let isZero =
| Complex 0.0 0.0 -> True

| 0 => True
| 0.0 => True
| -> False;;

but this creates a new term which is systemically distinct from the old one. In par-
ticular, any functions that have already been defined using isZero will continue to
refer to the old program, not the new one. Better would be to modify the existing
function by adding a case using the syntax

isZero += Complex 0.0 0.0 -> True.

This would be equivalent to overwriting the old program with the pattern-matching
function displayed above.

Of course, changing the meaning of isZero in this way violates referential trans-
parency, the principle that the meaning of a term is determined at its point of declara-
tion, not its point of use. Referential transparency of isZero is protected, however,
since the additional case above produces an error message, namely

term error: isZero is not extensible

Rather, such additions are only allowed if the original declaration is marked as being
extensible, as in
let ext isZero =...

using the keyword ext. Then we have:

~~ isZero += | Complex 0.0 0.0 -> True;;
it: Unit
it = Un

In general, such extensions may change the behaviour of existing programs, so
it is good style to limit them to the declarations of the type whose values are being
affected. The program syntax is thus

datatype Complex = Cartesian of Float and Float
with

isZero +- | Cartesian 0.0 0.0 -> True

Cartesian: Float -> Float -> Complex

isZero: Complex -> Bool

A more interesting example of adding a case concerns the function

““toString;;
it: a -> String

which converts an arbitrary term into a string. Then the print function is defined by
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let (print: a -> Unit) x = printstring (toString x);;

print: a -> Unit

“~ print (Cartesian 1.1 2.2);;

it: Unit

Cartesian 1.1 2.2

A more familiar syntax for complex numbers represents the number above by

1.1 + 2.2i where 1 is the square root of -1. This can be introduced by adding
a case to toString in the type declaration, in

” datatype Complex = Cartesian of Float and Float
with

isZero += | Cartesian 0.0 0.0 -> True
and toString += | Cartesian x y ->
(toString x) =~ "+" ~ (toString y) ~ "i"

Cartesian: Float -> Float -> Complex
isZero: Complex -> Bool

toString: Complex -> String
“~“Cartesian 1.1 2.2;;

it: Complex

it = 1.1+2.21

In this example, note how the new case introduces new recursive calls to toString.
In turn, these will call the new version of toString not the old one.

To repeat, the newly added cases must exploit the new constructors of the de-
clared type. For example, the following code produces an error

” datatype Gotcha a = Gotcha of a
with
toString += | (x,y) -> "Gotcha!"
Gotcha: a -> Gotcha a
error: added cases must use a new constructor

Hence it is not possible to change the input-output behaviour of existing programs
by adding cases to existing functions within data type declarations. The only effect
may be to increase execution time caused by new match failures. This property is
called behavioural continuity. New behaviours can be added, but old ones cannot be
changed. Although intuitively clear, it has not been fully formalised.

14.6 The Expression Problem

The expression problem can be stated as follows. Algebraic data types allow new
functions to be defined on existing types. Object-oriented classes allow new types



160 14 Algebraic Data Types

to be supported by existing functions. How can both sorts of generalisation be sup-
ported simultaneously? The solution developed here is to use additional cases and
method specialisation: new cases can be added to existing functions or methods
provided that the new types specialise the old types, and the new pattern involves
one of the new constructors. The former restriction ensures type safety: the latter
restriction ensures a variant of referential transparency. Informally, it follows that

New data type or class declarations cannot affect the results of old programs.

To be precise, the referents of identifiers do change when cases are added, but this
only adds new behaviours without changing any existing ones. In this sense, refer-
ential transparency is replaced by behavioural continuity.

To formalise this as a theorem would require that the notions of type and class
declaration be formalised within the calculi, along with the process of adding cases.

14.7 Notes

Algebraic data types have played a central role in functional programming since
the 1970s, possibly beginning with [37]. They play a core part of the ML program-
ming language [77, 94] and Haskell [40] whose implementation was elucidated in
[83]. Pattern matching has been central to their exploitation. Various papers have
formalised patterns headed by constructors. For example, the pattern-matching cal-
culus [65] characterises different approaches to match failure. Connections to logic
were explored in [17, 66]. Efficient implementation of pattern matching was devel-
oped by Simon Peyton Jones [85].

There is a substantial literature on generic functional programming [4, 33, 44,
63]. The earliest accounts are probably PolyP [50, 62] and P2 [54, 61]. The former
led to Generic Haskell [45] based on Ralf Hinze’s work [43]. The latter developed
into Functorial ML [60] (joint work with Belle and Moggi) and then the constructor
calculus [55] and the first pattern calculus [58]. Generic Haskell uses a preprocessor
to produce specialised terms for a generic function on each type where it is used.
P2 and its successors employ representations to reduce all mapping to a finite col-
lection of cases, so that map can be compiled once and for all. In 2000-1, the author
developed an account [55] of functor polymorphism (see also Chap. 8) using pattern
matching with patterns headed by constructors. This developed into a typed pattern
calculus [58] which incidentally supported the static patterns employed here.



Chapter 15
Queries

Abstract This chapter introduces generic numerical operations, for addition, nega-
tion, etc. and also generic queries such as select and apply2all, that generalise
the standard queries of relational database programming.

15.1 Numerical Functions

Various arithmetic operations can be generalised to act on arbitrary data structures
by placing them within path polymorphic functions. Perhaps the simplest example
is negation, given by

~~ let rec (negate : a -> a) =
| (x:Int) -> negateint x
| (x:Float) -> negatefloat x
| x y -> (negate x) (negate y)
| x > x

negate: a -> a

” negate 3;;
it: Int
it = -3

“~ negate [1.1,2.2,3.3];;
it: List Float
it = [-1.1,-2.2,-3.3]

Integers and floats are negated using their primitive operations. Compounds are
negated component-wise: atoms are unchanged. For example, to negate Cartesian
1.1 2.2 (as introduced in Sect. 14.1) is to negate both Cartesian 1.1 and 2.2
which is to negate all three of Cartesianand 1.1 and 2.2.

Some detail of the type inference for negate can be exposed by switching to the
mode specialise by
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%show specialise;;
Now declaring negate displays the types of each case, in reverse order.

“~ let rec (negate : a -> a) =
| (x:Int) -> negateint x
| (x:Float) -> negatefloat x
| x y -> (negate x) (negate y)
| x -> x
specialising at a ...
specialising at b ...
specialising at Float
specialising at Int
negate: d -> d

Here is an example in which specialisation fails

“~ let (either0 : Coproduct a b -> b) =

[ Inl x -> x

| Int y > y

specialising at Coproduct a b ...

type error: ty_7251 and ty_7250 don’t unify

The second case has the correct typing, but the first case does not, since the result
type is (the internal representation of) a when it should be b. The error message may
appear strange, since it is usual to be able to unify type variables. However, the type
of the pattern is fixed when inferring a type for the body (as described in Chap. 12)
and so a and b are both fixed. The solution in defining either is to give it a more
precise type, as in

~~ let (either : Coproduct a a -> a) =
| Inl x > x
| Int y >y

specialising at Coproduct a a ...
specialising at Coproduct b c
either: Coproduct d d -> d

Then the additional type information can be hidden by

%hide specialise;;

“~ let (either : Coproduct a a -> a) =
[ Inl x -> x
| Int y > y

)y

either: Coproduct a a -> a
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“~ let rec (equal : a * b -> Bool) =

| (x1 x2,y1 y2) -> equal (x1,yl) && equal(x2,y2)

| (x,y) -> x eqcons y

equal: a * b -> Bool

"~ let ((==) : a -> a -> Bool) x y = equal (x,y);;
==: a -> a -> Bool

"~ let (!=) x y = mnot (x == y);;

!'=: a -> a -> Bool

Fig. 15.1 Generic equality

Even more general than negation is equality. At the level of constructors this is
given by the infix operation eqcons which is True when both its arguments are the
same constructor.

Leaf eqcons Leaf;;

it: Bool

it = True

7 Leaf eqcons Nilj;;
it: Bool

it = False

Note that there is no need for the arguments to have the same type. eqcons under-
pins the generic equality given in Fig. 15.1. In words, two data structures are equal
if either they are both compounds and have equal components, or they are the same
constructor. For example,

~~ [1,2,3] == [1,2,3];;

it: Bool

it = True

T3 == 45
it: Bool

it = False

“7 trl == tri;;
it: Bool

it = True

"~ Inl 3 == Inr 4.4;;
it: Bool

it = False

As with eqcons the arguments need not have the same type. Indeed, this cannot
be enforced anyway, as the final example above shows: both Inl 3 and Inr 4.4
have the same type Coproduct Int Float but their corresponding components
3 and 4.4 do not. There are occasions when such generality is welcome, but for
common purposes, it is safer to require that both arguments have the same type, as
when defining (==) above. Note the use of the brackets when defining (==). They
indicate that == is to be written infix.
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“~ let rec (plus : a * b -> a) =

| ((x:Int),(y:Int)) -> x plusint y

| ((x:Float),(y:Float)) -> x plusfloat y

| (x1 x2,y1 y2) -> plus (x1,y1) (plus(x2,y2))

| (x,y) -> if x eqcons y then x else Exception "plus"
plus: a * b -> a

" let ((+): a -> a -> a) x y = plus(x,y);;

+: a->a->a

Fig. 15.2 Generic addition

Following this approach, the generic addition is defined in Fig. 15.2. For exam-
ple,

~~ [1,2,3] + [4,5,6];;
it: List Int

it = [5,7,9]

Tz o+ oz

it: Complex

it = Cartesian 2.2 4.4

where z is Cartesian 1.1 2.2 as before.

15.2 Polymorphic Recursion

The simplicity of the program for negate disguises an important point, namely that
the recursive calls to negate are polymorphic. Consider negate (u v) for some
compound u v. In general, the types of u, v and u v are all different, so each call
to negate requires a different type. That is, the typing negate: a -> a) actually
asserts that negate has quantified type all a. (a -> a).

When the quantifiers are required for a function argument then they must be given
explicitly. For example, in Chap. 13 the self-application of the identity function was
given by the let-term

let identity x = x in identity identity 3
This functionality can also be given by the term
let (self_apply: (all a. (a -> a)) -> b ->b) f x =f f x;;
self _apply: (all a.a -> a) > b > b
self _apply (fun x -> x) 3;;
it: Int
it = 3
The explicit type for self_apply is necessary since it is typed before considering
its argument function. A slightly more interesting example is given by
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~~ let rec (select: (all a . (a -> List b)) -> (c -> List b)) f =
| z y -> append (f (z y)) (append (select f z) (select f y))
Iy —>fy

select: all a.(a -> List b) -> ¢ -> List b

Fig. 15.3 Generic search

~~ let (apply2both: (all a. (a -> Bool)) -> b -> Bool) test =
| (x,y) -> test x && test y
| x -> test x

apply2both: all a.(a -> Bool) -> b -> Bool

apply2both isZero (0,0.0);;

it: Bool

it = True

“” apply2both isZero 3;;
it: Bool

it = False

In the case for a pair, the test is applied to both components of the pair, whatever
their types might be. This is possible because the argument test has quantified type
all a.(a -> Bool). Note how the type information need only be given once:
instantiation of the type of test at each application is handled by type inference.
This style of polymorphism is central to the generic queries that follow.

15.3 Searching and Modifying

The program for selecting is defined in Fig. 15.3. For example,

“~ let (isInt: a -> List Int) =
| (x:Int) -> [x]

[ _ > 1

isInt: a -> List Int

“~ select isInt;;

it: a -> List Int

“7 select isInt tril;;

it: List Int

it = [3,4]

~~ select isInt [(1,2.2),(3,4.4)];;
it: List Int

it = [1,3]
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There are subtle restrictions on the interaction between selecting and type variables.
For example, to select all of the leaves from within a structure containing trees,
requires a function isLeaf but its return type is not clear. Each tree may have leaves
of a different type, so that the resulting list has entries of different types. Since bondi
supports subtyping, this can be given by

“~ let (isLeaf : a -> List Top) =
| Leaf x —> [x]

- > [;;

isLeaf: a -> List Top

~~ isLeaf (Leaf 3);;

it: List Top

it = [3]

~~ isLeaf (Leaf 4.4);;

it: List Top

it = [4.4]

in which the result type is a list of arbitrary things. Now

~ select isLeaf (Leaf 3,Leaf 4.4);;
it: List Top
it = [3,4.4]

produces a mixed list, as expected. Note that this result is not acceptable as a pro-
gram, however, since bondi assumes that this input contains a type error:

"7 [3,4.415;
type error: Float and Int don’t unify

If this term is required then more type information must be given, as in

~~ [(3:Top),(4.4:Top)];;
it: List Top
it = [3,4.4]

By quantifying the type variable c in the type of select and renaming it to be
the type symbol a one can also express this type as

(all a . (a -> List b)) -> (all a . (a -> List b))

so that the type of the argument and the result are the same. This reflexivity makes
it easy to combine select terms into ever more complex forms. For example, they
can be nested, as in

~ select isInt (select isLeaf (1, Leaf (2,3.3), Leaf 4));;
it: List Int
it = [2,4]

picks out the integers that are within leaves. That is, the inner select creates a
mixed list with entries (2,3.3) and 4 whose integers form the list [2,4]. Of
course, one can combine these selects into a single function
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~“~ let selectIsIntInlLeaf x = select isInt (select isLeaf x);;
selectIsIntInlLeaf: a -> List Int

so that the use of the top type disappears from the overall type.
There are various ways to iterate selections. For example,

“~ let rec (select_high:
(all a.(a -> List b)) -> (c -> List b))

f =
l zy —>
let xs = f (z y) in
if xs == []
then append (select_high f z) (select_high f y)
else xs
|l y >=fy

select_high: all a.(a -> List b) -> ¢ -> List b
~ select isLeaf (Leaf (Leaf 3), Leaf 4.4);;

it: List Top

it = [Leaf 3,3,4.4]

~~ select_high isLeaf (Leaf (Leaf 3), Leaf 4.4);;
it: List Top

it = [Leaf 3,4.4]

select_high stops searching as soon as it finds something, compared to select
which is exhaustive. Again,

~“~ let rec (select_low:
(all a.(a -> List b)) -> (c -> List b))

f =
| zy ->
let xs = append (selects f z) (selects f y) in
if xs == []
then £ (z y)
else xs
ly >fy

select_low: all a.(a -> List b) -> ¢ -> List b
~~ selects_low isLeaf (Leaf (Leaf 3), Leaf 4.4);;
it: List Top

it = [3,4.4]

select_low only keeps results from the deepest level. Various other combinations
are possible. If desired, one can build algebraic types to represent various combina-
tions of search criteria.

Closely related to searching is modifying. In a functional setting this is not in-
place updating, but rather creates a new data structure alongside the old one. In-
place update requires the imperative features of Chap. 17. The basic function is
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~~ let rec (apply2all : (all a. (a -> a)) -> b -> b) f =
| x y -> £ (apply2all f x (apply2all f y))

| x > f x;;

apply2all: all a.(a -> a) > b > b

Fig. 15.4 Applying to all

apply2all as described in Fig. 15.4. Here is an example that adds one to integers
within a structure

“~ let (anyPlusOne : a -> a) =
| (x:Int) -> x + 1
[ x -> x
anyPlusOne: a -> a
~ apply2all anyPlusOne [(1,2.2),(3,4.4),(5,6.6)];;
it: List (Int * Float)
it = [(2,2.2),(4,4.4),(6,6.6)]

Just like select, the result type of apply2all can be quantified so that it is the
same as the argument type, and so more complex, and iterated versions of update
can be applied.

15.4 Notes

Most programming languages have tried to simplify the use of arithmetic functions
across a variety of types of integers and floats, be they short, long, exact, etc. One
option is to use type inference to disambiguate. SML [94] does this for addition of
integers from that of floats, but cannot add lists of integers. Haskell [84] has a type
class Num of types that support arithmetic. Once Int and Float are in the class then
so are List Int and Int * Float, etc. by careful handling within the compiler.
Object-oriented languages commonly have classes for such operations but they do
not lift to List Int, etc. There does not appear to be an existing language that
captures all of these possibilities in a uniform manner.

The generic queries are closest in spirit to those of the SQL language for rela-
tional databases, though the latter are restricted to tables rather than arbitrary data
types. Similar expressive power is added to Haskell using the “scrap your boiler-
plate” approach [68, 69, 70]. Also, the explicit use of quantified types in programs
is reminiscent of Haskell [84].
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Dynamic Linear Patterns

Abstract This chapter introduces dynamic patterns, and the associated linear types
and terms. Basic examples include the linear equality, and the generic eliminator.
Further potential is discussed.

16.1 Generic Elimination

Here are some examples that illustrate the potential, and some limitations of dy-
namic patterns. Further examples are under development elsewhere.

As well as the path-polymorphic equality introduced in Sect. 15.1 one may define
equality for linear terms using a dynamic pattern, by

~~ let linequal = fun x --> | {} x -> True | y -> False;;
linequal: lin a -> b -> Bool

It is called 1inequal since the first argument must be a linear term, as indicated
by the long arrow —-> in the abstraction. The resulting type 1in a -> b -> Bool
requires its first argument to be of type 1in a, i.e. to be a linear term of type a. In
the first pattern | {} x -> True the braces {} indicate that the pattern is dynamic.
Since they contain no symbols, the case does not have any binding symbols, and so
x is a free variable in the pattern. The second case | y —-> False is a static pattern,
just as before. This equality program uses its first argument as the pattern to match
against its second argument. As with equal, the types of the two arguments need
not be the same. This proves useful when comparing components. Here are some
examples and counter examples.

~~ linequal [1,2,3] [1,2,3];;
it: Bool

it = True

~~ linequal 4 (2+2);;

it: Bool

it = True
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~~ linequal (2+2) 4;;
term error: + not a linear variable

In the first example, the list [1,2,3] of type List Int is alsorecognised as a linear
term, of type 1in (List Int). The error arises in the third example because 2+2
is not a linear term.

The generic eliminator is given by

“~ let elim = fun (x: lin (a -> b)) -—> [{y} xy > y;;
elim: 1lin (a -=> b) -=> b -> a

In the pattern x y above, the symbol x is free and y is bound. The first argument
to elim must be a linear term, as indicated by the long arrow -->. Here are some
examples.

elim Cons;;

it: (List a -> List a) -> a

~“~ elim Cons (Cons 3);;

it: Int

it = 3

elim Cons removes the constructor Cons from Cons 3. Here is a more interesting
example.

~ lin singleton x = [x];;
singleton: a -> List a

~ elim singleton [3];;
it: Int
it = 3
The declaration 1in singleton x = [x] is a form of let-declaration in which
singleton is declared to be a linear term, and thus suitable for use in a dynamic
pattern. Note that the inferred type is of singleton as a linear term; as a term its
type would be 1in (a -> List a).

Linear terms must use their argument exactly once. Counter-examples include

lin null x = [];;

term error: x is a missing binding symbol

~~ lin two x = (%,%);;

term error: x is a duplicate binding symbol
“” 1lin idBool x = if True then x else True ;;
term error: cond(True) (x) (True) is not linear

The conditional above must fail since its reduction will lose type information. An-
other constraint is that linear terms are required to have their most general type. The
most common example of this restriction in practice concerns wildcards, as in

"~ let f = fun x --> fst x;;

f: a*x b -->a

B

type error: ty_4921 and ty_4919 * ty_4920 don’t unify
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This error message exposes the internal representations of the type variables, a and
b and the type of _ in the hope that this will prove useful. The program elim _
produces a similar error, due to the risk that it will expose type information that
should remain hidden, as described in Sect. 9.1.

Here is the pathological example that can cause problems if binding symbols are
handled ambiguously, but is here quite safe.

~~ let pathology = fun x --> | {} (fun x -> x) x -> True ;;
pathology: 1lin a -> a -> Bool

~~ pathology [1 [1;;

it: Bool

it = True

The reduction of (fun x -> x) x proceeds without incident.

16.2 Salaries or Wages

It often happens that the same semantic concepts are represented in different ways.
For example, the salaries developed earlier may also be represented as wages given
by the declarations:

datatype Currency = AUSD | EURO | USD | YUAN;;
datatype Wage = Wage of Currency and Float ;;

Now wages can be increased using

let incrWage f = | Wage ¢ s -> Wage c (f s);;

A more general approach is to define

let incr_salary salary f = | {x} salary x -> salary (f x);;

in which the representation of the float inside the salary or wage is given by a free
variable salary. Then, for example, we have

incr_salary (Wage EURO) twopercent (Wage EURO 1.0);;

Of course, this example is rather fragile, since the operation being performed may
have a different algorithm in each case. For this, object-orientation is required, as
developed in Chap. 18.

16.3 Notes

The original bondi used linear terms as in the extension calculus. This was followed
by experiments in dynamic typing, before returning to the original idea.



Chapter 17
State

Abstract State is represented by references, built using a constructor Ref. As well as
the usual imperative features, such as for- and while-loops, bondi supports a generic
iterator, a path polymorphic function that executes a command at each step. Cycles
can be avoided by using references to references as backward links, and avoiding
these during iteration.

17.1 References

Turing machines compute by reading and writing squares of a tape. Let us gener-
alise the tape to a store in which locations have values that can be read and written.
bondi uses references to handle locations. These can be created, assigned and read,
but their destruction is handled implicitly, using garbage collection. The basic ma-
chinery is illustrated by the following example in bondi.

let x = Ref 3 in

x = Ix + 1;
%3

it: Int
it = 4

The constructor Ref has type

Ref;;
it: a -> ref a

where ref a is a new type form, of references to values of type a. Note that ref is
not a type constant, even though Ref is a constructor. This choice means that type
variables cannot be instantiated to ref but that pattern matching on references is still
possible. The syntax !x represents the value stored at location x, which is obtained
by applying the case Ref x — x. The semicolon is used to sequence a command
followed by a term; it can be expressed using A-abstraction.
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The assignment x=!x+1 changes the value of x to be one more than the old value
of x. It is important to note that attempting to assign to a location whose type is
quantified produces an error, as in

let x = Ref Nil in
x = Cons 1 !x;
x = Cons True !x; (* i1l typed! *)
'x
term error: x is too polymorphic to be assignable

Without the restriction, the result would be the mixed list Cons True (Cons 1 Nil).
The actual display on screen is handled by another primitive operation called
printstring which takes a string argument and produces a command, as in

printstring "abc";;
it: Unit
abc™”

The generic printer in bondi is given by applying printString to the result of
toString in

“~ let print x = printstring(toString x);;
print: a -> Unit

Commands have type Unit whose only constructor is Un : Unit. This may also
be written as (). As well as these fundamental commands, bondi also supports
while-loops and for-loops. For example, here are two more accounts of the factorial
function

“"let factorial n =
let x = Ref n in
let res = Ref 1 in
while (!x > 0) do
(res = 'res * Ix; x = 'x - 1);
Ires
factorial: Int -> Int
~~ factorial 5;;

it: Int
it = 120
and

“~ let factorial2 n =

let res = Ref 1 in

(for 1 =1 ton do res = !res * i);
lres;;

factorial2: Int -> Int

~~ factorial2 5;;
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datatype LinkedList a = LLnode of ref a and ref (LinkedList a)
with
toString += | LLnode v n as z —>

let rec (aux: a -> String) =

| LLnode vl (Ref (Exception "nil")) -> toString !vil

| LLnode vi n1 -> (toString !vi) ~ "," ~ (aux !ni)

[ =>

in

[~ (aux z) “"]"

LLnode: ref a -> ref (LinkedList a) -> LinkedList a

Fig. 17.1 Linked lists

it: Int

it = 120

~~ factorial2 (-7);;
it: Int

it =1

Note that for-loops halt if the lower bound is higher than the upper bound.

17.2 Linked Lists

In imperative languages such as C, complex data structures are built from assignable
locations. For example a linked list consists of a number of nodes, each of which
has a reference to the node value and another to the next list entry. In bondi these
can be defined using data type declarations involving references, as in Fig. 17.1. As
well as the declaration of the constructor LLnode there is a new case for the function
toString used in printing. Here are some examples

let 11nil = | Un -> Ref (Exception "nil");;
1lnil: Unit -> ref a

~~ let n0 = LLnode (Ref 0) (11nil(Q)) ;;
n0: LinkedList Int

n0 = [0]

~“~ let nl = LLnode (Ref 1) (Ref n0);;
nl: LinkedList Int

ni = [1,0]

“~ let n2 = LLnode (Ref 2) (11nilQ)) ;;
n2: LinkedList Int

n2 = [2]

~“~ let n3 = LLnode (Ref 3) (Ref nl);;
n3: LinkedList Int

n3 = [3,1,0]
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Unlike lists in the functional style, it is easy to add entries in the middle of a linked
list, as follows

let (insert : LinkedList a -> LinkedList a -> Unit) =
| LLnode vl nl1 -> | LLnode v2 n2 ->

nl = 'n2;

n2 = LLnode v1 nl

insert: LinkedList a -> LinkedList a -> Unit

“” insert n2 n3;;

it: Unit

"7 n3;;

it: LinkedList Int

it = [3,2,1,0]

The insertion of n2 at n3 has made n2 the next of n3, and changed the next of n2 to
be ni.

One can define mapping for these lists by pattern matching on LLnode but a more
general approach is to use a generic iterator. A first attempt is given by

let rec (iter0: (all a. (a->Unit)) -> b -> Unit) f z =
f z;
(
| zy -> (iter0 f z); (iter0O f y)
l'y > O
) z
iter0: (all a.a -> Unit) -> b -> Unit
In structure it is very similar to apply2all except that it does not recreate a data
structure, but merely sequences the commands associated to the components, in a
form of depth-first traversal. For example, define

let anyIncr =
| (Ref (x:Int)) as z > z = !z + 1
I - > 0O
anyIncr: a -> Unit
~ iter anylIncr n3; n3;;
it: LinkedList Int
it = [4,3,2,1]

Doubly linked lists can be defined in a similar fashion to linked lists, in Fig. 17.2.
Now each node has a previous, as well as a next, node. For example,

7 let makeDLnode x =
DLnode x (Ref (Exception "nil"))
(Ref (Ref (Exception "nil")));;
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datatype DLinkedList a = DLnode of ref a and ref (DLinkedList a)

and ref (ref (DLinkedList a))
with
toString += | (DLnode v n p) as z —>
let rec (aux: a -> String) =
| DLnode vi (Ref (Exception "nil")) _ -> (toString !v1)
| DLnode v1 nil -> (toString !v1) ~ "," ~ (aux !nl)
[ ="

in
||[|l -~ (aux Z) '"Il]ll

3

Fig. 17.2 Doubly linked lists

makeDLnode: ref a -> DLinkedList a
~“~ let n0 = makeDLnode (Ref 0);;

n0:

n0

nil:

nl

n2:

n2

n3:

n3

DLinkedList Int

= [0]

let nl1 = makeDLnode (Ref 1);;
DLinkedList Int

= [1]

let n2 = makeDLnode (Ref 2);;
DLinkedList Int

= [2]

let n3 = makeDLnode (Ref 3);;
DLinkedList Int

= [3]

Insertion is given by

~“~ let (d_insert

| DLnode vl nl pl-> | DLnode v2 n2 p2 ->

EE)

nl = !n2;
pl = Ref (DLnode v2 n2 p2);
n2 = DLnode vl nl pil

d_insert: DLinkedList ¢ -> DLinkedList c -> Unit

it:

it:

it:

it:

it

d_insert nl n0O ;;
Unit

d_insert n2 nl ;;
Unit

d_insert n3 n2 ;;
Unit

n0; ;

DLinkedList Int
= [0,1,2,3]

: DLinkedList a -> DLinkedList a -> Unit) =

177



178 17 State

let rec (iter: (all a. (a->Unit)) -> b -> Unit) f z =
f z;

(

| Ref (Ref _) -> O

| zy -> (iter £ z); (iter f y)

'y > O

) z

Fig. 17.3 The generic iterator

As it stands, the program iter0 anyIncr nO will not terminate, since the iterator
will go to previous nodes as well as next nodes. To avoid this, the previous nodes are
given by a reference to a reference, or pointer not just a reference. Now it suffices
to block iteration over pointers, using the iterator defined in Fig. 17.3. Now

iter anyIncr nO ;;
it: Unit

“~ n0;;

it: DLinkedList Int
it = [1,2,3,4]

17.3 Notes

The approach to references is taken from ML [77]. Other approaches to adding state
to A-calculus include the Algol-like languages [79], and the IO-monad of Haskell
[86].



Chapter 18
Object-Oriented Classes

Abstract Object-oriented classes in bondi are able to support all the usual features
through pattern matching, since the canonical pattern for an object in a superclass
also matches against objects in the subclass. The language provides a natural ac-
count of specialised methods, binary methods and type parameters. All the various
forms of polymorphism work together in a natural manner.

18.1 Classifying Objects

An object may be thought of as a self-contained package containing both data and
functions, both fields and methods. Being self-contained, the exact number and na-
ture of its attributes is determined by the object, and not the environment in which
it sits. This gap between the expectations of the environment and the capacities of
the object is bridged by subsumption, by allowing the actual (or dynamic) type of
an object to be a subtype of the expected (or static) type. Independence of objects
is further enhanced by allowing them their own internal state. Thus, the existing
machinery for subtyping and state will suffice to support object-orientation.

Further, since many objects share the same algorithms for methods, it is natural
to collect objects into classes that share a suite a methods. That is, each object
has its own internal state for its fields, while methods are held in the class. Then
the collection of fields can be described by an algebraic data type upon which the
methods act by pattern matching. That is, a method is given by a method extension,
with its type given by a choice between function types, as described in Sect. 11.7.

The resulting approach is able to handle many of the tricky issues that have arisen
in supporting object-orientation, including polymorphism in argument types and in
return types, and especially ad hoc subtyping in return types. It achieves all of this
while also supporting type parameters and the various other sorts of polymorphism.
Each feature is illustrated by reworking examples from previous chapters.

B. Jay, Pattern Calculus, 179
DOI 10.1007/978-3-540-89185-7_18, (© Springer-Verlag Berlin Heidelberg 2009
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class Name {

name : String;

get_name = { | () -> !this.name }
set_name = { fun n -> this.name = n }
with

toString += | Name x y -> toString !y
}

Fig. 18.1 Names

18.2 Classes

Example 18.1. Names
Classes in bondi use a type variable to represent any unknown fields. A simple
example is the class Name given in Fig. 18.1 to which the system response is:

class Name {

name: Name[a] -> ref String
get_name: Name[a] -> Unit -> String
set_name: Name[a] -> String -> Unit
toString: Name[a] -> String

}

This declaration introduces a new type constant Name. A typical name will have
type Name 7T for some type T that types any additional fields that a name may have.
This will typically be written Name [7] for reasons that will become clear when
considering subclasses. If T is Unit then this may be further abbreviated to Name[].
This is the type of a new name. Further, if 7 is Top then it may be written as Name.
The sole constructor for names is

Name :a -> ref String -> Name[a]

though its explicit use in programs is not really necessary or encouraged. The at-
tributes of the class are the field name and the methods get_name and set_name.
The keyword this refers to the object under discussion. The dot notation, as in
this.name, is used to invoke methods. The type of each attribute is shown in the
response. However, attributes are not themselves programs. For example,

~ name; ;
term error: name is an attribute

However, they can be converted into functions by n-expanding, as in

let nameName x = x.name;;
nameName: Name -> ref String

The significance of this will be clearer when considering subclasses in Sect. 18.3.
The addition of new cases is just as in algebraic data types, as described in Sect. 14.5.
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class Person {
name : String;
position : Int;
friends : List Person;
get_name = { | () -> !this.name }
set_name = { fun n -> this.name = n }
get_position = { | () -> !this.position }
set_position = { fun p -> this.position = p }
get_friends = { | () -> !this.friends }
set_friends = { fun p -> this.friends = p }
move = { fun d -> this.set_position (this.get_position() + d) }
moveClone = { fun d ->
let res = clone this in
res.set_position (this.get_position() + d);
res }
closer = { | (x:Person) ->
if this.get_position() <= x.get_position()
then (this : Person)
else (x : Person)
}
with
toString += | (x:Person) -> x.get_name ()

}

Fig. 18.2 Persons

This mechanism allows generic functions such as toString to be given new cases,
as well as allowing method specialisation, as will be described in Sect. 18.3.
New names can be created using new Name as in

“~ let fred = new Name in
fred.set_name("Fred");

fred;;
it: Name
it = Fred

Example 18.2. Persons

A slightly richer class, describing a person, is given in Fig. 18.2. The Person
class has fields for a name, a position, and a list of friends. The output is not dis-
played. The friends may be of any sort, and so have type List (Person[Top]).
The methods are for getting and setting the name and position, for moving the posi-
tion, for making a clone at a new position, and for comparing persons according to
their position. The method moveClone uses the built-in operation clone to make a
shallow copy of this. It has type

Person[a] * Int -> Personla]

whose return type Person [a] is exactly the same as that of the invoking object. By
contrast,
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closer: Person[a] -> Person[b] -> Person[Top]

takes an object (of type Person[a] for some a) and an argument which is some
other sort of person (of type Person [b] for some b) and, since either of them could
be the result, produces a person of unknown class (of type Person[Top]). These
two methods illustrate the expressive power that comes from using type variables to
represent different possibilities. Alternative types for such binary methods include

Person[a] * Person[b] -> Person[b]
Person * Person[b] -> Person[b]
Person * Person -> Person/[]
Person * Person -> Person

Excluded from this list is the type Person[a] * Person[al] -> Person[a]
since this is not a method type, as explained in Chap. 11.
Objects in the class are created using the keyword new as before. For example,

“~ let homer = new Person;;
homer: Person[]
homer = void

~ homer.set_name("Homer") ;
homer.set_position(5);
homer.set_friends([]);
homer.move 3;

(homer ,homer.get_position())
it: Person[] * Int

it = (Homer,8)

Another interesting point is that the classes Name and Person both have a field
name. This does not corrupt any existing programs since name is not itself a program
and the function nameName is unaffected. However, the same syntax used to define
nameName will now have a different meaning

“” let personName x = x.name;;
personName: Person -> ref String

since the type is determined by the latest case for name which is now given by the
Person class. To access the earlier meaning requires some additional type informa-
tion, as in

~~ let nName (x:Name) = x.name;;
nName: Name -> ref String

Internally, the type of the attribute name is now
(Person -> ref String) & (Name -> ref String)

but this method type cannot be accessed directly in bondi since it is dynamic: new
choices may be added at any time.
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class ProperPerson extends Person {
proper : String;
get_proper = { | () -> !this.proper }

set_proper = { fun n -> this.proper = n }

get_name = { | () -> super.get_name() =~ " " ~ (this.get_proper()) }
with

toString += | (x:ProperPerson) ->

match x.get_name () with

| Exception "void" -> "name is void"

| str -> str

}

class ProperPerson {

proper: ProperPerson -> ref String
get_proper: ProperPerson -> Unit -> String
set_proper: ProperPerson -> String -> Unit
get_name: ProperPerson -> Unit -> String

}

Fig. 18.3 Proper persons

18.3 Subclasses

Example 18.3. Proper Persons

Now let us consider a subclass of Person of people that have a proper name
given in Fig. 18.3. The keyword extends is used to indicate the subclass relation-
ship. As before, the new class has its own term constructor

ProperPerson : a * ref String -> ProperPerson a

but this does not mention the type Person. Rather, the interpretation of new is
changed to produce something of type ProperPerson[] which is syntax for

Person (ProperPerson Unit)

That is, a proper person is a person whose extra field has type ProperPerson a
for some type a. By doing things in this way, there is no need to add a subtype
relationship between ProperPerson and Person: every proper person is a person
automatically. For example, the typical pattern for a proper person is

Person (ProperPerson _ _) _

Itis easy to add new methods, such as get_proper. Of more interest is to modify
an existing method. Here get_name combines the get_name method of its super-
class (the Person class) with the proper name. Since the new function can apply to
arguments of the old function, there is now a risk of ambiguity, but in both cases the
result is a string, so specialisation is okay. Note that the function toString has not
been changed, but invokes the method get_name which has been specialised in the
subclass to print the proper name as well as the given name. The latter is accessed
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using the keyword super. Its effect on evaluation is to reject the first pattern that
matches and use the next one. Here is an example.

7 let harry = new ProperPerson;;
harry: ProperPerson[]

harry = name is void
harry.set_name("Harry") ;
harry.set_position(0);
harry.set_proper ("Joy");

harry;;

“~ it: ProperPerson[]

it = Harry Joy

This example illustrates dynamic dispatch in that the meaning of get_name is
determined at the point of evaluation, not the point of its introduction. This can be
further illustrated by considering a mixed list of friends, as in

"7 let honey = new Person;;
honey: Person[Unit]
honey = void
“~ honey.set_name ("Honey") ;
honey.set_position 1;
honey.set_friends [(homer:Person),harry];
let £ x (y: Person) = x ~ y.get_name() ~ ", " in
honey.get_name()"" knows "~

(foldleft £ "" (honey.get_friends()));;
it: String
it = "Honey knows Homer, Harry Joy, "

Note that the type of homer must be explicitly coerced to Person since otherwise
type inference will try to create a list whose entries are of type Person[]. Here the
method get_name is applied to each person in the list of friends, with the choice
of specialisation determined by pattern-matching on the structure of the person ob-
ject. Note the easy interaction between the structure polymorphic foldleft and the
method get_name.

18.4 Specialised Methods

Example 18.4. Points and Circles

Now let us consider how subtyping may appear in result types, by redeveloping
the points and circles of Sect. 11.7 using classes instead of data type declarations.
The class of points is given in Fig. 18.4.

Colours can be given by a data type declaration

datatype Colour = Colour of Int
with toString += | Colour x ->
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class Point {

x_coord : Float;

y_coord : Float;

get_x_coord = { | () -> !this.x_coord }
set_x_coord = { fun d -> this.x_coord = d }
get_y_coord = { [ () -> !this.y_coord }
set_y_coord = { fun d -> this.y_coord = d }
is_good = { this.get_x_coord() >= 0.0 }

with
toString += | Point z (x,y) ->
"Point ("~ (toString !x) ~ "," ~(toString !y)~ ")"
}

class ColourPoint extends Point {

colour : Colour;

get_colour = { |() -> !this.colour }

set_colour = { fun x -> this.colour = x }

with

toString += | (x: ColourPoint) ->
"CPoint ("~ (toString (x.get_x_coord())) ~ ","
(toString (x.get_y_coord())) =~ "," ~
(toString (x.get_colour())) ~")"

}

Fig. 18.4 Points and coloured points

(] 1 -> "reqd"

| 2 -> "green"

[ 3 => "blue"

| y => "Colour "~ (toString y))
X

let red = Colour 1;;
let green = Colour 2 ;;
let blue = Colour 3;;

and these can be used in defining the class of coloured points in Fig. 18.4.

Now consider the classes of circles and coloured circles defined in Fig. 18.5.
The centre of a circle is a mystery point. However, the method get_centre of a
coloured circle is specialised to produce a coloured point, and so has specialised
type
ColourCircle[al] -> Unit -> ColourPoint[]

as well as Circle[d] -> Unit -> Point. Note that if the centre was made to
have type Point [] then this method specialisation would not work. That is, some
care is required in defining the superclass to allow this later specialisation. Here is
an example.

let x = new ColourCircle in
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class Circle {

centre : Point;

radius :Float;

get_centre = { |() -> !this.centre }

set_centre = { fun x -> this.centre = x }

get_radius = { |() -> !this.radius }

set_radius = { fun x -> this.radius = x }

}

class ColourCircle extends Circle {

col : Colour ;

get_col = { | () -> !this.col }

set_col = { fun x -> this.col = x }

get_centre = { | () ->

let res = new ColourPoint in

res.set_x_coord ((super.get_centre()).get_x_coord());
res.set_y_coord ((super.get_centre()).get_y_coord());
res.set_colour (this.get_col());

res }

}

Fig. 18.5 Circles and coloured circles

let p = new Point in

p.x_coord = -1.1;

p.y_coord = 2.2;

X.centre = p;

x.col = blue;

(x.centre,x.get_centre());;

it: Point * ColourPoint[]

it = (Point (-1.1,2.2),CPoint(-1.1,2.2,blue))

The centre field of x is a mere point, but the get_centre method returns a coloured
point, whose colour is that of the circle.

18.5 Parametrised Classes

Example 18.5. Linked Lists

Now let us consider type parameters, by defining a class of nodes for linked lists,
and then defining a subclass of doubly linked lists, much as in Sect. 17.2. The nodes
of the linked lists are given in Fig. 18.6. The declaration creates types of the form
Node <a> [b] where a represents the type of the node value and b represents the
type of any additional fields. The function toString is modified to print out the
whole list from the node of interest.

Here are some examples.

“” let x0 = new Node <Int> ;;
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““class Node <a> {

value : a ;

next : Node <a>;

getValue = { |() -> !this.value }

setValue = { fun v -> this.value = v }

getNext = { | () -> !this.next }

setNext = { fun (n: Node <a>) -> this.next = n }

with
toString += | (x: Node<a>) ->
let rec (aux: ¢ -> String) =

| Node _ (v,Ref (Exception _)) -> toString !v

| Node _ (v,n) -> (toString !v) ~ "," ~ (aux !n)
| _=> "

in

("[" - (aux x) ~"1" , False)

}

class Node {

value: Node<a> -> ref a

next: Node<b> -> ref Node<b>
getValue: Node<c> -> Unit -> ¢
setValue: Node<d> -> d -> Unit
getNext: Node<e> -> Unit -> Node<e>
setNext: Node<f> -> Node<f> -> Unit
insert: Node<g> -> Node<g> -> Unit
toString: Node<h> -> String

}

insert = { fun (n: Node<a>) -> n.setNext (this.getNext()); this.setNext n }

Fig. 18.6 Nodes

x0: Node<Int>[]

x0 = [_void,]

“” let x1 = new Node<Int> ;;
x1: Node<Int>[]

x1 = [_void,]

"~ let x2 = new Node<Int> ;;
x2: Node<Int>[]

x2 = [_void,]

“” x0.setValue O;

x1.setValue 1;

x2.setValue 2;

x0.setNext x2;

x0;;
it: Node<Int>[]
it = [0,2,]

x0.insert x1;
x0;;
it: Node<Int>[]
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class DNode <a> extends Node {
previous : ref (DNode <a>);
getPrev = { | ()-> !(!this.previous) }
setPrev = { fun (p:DNode <a>) -> this.previous = Ref (p:DNode <a> ) }
setNext = { | (n:DNode<a>) ->

super.setNext n;

n.setPrev this

| (n:Node<a>) -> super.setNext n

Fig. 18.7 Doubly linked nodes

it = [0,1,2,]

"~ let r4 = new Node <Float>;;
r4: Node<Float>[]

r4 = [_void,]

"~ r4.setValue 4.4;

rd;;
it: Node<Float>[]
it = [4.4,]

Iteration is illustrated by

let anyNode =
| (x:Node <s> b) -> print (x.getValue())
I - > 0O
anyNode: a -> Unit
~ iter anyNode x0;;
it: Unit
0127~ iter anyNode r4;;
it: Unit
4.4~

Note how this works with either integers or floats.

Example 18.6. Doubly linked Lists
The doubly linked lists have nodes given in Fig. 18.7. Here is the earlier example
modified to produce doubly linked lists.

“” let dO = new DNode <Int> ;;
dO: DNode<Int>[]

do = [_void,]

“~ let d1 = new DNode<Int> ;;
d1l: DNode<Int>[]

d1 = [_void,]

“” let d2 = new DNode<Int> ;;
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d2: DNode<Int>[]
d2 = [_void,]

“~ d0.setValue O;
dl.setValue 1;
d2.setValue 2;
dO0.setNext d2;

do;;
it: DNode<Int>[]
it = [0,2,]

7 d2.getPrev();;
dO.insert di;

do;;
it: DNode<Int>
it = [0,2,]

7 d2.getPrev();;
it: DNode<Int>
it = [1,2,]

Note that the iterator would not terminate if the field prev were of type DNode<a>
instead of ref (DNode<a>) since the iterator is defined to ignore reference to ref-
erences, as discussed in Sect. 17.2.

This could be used to develop examples of sorting algorithms, etc. that work
seamlessly for both linked lists and doubly linked lists. Then the polymorphism in
data, path and inclusion are all present simultaneously.

18.6 Building on Standards

Consider the following scenario. Several organisations have agreed to a standard
for representing common concepts such as customers, but when these concepts are
used in high-level classes then the uniform treatment is lost. Uniformity can be
recovered by using path polymorphic functions that act uniformly with respect to all
the higher classes. The technique is illustrated using another sort of query, findOne
in Fig. 18.8, that performs a depth-first search. For example

~~ let (isNegFloat: a -> Maybe Float) =

| (x : Float) -> if x<0.0 then Some x else None
| _ -> None

~~ findOne isNegFloat [1.,2.,-3.,-4.]1;;

it: Maybe Float

it = Some -3.

The ProperPerson class defined in Fig. 18.3 is extended to define a class
Customer in Fig. 18.9. This yields
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match f x with
| Some r -> Some r
| None ->
match x with
| yz->
begin
match findOne f y with
| None -> findOne f z
|l r->r
end
| _ -> None

~~ datatype Maybe a = None | Some of a;;
“~ let rec (findOne: (all a. (a -> Maybe b)) ->
c -> Maybe b) f x =

Fig. 18.8 Finding a solution

“"let john = new Customer;;
john.set_name "John";
john.set_proper "Smith";
john.set_balance (120.);;
john.get_balance();;

let jane = new Customers;;
jane.set_name "Jane";
jane.set_proper "Doe";
jane.set_balance (-75.);;
jane.get_balance();;

and

~~ findOne isNegFloat [john, jane];;
it: Maybe Float
it = Some -75.

Of course, this loses the identity of the found customer, so define

~~ let (isNegCustomer: a -> Maybe Customer) =

| (x : Customer) ->

if x.get_balance()<0.0 then Some x else None

| _ -> Nomne

isNegCustomer: a -> Maybe Customer

“~ findOne isNegCustomer [john,jane];;
it: Maybe Customer

it = Some Jane Doe
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class Customer extends ProperPerson {
balance : Float;

get_balance = { | () -> !this.balance}
set_balance = { fun n -> this.balance = n }

}

class Valued extends Customer {
high_interest : Float;
get_high_interest = { | () -> !this.high_interest}
set_high_interest = { fun n -> this.high_interest = n }
get_balance = { | O ->

super.get_balance() + this.get_high_interest() }
}

Fig. 18.9 Customers and valued customers

Suppose now that several organisations have agreed to use the customer class,
but each uses the class in its own way. For example, Fig. 18.10 defines classes Bank
and Division and Corporation which can be used in the following examples.

let abc = new Bank;;

abc.set_name "Australian Banking Company"
abc.set_customers [john, jane];

findOne isNegCustomer abc;;

yields jane once again, as does the following

let divl = new Division;;
divl.set_customers [john];
divl.get_customersQ);;

let div2 = new Division;;
div2.set_customers [jane];
div2.get_customers();;

let corp = new Corporation;;
corp.set_divisions [divl,div2];;

findOne isNegCustomer corp;;

Finally, one may create subclasses of Customer as in the class Valued of valued
customers defined in Fig. 18.9. Then

let alan = new Valued;;
alan.set_name "Alan";
alan.set_proper "Key";
alan.set_balance (-40.0);
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class Bank {

name : String;

customers : List Customer;

get_name = { | () -> !this.name}

set_name = { fun n -> this.name = n }
get_customers = { | () -> !this.customers}
set_customers = { fun x -> this.customers = x }

}

class Division {

name: String;

customers: List Customer;
get_name = { | () -> !this.name}

class Corporation {

name : String;

divisions: List Division ;
get_name = { | () -> !this.name}

set_name = { fun n -> this.name = n }
get_customers = { | () -> !this.customers}
set_customers = { fun x -> this.customers = x }
¥

set_name = { fun n -> this.name = n }
get_divisions = { | () -> !this.divisions}
set_divisions = { fun x -> this.divisions = x }
}

Fig. 18.10 Banks and corporations

alan.set_high_interest 50.0;
alan.get_balance();;

abc.set_customers

(Cons (alan: Customer) (abc.get_customers()));;

findOne isNegCustomer abc;;

once again yields jane.

18.7 Updating Salaries

The problem posed at the beginning of this book was to define a function for updat-
ing salaries in the most general fashion possible. The solution builds on the classes

Person and ProperPerson introduced in Sect. 18.3.
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class Employee extends ProperPerson {

salary : Float ;

get_salary = { |() -> !this.salary}

set_salary = { fun s -> this.salary = s}

update_salary = { fun p -> this.salary = !this.salary *(1.0 +p) }
}

Fig. 18.11 Employees

Example 18.7. Employees
Nested subclasses are easily defined. For example, an employee is a proper per-
son, as defined in Fig. 18.11. Now the type syntax Employee [a] denotes the type

Person (ProperPerson (Employee a))

for some fresh type variable a without having to specify all of the superclasses of
Employee explicitly. In the same manner, the pattern (x:Employee) is syntactic
sugar for the pattern

Person (ProperPerson (Employee _) _) _ as x
Here is an example of an employee

7 let busy = new Employee;;
busy: Employeel[]

busy = name is void

~~ busy.set_name("busy");
busy.set_proper("beaver");
busy.set_salary(2.00);
busy.set_position(7);

busy; ;

it: Employee[]

it = busy beaver

Building on the class of employees, we can define in Fig. 18.12 a class of man-
agers, who get a bonus that is updated along with salaries. Here is a manager.

"7 let lazy = new Manager;;
lazy: Manager[]

lazy = name is void
“~lazy.set_name("Lazy");
lazy.set_proper("B");
lazy.set_salary(4.00);
lazy.set_department ("depl");
lazy.set_bonus(1.00);
lazy.update_salary(0.05);
(lazy,lazy.get_salary(),lazy.get_bonus());;
it: Manager[] * Float * Float
it = (Lazy B,4.2,1.05)
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class Manager extends Employee {

department : String;

bonus : Float ;

get_department = { | () -> !this.department }

set_department = { fun n -> this.department = n }
get_bonus = { | () -> !this.bonus }
set_bonus = { fun n -> this.bonus = n }

update_salary = { fun p ->
super.update_salary(p);

this.bonus = !this.bonus * (1.0 + p) }
}

Fig. 18.12 Managers

Now declare in Fig. 18.13 a department class that has both a manager and some
employees. For example

~~ depl.set_name("depl") ;
depl.set_manager(lazy) ;
depl.set_employees([busy:Employee ]);

depl;;
it: Department[]
it = depl

Here is an example of a generic iterator acting on objects.

let (update_any_salary: Float -> a -> Unit) p =
| (x:Employee) -> x.update_salary(p)

x> O

and its use in the department dep1.

map (fun x -> (x,x.get_salary())) (depl.get_employees());;
it: List (Employee * Float)
it = [(busy beaver,2.)]
~~  (depl.get_manager()).get_bonus();;
it: Float
it = 1.05
~ iter (update_any_salary 0.5) depil;
map (fun x -> (x,x.get_salary())) (depl.get_employees());;
it: List (Employee * Float)
it = [(busy beaver,3.)]
~~ (depl.get_manager()).get_bonus();;
it: Float
it = 1.575

This example combines structure polymorphism, path polymorphism and inclusion
polymorphism seamlessly with the stateful representation of objects.
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class Department {

name : String ;

manager : Manager ;

employees : List (Employee);

get_name = { | () -> !this.name}

set_name = { fun s -> this.name = s}
get_manager = { | () -> !this.manager}
set_manager = { fun s -> this.manager = s}
get_employees = { |() -> !this.employees}
set_employees = { fun s -> this.employees = s}
with

toString += | (x:Department) -> x.get_name()

}

Fig. 18.13 Departments

The final example adds pattern polymorphism and algebraic data types to the
mix, and in-place updating. The latter is defined by

let rec (update: lin (ref a -> b) -> (a -> a) -> ¢ -> Unit) =
fun x --> fun £ >

| {y} xy > y=1£1ly

| z y -> update x £ z; update x f y

ly > O

Now consider the data types

datatype Worker = Worker of ref String * ref Float
with

toString += | Worker (x,y) -> !x;;

type WorkUnit = List Worker;;

and the examples

let wl = Ref (Worker (Ref "Fred",Ref 2.0));;
let w2 = Ref (Worker (Ref "Mary",Ref 3.0));;
let ws [wl,w2];;

lin salary2 x = Worker (_,x);;

Now

~ map (I{y} salary2 y -> !y) ws;;
it: List Float

it = [2.,3.]
“” update salary2 twopercent ws;;
it: Unit

~ map (l{y} salary2 y -> !y) ws;;
it: List Float
it = [2.04,3.06]
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shows the updating of worker salaries.
The same approach applies to the employees class, as follows

“~lin salary3 x = Person (ProperPerson (Employee _ x) _) _;;

salary3: ref Float -> Employee

“~ map (fun (x:Employee) -> (x,x.get_salary()))

(depl.get_employees());;

it: List (Employee * Float)

it = [(busy beaver,4.59)]

7 update salary3 twopercent depil;;

it: Unit

map (fun (x:Employee) -> (x,x.get_salary()))
(depl.get_employees());;

it: List (Employee * Float)

it = [(busy beaver,4.6818)]

Here the salaries are given by salary3 that describes an employee. Note that it
is necessary here to specify the structure of all the superclasses of Employee to
describe the pattern. Future work may be able to suppress this, just as has been
achieved for defining a new Employee object.

Finally, the two ways of describing salaries can be combined. using

let rec (update_sal : (Float -> Float) -> a -> Unit) f =

| (x:Department) -> update salary3 f x

| (WorkUnit _) as x -> update salary2 f x

| z y -> update_sal f z; update_sal f y

'y > O

This can be applied to an organisation containing a mix of employees and workers,
asinupdate_sal twopercent (depl,ws) whichupdates the salaries of employ-
ees in the department object, and of the workers in the work unit.

This example shows how object-oriented classes and algebraic data types can
be mixed freely. The resulting data structures can be handled using functions that
are polymorphic in all the ways discussed in the book. Type parameters appear
throughout. Functor polymorphism can be used to map over collections of workers
or employees. Path polymorphism is used to find employees within an organisation.
Pattern polymorphism allows salaries to be represented in different ways within a
dynamic pattern. Subclassing allows managers to be treated differently.

Although the shift in theoretical perspective is substantial, these bondi examples
show that the new approach is quite easily grafted onto existing programming styles.
The treatment of algebraic data types and object-oriented classes is quite close to
that of popular languages when performing familiar programming tasks, and often
easier (as when type inference is employed for object-orientation). Syntactic novelty
is generally limited to situations employing new expressive power, as with dynamic
patterns. For all that, the full power of this approach is yet to be realised.
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18.8 Notes

The bondi class syntax is modelled on that of Java. There are so many object-
oriented programming languages, based on so many different approaches, that it
seems better not to say anything, except that the choice of examples was motivated
in part by those in Chap. 3 of Bruce’s book on object-orientation [12]. Type infer-
ence in object-oriented languages is treated by Palsberg and Schwartzbach [82].

Much remains to be done in representing other programming features, such as
communication and networking, but the combination of features already supported
by the pattern calculus shows that many of the tensions that arise between program-
ming styles can be eliminated by basing computation on the balanced combination
of functions and data structures that is the pattern calculus.



Appendix A
Syntax

Abstract This appendix provides an overview of the syntax, but not the seman-
tics, of all the main calculi in the book. Section A.1 considers the untyped calculi.
It begins with a figure containing concise grammars of all the calculi. Since these
admit significant duplication, the definitions of free variables, substitutions and o-
conversion will be given for a grammar obtained as the union of all. A similar ap-
proach is used for the types, in Sect. A.2 and the typed terms, in Sect. A.3, except
that the individual type grammars have been omitted. Proofs of the lemmas are by
routine inductions, and so are omitted.

A.1 Untyped Terms

The grammars of the untyped calculi are given in Fig. A.1. The free variables fv(t)
and free matchables fm(r) of an untyped term ¢ are defined in Fig. A.2. The applica-
tions of a term substitution ¢ to the free variable (respectively, matchable) symbols
of a term is defined in Fig. A.3 (respectively, Fig. A.4). a-conversion is defined in
Fig. A.5.

Lemma A.1. For every substitution ¢ and term t| there is a term ty that is o-
equivalent to t such that oty and 6t are defined. If t| and t; are 0-equivalent terms

Pure A-calculus tu=x|tt| Axt
Compound calculus tu=x|tt | Axt | c| ceqat | pair?s | cart | cdr¢
Static pattern calculus pi=x|c|pp
tu=x|c|tt| p—ot
Dynamic pattern calculus ¢ u=x | £ | 17 | [B]t—1t
Extension calculus tu=x|c|tt|[0)t—t]|t
Fig. A.1 Grammars of untyped terms
B. Jay, Pattern Calculus, 199

DOI 10.1007/978-3-540-89185-7_A, (© Springer-Verlag Berlin Heidelberg 2009
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fu(x) = {x} fm(x) = {}
fl) = () fm() = {x)
fle) = ) fm(c) = {}
fv(ru) = fv(r)Ufv(u) fm(ru) = fm(r) Ufm(u)
fv(Ax.s) = fu(s)\ {x} fm(Ax.s) = fm(s)
fv(ceqat) = fu(r) fm(c eqat) = fm(r)
fv(pair? 1) = fv(r) fm(pair? 1) = fm(r)
fv(cart) = fv(r) fm(cart) = fm(t)
fv(cdr 1) = fu(r) fm(cdrt) = fm(r)
fv(p —s) = fu(s) \fv(p) fm(p —s) = fm(p) Ufm(s)
v ([0] p—5) = fv(p) U (fv(s)\ 0) fm([6] p —s) = (fm(p) \ 6) Ufm(s)
fv([0] p—s|r) = fu(p)U(fv(s)\ 0) fm([0] p — s |r) = (fm(p)\ 6) Ufm(s)
U fm(r) U fm(r)

Fig. A.2 Free variables and matchables of untyped terms

o(x) = ox if x € dom(0)
o(x) =x if x ¢ dom(o)
o (%) =X

o(c) =c

o(ru) = (o(r)) (o(u))

o(Ax.s) = Ax.o(s) if o avoids x
o(ceqat) = ceqao(r)

o(pair?1) = pair? o(t)

o(cart) = car o(f)

o(cdrt) = cdr o(r)

o(p—s) =p—o(s) if o avoids p
o([0]p—s) =1[0]c(p)—ols) if o avoids 0
o([6] p—s|r)=1[0] a(p) — o(s) | o(r) if o avoids 6.

Fig. A.3 Substitution for variable term symbols

then fv(t;) = fv(t2) and fm(ty) = fm(t2). Further, if uy = o(t1) and u, = o(t2) are
both defined then uy = uy. Similarly, if u; = 6(t1) and uy = 6(ty) are both defined
then u; = us.

A.2 Types

The grammar of types is given in Fig. A.6. The free type variables FV(T) and free
type matchable FM(T) of a type T are defined in Fig. A.7. The type syntax Vp[A].S
is well-formed if ANFV(S) C FV(P). A type substitution is applied to the free
variables or free matchables of a type using the rules in Fig. A.8. The t-equivalence
of types is the congruence generated by the relation in Fig. A.9.
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6(x) =x

6(%) = Ox if x € dom(o)
6(%) =X if x ¢ dom(o)
6(c) =c

6(ru) = (6(r)) (6(u))

6(Ax.s) = Ax.6(s) if o avoids x

6(ceqat) = ceqa&(1)

6 (pair?1) = pair? 6(1)

G(cart) = car 6(1)

6(cdrt) = cdr 6(r)

6(p—s) =p—6(s) if o avoids p

6([6]p—s) =1[0]6(p)—6(s) if o avoids 0

6([0] p—s|r)=1[0] 6(p)— 6(s) | 6(r) if o avoids 6.

Fig. A.4 Substitution for matchable term symbols

Axt =q Ay{y/x}t ifyfu(t)
p—s =q {y/x}p — {y/x}s if x € fv(p) and y ¢ fu(p) Ufv(s)
(0] p— s =a [{y/x}0] {9/2}p — {y/x}s if x€ 0 andy¢ 6Ufm(p)Ufu(s)
(0] p = s|r=a [{y/x}0] {§/2}p — {y/x}s|r ifxe6andy¢6Ufm(p)Ufu(s)

Fig. A.5 a-conversion for untyped terms

T:=X|X|C|TT|T—T | |VXT |Vr[A].T

Fig. A.6 Type syntax

FV(X) = X FM(X) = {}
FV(X) = {} FM(X) = {X}
FV(C) = {} FM(C) = {}
FV(F U) = FV(F)UFV(U) FM(F U) = FM(F) UFM(U)
FV(P —S) = FV(P) UFV(S) FM(P — S) = FV(P)UFV(S)
FV(VX.S) = FV(S)\ {X} FM(VX.S) = FM(S)
FV(Vp[A].S) = (FV(P)UFV(S))\ A FM(Vp[A].S) = FM(P)UFM(S)

Fig. A.7 Free type variables and matchables of types

Lemma A.2. For every type substitution p and type Ty there is a type T, that is -
equivalent to Ty such that p(Tz) and p(T») are defined. If Ty and T, are o-equivalent
types then FV(T;) = FV(T2) and FM(T}) = FM(T»). Further, if Uy = p(Ty) and
U, = p(Tn) are both defined then Uy =y, Uy. Similarly, if Uy = p(Ty) and Uy = p(T)
are both defined then Uy =, Us.
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p(X) = pX if X € dom(p) pX) =X
p()f) Xif X ¢ dom(p) ’3() :eX1fX€dom(p)
pX) =X p(X) = Xif X ¢ dom(p)
p(C) =C p(C) =C
p(FU) =p(F)p(U) p(FU) = p(F)pU)
p(U—S)=pU)—p(S) p(P—S) = p(P)—p(S)
p(VX.S) = VX.p(S) if p avoids X p(VX.S) = VX.p(S) if p avoids X
p(Vp[ALS) = V,(p)[A].p(S) if p avoids A P(Vp[A].S) = V5(p)[A].P(S) if p avoids A
Fig. A.8 Type substitutions applied to types
VXS =o VY.{Y/X}S if Y fresh

if X € AandY fresh

Vp[A]S

=a Yoy /xyp[{Y /X3A]{Y /XS

Fig. A.9 a-equivalence of types

Simply typed A-calculus
System F

System FM

Typecase calculus
Query calculus

Static pattern calculus

~

Dynamic pattern calculus

~

Simply typed method calculus
Subtyped pattern calculus

~

-~ o~ o~ = o~

XU ee | AxTe

xT et | AxTt |t T | AXt

AT tt | AxTe | T | [A]T —t

A et | AxTt | ¢T | [A]T —t | t#:¢
XUj et | AxTa | ¢T | [A]T —t | t#¢ ]
el | T eqat | fold(t,t,1)

L pp | pT

Al it | p—t | tT | [A]T —1t | t#t
LA e | (6l = |

tT | [A]T =1 | t#1

et Ax)T | T | (AT =0T |t | t&t
A e ] ([0]r—0)"

tT | (AT =0T | t#r ]t | t &t

Fig. A.10 Grammars of typed terms

A.3 Typed Terms

The grammars of the typed calculi are given in Fig. A.10. The free type variables
FV(¢r) and free type matchable FM(t) of a term ¢ are defined in Fig. A.11. A type
substitution is applied to the free type variables or free type matchables of a term
using the rules in Fig. A.12. The free term variables fv(t) and free term matchables
fm(r) of a term ¢ are those of the corresponding untyped terms, obtained by erasing
all type information. A term substitution is applied to the free variables or free
matchables of a term using the rules in Fig. A.13. The a-equivalence of types is the
congruence generated by the relation in Fig. A.14.
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FV(x") = FV(T) FM(x") = FM(T)
FV(ru) = FV(r)UFV(u) (r u) = FM(r) UFM(u)
FV(AxY. ) = FV(U)UFV(S) FM()Lx s) = FM(U)UFM(s)
Fv(/lx )T = FV(s) UFV(T) FM(Ax )T = FM(s) UFM(T)
FV(rU) = V(V)UFV( ) M(rU) = FM(r) UFM(U)
FV(AX.s) = FV(s)\ {X} FM(AX 5) = FM(s)
FV([A] P— ) =(F ( YUFV(s))\ A FM([A] P — ) = FM(P) UFM(s)
FV([A] P~>s) = ((FV(P)UFV(s))\A) FM([A] P—»s) = FM(P) UFM(s)
UFV(T) U FM(T)
FV(s# ) = FV(s)UFV(r) FM(s#1t) = FM(s) UFM(r)
FV(cT) = {} FM(c) = {)
FV(cT eqat) = FV(1) FM(cT eqat) = FM(t)
FV(fold(s,r,u)) = FV(s)UFV(t)UFV(u) FM(fold(s,z,u)) = FM(s) UFM(7) UFM(u)
FV(p —5) = (FV(s) \FV(p)) UFV(P) FM(p —s) = FM(p) UFM(s)
FV(ET) = FV(T FM(£T) = FM(T)
FV([A;0] p—s) = V(G)UFV(p) FM([A;0] p —s) = ((FM(p)UFM(60))\ A)
U (FV(s)\4) U FM(s)
Fig. A.11 Free type symbols of terms
p(x") = x(T) p(aT) = xP(T)
p(ru) = p(r) pu) pru) = p(r) pu)
p(AxV.s) = AxPW) p(s) p(AxY.s) = lxp(U).;S(s)
p(xs)T = (dx.p(s))PT) p(xs)T = (hx.ps)!
p(rt) = p(r) p(U) p(rU) =p(r) p(U)
p(AX.s) = AX.p(s) if p avoids X p(AX.s) = AX.p(s) if p avoids X
p([A] P —s) = [A] p(P) — p(s) P([A]P —s) = [A] p(P) — p(s)
if p avoids A if p avoids A A
p([A1P —s)" = ([A] p(P) = p(s))PT)  p([A]P—s5)" = ([A] p(P) — p(s))P")
if p avoids A if p avoids A
p(s#t) = p(s)#p(r) (r#t) = p(s) #p(1)
p(cT) = p(cT) =
p(cT eqar) = ¢ eqa pl) p(c” eqar) = c eqa p(1)
p(fold(s,1,u)) = £old(p(s),p(1),p(u))  p(fold(st,u)) = £old(p(s),p(1),p(u))
pp—s=p(p)—p(s) p(p—s) = pp— ps

p()eT) — ¢p(T) — ¢p(T)

%7
p([A:6] p—s) = [4;6] p(p) — p(s) p([4:6] p—s) = [A:6] p(p) — p(s)
if p avoids A if p avoids A

Fig. A.12 Applying type substitutions to terms

Lemma A.3. For every type substitution p and term substitution © and term t| there
is a term ty that is o-equivalent to t such that p(t2) and p(t2) and o (t2) and 6(t2)
are defined. If t| and t, are o-equivalent terms then they have the same free (type
and term) variables and matchables. Whenever a substitution is applicable to both
then the results are o-equivalent.
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o(x") = ox 6(x") =
(”t)=0(r) o (u) (”t)= A() 6(u)
o(AxY.s) = AxV.o(s) if o avoids x 6(AxY.s) = AxY.6(s) if o avoids x
(U):O'(V)U (U): 6(r)u
0(AX.s) = AX.o(s) if o avoids X 6(AX.s) = AX.6(s) if o avoids X
o([A]P—s) = [A]P—a(s) 6([A]P—s) = [A]P—6(s)

if o avoids A
o(s#t) = o(s)#0(r)

if o avoids A
G(s#t) = 6(s)#6(1)

oc=c 6(c) =
o(ceqat) = ceqao(r) 6(ceqat) = ceqa 6(1)
o (fold(s,t,u)) = fold(o(s),o(t),o(u)) 6(fold(s,t,u)) = £f0ld(6(s),6(t),6(u))
op—s = p— o(s)if o avoids fv(p) 6(p—s)=p—6(s)
ol = &7 657 = &7
o([A:0] p—s) = [A;0] 6(p) — 0 (s) 6([4:0] p—s) = [A;0] 6(p) — 6(s)
if o avoids A; 0 if o avoids A; 0
Fig. A.13 Applying term substitutions
AxY.s =q AWV HY /x}s ify & fu(s)
AX.s =4 AYAY /X}s ifY €FV(s)
[AX]P—s=q [AY] {Y/X}P—{Y/X}s  ifY &AUFV(P)UFV(s)

p—s=a {YV/xtp—{V/x}s
p—s=a{Y/X}p—{Y/X}s
[A,X;0]p—s=q [AY;01{Y/X}p—{Y/X}s

[4:0,xU] p— s =4 [4:0,)Y] (3 /&}p — {y¥ /x}s if y & O Ufm(p) Ufu(s)

if xU is free in p and y & fv(p) Ufv(s)
if X islocal in pand Y & FV(p) UFV(s)
if ¥ ¢ AUFV(p) UFM(p) UFV(s) UFM(s)

Fig. A.14 o-conversion of terms
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