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O Preface
0.0 Introduction

What good is a theory of programming? Who wants one? Thousands of programmers progre
every day without any theory. Why should they bother to learn one? The answer is the same
for any other theory. For example, why should anyone learn a theory of motion? You can mo\
around perfectly well without one. You can throw a ball without one. Yet we think it important
enough to teach a theory of motion in high school.

One answer is that a mathematical theory gives a much greater degree of precision by providing
method of calculation. It is unlikely that we could send a rocket to Jupiter without a mathematice
theory of motion. And even baseball pitchers are finding that their pitch can be improved by hirin
an expert who knows some theory. Similarly a lot of mundane programming can be done withol
the aid of a theory, but the more difficult programming is very unlikely to be done correctly
without a good theory. The software industry has an overwhelming experience of bugg
programs to support that statement. And even mundane programming can be improved by the |
of a theory.

Another answer is that a theory provides a kind of understanding. Our ability to control an
predict motion changes from an art to a science when we learn a mathematical theory. Similal
programming changes from an art to a science when we learn to understand programs in the s
way we understand mathematical theorems. With a scientific outlook, we change our view of tF
world. We attribute less to spirits or chance, and increase our understanding of what is possit
and what is not. It is a valuable part of education for anyone.

Professional engineering maintains its high reputation in our society by insisting that, to be
professional engineer, one must know and apply the relevant theories. A civil engineer must knc
and apply the theories of geometry and material stress. An electrical engineer must know a
apply electromagnetic theory. Software engineers, to be worthy of the name, must know ar
apply a theory of programming.

The subject of this book sometimes goes by the name “programming methodology”, “science «
programming”, “logic of programming”, “theory of programming”, “formal methods of program

development”, or “verification”. It concerns those aspects of programming that are amenable 1
mathematical proof. A good theory helps us to write precise specifications, and to desig
programs whose executions provably satisfy the specifications. We will be considering the state
a computation, the time of a computation, the memory space required by a computation, and t
interactions with a computation. There are other important aspects of software design ai
production that are not touched by this book: the management of people, the user interfac

documentation, and testing.

The first usable theory of programming, often called “Hoare's Logic”, is still probably the most
widely known. In it, a specification is a pair of predicates: a precondition and postcondition (thes
and all technical terms will be defined in due course). A closely related theory is Dijkstra's
weakest precondition predicate transformer, which is a function from programs and postconditior
to preconditions, further advanced in Back's Refinement Calculus. Jones's Vienna Developme
Method has been used to advantage in some industries; in it, a specification is a pair of predica
(as in Hoare's Logic), but the second predicate is a relation. There are theories that specialize
real-time programming, some in probabilistic programming, some in interactive programming.
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The theory in this book is simpler than any of those just mentioned. In it, a specification is just
boolean expression. Refinement is just ordinary implication. This theory is also more general th:
those just mentioned, applying to both terminating and nonterminating computation, to bot
sequential and parallel computation, to both stand-alone and interactive computation. All at tt
same time, we can have variables whose initial and final values are all that is of interest, variabl
whose values are continuously of interest, variables whose values are known on
probabilistically, and variables that account for time and space. They all fit together in one theot
whose basis is the standard scientific practice of writing a specification as a boolean expressi
whose (nonlocal) variables are whatever is considered to be of interest.

There is an approach to program proving that exhaustively tests all inputs, called model-checkir
Its advantage over the theory in this book is that it is fully automated. With a clever representatic
of boolean expressions (see Exercise 6), model-checking currently boasts that it can explore uf
about 160 states. That is more than the estimated number of atoms in the universe! ltis &
impressive number until we realize that6aGs about 200, which means we are talking about
200 bits. That is the state space of six 32-bit variables. To use model-checking on any progre
with more than six variables requires abstraction; each abstraction requires proof that it presen
the properties of interest, and these proofs are not automatic. To be practical, model-checki
must be joined with other methods of proving, such as those in this book.

The emphasis throughout this book is on program development with proof at each step, rather tr
on proof after development.

£nd of Introduction
0.1 Second Edition

In the second edition of this book, there is new material on space bounds, and on probabilis
programming. Thdor-loop rule has been generalized. The treatment of concurrency has bee
simplified. And for cooperation between parallel processes, there is now a choice: communicatic
(as in the first edition), and interactive variables, which are the formally tractable version of share
memory. Explanations have been improved throughout the book, and more worked exampl
have been added.

As well as additions, there have been deletions. Any material that was usually skipped in a coutr
has been removed to keep the book short. It's really only 147 pages; after that is just exercis
and reference material.

Lecture slides and solutions to exercises are available to course instructors from the author.
£nd of Second Edition

0.2 Quick Tour

All technical terms used in this book are explained in this book. Each new term that you shoul
learn is underlined. As much as possible, the terminology is descriptive rather than honora
(notable exception: “boolean”). There are no abbreviations, acronyms, or other obscurities
language to annoy you. No specific previous mathematical knowledge or programming experien
is assumed. However, the preparatory material on booleans, numbers, lists, and functions
Chapters 1, 2, and 3 is brief, and previous exposure might be helpful.
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The following chart shows the dependence of each chapter on previous chapters.
5

1325 35 43 8y
\'8%9

Chapter 4, Program Theory, is the heart of the book. After that, chapters may be selected
omitted according to interest and the chart. The only deviations from the chart are that Chaptel
uses variable declaration presented in Subsection 5.0.0, and small optional Subsection 9..
depends on Chapter 6. Within each chapter, sections and subsections marked as optional cal
omitted without much harm to the following material.

Chapter 10 consists entirely of exercises grouped according to the chapter in which the necess
theory is presented. All the exercises in the section “Program Theory” can be done according
the methods presented in Chapter 4; however, as new methods are presented in later chap
those same exercises can be redone taking advantage of the later material.

At the back of the book, Chapter 11 contains reference material. Section 11.0, “Justifications
answers questions about earlier chapters, such as: why was this presented that way? why
this presented at all? why wasn't something else presented instead? It may be of interest
teachers and researchers who already know enough theory of programming to ask such questic
It is probably not of interest to students who are meeting formal methods for the first time. If you
find yourself asking such questions, don't hesitate to consult the justifications.

Chapter 11 also contains an index of terminology and a complete list of all laws used in the boc
To a serious student of programming, these laws should become friends, on a first name ba:
The final pages list all the notations used in the book. You are not expected to know the:
notations before reading the book; they are all explained as we come to them. You are welcome
invent new notations if you explain their use. Sometimes the choice of notation makes all th
difference in our ability to solve a problem.

£nd of Quick Tour
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1 Basic Theories
1.0 Boolean Theory

Boolean Theory, also known as logic, was designed as an aid to reasoning, and we will use it
reason about computation. The expressions of Boolean Theory arelmadlednexpressions.

We divide boolean expressions into two classes; those in one class arthealleds, and those

in the other are calleghtitheorers.

The expressions of Boolean Theory can be used to represent statements about the world;
theorems represent true statements, and the antitheorems represent false statements. That i
original application of the theory, the one it was designed for, and the one that supplies most of t
terminology. Another application for which Boolean Theory is perfectly suited is digital circuit
design. In that application, boolean expressions represent circuits; theorems represent circt
with high voltage output, and antitheorems represent circuits with low voltage output.

The two simplest boolean expressions dreand L . The first one,T , is a theorem, and the
second one,l , is an antitheorem. When Boolean Theory is being used for its original purpose
we pronounceT as “true” andLl as “false” because the former represents an arbitrary true
statement and the latter represents an arbitrary false statement. When Boolean Theory is be
used for digital circuit design, we pronounde and 1 as “high voltage” and “low voltage”, or

as “power” and “ground”. They are sometimes called the “boolean values”; they may also b
called the “nullary boolean operators”, meaning that they have no operands.

There are four unary (one operand) boolean operators, of which only one is interesting. |
symbol is = , pronounced “not”. It is qrefix operator (placed before its operand). An
expression of the formhx is called anegation If we negate a theorem we obtain an antitheorem;
if we negate an antitheorem we obtain a theorem. This is depicted by the folimthngble

T 1
S .

Above the horizontal line, means that the operand is a theorem, andheans that the operand
is an antitheorem. Below the horizontal lin€, means that the result is a theorem, dndneans
that the result is an antitheorem.

There are sixteen binary (two operand) boolean operators. Mainly due to tradition, we will us
only six of them, though they are not the only interesting ones. These operatofis dpaced
between their operands). Here are the symbols and some pronunciations.

“and”

“Or”

“implies”, “is equal to or stronger than”

“follows from”, “is implied by”, “is weaker than or equal to”

= “equals”, “if and only if”

* “differs from”, “is unequal to”, “exclusive or”, “boolean plus”
An expression of the fornx[ly is called econjunction and the operandg and y are called
conjuncs. An expression of the formlly is called adisjunction and the operands are called
disjuncs. An expression of the formU y is called anmplication, x is called theantecedent
and y is called theonsequent An expression of the formJ y is also called an implication, but

now X is the consequent ang is the antecedent. An expression of the foey is called an

I I
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equation and the operands are called kb sideand theright side An expression of the form
x#+Y is called aunequationand again the operands are called the left side and the right side.

The following truth table shows how the classification of boolean expressions formed with binan
operators can be obtained from the classification of the operands. Above the horizontal line, tl
pair TT means that both operands are theorems; theTphirmeans that the left operand is a
theorem and the right operand is an antitheorem; and so on. Below the horizontal hmegns

that the result is a theorem, add means that the result is an antitheorem.

TT T4 1T 11

OooO
N I
o e B
—AF -
A+
e e R

#+ Il

Infix operators make some expressions ambiguous. For example] O T might be read as

the conjunctionL O T , which is an antitheorem, disjoined with, resulting in a theorem. Or it
might be read asl conjoined with the disjunctionl O T , resulting in an antitheorem. To say
which is meant, we can use parentheses: eithell T) OT or L O(T OT) . To prevent a
clutter of parentheses, we employ a table of precedence levels, listed on the final page of the bo
In the table, [ can be found on level 9, and on level 10; that means, in the absence of
parentheses, applyl before . The exampleL OT OT is therefore a theorem.

Each of the operators £ [ appears twice in the precedence table. The large versiond

on level 16 are applied after all other operators. Except for precedence, the small versions &
large versions of these operators are identical. Used with restraint, these duplicate operators
sometimes improve readability by reducing the parenthesis clutter still further. But a word o
caution: a few well-chosen parentheses, even if they are unnecessary according to precedence,
help us see structure. Judgement is required.

There are 256 ternary (three operand) operators, of which we show only one. It is calle
conditional compositionand writtenif xtheny elsez. Here is its truth table.

TTT TTLl TLT TL1L LITT 1TL 11T 111
if then elsel] T T L 1 T 1 T 1

For every natural numben , there are 2' operators ofn operands, but we now have quite
enough.

When we stated earlier that a conjunction is an expression of thexfidym we were usingxy
to stand for all expressions obtained by replacingvtlr@ables x and y with arbitrary boolean
expressions. For example, we might replacenith (L OO - (L OT)) and replacey with
(L OT) to obtain the conjunction

LO-1LoOT)yorarT)
Replacing a variable with an expression is caledbstitutionor instantiation With the
understanding that variables are there to be replaced, we admit variables into our expressio
being careful of the following two points.
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. We sometimes have to insert parentheses around expressions that are replacing variable
order to maintain the precedence of operators. In the example of the preceding paragray
we replaced a conjunct with an implication L [0 - (L O T) ; since conjunction comes
before implication in the precedence table, we had to enclose the implication in parenthese
We also replaced a conjunet with a disjunction L [0 T , so we had to enclose the
disjunction in parentheses.

. When the same variable occurs more than once in an expression, it must be replaced by
same expression at each occurrence. Frdix we can obtainT OT ,butnot T O L .
However, different variables may be replaced by the same or different expressions. Fro
Xy we can obtain botl T and T O L .

As we present other theories, we will introduce new boolean expressions that make use of t
expressions of those theories, and classify the new boolean expressions. For example, when
present Number Theory we will introduce the number expressions 1+1 and 2, and the boole
expression 1+1=2 , and we will classify it as a theorem. We never intend to classify a boolee
expression as both a theorem and an antitheorem. A statement about the world cannot be both
and (in the same sense) false; a circuit's output cannot be both high and low voltage. If, t
accident, we do classify a boolean expression both ways, we have made a serious error. But i
perfectly legitimate to leave a boolean expression unclassified. For example, 1/0=5 will b
neither a theorem nor an antitheorem. An unclassified boolean expression may correspond t
statement whose truth or falsity we do not know or do not care about, or to a circuit whose outp
we cannot predict. A theory is callednsistentf no boolean expression is both a theorem and an
antitheorem, anthconsistentf some boolean expression is both a theorem and an antitheorem. A
theory is calleccompleteif every fully instantiated boolean expression is either a theorem or an
antitheorem, anachcompleteif some fully instantiated boolean expression is neither a theorem nor
an antitheorem.

1.0.0 Axioms and Proof Rules
We present a theory by saying what its expressions are, and what its theorems and antitheore
are. The theorems and antitheorems are determined by the five rules of proof. We state the ru

first, then discuss them after.

Axiom Rule If a boolean expression is an axiom, then it is a theorem. If a boolean
expression is an antiaxiom, then it is an antitheorem.

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified, then
is classified according to the truth tables.

Completion Rule If a boolean expression contains unclassified boolean subexpressions, and &
ways of classifying them place it in the same class, then it is in that class.

Consistency Rulelf a classified boolean expression contains boolean subexpressions, and onl
one way of classifying them is consistent, then they are classified that way.

Instance Rule If a boolean expression is classified, then all its instances have that sam
classification.
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An axiom is a boolean expression that is stated to be a theoreman#axiomis similarly a
boolean expression stated to be an antitheorem. The only axiom of Boolean Th&ognis the

only antiaxiom isL . So, by the Axiom RuleT is atheorem andL is an antitheorem. As we
present more theories, we will give their axioms and antiaxioms; they, together with the othe
rules of proof, will determine the new theorems and antitheorems of the new theory.

Before the invention of formal logic, the word “axiom” was used for a statement whose truth wa:
supposed to be obvious. In modern mathematics, an axiom is part of the design and presentat
of a theory. Different axioms may vyield different theories, and different theories may have
different applications. When we design a theory, we can choose any axioms we like, but a b
choice can result in a useless theory.

The entry in the top left corner of the truth table for the binary operators does nbiBay T .

It says that the conjunction of any two theorems is a theorem. To provd that— T is a
theorem requires the boolean axiom (to prove fhais a theorem), the first entry on theé row

of the truth table (to prove that OOT is a theorem), and the first entry on the = row of the truth
table (to prove thafl OT = T is a theorem).

The boolean expression

T Ox
contains an unclassified boolean subexpression, so we cannot use the Evaluation Rule to tell
which class it is in. Ifx were a theorem, the Evaluation Rule would say that the whole
expression is a theorem. K were an antitheorem, the Evaluation Rule would again say that the
whole expression is a theorem. We can therefore conclude by the Completion Rule that the whc
expression is indeed a theorem. The Completion Rule also says that

X=X
is a theorem, and when we come to Number Theory, that

1/0=50-1/0=5
is a theorem. We do not need to know that a subexpression is unclassified to use the Complet
Rule. If we are ignorant of the classification of a subexpression, and we suppose it to k
unclassified, any conclusion we come to by the use of the Completion Rule will still be correct.

In a classified boolean expression, if it would be inconsistent to place a boolean subexpression
one class, then the Consistency Rule says it is in the other class. For example, suppose we kr
that expressionOis a theorem, and thaxpression@] expressionlis also a theorem. Can we
determine what clasexpressionlis in? If expressionlwere an antitheorem, then by the
Evaluation Rule expression0 expressionl would be an antitheorem, and that would be
inconsistent. So, by the Consistency Rulexpressionlis a theorem. This use of the
Consistency Rule is traditionally called “detachment” or “modus ponens”. As another example,
~expressionis a theorem, then the Consistency Rule saysekatessionis an antitheorem.

Thanks to the negation operator and the Consistency Rule, we never need to talk about antiaxic
and antitheorems. Instead of saying thekpression is an antitheorem, we can say that
- expressionis a theorem. But a word of caution: if a theory is incomplete, it is possible that
neither expressionnor —expressionis a theorem. Thus “antitheorem” is not the same as “not a
theorem”. Our preference for theorems over antitheorems encourages some shortcuts of spet
We sometimes state a boolean expression, such as 1+1=2 , without saying anything about
when we do so, we mean that it is a theorem. We sometimes say we will prove somethin
meaning we will prove it is a theorem.

£nd of Axioms and Proof Rules
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With our two axioms (T and - L ) and five proof rules we can now prove theorems. Some
theorems are useful enough to be given a name and be memorized, or at least be kept in a ha
list. Such a theorem is calledaw. Some laws of Boolean Theory are listed at the back of the
book. Laws concerning] have not been included, but any law that usés can be easily
rearranged into one using . All of them can be proven using the Completion Rule, classifying
the variables in all possible ways, and evaluating each way. When the number of variables is mc
than about 2, this kind of proof is quite inefficient. It is much better to prove new laws by makinc
use of already proven old laws. In the next subsection we see how.

1.0.1 Expression and Proof Format

The precedence table on the final page of this book tells how to parse an expression in the abse
of parentheses. To help the eye group the symbols properly, it is a good idea to leave space
absent parentheses. Consider the following two ways of spacing the same expression.
ab0Oc
a O bl
According to our rules of precedence, the parentheses belong aabbndo the first spacing is
helpful and the second misleading.

An expression that is too long to fit on one line must be broken into parts. There are sever
reasonable ways to do it; here is one suggestion. A long expression in parentheses can be brc
at its main connective, which is placed under the opening parenthesis. For example,

( first part

[0 second part )
A long expression without parentheses can be broken at its main connective, which is placed unt
where the opening parenthesis belongs. For example,

first part

= second part

Attention to format makes a big difference in our ability to understand a complex expression.

A proof is a boolean expression that is clearly a theorem. One form of proof is a continuing
equation with hints.

expression0 hint O
= expressionl hint 1
= expression2 hint 2

expression3
If we did not use equations in this continuing fashion, we would have to write
expressionG expressionl

[0 expressionk expression2

[0 expressionZ expression3
The hints on the right side of the page are used, when necessary, to help make it clear that f
continuing equation is a theorem. The best kind of hint is the name of a law. The “hint 0” it
supposed to make it clear thexpression® expressionlis a theorem. The “hint 1” is supposed
to make it clear thaexpressionk expression2is a theorem. And so on. By the transitivity of
=, this proof proves the theoreexpression@ expression3
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Here is an example. Suppose we want to prove the first Law of Portation
allbO c=al (b0 ¢
using only previous laws in the list at the back of this book. Here is a proof.

allbO c Material Implication
— =(alb)Oc Duality
— -—al-b0c Material Implication
— al -b0Oc Material Implication
— al (bO o

From the first line of the proof, we are told to use “Material Implication”, which is the first of the
Laws of Inclusion. This law says that an implication can be changed to a disjunction if we als
negate the antecedent. Doing so, we obtain the second line of the proof. The hint now
“Duality”, and we see that the third line is obtained by replacin@ [0 b) with —ad=b in
accordance with the first of the Duality Laws. By not using parentheses on the third line, w
silently use the Associative Law of disjunction, in preparation for the next step. The next hint i
again “Material Implication”; this time it is used in the opposite direction, to replace the first
disjunction with an implication. And once more, “Material Implication” is used to replace the
remaining disjunction with an implication. Therefore, by transitivity-ef, we conclude that the

first Law of Portation is a theorem.

Here is the proof again, in a different form.

(@db0O c¢c = al (bO ©) Material Implication, 3 times
= (-(adb)ydc = -al(=b0c)) Duality
= (~al=-b0Oc = -al-b0Oc) Reflexivity of —
= T

The final line is a theorem, hence each of the other lines is a theorem, and in particular, the first li
is a theorem. This form of proof has some advantages over the earlier form. First, it makes prc
the same as simplification td . Second, although any proof in the first form can be written in the
second form, the reverse is not true. For example, the proof

(@db=alb)=a Associative Law for =
— (b= (alb=a) a Law of Inclusion
- T

cannot be converted to the other form. And finally, the second form, simplificatidn, tcan be
used for theorems that are not equations; the main operator of the boolean expression can
anything, includingd, 00, or - .

Sometimes it is clear enough how to get from one line to the next without a hint, and in that case
hint will be given. Hints are optional, to be used whenever they are helpful. Sometimes a hint
too long to fit on the remainder of a line. We may have
expression0 short hint
=  expressionl and now a very long hint, written just as this is written,
on as many lines as necessary, followed by

=  expression2
We cannot excuse an inadequate hint by the limited space on one line.
End of Expression and Proof Format
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1.0.2 Monotonicity and Antimonotonicity

A proof can be a continuing equation, as we have seen; it can also be a continuing implication, o
continuing mixture of equations and implications. As an example, here is a proof of the first Lav
of Conflation, which says

@0 b)OcO d U adcO bOd
The proof goes this way: starting with the right side,

alcO b0Od distribute [0 over second]
— (alcO byO@0OcO d) antidistribution twice
— ((@db)yO(cOb)) O((@ad) O(cOd)) distribute O over [I twice

(@ b)[Xad d) O (ad b)[(cI d) O (cO b)[(ad d) O (c b)[Xcl d) generalization
(@d b) O (cO d)
From the mutual transitivity o~ and [] , We have proven
alcO bOd [ (@0b) O(cOd)
which can easily be rearranged to give the desired theorem.

The implication operator is reflexiveall a , antisymmetric 4] b) 0 (b(J a) — (a=b) , and
transitive @0 b) O (bl c) O (all c) . Itis therefore an ordering (just like for numbers). We
pronounceall b either as ‘a implies b ”, or, to emphasize the ordering, aa ‘is strongerthan

or equal tob”. The words “stronger” andreakef may have come from a philosophical origin;

we ignore any meaning they may have other than the boolean order, in Whiskstronger than

T . For clarity and to avoid philosophical discussion, it would be better to say “falser” rather that
“stronger”, and to say “truer” rather than “weaker”, but we use the standard terms.

The Monotonic Lawad b [ c¢Oa O cb can be read (a little carelessly) as follows:aifis
weakened tab , then clla is weakened tacllb . (To be more careful, we should say “weakened
or equal”.) If we weakera , then we weakerclla . Or, the other way round, if we strengthen
b, then we strengthert[b . Whatever happens to a conjunct (weaken or strengthen), the same
happens to the conjunction. We say that conjunctiamisotonicin its conjuncts.

The Antimonotonic Lawal b [ (b c) O (all c) says that whatever happens to an antecedent
(weaken or strengthen), the opposite happens to the implication. We say that implication
antimonotonidn its antecedent.

Here are the monotonic and antimonotonic properties of boolean expressions.
—-a IS antimonotonic im
alb is monotonic ina and monotonic irb
alb is monotonic ina and monotonic irb
all b is antimonotonic ina and monotonic irb
all b is monotonic ina and antimonotonic irb
if athen b else ¢ is monotonic inb and monotonic inc

These properties are useful in proofs. For example, in Exercise 2(k), to p(ave - (allb)) ,
we can employ the Law of Generalizatiend allb to strengthenallb to a. That weakens
= (allb) and that weakena [0-(a[b) and that strengthens(a [0-(alb)) .

= (a-(alb)) use the Law of Generalization
-(al-a) now use the Law of Contradiction
- T

We thus prove that(a - (allb)) T , and by an identity law, that is the same as proving
- (a=(alb)) . In other words,~(a - (alb)) is weaker than or equal td , and since there
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is nothing weaker thai , itis equal toT . When we drive toward , the left edge of the proof
can be any mixture o~ and [] signs.

Similarly we can drive towardl , and then the left edge of the proof can be any mixture- of
and L] signs. For example,

all-(alb) use the Law of Generalization
all-a now use the Law of Contradiction
- 1

This is called “proof by contradiction”. It provea [ - (alb) [J 1, which is the same as
proving = (a0-(alb)) . Any proof by contradiction can be converted to a proof by simplification
to T atthe cost of oner sign per line.

End of Monotonicity and Antimonotonicity
1.0.3 Context

A proof, or part of a proof, can make use of local assumptions. A proof may have the format

assumption

O ( expression0
= expressionl
= expression2

expression3)
for example. The stepexpressionG expressionlcan make use of thassumptionjust as
though it were an axiom. So can the steppressionkE expression2 and so on. Within the
parentheses we have a proof; it can be any kind of proof including one that makes further loc
assumptions. We thus can have proofs within proofs, indenting appropriately. If the subproof |
proving expression@ expression3 then the whole proof is proving

assumptiori] (expression@ expression
If the subproof is provingexpressionQ then the whole proof is proving

assumptiori] expression0
If the subproof is provingl , then the whole proof is proving

assumptiori] 1
which is equal to-assumption Once again, this is “proof by contradiction”.

We can also uséf then else as a proof, or part of a proof, in a similar manner. The format is
if possibility
then ( first subproof
assumingpossibility
as a local axiom )
else ( second subproof
assuming- possibility
as a local axiom )
If the first subproof provessomething and the second proveanotherthing, the whole proof
proves
if possibilitythen somethingelse anotherthing
If both subproofs prove the same thing, then by the Case ldempotent Law, so does the whc
proof, and that is its most frequent use.
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Consider a step in a proof that looks like this:
expression@] expressionl
— expression@]expression2
When we are changingxpressionlinto expression2 we can assumexpressionOas a local
axiom just for this step. IfexpressionQOreally is a theorem, then we have done no harm by
assuming it as a local axiom. If, howeveexpressionO is an antitheorem, then both
expression@] expressionland expression@] expression2are antitheorems no matter what
expressionland expression2are, so again we have done nothing wrong. Symmetrically, when
proving
expression@] expressionl
— expressionZ]expressionl
we can assumexpressionlas a local axiom. However, when proving
expression@] expressionl
— expressionZ]expression3
we cannot assumexpression0Oto prove expressiontexpression3and in the same step assume
expressionlto prove expressionfexpression2 For example, starting from [0 a , we can
assume the firsa and so change the second ond'to
ala assume firsta to simplify seconda
— agdT
or we can assume the secoadand so change the first one 1o,
ala assume second to simplify first a
— TD0Da
but we cannot assume both of them at the same time.
ala this step is wrong
— TOT
In this paragraph, the equal signs could have been implications in either direction.

Here is a list otontextrules for proof.
In expression@ expressionl when changingexpressionQ we can assumexpressionl
In expression@]expression] when changingexpressionl we can assumexpressionQ
In expression@] expressionl when changingexpressionQ we can assume expressionl
In expression@ expressionl when changingexpressionl we can assume expression0
In expression@] expressionl when changingexpressionQ we can assume expressionl
In expression@] expressionl when changingexpressionl we can assumexpression0
In expression@ expressionl when changingexpressionQ we can assumexpressionl
In expression@] expressionl when changingexpressionl we can assume expressionQ
In if expression@hen expression® se expression2 when changingexpressionl

we can assumexpression0
In if expression@hen expressionX se expression2 when changingexpression2

we can assumesexpression0

In the previous subsection we proved Exercise 2€{a [] - (a(b)) . Here is another proof, this
time using context.

= (al=-(alb)) assumea to simplify - (alb)
—  =(ad=(To) Symmetry Law and Base Law fan
— =(ad-T) Truth Table for-
— ~(adl) Base Law for[J
- -l Boolean Axiom, or Truth Table fo
- T

£nd of Context
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1.0.4 Formalization

We use computers to solve problems, or to provide services, or just for fun. The desired compu
behavior is usually described at first informally, in a natural language (like English), perhaps witl
some diagrams, perhaps with some hand gestures, rather than formally, using mathemati
formulas (notations). In the end, the desired computer behavior is described formally as
program. A programmer must be able to translate informal descriptions to formal ones.

A statement in a natural language can be vague, ambiguous, or subtle, and can rely on a great |
of cultural context. This makes formalization difficult, but also necessary. We cannot possibl
say how to formalize, in general; it requires a thorough knowledge of the natural language, and
always subject to argument. In this subsection we just point out a few pitfalls in the translatio
from English to boolean expressions.

The best translation may not be a one-for-one substitution of symbols for words. The same wo
in different places may be translated to different symbols, and different words may be translated
the same symbol. The words “and”, “also”, “but”, “yet”, “however”, and “moreover” might all be
translated asl] . Just putting things next to each other sometimes méansFor example,
“They're red, ripe, and juicy, but not sweet.” becomed [Iripe [juicy [1-~sweet

The word “or” in English is sometimes best translatedlasand sometimes a& . For example,
“They're either small or rotten.” probably includes the possibility that they're both small anc
rotten, and should be translatedsamall CJrotten. But “Either we eat them or we preserve them.”
probably excludes doing both, and is best translatezh&s preserve

The word “if” in English is sometimes best translated’as and sometimes as =. For example,
“If it rains, we'll stay home.” probably leaves open the possibility that we might stay home even i
it doesn't rain, and should be translatedrais [ home. But “If it snows, we can go skiing.”
probably also means “and if it doesn't, we can't”, and is best translatsthas ski .

End of Formalization

End of Boolean Theory

1.1 Number Theory

Number Theory, also known as arithmetic, was designed to represent quantity. In the version \
present, aumberexpression is formed in the following ways.
a sequence of one or more decimal digits

00 “infinity”

+ X “plus x”

—X “minus x”

X+y “X plusy”
X—Y “X minusy”
X%y “X timesy”
xly “ x divided byy”

Xy

if athen xelsey
where x and y are any number expressions, aadis any boolean expression. The infinite
number expressiomo will be essential when we talk about the execution time of programs. We
also introduce several new ways of forming boolean expressions:

X to the powery”
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X<y “ X is less thary ”

Xsy “ x is less than or equal tp”

X >y “ X is greater thary”

X2y “ x is greater than or equal 0"

X=Yy “X equalsy”, “ x is equal toy”

X%y “ x differs fromy”, “ x is unequal toy”

The axioms of Number Theory are listed at the back of the book. It's a long list, but most of thel
should be familiar to you already. Notice particularly the two axioms

—0 < X< 00 extremes

—00 <X [] oco+x =00 absorption

Number Theory is incomplete. For example, the boolean expressions 1/0 =5 and 102< (-1)
can neither be proven nor disproven.

£nd of Number Theory

1.2 Character Theory

The simplestharacteexpressions are written as a prequote followed by a graphical shape. Fo
example, "A is the “capital A” character, "1 is the “one” character, ~ is the “space” charactel
and * is the “prequote” character. Character Theory is trivial. It has opesatargsuccessor),
pred (predecessor), and =<< >2> if then else. We leave the details of this theory to the
reader's inclination.

£nd of Character Theory

All our theories use the operators #=if then else , so their laws are listed at the back of the
book under the heading “Generic”, meaning that they are part of every theory. These laws are r
needed as axioms of Boolean Theory; for examat®, can be proven using the Completion and
Evaluation rules. But in Number Theory and other theories, they are axioms; without them w
cannot even prove 5=5.

The operators < >= apply to some, but not all, types of expression. Whenever they do apply,
their axioms, as listed under the heading “Generic” at the back of the book, go with them.
End of Basic Theories

We have talked about boolean expressions, number expressions, and character expressions. It
following chapters, we will talk about bunch expressions, set expressions, string expressions, i
expressions, function expressions, predicate expressions, relation expressions, specificat
expressions, and program expressions; S0 many expressions. For brevity in the followir
chapters, we will often omit the word “expression”, just saying boolean, number, character
bunch, set, string, list, function, predicate, relation, specification, and program, meaning in eac
case a type of expression. If this bothers you, please mentally insert the word “expressiol
wherever you would like it to be.



2 Basic Data Structures

A data structure is a collection, or aggregate, of data. The data may be booleans, numbe
characters, or data structures. The basic kinds of structuring we consider are packaging &
indexing. These two kinds of structure give us four basic data structures.

unpackaged, unindexed: bunch

packaged, unindexed: set
unpackaged, indexed: string
packaged, indexed: list

2.0 Bunch Theory

A bunch represents a collection of objects. For contrast, a set represents a collection of objects i
package or container. A bunch is the contents of a set. These vague descriptions are made pre
as follows.

Any number, character, or boolean (and later also set, string of elements, and list of elements) is
elementary bunchor element For example, the number 2 is an elementary bunch, or
synonymously, an element. Every expression is a bunch expression, though not all a
elementary.

From bunchesA and B we can form the bunches

A,B “A unionB”
A'B “ A intersectionB”
and the number
CA “size of A", “cardinality of A”
and the boolean
A:B “AlisinB”, " A isincluded inB”

The size of a bunch is the number of elements it includes. Elements are bunches of size 1.

¢t2 =1

¢, 2,59 = 4
Here are three quick examples of bumdiusion

2. 0,259

2. 2

2,9: 0,259
The first says that 2 is in the bunch consisting of 0, 2,5, 9. The second says that 2 isint
bunch consisting of only 2 . Note that we do not say “a bunch contains its elements”, but rathi
“a bunch consists of its elements”. The third example says that both 2 and 9 arein O, 2, 5,
or in other words, the bunch 2, 9 isincluded in the bunch 0, 2,5,9 .

Here are the axioms of Bunch Theory. In these axiomsandy are elements (elementary
bunches), andA, B, and C are arbitrary bunches.

Xy — Xz=y elementary axiom
xxAB = xAOxB compound axiom
AA=A idempotence

AB=BA symmetry
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A,(B,C) = (AB),C

A'A=A

A'B=B‘A

A'(B' C) =(A'B)'C

AB:C — A.COB:C

A:BC — ABOAC

A: AB

A'B: A

A A

A-BOBA = A=B

A-BOBC O AC

tx=1

¢(A,B) + ¢(A'B) = CA + ¢B
- XA O ¢AX) =0

A-B 0O ¢CA<¢B

associativity
idempotence
symmetry

associativity

generalization
specialization
reflexivity
antisymmetry
transitivity
size

size

size

size

From these axioms, many laws can be proven. Among them:

A(A'B) = A

A(AB) = A

A:B O CA: CB

A'B O CACB

A'B = AB=B = A=AB

A(B,C) = (AB),(AC)
AB'C) = (AB)(AC)
A(B,C) = (A'B), (A'C)
A(B'C) = (A'B)(A'C)

A-BUOCD O ACBD
ABOCD O ACBD

absorption
absorption
monotonicity
monotonicity
inclusion
distributivity
distributivity
distributivity
distributivity
conflation
conflation

Here are several bunches that we will find useful:

null theemptybunch

bool = T,1 the booleans

nat = 01,2, .. thenaturalnumbers
int = ., —2,-1,0,1, 2, .. theintegernumbers
rat = ., =1, 0, 2/3, ... therationalnumbers
real = . therealnumbers

xnat = 0,1, 2, ..0 theextended naturals
xint = —o, .. -2,-1,0,1, 2, .o theextended integers
xrat = —oo, .., -1,0, 2/3, .. theextended rationals
xreal = —oo, ..., theextended reals
char = Loa, A, ... thecharacters

In these equations, whenever three dots appear they mean “guess what goes here”. This us
three dots is informal, so these equations cannot serve as definitions, though they may help to g
you the idea. We define these bunches formally in a moment.
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The operators , ‘ ¢ : = if then else apply to bunch operands according to the axioms already
presented. Some other operators can be applied to bunches with the understanding that they a|
to the elements of the bunch. In other words, they distribute over bunch union. For example,

—null = null

—-(A,B) = -A -B

A+null = null+A = null

(A, B)+(C, D) = A+C, A+D, B+C, B+D
This makes it easy to express the positive naturas+l) , the even naturalsdtx2) , the squares
(nat?) , the powers of two (2f) , and many other things. (The operators that distribute over
bunch union are listed on the final page.)

We define the empty buncimull , with the axioms
null: A
¢A=0 = A=null

This gives us three more laws:

A null = A identity
A null = null base
¢null =0 size
The bunchbool is defined by the axiom
bool=T, L
The bunchnat is defined by the two axioms
0, nat+1: nat construction
0,B+1:B 0 natB induction

Construction says that 0, 1, 2, and so on, ar@an. Induction says that nothing else isnat
by saying that of all the bunchd® satisfying the construction axionmat is the smallest. In
some books, particularly older ones, the natural numbers start at 1 ; we will use the term with i
current and more useful meaning, starting at 0. The bunichesrat, xnat, xint, and xrat
can be defined as follows.

int = nat —nat

rat int/(nat+1)
xnat = nat o«
Xint = -e0,int, oo

Xrat = -0, rat, ©
The definition ofreal is postponed until the next chapter (functions). Bured won't be used
before it is defined, except to say

xreal = -eo,real, oo
We do not care enough about the buctiar to define it.

We also use the notation

X,..y “x toy” (not“x throughy?)
where x andy are extended integers amdy . Its axiom is

iiX.y — Xx<i<y
The notation ,.. is asymmetric as a reminder that the left end of the interval is included and tl
right end is excluded. For example,

0,.00 = nat

5,.5 =null

¢(x,.y) = y—X

Since we have given the axiom defining the ,.. notation, it is formal, and can be used in proofs.
£nd of Bunch Theory
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2.1 Set Theory optional

Let A be any bunch (anything). Then

{A} “set containingA”
is a set. Thus full} is the empty set, and the set containing the first three natural numbers i<
expressed as {0, 1, 2} oras {0,..3} . All sets are elements; not all bunches are elements; tha
the difference between sets and bunches. We can form the bunch 1, {3, 7} consisting of tw
elements, and from it the set {1, {3, 7}} containing two elements, and in that way we build a
structure of nested sets.

The powerset operatcy is a unary prefix operator that takes a set as operand and yields a set ¢
sets as result. Here is an example.

A0, 1} = {{ null}, {0}, {1}, {0, 1}}

The inverse of set formation is also useful.Slfis any set, then

~S “contents of S”

is its contents. For example,
~{0,1} = 0,1

We “promote” the bunch operators to obtain the set oper&terss U n =. Here are the axioms.
{A} = A well-founded
~{A} = A “contents”
${A} = CA “size”, “cardinality”
Ae{B} — AB “elements”
{A} € {B} = A:B “subset”
{A} e {B} = A'B “powerset”
{A} u {B} = {A B} “union”
{A} n{B} = {A'B} “intersection”
{A}={B} — A=B “equation”

End of Set Theory

Bunches are unpackaged collections and sets are packaged collections. Similarly, strings .
unpackaged sequences and lists are packaged sequences. There are sets of sets, and lists o
but there are neither bunches of bunches nor strings of strings.

2.2 String Theory

The simplest string is
nil the empty string
Any number, character, boolean, set, (and later also list and function) is a one-item siteng, or
For example, the number 2 is a one-item string, or item. A nonempty bunch of items is also ¢
item. Strings areatenatd (joined) together by semicolons to make longer strings. For example,
4;2;4;6
is a four-item string. The length of a string is the number of items, and is obtained hy the
operator.
#(4;2;4;6) = 4
We can measure a string by placing it along a string-measuring ruler, as in the following picture.
4 ; 2 ; 4 ; 6
§ T 2 Y3 a4 = 5 6
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Each of the numbers under the ruler is calledngiex When we are considering the items in a
string from beginning to end, and we say we are at indext is clear which items have been
considered and which remain because we draw the items between the indexes. (If we were
draw an item at an index, saying we are at indexould leave doubt as to whether the item at
that index has been considered.)

The picture saves one confusion, but causes another: we must refer to the items by index, and"
indexes are equally near each item. We adopt the convention that most often avoids the need f
“+1” or “=1" in our expressions: the index of an item is the number of items that precede it. Ir
other words, indexing is from 0. Your life begins at year 0, a highway begins at mile 0, an
so on. An index is not an arbitrary label, but a measure of how much has gone before. We re
to the items in a string as “item 07, “item 1", “item 2”, and so on; we never say “the third item”
due to the possible confusion between item 2 and item 3. When we are ahintte>n n items

have been considered, and itermwill be considered next.

We obtain an item of a string by subscripting. For example,
(3;5;7,9 =7
In general, S, is item n of string S. We can even pick out a whole string of items, as in the
following example.
(355, 7,9 1,2= 7,57
If n is anatural and is a string, them*S meansn copies ofS catenated together.
3*(0;1) =0;1;0;1;0;1
Without any left operand, 3 means all strings formed by catenating any number of copi&s of
*0;1) =nil,0;1,0;2;0;1, ...

Strings can be compared for equality and order. To be equal, strings must be of equal length, ¢
have equal items at each index. The order of two strings is determined by the items at the fii
index where they differ. For example,

3;6;4,7 < 3;7;2
If there is no index where they differ, the shorter string comes before the longer one.

3;6;4 < 3;6,4,7
This ordering is known dexicographic order it is the ordering used in dictionaries.

Here is the syntax of strings. [f is anitem,S and T are strings, anch is a natural number,
then

nil the empty string
i an item
ST “ S catenateT”
St “SsubT”
n*S “n copies ofS”
are strings,
*S “copies of S”
is a bunch of strings, and
#S “length of S”

is a natural number. The order operators ><> apply to strings.

Here are the axioms of String Theory. In these axioghs,T, and U are strings,i andj are
items, andn is a natural number.



19 2 Basic Data Structures

nl;S = Snil =S identity
SMUuU) = T),U associativity
#nil = 0 base

#i =1 base
#(ST) = #S+ #T

Shit = nil

(SiiMys =i

Srou = Sp Sy

Stu) = Sy

0*S = nil

(n+1)*S = n*S; S
i=j = SiET=8j;T
i<k O Si;T<SjU
nl < S<Si;T

We also use the notation
X;..y “X toy” (same pronunciation as,..y )
where x and y are integers and<y . As in the similar bunch notatiorx is included andy
excluded, so that
#(X;..y) = y—X
Here are the axioms.
X;.X = nil
X;. X+l =X
x.y) ; ¢;.2 = x..z

We allow string catenation to distribute over bunch union:
A; null; B = null
(A,B); (C,D) = AC,AD,BC,B,D
So a string of bunches is equal to a bunch of strings. Thus, for example,
0; 1; 2: nat 1, (0,..10)
because (nat and 1:1 and 2:0,..10 . A string is an element (elementary bunch) just when a
its items are elements; so 0;1;2 is an elementphgtl; (0,..10) is not. Progressing to larger
bunches,
0; 1; 2: nat 1, (0,..10): 3hat *nat
The * operator distributes over bunch union in its left operand only.
null*A = null
(A,B)* C = A*C,B*C
Using this left-distributivity, we define the unary * by the axiom
*A = nattA

The strings we have just defined may be called “natural strings” because their lengths and index
are natural numbers. With only a small change to a few axioms, we can have “extended natu
strings”, including strings of infinite length. By adding a new operator, the inverse of catenation
we obtain “negative strings”; natural strings and negative strings together are “integer strings
We leave these developments as Exercise 46.

£nd of String Theory

Our main purpose in presenting String Theory is as a stepping stone to the presentation of L
Theory.
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2.3 List Theory

A list is a packaged string. For example,

[0; 1; 2]
is a list of three items. List brackets [] distribute over bunch union.

[null] = null

[A, B] = [A], [B]
Because Onat and 1:1 and 2:0,..10 we can say

[0; 1; 2]: |nat 1; (O,..10)]
On the left of the colon we have a list of integers; on the right we have a list of bunches, ¢
equivalently, a bunch of lists. A list is an element (elementary bunch) just when all its items ar
elements; [0; 1; 2] is an element, bui{ 1; (0,..10)] is not. Progressing to larger bunches,

[0;1; 2]: [hat 1; (0,..10)]: [3haf: [*naf

Here is the syntax of lists. Le&® be a string,L and M be lists, n be a natural number, and
be an item. Then

[S] “list containing S”
LM “LM” or “L composed withM ”
L+M “ L catenateM ”
n-i|L “n maps toi otherwiselL ”
are lists,
#L “length of L~
is a natural number, and
Ln “Ln” or “L indexn”

is an item. Of course, parentheses may be used around any expression, so we nigg)wifite

we want. If the index is not simple, we will have to enclose it in parentheses. When there is r
danger of confusion, we may writen without a space between, but when we use multicharacter
names, we must put a space between.

The length of a list is the number of items it contains.
#[3;5;7;4] = 4
List indexes, like string indexes, start at 0 . An item can be selected from a list by juxtaposin
(sitting next to each other) a list and an index.
[3;5;7;4]2 = 7
A list of indexes gives a list of selected items. For example,
[3;5;7,4][2;1; 2] = [7;5;7]
This is calledist composition List catenation is written with a small raised plus sign
[3;5;7;4F[2; 1, 2] = [3;5;7;4; 2, 1; 2]
The notationn-i |L gives us a list just likd. except that iterm is i .
2-22][10;..15] = [10; 11; 22; 13; 14]
2-22|3-33|[10;..15] = [10; 11; 22; 33; 14]
Let L = [10;..15] . Then
2-1L3|3-L2|L = [10; 11; 13; 12; 14]
The order operators <>=> apply to lists; the order is lexicographic, just like string order.
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Here are the axioms. Le® and T be strings, letn be a natural number, and letand j be
items.

#[S = #S length
[S+[T] = [ST] catenation
[SIn =S, indexing
[S[T] = [S7] composition
(#9 - i |[S);T] = [Si;T] modification
[§=[T] — S=T equation

[ <[T] — S<T order

We can now prove a variety of theorems, such as forllisté1 , N, and naturaln , that
(LM)n =LMn)
(LM)N =L(MN) associativity
L(M*N) =LM+LN distributivity

(The proofs assume that each list has the fagm) [

When a list is indexed by a list, we get a list of results. For example,

[1;4;2;8;5,7,1;4][1;3; 7] = [4;8; 4]
We say that listM is asublistof list L if M can be obtained fronb by a list of increasing
indexes. So [4; 8; 4] is a sublist of [1; 4; 2; 8; 5; 7; 1; 4] . If the list of indexes is not only
increasing but consecutive;.[] , then the sublist is calledseagment

If the index is a list, the result is a list. More generally, the index can be any structure, and tt
result will have the same structure.

L null = null
L(A,B) =LALB
L{A} = {LA

L nil = nil

L(ST) =LSLT
LIS =193

Here is a fancy example. Lét=[10; 11; 12]. Then
L[O,{1,[2;1];0}] = [LO,{L1,[L2;L1];LO} = [10, {11, [12; 11]; 10}]

Thetext notation is an alternative way of writing a list of characters. A text begins with a double-
guote, continues with any natural number of characters (but a double-quote must be repeated), i
concludes with a double-quote. Here is a text of length 15 .

"Don'tsay "'no™." = [D; o;'n; "t ;s a;y; ;07" ]
Composing a text with a list of indexes we obtain a subtext. For example,

"abcdefghij" [3;..6] = "def"

Here is a self-describing expression (self-reproducing automaton).
""" [0;0;2%(0;..17)]"[0;0;2*(0;..17)]
Perform the indexing and see what you get.



2 Basic Data Structures 22
2.3.0 Multidimensional Structures

Lists can be items in a list. For example, let
A=1[[63;7,0];
[4;9; 2;5];
[1;5;8;3]]
Then A is a 2-dimensionakrray, or more particularly, ax@ array. Formally,A: [3*[4* naf]] .
Indexing A with one index gives a list
Al = [4;9; 2;5]
which can then be indexed again to give a number.
Al2 =2
Warning: The notationg\(1,2) andA[1,2] are used in several programming languages to index
a 2-dimensional array. But in this book,
A(l,2) =A1,A2 = [4;9;2;5],[1,;5; 8; 3]
All1,2] = [AL,A2] = [[4;9;2;5],[1;5;8; 3]] = [[4;9;2; 5]], [[1; 5; 8; 3]

We have just seen a rectangular array, a very regular structure, which requires two indexes to g
a number. Lists of lists can also be quite irregular in shape, not just by containing lists of differer
lengths, but in dimensionality. For example, let

B =1[[23];41[516;7]1]
Now BOO0=2 andB1=4,andB11 isundefined. The number of indexes needed to obtain
a number varies. We can regain some regularity in the following wayL Lie¢ a list, letn be
an index, andle and T be strings of indexes. Then

Lenil = L

Len = Ln

Le(S T) = LeSeT
Now we can always “index” with a single string, calledanter, obtaining the same result as
indexing by the sequence of items in the string. In the example list,

Ba(2;1;0) =B210 = 6

We generalize the notatio-i | L to allow S to be a string of indexes. The axioms are
nil-»i|L =i
(ST) - i|L =S>(T-i|L@9 |L
Thus S-i|L isalistlike L except thatS points to itemi . For example,
(0;1) - 6][ [0;1;2];
[3;4;5]] = [

0; 6; 2];
3;4;5]]

£nd of Multidimensional Structures

£nd of List Theory

£nd of Basic Data Structures
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We are always allowed to invent new syntax if we explain the rules for its use. A ready source
new syntax is names (identifiers), and the rules for their use are most easily given by son
axioms. Usually when we introduce names and axioms we want them for some local purpos
The reader is supposed to understand gmope the region where they apply, and not use them
beyond it. Though the names and axioms are formal (expressions in our formalism), up to no
we have introduced them informally by English sentences. But the scope of informally introduce
names and axioms is not always clear. In this chapter we present a formal notation for introducii
a local name and axiom.

A variable is a name that is introduced for the purpose of instantiation (replacing it). For exampl
the law xx1=x uses variablex to tell us that any number multiplied by 1 equals that same
number. A constant is a name that is not intended to be instantiated. For example, we mic
introduce the nam@i and the axiom 3.14pi < 3.15, but we do not mean that every number is
between 3.14 and 3.15. Similarly we might introduce the named the axiom2=-1 and we

do not want to instantiate.

The function notation is the formal way of introducing a local variable together with a local axiom
to say what expressions can be used to instantiate the variable.

3.0 Functions

Let v be a name, leD be a bunch of items (possibly using previously introduced names but not
using v), and letb be any expression (possibly using previously introduced names and possibl
using v). Then

Av:D-b “map v in D to b”, “local v in D maps tob”
is afunction of variable v with domain D andbody b . The inclusionv: D is a local axiom
within the bodyb . For example,

An: nat n+1
is the successor function on the natural numbers. Here is a picture of it.

0w 0
1]

If f is a function, then

Af “domain of f”
is its domain. Th®omain Axiomis

AAv:D-b = D
We say both thatD is the domain of functiorAv: D- b and that within the bodyo, D is the
domain of variablev. Therangeof a function consists of the elements obtained by substituting
each element of the domain for the variable in the body. The range of our successor function
nat+1 .
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A function introduces a variable, or synonymouslpasameter The purpose of the variable is to
help express the mapping from domain elements to range elements. The choice of name
irrelevant as long as it is fresh, not already in use for another purpos&emaming Axionsays
that if v and w are names, and neither nor w appears inD , andw does not appear iib ,
then

AVv:D-b = Aw: D- (substitutew for v in b)
The substitution must replace every occurrence aVith w .

If f is afunction andk is an element of its domain, then

fx “f appliedtox” or “f of x”
is the corresponding element of the range. This is funappfication and x is theargument Of
course, parentheses may be used around any expression, so we mayxyrifewe want. If
either the function or the argument is not simple, we will have to enclose it in parentheses. Wh
there is no danger of confusion, we may write without a space between, but when we use
multicharacter names, we must put a space between the function and the argument. As an exan
of application, if suc=An: nat n+1 , then

suc3 = (A\n:natn+l)3 = 3+1 = 4
Here is theApplication Axiom If elementx: D, then

(Av: D-b) x = (substitutex for v in b)
Operators and functions are similar; just as we apply operator — to operamdjet x , we
apply functionf to argumentx to getf x.

A function of more than one variable is a function whose body is a function. Here are tw
examples.
max = AX: xrat- Ay: xrat- if x2y then x elsey
min = AX: xrat- Ay: xrat- if x<y then x elsey
If we apply max to an argument we obtain a function of one variable,
max3 = Ay: xrat- if 3>y then 3elsey
which can be applied to an argument to obtain a number.
max35 = 5

A predicatds a function whose body is a boolean expression. Two examples are
even = Ai:int-i/2:int
odd = Ai:int- = i/2:int
A relationis a function whose body is a predicate. Here is an example:
divides = An: natt1-Ai: int-i/n: int
divides2 = even
divides2 3 =1

One more operation on functionsselective union If f and g are functions, then

flg “f otherwiseg”, “the selective union of andg”
is a function that behaves like when applied to an argument in the domairf paind otherwise
behaves likeg . The axioms are

A(f|g) = Af, Ag

(f]g) x = if x: Afthen f xelseg x

All the rules of proof apply to the body of a function with the additional local axiom that the new
variable is an element of the domain.
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3.0.0 Abbreviated Function Notations

We allow some variations in the notation for functions partly for the sake of convenience and partl

for the sake of tradition. The first variation is to group the introduction of variables. For example
AX, y: xrat- if x>y then x elsey

is an abbreviation for thenax function seen earlier.

We may omit the domain of a function if the surrounding explanation supplies it. For example, th
successor function may be writteém- n+1 in a context where it is understood that the domain is
nat.

We may omit the variable when the body of a function does not use it. In this case, we also on
the A and we change the dot () to an arrew).( For example, 2 3 is a function that maps 2
to 3, which we could have writtekn: 2- 3 with an unused variable.

Our final abbreviation is to omit both the variable and domain (and assodated, supplying
them informally. For example, the function

AX: int- Ay:int- x+3
which introduces two variables, is often more conveniently written

X+3
But we must say somewhere in the surrounding explanation that the variablesacky , and
that their domain isint . The example illustrates that the variables and their domains must be
stated; they cannot be seen from the body. According to this abbreviation, arbitrary expressio
can always be considered as functions whose variables were introduced informally. It also mea
that the variables we used in earlier chapters are the same as the variables we introduce ourselv
functions. However, informal variable introduction is not sufficiently precise (what exactly is the
scope? in what order are the variables introduced?) to allow us to apply such an abbreviat
function to an argument.

£nd of Abbreviated Function Notations

3.0.1 Scope and Substitution

A variable islocal to an expression if its introduction is inside the expression (and therefore
formal). A variable isnonlocalto an expression if its introduction is outside the expression
(whether formal or informal). The words “local” and “nonlocal” are used relative to a particular
expression or subexpression.

If we always use fresh names for our local variables, then a substitution replaces all occurrences
a variable. But if we reuse a name, we need to be more careful. Here is an example in which 1
gaps represent uninteresting parts.
(Ax- x (Ax- x ) X )3

Variable x is introduced twice: it is reintroduced in the inner scope even though it was alread
introduced in the outer scope. Inside the inner scopexthe the one introduced in the inner
scope. The outer scope is a function, which is being applied to argument 3 . Assuming 3 is
its domain, the Application Axiom says that this expression is equal to one obtained by substitutir
3 for x. The intention is to substitute 3 for tixeintroduced by this function, the outer scope,
not the one introduced in the inner scope. The result is

= ( 3 (Ax- x ) 3 )
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Here is a worse example. Supposeis a nonlocal variable, and we reintroduce it in an inner
scope.
(Ay- X y (Ax- X y ) X y ) X

The Application Axiom tells us to substitute for all occurrences ofy . All three uses ofy are
the variable introduced by the outer scope, so all three must be replaced by the nonisedlas
argument. But that will place a nonlocal inside a scope that reintroduces making it look
local. Before we substitute, we must use the Renaming Axiom for the inner scope. Choosir
fresh namez , we get

= (Ay- X y (Az. z y ) X y ) X
by renaming, and then substitution gives

= ( X X Az z X ) X X )
End of Scope and Substitution

£nd of Functions

3.1 Quantifiers

A guantifieris a unary prefix operator that applies to functions. Any binary symmetric associative
operator can be used to define a quantifier. Here are four examples: the op@idters are

used to define, respectively, the quantifiers 01> M . If p is a predicate, thenniversal
guantification (p is the boolean result of applying to all its domain elements and conjoining alll
the results. Similarlyexistential guantificationp is the boolean result of applying to all its
domain elements and disjoining all the resultsf I§ a function with a numeric result, the&f is

the numeric result of applyin§ to all its domain elements and adding up all the results; liahd

is the numeric result of applying to all its domain elements and multiplying together all the
results. Here are four examples.

OAr :rat-r<0Or=00r>0 “forall r inrat...”

CAn: nat- n=0 “there existsn in nat such that ...”
>An: nat+1- 1/2 “the sum, forn in nat+1, of ...”
MAN: nat+1- (4&n2)/(4xn2—1) “the product, forn in natt1, of ...”

For the sake of convenience and tradition, we allow two abbreviated quantifier notations. Firs
we allow aA following a quantifier to be omitted. For example we write
Or :rat-r<O00Or=00r>0
n: nattl- 1/2
Second, we can group the variables in a repeated quantification. In place of
Ux:rat-Uy:rat-x=y+1 I x>y
we can write
Ox,y:rat-x=y+1 [I x>y
and in place of
2n: 0,..10-Zm: 0,..10-nxm
we can write
>n, m: 0,..10-nxm
The axioms for these quantifiers fall into two patterns, depending on whether the operator ¢
which it is based is idempotent. The axioms are as followss(a name A and B are bunches,
b is a boolean expression, is a number expression, amdis an element).
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Ovinull-b = T
Ov:x-b = (Av: x-b)x
Ov: AB-b = (Ov: A-b) O(Ov: B-b)

Ov:null-b = L

v: x-b = (Av: x-b)x

Ov: AB-b = (Ov: A-b) O(Cv: B-b)
>vinullln = 0

Sv:x-n = (Av: x-n)x

(Zv: AB-n)+ (2Zv: A'B-n) — (Ev:A-n)+ (2v:B-n)

Mv.nulln = 1
Mv:x-n = AvV: X n)X
(Mv: AB-n) x (Mv: A'B-n) = (Mv: A-n) x (NMv: B-n)

Care is required when translating from the English words “all” and “some” to the formal notations
0 and [J. For example, the statement “All is not lost.” should not be translatétkas lost x,

but as [x- - lost x or as-[Ix: lost x or as~[lost. Notice that when a quantifier is applied to a
function with an empty domain, it gives the identity element of the operator it is based on. It i
probably not a surprise to find that the sum of no numbers is 0, but it may surprise you to lea
that the product of no numbersis 1. You probably agree that there is not an element in the em|
domain with propertyb (no matter whato is), and so existential quantification over an empty
domain gives the result you expect. You may find it harder to accept that all elements in the emg
domain have propert , but look at it this way: to deny it is to say that there is an element in the
empty domain without propertyp . Since there isn't any element in the empty domain, there isn't
one without propertyb , so all (zero) elements have the property.

We can also form quantifiers from functions that we define ourselves. For example, functior
min and max are binary symmetric associative idempotent functions, so we can define
corresponding quantifierMIN and MAX as follows.

MIN v: null-n = o

MIN v: x-n = (AV: X-n) X

MIN v: AB-n = min (MIN v: A-n) (MIN v: B- n)

MAX v null- n —00
MAX v. x:n = (AV: X-n) x
MAX v. AB-n = max(MAX v. A-n) (MAX v. B- n)

Our final quantifier applies to predicates. The solution quantifier 8 (“solutions of”, “those”) gives
the bunch of solutions of a predicate. Here are the axioms.

8v.null-b = null

8v: x-b = if (A\v: x- b) xthen x else null

8v:AB-b = (8:A:-b), (8:B-b)
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We have all practiced solving equations, and we are comfortable with

8i:int-i2=4 = -2,2 “those i in int suchthat...”
Equations are just a special case of boolean expression; we can just as well talk about the soluti
of any predicate. For example,

8n:natn<3 = 0,..3

There are further axioms to say how each quantifier behaves when the domain is a result of the
guantifier; they are listed at the back of the book, together with other laws concernini
guantification. These laws are used again and again during programming; they must be stud
until they are all familiar. Some of them can be written in a nicer, though less traditional, way
For example, the Specialization and Generalization laws at the back sayxtHat,

Ov:D-b [ (Av: D- b) x

(\Ww:D-b)x [ ov:D-b
Together they can be written as follows: xifAf

Of fx U o
If f resultsinT for all its domain elements, thenresults inT for domain elemenik . And if
f results inT for domain elemenk , then there is a domain element for whichesults inT .

The One-Point Laws say thatxt D , and v does not appear ir , then

Ov:D-v=xO b = (@Av:D-b)x

v: D-v=xOb = (Av:D-b)x
For instance, in the universal quantificatiam: nat n=3 0 n<10 , we see an implication whose
antecedent equates the variable to an element. The One-Point Law says this can be simplified
getting rid of the quantifier and antecedent, keeping just the consequent, but replacing the varial
by the element. So we get 3<10 , which can be further simplified to In an existential
guantification, we need a conjunct equating the variable to an element, and then we can make
same simplification. For exampléhn: nat n=3 [1n<10 becomes 3<10, which can be further
simplifiedto T . If P is a predicate that does not mention nonlocal variablend element
y: AP, then the following are all equivalent:
Ux: AP- x=y I Px
[Xx: AP- x=y O Px
(AX: AP-Px) y
Py

Some of the laws may be a little surprising; for example, we can prove
MIN n: nat- 1/(+1) = O
even though 0 is never a result of the functdannat: 1/(+1) .

End of Quantifiers
3.2 Function Fine Points optional

Consider a function in which the body is a bunch: each element of the domain is mapped to zero
more elements of the range. For example,

An: nat n, n+1
maps each natural number to two natural numbers.
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b

Application works as usual:
(An:natn,n+tl)3 = 3,4

A function that sometimes produces no result is called “partial”. A function that always produce:
at least one result is called “total”. A function that always produces at most one result is calle
“deterministic”. A function that sometimes produces more than one result is callec
“nondeterministic”. Here is a function that is both partial and nondeterministic.

An:nat 0,.n

A function whose body is a union is equal to a union of functions:
(Av: D-b,c) = Av: D-b), A\v: D-¢)

A union of functions applied to an argument gives the union of the results:
(f,g) x = fx,gx

A function applied to a union of arguments gives the union of the results:
f null = null
f(A,B) =fAfB
f(8g) = §:f (Ag) [X: Ag- fx=y O gx

In other words, function application distributes over bunch union.

In general, we cannot apply a function to a non-elementary bunch using the Application Law. Fc
example, if we define
double = An: nat n+n

we can say
double(2, 3) this step is right
= double2,double3
= 4,6
but we cannot say
double(2, 3) this step is wrong
= (2,3)+(2,93)
= 4,56

Suppose we really do want to apply a function to a collection of items, for example to report i
there are too many items in the collection. Then the collection must be packaged as a set to mak
an elementary argument.

If the body of a function uses its variable exactly once, and in a distributing context, then th
function can be applied to a non-elementary argument because the result will be the same as wc
be obtained by distribution. For example,

(An: nat nx2) (2, 3) this step is ok

(2, 3x2

4,6
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3.2.0 Function Inclusion and Equality optional

A function f is included in a functiorg according to th€unction Inclusion Law

f.g = Ag Af O Ox: Ag-fx: gx
Using it both ways round, we find function equality is as follows:
f=g — Af=Ag O Ox: Af-fx =gx

We now provesuc nat--nat. Functionsuc was defined earlier as
suc = An: nat n+1
Function nat- nat is an abbreviation ofAn: nat- nat, which has an unused variable. It is a
nondeterministic function whose result, for each element of its domatinis the bunchnat. It
is also the bunch of all functions with domaiat and result innat .
suc nat- nat use Function Inclusion Law
nat nat [0 Un: nat suc n nat
Ln: nat n+1: nat
T
We can prove similar inclusions about the other functions defined in the opening section of th
chapter.
max xrat - xrat - xrat
min: Xrat- xrat - xrat
evenint - bool
odd int - bool
divides (nat+1) - int - bool
And, more generally,
f.A-B — A:Af O Oa A-faB

We earlier definedsuc by the axiom
suc = An: nat n+1
This equation can be written instead as
Asuc=nat [ [Un:nat suc n=n+1
We could have defineduc by the weaker axiom
nat Asuc [ [n: nat suc n=n+1
which is almost as useful in practice, and allosugc to be extended to a larger domain later, if
desired. A similar comment holds fonax, min, even, odd, and divides.
£nd of Function Inclusion and Equality

3.2.1 Higher-Order Functions optional

Here is a predicate whose parameter is a function.

Af: (0,..10)- int- On: 0,..10-even(f n)
This predicate checks whether a function, when applied to each of the first 10 natural numbe!
produces only even integers. Let us call this predicdteck. Since its parametef is used
exactly once in the body otheck, and in a distributing contextefven distributes over bunch
union), we can applycheck to a functional argument (even though functions are not elements).
An argument forcheck must be a function whose domain includes 0,..10 beazhessk will be
applying its argument to all elements in 0,..10 . An argumentcfack must be a function
whose results, when applied to the first 10 natural numbers, are inclugedbecause they will
be tested for evenness. An argumentdbeck may have a larger domain (extra domain elements
will be ignored), and it may have a smaller range. AtfB and f: B- C and C: D then
f: A-D . Therefore
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suc (0,..10)-int
We can applycheck to suc and the result will bel .

End of Higher-Order Functions
3.2.2 Function Composition optional

Let f and g be functions such thdt is not in the domain oy (-~ f:Ag). Theng f is the
compositionof g and f, defined by thé&unction Composition Axioms

A(g ) = & Af-fx: Ag

@Hx =g(x
For example, sinceuc is not in the domain oéven,

A(even sur — 8x: Asuc suc x Aeven — 8 nat x+1:int — nat

(even sup3 = even(suc3) =evend =T

Supposex andy are not functionsf and g are functions of 1 variable, arfd is a function
of 2 variables. Then

hfxgy juxtaposition is left-associative
= ((hHhx gy use function composition oh f (assuming- f: Ah)
= (hfx)oy use function composition orh (f X)) g (assuming- g: A h(fx) )
= (h({fx) @y drop superfluous parentheses
= h{x @y

The Composition Axiom says that we can write complicated combinations of functions ant
arguments without parentheses. They sort themselves out properly according to their functionali
(This is called “Polish prefix” notation.)

Composition and application are closely related. Suppose.B and g:B-C and - f: Ag so
that g can be composed with. Although g cannot be applied td , we can changeg into a
function g': (A-B) - (A~ C) that can be applied tb to obtain the same result as composition:
g f=gf. Hereis an example. Define

double = An: nat- n+n
We can composelouble with suc.

(double sug3 use composition
= double(suc3) apply double to suc3
= suc3 +suc3

From double we can form a new function
doublé = Af-An-fn+fn
which can be applied tsuc
(doublé sug 3 = QAn-sucn+sucnh3 = suc3 +suc3
to obtain the same result as before. This close correspondence has led people to take a notati
shortcut: they go ahead and apmlguble to suc even though it does not apply, then distribute
the next argument to all occurrencessoic. Beginning with

(double sur3 they “apply” double to suc
(suc+sug 3 then distribute 3 to all occurrencessafc
suc3 +suc3 and get the right answer.

As in this example, the shortcut usually works, but beware: it can sometimes lead t
inconsistencies. Like application, composition distributes over bunch union.

f(g,h) =fg fh

(f,g99h =fh,gh
(The word “apposition” has been suggested as a contraction of “application” and “composition’
and it perfectly describes the notation, too!)
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Operators and functions are similar; each applies to its operands to produce a result. Just as
compose functions, we can compose operators, and we can compose an operator with a funct
For example, we can compose — with any functfothat produces a number to obtain a new
function.

(-Hx = -€x
In particular,

(~sug 3 = —bucl3d) = 4
Similarly if p is a predicate, then

(=p)x = =(pX
We can compose: with even to obtainodd again.

-even— odd
We can write the Duality Laws this way:

-0f = [-f
-0 = 0O-f
or even this way:
-0 = [k
-0 = 0O~

End of Function Composition
£nd of Function Fine Points

3.3 List as Function

For most purposes, a list can be regarded as a kind of function. The domairLofi$isO,..# .
Indexing a list is the same as function application, and the same notations used. List
composition is the same as function composition, and the same ndtaibris used. It is handy,
and not harmful, to mix lists and functions in a composition. For example,

suc[3; 5; 2] = [4; 6; 3]
We can also mix lists and functions in a selective union. With functier211 as left operand,
and list [10; 11; 12] as right operand, we get

1-21]|[10; 11; 12] = [10; 21; 12]
just as we defined it for lists.

We can apply quantifiers to lists. Since list corresponds to the functiokn: 0,..#L- Ln , then
2L can be used to meann: 0,..# - Ln, and conveniently expresses the sum of the items of the
list.

In some respects, lists and functions differ. Catenation and length apply to lists, not to function
Order is defined for lists, not for functions. List inclusion and function inclusion do not coincide.
£nd of List as Function

3.4 Limitsand Reals optional

Let f: nat—rat so thatfO f1f2 ... is a sequence of rationals. Timait of the function (limit of
the sequence) is expressedlds! f . For example,

LIM n: nat- (1 + 1h)n
is the base of the natural logarithms, often den@&edpproximately equal to 2.718281828459 .
We defineLIM by the following Limit Axiom:

(MAX m MIN n- f(m+n)) < (LIM f) < (MIN m- MAX n- f(m+n))
with all domains beingnat. This axiom gives a lower bound and an upper bound.fbr f .
When those bounds are equal, the Limit Axiom telld U f exactly. For example,
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LIMn- 1/p+1) = O
For some functions, the Limit Axiom tells us a little less. For example,
-1< LIMn- (-1 < 1
In general,
(MIN f) < (LIM 1) £ (MAXT)
For monotonic (nondecreasing), LIM f = MAX f. For antimonotonic (nonincreasing),
LIM f = MIN f.

Now we can define the extended real numbers.

x: xreal — [T nat-rat-x=LIM f
We take the limits of all functions with domairat and rangerat . Now the reals:
r:real = r:xreal [0 —oo <r <oo

Exploration of this definition is a rich subject called real analysis, and we leave it to other books.

Let p: nat- bool so thatp is a predicate angO pl p2 ... is a sequence of booleans. The limit
of predicatep is defined by the axiom

Cm- On- p(m+n) LIMp I ommn p(m+n)
with all domains beingnat. The limit axiom for predicates is very similar to the limit axiom for
numeric functions. One way to understand it is to break it into two separate implications, an
change the second variable as follows.

Om- Oi-izm0O pi L LIMp

On Oi-izmO =pi U - LiMp
For any particular assignment of values to (nonlocal) variables, the first implication says the
LIMp is T if there is a pointm in the sequenc@O0 pl p2 ... past whichp is always T , and
the second implication says thalM p is L if there is a point in the sequence past whiclis
always L . For example,

- LIMn-1/+1) =0
Even though the limit of 1i¢1) is O, the limitof 1A+1) =0 isl .

If, for some particular assignment of values to variables, the sequence never settles on one bool
value, then the axiom does not determine the valudMfp for that assignment of values.
End of Limits and Reals

The purpose of a function is to introduce a local variable. But we must remember that an
expression talks about its nonlocal variables. For example,
[h: nat x = 2xn
says thatx is an even natural. The local varialsle which could just as well have been or
any other name, is used to help say thaits an even natural. The expression is talking alxqut
not aboutn .

£nd of Function Theory
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We begin with a very simple model of computation. A computer has a memory, and we ca
observe its contents, state Our input to a computation is to provideiaitial state or prestate
After a time, the output from the computation is fin@l state or poststate Although the memory
contents may physically be a sequence of bits, we can consider it to be a list of any items; we ol
need to group the bits and view them through a code. A sta(sigma) may, for example, be
given by

o = [-2; 15; 'A; 3.14]
The indexes of the items in a state are usually called “addresses”. The bunch of possible state
called thestate spaceFor example, the state space might be

[int; (0,..20);char; rat]
If the memory is in state , then the items in memory a®0, 01, o 2, and so on. Instead of
using addresses, we find it much more convenient to refer to items in memory by distinct name
such asi ,n,c, andx. Names that are used to refer to components of the state arestaitted
variables. We must always say what the state variables are and what their domains are, but we
not bother to say which address a state variable corresponds to. A state is then an assignmer
values to state variables.

Our example state space is infinite, and this is unrealistic; any physical memory is finite. W
allow this deviation from reality as a simplification; the theory of integers is simpler than the
theory of integers modulo32, and the theory of rational numbers is much simpler than the theory
of 32-bit floating-point numbers. In the design of any theory we must decide which aspects of tr
world to consider and which to leave to other theories. We are free to develop and use ma
complicated theories when necessary, but we will have difficulties enough without considering th
finite limitations of a physical memory.

To begin this chapter, we consider only the prestate and poststate of memory to be of importan
Later in this chapter we will consider execution time, and changing space requirements, and ir
later chapter we will consider communication during the course of a computation. But to begin w
consider only an initial input and a final output. The question of termination of a computation is
guestion of execution time; termination just means that the execution time is finite. In the case ol
terminating computation, the final output is available after a finite time; in the case of ¢
nonterminating computation, the final output is never available, or to say the same thin
differently, it is available at time infinity. All further discussion of termination is postponed until
we discuss execution time.

4.0 Specifications

A specificationis a boolean expression whose variables represent quantities of interest. We a
specifying computer behavior, and (for now) the quantities of interest are the prestatd the
poststatec’ . We provide a prestate as input. A computation then delivers (computes) a poststa
as output. To satisfy a specification, a computation must deliver a satisfactory poststate. In otF
words, the given prestate and the computed poststate must make the specification true. We hawv
implementation when the specification describes (is true of) every computation. For a specificatic
to be implementable, there must be at least one satisfactory output state for each input state.
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Here are four definitions based on the number of satisfactory outputs for each input.

SpecificationS is unsatisfiablefor prestateo : ¢(&'-9 =0
SpecificationS is satisfiablefor prestateo : ¢89S >0
SpecificationS is deterministicfor prestateo : ¢89S <1
SpecificationS is nondeterministidor prestateo : ¢80"-9 >1
We can rewrite the definition of satisfiable as follows:
SpecificationS is satisfiable for prestate : (o' S
And finally,
SpecificationS isimplementable Oo-[o'- S
For convenience, we prefer to write specifications in the initial valuey , ... and final values
X, VY ,.. of some state variables (we make no typographic distinction between a state variab

and its initial value). Here is an example. Suppose there are two state vaxiadhelsy each
with domainint. Then

X=x+t1 0y =y
specifies the behavior of a computer that increases the vakudpf 1 and leavey unchanged.
Let us check that it is implementable. We repldde- by either 0x, y- ordy, x- and we
replaceo’- by either(X',y'- or Oy, X-; according to the Commutative Laws, the order does
not matter. We find

OX,y-IX,y-X =x+1 Oy =y One-Point Law twice
- Ox,y- T Identity Law twice
- T

The specification is implementable. It is also deterministic for each prestate.

In the same state variables, here is a second specification.

X >X
This specification is satisfied by a computation that increasdxy any amount; it may leave
unchanged or may change it to any integer. This specification is nondeterministic for each initi
state. Computer behavior satisfying the earlier specificationx+1 [0 y =y also satisfies this
one, but there are many ways to satisfy this one that do not satisfy the earlier one. In gener
weaker specifications are easier to implement; stronger specifications are harder to implement.

At one extreme, we have the specification; it is the easiest specification to implement because
all computer behavior satisfies it. At the other extreme is the specificatignwhich is not
satisfied by any computer behavior. Bt is not the only unimplementable specification. Here
is another.

x=0 0 y=0
If the initial value of X is nonnegative, the specification can be satisfied by setting vayatie
0 . But if the initial value ofx is negative, there is no way to satisfy the specification. Perhaps
the specifier has no intention of providing a negative input; in that case, the specifier should ha
written

x>0 0 y'=0
For nonnegative initialx , this specification still requires variablg to be assigned 0. If we
never provide a negative value far then we don't care what would happen if we did. That's
what this specification says: for negatixeany result is satisfactory. It allows an implementer to
provide an error indication wher is initially negative. If we want a particular error indication,
we can strengthen the specification to say so. We can describe the acceptable ixgpitsoas
not the computer behavior. We can describe the acceptable inputs and the computer behay
together asx=0 I (x>0 0 y'=0) , which can be simplified to=0 Oy'=0 . But x=0 0y'=0
cannot be implemented as computer behavior because a computer cannot control its inputs.
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There is an unfortunate clash between mathematical terminology and computing terminology th
we have to live with. In mathematical terminology, a variable is something that can be instantiate
and a constant is something that cannot be instantiated. In computing terminology, a variable
something that can change state, and a constant is something that cannot change state.
computing variable is also known as a “state variable”, and a computing constant is also known
a “state constant”. A state variable corresponds to two mathematical variablesind x' . A

state constant is a single mathematical variable; it is there for instantiation, and it does not char
state.

4.0.0 Specification Notations

For our specification language we will not be definitive or restrictive; we allow any well

understood notations. Often this will include notations from the application area. When it helps t
make a specification clearer and more understandable, a new notation may be invented and defi
by new axioms.

In addition to the notations already presented, we add two more.

ok — 0'=0
— X=x0Oy=y O..
X=e (substitutee for x in ok)

X=e y=y O...
The notation ok specifies that the final values of all variables equal the corresponding initial
values. A computer can satisfy this specification by doing nothing. The assigx»eat is
pronounced “x is assignede ”, or “ x gets e”, or “ x becomese”. In the assignment
notation, X is any unprimed state variable aldis any unprimed expression in the domainxaf
For example, in integer variablesandy,

X=Xty — X=x+y O y=y
So x:= x+y specifies that the final value of should be the sum of the initial values »fand
y, and the value ofy should be unchanged.

Specifications are boolean expressions, and they can be combined using any operators of Bool
Theory. If S and R are specifications, theiSUR is a specification that is satisfied by any
computation that satisfies both and R . Similarly, STR is a specification that is satisfied by
any computation that satisfies eith8ror R. Similarly, =S is a specification that is satisfied by
any computation that does not satis8/. A particularly useful operator isf b then SelseR
where b is a boolean expression of the initial state; it can be implemented by a computer thi
evaluatesb , and then, depending on the valuelof behaves according to eith&or R. The

[0 and if then else operators have the nice property that if their operands are implementable, s
is the result; the operatofs and = do not have that property.

Specifications can also be combined dgpendent compositiorwhich describes sequential
execution. IfS and R are specifications, theBR is a specification that can be implemented by
a computer that first behaves according3¢ then behaves according & , with the final state
from S serving as initial state foR . (The symbol for dependent composition is pronounced
“dot”. This is not the same as the raised dot used to introduce a variable formally in a function
Dependent composition is defined as follows.

SR = XYy, .. (substitute X', y"', ... for X,y', ... in S)

[0 (substitute x”,y", ... for x,y, ... in R)
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Here's an example. In one integer variablethe specificationx=x [1x'=x+1 says that the final

value of x is either the same as the initial value or one greater. Let's compose it with itself.

X=xXOx=x+1. X'=x0OxX'=x+1

X' K'=x0Ox"'=x+1) 0 X=x"Ox=x"+1) distribute O over U

X' X'=xUOx'=x" 0 X'=x+10x=x" O X'=xUx=x"+1 U xX'=x+1 x=x"+1
distribute [0 over [

(IX'-x"'=xOx'=x") O (X' x"=x+1 0Ox'=x"
O (XK' xX"'=x Ox'=x"+1) O (X' X"=x+1 Ox'=X"+1) One-Point, 4 times
X'=x Ox'=x+1 0X'=x+2
If we either leavex alone or add 1 to it, and then again we either leaaone or add 1 to it,
the net result is that we either leave it alone, add 1 toit, oradd 2 toit.

Here is a picture of the same example. In the picture, an arrow &omm b means that the
specification allows variable to change value frona to b. We see that ik can change from
a to b in the left operand of a dependent composition, and fote ¢ in the right operand,
then it can change froma to c in the result.

X X' X X' X X' X X X'
0—0 0—=0 0—0—0 O——==0
11 13 1313 1}§1
232 22 = o223 = 2}%2
3N3 335 333 N5 AN
\ \ :\ \ :\
4 4—24 4—34 : 4
N N 5

Our equation forS.R was partly informal; we need to clarify what was meant by (substityte

y', ... for X', ¥y, .. inS) and (substitutex'’,y", ... for x,y, ... in R). To begin with,

you should not conclude that substitution is impossible since the n@raesl R do not mention

any state variables; presumably and R stand for, or are equated to, expressions that do
mention some state variables. And second, wisenr R is an assignment, the assignment
notation should be replaced by its equal using mathematical variablgs, y, y' , ... before
substitution. Finally, wherS or R is a dependent composition, the inner substitutions must be
made first. Here is an example, again in integer variablasd y .

X:= 3. yi= X+y eliminate assignments first
- X'=3 0y'=y. X'=x 0y'=x+y then eliminate dependent composition
— X',y int-xX'=30y"'=y O xX'=xX" Oy=x"+y" use One-Point Law twice
- X=3 0y =34

End of Specification Notations
4.0.1 Specification Laws

We have seen some of the following laws before. For specificabon® , R, and S, and
booleanb,

ok P — P.ok = P Identity Law

P.QR = (P.Q.R Associative Law
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ifbthenPelseP = P Idempotent Law
ifbthenPelseQ — if-bthenQelseP Case Reversal Law

P = ifbthenbO Pelse-b0O P Case Creation Law

if bthen SelseR = bOSO-bOR Case Analysis Law

if bthenSelseR = (GOS O (-bOR) Case Analysis Law
POQ.ROS — P.ROMP.90(Q.ROW.S) Distributive Law

(if bthen Pelse Q)R — if bthen POR else QIR Distributive Law

x:=if bthen eelsef = if bthen x:=eelsex:=f Functional-Imperative Law

In the second Distributive Law, we can replaldewith any other boolean operator. We can even
replace it with dependent composition with a restriction:blfis a boolean expression of the
prestate (in unprimed variables),

(if bthen Pelse Q). R = if bthen (P. R) else (Q. R) Distributive Law
And finally, if e is any expression of the prestate (in unprimed variables),

x=e.P — (for x substitutee in P) Substitution Law

The Substitution Law is stated partly informally, so we must explain exactly how the substitutior
is to be made. Exercise 97 illustrates all the difficult cases, so let us do the exercise. The st
variables arex andy .

@ X:=y+l., y'>x

Since x does not occur iry’>X' , replacing it is no change.
: yI>XI

(b) X:= x+1. y'>x OX'>x

Both occurrences ok in y'>x Ox'>x must be replaced by+1 .
— y>x+l 00X >x+1

(c) X:=y+1. y = 2xX
Because multiplication has precedence over addition, we must put parenthesesyafiowen
we substitute it forx in y' = 2xx.

— Y =2(y+1)

(d) x=1. x21 O XYy =2xx

In x>1 0 [X Yy =2xx, the first occurrence of is nonlocal, and the last occurrence is local. It
is the nonlocalx that is being replaced. The localcould have been almost any other name, and
probably should have been to avoid any possible confusion.

151 0 Xy =2xx

eveny

(e) x:=y. x21 O [Oy-y =xxy

Now we are forced to rename the logalbefore making the substitution, otherwise we would be
placing the nonlocal in the scope of the local.

— x=y. x21 O [k y =xxk

y=1 [0 [k-y =yxk

() x:= 1. ok

The nameok is defined by the axionok — X'=x[0y'=y, so it depends ox .
x:=1. xX=x0y'=y

X=10y'=y
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(9) x=1 y=2

Although x does not appear ig:= 2 , the answer is noy:= 2 . We must remember thgt= 2
is defined by an axiom, and it depends>on

— x=1. X=x0Oy=2

X=10y=2

(It is questionable whethex=1 0y'=2 is a “simplification” ofx:=1. y:=2.)

(h) x=1. P whereP=y.=2

This one just combines the points of parts (f) and (g).
— X=10y=2

0] x:= 1. yi= 2. Xi= xty

In part (g) we saw thak:=1. y:=2 — x'=1 0y'=2. If we use that, we are then faced with a
dependent compositioR=1 [0y'=2. x:= x+y for which the Substitution Law does not apply. In
a sequence of assignments, it is much better to use the Substitution Law from right to left.

— x=1.X=xt2 0y=2
— X=30y=2

0) x:= 1. if y>xthen x:= x+1 elsex:=y
This part is unremarkable. It just shows that the Substitution Law appifss to
— ify>1then x:= 2 elsex:=y

(K) X:= 1. X'>X. X =x+1

We can use the Substitution Law on the first two pieces of this dependent composition to obtain
— X>1. X =x+1

Now we have to use the axiom for dependent composition to get a further simplification.

(X', y'-X'">1 00X =x"+1

X'>2

The error we avoided in the first step is to replacavith 1 in the third part of the compaosition

X' =x+1 .

End of Specification Laws

4.0.2 Refinement

Two specificationsP and Q are equal if and only if each is satisfied whenever the other is.
Formally,

Uo, 0o'- P=Q
If a customer gives us a specification and asks us to implement it, we can instead implement
equal specification, and the customer will still be satisfied.

Suppose we are given specificatiéh and we implement a stronger specificatiBn Since S
implies P, all computer behavior satisfyin§ also satisfiesP , so the customer will still be
satisfied. We are allowed to change a specification, but only to an equal or stronger specification

Specification P isrefined by specification S if and only if P is satisfied whenevelS is
satisfied.

Uo,0'-POS
Refinement of a specificatioR simply means finding another specificati@that is everywhere
equal or stronger. We caP the “problem” andS the “solution”. In practice, to prove th&t is
refined by S, we work within the universal quantifications and pravwe] S. In this context,
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we can pronounc® [0 S as “P is refined byS”.

Here are some examples of refinement.

x>x [ x=x+1 ay'=y

X=x+1[1y'=y [ x=x+1

x'<x [ _if x=0 then x'=x else x'<x

X' >y'>X [] y:=x+1. xi=y+1
In each, the problem (left side) follows from the solution (right side) for all initial and final values
of all variables.

£nd of Refinement
4.0.3 Conditions optional

A conditionis a specification that refers to at most one state. A condition that refers to (at most) tr
initial state (prestate) is called muitial condition or precondition and a condition that refers to (at
most) the final state (poststate) is calleihal conditionor postcondition In the following two
definitions letP and S be specifications.

Theexact preconditioffor P to be refined byS is Oo'- PO S.

Theexact postconditiofor P to be refined byS is Uo- PO S.

For example, althougl'>5 is not refined byx:= x+1 , we can calculate (in one integer variable)
(the exact precondition fox>5 to be refined by:=x+1)
Ox-x>50 (x=x+1)
Ox'-x>50 x'=x+1 One-Point Law
x+1>5
X>4
This means that a computation satisfyirgr x+1 will also satisfyx'>5 if and only if it starts
with x>4 . If we are interested only in prestates such tked , then we should weaken our
problem with that antecedent, obtaining the refinement

x>40 x>5 [ x=x+1

There is a similar story for postconditions. For example, althoxgh is unimplementable,
(the exact postcondition fax>4 to be refined byc=x+1)
Ox-x>4 0 (x:=x+1)
Ox-x>4 0 X'=x+1 One-Point Law
X-1>4
X >5
This means that a computation satisfyirg x+1 will also satisfyx>4 if and only if it ends with
X>5 . If we are interested only in poststates such ke , then we should weaken our problem
with that antecedent, obtaining the refinement

X>50 x>4 X:=x+1
For easier understanding, it may help to use the Contrapositive Law to rewrite the specificatic
xX>5[ x>4 as the equivalent specificatiog4 [J x'<5.

We can now find the exact pre- and postconditionFoto be refined byS. Any precondition
that implies the exact precondition is callesidficient precondition Any precondition implied by
the exact precondition is callechacessary preconditionAny postcondition that implies the exact
postcondition is called aufficient postcondition Any postcondition implied by the exact
postcondition is called @ecessary postconditiorThe exact precondition is therefore the necessary
and sufficient precondition, and similarly for postconditions.
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Exercise 112(c) asks for the exact precondition and postconditior:¥ox2 to move integer
variable x farther from zero. To answer, we must first state formally what it means to move
farther from zero:abs X > abs x (where abs is the absolute value function; its definition can be
found in Chapter 11). We now calculate

(the exact precondition foabs X > abs x to be refined byx:=x2)

Ox'-abs x>abs x[J X =x2 One-Point Law
abs(x2) > abs x by the arithmetic properties @bs x and x2
x+=-10x#+0 Ux*1

(the exact postcondition faabs x > abs x to be refined byx:= x2)
Ox-abs x>abs x[ X =x2 after several steps including domain splitting and
variable change and using the arithmetic propertiesbsfx and x2

— X=#00Ox=*1
If x starts anywhere but =1, 0, or 1, we can be sure it will move farther from zercenids
anywhere but 0 or 1, we can be sure it did move farther from zero.

Let P and Q be any specifications, and I€ be a precondition, and I&' be the corresponding
postcondition (in other wordsC' is the same a€ but with primes on all the state variables).
Then the following are all laws.

coP.Q L cop.o

co®Q L copro

r.Qoc U pooc

PQoc U pooc

P.C [0 poc.o

P.Q POC. COQ
Precondition Law:

C is a sufficient precondition foP to be refined byS

if and only if CO P is refined byS.
Postcondition Law:

C' is a sufficient postcondition foP to be refined byS

if and only if C' P is refined byS.

£nd of Conditions
4.0.4 Programs

A programis a description or specification of computer behavior. A computer executes a progran
by behaving according to the program, by satisfying the program. People often confuse prograr
with computer behavior. They talk about what a program “does”; of course it just sits there on tr
page or screen; it is the computer that does something. They ask whether a program “terminate
of course it does; it is the behavior that may not terminate. A program is not behavior, but
specification of behavior. Furthermore, a computer may not behave as specified by a program 1
a variety of reasons: a disk head may crash, a compiler may have a bug, or a resource may bec
exhausted (stack overflow, number overflow), to mention a few. Then the difference between
program and the computer behavior is obvious.

A program is a specification of computer behavior; for now, that means it is a boolean expressic
relating prestate and poststate. Not every specification is a program. A programptearented
specification, that is, a specification for which an implementation has been provided, so that
computer can execute it. In this chapter we need only a very few programming notations that &
similar to those found in many popular programming languages. We take the following:
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€)) ok is a program.

(b) If x is any state variable angl is an implemented expression of the initial values, then
X:=e is a program.

(c) If b is an implemented boolean expression of the initial values,Rnand Q are
programs, thenf b then P else Q is a program.

(d) If P andQ are programs the®.Q is a program.

(e)  Animplementable specification that is refined by a program is a program.

For the “implemented expressions” referred to in (b) and (c), we take booleans, number
characters, and lists, with all their operators. We omit bunches, sets, and strings because we h
lists, and we omit functions and quantifiers because they are harder to implement. All thes
notations, and others, are still welcome in specifications.

Part (e) states that any implementable specificakois a program if a progran® is provided
such thatP [] S is a theorem. To execute , just executeS . The refinement acts as a
procedure (void function, method) declaratidf; acts as the procedure name, a8das the
procedure body; use of the nanfe acts as a call. Recursion is allowed; call$tanay occur
within ' S.

Here is an example refinement in one integer variable

x>00 x=0 L[] if x=0then okelse (x:= x-1. x>0 O x'=0)
The problem isx>0 0 x'=0. The solution isf x=0 then ok else (x:= x-1. x>0 0 x'=0) . In
the solution, the problem reappears. According to (e), the problem is a program if its solution is
program. And the solution is a programx0 [ x'=0 is a program. By saying “recursion is
allowed” we break the impasse and declare tt¥ [1 x'=0 is a program. A computer executes
it by behaving according to the solution, and whenever the problem is encountered again, t
behavior is again according to the solution.

We must prove the refinement, so we do that now.

if x=0then okelse (x:=x-1. x>0 00 x'=0) Replaceok; Substitution Law

if x=0then xX'=x elsex-1=>0 0 x'=0 use contextx=0 to modify thehen-part
and use contexk+0 andx: int to modify theelse-part

if x=0then x>0 0 x'=0elsex=00 x'=0 Case Idempotence

x=0 0 x'=0

End of Programs

A specification serves as a contract between a client who wants a computer to behave a certain \
and a programmer who will program a computer to behave as desired. For this purpose,
specification must be written as clearly, as understandably, as possible. The programmer th
refines the specification to obtain a program, which a computer can execute. Sometimes t
clearest, most understandable specification is already a program. When that is so, there is ho n
for any other specification, and no need for refinement. However, the programming notations a
only part of the specification notations: those that happen to be implemented. Specifiers shot
use whatever notations help to make their specifications clear, including but not limited t
programming notations.

End of Specifications
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4.1 Program Development
4.1.0 Refinement Laws

Once we have a specification, we refine it until we have a program. We have only five
programming notations to choose from when we refine. Two of th@mand assignment, are
programs and require no further refinement. The other three solve the given refinement proble
by raising new problems to be solved by further refinement. When these new problems a
solved, their solutions will contribute to the solution of the original problem, according to the first
of our refinement laws.

Refinement by Step$Stepwise Refinement) (monotonicity, transitivity)
If A ] ifbthenCeseD andC E and D F are theorems,
then A [] ifbthen EelseF is a theorem.
if ALl BC andB[] D andc[] E are theorems, theA [] D.E is atheorem.
if ALl BandB[] C are theorems, theA [ ] C is a theorem.

Refinement by Steps allows us to introduce one programming construct at a time into our ultima
solution. The next law allows us to break the problem into parts in a different way.

Refinement by Partgnonotonicity, conflation
If ALl ifbthenCelseD andE if bthen F else G are theorems,
then ACE [] if bthen COF else DOG is a theorem.
if ALl BC andD [l EF are theorems, theACD [ ] BCE. COF is a theorem.
if ALl Bandc[] D are theorems, theAIC [] BD is a theorem.

When we add to our repertoire of programming operators in later chapters, the new operators m
obey similar Refinement by Steps and Refinement by Parts laws. Our final refinement law is

Refinement by Cases
P L] if bthen QeseR is atheorem if and only if
PU b 0Q and P [] -bOR are theorems.

As an example of Refinement by Cases, we can prove
x'<x L] if x=0 then x'=x else x'<x

by proving both
X'<X x=0 O x'=x

and
x<x [ x#00x<x

£nd of Refinement Laws
4.1.1 List Summation

As an example of program development, let us do Exercise 142: write a program to find the su
of a list of numbers. Let be the list of numbers, and lst be a number variable whose final
value will be the sum of the items ih . Now s is a state variable, so it corresponds to two
mathematical variables and s . Our solution does not change list, so L is a state constant
(which is a mathematical variable).



4 Program Theory 44

The first step is to express the problem as clearly and as simply as possible. One possibility is
s=2L
We are assuming the expression to the right of the assignment symbol is not implemented, so t
specification is not a program until we refine it. This specification says not onl\sthats the
right final value, but also that all other variables are unchanged, and that makes it a little difficult t
implement. So we weaken our specification and make it easier to implement.
s =3L

The algorithmic idea is obvious: consider each item of the list in order, accumulating the sum. T
do so we need an accumulator variable, and we may as wel use that. We also need a
variable to serve as index in the list, saying how many items have been considered; let us te
natural variablen for that. We must begin by assigning 0 to bstland n to indicate that we
have summed zero items so far. We complete the task by adding the remaining items (whi
means all of them) to the sum.

s=2L $=0. m=0. s =s+XL[n;.#HA]
(Remember: list indexes start at 0, and the Iist.4L] includes n and excludes I#.) This
theorem is easily proven by two applications of the Substitution Law. We consider that we hav
solved the original problem, but now we have a new problem to selve:s + X L [n;..#L] .
When we refine this new problem, we must ignore the context in which it arose; in particular, wi
ignore thats=0 [1n=0 . The new specification represents the problem widatems have been
summed and the rest remain to be summed, for arbitrarfOne of the possible values for is
#L , which means that all items have been summed. That suggests that we use Case Creation r

S =s+2ZL[n;..A] [ ifn=#Lthenn=#L 0 s =s+2ZL[n;.A]

elsen#L 0 S =s+ZL[n;.#A]

Now we have two new problems, but one is trivial.

n=#L 0 s=s+>L[n.#A] [ ok
In the other problem, not all items have been summeel#l() . That means there is at least one
more item to be added to the sum, so let us add one more item to the sum. To complete 1
refinement, we must also add any remaining items.

nk#L 00 s =s+ZL[n;.#] [l s=stLn. ni=n+l. s =s+3L [n;..#]
This refinement is proven by two applications of the Substitution Law. The final specification has
already been refined, so we have finished programming.

One point that deserves further attention is our use#gfL. to mean that not all items have been
summed. We really need<#L to say that there is at least one more item. The specification in
which this appears

nE#L 0 s =s+ZL[n;.#A]
also uses the notation;..#_ , which is defined only foms#L . We may therefore consider that
n<#HL is implicit in our use of the notation; this, together wigh#L |, tells usn<#L as required.

In our first refinement, we could have used a weaker specification to say tiratns have been
summed and the rest remain to be added. We could have said

s=3L [] s=0.m=0. Gns#l Os=3L [0;.n] O s =s+ZL[n;..#A]
For those who were uncomfortable about the use of implicit information in the preceding
paragraph, the first part of the antecederstn{®L) makes the needed bound onexplicit. The
second part of the antecedest=¢ L [0;..n]) is not used anywhere.
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When a compiler translates a program into machine language, it treats each refined specification
just an identifier. For example, the summation program looks like

AL s=on=08

B [ if n=#L then Celse D

c L ok

D U s=stLn. n=n+1. B
to a compiler. Using the Law of Refinement by Steps, a compiler can compile the ¢allard
D in-line (macro-expansion) creating

B [] if n=#L then okelse (s:= stLn. n:=n+1. B)
So, for the sake of efficient execution, there is no need for us to put the pieces together, and
needn't worry about the number of refinements we use.

If we want to execute this program on a computer, we must translate it to a programming langua
that is implemented on that computer. For example, we can translate the summation program tc
as follows.

void B (void) {if (n == sizeof(L)/sizeof(L[0])) ; else {s =s + L[n]; n=n+1; B(); }}

s=0; n=0; B();
A call that is executed last in the solution of a refinemenB ds here, can be translated as just a
branch (jump) machine instruction. Many compilers do a poor job of translating calls, so we migt
prefer to write “go to”, which will then be translated as a branch instruction.

s=0; n=0;

B: if (n == sizeof(L)/sizeof(L[0])) ; else { s =s + L[n]; n=n+1; goto B;}
Most calls can be translated either as nothing (in-line), or as a branch, so we needn't worry abc
calls, even recursive calls, being inefficient.

£End of List Summation
4.1.2 Binary Exponentiation

Now let's try Exercise 149: given natural variabbesand y , write a program fory’' = 2
without using exponentiation. Here is a solution that is neither the simplest nor the most efficien
It has been chosen to illustrate several points.

y'=2x [] if x=0then x=00 y'=2xelsex>0 [0 y'=2x

x=00 y'=2x [] y=1. x=3

x>0 [0 y'=2x [l x-0O y'=2x1 y'=2xy

x>0 [ y'=2x1 [ x=x-1. y'=2x

y'=2xy [] yi=2xy. X=5

x=x-1 [] x=x1. y:=7
The first refinement divides the problem into two cases; in the seconc&#@seand sincex is
natural, x>0 . In the second refinement, sinces0 , we want y'=1 , which we get by the
assignmenty:= 1 . The other assignment= 3 is superfluous, and our solution would be
simpler without it; we have included it just to make the point that it is allowed by the specification
The third refinement makeg/'=2x in two steps: firsty'=2x-1 and then doubley . The
antecedentx>0 ensures thatx2 will be natural. The fifth and sixth refinements again contain
superfluous assignments. Without the theory of programming, we would be very worried the
these superfluous assignments might in some way make the result wrong. With the theory, \
only need to prove these six refinements, and we are confident that execution will not give us
wrong answer.

This solution has been constructed to make it difficult to follow the execution. You can make th
program look more familiar by replacing the nonprogramming notations with single letters.
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A [ ifx=0thenBelseC
B [l y:=1. x=3

c U DE

D L FA

E [ yi=2xy. X:=5

F O x=x1. y=7

You can reduce the number of refinements by applying the Stepwise Refinement Law.

A [ if x=0then (y:i=1. x=3)else (xi=x-1. y:=7. A, y:=2xy. X=5)
You can translate this into a programming language that is available on a computer near you. F
example, in C it becomes

intx,vy;

void A (void) {if (x==0){y =1, x=3;}else{x=x-1; y=7; A(); y=2*; x=5}}
You can then test it on a variety &f values. For example, execution of

x=5; A(); printf ("%i", y);
will print 32 . But you will find it easier to prove the refinements than to try to understand all
possible executions of this program without any theory.

£nd of Binary Exponentiation

End of Program Development

4.2 Time

So far, we have talked only about the result of a computation, not about how long it takes. To ta
about time, we just addtane variable We do not change the theory at all; the time variable is
treated just like any other variable, as part of the state. Thestafg X; y; ...] now consists of

a time variablet and somenemory variable x ,y , ... . The interpretation ot as time is
justified by the way we use it. In an implementation, the time variable does not require space in tl
computer's memory; it simply represents the time at which execution occurs.

We uset for the initial time, the time at which execution starts, tarfdr the final time, the time at
which execution ends. To allow for nontermination we take the domain of time to be a numbe
system extended witlo . The number system we extend can be the naturals, or the integers, ¢
the rationals, or the reals, whichever we prefer.

Time cannot decrease, therefore a specificaBonith time isimplementablef and only if

Oo- (o'- SOt'>t
For each initial state, there must be at least one satisfactory final state in which time has n
decreased.

There are many ways to measure time. We present justéabtimeandrecursive time

420 Real Time

In the real time measure, the time varialtlaés of type xreal . Real time has the advantage of
measuring the actual execution time; for some applications, such as the control of a chemical
nuclear reaction, this is essential. It has the disadvantage of requiring intimate knowledge of t|
implementation (hardware and software).

To obtain the real execution time of a program, modify the program as follows.
. Replace each assignmext e by
t:= t+ (the time to evaluate and stogg. x.=e
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. Replace each conditiona b then P else Q by
t:= t+ (the time to evaluaté and branch)if bthen P else Q

. Replace each calP by
t:=t+ (the time for the call and returnip.
For a call that is implemented “in-line”, this time will be zero. For a call that is executed
last in a refinement solution, it may be just the time for a branch. Sometimes it will be the
time required to push a return address onto a stack and branch, plus the time to pop t
return address and branch back.

. Each refined specification can include time. For exampl€, le¢ a function of the initial
stateo . Then
t=t+fo
specifies thatf o is the execution time,
t<t+fo
specifies thatf o is an upper bound on the execution time, and
t>t+fo
specifies thatf o is a lower bound on the execution time.

We could place the time increase after each of the programming notations instead of before. |
placing it before, we make it easier to use the Substitution Law.

In Subsection 4.0.4 we considered an example of the form

P [] if x=0then okelse (x:= x-1. P)
Suppose that the , the assignment, and the call each take time 1. The refinement becomes

P [0 t=t+1. if x=0then okelse (t=t+1. x=x-1. t.:=t+1. P)
This refinement is a theorem when

P = ifx>0then x'=0 O t' =t+3xx+1 elset'=c0
When x starts with a nonnegative value, execution of this programxséts 0, and takes time
3xx+1 to do so; wherx starts with a negative value, execution takes infinite time, and nothing is
said about the final value of. This is a reasonable description of the computation.

The same refinement
P [ t=t+1. if x=0then okelse (t=t+1l. x=x-1. t=t+1. P)
is also a theorem for various other definitiongof including the following three:

P = x=0
P = if x>0then t'=t+3xx+1 elset'=
P = x'=0 O if x>0then t'=t+3xx+1 elset'=w

The first one ignores time, and the second one ignores the result. If we prove the refinement f
the first one, and for the second one, then the Law of Refinement by Parts says that we ha
proven it for the third one also. The third one says that execution of this program alwaydsets

0; whenx starts with a nonnegative value, it takes time+3 to do so; wherx starts with a
negative value, it takes infinite time. It is strange to say that a result su¢hCass obtained at

time infinity. To say that a result is obtained at time infinity is really just a way of saying that the
result is never obtained. The only reason for saying it this strange way is so that we can divide t
proof into two parts, the result and the timing, and then we get their conjunction for free. So w
just ignore anything that a specification says about the values of variables at time infinity.

Even stranger things can be said about the values of variables at time infinity. Consider tt
refinement
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Q I t=t+1.Q
Three implementable specifications for which this is a theorem are
Q = t=w
Q — X=20t=0w
Q = X=30t'=0
The first looks reasonable, but according to the last two we can show that the “final” vauis of
2 ,and also 3. But sind&=c , we are really saying in both cases that we never obtain a result.
End of Real Time

421 Recursive Time

The recursive time measure is more abstract than the real time measure; it does not measure
actual execution time. Its advantage is that we do not have to know any implementation details.
the recursive time measure, the time variableas typexint, and

. each recursive call costs time 1 ;

. all else is free.

This measure neglects the time for “straight-line” and “branching” programs, charging only for
loops.

In the recursive measure, our earlier example becomes

P [ if x=0then okelse (x= x-1. t:= t+1. P)
which is a theorem for various definitions Bf, including the following two:

P = ifx>0thenx'=0 O t' =t+x elset'=o0

P = x'=0 O if x>0thent =t+xelset'=c
The execution time, which wasx8+ 1 for nonnegativex in the real time measure, has become
just x in the recursive time measure. The recursive time measure tells us less than the real til
measure; it says only that the execution time increases linearly xvitibut not what the

multiplicative and additive constants are.

That example was a direct recursion: problBrmwas refined by a solution containing a callRo
Recursions can also be indirect. For example, probfemay be refined by a solution containing

a call to B, whose solution contains a call 6 , whose solution contains a call #& . In an
indirect recursion, which calls are recursive? All of them? Or just one of them? Which one? Th
answer is that for recursive time it doesn't matter very much; the constants may be affected, k
the form of the time expression is unchanged. The general rule of recursive time is that

. in every loop of calls, there must be a time increment of at least one time unit.

£End of Recursive Time

Let us prove a refinement with time (Exercise 119(b)):

R [l ifx=1then okelse (x:=div x2. t:=t+1. R)
where X is an integer variable, and

R = x=1 0O ifx=1lthent' <t+log xelset'=w
In order to use Refinement by Parts even more effectively, we rewritéf ttteen else as a
conjunction.

R = x=10X10 t<t+logx O(X<1l O t'=c0)
This exercise uses the functiordiv (divide and round down) andog (binary logarithm).
Execution of this program always sexsto 1; whenx starts with a positive value, it takes
logarithmic time; whenx starts nonpositive, it takes infinite time. Thanks to Refinement by
Parts, it is sufficient to verify the three conjunctshfseparately:
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x=1 [ if x=1then okdse (x:= div x2. t:= t+1. X=1)
x>1 0 t'<t+logx []  if x=1 then ok

else (x=div x2. t.=t+1. x21 0 t' <t+log X

x<1 O t=w [ ifx=1thenokelse (x:=divx2. t=t+1l. x<1 0 t'=o0)
We can apply the Substitution Law to rewrite these three parts as follows:

X'=1

if x=1then X=xOt'=telse x'=1

x=21 [0 t'<t+log x []  if x=1then x=xOt'=t

gsedivx2>1 0 t'<t+1+log(divx2)

x<1 0 t'=eo [] ifx=1thenx=x0Ot=telsedivx2<10 t'=co
Now we break each of these three parts in two using Refinement by Cases. We must prove

X'=1
X'=1

x=10Ox=x0Ot'=t
x*=10x'=1

t'<t+log x [] x=10x=x0Ot=t

x=1 [0
x=1 [0 t'<t+log x [] x¥10(divx2=21 O t'<t+1+log(divx2))

x<1 0 t=e [] x=10Ox=x0Ot=t
x<1 0 t=eo [] x#10(divx2<10O t'=c)

We'll prove each of these six implications in turn. First,

Next,

Next,

(x=1 [] x=10x=x0O t'=t) by transitivity and specialization
T

(xX'=1 [ x+10 X'=1) by specialization
'

(x=1 0 t'<t+log x [] x=10x=x at'=t) use the first Law of Portation to

move the initial antecedent over to the solution side where it becomes a conjunc

t'<t+logx 0 x=10x=x0t'=t and note thatog 1 =0
T

Next comes the hardest one of the six.

i=lRi=

0l 0 t<t+logx ] x+10(divx221 0O t <t+ 1 +log (divx2)))
Again use the first Law of Portation to move the initial

antecedent over to the solution side where it becomes a conjunct.

t<t+logx 0 x>10(divx2=1 0 t'<t+ 1 +log (divx2))
Since x is an integerx>1 — divx2= 1, so by the first Law of Discharge,
t<t+logx O x>1 0Ot <t+1+log(divx2)
By the first Law of Portation, mové <t + 1 +log (div x2) over to the left side.
(t<t+1l+log(divx2)0d t'<st+logx O x>1
By a Connection Law,t'€al] t'sb) O a<b.

t+1+log(divx2)<t+logx O x>1 subtract 1 from each side
t+log(divx2)<t+logx—1 0O x>1 law of logarithms
t+log (divx2)<st+log(¥2) O x>1 log and + are monotonic for>0
div x2 < x/2 div is / and then round down

T
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The next one is easier.

(x<1 O t'=co [ x=10x=x t'=t) Law of Portation
= t=o 0 x<10Ox=10x=x0t'=t Put x<1 0Ox=1 together, and first Base Law
— t=eo O 1 fourth Base Law
- T

And finally,

(x<1 0 t'=oe0 [ x+10 (divx2 <10 t'=w)) Law of Portation
— t=eo 0 x<10O(divx2<10O t'=c0) Discharge
—  t'=o 0 x<10t'=00 Specialization
- T

And that completes the proof.
4.2.2 Termination

A specification is a contract between a customer who wants some software and a programmer w
provides it. The customer can complain that the programmer has broken the contract if, whe
executing the program, the customer observes behavior contrary to the specification.

Here are four specifications, each of which says that vartalilas final value 2.
@ x=2

(b) x=2 0 t'<e

(c) X'=2 [0 (t<co [J t'<o0)

(d) x=20t<t+1

Specification (a) says nothing about when the final value is wanted. It can be refined, includin
recursive time, as follows:

X'=2 |j t=t+1. xX=2
This infinite loop provides a final value fox at time o ; or, to say the same thing in different
words, it never provides a final value far. It may be an unkind refinement, but the customer
has no ground for complaint. The customer is entitled to complain when the computation delive
a final state in which'+2 , and it never will.

In order to rule out this unkind implementation, the customer might ask for specification (b), whict
insists that the final state be delivered at a finite time. The programmer has to reject (b) becaus:
is unimplementable: (b)Y t'>t is unsatisfiable fort=c . It may seem strange to reject a
specification just because it cannot be satisfied with nondecreasing time when the computati
starts at timeco . After all, the customer doesn't want to start at tisme But suppose the
customer uses the software in a dependent (sequential) composition following an infinite 100
Then the computation does start at time(in other words, it never starts), and we cannot expect
it to stop before it starts. An implementable specification must be satisfiable with nondecreasir
time for all initial states, even for initial time .

So the customer tries again with specification (c). This says that if the computation starts at a fini
time, it must end at a finite time. This one is implementable, but surprisingly, it can be refine
with exactly the same construction as (a)! Including recursive time,

x=2 [0 (t<eo 0 t'<oo) [ t=t+1. x=2 0 (t<oo O t'<co)
The customer may not be happy, but again there is no ground for complaint. The customer
entitled to complain if and only if the computation delivers a final state in wkiel2 or it takes
forever. But there is never a time when the customer can complain that the computation has tak
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forever, so the circumstances for complaint are exactly the same for (c) as for (a). This fact
accurately reflected in the theory, which allows the same refinement constructions for (c) as for (e

Finally, the customer changes the specification to (d), measuring time in seconds. Now tt
customer can complain if eithe¢+2 or the computation takes more than a second. An infinite
loop is no longer possible because

x=20t<t+l [] t=t+1. x=20t<t+1
is not a theorem. We refine

x=20t<t+1 1 x=2
Specification (d) gives a time bound, therefore more circumstances in which to complain, therefol
fewer refinements. Execution provides the customer with the desired result within the time bounc

One can complain about a computation if and only if one observes behavior contrary to tr
specification. For that reason, specifying termination without a practical time bound is worthless.
End of Termination

4.2.3 Soundness and Completeness optional

The theory of programming presented in this book is sound in the following sens®@. lhean
implementable specification. If we can prove the refinement

p [ (something possibly involving recursive callsR9
then observations of the corresponding computation(s) will never (in finite time) contadict

The theory is incomplete in the following sense. EveR ifs an implementable specification, and
observations of the computation(s) corresponding to

p [ (something possibly involving recursive callsR9
never (in finite time) contradicP , the refinement might not be provable. But in that case, there is
another imﬁlementable specificati@) such that the refinements

P Q

Q ] (something possibly involving recursive calls@o)
are both provable, where th® refinement is identical to the earlier unprovaBlerefinement
except for the change fror® to Q. In that weaker sense, the theory is complete. There cannot
be a theory of programming that is both sound and complete in the stronger sense.
£nd of Soundness and Completeness

424 Linear Search

Exercise 153: Write a program to find the first occurrence of a given item in a given list. The
execution time must be linear in the length of the list.

Let the list be L and the value we are looking for be (these are not state variables). Our
program will assign natural variable (for “here”) the index of the first occurrence gfin L if

x is there. Ifx is not there, its “first occurrence” is not defined; it will be convenient to indicate
that x is notin L by assigningh the length ofL .

Let us call the part of the specification that refers to the résptind formalize it as

R = = xL(0,.h) O (Lh'=xOh'=#L)
The full specification isR [ t' < t+#L . But first, let us consider jud® . The idea, of course, is
to look at each item in the list, in order, starting at item O , until we eithendinat run out of
items. At each stage in the search, all previous items differ fonWe can represent this fact by
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condition A, defined as

A = = xL(0,.h
We are now ready to solve problelr as follows:

R [0 h=o0 hs# DAD R
The new problemh<#L JA 0 R is weaker than the original probleR, so it is easier to solve.
We have made progress. In the new problem, we havetsatams that differ fromx. We can
obtain the first conjunct oR by doing nothing, since it ig\' (identical to A except thath’
replacesh). To obtain the second conjunct, we need to test eithex or h=#L. To testLh=x
we need to knowh<#L , so we have to tesi=#L first.

hs#l OAD R [ if h=#L then okelseh<#L OA D R
In the remaining problem we are able to tebtx .

h<#L OADO R L] if Lh=xthen okelse (h:= h+1. h<#L OA O R)

Now for the timing:

t' < t+#L h:=0. h<#L O t' <t+#L—h

hs#l O t <t+#—h [] if h=#L then okelseh<#L O t' < t+#L—h

h<tL O t <t+##-h []  if Lh=xthen ok

else (h:=h+1. t:=t+1. h<#lL O t' < t+#L-h)

Refinement by Parts says that if the same refinement structure can be used for two specificatio
then it can be used for their conjunction. We have just used the same refinement structure for b
R andt' <t+#L , so we know it works for their conjunction, and that solves the original problem.

Condition A talks about indexes .. This makes sense onlyh&#L . We might therefore
consider thath<#L is implicitin A and shortenh<#L [JA to just A. For the timing we needed
h<#L but notA.

It is not really necessary to take such small steps in programming. We could have written
ROt <t+# [ h=0. hs#l OAD ROt <t+#L-h
h<s#l DA DO ROt < t+#L-h
if h=#L then ok
elseif L h=xthen ok
else (h:=h+1. t.=t+1. h<#L OA O ROt < t+#L-h)
But now, suppose we learn that the given listis known to be nonempty. To take advantage of
this new information, we rewrite the first refinement
ROU<t+#L [ h=0. h<#L OAD ROV <t+#l-h
and that's all; the new problem is already solved if we haven't made our steps too large. (Usi
the recursive time measure, there is no advantage to rewriting the first refinement this way. Usil
the real time measure, there is a small advantage.) As a habit, we write information abo
constants once, rather than in every specification. Here, for instance, we should>6aynite
so that we can use it when we prove our refinements, but we did not repeat it in each specificatio

We can sometimes improve the execution time (real measure) by a technique caléaditted
We need listL to be a variable so we can catenate one value to the end of it. If we can do s
cheaply enough, we should begin by catenatingThen the search is sure to fixd and we can
skip the testh=#_ each iteration. The program, ignoring time, becomes
R L L=L+x. h=0.0Q
Q [ if Lh=xthen okelse (h:= h+1. Q)
where
Q = L#L-1)=xOh<#LOA O A OLh'=x

End of Linear Search
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4.2.5 Binary Search

Exercise 154: Write a program to find a given item in a given nonempty sorted list. The executio
time must be logarithmic in the length of the list. The strategy is to identify which half of the list
contains the item if it occurs at all, then which quarter, then which eighth, and so on.

As in the previous subsection, let the list beand the value we are looking for be (these are
not state variables). Our program will again assign natural varfalitee index of an occurrence
of x in L if x isthere. But this time, let's indicate whetheris present inL by assigning
boolean variablep the valueT ifitis and L if not. Ignoring time for the moment, the problem
is R, defined as
R=xL(@©O.4) =p U Lh=x
As the search progresses, we narrow the segment of the list that we need to search; let
introduce variablg and conditionA to say that ifx occurs, it occurs within the segmemt, .
A= xL(,#&) O xL(h,.])

. Hsearcb in herHl
0 h i j B
We can now solve the problem.

R U h=o0j=#. hjOAOR

h<jOAO R [ ifj=h=1then p:=Lh=xelsej-h=2 JAD R

i-h=20A0 R U jh=2 0 n=h<i'gj5.
if Lisxthen h:=i elsej:=1.
h<j OAO R
To get the correct result, it does not matter how we chooae long as it is properly betwedn
and j . If we choosei:= h+1, we have a linear search. To obtain the best execution time in the
worst case, we should chooseso it splits the segmenh;..j into halves. To obtain the best
execution time on average, we should choos it splits the segmertt;..j into two segments in
which there is an equal probability of finding . In the absence of further information about
probabilities, that again means splittihg.j into two segments of equal size.
j-h=2 0 h'=h<i'<j5)’ L] i=div (h+)) 2

After finding the mid-pointi of the segmenh;..j , it is tempting to test whethdri=x ; if Li is

the item we seek, we end execution right there, and this might improve the execution tim
Surprisingly, both the worst case and average case execution times are a little worse, according
the recursive measure, if we add this test. And according to the real time measure, both the wc
case and average case execution times are a lot worse if we check for equality each iterat
because the loop contains three tests rather than two.

For recursive execution time, pttt+1 before the final, recursive call. We will have to prove
T U h=0j=#. U

U [ ifj-h=1then p:= Lh=xelse V
v O i=div (h+) 2.

if Lisxthen h:=i elsej:= .
t=t+1. U
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for a suitable choice of timing expressiolns U, V. If we do not see a suitable choice, we can
always try executing the program a few times to see what we get. The worst case occurs when
item sought is larger than all items in the list. For this case we get

#L = 12345678910 11 12 13 14 15 16 17 18 ..

tt = 0122333344 4 4 4 4 4 4 5 5 .,
from which we define

T = t' <t+ceil(log (#))

U = hgjO t' <t+ceil (log (—h))

V = =20 t' <t +ceil (log (-h))
where ceil is the function that rounds up.

We can identify three levels of care in programming. At the lowest level, one writes program
without bothering to write clear specifications and refinements. At the next level, one writes clee
and precise specifications and refinements as we have just done for binary search; with practi
one can quickly see the correctness of the refinements without bothering to write formal proofs. ¢
the highest level of care, one proves each refinement formally; this level is best done with the a
of an automated theorem prover.

Here are the proofs of the seven refinements in this subsection. First,

(R [] nh=o. j=#L. <xj OAO R) replace A and then use
Substitution Law twice, noting theR doesn't useh or j

(R [] o<t O (xL(0,.£) O x:L (0,..4£)) 0 R) listlength and reflexive

R U ToTOR identity laws

—

The second refinement
h<jOAO R U ifj-h=1then p:= Lh=xedsej-h=2 OAO R
can be proven by cases. And its first case is
(s OAO R ] J-h =10 (p:=Lh=x)) portation
AOj-h=10 (p=Lh=x) O R expandA
(xL@O,.&) 0 xL(,)) Oj-h=10 (p=Lh=x) O R
use contexj—h =1 and then drop it

[] (xxL(@,.&) O xLh) O (p=Lh=x) O R case idempotence
- if Lh=xthen ((x: L (0,..£) O x:Lh) O (p:=Lh=x) O R)

else((xL (0,.&£) O x:Lh) O (p:=Lh=x) O R)

expand assignments and use contéxtsx and Lh%x

[] if Lh=xthen (p' Oh'=h 0O R) expandR and simplify

gse(-x:L(0,.£) O=-p Oh=h O R) expandR and simplify
- if Lh=xthen T else T case idempotence
— T

The second case of the second refinement is

(hxjOAOR U j-h+10 (-h>20A 0 R) portation
- h<sj OAOj-h+10({(h=20A0 R O R simplify
- =2 0A0@(+h=20A 0 R O R discharge
- =2 0AOR O R specialization

T



55 4 Program Theory

The next refinement
j-h=20A0 R [ j-h=2 O h=h<i<j=".
if Lisxthen h:=i elsej:=1i.

h<j OADO R
can be proven by cases. Using the distributive laws of dependent composition, its first case is
(-h=2 0AO R j—h=2 O h'=h<i'<j5j’. LisxO(hi=i. h<j OAD R)

Condition Law
] (-r=20A0 RU j-h=2 0 (=h<i'<j5j'. LisxO(h:=i. h<j OAD R)))
Portation Law
j~h=2 0ADO({-h=2 O (W=h<i'<j5j'. LisxO(h:=i. h<xjOAO R)) O R
dischargej—h>2 and specialize
] AO@r=h<i'<j5j'. LisxO(h:=i. h<jOAD R) O R
replace second\ and then use Substitution Law, noting tRatdoesn't usen
AO(=h<i'<jzj'. LisxO(<jOMX L(,.A)0 xL3G,.)0 RO R
expand dependent composition noting tRatloesn't use any initial values;
use one-point to eliminatl” andj” ; renamei” to i
AO@0-h<i<jOLisxO@<jOMX L(O,.#4) O xL(@,.))0 RO R
Since A doesn't use , bring it inside the quantifier. Dischargsj
— (O0-A0Oh<igjOLisxO((x:L(O,.A£) O xLG,.)))0 R)OR
From A Oh<i<j OLisxO(L is sorted) we discharge the inner antecedent.
= (0-ADOh<i<j OLisxOR) O R
Since R doesn't usa , bring it outside the quantifier. Specialize

= T

Its second case
j-h=20AO R [] j—h=2 O h=h<i'<jzj'. Li>xO@(:=1. hsjOAO R)
is proven just like its first case.

The next refinement is

(—h=2 O h'=h<i'<j5' L] i:=div (h+)) 2) expand assignment

= (—h=2 O h=h<i'<j=j' ] i =div (h+) 2 O h'=h O j'5)
use the equations in the antecedent as context to simplify the consequer
(-h=2 0 h=h<div(htj) 2<j=j [ i =div (h+)) 2 O h'=h O j'5)
simplify h=h and j=j and use the properties div

(—h=2 0 T ] i =div (h+)) 2 O h'=h O j'5) base law twice
-

The next refinement is

(T [ n=o. ji=4#L. U) replaceT and U

(t' <t +ceil (log (#)) [l h=o. j:=#L. hsj O t' <t + ceil (log (j-h)))
Substitution Law twice

(t' <t +ceil (log (AL)) [] o<#. O t <t+ceil (log (#L.-0)))

T

The next refinement
U [ ifj-h=1then p:= Lh=xelse V
can be proven by cases. And its first case is
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(V] [] j=h=10 (p:=Lh=x expandU and the assignment
(h<j O t' <t +ceil (log (7)) j-h=10p'=(Lh=x) Oh'=h Oj'=j Ot'=t)

use main antecedent as context in main consequent
(h<j O t<t+ceil (log 1) [ j-h=10p'=(Lh=x) Oh'=h Oj'=j Ot'=t)

Its second case is

Uselogl=0

(h<jO0 T U j-h=10p=(Lh=x) Oh'=h Oj'sj Ot'=t) base law twice
T
(V] [] h=+=10V) expandU andV
(h<j O t' <t +ceil (log (7)) ] j~h*£10(-h=20 t' <t +ceil (log (j-h))))

portation
h<j Oj-h+10(-h=20 t' <t +ceil (log (-h))) O t' <t +ceil (log (—h))

simplify
j-h=20(-h=20 t' <t +ceil (log —h))) O t <t+ceil (log (j-h)) discharge
jh=2 O t'<t+ceil(log (-h) O t' <t+ceil(log(-h)) specialization

T

Before we prove the next refinement, we prove two little theorems first.
if even(h+j)

then

else

( div (h+)) 2 <j
— (h+))/2 <j
j-h>0
j-h=2)

div (h+j) 2 <j
(h+j-1)/2 <j
j-h>-1
j-h=2)

mlBiaimlll

if even(h+j)

then

else

1 +ceil (log (j —div (h+)) 2))

ceil (1 +log (j — (h+))/2))

ceil (log (j-h))

1 +ceil (log (j —div (h+)) 2))

ceil (1 +log (j — (h+—1)/2))

ceil (log (—h+1)) If h+j is odd thenj—h is odd and can't be a power of 2
ceil (log (-))

Finally, the last refinement

v U

i:=div (h+)) 2. if Lisxthen h:=i elsej:=i. t:=t+1. U

can be proven in two cases. First case:

O

v U i:=div(h+) 2. Lisx O (n=i. t=t+1. U)) drop Li<x and replaceU
vV ] i=div (h+) 2. hi=i. t:=t+1. h<j O t' <t +ceil (log (j-h)))
then use Substitution Law three times
(v L] div (h+) 2<j O t'<t+ 1 +ceil (log (j —div (h+)) 2)))
use the two little theorems
(V [] j-h=2 0O t'<t+ceil (log (-—h))) definition of V, reflexive Law
T
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And the second case
v [ i=div(h+) 2. Lisx O :=i. t=t+1. U)
is proven just like the first.

End of Binary Search
4.2.6 Fast Exponentiation

Exercise 151: Given rational variables and z and natural variabley , write a program for
Z =xy that runs fast without using exponentiation.

This specification does not say how fast the execution should be; let's make it as fast as we ¢
The idea is to accumulate a product, using variabbes accumulator. Define

P — Z=zxx
We can solve the problem as follows, though this solution does not give the fastest possik
computation.

z=y [ z=1.P

p [ ify=0then okelsey>00 P

y>00 P zZ=zxxX. y:=y-1. P
To speed up the computation, we change our refinemey#®f] P to test whethel is even or
odd; in the odd case we make no improvement but in the even case we gain tatlf.

y>00 P [] if even ythen even yi1y>00 P elseodd yI P

evenyy>00 P [ x=xxx. y:=y/l2. P

oddyd P [ z=2zxx y=y-1. P
Each of these refinements is easily proven.

We have made the major improvement, but there are still several minor speedups. We make th
partly as an exercise in achieving the greatest speed possible, and mainly as an example of prog
modification. To begin, ify is even and greater than O, itis at least 2 ; after cutting it in half, it
is atleast 1; letus not waste that information. We re-refine

even ylly>00 P ] x=xxx. y:=y/l2. y>00 P

If y is initially odd and 1 is subtracted, then it must become even; let us not waste the
information. We re-refine

odd yOl P [ z=zx y:=y-1. even yil P

even y1 P T y = 0then okelseeven y1y>00 P

And one more very minor improvement: if the program is used to calcx®aless often tharx
to an odd power (a reasonable assumption), it would be better to start with the test for evenne
rather than the test for zeroness. We re-refine

P [ ifeven ythen even y{J P elseodd yO P

Program modification, whether to gain speed or for any other purpose, can be dangerously errc
prone when practiced without the proper theory. Try writing this program in your favorite
standard programming language, starting with the first simple solution, and making the san
modifications. The first modification introduces a new case within a loop; the second modificatiol
changes one of the cases into an inner loop; the third modification changes the outer loop intc
case within the inner loop, with an intermediate exit; the final modification changes the loop entry
point to a choice of two other entry-points. The flow chart looks like this.
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T
- ‘ Z:= 7xX L= w0 J
—sz=1 eveny > yi= y—1 L y:=yi2 1

T! T

Without the theory, this sort of program surgery is bound to introduce a few bugs. With the
theory we have a better chance of making the modifications correctly because each new refinem
is an easy theorem.

Before we consider time, here is the fast exponentiation program again.
z=y U z=1.P
P [0 ifeven ythen even y{1 P elseodd y[l P
even yl P L] if y=0then okelseeven y1y>0[ P
odd yOl P [ z=zx y:=y-1. evenyil P
evenyly>00 P [ x=xxx. y:=y/l2. y>00 P
y>00 P [] if even ythen even yi1y>00 P elseodd yI P

In the recursive time measure, every loop of calls must include a time increment. In this prograr
a single time increment charged to the gadD [ P does the trick.
evenyly>00 P X=xxX. y:=y/2. t=t+1. y>00 P
To help us decide what time bounds we might try to prove, we can execute the program on sor
test cases. We find, for each natuna|
y: 2n..2+1 [ t' =t+n
plus the isolated case
y=0 O t'=t
We therefore define the timing specification
T = ify=0Othent=telset' <t+logy
Then we need to prove
z= 0T U z=1.pPOT
POT U ifeven ythen even yOO P OTelseodd yOI POT
eveny!l POT T y=0then okelseeven y1y>0 0 POT
odd yOl POT [ z=2zx y:=y-1. eveny] POT
even \1y>0 01 POT [ x=xxx y:=y/2. t=t+1. y>00 POT
y>00 POT [1 ifeven ythen even y1y>0 0 POT else odd yll POT
With only a little more effort, we can show the exact execution time by replaciwgh
T = ify=0thent'=telset’' =t+ floor (logy)
where floor is the function that rounds down.

We could use Refinement by Parts to separate the results from the timing. In the above, just or
the initial “Z=xy [ and all occurrences ofP‘TI". It does not matter that two of the specifications
are now the same. Unfortunately we cannot separate the two parts of the timing proof. We ci
prove the isolated case by itself:

y=00 t'=t [ z=1. y=00 t'=t

y=00 t'=t [] if even ytheny=00 t'=telse T

y=00 t'=t it y=0then okelse T

T U z=2x y:=y-1. y=00 t'=t

T O x=xxx y=y/l2. t=t+1. T

T O ifeven ythen T else T
Again, it does not matter that some of the specifications are refined more than once; they will
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distinguished when we conjoin specifications using Refinement by Parts. But the timiyw0for
cannot be separated because it depends on the timing=for in the refinement containing

yi=y-1.

End of Fast Exponentiation
4.2.7 Fibonacci Numbers

In this subsection, we tackle Exercise 217. The definition of the Fibonacci numbers

fO=0

fi1=1

f(n+2) = fn+f(n+l)
immediately suggests a recursive function definition

f = 0-0|1-1|An:nat+2-f (n-2) +f (n-1)

— An: natif n<2then nelsef (n—2) +f (n—1)

We did not include functions in our programming language, so we still have some work to dc
Besides, the functional solution we have just given has exponential execution time, and we can
much better.

For n= 2, we can find a Fibonacci number if we know the previous pair of Fibonacci numbers
That suggests we keep track of a pair of numbers. xLety , and n be natural variables. We
refine

x=fn J P
where P is the problem of finding a pair of Fibonacci numbers.

P = x=fn0Oy =f(n+l)
When n=0 , the solution is easy. Whem1l , we can decrease it by 1, find a pair of Fibonacci
numbers at that previous argument, and then mowaad y along one place.

P [ if n=0then (x=0. y:=1)ese(n:=n-1. P. X=y 0Oy =x+y)
To move x and y along we need a third variable. We could use a new variable, but we alread
have n; is it safe to usen for this purpose? The specificatiot=y [ y' = x+y clearly allows
n to change, so we can use it if we want.

X=y Oy =x+y [ n=x x= y. Y:=n+y
The time for this solution is linear. To prove it, we keep the same refinement structure, but w
replace the specifications with new ones concerning time. We replaby t' = t+n and add
t:=t+1 in front of its use; we also change=y [1y =x+y into t'=t.

t =t+n [l if n=0then (x=0. y:=1) ese(ni=n-1. t=t+1. t' =t+n. t'=t)

t=t [ n=x x= y. Y= nty

Linear time is a lot better than exponential time, but we can do even better. Exercise 217 asks fc
solution with logarithmic time. To get it, we need to take the hint offered in the exercise and us
the equations
f(2xk + 1) = fk2 + f(k+1) 2
f(2xk + 2) = ZXfkxf(k+1) +f(k+1) 2
These equations allow us to find a pd&{@xk + 1),f(2xk + 2) in terms of a previous paitk,
f(k+1) at half the argument. We refine
P [J ifn=0then (x=0. y:= 1)
elseif even nthen even Nn>00 P
elseodd n0 P
Let's take the last new problem first. rif is odd, we can cut it down fromxR+ 1 to k by the
assignmentn:= (n—1)/2 , then callP to obtain fk and f(k+1) , then use the equations to obtain
f(2xk + 1) andf(2xk + 2) .
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oddnd P [ n= (N=1)/2. P. X =x2+y2 [0y = 2xxxy +y2
The caseeven nlJn>0 is a little harder. We can decreare from Zk + 2 to k by the
assignmentn:= n/2 — 1, then callP to obtain fk and f(k+1) , then use the equations to obtain
f(2xk + 1) and f(2xk + 2) as before, but this time we wai(@xk + 2) andf(2xk + 3) . We can
get f(2xk + 3) as the sum of(2xk + 1) andf(2xk + 2) .

evenridn>00 P [ n=n2-1.P. x = 2xXxy+y2 Jy =x2+y2+x

The remaining two problems to find and y' in terms ofx andy require a third variable as
before, and as before, we can use

X =x2+y2 [y = 2xxxy +Yy2 [ n=x x=x2+ y2. yi= 2xnxy + Y2

X =2xxXxy+y2 [y =x2+y2+X [ n=x x= 2xXxy + Y2, yi=n2 +y2 + X

To prove that this program is now logarithmic time, we define time specification

T = t'<t+log (n+1)
and we putt:=t+1 before calls tor . We must now prove

n=00 T L x=o0, y=1

oddnO T I n= (n=1)/2. t=t+1. T. t'=t

evenidn>00 T [ n=n2-1.t=t+1. T. t'=t

t=t [ n=x x=x2+ y2. yi= 2xnxy + Y2

t=t L n=x x= 2xXxy +y2, y:= N2 +y2 + X
The first one and last two are easy. Here are the other two.
(oddn t'<t+log (n+l)) O (= (n1)/2. t=t+1. t' <t +log (n+1). t'=t)
(odd n t' <t+log (n+tl)) O t' <t+1+log((n-1)/2+1)

notethat 40 b) 0 ¢ — ald (b0 c)

— oddnO (t<t+log(n+l) O t'<t+1 +log ((n—1)/2+1)) connection law
[ oddnO 1 +log ((n=1)/2+1)< log (n+1) logarithm law
— oddn0O log (n-1+2)<log (n+1) arithmetic
— oddn0O log(n+l)<log (ntl) reflexivity and base
- T

(even nIn>00 t'<t+log (n+1)) 0 (n:=n/2 - 1L.t:=t+1.t' <t +log (n+1).t'=t)
by the same steps
evennJn>0 O 1 +log (n/2 —1+1)<log (n+1)
even nIn>0 0O logn<log (n+1)
T

£nd of Fibonacci Numbers

Finding the execution time of any program can always be done by transforming the program into
function that expresses the execution time. To illustrate how, we do Exercise 216 (roller coaste
which is a famous program whose execution time is considered to be unknowm beta
natural variable. Then, including recursive time,
n=1 [] if n=1then ok

elseif even nthen (n:=n/2. t:=t+1. n'=1)

else (n:= 3xn + 1. t:=t+1. n'=1)
It is not even known whether the execution time is finite fonal .

We can express the execution timefas, where functionf must satisfy
t=t+fn [ iIf n=1then ok
elseif even nthen (n:=n/2. t:=t+1. t'=t+fn)
else (n:= 3xn + 1. t:=t+1. t'=t+fn)
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which can be simplified to
fn = ifn=1thenO
else if even nthen 1 +f (n/2)
elsel +f (3xn + 1)
Thus we have an exact definition of the execution time. So why is the execution time considered
be unknown?

If the execution time of some programng , we consider that the execution time of that program
is known. Why isn2 accepted as a time bound, ahd as defined above not accepted? Before
answering, we suggest several non-reasons. The reason is nibtishdgfined recursively; the
square function is defined in terms of multiplication, and multiplication is defined recursively. The
reason cannot be thae is well behaved (finite, monotonic, and smooth), wHilgumps around
wildly; every jump and change of value fnis there to fit the original program's execution time
perfectly, and we shouldn't disqualifiy just because it is a perfect bound. One might propose the
length of time it takes to compute the time bound as a reason to feje&dince it takes exactly as
long to compute the time bounidn as to run the program, we might as well just run the original
program and look at our watch and say that's the time boundloBulibg n is accepted as a time
bound even though it takes longer thag log n to computelog log n.

The reason seems to be that functifoms unfamiliar; it has not been well studied and we don't
know much about it. If it were as well studied and familiar as square, we would accept it as a tin
bound.

We earlier looked at linear search in which we have to find the first occurrence of a given item in
given list. Suppose now that the likt is infinitely long, and we are told that there is at least one
occurrence of the itert in the list. The desired resuR can be simplified to

R = - xL(0,.h) O Lh'=x
and the pr(ﬁram can be simplified to

R h:=0. - x L(0,.h)d R

- x:L(0,,h)O R []if Lh=x then okelse (h:=h+1. = x:L(0,.h) O R)
Adding recursive time, we can prove

t=t+h' [] h=0. t=t+h'-h

t=t+h'=h [] if Lh=xthen okelse (h:= h+1. t:=t+1. t'=t+h'-h)
The execution time idY' . Is this acceptable as a time bound? It gives us no indication of how
long to wait for a result. On the other hand, there is nothing more to say about the execution tirr
The defect is in the given information: thatoccurs somewhere, with no indication where.
£nd of Time

4.3 Space

Our example to illustrate space calculation is Exercise 212: the problem of the Towers of Hanc
There are 3 towers and disks. The disks are graduated in size; disk O is the smallest and dis}
n-1 is the largest. Initially tower A holds ah disks, with the largest disk on the bottom,
proceding upwards in order of size to the smallest disk on top. The task is to move all the disl
from tower A to tower B, but you can move only one disk at a time, and you must never put
larger disk on top of a smaller one. In the process, you can make use of tower C as intermedi
storage.
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Our solution isMovePile "A" "B" "C" where we refineMovePile as follows.
MovePile from to usingD if n=0then ok
else ( n:=n-1.

MovePile from using to.

MoveDisk from to

MovePile using to from.

ni=n+1)
ProcedureMovePile moves alln disks, one at a time, never putting a larger disk on top of a
smaller one. lts first parametdrom is the tower where the@ disks are initially; its second
parameterto is the tower where the disks are finally; its third parametessing is the tower
used as intermediate storage. It accomplishes its task as follows. If there are any disks to move
starts by ignoring the bottom diski:E n—1). Then a recursive call moves the remaining pile (all
but the bottom disk, one at a time, never putting a larger disk on top of a smaller one) from tf
from tower to theusingtower (using thé¢o tower as intermediate storage). Th&foveDisk
causes a robot arm to move the bottom disk. If you don't have a robot arnMdveiDisk can
just print out what the arm should do:

"Move disk "+ nat2text n+ " from tower "+ from+ " to tower "+ to

Then a recursive call moves the remaining pile (all but the bottom disk, one at a time, never pulttir
a larger disk on top of a smaller one) from tlsngtower to thdo tower (using thérom tower as
intermediate storage). And finally is restored to its original value.

To formalize MovePile and MoveDisk and to prove that the rules are obeyed and the disks end in
the right place, we need to describe formally the position of the disks on the towers. But thatis n
the point of this section. Our concern is just the time and space requirements, so we will ignore t
disk positions and the parametdrem, to, and using. All we can prove at the moment is that

if MoveDisk satisfiesn'=n, so doesMovePile.

To measure time, we add a time varialtle and use it to count disk moves. We suppose that
MoveDisk takes time 1, and that is all it does that we care about at the moment, so we replace
by t=t+1. We now prove that the execution time i5—2L by replacingMovePile with the
specificationt:=t+ 20— 1. We prove
t=t+2-1[] if n=0 then ok
else (n:=n-1.

t=t+2n-1.
t=t+1.
t=t+2n-1.
ni=n+1)
by cases. First case, starting with its right side:
n=0 [J ok expand ok
— n=0On'=nOt'=t arithmetic

t=t+20-1
Second case, starting with its right side:
n>00(n:=n-1. t=t+ 22— 1. t:=t+1. tt=t+ 20— 1. n:=n+1)

drop conjunctn>0 ; expand final assignment
n=n-1. t=t+ 20— 1. t=t+1. t=t+ 20— 1. n'=n+1 0t'=t
use substitution law repeatedly from right to left

n'=n-1+10t=t+2n-1-1+1+2+1-1 simplify
n'=n Ot'=t+2n-1
t=t+20-1

]
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To talk about the memory space used by a computation, we just add a space wariaitde the

time variablet, s is not part of the implementation, but only used in specifying and calculating
space requirements. We usefor the space occupied initially at the start of execution, gnfibr

the space occupied finally at the end of execution. Any program may be used as part of a larg
program, and it may not be the first part, so we cannot assume that the initial space occupied is
just as we cannot assume that a computation begins at time 0. In our example, the program c
itself recursively, and the recursive invocations begin at different times with different occupiec
space from the main (nonrecursive) invocation.

To allow for the possibility that execution endlessly consumes space, we take the domain of spe
to be the natural numbers extended with. Wherever space is being increased, we insert
s.= st+(the increase) to adjust appropriately, and wherever space is being decreased, we inser
s.= s—(the decrease) . In our example, the recursive calls are not the last action in the refineme
they require that a return address be pushed onto a stack at the start of the call, and popped o
the end. Considering only space, ignoring time and disk movements, we can prove

s=s [] if n=0then ok
else (n:=n-1.
S=s+l. §=s. s=s-1.

ok.
s=stl. s=s. si=s-1.
n=n+1)

which says that the space occupied is the same at the end as at the start.

It is comforting to know there are no “space leaks”, but this does not tell us much about the spa
usage. There are two measures of interest: the maximum space occupied, and the average s
occupied.

4.3.0 Maximum Space

Let m be the maximum space occupied at the start of executionmariak the maximum space
occupied by the end of execution. Wherever space is being increased, wenmssarax m s to

keep m current. There is no need to adjustat a decrease in space. In our example, we want to
prove that the maximum space occupiediis However, in a larger context, it may happen that
the starting space is not 0, so we specify=s+n. We can assume that at the stagts, since

m is supposed to be the maximum valuesgfbut it may happen that the starting valuenofis
already greater thas+n, so the specification becomess 1 (m:= max m(s+n)) .

m>s [0 (m:= max m(s+n)) []
if n=0 then ok
else (n:=n-1.
s=stl. m=max ms m=sJ (m:=max m(stn)). s;==s-1.
ok.
s=stl. m=max ms m>s (m=max m(stn)). s:=s-1.
n=n+1)
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Before proving this, let's simplify the long line that occurs twice.
S=stl. m=max msm=s[] (m:=max m(stn)). s=s-1
Use a Condition Law, and expand final assignment
[] s=stl. m=max msm=s[] (m=max m(stn). S=s-10m'=m [0 n'=n)

Use Substitution Law
s=stl. m=maxmsm=s [ s=s-1 [0 m =max m(stn) O n'=n

Use Substitution Law
s=stl. mmaxm¥s 0 s=s-1 O m =max(max m §(stn) O n'=n

Simplify antecedent tol . Also max is associative

s=stl. sS=s-1 O m' =max m(stn) [ n'=n use Substitution Law
s=s 0 m =max m(st1+n) [ n'=n
m:= max m(s+1+n)

The proof of the refinement proceeds in the usual two cases. First,
n=0 [Jok
— nN'=n=0 0 s=s [0 m'=m
[ m=s [ (m:= max m(stn))

And second,
n>00( n:=n-1.
s=stl. m=max ms mxs (m=max m(stn)). s==s-1.
ok.
s=stl. m=max ms mxs (m:=max m(stn)). s:=s-1.
n:= n+1 ) Drop n>0 andok . Simplify long lines. Expand final assignment.
[ n:=n-1. m:= max m(s+1+n). m:= max m(s+1+n). n'=n+1 0s=sOn'=m

use Substitution Law three times
n'=n O s=s O nm = max(max m(s+n)) (stn)  associative and idempotent laws
n'=n O s=s 0 m =max m(stn
m=s [0 (m:= max m(s+n))

iRl

End of Maximum Space
4.3.1 Average Space

To find the average space occupied during a computation, we find the cumulative space-tin
product, and then divide by the execution time. pebe the cumulative space-time product at the
start of execution, angd’ be the cumulative space-time product at the end of execution. We still
need variables , which we adjust exactly as before. We do not need variapl@owever, an
increase inp occurs where there would be an increasé jrand the increase is times the
increase int . In the example, wheré was increased by 1, we now incregseoy s. We
prove
p=p+sx(2n— 1) + =220 + 2 [
if n=0 then ok
else ( n:=n-1.
s=stl. p=p+sx(2n—-1) + fi-2)x2n + 2. s.=s-1.

p:= pts.
S=stl. pi=p+sx(2n - 1) + (-2)x2n + 2. == s-1.
n=n+l)

In the specificationp:=p + sx(2n — 1) + (—2)x2n + 2 , the termsx(2n — 1) is the product of the
initial space s and total time 2— 1 ; it is the increase in the space-time product due to the
surrounding computation (which is 0 sfis 0). The additional amount+2)x2n + 2 is due to

our computation. The average space due to our computation is this additional amount divided |
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the execution time. Thus the average space occupied by our computatiom/i@n — 1) — 2 .

space
N
n=2)x2n + 2
5 s (n=2)x
s(2n - 1) N
s
: : >time
The proof, as usual, in two parts:
n=0 0ok expand ok
— n=00n'=n0s=s0p'=p arithmetic
[ N=n 0sS=s 0 p=p+sx(2n—1) + -2)x2n + 2

pi=p+sx(2n—1) + o=2)x2n + 2

N>00(n:=n-1. s=s+l. pi=p+sx(2n—1) + f-2)x2n + 2. ss=s-1. ni=n+1.
p:= p+s.
n=n-1. s=stl. p=p+sx(2n—-1) + f-2)x2n + 2. s=s-1. n=n+1)
drop conjunctn>0 ; expand final assignment
[] n=n-1. s=stl. p=p+sx(2n—1) + i=2)x2n + 2. s==s-1. n:= n+1. p:= p+s.
n=n-1l.s=s+l.pi=p+sx(2n-1) + (-2)x2n + 2.s=s-1.N"=n+1 0s=sp'=p
use substitution law 10 times from right to left

n'=nls=s
O p =p+ (st1)x(2n-1-1) + 321+ 2 +s+ (st1)x(2-1-1) + —3)x2n-1 + 2
simplify
N=n 0s=s 0p =p+x(2n—-1) + -2x2n + 2
p=p+sx(2n—-1) + f-2)x2n + 2

Instead of proving that the average space is exacthyn/(2n— 1) — 2 , it is easier to prove that the
average space is bounded aboverby To do so, instead of proving that the space-time product is
sx(2n-1) + (n—2)x2n + 2 , we would prove it is at mosts{n)x(2n—1) . But we leave that as
Exercise 212(f).

Putting together all the proofs for the Towers of Hanoi problem, we have
MovePile [ if n=0then ok
else ( ni=n-1.
s:=st+l. m:=max m s MovePile s=s-1.
t:=t+1. p:=p+s. ok
s.=s+1l. m:=max m s MovePile s;=s-1.

ni=n+l)
where MovePile is the specification
n'=n
t=t+20-1
S=s

(m=s0 m' =max m(s+n))
P =ptsx(2n-1)+ =220+ 2

O0Oo0OO

£nd of Average Space
£nd of Space

End of Program Theory
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We have been using a very simple programming language consisting obknlgssignment,

if then else, dependent (sequential) composition, and refined specifications. In this chapter w:
enrich our repertoire by considering some of the notations found in some popular languages. V
will not consider concurrency (independent composition) and interaction (input and output) jus
yet; they get their own chapters later.

5.0 Scope
5.0.0 Variable Declaration

The ability to declare a new state variable within a local scope is so useful that it is provided &
every decent programming language. A declaration may look something like this:

var x: T
where x is the variable being declared, afid, called the type, indicates what valuescan be
assigned. A variable declaration applies to what follows it, according to the precedence table
the final page of the book. In program theory, it is essential that each of our notations apply to ¢
specifications, not just to programs. That way we can introduce a local variable as part of tt
programming process, before its scope is refined.

We can express a variable declaration together with the specification to which it applies as
boolean expression in the initial and final state.

varx: T-P = [IXX:T-P
Specification P is an expression in the initial and final values of all nonlocal (already declared)
variables plus the newly declared local variable. Specificat@nx: T- P is an expression in the
nonlocal variables only. For a variable declaration to be implementable, its type must b
nonempty. As a simple example, suppose the nonlocal variables are integer variabiesz .
Then
var x:int- x:= 2. y:= x+z
X, X:int-xX=2 Oy =2+ 0 Z=z
y =2+ 1 7=z

According to our definition of variable declaration, the initial value of the local variable is an
arbitrary value of its type.

var x:int- y:=x

(X, X':int- X=x0Oy'=x0Z=z

zZ=z

which says thatz is unchanged. Variablg is not mentioned because it is a local variable, and
variable y is not mentioned because its final value is unknown. However

var X: int- y:= x-x

y=0027=z

In some languages, a newly declared variable has a special value called “the undefined valt
which cannot participate in any expressions. To write such declarations as boolean expressio
we introduce the expressiamdefinedbut we do not give any axioms about it, so nothing can be
proven about it. Then

var x: T-P = [ undefined(X: T, undefinedP
For this kind of variable declaration, it is not necessary for the type to be nonempty.
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An initializing assignment is easily defined in the same way.
varx. T:=ee P = [XelX:TP
assuminge is of type T .

If we are accounting for space usage, a variable declaration should be accompanied by an incre
to the space variable at the start of the scope of the declaration, and a corresponding decrease
s at the end of the scope.

As in many programming languages, we can declare several variables in one declaration. F
example,
varx,y,zT-P = [XX,y,y,zZ:T-P

£nd of Variable Declaration

It is a service to the world to make variable declarations as local as possible. That way, the st:
space outside the local scope is not polluted with unwanted variables. Inside the local scope, th
are all the nonlocal variables plus the local ones; there are more variables to keep track of loca
Next, we consider a kind of local “undeclaration” so that we can narrow our focus temporarily.

5.0.1 Variable Suspension

Suppose the state consists of variables, x , y , and z. We may wish, temporarily, to
consider a subspace of the state space, consisting of only the vamaldesl x . We indicate
this with the notation

frame w, X
It applies to what follows it, according to the precedence table on the final page of the book, ju:
like var . Formally,

framew,x-P — POy=yOZ=z
Within P the state variables ar@ and x . This is similar to the “import” statement of some
languages, though not identical. It allow’s to refer toy and z, but only as local constants
(mathematical variables, not state variables). Ti@me notation is the formal way of saying
“and all other variables are unchanged”. Time and space variables are implicitly assumed to be
all frames, even though they may not be listed explicitly.

Assignment andrame are related by the equation
x=e — framex X =e

End of Variable Suspension

We specified the list summation problem in the previous chaptsr=aZL . We took s to be a

state variable, and. to be a constant. We might have preferred the specificatioBL. saying

that s has the right final value and that all other variables are unchanged, but our solution include

a variablen which began at 0 and ended &t.#ANe now have the formal notations needed.
s=2L = frames varn:nat s =2L

First we reduce the state spaced¢ if L was a state variable, it is now a constant. Next we

introduce local variablen . Then we proceed as before.

£nd of Scope
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5.1 Data Structures
5.1.0 Array

In most popular programming languages there is the notion of subscripted variable, or indexe
variable, usually called an array. Each element of an array is a variable. Element 2 & array
can be assigned the value 3 by a notation such as

A(2):=3
Perhaps the brackets are square; let us dispense with the brackets. We can write an array eler
assignment as a boolean expression in the initial and final state as follow# hetan array
name, leti be any expression of the index type, anddebe any expression of the element type.
Then

Ai=e = Aize O (0j-j*i 0 Aj=A)) O x=x O y=y O...
This says that after the assignment, elemendf A equalse, all other elements ofA are
unchanged, and all other variables are unchanged. If you are unsure of the placement of
primes, consider the example

A(A2):= 3

= A(A2)=3 0O (Oj-j=A20 Aj=A)) O x=x O y'=y O...

The Substitution Law
x=e.P — (for x substitutee in P)
is very useful, but unfortunately it does not work for array element assignment. For example,
A2:= 3. i:= 2. Ai.:=4. Ai=A2
should equal T , becausei=2 just before the final boolean expression, ak@=A2 certainly
equalsT . If we try to apply the Substitution Law, we get

A2:= 3. i:= 2. Ai:=4. Ai=A2 invalid use of substitution law
= A2:=3.i:=2. 4A2 valid use of substitution law
- A2:= 3. 4A2 invalid use of substitution law
= 4=3
= 1l

Here is a second example of the failure of the Substitution Law for array elements.

A2:=2. A(A2):=3. A2=2
This should equal L because A2=3 just before the final boolean expression. But the
Substitution Law says

A2:= 2. A(A2):=3. A2=2 invalid use of substitution law
— A2:=2. A2=2 invalid use of substitution law
— 2=2
= T

The Substitution Law works only when the assignment has a simple name to the left of :=
Fortunately we can always rewrite an array element assignment in that form.

Aii=e

Ai=ze O (Jj-j*i 0 Aj=A)) O x=x Oy=y O...

A=ise|lAOx=x0Oy=y O..

A=i_e | A
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Let us look again at the examples for which the Substitution Law did not work, this time using thi
notation A:=i-e|A.

A=2-3|A ii=2. A=i-4|A Ai=A2

A=2-3|A =2, (-4|A)iIi=({-4|A)2

A=2-3|A T

T

A=2.2|A. A=A2.3|A A2=2
A=2.2|A (A2-3|A)2=2
(2-2|A)2-3]|2-2|A)2=2
(2-3]2-2|A) 2=2

3=2

1

The only thing to remember about array element assignment is this: changee to
A:=i-e|A before applying any programming theory. A two-dimensional array element
assignmentAij:= e must be changed t&:= (i;j) -~e| A, and similarly for more dimensions.

End of Array

5.1.1 Record

Without inventing anything new, we can already build records, also known as structures, simile
to those found in several languages. Let us dgfieeson as follows.

person = "name” - text

| "age" - nat

We declare

var p: person
and assignp as follows.

p:="name" - "Josh"| "age" - 17
In languages with records (or structures), a component (or field) is assigned the same way \
make an array element assignment. For example,

p "age":= 18
Just as for array element assignment, the Substitution Law does not work for record componer
And the solution is also the same; just rewrite it like this:

p:="age" - 18|p
No new theory is needed for records.

£nd of Record

£nd of Data Structures

5.2 Control Structures
5.2.0 While Loop

Thewhile-loop of several languages has the syntax

while bdo P
where b is boolean andP is a program. To execute it, evaludie and if its value isL then
you're done, but if its value i then executeP and start over. We do not equate Wigle-
loop to a boolean expression the way we have defined previous programming notations. Inste:
we consider
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w [ whilebdoP
to be an abbreviation of
w [ if bthen (P. W) elseok
For example, to prove
S=s+IL[n.#A] Ot =t+# -n []
while n#L do (s;=s+Ln. n:=n+l. t:=t+1)
prove instead
S=s+SL[n.MA] Ot =t+# -n [
if n£#L then (s=s+Ln. n:=n+l. tt=t+1. S =s+2Z L [n;.A] Ot =t+#L-—n)
elseok

During programming, we may happen to refine a specificatdry if b then (P. W) elseok .
If so, we may abbreviate it as a while-loop. This is particularly valuable when the implementatiol
of call is poor, and does not use a branch instruction in this situation.

This account ofvhile-loops is adequate for practical purposes: it tells us how we can use them it
programming. But it does not allow us to prove as much as we might like; for example, we
cannot prove

while bdo P = if bthen (P. while b do P) elseok
A different account ofvhile-loops is given in Chapter 6.

Exercise 265: Consider the following program in natural variablesdy .
while = x=y=0do
if y>0theny:=y-1
else(x:= x=1. var n: nat y:=n)
This loop decreasey until itis 0 ; then it decreases by 1 and assigns an arbitrary natural
number toy ; then again it decreasgs until itis 0 ; and again it decreasesby 1 and assigns
an arbitrary natural number tp; and so on until botlx andy are 0. The problem is to find a
time bound. So we introduce time varialbleand rewrite the loop in refinement form.
p [ if x=y=0then ok
else ify>0 then (y:=y-1. t:=t+1. P)
else(x=x-1. (h-y:=n). tt=t+1. P)
The execution time depends on and ony and on the arbitrary values assignedyto That
means we neech to be nonlocal so we can refer to it in the specificatton But a nonlocaln
would have a single arbitrary initial value that would be assigngdewery timex is decreased,
whereas in our computatioy may be assigned different arbitrary values every tireis
decreased. So we changeinto a functionf of x. (Variablex never repeats a value; if it did
repeat, we would have to makebe a function of time.)

Let f: nat-nat. We say nothing more abofit so it is a completely arbitrary function fromat
to nat. Introducing f gives us a way to refer to the arbitrary values, but does not say anything
about when or how those arbitrary values are chosen. sk=kf[0;..x] , which sayss is the
sum of the firstx values off . We prove
t' = t+x+y+s [] if x=y=0 then ok
else ify>0then (y:= y—1. t:=t+1. t' = t+x+y+s)
else(x:= x=1. y:=fx. t:=t+1. t' = t+x+y+s)
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The proof is in three cases.
x=y=0 [J ok

[ x=y=s=0 0t'=t
[] t' =t+x+y+s

y>0 O (y:= y—1. t:i=t+1. t' = t+x+y+9) substitution law twice
- y>0 O t' =t+1+x+y-14s
[t =texsyss

x>0 Oy=0 0 (x:=x=1. y:=fx. t:=t+1. t' =t+x+y+s) substitution law 3 times
— x>0 0 y=0 O t' = t+1+x-1+H(x-1)+Zf[0;..x-1]
[] t' = t+x+y+s
The execution time of the programxst y + (the sum ofx arbitrary natural numbers) .
£nd of While Loop

5.2.1 Loop with Exit

Some languages provide a command to jump out of the middle of a loop. The syntax for a loop
such a language might be
loop P end
with the additional syntax
exit whenb
allowed within P, where b is boolean. Sometimes the word “break” is used instead of “exit”.
As in the previous two subsections, we consider refinement by a loop with exits to be a
alternative notation. For example,
L [ loop
A.
exit whenb.
C
end
means
L O A if bthenokelse(C. L)

Programmers who use loop constructs sometimes find that they reach their goal deep with
several nested loops. The problem is how to get out. A boolean variable can be introduced for t
purpose of recording whether the goal has been reached, and tested at each iteration of each lev
loop to decide whether to continue or exit. Quoato can be used to jump directly out of all the
loops, saving all tests. Or perhaps the programming language provides a spemeaiied this
purpose: exit nwhenb which means exitn loops whenb is satisfied. For example, we may
have something like this:
p [ loop
A.
loop
B.
exit 2 whenc.
D
end.
E
end
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The refinement structure corresponding to this loop is

P L AOQ

Q [] B. if cthenok else(D. Q)
for some appropriately define@@ . It has often been suggested that every loop should have a
specification, but the loop construct does not require it. The refinement structure does require it.

The preceding example had a deep exit but no shallow exit, ledvistranded in a dead area.
Here is an example with both deep and shallow exits.
p [ loop
A.
exit 1whenb.
C.
loop
D.
exit 2whene.
F.
exit 1 wheng.
H
end.
I
end
The refinement structure corresponding to this loop is
P [0 A if bthenokelse(C.Q)
Q [] D. if ethen ok else(F. if gthen (1. P) else(H. Q))
for some appropriately define@ .

Loops with exits can always be translated easily to a refinement structure. But the reverse is r
true; some refinement structures require the introduction of new variables and even whole d¢
structures to encode them as loops with exits.

End of Exit Loop
5.2.2 Two-Dimensional Search

To illustrate the preceding subsection, we can do Exercise 157: Write a program to find a give
item in a given 2-dimensional array. The execution time must be linear in the product of th
dimensions.

Let the array beA , let its dimensions ben by m, and let the item we seek be. We will
indicate the position ofx in A by the final values of natural variablésand j . If x occurs
more than once, any of its positions will do. If it does not occur, we will indicate that by assigning
i andj the valuesn and m respectively. The problem, except for time, is tiienwvhere

P — ifxA(0,.n) (0,,m)thenx=A1i | elsei'=nj'=m
We may as well search row 0 first, then row 1, and so on. Accordingly, we ¢Refinenean
“ x does not occur before row’:

R = = xA(0,.i) (0,.m)
Within each row, we search the columns in order, and so we défitlemean X does not occur
in row i before column

C = =xAi(0,.))
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0 ] m
R = (xis not here)
C = (xis not herg

n
With these definitions, we now solve the problem in five easy pieces.

p L i=0isnOROP
isnORO P [ ifi=nthenj:=melseicn ORO P
i<n0ORO P [ ji=0.i<nOROjsmOCO P

i<nOROjsmOcO P [
if =mthen (i:-=i+1. isnORO P)
elseicnOROj<mOCO P

i<nOROj<mOcO P U
if Aij=xthenokelse(j:=j+1. i<nOROjsmdC O P)

It is easier to see the execution pattern when we retain only enough information for execution. TI
non-program specifications are needed for understanding the purpose, and for proof, but not f
execution. To a compiler, the program appears as follows:
P [ i=0.0Q
Q L] ifi=n thenj:=melse(j:=0. §
s [ if j=mthen(i:=i+1. Q)
else ifAij=xthenok
else(j:=j+1. 9
In C, this is
i=0;
Q: if (i==n)j=m;
else{ |[=0;
S:if j==m) {i = i+1; goto Q;}
else if (A[i][]]==X) ;
else {j = j+1; goto S;}
}

To add recursive time, we put= t+1 just afteri:=i+1 and afterj:=j+1 . Or, to be a little more
clever, we can get away with a single time increment placed just before thjenest We also
change the five specifications we are refining to refer to time. The time remaining is at most tr
area remaining to be searched.

t<t+nxm U i:=0. i<n O t'<t+ (n-H)xm

isn O t'<t+ (nH)xm L] ifi=n thenj:=melsei<n O t' <t+ (nH)xm

i<n O t'<t+(-)xm [ j=0.i<n0Ojsm O t <t + (n=)xm—]
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i<nOjsm O t'<t+ (H)xm-—]j []
t=t+1.
if jJ=mthen (i:=i+1. isn O t' <t + (n—H)xm)
elsei<nOj<m O t' <t+ (nH)xm—]j

i<nOj<m O t <t+ (H)xm—j U
if Aij=xthenok
else(:=j+1. i<nOjsm 0O t' <t+ (nH)xm—j)

£nd of Two-Dimensional Search

5.2.3 For Loop

Let us use the syntax

for i:==m;.ndo P
where i is a fresh namem and n are integer expressions such thai<n , and P is a
specification, as an almost-typical notation for controlled iteration. The difference from popula
languages is just that iteration continues up to but excludiamg. To avoid some thorns, let us
say also thai is not a state variable (so it cannot be assigned wiRhirand that the initial values
of m and n control the iteration.

As with the previous loop constructs, we will not equatefdindoop to a boolean expression, but
instead show how it is used in refinement. IEetbe a function of two integer variables whose
result is a specification such that

Fmn [1 m=enOok

Fik [] mei<j<ken O (Fij. Fik)
Then

Fmn U for iz= m;..ndomei<n O Fi(i+1)
So Fmn is refined by dor-loop whose index runs from (includingh to (excluding) n . If
m=n there are no iterations, and specificatiemn must be satisfied by doing nothing. It also
must be satisfied by first doing the iterations fremto an intermediate indek, and then doing
the rest of the iterations from to n. The body of the loop has to do one iteration; the antecedent
of the body mi<n is optional.

For example, let the state consist of integer variahland letF be defined as
F = Ai,j: nat X' =xx2-

Then we can solve the exponentiation probbéa?n in three refinements:
x=2n [ x=1. Fon
Fon [ fori:= 0;.ndoFi(i+1)
Fi(i+1) O x=2x

The recursive time measure requires each loop to contain a time increment of at least one time u
In general, the time taken by the body dbaloop may be a functiorf of the iterationi . Using
t' =t+ Zi: m,.n-fi asfor-loop specificationFmn, thefor-loop rule tells us
t'=t+2i:m,.n-fi for i:k=m;..ndot' = t+fi
When the body takes constant tirae this simplifies to
t' =t+ (—m)xc ] fori:= m;..ndot =t+c

A typical use of thdor-loop rule is to do something to each item in a list. For example, Exercise
268 asks ustoadd 1 toeachiteminalist. The specification is
#L'=#L 0O Oi: 0,.. & L'i=Li+1
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Now we need a specificatioRik that describes an arbitrary segment of iterations: adding 1 to
each item from index to indexKk .
Fik = #.'=#L 0(0j:i,.k L'j=Lj+1) O (T;: (0,.), ,..A)- L'j=Lj)
We check both
Fo@) [ o=t Dok
Fik O=i<j<k<#L O (Fij. Fjk)
and find them to be theorems. So that gives us
Fo@) [ fori= 0.4 doFi(i+1)
Now all we need is a refinement féii(i+1) .
Fii+1) 1 L=i-Li+1|L

Sometimes théor-loop specificationFmn has the formim I'n , where| is a function of one
variable whose result is a precondition, andis the function whose result is the corresponding
postcondition. When is applied to thdor-loop index, conditionli is called arinvariant An
advantage of this form of specification is that bofhi 0 ok and Fik O (Fij. Fjk) are
automatically satisfied. Not dibr-loop specifications can be put in this form; neither the timing
nor the previous example (add 1 to each item) can be. But the earlier exponential example can
put in this form. Define

| = Ai:nat x=2i
Then the solution is

x=2n [ x=1.1001n

o0 1'n [ fori:= 0;.ndolil I'(i+1)

oG+ O x=2xx

As another example of the invariant form of the-loop rule, here is Exercise 186(a): Given a list
of integers, possibly including negatives, write a program to find the minimum sum of any
segment (sublist of consecutive items). Lebe the list. Formally, the problem B where

P = s =MINI,j-ZLTi.j]
where (xi<j<#L. The conditionl k will say thats is the minimum sum of any segment up
to index k. For k=0 there is only one segment, the empty segment, and its sumis 0. Whe
k=#L all segments are included and we have the desired result. To gd kot | (k+1) we
have to consider those segments that end at indeix. We could find the sum of each new
segment, then take the minimum of those sums argdtofbe the new value of. But we can do
better. Each segment ending at index is a one-item extension of a segment ending at ikdex

with one exception: the empty segment endingt .

k  k+1
[4;-2;-8;7:3,0;-1

If we know the minimum sumc of any segment ending & , then min (c + L k) O is the
minimum sum of any segment endingletl . So we define, for k< #_

Ik = s = MINi: 0,.k+1-MIN j:i,.k+1-Z L [i;.j])

O c = MINi:0,.k+1-Z L [i;..K])

Now the program is easy.

P s=0.c=0.100I'®)

100 @) L for k= 0. dol kO I'(k+1)

I kO I'(k+1) [ c=min (c+LKkO.s=mincs

£End of For Loop
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524 Go To

For every set of loop constructs, there is some pattern of execution that cannot be convenien
expressed using them. For that reason, many languages include a loop-building primitive: t
go to . Programming texts often warn that tlgo to is harmful, and should be avoided,
without saying why. The trouble witho to is that it cannot be considered a specification, and it
does not refine any specification. It does not fit in any usable theory of programming. If you ar
not using any theory of programming, and your only understanding of programs is the ability t
execute them, there is no reason to avgadto .

Refinement is more than any set of loop constructs; it provides not only tail recursions (branchini
but also general recursions (stacking). It provides all possible patterns of execution. Its close
relative in many popular programming languages is the procedure declaration and call, b
unfortunately the refinement aspect is usually coupled with parameterization and local scoj
aspects, and the implementation is often poor. For efficient execution, it may be necessary to cc
the refinements using the execution-control primitives, sucg@go , that are provided in an
available programming language.

£nd of Go To
End of Control Structures

5.3 Time and Space Dependence

Some programming languages provide a clock, or a delay, or other time-dependent features. (
examples have used the time variable as a ghost, or auxiliary variable, never affecting the course
a computation. It was used as part of the theory, to prove something about the execution tin
Used for that purpose only, it did not need representation in a computer. But if there is a readal
clock available as a time source during a computation, it can be used to affect the computation. T
assignmentdeadline=t + 5 is allowed, as isif t < deadlinethen ... else ... . But the

assignmentt:= 5 is not allowed. We can look at the clock, but not reset it arbitrarily; all clock
changes must correspond to the passage of time (according to some measure). (A compt
operator may need to set the clock sometimes, but that is not part of the theory of programming.)

We may occasionally want to specify the passage of time. For example, we may want tr
computation to “wait until timew”. Let us invent a notation for it, and define it formally as
wait until w = t=maxtw
Because we are not allowed to reset the clbekmax t wis not acceptable as a program until we
refine it. Letting time be an extended integer and using recursive time,
wait until w [ if t=w then ok else(t:= t+1. wait until w)
and we obtain a busy-wait loop. We can prove this refinement by cases. First,
t>w [J ok
— t>w [ (t=1)
tt=max tw
And second,
t<w O (t:=t+1. t=maxtwy
In the left conjunct, usé: xint. In the right conjunct, use the Substitution Law.
t+1 < w0 (t:= max(t+1) w)
t+1<w(t:=w)
t<w O (t=max tw
t=max tw
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In programs that depend upon time, we should use the real time measure, rather than the recur:
time measure. We also need to be more careful where we place our time increments. And we ni
a slightly different definition ofwait until w, but we leave that as Exercise 275(b).

Our space variables , like the time variable , has so far been used to prove things about space
usage, not to affect the computation. But if a program has space usage information available to
there is no harm in using that information. Like s can be read but not written arbitrarily. All
changes tas must correspond to changes in space usage.

£nd of Time and Space Dependence

5.4 Assertions optional
5.4.0 Checking

As a safety check, some programming languages include the notation

assertb
where b is boolean. It is executed by checking tHatis true; if it is, execution continues
normally, but if not, an error message is printed and execution is suspended. The intention is tt
in a correct program, the asserted expressions will always be true, and so all assertions
redundant. All error checking requires redundancy, and assertions help us to find errors a
prevent subsequent damage to the state variables.

Assertions are defined as follows.
assertb — if bthen okelse(print "error”. wait until o)
If b is true,assertb is the same ask. If b is false, execution cannot proceed in finite time to
any following actions. Assertions are an easy way to make programs more robust.
End of Checking

5.4.1 Backtracking

If P and Q are implementable specifications, SOREIQ . The disjunction can be implemented
by choosing one o or Q and satisfying it. Normally this choice is made as a refinement,
either POQ O P or POQ [0 Q. We could save this programming step by making disjunction a
programming connective, perhaps using the notation For example,

x=0orx=1
would be a program whose execution assigns either 0 orxl fthis would leave the choice of
disjunct to the programming language implementer.

The next construct radically changes the way we program. We introduce the notation
ensureb
where b is boolean, and define it as follows.
ensureb = if bthenokelsel
= bOok
Like assertb, ensureb is equal took if b istrue. But wherb is false, there is a problem:
it is unsatisfiable. By itself, this construct is unimplementable (unkess identically true).
However, in combination with other constructs, the whole may be implementable. Consider th
following example in variables andy .
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x:=0or x=1. ensurex=1

X',y X'=00y'=y O x'=10y"=y) OX'=10x=x"0y'=y"

X=10y'=y

x=1

Although an implementation is given a choice between0 and x:= 1, it must choose the right
one to satisfy a later condition. It can do so by making either choice (as usual), and when fac
with a later ensure whose condition is false, it must backtrack and make another choice. Since
choices can be nested within choices, a lot of bookkeeping is necessary.

Several popular programming languages, such as Prolog, feature backtracking. They may st
that choices are made in a particular order (we have omitted that complication). Two warning
should accompany such languages. First, it is the programmer's responsibility to show that
program is implementable; the language does not guarantee it. Alternatively, the implementatic
does not guarantee that computations will satisfy the program, since it is sometimes impossible
satisfy it. The second warning is that the time and space calculations do not work.

End of Backtracking

£nd of Assertions

5.5 Subprograms
5.5.0 Result Expression

Let P be a specification and be an expression in unprimed variables. Then
Presulte
is an expression of the initial state. It expresses the result of exe€utargl then evaluating .
For example, the following expresses an approximation to the base of the natural logarithms.
var term sum rat := 1.
for i:= 1;..15do (term= termyi. sum= sumtterm)
result sum
The axiom for theesult expression is
X =([Presulte) = P. xX=e
where x is any state variable of the right type.

The example introduces local variablesm and sum, and no other variables are reassigned. So
clearly the nonlocal state is unchanged. But consider

y:=y+lresulty
The result is as if the assignmept= y+1 were executed, theg is the result, except that the
value of variabley is unchanged.
X:= (y:=y+1lresulty)
X = (y:=y+lresulty) O y'=y
(y=y+l. x'=y) O y=y
X =y+l Oy=y
X:=y+l
When nonlocal variables seem to be changed (but they really aren't), implementagsulof
expressions presents a difficulty, although not an impossibility. To avoid the difficulty, we have ¢
choice: we can forbid assignments to nonlocal variables widsnlt expressions, or we can
allow nonlocal variables to change with a warning that mathematical reasoning is no longe
possible. For example, we cannot say = 2xx , nor evenx=x , since x might be defined as

X = (y:=y+1lresulty)
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State changes resulting from the evaluation of an expression are called “side-effects”. If sid
effects are allowed, we have to get ridreSult expressions before using any theory. For
example,

x:= (Presulte) becomes R. x:=¢)
after renaming local variables withiR as necessary to avoid clashes with nonlocal variables, and
allowing the scope of variables declaredAnto extend throughx:= e. For another example,

x=y+ (Presulte) becomes var z=y- P. x:=zte)
with similar provisos.

The recursive time measure that we have been using neglects the time for expression evaluat
This is reasonable in some applications for expressions consisting of a few operations implement
in computer hardware. For expressions using operations not implemented in hardware (perhe
list catenation) it is questionable. Fesult expressions containing loops, it is unreasonable. We
must find a time bound for the program part, and charge that much time.

End of Result Expression

5.5.1 Function

In many popular programming languages, a function is a combination of assertion about the rest
name of the function, parameters, scope control,rasdlt expression. It's a “package deal”.
For example, in C, the binary exponential function looks like this:
int bexp (int n)
{ intr=1;
inti;
for (i=0; i<n; i++) r=1r*2;
resultr; }
In our notations, this would be
bexp = An:int:
(varr:int:=1-
for i:= 0;.ndor:=rx2.
assertr: int
resultr )
We present these programming features separately so that they can be understood separately. -
can be combined in any way desired, as in the example. The harm in providing one construct 1
the combination is its complexity. Programmers trained with these languages may be unable
separate the issues and realize that naming, parameterization, assertions, local scepelt and
expressions are independently useful.

Even the form of function we are using in this book could be both simplified and generalizec
Stating the domain of a parameter is a special case of axiom introduction, which can be separa
from name introduction (see Exercise 90).

£nd of Function
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5.5.2 Procedure

The procedure (or void function, or method), as it is found in many languages, is a “package des
like the function. It combines name declaration, parameterization, and local scope. The commel
of the previous subsection apply here too. There are also some new issues.

To use our theory for program development, not just verification, we must be able to talk about
procedure whose body is an unrefined specification, not yet a program. For example, we mi
want a procedurd® with parameterx defined as

P = Axint-a <x<Ub
that assigns variablea and b values that lie on opposite sides of a value to be supplied as
argument. We can use procedi?ebefore we refine its body. For example,

P3 = a<3<i

P(@tl) — a<atl<lb
The body is easily refined as

a<x<b [ a=x1 b=x+1
Our choice of refinement does not alter our definitiorPgf it is of no use when we are usifg.

A procedure and argument can be translated to a local variable and initial value.
(Ap:D-B)a = (var p:D:=a- B)

This translation suggests that a parameter is really just a local variable whose initial value will k
supplied as an argument. In many popular programming languages, that is exactly the case. T
is an unfortunate confusion of specification and implementation. The decision to create
parameter, and the choice of its domain, are part of a procedural specification, and are of interes
a user of the procedure. The decision to create a local variable, and the choice of its domain, .
normally part of refinement, part of the process of implementation, and should not be of concern
a user of the procedure. When a parameter is assigned a value within a procedure bodyi, it is ac
as a local variable and no longer has any connection to its former role as parameter.

Another kind of parameter, usually called a reference parametar arameter, does not act as a
local variable, but stands for an unknown nonlocal variable to be supplied as argument. Here is
example, using\* to introduce a reference parameter.

(A\*xint:-x=3. b:=a)a — a=3.b=a — a=b'=3
Formally, a reference parameter is two parameters, one for the initial value and one for the fin
value, and the argument is correspondingly two arguments.

(A\*p:D-B)a — (Ap,p:D-B)a d
Unfortunately, the arguments must be substituted for the parameters before any oth
manipulations are performed. We are prevented from manipulating the procedure body by itse
and must apply our programming theory separately for each call. In our example, we cannot s
whether

x=3.b=a = b=a x=3
without seeing the argument for parameter To a large degree, this contradicts the purpose of a
procedure.

£End of Procedure
End of Subprograms
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5.6 Alias optional

Many popular programming languages present us with a model of computation in which there is
memory consisting of a large number of individual storage cells. Each cell contains a value. Vi
the programming language, cells have names. Here is a standard sort of picture.

2
p | address oA[1]

4
A[0] 1

*p, A[1] 3
Ali], A[2] 2
A[3] 3

In the picture,p is a pointer variable that currently pointsAfil] , so *p and A[1] refer to the
same memory cell. Since variallecurrently has value 2A[i] and A[2] refer to the same cell.

And r is a reference parameter for which variablbas been supplied as argumentrsand i

refer to the same cell. We see that a cell may have zero, one, two, or more names. When a
has two or more names that are visible at the same time, the names are said to be “aliases”.

As we have seen with arrays and with reference parameters, aliasing prevents us from applying
theory of programming. Some programming languages prohibit aliasing. Unfortunately, aliasin
is difficult to detect, especially during program construction before a specification has been full
refined as a program. To most people, prohibitions and restrictions are distasteful. To avoid tl
prohibition, we have a choice: we can complicate our theory of programming to handle aliasing,
we can simplify our model of computation to eliminate it. If we redraw our picture slightly, we see
that there are two mappings: one from names to cells, and one from cells to values.

p 1
r 3
A[O] | | 4
Al1] 5
Al2] ——— | | :
. | |
| |

address of A[i]

An assignment such ap:= address oA[3] or i:=4 can change both mappings at once. An
assignment to one name can change the value indirectly referred to by another name. To simpl
the picture and eliminate the possibility of aliasing, we eliminate the cells and allow a richer spac
of values. Here is the new picture.
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i %
p
A \
Pointer variables can be replaced by index variables dedicated to one structure so that they car
implemented as addresses. A procedure with reference parameters can be replaced by a func

that returns a structured value (not shown). The simpler picture is perfectly adequate, and t
problem of aliasing disappears.

- hWNEFRO

[1;3; 2; 3]

End of Alias

5.7 Probabilistic Programming optional

A specification tells us whether an observation is acceptable or unacceptable. We now consic
how often the various observations occur. For the sake of simplicity, we observe only boolee
and integer variables in this section, although the story is not very different for rational and re:
variables (summations become integrals).

Probability Theory has been developed using the arbitrary conventionghabability is a real
number between 0 and 1 inclusive

prob = §:real (sr<l
with 1 representing “certainly true”, O representing “certainly false”, 1/2 representing “equally
likely true or false”, and so on. Accordingly, for this section only, we add the axioms

T=1

1=0

A distributionis an expression whose value (for all assignments of values to its variables) is
probability, and whose sum (over all assignments of values to its variables) is 1. For example,
n: nattl , then 2n is a distribution because

(On: nattl- 2n: prob) O (Zn: nattl- 2n)=1
A distribution is used to tell the frequency of occurrence of values of its variables. For example
21 says thatn has value 3 one-eighth of the time. If we have two variamles nattl , then
2-+m s a distribution because

(On, m: nat+1- 2n-m; prob) O (Zn, m: nat+l- 2n-m)=1
Distribution 2n-m says that the state in whiah has value 3 andh has value 1 occurs one-
sixteenth of the time.

If we have a distribution of several variables and we sum over some of them, we get a distributic
describing the frequency of occurrence of the values of the other variables. For example,
n, m: nat+l are distributed as -2-m , then m: nat+1- 2-n-m | which is 2n, tells us the
frequency of occurrence of values of

If a distribution of several variables can be written as a product whose factors partition th
variables, then each of the factors is a distribution describing the variables in its part, and the pa
are said to bendependent For example, we can write-2m as 2n x 2-m ' son and m are
independent.
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The averagevalue of number expressiom as variablesv vary over their domains according to
distribution p is

2Vv-exp
For example, the average valuem¥ as n varies overnattl according to distribution—2 is
>n: nattl-n2 x 2-n , which is 6 . The average value ofm asn and m vary over nat+1
according to distribution -2m is Zn, m: nat+1- (+m)x 2+m whichis 0.

Let S be an implementable deterministic specification. pebe the distribution describing the
initial state 0. Then the distribution describing the final stateis

20-Sxp
which is a generalization of the formula for average. Here is an example in two integer vatiables
and y . Supposex starts with value 7 one-third of the time, and starts with value 8 two-thirds
of the time. Then the distribution of is

(x=7)x 1/3 + &=8)x 2/3
The probability thatx has value 7 is therefore
(7=7)x 1/13 + (7=8) 2/3
Tx1/3 +1x2/3
1x1/3 + 0x2/3
1/3
Similarly, the probability thatx has value 8 is 2/3, and the probability tkahas value 9 is
0. Let X be the preceding distribution of . Suppose thaty also starts with value 7 one-
third of the time, and starts with value 8 two-thirds of the time, independenity oFhen its
distribution Y is given by

Y = {=7)/3 + y=8)x2/3
and the distribution of initial states $xY. Let S be

if x=y then (x:= 0. y:= 0) else(x:= abgx-y). y:= 1)
Then the distribution of final states is
2X, Y- Sx X xY
X, Y- (x=y Ox'=y'=0 U x#+y Ox'=abgqx-y) Oy'=1)

x ((x=7)13 + §=8)x 2/3)

x ((y=7)13 + y=8)x 2/3)

= (xX=y'=0)x 5/9 + K'=y'=1)x 4/9
We should see(=y'=0 five-ninths of the time, and'=y'=1 four-ninths of the time.

Suppose we have one natural variahle The specificationok is not a distribution ohh and n’
because there are many pairs of values that giwe the valueT or 1, and
>n,n- n'=n = o
But
>n- n=n =1
so for any fixed value oh, ok is a distribution ofn’ , telling us thatn" always has the value
n. Similary nN"'=n+1 is a distribution telling us that, for any given initial valuerof n' always
has the value+1 . An implementable deterministic specification is a distribution of the final state.

Suppose we have one natural variable whose initial value is 5 . After executing the
nondeterministic specificatiolok [J (n:= n+1) , we can say that the final value ofis either 5 or
6 . Now suppose this specification is executed many times, and the distribution of initial states
n=5 (n always starts with value 5). What is the distribution of final states? Nondeterminism is
a freedom for the implementer, who may refine the specificatiookaswhich always gives the
answern’'=5, or asn:= n+1 , which always gives the answe'=6 , or as

if even tthen ok elsen:=n+1
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which gives n'=5 or n'=6 unpredictably. In general, we cannot say the distribution of final
states after a nondeterministic specification. If we apply the forialeés x p to a specification
S that is unimplementable or nondeterministic, the result may not be a distribution. For exampl
the nondeterministic specificatioak [J (n:= n+1) is not a distribution, not even when the initial
value of n is fixed, because

>n'- okO(ni=n+l) = 2
which is the degree of nondeterminism. Nondeterministic choice is equivalent to deterministi
choice in which the determining expression is a variable of unknown value.

POQ =— [b:boolif bthenP elseQ
Thus we can always eliminate nondeterminism by introducing a new variable.

We now generalize conditional composition and dependent composition to apply to probabilisti
specifications as follows. Ib is a probability, and® and Q are distributions of final states,
if bthenPelseQ = bxP + (1-b)xQ
P.Q — 20" (substituteg” for o' in P) x (substituteg” for o in Q)
are distributions of final states. For example, in one integer varighlsuppose we start by
assigning 0 with probability 1/3 or 1 with probability 2/3; that's
if 1/3thenx:= Oelsex:=1
Subsequently, itx=0 then we add 2 with probability 1/2 or 3 with probability 1/2 , otherwise
we add 4 with probability 1/4 or 5 with probability 3/4; that's
if x=0thenif 1/2then x:= x+2 elsex:= x+3 elseif 1/4then x:= x+4 elsex:= x+5
Notice that the programmeri§ gives us conditional probability. Our calculation
if 1/3thenx:= 0elsex:= 1.
if x=0thenif 1/2then x:= x+2 elsex:= x+3
elseif 1/4then x:= x+4 elsex:= x+5
— X" ((X'=0)/3 + K'=1)x2/3)
x ( (X'=0) x (X=x"+2)/2 + K'=x"+3)/2)
+ (X'#0) x (X=xX"+4)/4 + K'=X"+5)x3/4))
— (X=2)/6 + k'=3)/6 + ('=5)/6 + K'=6)/2
says that the result is 2 with probability 1/6 , 3 with probability 1/6 , 5 with probability 1/6 ,
and 6 with probability 1/2 .

We earlier used the formul&o- S x p to calculate the distribution of final states from the
distribution p of initial states and an operation specified By We can now restate this formula
as 0.9 wherep' isthe same ap but with primes on the variables.

Various distribution laws are provable from probabilistic sequential composition.n Le¢ a
number, and leP, Q, and R be probabilistic specifications. Then

nxP.Q = nx(P.Q) = P.nxQ

P+tQ.R = (P.R) +(Q.R)

P.QtR = (P.Q +(P.R
Best of all, the Substitution Law still works.

5.7.0 Random Number Generators

Many programming languages provide a random number generator (sometimes called a “pseut
random number generator”). The usual notation is functional, and the usual result is a value whc
distribution is uniform (constant) over a nonempty finite rangen: ihat+1 , we use the notation
rand n for a generator that produces natural numbers uniformly distributed over the range O,..
So rand n has valuer with probability ¢: 0,.n)/n.
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Functional notation for a random number generator is inconsistent. Swiceis a law, we
should be able to simplifyand n=rand n to T , but we cannot because the two occurrences of
rand n might generate different numbers. Singex = 2xx is a law, we should be able to
simplify rand n+ rand n to 2xrand n, but we cannot. To restore consistency, we replace each
use of rand n with a fresh integer variable whose value has probability: 0,.n) / n before we

do anything else. Or, if you prefer, we replace each usarad n with a fresh variable: 0,..n
whose value has probability nl/ (This is a mathematical variable, or in other words, a state
constant; there is nd .) For example, in one state variable

x=rand2. x=x+rand 3 replace the twaands with r and s
>r:0,.2:3s:.0,..3- k=r. x:=x+9) x 1/2x 1/3 Substitution Law
2r:0,.2:2s:0,.3- K =r+s) / 6 sum

(X =0+0)+ K =0+1) + K =0+2) + K =1+0) + K = 1+1) + K =1+2))/ 6
X=0)/6 + K=1)/3+&=2)/3 + K=3)/6

which says thatx' is 0 one-sixth of the time, 1 one-third of the time, 2 one-third of the time,
and 3 one-sixth of the time.

Wheneverrand occurs in the context of a simple equation, suchasand n, we don't need to
introduce a variable for it, since one is supplied. We just replace the deceptive equation wi
(r: 0,.n) /'n. For example, in one variabbe,

x:=rand 2. x=x+rand 3 replace assignments
(x':0,..2)/12. K':x+(0,..3))/3 dependent composition
>X'- (X' 0,..2)[2x (X': X'"'+(0,..3))/3 sum

1/2x (x:0,..3)/3 + 1/ (X: 1,..4)/3
(xX=0)/6 + K¥=1)/3+&=2)/3 + K=3)/6

as before.

Although rand produces uniformly distributed natural numbers, it can be transformed into many
different distributions. We just saw thatand 2 + rand 3 has valuen with distribution
(n=00n=3)/6 + (=10n=2)/3. As another exampleand 8 < 3 has boolean value with
distribution
>r:0,.8-b=(<3))/8

— (b=T)x3/8 + p=1)x5/8

- 5/8 —bl4
which says thab is T three-eighths of the time, anll five-eighths of the time.

Exercise 281 is a simplified version of blackjack. You are dealt a card from a deck; its value is i
the range 1 through 13 inclusive. You may stop with just one card, or have a second card if y:
want. Your object is to get a total as near as possible to 14, but not over 14 . Your strategy is
take a second card if the first is under 7 . Assuming each card value has equal probabili
(actually, the second card drawn has a diminished probability of having the same value as the fi
card drawn, but let's ignore that complication), we represent a carmchad I3) + 1 . In one
variable x , the game is
x:= (rand 13) + 1. if x<7 then x:= x + (rand 13) + lelseok
replacerand and ok
— (x': (0,..13)+1)/13. if x<7 then (X": x+(0,..13)+1)/13elsex'=xreplace . andf
- X' (X' 1, 14)/13x (X'<T)x(X': X'+1,.X"+14)/13 + K'=7)x(X'=X"))
by several omitted steps

((2=X'<Tx(X'=1) + (AX'<14)x19 + (14X <20%(20—')) / 169
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That is the distribution ofx’ if we use the “under 7 ” strategy. We can similarly find the
distribution of X' if we use the “under 8 ” strategy, or any other strategy. But which strategy is
best? To compare two strategies, we play both of them at once. Rlayédlplay “under n”
and playery will play “under n+1 ” using exactly the same cardsand d (the result would be
no different if they used different cards, but it would require more variables). Here is the nev
game, followed by the condition that wins:

c:=(rand 13) + 1. d:= (rand 13) + 1.

if c <nthenx:=c+delsex:=c. if c <n+1ltheny:=c+delsey:=c.

y<x<14 O x<14<y Replacerand and use the functional-imperative law twice.

= (c: (0,..13)+1 0 d: (0,..13)+1 0 x'=x O y'=y) / 13/ 13.
x:=if c <nthenc+d elsec. y:=if c <n+1then c+d elsec.
y<x<14 O x<14<y 