

PATTERN CLASSIFICATION
USING

ENSEMBLE METHODS

SERIES IN MACHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE*

Editors: H. Bunke (Univ. Bern, Switzerland)
P. S. P. Wang (Northeastern Univ., USA)

Vol. 60: Robust Range Image Registration Using Genetic Algorithms
and the Surface Interpenetration Measure
(L. Silva, O. R. P. Bellon and K. L. Boyer)

Vol. 61: Decomposition Methodology for Knowledge Discovery and Data Mining:
Theory and Applications
(O. Maimon and L. Rokach)

Vol. 62: Graph-Theoretic Techniques for Web Content Mining
(A. Schenker, H. Bunke, M. Last and A. Kandel)

Vol. 63: Computational Intelligence in Software Quality Assurance
(S. Dick and A. Kandel)

Vol. 64: The Dissimilarity Representation for Pattern Recognition: Foundations
and Applications
(Elóbieta P“kalska and Robert P. W. Duin)

Vol. 65: Fighting Terror in Cyberspace
(Eds. M. Last and A. Kandel)

Vol. 66: Formal Models, Languages and Applications
(Eds. K. G. Subramanian, K. Rangarajan and M. Mukund)

Vol. 67: Image Pattern Recognition: Synthesis and Analysis in Biometrics
(Eds. S. N. Yanushkevich, P. S. P. Wang, M. L. Gavrilova and
S. N. Srihari)

Vol. 68: Bridging the Gap Between Graph Edit Distance and Kernel Machines
(M. Neuhaus and H. Bunke)

Vol. 69: Data Mining with Decision Trees: Theory and Applications
(L. Rokach and O. Maimon)

Vol. 70: Personalization Techniques and Recommender Systems
(Eds. G. Uchyigit and M. Ma)

Vol. 71: Recognition of Whiteboard Notes: Online, Offline and Combination
(Eds. H. Bunke and M. Liwicki)

Vol. 72: Kernels for Structured Data
(T Gärtner)

Vol. 73: Progress in Computer Vision and Image Analysis
(Eds. H. Bunke, J. J. Villanueva, G. Sánchez and X. Otazu)

Vol. 74: Wavelet Theory Approach to Pattern Recognition (2nd Edition)
(Y Y Tang)

Vol. 75: Pattern Classification Using Ensemble Methods
(L Rokach)

*For the complete list of titles in this series, please write to the Publisher.

N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I

World Scientific

Lior Rokach
Ben-Gurion University of the Negev, Israel

Series in Machine Perception and Artificial Intelligence – Vol. 75

PATTERN CLASSIFICATION
USING

ENSEMBLE METHODS

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4271-06-6
ISBN-10 981-4271-06-3

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

Series in Machine Perception and Artificial Intelligence — Vol. 75
PATTERN CLASSIFICATION USING ENSEMBLE METHODS

To my wife, Ronit and
my three boys, Yarden, Roy and

Amit who was born the same day this book was completed
–L.R.

This page intentionally left blankThis page intentionally left blank

Preface

Ensemble methodology imitates our second nature to seek several opinions
before making a crucial decision. The core principle is to weigh several
individual pattern classifiers, and combine them in order to reach a classi-
fication that is better than the one obtained by each of them separately.

Researchers from various disciplines such as pattern recognition, statis-
tics, and machine learning have explored the use of ensemble methods since
the late seventies. Given the growing interest in the field, it is not surprising
that researchers and practitioners have a wide variety of methods at their
disposal. Pattern Classification Using Ensemble Methods aims to provide
a methodic and well structured introduction into this world by presenting
a coherent and unified repository of ensemble methods, theories, trends,
challenges and applications.

Its informative, factual pages will provide researchers, students and
practitioners in industry with a comprehensive, yet concise and convenient
reference source to ensemble methods. The book describes in detail the clas-
sical methods, as well as extensions and novel approaches that were recently
introduced. Along with algorithmic descriptions of each method, the reader
is provided with a description of the settings in which this method is appli-
cable and with the consequences and the trade-offs incurred by using the
method. This book is dedicated entirely to the field of ensemble methods
and covers all aspects of this important and fascinating methodology.

The book consists of seven chapters. Chapter 1 presents the pattern
recognition foundations that are required for reading the book. Chapter
2 introduces the basic algorithmic framework for building an ensemble of
classifiers. Chapters 3-6 present specific building blocks for designing and
implementing ensemble methods. Finally, Chapter 7 discusses how ensem-
bles should be evaluated. Several selection criteria are proposed - all are

vii

viii Pattern Classification Using Ensemble Methods

presented from a practitioner’s standpoint - for choosing the most effective
ensemble method.

Throughout the book, special emphasis was put on the extensive use
of illustrative examples. Accordingly, in addition to ensemble theory, the
reader is also provided with an abundance of artificial as well as real-world
applications from a wide range of fields. The data referred to in this book,
as well as most of the Java implementations of the presented algorithms,
can be obtained via the Web.

One of the key goals of this book is to provide researchers in the fields of
pattern recognition, information systems, computer science, statistics and
management with a vital source of ensemble techniques. In addition, the
book will prove to be highly beneficial to those engaged in research in so-
cial sciences, psychology, medicine, genetics, and other fields that confront
complex data-processing problems.

The material in this book constitutes the core of undergraduate and
graduates courses at Ben-Gurion University. The book can also serve as
an excellent reference book for graduate as well as advanced undergraduate
courses in pattern recognition, machine learning and data mining. Descrip-
tions of real-world data-mining projects that utilize ensemble methods may
be of particular interest to the practitioners among the readers. The book
is rigorous and requires comprehension of problems and solutions via their
mathematical descriptions. Nevertheless, only basic background knowledge
of basic probability theory and computer science (algorithms) in assumed
in most of the book.

Due to the broad spectrum of ensemble methods, it is impossible to cover
all techniques and algorithms in a single book. The interested reader can
refer to the excellent book “pattern classifiers: methods and algorithms” by
Ludmila Kuncheva (John Wiley & Sons, 2004). Other key sources include
journals and conferences’ proceedings. The Information Fusion Journal and
the Journal of Advances in Information Fusion are largely dedicated to the
field of ensemble methodology. Nevertheless, many pattern recognition,
machine learning and data mining journals include research papers on en-
semble techniques. Moreover, major conferences such as the International
Workshop on Multiple Classifier Systems (MCS) and the International Con-
ference on Information Fusion (FUSION) are especially recommended as
sources for additional information.

Many colleagues generously gave comments on drafts or counsel other-
wise. Dr. Alon Schclar deserves special mention for his particularly detailed
and insightful comments. I am indebted to Prof. Oded Maimon for lend-

Preface ix

ing his insight to this book. Thanks also to Prof. Horst Bunke and Prof.
Patrick Shen-Pei Wang for including my book in their important series in
machine perception and artificial intelligence. The author would also like
to thank Mr. Steven Patt, Editor, and staff members of World Scientific
Publishing for their kind cooperation throughout the writing process of this
book.

Last, but certainly not least, I owe my special gratitude to my family
and friends for their patience, time, support, and encouragement.

Lior Rokach
Ben-Gurion University of the Negev

Beer-Sheva, Israel
September 2009

This page intentionally left blankThis page intentionally left blank

Contents

Preface vii

1. Introduction to Pattern Classification 1

1.1 Pattern Classification . 2
1.2 Induction Algorithms . 4
1.3 Rule Induction . 5
1.4 Decision Trees . 5
1.5 Bayesian Methods . 8

1.5.1 Overview . 8
1.5.2 Näıve Bayes . 9

1.5.2.1 The Basic Näıve Bayes Classifier 9
1.5.2.2 Näıve Bayes Induction for Numeric

Attributes 12
1.5.2.3 Correction to the Probability Estimation . . 12
1.5.2.4 Laplace Correction 13
1.5.2.5 No Match 14

1.5.3 Other Bayesian Methods 14
1.6 Other Induction Methods 14

1.6.1 Neural Networks . 14
1.6.2 Genetic Algorithms 17
1.6.3 Instance-based Learning 17
1.6.4 Support Vector Machines 18

2. Introduction to Ensemble Learning 19

2.1 Back to the Roots . 20
2.2 The Wisdom of Crowds . 22

xi

xii Pattern Classification Using Ensemble Methods

2.3 The Bagging Algorithm . 22
2.4 The Boosting Algorithm . 28
2.5 The AdaBoost Algorithm 28
2.6 No Free Lunch Theorem and Ensemble Learning 36
2.7 Bias-Variance Decomposition and Ensemble Learning 38
2.8 Occam’s Razor and Ensemble Learning 40
2.9 Classifier Dependency . 41

2.9.1 Dependent Methods 42
2.9.1.1 Model-guided Instance Selection 42
2.9.1.2 Basic Boosting Algorithms 42
2.9.1.3 Advanced Boosting Algorithms 44
2.9.1.4 Incremental Batch Learning 51

2.9.2 Independent Methods 51
2.9.2.1 Bagging . 53
2.9.2.2 Wagging . 54
2.9.2.3 Random Forest and Random Subspace

Projection 55
2.9.2.4 Non-Linear Boosting Projection (NLBP) . . 56
2.9.2.5 Cross-validated Committees 58
2.9.2.6 Robust Boosting 59

2.10 Ensemble Methods for Advanced Classification Tasks 61
2.10.1 Cost-Sensitive Classification 61
2.10.2 Ensemble for Learning Concept Drift 63
2.10.3 Reject Driven Classification 63

3. Ensemble Classification 65

3.1 Fusions Methods . 65
3.1.1 Weighting Methods 65
3.1.2 Majority Voting . 66
3.1.3 Performance Weighting 67
3.1.4 Distribution Summation 68
3.1.5 Bayesian Combination 68
3.1.6 Dempster–Shafer . 69
3.1.7 Vogging . 69
3.1.8 Näıve Bayes . 69
3.1.9 Entropy Weighting 70
3.1.10 Density-based Weighting 70
3.1.11 DEA Weighting Method 70
3.1.12 Logarithmic Opinion Pool 71

Contents xiii

3.1.13 Order Statistics . 71
3.2 Selecting Classification . 71

3.2.1 Partitioning the Instance Space 74
3.2.1.1 The K–Means Algorithm as a Decomposition

Tool . 75
3.2.1.2 Determining the Number of Subsets 78
3.2.1.3 The Basic K–Classifier Algorithm 78
3.2.1.4 The Heterogeneity Detecting K–Classifier

(HDK–Classifier) 81
3.2.1.5 Running–Time Complexity 81

3.3 Mixture of Experts and Meta Learning 82
3.3.1 Stacking . 82
3.3.2 Arbiter Trees . 85
3.3.3 Combiner Trees . 88
3.3.4 Grading . 88
3.3.5 Gating Network . 89

4. Ensemble Diversity 93

4.1 Overview . 93
4.2 Manipulating the Inducer 94

4.2.1 Manipulation of the Inducer’s Parameters 95
4.2.2 Starting Point in Hypothesis Space 95
4.2.3 Hypothesis Space Traversal 95

4.3 Manipulating the Training Samples 96
4.3.1 Resampling . 96
4.3.2 Creation . 97
4.3.3 Partitioning . 100

4.4 Manipulating the Target Attribute Representation 101
4.4.1 Label Switching . 102

4.5 Partitioning the Search Space 103
4.5.1 Divide and Conquer 104
4.5.2 Feature Subset-based Ensemble Methods 105

4.5.2.1 Random-based Strategy 106
4.5.2.2 Reduct-based Strategy 106
4.5.2.3 Collective-Performance-based Strategy . . . 107
4.5.2.4 Feature Set Partitioning 108
4.5.2.5 Rotation Forest 111

4.6 Multi-Inducers . 112
4.7 Measuring the Diversity . 114

xiv Pattern Classification Using Ensemble Methods

5. Ensemble Selection 119

5.1 Ensemble Selection . 119
5.2 Pre Selection of the Ensemble Size 120
5.3 Selection of the Ensemble Size While Training 120
5.4 Pruning - Post Selection of the Ensemble Size 121

5.4.1 Ranking-based . 122
5.4.2 Search based Methods 123

5.4.2.1 Collective Agreement-based Ensemble
Pruning Method 124

5.4.3 Clustering-based Methods 129
5.4.4 Pruning Timing . 129

5.4.4.1 Pre-combining Pruning 129
5.4.4.2 Post-combining Pruning 130

6. Error Correcting Output Codes 133

6.1 Code-matrix Decomposition of Multiclass Problems 135
6.2 Type I - Training an Ensemble Given a Code-Matrix 136

6.2.1 Error correcting output codes 138
6.2.2 Code-Matrix Framework 139
6.2.3 Code-matrix Design Problem 140
6.2.4 Orthogonal Arrays (OA) 144
6.2.5 Hadamard Matrix . 146
6.2.6 Probabilistic Error Correcting Output Code 146
6.2.7 Other ECOC Strategies 147

6.3 Type II - Adapting Code-matrices to the Multiclass
Problems . 149

7. Evaluating Ensembles of Classifiers 153

7.1 Generalization Error . 153
7.1.1 Theoretical Estimation of Generalization Error . . . 154
7.1.2 Empirical Estimation of Generalization Error 155
7.1.3 Alternatives to the Accuracy Measure 157
7.1.4 The F-Measure . 158
7.1.5 Confusion Matrix . 160
7.1.6 Classifier Evaluation under Limited Resources 161

7.1.6.1 ROC Curves 163
7.1.6.2 Hit Rate Curve 163
7.1.6.3 Qrecall (Quota Recall) 164

Contents xv

7.1.6.4 Lift Curve 164
7.1.6.5 Pearson Correlation Coefficient 165
7.1.6.6 Area Under Curve (AUC) 166
7.1.6.7 Average Hit Rate 167
7.1.6.8 Average Qrecall 168
7.1.6.9 Potential Extract Measure (PEM) 170

7.1.7 Statistical Tests for Comparing Ensembles 172
7.1.7.1 McNemar’s Test 173
7.1.7.2 A Test for the Difference of Two

Proportions 174
7.1.7.3 The Resampled Paired t Test 175
7.1.7.4 The k-fold Cross-validated Paired t Test . . 176

7.2 Computational Complexity 176
7.3 Interpretability of the Resulting Ensemble 177
7.4 Scalability to Large Datasets 178
7.5 Robustness . 179
7.6 Stability . 180
7.7 Flexibility . 180
7.8 Usability . 180
7.9 Software Availability . 180
7.10 Which Ensemble Method Should be Used? 181

Bibliography 185

Index 223

Chapter 1

Introduction to Pattern Classification

Pattern recognition is the scientific discipline whose purpose is to clas-
sify patterns (also known as instances, tuples and examples) into a set of
categories which are also referred to as classes or labels. Commonly, the
classification is based on statistical models that are induced from an exem-
plary set of preclassified patterns. Alternatively, the classification utilizes
knowledge that is supplied by an expert in the application domain.

A pattern is usually composed of a set of measurements that characterize
a certain object. For example, suppose we wish to classify flowers from the
Iris genus into their subgeni (such as Iris Setosa, Iris Versicolour and Iris
Virginica). The patterns in this case will consist the flowers features, such
as the length and the width of the sepal and petal. The label of every
instance will be one of the strings Iris Setosa, Iris Versicolour and Iris
Virginica. Alternatively, the labels can take a value from 1,2,3, a,b,c or any
other set of three distinct values.

Another common application which employs pattern recognition is Opti-
cal character recognition (OCR). These applications convert scanned doc-
uments into machine-editable text in order to simplify their storage and
retrieval. Each document undergoes three steps. First, an operator scans
the document. This converts the document into a bitmap image. Next, the
scanned document is segmented such that each character is isolated from
the others. Then, a feature extractor measures certain features of each
character such as open areas, closed shapes, diagonal lines and line inter-
sections. Finally, the scanned characters are associated with their corre-
sponding alpha-numeric character. The association is obtained by applying
a pattern recognition algorithm to the features of the scanned characters.
In this case, the set of labels/categories/classes are the set of alpha-numeric
character i.e. letters, numbers, punctuation marks, etc.

1

2 Pattern Classification Using Ensemble Methods

1.1 Pattern Classification

In a typical statistical pattern recognition setting, a set of patterns S, also
referred to as a training set is given. The labels of the patterns in S are
known and the goal is to construct an algorithm in order to label new
patterns. A classification algorithm is also known as an inducer and an
instance of an inducer for a specific training set is called a classifier .

The training set can be described in a variety of ways. Most frequently,
each pattern is described by a vector of feature values. Each vector belongs
to a single class and associated with the class label. In this case, the training
set is stored in a table where which each row consists of a different pattern.
Let A and y denote the set of n features: A = {a1, . . . , ai, . . . , an} and the
class label, respectively.

Features, which are also referred to as attributes, typically fall into one
of the following two categories:

Nominal the values are members of an unordered set. In this
case, it is useful to denote its domain values by dom (ai) =
{vi,1, vi,2, . . . , vi,|dom(ai)|}, where |dom (ai)| is the finite cardinal-
ity of the domain.

Numeric the values are real numbers. Numeric features have infinite car-
dinalities.

In a similar way, dom (y) = {c1, c2, . . . , ck} constitutes the set of labels.
Table 1.1 illustrates a segment of the Iris dataset. This is one of the best
known datasets in the pattern recognition literature. It was first introduced
by R. A. Fisher (1936). The goal in this case is to classify flowers into the
Iris subgeni according to their characteristic features.

The dataset contains three classes that correspond to three types of
iris flowers: dom (y) = {IrisSetosa, IrisV ersicolor, IrisV irginica}. Each
pattern is characterized by four numeric features (measured in centimeters):
A = {sepallength, sepalwidth, petallength, petalwidth}.

The instance space (the set of all possible examples) is defined as a
Cartesian product of all the input attributes domains: X = dom (a1) ×
dom (a2) × . . . × dom (an). The universal instance space (or the labeled
instance space) U is defined as a Cartesian product of all input attribute
domains and the target attribute domain, i.e.: U = X × dom (y).

The training set is denoted by S (B) and it is composed of m tuples.

Introduction to Pattern Classification 3

Table 1.1 The Iris Dataset Consisting of Four Numeric Features and Three Possible
Classes.

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
6.0 2.7 5.1 1.6 Iris-versicolor
5.8 2.7 5.1 1.9 Iris-virginica
5.0 3.3 1.4 0.2 Iris-setosa
5.7 2.8 4.5 1.3 Iris-versicolor
5.1 3.8 1.6 0.2 Iris-setosa
..
.

S (B) = (〈x1, y1〉, . . . , 〈xm, ym〉) (1.1)

where xq ∈ X and yq ∈ dom (y) , q = 1, . . . , m.
Usually, it is assumed that the training set tuples are randomly gen-

erated and are independently distributed according to some fixed and un-
known joint probability distribution D over U . Note that this is a gener-
alization of the deterministic case in which a supervisor classifies a tuple
using a function y = f (x).

As mentioned above, the goal of an inducer is to generate classifiers.
In general, a classifier partitions the instance space according to the labels
of the patterns in the training set. The borders separating the regions are
called frontiers and inducers construct frontiers such that new patterns will
be classified into the correct region. Specifically, given a training set S with
input attributes set A = {a1, a2, . . . , an} and a nominal target attribute y

from an unknown fixed distribution D as defined above, the objective is to
induce an optimal classifier with a minimum generalization error.

The generalization error is defined as the misclassification rate over the
distribution D. Formally, let I be an inducer. We denote by I (S) the
classifier that is generated by I for the training set S. The classification
that is produced by I (S) when it is applied to a pattern x is denoted
by I (S) (x). In case of nominal attributes, the generalization error be
expressed as:

ε (I (S) , D) =
∑

〈x,y〉∈U

D (x, y) · L (y, I (S) (x)) (1.2)

where L (y, I (S) (x)) is the zero one loss function defined as:

4 Pattern Classification Using Ensemble Methods

L (y, I (S) (x)) =

{
0 if y = I (S) (x)

1 if y �= I (S) (x)
(1.3)

In case of numeric attributes the sum operator is replaced with the
integration operator.

1.2 Induction Algorithms

An induction algorithm, or more concisely an inducer (also known as
learner), is an algorithm that is given a training set and constructs a model
that generalizes the connection between the input attributes and the target
attribute. For example, an inducer may take as input specific training
patterns with their corresponding class labels, and produce a classifier .

Let I be an inducer. We denote by I (S) the classifier which is induced
by applying I to the training set S. Using I (S) it is possible to predict the
target value of a pattern x. This prediction is denoted as I (S) (x).

Given the on going fruitful research and recent advances in the field of
pattern classification, it is not surprising to find several mature approaches
to induction that are now available to the practitioner.

An essential component of most classifiers is model which specifies how
a new pattern is classified. These models are represented differently by
different inducers. For example, C4.5 [Quinlan (1993)] represents the model
as a decision tree while the Näıve Bayes [Duda and Hart (1973)] inducer
represents a model in the form of probabilistic summaries. Furthermore,
inducers can be deterministic (as in the case of C4.5) or stochastic (as in
the case of back propagation)

There two ways in which a new pattern can be classified. The classifier
can either explicitly assign a certain class to the pattern (Crisp Classi-
fier) or, alternatively, the classifier can produce a vector of the conditional
probability the given pattern belongs to each class (Probabilistic Classi-
fier). In this case it is possible to estimate the conditional probability
P̂I(S) (y = cj |ai = xq,i ; i = 1, . . . , n) for an observation xq. Note the ad-
dition of the “hat” to the conditional probability estimation is used for
distinguishing it from the actual conditional probability. Inducers that can
construct Probabilistic Classifiers are known as Probabilistic Inducers.

The following sections briefly review some of the common approaches
to concept learning: Decision tree induction, Neural Networks, Genetic

Introduction to Pattern Classification 5

Algorithms, instance-based learning, statistical methods, Bayesian methods
and Support Vector Machines. This review focuses on methods that are
described in details in this book.

1.3 Rule Induction

Rule induction algorithms generate a set of if-then rules that describes
the classification process. The main advantage of this approach is its high
comprehensibility. Namely, the rules can be written as a collection of con-
secutive conditional statements in plain English which are easy to employ.
Most of the Rule induction algorithms are based on the separate and con-
quer paradigm [Michalski (1983)]. Consequently, these algorithms: (a) are
capable of finding simple axis parallel frontiers; (b) well suited for symbolic
domains; and (c) can often dispose easily of irrelevant attributes. However,
Rule induction algorithms can have difficulty when non-axis-parallel fron-
tiers are required to correctly classify the data. Furthermore, they suffer
from the fragmentation problem, i.e., the available data dwindles as induc-
tion progresses [Pagallo and Huassler (1990)]. Another pitfall that should
be avoided is the small disjuncts problem or emphoverfitting. This prob-
lem is characterized by rules that cover a very small number of training
patterns. Thus, the model fits the training data very well, however, it fails
to classify new patterns, resulting in a high error rate [Holte et al. (1989)].

1.4 Decision Trees

A Decision tree is a classifier whose model forms a recursive partition of the
instance space. The model is described as a rooted tree, i.e., a direct tree
with a node called a “root” that has no incoming edges. All other nodes
have exactly one incoming edge. A node with outgoing edges is referred to
as an “internal” node or a “test” nodes. All other nodes are called “leaves”
(also known as “terminal” nodes or “decision” nodes). In a decision tree,
each internal node splits the instance space into two or more sub-spaces
according to a certain discrete function of the input attribute values. In
the simplest and most frequent case, each test considers a single attribute,
such that the instance space is partitioned according to the attributes value.
In the case of numeric attributes, the condition refers to a range.

Each leaf is assigned to one class corresponding to the most appropriate
target value. Alternatively, the leaf may hold a probability vector (affinity

6 Pattern Classification Using Ensemble Methods

vector) whose elements indicate the probabilities of the target attribute to
assume a certain value. Figure 1.1 describes an example of a decision tree
that solves the Iris recognition task presented in Table 1.1.

Internal nodes are represented as circles, whereas leaves are denoted by
triangles. Each internal node (not a leaf) may have two or more outgoing
branches. Each node corresponds to a certain property and the branches
correspond to a range of values. These value ranges must partition the set
of values of the given property.

Instances are classified by traversing the tree starting from the root
down to a leaf where the path is determined according to the outcome of
the partitioning condition at each node. Specifically, we start at the root
of a tree and consider the property that corresponds to the root. We then
find to which outgoing branch the observed value of the given property
corresponds. The next node in our path is the one at the end of the chosen
branch. We repeat the same operations for this node and traverse the tree
until we reach a leaf.

Note that decision trees can incorporate both nominal and numeric
attributes. In case of numeric attributes, decision trees can be geometrically
interpreted as a collection of hyperplanes, each orthogonal to one of the
axes.

Naturally, decision makers prefer a less complex decision tree, as it
is considered more comprehensible. Furthermore, according to [Breiman
et al. (1984)] the tree complexity has a crucial effect on its performance
accuracy. Usually, large trees are obtained by over fitting the data and
hence exhibit poor generalization ability (a pitfall they share with Rule
Classifiers). Nevertheless, a large decision tree can generalize well to new
patterns if it was induced without over fitting the data. The tree complexity
is explicitly controlled by the stopping criteria used for the construction of
the tree and the pruning method that is employed. Common measures for
the tree complexity include the following metrics: (i) The total number of
nodes; (ii) Total number of leaves; (iii) Tree Depth; and (iv) The number
of attributes used.

Decision tree induction is closely related to rule induction. Each path
from the root of a decision tree to one of its leaves can be transformed into
a rule simply by conjoining the tests along the path to form the antecedent
part, and taking the leaf’s class prediction as the class value. The resulting
rule set can then be simplified in order to improve its comprehensibility to
a human user, and to improve its accuracy [Quinlan (1987)].

Decision tree inducers are algorithms that automatically construct a

Introduction to Pattern Classification 7

Petal Width

<0.6 1.7

4.9<4.9

Versicol

Setosa Virginic

[0
.6

,1
.7

)
Petal Length

Petal Width

Versicol

<1.5

Virginic

1.5

Fig. 1.1 Decision tree for solving the Iris classification task.

decision tree from a given dataset. Typically, the goal is to find the optimal
decision tree by minimizing the generalization error. However, other target
functions can also be defined, for instance, minimizing the number of nodes
or minimizing the average depth of the tree.

Construction of an optimal decision tree based on a given dataset is
considered to be a difficult task. [Hancock et al. (1996)] have shown that
finding a minimal decision tree for a given training set is NP-hard while
[Hyafil and Rivest (1976)] have proved that constructing a minimal binary
tree with respect to the expected number of tests required for classifying

8 Pattern Classification Using Ensemble Methods

an unseen instance is NP-complete. Even finding the minimal equivalent
decision tree for a given decision tree [Zantema and Bodlaender (2000)]
or building the optimal decision tree from decision tables is known to be
NP-hard [Naumov (1991)].

These results indicate that optimal decision tree algorithms are only
suitable for very small datasets and a very small number of attributes. Con-
sequently, heuristic methods are required for solving this problem. Roughly
speaking, these methods can be divided into two groups: methods that em-
ploy a top-down approach and methods that follow a bottom-up method-
ology with clear preference in the literature to the first group.

There are various top-down decision trees inducers such as ID3 [Quinlan
(1986)], C4.5 [Quinlan (1993)], CART [Breiman et al. (1984)]. Some
inducers consist of two conceptual phases: Growing and Pruning (C4.5
and CART). Other inducers perform only the growing phase.

Figure 1.2 shows an example of typical pseudo code for a top-down
inducing algorithm of a decision tree using growing and pruning. Note that
these algorithms are greedy by nature and construct the decision tree in a
top-down, recursive manner (also known as divide and conquer). In each
iteration, the algorithm considers the partition of the training set using the
outcome of discrete input attributes. The selection of the most appropriate
attribute is made according to a splitting measure. After an appropriate
split is selected, each node further divides the training set into smaller
subsets, until a stopping criterion is met.

Common stopping rules include:

(1) All instances in the training set belong to a single value of y.
(2) A maximum tree depth has been reached.
(3) The number of cases in the terminal node is less than the minimum

number of cases for parent nodes.
(4) In case a node is split: the number of cases in one or more child nodes

is less than the minimum number of cases for child nodes.
(5) The best splitting criterion is not greater than a certain threshold.

1.5 Bayesian Methods

1.5.1 Overview

Bayesian approaches employ probabilistic concept modeling, and range
from the Näıve Bayes [Domingos and Pazzani (1997)] to Bayesian net-

Introduction to Pattern Classification 9

works. The basic assumption of Bayesian reasoning is that the attributes
are connected via a probability Moreover, when the problem at hand is su-
pervised, the objective is to find the conditional distribution of the target
attribute given the input attribute.

1.5.2 Näıve Bayes

1.5.2.1 The Basic Näıve Bayes Classifier

The most straightforward Bayesian learning method is the Näıve Bayesian
inducer [Duda and Hart (1973)]. This method uses a set of discriminant
functions for estimating the probability a given instance belongs to a certain
class. Specifically, given an instance, it uses Bayes rule to compute the
probability of each possible value of the target attribute, assuming the
input attributes are conditionally independent.

Due to the fact that this method is based on the simplistic, and rather
unrealistic, assumption that the causes are conditionally independent given
the effect, this method is well known as Näıve Bayes.

10 Pattern Classification Using Ensemble Methods

TreeGrowing (S,A,y,SplitCriterion,StoppingCriterion

Where:

S - Training Set

A - Input Feature Set

y - Target Feature

SplitCriterion - the method for evaluating a certain split

StoppingCriterion - the criteria to stop the growing process

Create a new tree T with a single root node.

IF StoppingCriterion (S) THEN

Mark T as a leaf with the most

common value of y in S as a label.

ELSE

∀ai ∈ A find a that obtain the best SplitCriterion (ai, S).
Label t by a

FOR each outcome vi of a:

Set Subtreei= TreeGrowing (σa=viS, A, y).
Connect the root node of tT to Subtreei with

an edge that is labeled as vi

END FOR

END IF

RETURN TreePruning (S,T,y)

TreePruning (S,T,y)

Where:

S - Training Set

y - Target Feature

T - The tree to be pruned

DO

Select a node t in T such that pruning it

maximally improve some evaluation criteria

IF t �=Ø THEN T = pruned (T, t)
UNTIL t =Ø

RETURN T

Fig. 1.2 Top-down algorithmic framework for decision trees induction.

Introduction to Pattern Classification 11

The class of the instance is determined according to value of the target
attribute which maximizes the following calculated probability:

vMAP (xq) = argmax
cj∈dom(y)

P̂ (y = cj) ·
n∏

i=1

P̂ (ai = xq,i |y = cj) (1.4)

where P̂ (y = cj) denotes the estimation of the a-priori probability of the
target attribute to obtain the value cj. Similarly, P̂ (ai = xq,i |y = cj)
denotes the conditional probability of the input attribute ai to obtain
the value xq,i given that the target attribute obtains the value cj . Note
that the hat above the conditional probability distinguishes the probability
estimation from the actual conditional probability.

A simple estimation for the above probabilities can be obtained using
the corresponding frequencies in the training set, namely:

P̂ (y = cj) =

∣∣σy=cj S
∣∣

|S| ; P̂ (ai = xq,i |y = cj) =

∣∣σy=cj AND ai=xq,i S
∣∣∣∣σy=cj S

∣∣
where

∣∣σy=cj S
∣∣ denotes the number of instances in S for which y = cj .

Using the Bayes rule, the above equations can be rewritten as:

vMAP (xq) = argmax
cj∈dom(y)

n∏
i=1

P̂ (y=cj |ai=xq,i)

P̂ (y=cj)
n−1

(1.5)

Or alternatively, after applying the log function as:

vMAP (xq) = argmax
cj∈dom(y)

log
(
P̂ (y = cj)

)
+

n∑
i=1

(
log
(
P̂ (y = cj |ai = xq,i)

)
− log
(
P̂ (y = cj)

))

If the “naive” assumption is true, by a direct application of Bayes’ Theo-
rem, this classifier can easily be shown to be optimal (i.e. minimizing the
generalization error), in the sense of minimizing the misclassification rate or
zero-one loss (misclassification rate). It was shown in [Domingos and Paz-
zani (1997)] that the Näıve Bayes inducer can be optimal under zero-one
loss even when the independence assumption is violated by a wide margin.
This implies that the Bayesian classifier has a much greater range of ap-
plicability than originally assumed, for instance for learning conjunctions
and disjunctions. Moreover, numerous empirical results show surprisingly

12 Pattern Classification Using Ensemble Methods

that this method can perform quite well compared to other methods, even
in domains where clear attribute dependencies exist.

The computational complexity of Näıve Bayes is considered very low
compared to other methods like decision trees, since no explicit enumera-
tion of possible interactions of various causes is required. More specifically
since the Näıve Bayesian classifier combines simple functions of univariate
densities, the complexity of this procedure is O (nm). Furthermore, Näıve
Bayes classifiers are also very simple and easy to understand [Kononenko
(1990)]. Other advantages of Näıve Bayes include easy adaptation of the
model to incremental learning environments and robustness to irrelevant
attributes. The main disadvantage of the Näıve Bayes inducer is that it
is limited to only simplified models, which in some cases are incapable of
representing the complicated nature of the problem. To understand this
weakness, consider a target attribute that cannot be explained by a single
attribute, for instance, the Boolean exclusive or function (XOR).

The Näıve Bayesian classifier uses all the available attributes, unless a
feature selection procedure is applied as a pre-processing step.

1.5.2.2 Näıve Bayes Induction for Numeric Attributes

Originally, Näıve Bayes assumes that all input attributes are nominal. If
this is not the case then there are some options to bypass this problem:

(1) Pre-Processing: The numeric attributes are discretized before using
the Näıve Bayes approach. It is suggested in [Domingos and Pazzani
(1997)] to construct ten equi-length intervals for each numeric attribute
(or one per observed value, whichever produces the least number of pos-
sible values). Each attribute value will be assigned an interval num-
ber. Obviously, there are many other more context-aware discretization
methods that can be applied here and probably obtain better results.

(2) Revising the Näıve Bayes: [John and Langley (1995)] suggests using
kernel estimation or single variable normal distribution as part of the
conditional probabilities calculation.

1.5.2.3 Correction to the Probability Estimation

Using the probability estimation described above as-is will typically over-
estimate (similar to over-fitting in decision trees) the probability. This
can be problematic especially when a given class and attribute value never
co-occur in the training set. This case leads to a zero probability that

Introduction to Pattern Classification 13

wipes out the information in all the other probabilities terms when they
are multiplied according to the original Näıve Bayes equation.

There are two known corrections for the simple probability estimation
which circumvent this phenomenon. The following sections describe these
corrections.

1.5.2.4 Laplace Correction

According to Laplace’s law of succession [Niblett (1987)], the probability
of the event y = ci (y is a random variable and ci is a possible outcome of
y) which is observed mi times out of m observations is:

mi+kpa

m+k

where pa is an a-priori probability estimation of the event and k is the
equivalent sample size that determines the weight of the a-priori estimation
relative to the observed data. According to [Mitchell (1997)], k is called
“equivalent sample size” because it represents an augmentation of the m

actual observations by additional k virtual samples distributed according
to pa. The above ratio can be rewritten as the weighted average of the
a-priori probability and the posteriori probability (denoted as pp):

mi+k·pa

m+k

= mi

m · m
m+k + pa · k

m+k

= pp · m
m+k + pa · k

m+k =
= pp · w1 + pa · w2

In the case discussed here the following correction is used:

P̂Laplace (ai = xq,i |y = cj) =

∣∣σy=cj AND ai=xq,i S
∣∣+ k · p∣∣σy=cj S

∣∣+ k
(1.6)

In order to use the above correction, the values of p and k should be deter-
mined. There are several possibilities to determine their values. It is possi-
ble to use p = 1/ |dom (y)| and k = |dom (y)|. In [Ali and Pazzani (1996)]
it is suggested to use k = 2 and p = 1/2 in any case even if |dom (y)| > 2
in order to emphasize the fact that the estimated event is always compared
to the opposite event. Another option is to use k = |dom (y)| / |S| and
p = 1/ |dom (y)| [Kohavi et al. (1997)].

14 Pattern Classification Using Ensemble Methods

1.5.2.5 No Match

According to [Clark and Niblett (1989)] only zero probabilities should
be corrected and replaced by the following value: pa/|S| where [Kohavi
et al. (1997)] suggest to use pa = 0.5. An empirical comparison of Laplace
correction and No-Match correction indicates that there is no significant
difference between them. However, both of them are significantly better
than not performing any correction at all.

1.5.3 Other Bayesian Methods

A more sophisticated Bayesian-based model that can be used is Bayesian
belief networks [Pearl (1988)]. Usually each node in a Bayesian network
represents a certain attribute. The immediate predecessors of a node repre-
sent the attributes on which the node depends. By knowing their values, it
is possible to determine the conditional distribution of this node. Bayesian
networks have the benefit of a clearer semantics than more ad hoc methods,
and they provide a natural platform for combining domain knowledge (in
the initial network structure) and empirical learning (of the probabilities,
and possibly of a new structure). However, time complexity of inference in
Bayesian networks can be high, and as tools for classification learning they
are not yet as mature or well tested as other approaches. More generally, as
[Buntine (1990)] notes, the Bayesian paradigm extends beyond any single
representation, and forms a framework in which many learning tasks can
be usefully studied.

1.6 Other Induction Methods

1.6.1 Neural Networks

Neural network methods construct a model using a network of in-
terconnected units called neurons[Anderson and Rosenfeld (2000)].
The neurons are connected in an input/output manner i.e. the
output of one neuron (antecedent) is the input of another (descen-
dant). A neuron may have several antecedents and several descen-
dants (including itself in some settings). Every unit performs a sim-
ple data processing task by generating an output from the received
inputs. The task is usually obtained via a nonlinear function. The most fre-
quently used type of unit, incorporating Sigmoidal nonlinearity, can be seen

Introduction to Pattern Classification 15

as a generalization of a propositional rule, where numeric weights are as-
signed to antecedents, and the output is graded, rather than binary [Towell
and Shavlik (1994)].

The multilayer feedforward neural network is the most widely stud-
ied neural network, because it is suitable for representing functional
relationships between a set of input attributes and one or more target
attributes. In a multilayer feedforward neural network the neurons are
organized in layers. Figure 1.3 illustrates a typical feedforward neural net-
work. This network consists of neurons (also referred to as nodes) organized
in three layers: an input layer, a hidden layer and an output layer. The
neurons in the input layer correspond to the input attributes and the neu-
rons in the output layer correspond to the target attribute. The neurons in
the hidden layer are connected to both the input and the output neurons
and they are the key to the induction of the classifier. Note that the signal
flow is directed from the input layer to the output layer and there are no
loops.

���������	�

���
����	�

�
��
����	�

�
��
����	�

������������

������������

���
������

Fig. 1.3 Three-layer feedforward neural network.

In order to construct a classifier from a neural network inducer, a train-
ing step must be employed. The training step calculates the connection
weights which optimize a given evaluation function of the training data.
Various search methods can be used to train these networks, of which the
most widely applied one is back propagation [Rumelhart et al. (1986)].
This method efficiently propagates values of the output evaluation function

16 Pattern Classification Using Ensemble Methods

backward to the input, allowing the network weights to be adapted so as
to obtain a better evaluation score. Radial basis function (RBF) networks
employ Gaussian nonlinearity in the neurons [Moody and Darken (1989)],
and can be seen as a generalization of nearestneighbor methods with an
exponential distance function [Poggio and Girosi (1990)].

Most neural networks are based on a unit called a perceptron. A per-
ceptron performs the following: (a) it calculates a linear combination of
its inputs; and (b) it invokes an activation function which transforms the
weighted sum into a binary output. Figure 1.4 illustrates the perceptron.

�

���������	
���
���
���
��	
���
�� ���
���
���	
���
��

��

��

��

Fig. 1.4 The perceptron.

Using a single perceptron, it is possible to realize any binary decision
function (two-class classification) that can be modeled as a hyper-plane in
the attribute space of the input. Any instance on one side of the hyperplane
is assigned to one class, and instances on the other side are assigned to the
other class. The equation for this hyperplane is:

n∑
i=1

wi · xi = 0

where each wi is a real-valued weight, that determines the contribution of
each input signal xi to the perceptron output.

Neural networks are remarkable for their learning efficiency and tend
to outperform other methods (like decision trees) when the information
required for the classification is not concentrated in a small subset of the
attributes, but rather it is spread across many of the attributes. Further-
more, neural networks can be trained incrementally i.e. they can easily be
adjusted as new training examples become available.

However, according to [Lu et al. (1996)], the drawbacks of applying

Introduction to Pattern Classification 17

neural networks to data mining include: difficulty in interpreting the model,
difficulty in incorporating prior knowledge about the application domain,
and, also, long training time, both in terms of CPU time, and of manually
finding parameter settings that will enable successful learning i.e. optimize
the evaluation function. The rule extraction algorithm, described in [Lu
et al. (1996)], makes an effective use of the neural network structure. The
algorithm extracts the (Boolean) rules in a deterministic manner without
using the connection weights. The network is then pruned by removal of re-
dundant links and units with the exception of attributes (Feature selection)
whose removal is not considered.

1.6.2 Genetic Algorithms

Genetic algorithms are a collection of search methods that can be used to
train a wide variety of models. - of which the most frequently used one
is probably rule sets [Booker et al. (1989)]. Genetic algorithms maintain
a population of classifiers during the training, as opposed to just one in
other search methods. They employ an iterative process whose goal is
to find an optimal classifier by improving the evaluation performance of
the classifier population. In order to achieve this, pairs of classifiers that
achieve better performance are chosen. Random mutations are plied to the
classifier pair and part are exchanged between them. This process has a
lower chance to reach a local minima than simple greedy search employed
in most learners do. However, this process may incur a high computational
cost. Furthermore, there is a higher risk of producing poor classifiers that
accidently perform well on the training data.

1.6.3 Instance-based Learning

Instance-based learning algorithms [Aha et al. (1991)] are non-parametric
general classification algorithms that classify a new unlabeled instance acco-
rding to the labels of similar instances in the training set. At the core of
these algorithms, there is a simple search procedure. These techniques are
able to induce complex classifiers from a relatively small number of ex-
amples and are naturally suited to numeric domains. However, they can
be very sensitive to irrelevant attributes and are unable to select different
attributes in different regions of the instance space. Furthermore, although
(or more accurately because) the time complexity to train these models is
low, it is relatively time consuming to classify a new instance.

18 Pattern Classification Using Ensemble Methods

The most basic and simplest Instance-based method is the nearest neigh-
bor (NN) inducer, which was first examined by [Fix and Hodges (1957)].
It can be represented by the following rule: to classify an unknown pattern,
choose the class of the nearest example in the training set as measured by a
given distance metric. A common extension is to choose the most common
class in the k nearest neighbors (kNN).

Despite its simplicity, the nearest neighbor classifier has many advan-
tages over other methods. For instance, it can generalize from a relatively
small training set. Namely, compared to other methods, such as deci-
sion trees or neural network, the nearest neighbor classifier requires smaller
training examples to achieve the same classification performance. Moreover,
new information can be incrementally incorporated at runtime a property
it shares with neural networks. consequently, the nearest neighbor classifier
can achieve a performance that is competitive to more modern and complex
methods such as decision trees or neural networks.

1.6.4 Support Vector Machines

Support Vector Machines [Vapnik (1995)] map the input space into a high-
dimensional feature space through a non-linear mapping that is chosen a-
priori. An optimal separating hyperplane is then constructed in the new
feature space. The method searches for a hyperplane that is optimal acco-
rding the VC-Dimension theory.

Chapter 2

Introduction to Ensemble Learning

The main idea behind the ensemble methodology is to weigh several indi-
vidual pattern classifiers, and combine them in order to obtain a classifier
that outperforms every one of them. Ensemble methodology imitates our
second nature to seek several opinions before making any crucial decision.
We weigh the individual opinions, and combine them to reach our final
decision [Polikar (2006)].

In the literature, the term “ensemble methods” is usually reserved for
collections of models that are minor variants of the same basic model. Nev-
ertheless, in this book we also cover hybridization of models that are not
from the same family. The latter is also referred in the literature as “mul-
tiple classifier systems.

Successful application of ensemble methods can be found in many fields,
such as: finance [Leigh et al. (2002)], bioinformatics [Tan et al. (2003)],
medicine [Mangiameli et al. (2004)], cheminformatics [Merkwirth et al.
(2004)], manufacturing [Maimon and Rokach (2004)], geography [Bruzzone
et al. (2004)], and Image Retrieval [Lin et al. (2006)].

The idea of building a predictive model that integrates multiple models
has been investigated for a long time. The history of ensemble methods
dates back to as early as 1977 with Tukeys Twicing [Tukey (1977)]: an
ensemble of two linear regression models. Tukey suggested to fit the first
linear regression model to the original data and the second linear model to
the residuals. Two years later, Dasarathy and Sheela (1979) suggested to
partition the input space using two or more classifiers. The main progress in
the field was achieved during the Nineties. Hansen and Salamon (1990) sug-
gested an ensemble of similarly configured neural networks to improve the
predictive performance of a single one. At the same time Schapire (1990)
laid the foundations for the award winning AdaBoost [Freund and Schapire

19

20 Pattern Classification Using Ensemble Methods

(1996)] algorithm by showing that a strong classifier in the probably approx-
imately correct (PAC) sense can be generated by combining “weak” clas-
sifiers (that is, simple classifiers whose classification performance is only
slightly better than random classification). Ensemble methods can also
be used for improving the quality and robustness of unsupervised tasks.
Nevertheless, in this book we focus on classifier ensembles.

In the past few years, experimental studies conducted by the machine-
learning community show that combining the outputs of multiple classi-
fiers reduces the generalization error [Domingos (1996); Quinlan (1996);
Bauer and Kohavi (1999); Opitz and Maclin (1999)] of the individual
classifiers. Ensemble methods are very effective, mainly due to the phe-
nomenon that various types of classifiers have different “inductive biases”
[Mitchell (1997)]. Indeed, ensemble methods can effectively make use
of such diversity to reduce the variance-error [Tumer and Ghosh (1996);
Ali and Pazzani (1996)] without increasing the bias-error. In certain sit-
uations, an ensemble method can also reduce bias-error, as shown by the
theory of large margin classifiers [Bartlett and Shawe-Taylor (1998)].

2.1 Back to the Roots

Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (1743-1794)
was a French mathematician who among others wrote in 1785 the Essay on
the Application of Analysis to the Probability of Majority Decisions. This
work presented the well-known Condorcet’s jury theorem. The theorem
refers to a jury of voters who need to make a decision regarding a binary
outcome (for example to convict or not a defendant). If each voter has a
probability p of being correct and the probability of a majority of voters
being correct is M then:

• p > 0.5 implies M > p

• Also M approaches 1, for all p > 0.5 as the number of voters approaches
infinity.

This theorem has two major limitations: the assumption that the votes
are independent; and that there are only two possible outcomes. Never-
theless, if these two preconditions are met, then a correct decision can be
obtained by simply combining the votes of a large enough jury that is com-
posed of voters whose judgments are slightly better than a random vote.

Introduction to Ensemble Learning 21

Originally, the Condorcet Jury Theorem was written to provide a theo-
retical basis for democracy. Nonetheless, the same principle can be applied
in pattern recognition. A strong learner is an inducer that is given a train-
ing set consisting of labeled data and produces a classifier which can be
arbitrarily accurate. A weak learner produces a classifier which is only
slightly more accurate than random classification. The formal definitions
of weak and strong learners are beyond the scope of this book. The reader
is referred to [Schapire (1990)] for these definitions under the PAC theory.
A decision stump inducer is one example of a weak learner. A Decision
Stump is a one-level Decision Tree with either a categorical or a numerical
class label. Figure 2.1 illustrates a decision stump for the Iris dataset pre-
sented in Table 1.1. The classifier distinguished between three cases: Petal
Length greater or equal to 2.45, Petal Length smaller than 2.45 and Petal
Length that is unknown. For each case the classifier predict a different class
distribution.

P
e
ta

L
e
n
g
th

<2.45

2.45

?

001

VirginicaVersicolorSetosa

0.50.50

VirginicaVersicolorSetosa

0.3330.3330.333

VirginicaVersicolorSetosa

Fig. 2.1 A decision stump classifier for solving the Iris classification task.

One of the basic questions that has been investigated in ensemble learn-
ing is: “can a collection of weak classifiers create a single strong one?”.
Applying the Condorcet Jury Theorem insinuates that this goal might be
achieved. Namely, construct an ensemble that (a) consists of independent
classifiers, each of which correctly classifies a pattern with a probability of
p > 0.5; and (b) has a probability of M > p to jointly classify a pattern to
its correct class.

22 Pattern Classification Using Ensemble Methods

2.2 The Wisdom of Crowds

Sir Francis Galton (1822-1911) was an English philosopher and statistician
that conceived the basic concept of standard deviation and correlation.
While visiting a livestock fair, Galton was intrigued by a simple weight-
guessing contest. The visitors were invited to guess the weight of an ox.
Hundreds of people participated in this contest, but no one succeeded to
guess the exact weight: 1,198 pounds. Nevertheless, surprisingly enough,
Galton found out that the average of all guesses came quite close to the
exact weight: 1,197 pounds. Similarly to the Condorcet jury theorem,
Galton revealed the power of combining many simplistic predictions in order
to obtain an accurate prediction.

James Michael Surowiecki, an American financial journalist, published
in 2004 the book “The Wisdom of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes Business, Economies,
Societies and Nations”. Surowiecki argues, that under certain controlled
conditions, the aggregation of information from several sources, results in
decisions that are often superior to those that could have been made by
any single individual - even experts.

Naturally, not all crowds are wise (for example, greedy investors of a
stock market bubble). Surowiecki indicates that in order to become wise,
the crowd should comply with the following criteria:

• Diversity of opinion – Each member should have private information
even if it is just an eccentric interpretation of the known facts.
• Independence – Members’ opinions are not determined by the opin-

ions of those around them.
• Decentralization – Members are able to specialize and draw conclu-

sions based on local knowledge.
• Aggregation – Some mechanism exists for turning private judgments

into a collective decision.

2.3 The Bagging Algorithm

Bagging (bootstrap aggregating) is a simple yet effective method for gen-
erating an ensemble of classifiers. The ensemble classifier, which is created
by this method, consolidates the outputs of various learned classifiers into
a single classification. This results in a classifier whose accuracy is higher
than the accuracy of each individual classifier. Specifically, each classifier

Introduction to Ensemble Learning 23

in the ensemble is trained on a sample of instances taken with replacement
(allowing repetitions) from the training set. All classifiers are trained using
the same inducer.

To ensure that there is a sufficient number of training instances in every
sample, it is common to set the size of each sample to the size of the original
training set. Figure 2.2 presents the pseudo-code for building an ensemble
of classifiers using the bagging algorithm [Breiman (1996a)]. The algorithm
receives an induction algorithm I which is used for training all members of
the ensemble. The stopping criterion in line 6 terminates the training when
the ensemble size reaches T . One of the main advantages of bagging is that
it can be easily implemented in a parallel mode by training the various
ensemble classifiers on different processors.

Bagging Training
Require: I (a base inducer), T (number of iterations), S (the original

training set), µ (the sample size).
1: t← 1
2: repeat
3: St ← a sample of µ instances from S with replacement.
4: Construct classifier Mt using I with St as the training set
5: t← t + 1
6: until t > T

Fig. 2.2 The Bagging algorithm.

Note that since sampling with replacement is used, some of the original
instances of S may appear more than once in St and some may not be
included at all. Furthermore, using a large sample size causes individual
samples to overlap significantly, with many of the same instances appearing
in most samples. So while the training sets in St may be different from one
another, they are certainly not independent from a statistical stand point.
In order to ensure diversity among the ensemble members, a relatively un-
stable inducer should be used. This will result is an ensemble of sufficiently
different classifiers which can be acquired by applying small perturbations
to the training set. If a stable inducer is used, the ensemble will be com-
posed of a set of classifiers who produce nearly similar classifications, and
thus will unlikely improve the performance accuracy.

In order to classify a new instance, each classifier returns the class pre-
diction for the unknown instance. The composite bagged classifier returns

24 Pattern Classification Using Ensemble Methods

the class with the highest number of predictions (also known as majority
voting).

Bagging Classification
Require: x (an instance to be classified)
Ensure: C (predicted class)
1: Counter1, . . . , Counter|dom(y)| ← 0 {initializes class votes counters}
2: for i = 1 to T do
3: votei ←Mi (x) {get predicted class from member i}
4: Countervotei ← Countervotei + 1 {increase by 1 the counter of the

corresponding class}
5: end for
6: C ← the class with the largest number votes
7: Return C

Fig. 2.3 The Bagging Classification.

We demonstrate the bagging procedure by applying it to the Labor
dataset presented in Table 2.1. Each instance in the table stands for a
collective agreement reached in the business and personal services sectors
(such as teachers and nurses) in Canada during the years 1987-1988. The
aim of the learning task is to distinguish between acceptable and unac-
ceptable agreements (as classified by experts in the field). The selected
input-features that characterize the agreement are:

• Dur – the duration of agreement
• Wage – wage increase in first year of contract
• Stat – number of statutory holidays
• Vac – number of paid vacation days
• Dis – employer’s help during employee longterm disability
• Dental – contribution of the employer towards a dental plan
• Ber – employer’s financial contribution in the costs of bereavement
• Health – employer’s contribution towards the health plan

Applying a Decision Stump inducer on the Labor dataset results in the
model that is depicted in Figure 2.4. Using ten-folds cross validation, the
estimated generalized accuracy of this model is 59.64%.

Next, we execute the bagging algorithm using Decision Stump as the
base inducer (I = DecisionStump), four iterations (T = 4) and a sample
size that is equal to the original training set (µ = |S| = 57. Recall that the

Introduction to Ensemble Learning 25

Table 2.1 The Labor Dataset.

Dur Wage Stat Vac Dis Dental Ber Health Class
1 5 11 average ? ? yes ? good
2 4.5 11 below ? full ? full good
? ? 11 generous yes half yes half good
3 3.7 ? ? ? ? yes ? good
3 4.5 12 average ? half yes half good
2 2 12 average ? ? ? ? good
3 4 12 generous yes none yes half good
3 6.9 12 below ? ? ? ? good
2 3 11 below yes half yes ? good
1 5.7 11 generous yes full ? ? good
3 3.5 13 generous ? ? yes full good
2 6.4 15 ? ? full ? ? good
2 3.5 10 below no half ? half bad
3 3.5 13 generous ? full yes full good
1 3 11 generous ? ? ? ? good
2 4.5 11 average ? full yes ? good
1 2.8 12 below ? ? ? ? good
1 2.1 9 below yes half ? none bad
1 2 11 average no none no none bad
2 4 15 generous ? ? ? ? good
2 4.3 12 generous ? full ? full good
2 2.5 11 below ? ? ? ? bad
3 3.5 ? ? ? ? ? ? good
2 4.5 10 generous ? half ? full good
1 6 9 generous ? ? ? ? good
3 2 10 below ? half yes full bad
2 4.5 10 below yes none ? half good
2 3 12 generous ? ? yes full good
2 5 11 below yes full yes full good
3 2 10 average ? ? yes full bad
3 4.5 11 average ? half ? ? good
3 3 10 below yes half yes full bad
2 2.5 10 average ? ? ? ? bad
2 4 10 below no none ? none bad
3 2 10 below no half yes full bad
2 2 11 average yes none yes full bad
1 2 11 generous no none no none bad
1 2.8 9 below yes half ? none bad
3 2 10 average ? ? yes none bad
2 4.5 12 average yes full yes half good
1 4 11 average no none no none bad
2 2 12 generous yes none yes full bad
2 2.5 12 average ? ? yes ? bad
2 2.5 11 below ? ? yes ? bad
2 4 10 below no none ? none bad
2 4.5 10 below no half ? half bad
2 4.5 11 average ? full yes full good
2 4.6 ? ? yes half ? half good
2 5 11 below yes ? ? full good
2 5.7 11 average yes full yes full good
2 7 11 ? yes full ? ? good
3 2 ? ? yes half yes ? good
3 3.5 13 generous ? ? yes full good
3 4 11 average yes full ? full good
3 5 11 generous yes ? ? full good
3 5 12 average ? half yes half good
3 6 9 generous yes full yes full good

26 Pattern Classification Using Ensemble Methods

W
a
g
e

<2.65

2.65

?

GoodBad

0.1330.867

GoodBad

0.8290.171

GoodBad

10

Fig. 2.4 Decision Stump classifier for solving the Labor classification task.

W
a

g
e

<4.15
?

GoodBad

0.3230.676

GoodBad

0.95240.0476

GoodBad

10

W
a

g
e

<4.25

4.
25

?

GoodBad

0.3890.611

GoodBad

10

GoodBad

10

D
e

n
ta

l

N
ot F

ull

F
ul

l

?

GoodBad

0.3330.667

GoodBad

10

GoodBad

0.8330.167

W
a

g
e

<2.9

2.
9

?

GoodBad

0.0670.933

GoodBad

0.8290.171

GoodBad

10

4.
15

Iteration 1 Iteration 2

Iteration 3
Iteration 4

Fig. 2.5 Decision Stump classifiers for solving the Labor classification task.

sampling is performed with replacement. Consequently, in each iteration
some of the original instances from S may appear more than once and some
may not be included at all. Table 2.2 indicates for each instance the number
of times it was sampled in every iteration.

Introduction to Ensemble Learning 27

Table 2.2 The Bagging Sample Sizes for the Labor
Dataset.

Instance Iteration 1 Iteration 2 Iteration 3 Iteration 4
1 1 1
2 1 1 1 1
3 2 1 1 1
4 1 1
5 1 2 1
6 2 1 1
7 1 1 1
8 1 1 1
9 2
10 1 1 2
11 1 1
12 1 1 1
13 1 1 2
14 1 1 2
15 1 1 1
16 2 3 2 1
17 1
18 1 2 2 1
19 1 2
20 1 3
21 2 1 1
22 2 1 1
23 1 2 1
24 1 1 1
25 2 2 1 2
26 1 1 1 1
27 1
28 2 1 1 1
29 1 1 1
30 1 1
31 1 1 3
32 2 1 2
33 1 1
34 2 2 1
35 2
36 1 1 1 1
37 2 1
38 2 1 1
39 2 1 1
40 1 1 1 2
41 1 2 2 2
42 3 2 1
43 2 1
44 1 2 1 3
45 3 1 2 1
46 1 1 2
47 1 1 2 1
48 1 1 1
49 1 2 1 2
50 2 1 1
51 1 1 1 1
52 1 1 1
53 1 2 2 2
54 1 1
55 2 2
56 1 1 1 1
57 1 1 2 1

Total 57 57 57 57

28 Pattern Classification Using Ensemble Methods

Figure 2.5 presents the four classifiers that were built. The estimated
generalized accuracy of the ensemble classifier that uses them rises to
77.19%

Often, bagging produces a combined model that outperforms the model
that is built using a single instance of the original data. Breiman (1996)
notes that this is true especially for unstable inducers since bagging can
eliminate their instability. In this context, an inducer is considered unstable
if perturbations in the learning set can produce significant changes in the
constructed classifier.

2.4 The Boosting Algorithm

Boosting is a general method for improving the performance of a weak
learner. The method works by iteratively invoking a weak learner, on train-
ing data that is taken from various distributions. Similar to bagging, the
classifiers are generated by resampling the training set. The classifiers are
then combined into a single strong composite classifier. Contrary to bag-
ging, the resampling mechanism in boosting improves the sample in order
to provide the most useful sample for each consecutive iteration. Breiman
[Breiman (1996a)] refers to the boosting idea as the most significant de-
velopment in classifier design of the Nineties.

The boosting algorithm is described in Figure 2.6. The algorithm gener-
ates three classifiers. The sample, S1, that is used to train the first classifier,
M1, is randomly selected from the original training set. The second classi-
fier, M2, is trained on a sample, M2, half of which consists of instances that
are incorrectly classified by M1 and the other half is composed of instances
that are correctly classified by M2. The last classifier M3 is trained with
instances on which the two previous classifiers disagree. In order to classify
a new instance, each classifier produces its predicted class. The ensemble
classifier returns the class that has the majority of the votes.

2.5 The AdaBoost Algorithm

AdaBoost (Adaptive Boosting), which was first introduced in [Freund and
Schapire (1996)], is a popular ensemble algorithm that improves the sim-
ple boosting algorithm via an iterative process. The main idea behind
this algorithm is to give more focus to patterns that are harder to classify.
The amount of focus is quantified by a weight that is assigned to every

Introduction to Ensemble Learning 29

Boosting Training
Require: I (a weak inducer), S (training set) and k (the sample size for

the first classifier)
Ensure: M1, M2, M3

1: S1 ← Randomly selected k < m instances from S without replacement;
2: M1 ← I (S1)
3: S2 ← Randomly selected instances (without replacement) from S − S1

such that half of them are correctly classified by M1.
4: M2 ← I (S2)
5: S3 ← any instances in S − S1 − S2 that are classified differently by M1

and M2.

Fig. 2.6 The Boosting algorithm.

pattern in the training set. Initially, the same weight is assigned to all the
patterns. In each iteration the weights of all misclassified instances are in-
creased while the weights of correctly classified instances are decreased. As
a consequence, the weak learner is forced to focus on the difficult instances
of the training set by performing additional iterations and creating more
classifiers. Furthermore, a weight is assigned to every individual classifier.
This weight measures the overall accuracy of the classifier and is a func-
tion of the total weight of the correctly classified patterns. Thus, higher
weights are given to more accurate classifiers. These weights are used for
the classification of new patterns.

This iterative procedure provides a series of classifiers that complement
one another. In particular, it has been shown that AdaBoost approximates
a large margin classifier such as the SVM [Rudin et al. (2004)].

The pseudo-code of the AdaBoost algorithm is described in Figure 2.7.
The algorithm assumes that the training set consists of m instances, which
are either labeled as −1 or +1. The classification of a new instance is
obtained by voting on all classifiers {Mt}, each having an overall accuracy
of αt. Mathematically, it can be written as:

H(x) = sign(
T∑

t=1

αt ·Mt(x)) (2.1)

Breiman [Breiman (1998)] explores a simpler algorithm called Arc-
x4 whose purpose it to demonstrate that AdaBoost works not because of
the specific form of the weighing function, but because of the adaptive

30 Pattern Classification Using Ensemble Methods

AdaBoost Training
Require: I (a weak inducer), T (the number of iterations), S (training

set)
Ensure: Mt, αt; t = 1, . . . , T

1: t←1
2: D1 (i)← 1/m; i = 1, . . ., m

3: repeat
4: Build Classifier Mt using I and distribution Dt

5: εt ←
∑

i:Mt(xi) �=yi

Dt (i)

6: if εt > 0.5 then
7: T ← t− 1
8: exit Loop.
9: end if

10: αt ← 1
2 ln
(

1−εt

εt

)
11: Dt+1 (i) = Dt (i) · e−αtytMt(xi)

12: Normalize Dt+1 to be a proper distribution.
13: t← t + 1
14: until t > T

Fig. 2.7 The AdaBoost algorithm.

resampling. In Arc-x4, a new pattern is classified according to unweighted
voting and the updated t + 1 iteration probabilities are defined by:

Dt+1 (i) = 1 + m4
ti

(2.2)

where mti is the number of misclassifications of the i-th instance by the
first t classifiers.

AdaBoost assumes that the weak inducers, which are used to construct
the classifiers, can handle weighted instances. For example, most decision
tree algorithms can handle weighted instances. However, if this is not
the case, an unweighted dataset is generated from the weighted data via
resampling. Namely, instances are chosen with a probability according to
their weights (until the dataset becomes as large as the original training
set).

In order to demonstrate how the AdaBoost algorithm works, we apply
it to the Labor dataset using Decision Stump as the base inducer. For
the sake of simplicity we use a feature-reduced version of the labor dataset

Introduction to Ensemble Learning 31

Labor

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7

Wage

S
ta

tu
to

ry

Bad

Good

Fig. 2.8 The Labor dataset.

which is composed of two input attributes: wage and statutory. Figure
2.8 presents this projected dataset where the plus symbol represents the
“good” class and the minus symbol represents the “bad” class.

The initial distribution D1 is set to be uniform. Consequently, it is not
surprising that the first classifier is identical to the decision stump that
was presented in Figure 2.4. Figure 2.9 depicts the decision bound of the
first classifier. The training misclassification rate of the first classifier is
ε1 = 23.19% therefore the overall accuracy weight of the first classifier is
α1 = 0.835.

The weights of the instances are updated according to the misclassi-
fication rates as described in lines 11-12. Figure 2.10 illustrates the new
weights: instances whose weights were increased are depicted by larger
symbols. Table 2.3 summarizes the exact weights after every iteration.

Applying the decision stump algorithm once more produces the classifier
that is shown in Figure 2.11. The training misclassification rate of the
second classifier is ε1 = 25.94%, and therefore the overall accuracy weight
of the second classifier is α1 = 0.79. The new decision boundary, which is
derived from the second classifier, is illustrated in Figure 2.12.

The subsequent iterations create the additional classifiers presented in
Figure 2.11. Using the ten-folds cross validation procedure, AdaBoost in-
creased the estimated generalized accuracy from 59.64% to 87.71%, after

32 Pattern Classification Using Ensemble Methods

Labor

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7

Wage

S
ta

tu
to

ryBad

Good

Classifier 1

Fig. 2.9 The Labor dataset with the decision bound of the first classifier.

only four iterations. This improvement appears to be better than the im-
provement that is demonstrated by Bagging (77.19%). Nevertheless, Ad-
aBoost was given a reduced version of the Labor dataset with only two
input attributes. These two attributes were not selected arbitrarily. As a
matter of fact, the attributes were selected based on prior knowledge so that
AdaBoost will focus on the most relevant attributes. If AdaBoost is given
the same dataset that was given to the Bagging algorithm, it obtains the
same accuracy. Nevertheless, by increasing the ensemble size, AdaBoost
continues to improve the accuracy while the Bagging algorithm shows very
little improvement. For example, in case ten classifiers are trained over the
full labor dataset, AdaBoost obtains an accuracy of 82.45% while Bagging
obtains an accuracy of only 78.94%.

AdaBoost seems to improve the performance accuracy for two main
reasons:

(1) It generates a final classifier whose error on the training set is small by
combining many hypotheses whose error may be large.

(2) It produces a combined classifier whose variance is significantly lower
than the variances produced by the weak base learner.

However, AdaBoost sometimes fails to improve the performance of the
base inducer. According to Quinlan [Quinlan (1996)], the main reason for

Introduction to Ensemble Learning 33

Labor

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7

Wage

S
ta

tu
to

ryBad

Good

Classifier 1

Fig. 2.10 Labor instances weights after first iteration. Instances whose weights were
increased are depicted by larger symbols. The vertical line depicts the decision boundary
that is derived by the first classifier.

AdaBoost’s failure is overfitting. The objective of boosting is to construct a
composite classifier that performs well on the data by iteratively improving
the classification accuracy. Nevertheless, a large number of iterations may
result in an overcomplex composite classifier, which is significantly less
accurate than a single classifier. One possible way to avoid overfitting is to
keep the number of iterations as small as possible.

Bagging, like boosting, is a technique that improves the accuracy of a
classifier by generating a composite model that combines multiple classi-
fiers all of which are derived from the same inducer. Both methods follow
a voting approach, which is implemented differently, in order to combine
the outputs of the different classifiers. In boosting, as opposed to bagging,
each classifier is influenced by the performance of those that were built prior
to its construction. Specifically, the new classifier pays more attention to
classification errors that were done by the previously built classifiers where
the amount of attention is determined according to their performance. In
bagging, each instance is chosen with equal probability, while in boosting,
instances are chosen with a probability that is proportional to their weight.
Furthermore, as mentioned above (Quinlan, 1996), bagging requires an un-
stable learner as the base inducer, while in boosting inducer instability in
not required, only that the error rate of every classifier be kept below 0.5.

34 Pattern Classification Using Ensemble Methods

Table 2.3 The weights of the instances in the Labor Dataset after every
iteration.

Weights
Wage Statutory Class Iteration 1 Iteration 2 Iteration 3 Iteration 4

5 11 good 1 0.59375 0.357740586 0.217005076
4.5 11 good 1 0.59375 0.357740586 0.217005076
? 11 good 1 0.59375 0.357740586 0.217005076

3.7 ? good 1 0.59375 0.357740586 1.017857143
4.5 12 good 1 0.59375 0.357740586 0.217005076
2 12 good 1 3.166666667 1.907949791 5.428571429
4 12 good 1 0.59375 0.357740586 1.017857143

6.9 12 good 1 0.59375 0.357740586 0.217005076
3 11 good 1 0.59375 0.357740586 1.017857143

5.7 11 good 1 0.59375 0.357740586 0.217005076
3.5 13 good 1 0.59375 0.357740586 1.017857143
6.4 15 good 1 0.59375 0.357740586 0.217005076
3.5 10 bad 1 3.166666667 1.907949791 1.157360406
3.5 13 good 1 0.59375 0.357740586 1.017857143
3 11 good 1 0.59375 0.357740586 1.017857143

4.5 11 good 1 0.59375 0.357740586 0.217005076
2.8 12 good 1 0.59375 0.357740586 1.017857143
2.1 9 bad 1 0.59375 0.357740586 0.217005076
2 11 bad 1 0.59375 1.744897959 1.058453331
4 15 good 1 0.59375 0.357740586 1.017857143

4.3 12 good 1 0.59375 0.357740586 0.217005076
2.5 11 bad 1 0.59375 1.744897959 1.058453331
3.5 ? good 1 0.59375 0.357740586 1.017857143
4.5 10 good 1 0.59375 1.744897959 1.058453331
6 9 good 1 0.59375 1.744897959 1.058453331
2 10 bad 1 0.59375 0.357740586 0.217005076

4.5 10 good 1 0.59375 1.744897959 1.058453331
3 12 good 1 0.59375 0.357740586 1.017857143
5 11 good 1 0.59375 0.357740586 0.217005076
2 10 bad 1 0.59375 0.357740586 0.217005076

4.5 11 good 1 0.59375 0.357740586 0.217005076
3 10 bad 1 3.166666667 1.907949791 1.157360406

2.5 10 bad 1 0.59375 0.357740586 0.217005076
4 10 bad 1 3.166666667 1.907949791 1.157360406
2 10 bad 1 0.59375 0.357740586 0.217005076
2 11 bad 1 0.59375 1.744897959 1.058453331
2 11 bad 1 0.59375 1.744897959 1.058453331

2.8 9 bad 1 3.166666667 1.907949791 1.157360406
2 10 bad 1 0.59375 0.357740586 0.217005076

4.5 12 good 1 0.59375 0.357740586 0.217005076
4 11 bad 1 3.166666667 9.306122449 5.64508443
2 12 bad 1 0.59375 1.744897959 1.058453331

2.5 12 bad 1 0.59375 1.744897959 1.058453331
2.5 11 bad 1 0.59375 1.744897959 1.058453331
4 10 bad 1 3.166666667 1.907949791 1.157360406

4.5 10 bad 1 3.166666667 1.907949791 5.428571429
4.5 11 good 1 0.59375 0.357740586 0.217005076
4.6 ? good 1 0.59375 0.357740586 0.217005076
5 11 good 1 0.59375 0.357740586 0.217005076

5.7 11 good 1 0.59375 0.357740586 0.217005076
7 11 good 1 0.59375 0.357740586 0.217005076
2 ? good 1 3.166666667 1.907949791 5.428571429

3.5 13 good 1 0.59375 0.357740586 1.017857143
4 11 good 1 0.59375 0.357740586 1.017857143
5 11 good 1 0.59375 0.357740586 0.217005076
5 12 good 1 0.59375 0.357740586 0.217005076
6 9 good 1 0.59375 1.744897959 1.058453331

Introduction to Ensemble Learning 35

W
a

g
e

<
2.65

?

GoodBad

0.1330.867

GoodBad

0.8290.171

GoodBad

10

S
ta

tu
to

ry

<10.5

10
.5

?

GoodBad

0.0950.905

GoodBad

0.730.27

GoodBad

10

W
a

g
e

<4.15

>4
.1

5

?

GoodBad

0.1960.804

GoodBad

0.8760.124

GoodBad

10

S
ta

tu
to

ry

<
11.5

11
.5

?

GoodBad

0.2970.703

GoodBad

0.8670.133

GoodBad

10

2.
65

Iteration 1 Iteration 2

Iteration 3
Iteration 4

Fig. 2.11 Classifiers obtained by the first four iterations of AdaBoost.

Labor

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7

Wage

S
ta

tu
to

ryBad

Good

Classifier 1

Classifier 2

Fig. 2.12 Labor instances weights after the second iteration. Instances whose weights
were increased are depicted by larger symbols. The horizontal line depicts the decision
boundary that was added by the second classifier.

36 Pattern Classification Using Ensemble Methods

� � � � � � � � � � � � � 	 �
 � � � � � � � � � 	 �
 � � � � � � � � � 	
 � � � �
 �

� � � � � �
 � � � �
 � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � �
 � 	 �
 � �
 � � � � � � � � � �
� � � � � � � � � � � � �
 �

� �
 �
 � �
 � � � � � � � 	
 �
 � � � � � � �
 � � � � � �
 � � � � � � 	 � � � � � � � � 	 �

� �
 � 	 �

� � �
 � � �
 � �
 � ! � � "

 � � #
� �
 � � � � 	 � � $ � � � � "

� � � �
 � � % � $ � &� � � � � � � $ � � � �
 � 	 �
 � � � � � � � � � �

' � � � � � � � (

Fig. 2.13 Leveraging algorithm presented in Meir and Ratsch (2003).

Meir and Ratsch (2003) provide an overview of theoretical aspects of
AdaBoost and its variants. They also suggest a generic scheme called lever-
aging and many of the boosting algorithms can be derived from this scheme.
This generic scheme is presented in Figure 2.13. Different algorithms use
different loss functions G.

2.6 No Free Lunch Theorem and Ensemble Learning

Empirical comparison of different ensemble approaches and their variants in
a wide range of application domains has shown that each performs best in
some, but not all, domains. This has been termed the selective superiority
problem [Brodley (1995a)].

It is well known that no induction algorithm can produce the best per-
formance in all possible domains. Each algorithm is either explicitly or
implicitly biased [Mitchell (1980)] - preferring certain generalizations over
others, and the algorithm is successful as long as this bias matches the
characteristics of the application domain [Brazdil et al. (1994)]. Further-
more, other results have demonstrated the existence and correctness of the
“conservation law” [Schaffer (1994)] or “no free lunch theorem” [Wolpert
(1996)]: if one inducer is better than another in some domains, then there
are necessarily other domains in which this relationship is reversed.

The “no free lunch theorem” implies that for a given problem, a certain
approach can derive more information than other approaches when they
are applied to the same data: “for any two learning algorithms, there are
just as many situations (appropriately weighted) in which algorithm one is
superior to algorithm two as vice versa, according to any of the measures
of superiority.” [Wolpert (2001)]

Introduction to Ensemble Learning 37

A distinction should be made between all the mathematically possible
domains, which are simply a product of the representation languages used,
and the domains that occur in the real world, and are therefore the ones of
primary interest [Rao et al. (1995)]. Obviously, there are many domains
in the former set that are not in the latter, and the average accuracy in
the real world domains can be increased at the expense of accuracy in the
domains that never occur in practice. Indeed, achieving this is the goal of
inductive learning research. It is still true that some algorithms will match
certain classes of naturally occurring domains better than other algorithms,
and therefore achieve higher accuracy than these algorithms (this may be
reversed in other real-world domains). However, this does not preclude an
improved algorithm from being as accurate as the best in every domain
class.

Indeed, in many application domains the generalization error of even the
best methods is significantly higher than 0%, and an open and important
question is whether it can be improved, and if so how. In order to answer
this question, one must first determine the minimum error achievable by
any classifier in the application domain (known as the optimal Bayes error).
If existing classifiers do not reach this level, new approaches are needed.
Although this problem has received considerable attention (see for instance
[Tumer and Ghosh (1996)]), none of the methods proposed in the literature
so far, is accurate for a wide range of problem domains.

The “no free lunch” concept presents a dilemma to the analyst
who needs to solve a new task: which inducer should be used?

Ensemble methods overcome the no-free-lunch dilemma, by combining
the outputs of many classifiers, assuming that each classifier performs well
in certain domains while being sub-optimal in others. Specifically, multi-
strategy learning [Michalski and Tecuci (1994)], attempts to combine two
or more different paradigms in a single algorithm. Most research in this
area has focused on combining empirical and analytical approaches (see
for instance [Towell and Shavlik (1994)]. Ideally, a multi-strategy learn-
ing algorithm would always perform as well as the best of its members,
there by alleviating the need to individually employ each one and simplify-
ing the knowledge acquisition task. More ambitiously, combining different
paradigms may produce synergistic effects (for instance, by constructing
various types of frontiers between different class regions in the instance
space), leading to levels of accuracy that no individual atomic approach
can achieve.

38 Pattern Classification Using Ensemble Methods

2.7 Bias-Variance Decomposition and Ensemble Learning

It is well known that the error can be decomposed into three additive com-
ponents [Kohavi and Wolpert (1996)]: the intrinsic error, the bias error
and the variance error.

The intrinsic error, also known as the irreducible error, is the component
that is generated due to noise. This quantity is the lower bound of any
inducer, i.e. it is the expected error of the Bayes optimal classifier. The bias
error of an inducer is the persistent or systematic error that the inducer
is expected to make. Variance is a concept closely related to bias. The
variance captures random variation in the algorithm from one training set
to another. Namely ,it measures the sensitivity of the algorithm to the
actual training set, or the error that is due to the training set’s finite size.

The following equations provide one of the possible mathematical defi-
nitions of the various components in case of a zero-one lose:

t(I, S, cj , x) =
{

1 P̂I(S)(y = cj |x) > P̂I(S)(y = c∗ |x)∀c∗ ∈ dom(y), �= cj

0 Otherwise

bias2(P (y |x), P̂I(y |x)) =

1
2

∑
cj∈dom(y)


P (y = cj |x)−

∑
∀S,|S|=m

P (S |D) · t(I, S, cj , x)




2

var(P̂I(y |x)) =
1
2


1−

∑
cj∈dom(y)


 ∑
∀S,|S|=m

P (S |D) · t(I, S, cj , x)




2



var(P (y |x)) =
1
2


1−

∑
cj∈dom(y)

[P (y = cj |x)]2




Note that the probability to misclassify the instance x using inducer I and
a training set of size m is:

ε(x) = bias2(P (y |x), P̂I(y |x)) + var(P̂I(y |x)) + var(P (y |x))
= 1− ∑

cj∈dom(y)

P (y = cj |x) · ∑
∀S,|S|=m

P (S |D) · t(I, S, cj , x)

Introduction to Ensemble Learning 39

where I is an inducer, S is a training set, cj is a class label, x is a pattern
and D is the instance domain. It is important to note that in case of a zero-
one loss there are other definitions for the bias and variance components.
These definitions are not necessarily consistent. In fact, there is a consid-
erable debate in the literature about what should be the most appropriate
definition. For a complete list of these definitions please refer to [Hansen
(2000)].

Nevertheless, in the regression problem domain a single definition of bias
and variance has been adopted by the entire community. In this case it is
useful to define the bias-variance components by referring to the quadratic
loss, as follows:

E
(
f (x) − f̂R (x)2

)
=

var (f (x)) + var
(
f̂R (x)

)
+ bias2

(
f (x) , f̂R (x)

)
where f̂R (x) is the prediction of the regression model and f (x) is the actual
value. The intrinsic variance and bias components are respectively defined
as:

var(f(x)) = E((f(x)− E(f(x)))2)
var(f̂R(x)) = E((f̂R(x)− E(f̂R(x)))2)
bias2(f(x), f̂R(x)) = E((E(f̂R(x)) − E(f(x)))2

Simpler models tend to have a higher bias error and a smaller variance
error than complicated models. [Bauer and Kohavi (1999)] have presented
an experimental result supporting the last argument for the Näıve Bayes
inducer, while [Dietterich and Kong (1995)] examined the bias-variance
issue in decision trees. Figure 2.14 illustrates this argument. The figure
shows that there is a tradeoff between variance and bias. When the clas-
sifier is simple it has a large bias error and a small variance error. As
the complexity of the classifier increases, the variance error becomes larger
and the bias error becomes smaller. The minimum generalization error is
obtained somewhere in between, where the bias and variance are equal.

Empirical and theoretical evidence show that some ensemble techniques
(such as bagging) act as a variance reduction mechanism, i.e., they reduce
the variance component of the error. Moreover, empirical results suggest
that other ensemble techniques (such as AdaBoost) reduce both the bias
and the variance parts of the error. In particular, it seems that the bias
error is mostly reduced in the early iterations, while the variance error
decreases in later ones.

40 Pattern Classification Using Ensemble Methods

�

�

�������	

����
��� �������

�

!�
���"�

#���

Fig. 2.14 Bias error vs. variance error in the Deterministic Case: (Hansen, 2000).

2.8 Occam’s Razor and Ensemble Learning

William of Occam was a 14th-century English philosopher that presented an
important principle in science which bears his name. Occam’s razor states
that the explanation of any phenomenon should make as few assumptions
as possible, eliminating those that make no difference in the observable
predictions of the explanatory hypothesis or theory.

According to [Domingos (1999)] there are two different interpretations
of Occam’s razor when it is applied to the pattern recognition domain:

• First razor – Given two classifiers with the same generalization error,
the simpler one should be preferred because simplicity is desirable in
itself.
• Second razor – Given two classifiers with the same training set error,

the simpler one should be preferred because it is likely to have a lower
generalization error.

It has been empirically observed that certain ensemble techniques often
do not overfit the model, even when the ensemble contains thousands of
classifiers. Furthermore, occasionally, the generalization error would con-
tinue to improve long after the training error had reached zero. Figure 2.15
illustrates this phenomenon. The figure shows the graphs of the training
and test error produced by an ensemble algorithm as a function of its size.
While the training error reaches zero, the test error, which approximate
the generalization error, continues to reduce. This obviously contradicts
the spirit of the second razor described above. Comparing the performance

Introduction to Ensemble Learning 41

Typical test and train error as a function of the ensemble's

size

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Ensemble Size

E
rr

o
r

Training Error

Test Error

Fig. 2.15 Graphs of the training and test errors produced by an ensemble algorithm as
a function of its size.

of the ensemble that contains twenty members to the one that contains
thirty members, we notice that both have the same training error. Thus,
according to second razor, one should prefer the simplest ensemble (i.e.
twenty members). However, the graph indicates that we should, instead,
prefer the largest ensemble since it obtains a lower test error. This contra-
diction can be settled by arguing that the first razor is largely agreed upon,
while the second one, when taken literally, is false [Domingos (1999)].

Freund (2009) claims that there are two main theories for explaining
the phenomena presented in Figure 2.15. The first theory relates ensemble
methods such as Adaboost to logistic regression. The decrease in misclas-
sification rate of the ensemble is seen as a by-product of the likelihood’s
improvement. The second theory refers to the large margins theory. Like
in the theory of support vector machines (SVM), the focus of large margin
theory is on the task of reducing the classification error rate on the test set.

2.9 Classifier Dependency

Ensemble methods can be differentiated according to which extent each
classifier affect the other classifiers. This property indicates whether the
various classifiers are dependent or independent. In a dependent framework
the outcome of a certain classifier affects the creation of the next classi-
fier. Alternatively each classifier is built independently and their results

42 Pattern Classification Using Ensemble Methods

are combined in some fashion. Some researchers refer to this property as
“the relationship between modules” and distinguish between three different
types: successive, cooperative and supervisory [Sharkey (1996)]. Roughly
speaking, “successive” refers to “dependent” while “cooperative” refers to
“independent”. The last type applies to those cases in which one model
controls the other model.

2.9.1 Dependent Methods

In dependent approaches for learning ensembles, there is an interaction bet-
ween the learning runs. Thus it is possible to take advantage of knowledge
generated in previous iterations to guide the learning in the next iterations.
We distinguish between two main approaches for dependent learning, as de-
scribed in the following sections [Provost and Kolluri (1997)].

2.9.1.1 Model-guided Instance Selection

In this dependent approach, the classifiers that were constructed in previ-
ous iterations are used for manipulating the training set for the following
iteration (see Figure 2.16). One can embed this process within the ba-
sic learning algorithm. These methods usually ignore all data instances
on which their initial classifier is correct and only learn from misclassified
instances.

2.9.1.2 Basic Boosting Algorithms

The most well known model-guided instance selection is boosting. Boosting
(also known as arcing — Adaptive Resampling and Combining) is a general
method for improving the performance of a weak learner (such as classifi-
cation rules or decision trees). The method works by repeatedly running a
weak learner (such as classification rules or decision trees), on various dis-
tributed training data. The classifiers produced by the weak learners are
then combined into a single composite strong classifier in order to achieve
a higher accuracy than the weak learner’s classifiers would have had.

The AdaBoost algorithm was first introduced in [Freund and Schapire
(1996)]. The main idea of this algorithm is to assign a weight in each
example in the training set. In the beginning, all weights are equal, but in
every round, the weights of all misclassified instances are increased while the
weights of correctly classified instances are decreased. As a consequence,
the weak learner is forced to focus on the difficult instances of the training

Introduction to Ensemble Learning 43

...�

Unlabeled�
Tuples�

Predicted�
Labels�

...�

Inducer 1� Inducer 2� Inducer T�

Dataset�
Manipulator�

Dataset�
Manipulator�

Dataset�
Manipulator�

Dataset 1� Dataset 2� Dataset T�

Classifier 1� Classifier 2� Classifier T�

Training Set�

Classifiers Composer�

Fig. 2.16 Model guided instance selection diagram.

set. This procedure provides a series of classifiers that complement one
another.

Breiman [Breiman (1998)] explores a simpler arcing algorithm called
Arc-x4 which was aim to demonstrate that AdaBoost works not because
of the specific form of the weighing function, but because of the adaptive
resampling. In Arc-x4 the classifiers are combined by simple voting and the
updated t + 1 iteration probabilities are defined by:

Dt+1(i) = 1 + m4
ti

(2.3)

where mti is the number of misclassifications of the i-th instance by the
first t classifiers.

The basic AdaBoost algorithm deals with binary classification. Fre-
und and Schapire describe two versions of the AdaBoost algorithm (Ad-
aBoost.M1, AdaBoost.M2), which are equivalent for binary classification
and differ in their handling of multi-classes classification problems. Figure
2.17 describes the pseudo-code of AdaBoost.M1. The classification of a new
instance is performed according to the following equation:

H(x) = argmax
y∈dom(y)

(
∑

t:Mt(x)=y

log
1
βt

) (2.4)

44 Pattern Classification Using Ensemble Methods

Require: I (a weak inducer), T (the number of iterations), S (the training
set)

Ensure: Mt, βt; t = 1, . . . , T

1: t← 1
2: D1(i)← 1/m; i = 1, . . ., m

3: repeat
4: Build Classifier Mt using I and distribution Dt

5: εt ←
∑

i:Mt(xi) �=yi

Dt(i)

6: if εt > 0.5 then
7: T ← t− 1
8: exit Loop.
9: end if

10: βt ← εt

1−εt

11: Dt+1(i) = Dt(i) ·
{

βt

1
Mt(xi) = yi

Otherwise
12: Normalize Dt+1 to be a proper distribution.
13: t + +
14: until t > T

Fig. 2.17 The AdaBoost.M.1 algorithm.

where βt is defined in Figure 2.17.
AdaBoost.M2 is a second alternative extension of AdaBoost to the

multi-class case. This extension requires more elaborate communication
between the boosting algorithm and the weak learning algorithm. Ad-
aBoost.M2 uses the notion of ”pseudo-loss” which measures the goodness
of the weak hypothesis. The pseudocode of AdaBoost.M2 is presented in
Figure 2.18. A different weight wt

i,y is maintained for each instance i and
each label y ∈ Y − {yi}. The function q = {1, . . . , N}× Y → [0, 1], called
the label weighting function, assigns to each example i in the training set
a probability distribution such that, for each i:

∑
y �=y, q(i, y) = 1. The

inducer gets both a distribution Dt and a label weight function qt. The
inducer’s target is to minimize the pseudo-loss εt for given distribution D

and weighting function q.

2.9.1.3 Advanced Boosting Algorithms

Friedman et al. [Friedman et al. (2000)] present a generalized version of
AdaBoost, which they call Real AdaBoost. The revised algorithm combines

Introduction to Ensemble Learning 45

Algorithm AdaBoost.M2
Require: I (a base inducer), T (number of iterations), S (the original

training set), µ (the sample size).
1: Initialize the weight vector D1 (i) ← 1/m i = 1, . . . , m and w1

y =
D(i)/(k − 1) for i = 1, . . . , m ; y ∈ Y − yi.

2: for t = 1, 2, . . . , T do
3: Set W f = Σy �=yw

t
ι,y

4: qt(i, y) = wf
y

W f for y �= y,;
5: Set Dt(i) = W f

ΣN
=1W f .

6: Call I, providing it with the distribution Dt and label weighting
function qt; get back a hypothesis Mt: x× Y → [0, 1].

7: Calculate the pseudo-loss of Mt: ε, = 1
2

∑N
=1 D, (i)(1− h, (x, , y,) +∑

y �=y q, (i, y)h, (x, , y)).
8: Set β, = ε, /(1− ε,).
9: Set the new weights vector to be wr+1

y = wf
yβ

(1/2)(1+ht(xy)−ht(x�y))
t

for i = 1, . . . , N, y ∈ Y − {y, }.
10: end for

Fig. 2.18 The AdaBoost.M2 algorithm.

the class probability estimate of the classifiers by fitting an additive logis-
tic regression model in a forward stepwise manner. The revision reduces
computation cost and may lead to better performance especially in decision
trees. Moreover it can provide interpretable descriptions of the aggregate
decision rule.

Friedman [Friedman (2002)] developed gradient boosting which builds
ensemble by sequentially fitting base learner parameters to current
“pseudo”-residuals by least squares at each iteration. The pseudo-residuals
are the gradient of the loss functional being minimized, with respect to the
model values at each training data point evaluated at the current step. To
improve accuracy performance, increase robustness and reduce computa-
tional cost, at each iteration a subsample of the training set is randomly
selected (without replacement) and used to fit the base classifier.

Phama and Smeuldersb [Phama and Smeuldersb (2008)] present a strat-
egy to improve the AdaBoost algorithm with a quadratic combination of
base classifiers. The idea is to construct an intermediate learner operating
on the combined linear and quadratic terms.

First a classifier is trained by randomizing the labels of the training

46 Pattern Classification Using Ensemble Methods

examples. Next, the learning algorithm is called repeatedly, using a sys-
tematic update of the labels of the training examples in each round. This
method is in contrast to the AdaBoost algorithm that uses reweighting of
training examples. Together they form a powerful combination that makes
intensive use the given base learner by both reweighting and relabeling the
original training set. Compared to AdaBoost, quadratic boosting better ex-
ploits the instances space and compares favorably with AdaBoost on large
datasets at the cost of training speed. Although training the ensemble
takes about 10 times more than AdaBoost, the classification time for both
algorithms is equivalent.

Tsao and Chang [Tsao and Chang (2007)] refer to boosting as a stochas-
tic approximation procedure Based on this viewpoint they develop the SA-
Boost (stochastic approximation) algorithm which is similar to AdaBoost
except the way members’ weights is calculated.

All boosting algorithms presented here assume that the weak inducers
which are provided can cope with weighted instances. If this is not the case,
an unweighted dataset is generated from the weighted data by a resampling
technique. Namely, instances are chosen with a probability according to
their weights (until the dataset becomes as large as the original training
set).

AdaBoost rarely suffers from overfitting problems. Freund and Schapire
(2000) note that, “one of the main properties of boosting that has made it
interesting to statisticians and others is its relative (but not complete) im-
munity to overfitting”. In addition Breiman (2000) indicates that “a crucial
property of AdaBoost is that it almost never overfits the data no matter
how many iterations it is run”. Still in highly noisy datasets overfitting
does occur.

Another important drawback of boosting is that it is difficult to un-
derstand. The resulting ensemble is considered to be less comprehensible
since the user is required to capture several classifiers instead of a single
classifier. Despite the above drawbacks, Breiman [Breiman (1996a)] refers
to the boosting idea as the most significant development in classifier design
of the Nineties.

Sun et al. [Sun et al. (2006)] pursue a strategy which penalizes the data
distribution skewness in the learning process to prevent several hardest
examples from spoiling decision boundaries. They use two smooth convex
penalty functions, based on Kullback–Leibler divergence (KL) and l2 norm,
to derive two new algorithms: AdaBoostKL and AdaBoostNorm2 . These
two AdaBoost variations achieve better performance on noisy datasets.

Introduction to Ensemble Learning 47

Induction algorithms have been applied with practical success in many
relatively simple and small-scale problems. However, most of these algo-
rithms require loading the entire training set to the main memory. The
need to induce from large masses of data, has caused a number of previ-
ously unknown problems, which, if ignored, may turn the task of efficient
pattern recognition into mission impossible. Managing and analyzing huge
datasets requires special and very expensive hardware and software, which
often forces us to exploit only a small part of the stored data.

Huge databases pose several challenges:

• Computing complexity: Since most induction algorithms have a com-
putational complexity that is greater than linear in the number of attri-
butes or tuples, the execution time needed to process such databases
might become an important issue.
• Poor classification accuracy due to difficulties in finding the correct

classifier. Large databases increase the size of the search space, and
this in turn increases the chance that the inducer will select an over-
fitted classifier that is not valid in general.
• Storage problems: In most machine learning algorithms, the entire

training set should be read from the secondary storage (such as mag-
netic storage) into the computer’s primary storage (main memory)
before the induction process begins. This causes problems since the
main memory’s capability is much smaller than the capability of mag-
netic disks.

Instead of training on a very large data base, Breiman (1999) proposes
taking small pieces of the data, growing a classifier on each small piece
and then combining these predictors together. Because each classifier is
grown on a modestly-sized training set, this method can be used on large
datasets. Moreover this method provides an accuracy which is comparable
to that which would have been obtained if all data could have been held
in main memory. Nevertheless, the main disadvantage of this algorithm, is
that in most cases it will require many iterations to truly obtain a accuracy
comparable to Adaboost.

An online boosting algorithm called ivoting trains the base models
using consecutive subsets of training examples of some fixed size [Breiman
(1999)]. For the first base classifier, the training instances are randomly
selected from the training set. To generate a training set for the kth base
classifier, ivoting selects a training set in which half the instances have

48 Pattern Classification Using Ensemble Methods

been correctly classified by the ensemble consisting of the previous base
classifiers and half have been misclassified. ivoting is an improvement on
boosting that is less vulnerable to noise and overfitting. Further, since it
does not require weighting the base classifiers, ivoting can be used in a
parallel fashion, as demonstrated in [Chawla et al. (2004)].

Merler et al. [Merler et al. (2007)] developed the P-AdaBoost algo-
rithm which is a distributed version of AdaBoost. Instead of updating the
“weights” associated with instance in a sequential manner, P-AdaBoost
works in two phases. In the first phase, the AdaBoost algorithm runs in its
sequential, standard fashion for a limited number of steps. In the second
phase the classifiers are trained in parallel using weights that are estimated
from the first phase. P-AdaBoost yields approximations to the standard
AdaBoost models that can be easily and efficiently distributed over a net-
work of computing nodes.

Zhang and Zhang [Zhang and Zhang (2008)] have recently proposed
a new boosting-by-resampling version of Adaboost. In the local Boosting
algorithm, a local error is calculated for each training instance which is then
used to update the probability that this instance is chosen for the train-
ing set of the next iteration. After each iteration in AdaBoost, a global
error measure is calculated that refers to all instances. Consequently noisy
instances might affect the global error measure, even if most of the inst-
ances can be classified correctly. Local boosting aims to solve this problem
by inspecting each iteration locally, per instance. A local error measure
is calculated for each instance of each iteration, and the instance receives
a score, which will be used to measure its significance in classifying new
instances. Each instance in the training set also maintains a local weight,
which controls its chances of being picked in the next iteration. Instead of
automatically increasing the weight of a misclassified instance (like in Ad-
aBoost), we first compare the misclassified instance with similar instances
in the training set. If these similar instances are classified correctly, the
misclassified instance is likely to be a noisy one that cannot contribute to
the learning procedure and thus its weight is decreased. If the instance’s
neighbors are also misclassified, the instance’s weight is increased. As in
AdaBoost, if an instance is classified correctly, its weight is decreased. Clas-
sifying a new instance is based on its similarity with each training instance.

The advantages of local boosting compared to other ensemble methods
are:

(1) The algorithm tackles the problem of noisy instances. It has been

Introduction to Ensemble Learning 49

empirically shown that the local boosting algorithm is more robust to
noise than Adaboost.

(2) In respect to accuracy, LocalBoost generally outperforms Adaboost.
Moreover, LocalBoost outperforms Bagging and Random Forest when
the noise level is small

The disadvantages of local boosting compared to other ensemble meth-
ods are:

(1) When the amount of noise is large, LocalBoost sometimes performs
worse than Bagging and Random Forest.

(2) Saving the data for each instance increases storage complexity; this
might confine the use of this algorithm to limited training sets.

AdaBoost.M1 algorithm guaranties an exponential decrease of an upper
bound of the training error rate as long as the error rates of the base clas-
sifiers are less than 50%. For multiclass classification tasks, this condition
can be too restrictive for weak classifiers like decision stumps. In order to
make AdaBoost.M1 suitable to weak classifiers, BoostMA algorithm modi-
fies it by using a different function to weight the classifiers [Freund (1995)].
Specifically, the modified function becomes positive if the error rate is less
than the error rate of default classification. As opposed to AdaBoost.M2,
where the weights are increased if the error rate exceeds 50%, in BoostMA
the weights are increased for instances for which the classifier performed
worse than the default classification (i.e. classification of each instance as
the most frequent class). Moreover in BoostMA the base classifier mini-
mizes the confidence-rated error instead of the pseudo-loss / error-rate (as
in AdaBoost.M2 or Adaboost.M1) which makes it easier to use with already
existing base classifiers.

AdaBoost-r is a variant of AdaBoost which considers not only the last
weak classifier, but a classifier formed by the last r selected weak classifiers
(r is a parameter of the method). If the weak classifiers are decision stumps,
the combination of r weak classifiers is a decision tree. A primary drawback
of AdaBoost-r is that it will only be useful if the classification method does
not generate strong classifiers.

Figure 2.19 presents the pseudocode of AdaBoost-r. In line 1 we ini-
tialize a distribution on the instances so that the sum of all weights is 1
and all instances obtain the same weight. In line 3 we perform a number of
iterations according to the parameter T. In lines 4-8 we define the training
set S′ on which the base classifier will be trained. We check whether the

50 Pattern Classification Using Ensemble Methods

resampling or reweighting version of the algorithm is required. If resam-
pling was chosen, we perform a resampling of the training set according to
the distribution Dt. The resampled set S′ is the same size as S. However,
the instances it contains were drawn from S with repetition with the prob-
abilities according to Dt. Otherwise (if reweighting was chosen) we simply
set S′ to be the entire original dataset S. In line 9 we train a base classi-
fier Mt from the base inducer I on S′ while using as instance weights the
values of the distribution Dt. In line 10 lies the significant change of the
algorithm compared to the normal AdaBoost. Each of the instances of the
original dataset S is classified with the base classifier Mt. This most recent
classification is saved in the sequence of the last R classifications. Since
we are dealing with a binary class problem, the class can be represented
by a single bit (0 or 1). Therefore the sequence can be stored as a binary
sequence with the most recent classification being appended as the least
significant bit. This is how past base classifiers are combined (through the
classification sequence). The sequence can be treated as a binary number
representing a leaf in the combined classifier M r

t to which the instance be-
longs. Each leaf has two buckets (one for each class). When an instance
is assigned to a certain leaf, its weight is added to the bucket representing
the instance’s real class. Afterwards, the final class of each leaf of M r

t is
decided by the heaviest bucket. The combined classifier does not need to
be explicitly saved since it is represented by the final classes of the leaves
and the base classifiers Mt, Mt−1, . . .Mmax(t−r,1) . In line 11 the error rate
εt of M r

t on the original dataset S is computed by summing the weight of
all the instances the combined classifier has misclassified and then dividing
the sum by the total weight of all the instances in S. In line 12 we check
whether the error rate is over 0.5 which would indicate the newly combined
classifier is even worse than random or the error rate is 0 which indicates
overfitting. In case resampling was used and an error rate of 0 was obtained,
it could indicate an unfortunate resampling and so it is recommended to
return to the resampling section (line 8) and retry (up to a certain number
of failed attempts, e.g. 10). Line 15 is executed in case the error rate was
under 0.5 and therefore we define αt to be 1−εt

εt
. In lines 16-20 we iterate

over all of the instances in S and update their weight for the next iteration
(Dt+1). If the combined classifier has misclassified the instance, its weight
is multiplied by αt. In line 21, after the weights have been updated , they
are renormalized so that Dt+1 will be a distribution (i.e. all weights will
sum to 1). This concludes the iteration and everything is ready for the next
iteration.

Introduction to Ensemble Learning 51

For classifying an instance, we traverse each of the combined classi-
fiers, classify the instance with it and receive either -1 or 1. The class is
then multiplied by log (αt) , which is the weight assigned to the classifier
trained at iteration t, and added to a global sum. If the sum is positive,
the class “1” is returned; if it is negative, “-1” is returned; and if it is 0,
the returned class is random. This can also be viewed as summing the
weights of the classifiers per class and returning the class with the maxi-
mal sum. Since we do not explicitly save the combined classifier Mr

t, we
obtain its classification by classifying the instance with the relevant base
classifiers and using the binary classification sequence which is given by
(Mt(x), Mt−1(x), . . .Mmax(t−r,1) (x)) as a leaf index into the combined clas-
sifier and using the final class of the leaf as the classification result of Mr

t.
AdaBoost.M1 is known to have problems when the base classifiers are

weak, i.e. the predictive performance of each base classifier is not much
higher than that of a random guessing.

AdaBoost.M1W is a revised version of AdaBoost.M1 that aims to im-
prove its accuracy in such cases (Eibl and Pfeiffer, 2002). The required
revision results in a change of only one line in the pseudo-code of Ad-
aBoost.M1. Specifically the new weight of the base classifier is defined as:

αt = ln
(

(|dom (y)| − 1) (1− εt)
εt

)
(2.5)

where εt is the error estimation which is defined in the original Ad-
aBoost.M1 and |dom (y)| represents the number of classes. Note the above
equation generalizes AdaBoost.M1 by setting |dom (y)| = 2.

2.9.1.4 Incremental Batch Learning

In this method the classification produced in one iteration is given as “prior
knowledge” to the learning algorithm in the following iteration. The learn-
ing algorithm uses the current training set together with the classification
of the former classifier for building the next classifier. The classifier con-
structed at the last iteration is chosen as the final classifier.

2.9.2 Independent Methods

In this methodology the original dataset is partitioned into several sub-
sets from which multiple classifiers are induced. Figure 2.20 illustrates the
independent ensemble methodology. The subsets created from the origi-

52 Pattern Classification Using Ensemble Methods

AdaBoost-r Algorithm
Require: I (a base inducer), T (number of iterations), S (the original

training set), ρ (whether to perform resampling or reweighting), r (reuse
level).

1: Initiate: D1 (Xi) = 1
m for all i’s.

2: T = 1
3: repeat
4: if ρ then
5: S′ = resample (S, Dt)
6: else
7: S′ = S

8: end if
9: Train base classifier Mt with I on S′ with instance weights according

to Dt

10: Combine classifiers Mt, Mt−1, . . . Mmax(t−r,1) to create M r
t .

11: Calculate the error rate εt of the combined classifier M r
t on S

12: if εt ≥ 0.5 or εt = 0 then
13: End;
14: end if
15: αt = 1−εt

εt

16: for i=1 to m do
17: if M r

t (Xi) �= Yi then
18: Dt+1 (Xi) = Dt (Xi) αt

19: end if
20: end for
21: Renormalize Dt+1 so it will be a distribution
22: t← t + 1
23: until t > T

Fig. 2.19 AdaBoost-r algorithm.

nal training set may be disjointed (mutually exclusive) or overlapping. A
combination procedure is then applied in order to produce a single classifi-
cation for a given instance. Since the method for combining the results of
induced classifiers is usually independent of the induction algorithms, it can
be used with different inducers at each subset. Moreover this methodology
can be easily parallelized. These independent methods aim either at im-
proving the predictive power of classifiers or decreasing the total execution
time. The following sections describe several algorithms that implement

Introduction to Ensemble Learning 53

...�

Unlabeled�
Tuples�

Predicted�
Labels�

Inducer 1� Inducer 2� Inducer T�

Dataset�
Manipulator�

Dataset�
Manipulator�

Dataset�
Manipulator�

Dataset 1� Dataset 2� Dataset T�

Classifier 1� Classifier 2� Classifier T�

Training Set�

Classifiers Composer�

Fig. 2.20 Independent methods.

this methodology.

2.9.2.1 Bagging

The most well-known independent method is bagging (bootstrap aggregat-
ing) [Breiman (1996a)]. The method aims to increase accuracy by creating
an improved composite classifier, by amalgamating the various outputs of
learned classifiers into a single prediction. Each classifier is trained on a
sample of instances taken with a replacement from the training set. Each
sample size is equal to the size of the original training set. Note that since
sampling with replacement is used, some of the original instances may ap-
pear more than once in the each training set and some may not be included
at all.

So while the training sets may be different from each other, they are
certainly not independent from a statistical point of view. To classify a
new instance, each classifier returns the class prediction for the unknown
instance. The composite bagged classifier, returns the class that has been
predicted most often (voting method). The result is that bagging produces
a combined model that often performs better than the single model built
from the original single data. Breiman [Breiman (1996a)] notes that this
is true especially for unstable inducers because bagging can eliminate their

54 Pattern Classification Using Ensemble Methods

instability. In this context, an inducer is considered unstable if perturbing
the learning set can cause significant changes in the constructed classifier.

Bagging, like boosting, is a technique for improving the accuracy of a
classifier by producing different classifiers and combining multiple models.
They both use a kind of voting for classification in order to combine the
outputs of the different classifiers of the same type. In boosting, unlike
bagging, each classifier is influenced by the performance of those built before
with the new classifier trying to pay more attention to errors that were made
in the previous ones and to their performances. In bagging, each instance
is chosen with equal probability, while in boosting, instances are chosen
with a probability proportional to their weight. Furthermore, according to
Quinlan [Quinlan (1996)], as mentioned above, bagging requires that the
learning system should not be stable, where boosting does not preclude the
use of unstable learning systems, provided that their error rate can be kept
below 0.5.

2.9.2.2 Wagging

Wagging is a variant of bagging [Bauer and Kohavi (1999)] in which each
classifier is trained on the entire training set, but each instance is stochasti-
cally assigned a weight. Figure 2.21 presents the pseudo-code of the wagging
algorithm.

In fact bagging can be considered to be wagging with allocation of
weights from the Poisson distribution (each instance is represented in the
sample a discrete number of times). Alternatively it is possible to allocate
the weights from the exponential distribution, because the exponential dis-
tribution is the continuous valued counterpart to the Poisson distribution
[Webb (2000)].

Require: I (an inducer), T (the number of iterations), S (the training
set), d (weighting distribution).

Ensure: Mt; t = 1, . . . , T

1: t← 1
2: repeat
3: St ← S with random weights drawn from d.
4: Build classifier Mt using I on St

5: t + +
6: until t > T

Fig. 2.21 The Wagging algorithm.

Introduction to Ensemble Learning 55

2.9.2.3 Random Forest and Random Subspace Projection

A Random Forest ensemble [Breiman (2001)] uses a large number of indi-
vidual, unpruned decision trees. The individual trees are constructed using
a simple algorithm presented in Figure 2.22. The IDT in Figure 2.22 repre-
sents any top-down decision tree induction algorithm [Rokach and Maimon
(2001)] with the following modification: the decision tree is not pruned and
at each node, rather than choosing the best split among all attributes, the
inducer randomly samples N of the attributes and choose the best split
from among those variables. The classification of an unlabeled instance is
performed using majority vote.

Originally, the random forests algorithm applies only to building deci-
sion trees, and is not applicable to all types of classifiers, because it involves
picking a different subset of the attributes in each node of the tree. Never-
theless, the main step of the random forest algorithm can be easily replaced
with the broader ”random subspace method” [Ho (1998)], which can be
applied to many other inducers, such as nearest neighbor classifiers [Ho
(1998)] or linear discriminators [Skurichina and Duin (2002)].

Require: IDT (a decision tree inducer), T (the number of iterations), S

(the training set), µ (the subsample size). N (number of attributes
used in each node)

Ensure: Mt; t = 1, . . . , T

1: t← 1
2: repeat
3: St ← Sample µ instances from S with replacement.
4: Build classifier Mt using IDT (N) on St

5: t + +
6: until t > T

Fig. 2.22 The Random Forest algorithm.

One important advantage of the random forest method is its ability
to handle a very large number of input attributes [Skurichina and Duin
(2002)]. Another important feature of the random forest is that it is fast.

There are other ways to obtain random forests. For example, instead
of using all the instances to determine the best split point for each feature,
a sub-sample of the instances is used [Kamath and Cantu-Paz (2001)].
This sub-sample varies with the feature. The feature and split value that
optimize the splitting criterion are chosen as the decision at that node.
Since the split made at a node is likely to vary with the sample selected,

56 Pattern Classification Using Ensemble Methods

this technique results in different trees which can be combined in ensembles.
Another method for randomization of the decision tree through his-

tograms was proposed in [Kamath et al. (2002)]. The use of histograms
has long been suggested as a way of making the features discrete, while
reducing the time to handle very large datasets. Typically, a histogram
is created for each feature, and the bin boundaries used as potential split
points. The randomization in this process is expressed by selecting the split
point randomly in an interval around the best bin boundary.

Using an extensive simulation study, Archer and Kimes [Archer and
Kimes (2008)] examine the effectiveness of Random Forest variable impor-
tance measures in identifying the true predictor among a large number of
candidate predictors. They concluded that the Random Forest technique is
useful in domains which require both an accurate classifier and insight re-
garding the discriminative ability of individual attribute (like in microarray
studies).

2.9.2.4 Non-Linear Boosting Projection (NLBP)

Non-Linear Boosting Projection (NLBP) combines boosting and subspace
methods as follows [Garcia-Pddrajas et al. (2007)]:

(1) All the classifiers receive as input all the training instances for learning.
Since all are equally weighted, we are not placing more emphasis on
misclassified instances as in boosting.

(2) Each classifier uses a different nonlinear projection of the original data
onto a space of the same dimension.

(3) The nonlinear projection is based on the projection made by the hidden
neuron layer of a multilayer perceptron neural network.

(4) Following the basic principles of boosting, each nonlinear projection is
constructed in order to make it easier to classify difficult instances.

Figure 2.23 presents the pseudocode of the NLBP algorithm. In lines
1-2 we convert the original data set (S) to a standard data set for multilayer
perceptron learning (S′). It includes a transformation from nominal attri-
butes to binary attributes (one binary attribute for each nominal value)
and a normalization of all numeric (and binary) attributes to the [−1, 1]
range. In line 3 we construct the first classifier M0, using the base inducer
(I) and the converted data set S′. In lines 4-14 we construct the remaining
T − 1 classifiers.

Introduction to Ensemble Learning 57

Each iteration includes the following steps. In lines 5-9 we try to classify
each instance in S′ with the previous classifier. S′′ stores all the instances
that we didn’t classify correctly. In lines 10-11 we train a multilayer per-
ceptron neural network using S′′. The hidden layer of the network consists
of the same number of hidden neurons as input attributes in S′′ . After
training the network we retrieve the input weights of the hidden neurons,
and store them in a data structure with the iteration index (ProjectionAr-
ray). In line 12 we project all the instances of S′ with the projection P to
get S′′′. In line 13 we construct the current classifier using the converted
and projected data set (S′′′) and the base inducer (I). In lines 15-16 we
convert the instance (nominal to binary and normalization of attributes) as
we did to the training data set. The final classification is a simple majority
vote.

The advantages of NLBP compared to other ensemble methods are:

(1) Experiments comparing NLBP to popular ensemble methods (Bagging,
AdaBoost, LogitBoost, Arc-x4) using different base classifiers (C4.5,
ANN, SVM) show very good results for NLBP.

(2) Analysis of bagging, boosting, and NLBP by the authors of the paper
suggests that: “Bagging provides diversity, but to a lesser degree than
boosting. On the other hand, boosting’s improvement of diversity has
the side-effect of deteriorating accuracy. NLBP behavior is midway bet-
ween these two methods. It is able to improve diversity, but to a lesser
degree than boosting, without damaging accuracy as much as boosting.
This behavior suggests that the performance of NLBP in noisy problems
can be better than the performance of boosting methods.

The drawbacks of NLBP compared to other ensembles methods are:

(1) The necessity of training an additional neuronal network for each itera-
tion increases the computational complexity of the algorithm compared
to other approaches.

(2) Using a neuronal network for projection may increase the dimensional-
ity of the problem. Every nominal attribute is transformed to a set of
binary ones.

(3) The classifiers that are constructed by this approach use a different set
of attributes than the original ones. Since these new attribute lose the
meaning of the original ones, it is difficult to understand the meaning
of the constructed models in terms of the original domain.

58 Pattern Classification Using Ensemble Methods

NLBP - Building the ensemble
Require: I (a base inducer), T (number of iterations), S (the original

training set).
1: S∗ = A nominal to binary transfomation of S

2: S′ = A nomalization of S∗
3: M1 = I(S′)
4: for t = 2 to T do
5: S′′ = ∅
6: for each xj ∈ S′ do
7: if Mt−1(xj) �= yj then
8: S′′ = S′′⋃{Xj}
9: end if

10: end for
11: Train network H using S′′ and get the projection P (X) implemented

by hidden layer of H

12: ProjectionArray[t] = P

13: S′′′ = P (S′)
14: Mt = I(S′′′)
15: end for

Fig. 2.23 NLBP - Building the ensemble.

2.9.2.5 Cross-validated Committees

This procedure creates k classifiers by partitioning the training set into k-
equal-sized sets and training, in turn, on all but the i-th set. This method,
first used by Gams [Gams (1989)], employed 10-fold partitioning. Par-
manto et al. [Parmanto et al. (1996)] have also used this idea for creat-
ing an ensemble of neural networks. Domingos [Domingos (1996)] used
cross-validated committees to speed up his own rule induction algorithm
RISE, whose complexity is O(n2), making it unsuitable for processing large
databases. In this case, partitioning is applied by predetermining a maxi-
mum number of examples to which the algorithm can be applied at once.
The full training set is randomly divided into approximately equal-sized
partitions. RISE is then run on each partition separately. Each set of
rules grown from the examples in partition p is tested on the examples in
partition p + 1, in order to reduce overfitting and to improve accuracy.

Introduction to Ensemble Learning 59

2.9.2.6 Robust Boosting

A robust classifier is one whose predictive performance is not sensitive to
changes in the training data. Freund (1995) proposes a simple robust ver-
sion of the boosting algorithm which is called the boost-by-majority (BBM)
algorithm. In BBM, the number of iterations is set in advance based on
two parameters that are specified by the user: the desired accuracy and
an error bound such that the induction algorithm is guaranteed to always
generate a classifier whose error is smaller than that value. The main idea
of BBM is to give a small weight to instances with large negative margins.
Intuitively, it ignores instances which are unlikely to be classified correctly
when the boosting procedure terminates. Contrary to AdaBoost, BBM as-
signs the weights to the base classifier regardless of their accuracies. Thus,
the drawback of BBM is that it is not adaptive. On the other hand, the
AdaBoost algorithm is sensitive to noise. Specifically, the accuracy of Ad-
aboost decreases rapidly when random noise is added to the training set.

In order to avoid these drawbacks, Freund (2001) proposes BrownBoost
which is adaptive version of BBM in which classifiers with a small mis-
classification rate are assigned a larger weight than base classifiers with
large misclassification rate. BrownBoost has a time variable denoted as t

that increases with each iteration. Figure 2.24 specifies the pseudocode of
BrownBoost.

Most recently, Freund (2009) proposes an updated version of Brown-
Boost called RobustBoost. The main difference is that instead of minimiz-
ing the training error its goal is to minimize the number of examples whose
normalized margins is smaller than some value θ > 0:

1
N

N∑
i=1

1 [m̄ (xi, yi) ≤ θ] (2.6)

where m̄(x, y)is the normalized margin defined as:

m̄(x, y) =
y · sign (

∑
i αiCi (x))∑

i |αi| (2.7)

Friedman et al. (2000) show that Adaboost is approximating a stepwise
additive logistic regression model by optimizing an exponential criterion.
Based on this observation, Friedman et al. (2000) propose a variant of
Adaboost, called Logitboost, which fits additive models directly. Since it

60 Pattern Classification Using Ensemble Methods

BrownBoost Training
Require: I (a base inducer), S (the original training set), T (number of

iterations).
1: Set initial weights as wi = 1/N

2: Set F (x) = 0
3: for t = 1 to T do
4: Fit the function ft by a weighted least-squares regression of Zi to xi

with weights wi.
5: Set F (x) = F (x) + ft(x)
6: Set wi ← wie

−yift(xi)

7: end for

Fig. 2.24 The BrownBoost algorithm.

uses Newton-like steps to optimize the binomial log-likelihood criterion,
it is significantly better than Adaboost at tolerating noise. Despite such
claims, Mease and Wyner (2008) indicate that when the Bayes error is not
zero, LogitBoost often overfits while AdaBoost does not. In fact Mease
and Wyner (2008) encourage the readers to try the simulation models
provided on the web page http://www.davemease.com/contraryevidence.
Other closely related algorithms are the log-loss Boost [Collins et al. (2002)]
and MAdaboost [Domingo and Watanabe (2000)]. The pseudocode of Log-
itBoost is presented in Figure 9-6.

Zhang’s boosting algorithm (Zhang et al., 2009) is an Adaboost variant
with the following differences: (a) Instead of using the entire dataset, a
subsample of the original training data in each iteration trains the weak
classifier. (b) The sampling distribution is set differently to overcome Ad-
aboost sensitivity to noise. Specifically, a parameter introduced into the re-
weighted scheme proposed in Adaboost updates the probabilities assigned
to training examples. The results of these changes are better prediction
accuracy, faster execution time and robustness to classification noise. Fig-
ure 2.25 presents the pseudocode of this variant. The sampling introduces
randomness into the procedure. Using the f parameter, one can control
the amount of data available to train the weak classifier. The parameter β

is used to alleviate AdaBoost’s problem in which more and more weight is
assigned to noisy examples in later iterations. Thus, the weight increment
of inaccurately predicted examples is smaller than that in Adaboost.

Introduction to Ensemble Learning 61

Zhang’s Boosting Algorithm
Require: I (a base inducer), T (number of iterations), S (the original

training set), sample fraction f and positive parameter β

1: Initialize: set the probability distribution over S as D1(i) = 1/N(i =
1, 2, · · · N)

2: for t = 1, · · ·T do
3: According to the distribution Dt, draw N = �f · N
(f ≤ 1) ex-

amples from S with replacement to compose a new training set
St = {(x(t)

i , y
(t)
i)}Ni=1 in which �A
 stands for the largest integer

small than A.
4: Apply I to St to train a weak classifier ht : X → {−1, +1} and

compute the error of ht as εt =
N∑

i.ht(xl) �=yl

Dt(i).

5: if εit > 0.5 then
6: set T = t− 1 and abort loop.
7: end if
8: choose αt =

1
2

ln(
1− εt

εt
).

9: Update the probability distribution over S as Dt+1(i) = Dt(i)
Zt
×{

e−αι/β, ifht(xi) = yi

eαt/β , ifht(xi) �= yi
=

Dt(i) exp((−αt

β)yiht(xi))

Zt
where Zt is a

normalization factor (it should be chosen so that Dt+1 is a distri-
bution over S).

10: end for

Fig. 2.25 Zhang’s boosting algorithm.

2.10 Ensemble Methods for Advanced Classification Tasks

2.10.1 Cost-Sensitive Classification

AdaBoost does not differentiate between the various classes. Thus, a mis-
classification in the majority class is treated equally as a misclassification
of the minority class. However, in certain scenarios it is more desirable to
augment the weight of misclassification errors of the minority class. For
example, in direct marketing scenarios, firms are interested in estimating
customer interest in their offer. However, positive response rates are usually
low. For example, a mail marketing response rate of 2

62 Pattern Classification Using Ensemble Methods

Dt+1(i) =
Dt(i)
√∑

[i,Mt(xi)�=yi]
δ·Wi∑

[i,Mt(xi)=yi]
δ·Wi

Zt
(2.8)

For unsuccessful classification, the distribution update is revised to:

Dt+1(i) =

Dt(i)
/√∑

[i,Mt(xi)�=yi]
δ·Wi∑

[i,Mt(xi)=yi]
δ·Wi

Zt
(2.9)

where Zt is a normalization factor.
Fan et al. (1999) presented AdaCost. The purpose of AdaCost is to

improve AdaBoosts fixed and variable misclassification costs. It introduces
a cost-adjustment function which is integrated into the weight updating
rule. In addition to assigning high initial weights to costly instances, the
weight updating rule takes cost into account and increases the weights of
costly misclassification. Figure 2.26 presents the pseudocode of AdaCost.
where β(i) = β(sign(yiht(xi)), ci) is a cost-adjustment function. Zt is a
normalization factor chosen so that Dt+1 will be a distribution. The final

classification is: H(x) = sign(f(x)) where f(x) = (
T∑

t=1

αtht(x))

AdaCost
Require: I (a base inducer), T (number of iterations), S =
{(x1, c1, y1), . . . , (xm, cm, ym)}. xi ∈ X , ci ∈ R

+, yi ∈ {−1, +1}
1: Initialize D1(i)(T : such as D1(i) = ci/

∑m
j cj).

2: repeat
3: Train weak inducer using distribution Dt.
4: Compute weak classifier ht: X → R.

5: Choose αt ∈ R and β(i) ∈ R
+.

6: Update Dt+1(i) = Dt(i) exp(−αtyiht(xi)β(i))
Zt

7: t← t + 1
8: until t > T

Fig. 2.26 AdaCost algorithm.

Introduction to Ensemble Learning 63

2.10.2 Ensemble for Learning Concept Drift

Concept drift is an online learning task in which concepts change or drift
over time. More specifically, concept drift occurs when the class distribution
changes over time.

Concept drift exists in many applications that involve models of hu-
man behavior, such as recommender systems. Kolter and Maloof (2007)
suggested an algorithm that tries to solve this problem by presenting an
ensemble method for concept drift that dynamically creates and removes
weighted experts according to a change in their performance. The suggested
algorithm known as dynamic weighted majority (DWM) is an extension of
the weighted majority algorithm (MWA) but it adds and removes base
learners in response to global and local performance. As a result, DWM
is better able to respond in non-stationary environments than other algo-
rithms, especially those that rely on an ensemble of unweighted learners
(such as SEA). The main disadvantage of DWM is its poor performance in
terms of running time, compared to the AdaBoost algorithm.

2.10.3 Reject Driven Classification

Reject driven classification[Frelicot and Mascarilla (2001)] is a method
of classification that allows a tradeoff between misclassification and am-
biguity (assigning more than one class to an instance). Specifically, the
algorithm introduces a method for combining reject driven classifiers using
belief theory methods. The algorithm adjusts the results of the reject driven
classifiers by using the Dempster-Shafer theory. For each classifier, a basic
probability assignment (BPA) is calculated to classify unseen instances.

The main strength of this algorithm is its ability to control the tradeoff
between ambiguity and rejection. We can decide (with the proper thresh-
old) if we prefer to classify an unseen instance to a single class and might
be wrong or give an ambiguity classification. A major drawback of the
algorithm is its inability to handle datasets with many classes since the
BPA calculation needs to calculate the probability for any pair of classes.

Chapter 3

Ensemble Classification

Ensemble classification refers to the process of using ensemble’s classifiers
in order to provide a single and unified classification to an unseen instance.

There are two major ways for classifying new instances. In the first ap-
proach the classification are fused in some fashion during the classification
phase. In the second approach the classification of one classifier is selected
according to some criterion.

3.1 Fusions Methods

Fusing methods aim at providing the classification by combining the out-
puts of several classifiers. We assume that the output of each classifier i

is a k-long vector pi,1, · · · , pi,k. The value pi,j represents the support that
instance x belongs to class j according to the classifier i. For the sake of

simplicity, it is also assumed that
k∑

j=1

pi,j = 1. If we are dealing with a crisp

classifier i, which explicitly assigns the instance x to a certain class l, then
it can still be converted to k-long vector pi,1, · · · , pi,k such that pi,l = 1 and
pi,j = 0∀j �= l.

Fusions methods can be furthered partitioned into weighting methods
and meta-learning methods. The following sections specify each of these
techniques.

3.1.1 Weighting Methods

The base members classification are combined using weights that are as-
signed to each member. The member’s weight indicates its effect on the
final classification. The assigned weight can be fixed or dynamically deter-

65

66 Pattern Classification Using Ensemble Methods

mined for the specific instance to be classified.
The weighting methods are best suited for problems where the individ-

ual classifiers perform the same task and have comparable success or when
we would like to avoid problems associated with added learning (such as
overfitting or long training time).

3.1.2 Majority Voting

In this combining scheme, a classification of an unlabeled instance is per-
formed according to the class that obtains the highest number of votes (the
most frequent vote). This method is also known as the plurality vote (PV)
or the basic ensemble method (BEM). This approach has frequently been
used as a combining method for comparing newly proposed methods.

For example we are given an ensemble of ten classifiers which are at-
tempting to classify a certain instance x to one of the classes: A, B or
C. Table 3.1 presents the classification vector and the selected label (vote)
that each classifier provides to the instance x. Based on these classifications
we create the voting table presented in Table 3.1 which indicates that the
mojarity vote is class B.

Table 3.1 Illustration of Majority Voting: Classi-
fiers Output.

Classifier A score B score C score Selected Label

1 0.2 0.7 0.1 B
2 0.1 0.1 0.8 C
3 0.2 0.3 0.5 C
4 0.1 0.8 0.1 B
5 0.2 0.6 0.2 B
6 0.6 0.3 0.1 A
7 0.25 0.65 0.1 B
8 0.2 0.7 0.1 B
9 0.2 0.2 0.8 C
10 0.4 0.3 0.3 A

Table 3.2 Illustration of Major-
ity Voting.

Class A Class B Class C

Votes 2 5 3

Mathematically majority voting can be written as:

Ensemble Classification 67

class(x) = argmax
ci∈dom(y)

(∑
k

g (yk(x), ci)

)
(3.1)

where yk(x) is the classification of the k’th classifier and g(y, c) is an indi-
cator function defined as:

g (y, c) =
{

1 y = c

0 y �= c
(3.2)

Note that in case of a probabilistic classifier, the crisp classification
yk(x) is usually obtained as follows:

yk(x) = argmax
ci∈dom(y)

P̂Mk
(y = ci |x) (3.3)

where Mk denotes classifier k and P̂Mk
(y = c |x) denotes the probability of

y obtaining the value c given an instance x.

3.1.3 Performance Weighting

The weight of each classifier can be set proportional to its accuracy perfor-
mance on a validation set [Opitz and Shavlik (1996)]:

wi =
(αi)

T∑
j=1

(αj))
(3.4)

where αi is a performance evaluation of classifier i on a validation set (for
example the accuracy). Once the weights for each classifier have been
computed, we select the class which receive the highest score:

class(x) = arg max
ci∈dom(y)

(∑
k

αig (yk(x), ci)

)
(3.5)

Since the weights are normalized and are summed up to 1, it possible
to interpret the sum in last equation as the probability that xi is classified
into cj .

Moreno-Seco et al. (2006) examined several variations of performance
weighting methods:

68 Pattern Classification Using Ensemble Methods

Re-scaled weighted vote The idea is to weight values proportionally to
some given ratio N/M as following:

αk = max
{

1− M · ek

N · (M − 1)
, 0
}

where ei is the number of misclassifications made by classifier i.
Best-worst weighted vote The idea is that the best and the worst clas-

sifiers obtain the weight of 1 and 0 respectively. The rest of classifiers
are rated linearly between these extremes:

αi = 1−
ei −min

i
(ei)

max
i

(ei)−min
i

(ei)

Quadratic best-worst weighted vote In order to give additional
weight to the classifications provided by the most accurate classi-
fiers, the values obtained by the best-worst weighted vote approach
are squared:

αi =


 max

i
(ei)− ei

max
i

(ei)−min
i

(ei)




2

3.1.4 Distribution Summation

The idea of the distribution summation combining method is to sum up
the conditional probability vector obtained from each classifier [Clark and
Boswell (1991)]. The selected class is chosen according to the highest value
in the total vector. Mathematically, it can be written as:

Class(x) = argmax
ci∈dom(y)

∑
k

P̂Mk
(y = ci |x) (3.6)

3.1.5 Bayesian Combination

In the Bayesian combination method the weight associated with each clas-
sifier is the posterior probability of the classifier given the training set [Bun-
tine (1990)].

Class(x) = argmax
ci∈dom(y)

∑
k

P (Mk |S) · P̂Mk
(y = ci |x) (3.7)

where P (Mk |S) denotes the probability that the classifier Mk is correct
given the training set S. The estimation of P (Mk |S) depends on the

Ensemble Classification 69

classifier’s representation. To estimate this value for decision trees the
reader is referred to [Buntine (1990)].

3.1.6 Dempster–Shafer

The idea of using the Dempster–Shafer theory of evidence [Buchanan and
Shortliffe (1984)] for combining classifiers has been suggested in [Shilen
(1990)]. This method uses the notion of basic probability assignment def-
ined for a certain class ci given the instance x:

bpa(ci, x) = 1−
∏
k

(
1− P̂Mk

(y = ci |x)
)

(3.8)

Consequently, the selected class is the one that maximizes the value of the
belief function:

Bel(ci, x) =
1
A
· bpa(ci, x)
1− bpa(ci, x)

(3.9)

where A is a normalization factor defined as:

A =
∑

∀ci∈dom(y)

bpa(ci, x)
1− bpa(ci, x)

+ 1 (3.10)

3.1.7 Vogging

The idea of behind the vogging approach (Variance Optimized Bagging)
is to optimize a linear combination of base-classifiers so as to aggressively
reduce variance while attempting to preserve a prescribed accuracy [Der-
beko et al. (2002)]. For this purpose, Derbeko et al. implemented the
Markowitz Mean-Variance Portfolio Theory that is used for generating low
variance portfolios of financial assets.

3.1.8 Näıve Bayes

Using Bayes’ rule, one can extend the Näıve Bayes idea for combining var-
ious classifiers:

Class(x) = argmax
cj ∈ dom(y)
P̂ (y = cj) > 0

P̂ (y = cj) ·
∏
k=1

P̂Mk
(y = cj |x)

P̂ (y = cj)
(3.11)

70 Pattern Classification Using Ensemble Methods

3.1.9 Entropy Weighting

The idea in this combining method is to give each classifier a weight that
is inversely proportional to the entropy of its classification vector.

Class(x) = argmax
ci∈dom(y)

∑
k:ci=argmax

cj∈dom(y)
P̂Mk

(y=cj|x)

E(Mk, x) (3.12)

where:

E(Mk, x) = −
∑
cj

P̂Mk
(y = cj |x) log

(
P̂Mk

(y = cj |x)
)

(3.13)

3.1.10 Density-based Weighting

If the various classifiers were trained using datasets obtained from different
regions of the instance space, it might be useful to weight the classifiers
according to the probability of sampling x by classifier Mk, namely:

Class(x) = argmax
ci∈dom(y)

∑
k:ci=argmax

cj∈dom(y)
P̂Mk

(y=cj|x)

P̂Mk
(x) (3.14)

The estimation of P̂Mk
(x) depends on the classifier representation and can

not always be estimated.

3.1.11 DEA Weighting Method

Recently there has been attempts to use the data envelop analysis (DEA)
methodology [Charnes et al. (1978)] in order to assign weights to different
classifiers [Sohn and Choi (2001)]. These researchers argue that the weights
should not be specified according to a single performance measure, but
should be based on several performance measures. Because there is a trade-
off among the various performance measures, the DEA is employed in order
to figure out the set of efficient classifiers. In addition, DEA provides
inefficient classifiers with the benchmarking point.

Ensemble Classification 71

3.1.12 Logarithmic Opinion Pool

According to the logarithmic opinion pool [Hansen (2000)] the selection of
the preferred class is performed according to:

Class(x) = argmax
cj∈dom(y)

e

∑
k

αk·log(P̂Mk
(y=cj|x))

(3.15)

where αk denotes the weight of the k-th classifier, such that:

αk ≥ 0;
∑

αk = 1 (3.16)

3.1.13 Order Statistics

Order statistics can be used to combine classifiers [Tumer and Ghosh
(2000)]. These combiners offer the simplicity of a simple weighted combi-
nation method together with the generality of meta-combination methods
(see the following section). The robustness of this method is helpful when
there are significant variations among classifiers in some part of the instance
space.

3.2 Selecting Classification

Recall that ensemble classification can be performed by either fusing the
outputs of all members or selecting the output of a single member. In this
section we will explore the latter. The premise in this approach is that
there is a competent authority that nominates the best classifier for a given
instance x. The output of the selected classifier is referred to as the output
of the ensemble as a whole.

Very often the input space is partioned into K competence sub-spaces
which can have any shape or size. Then for each sub-space we nominate
one classifier to be the predictor.

Clustering and classification are both considered fundamental tasks in
data–mining. In essence, the difference between clustering and classifi-
cation lies in the manner knowledge is extracted from data: whereas in
classification the knowledge is extracted in a supervised manner based on
pre—defined classes, in clustering the knowledge is extracted in an unsu-
pervised way without any guidance from the user.

Decomposition may divide the database horizontally (subsets of rows
or tuples) or vertically (subsets of attributes). This section deals with the

72 Pattern Classification Using Ensemble Methods

former, namely tuple decomposition.
Many methods have been developed for partitioning the tuples into

subsets. Some of them are aimed at minimizing space and time needed for
the classification of a dataset; whereas others attempt to improve accuracy.
These methods may be roughly divided according to the manner in which
tuples are divided into subsets:

Sample—based tuple decomposition tuples are divided into subsets
via sampling. This category includes sampling, a degenerate form of
decomposition that decreases complexity but also accuracy [Catlett
(1991)], as well as multiple model methods. The latter may be sequen-
tial; trying to take advantage of knowledge gained in one iteration,
and uses it in the successive one. Such methods include algorithms as
windowing [Quinlan (1983)], trying to improve the sample they pro-
duce from one iteration to another, and also the boosting algorithm
[Schapire (1990)], increasing the probability of selecting instances that
are misclassified by the current classifier for constructing the next one,
in order to improve accuracy. Sample—based decomposition may also
be concurrent, thus enabling parallel learning. Classifiers produced
by concurrent methods may be combined using a number of meth-
ods, varying from simple voting (e.g. bagging) to more sophisticated
meta—classifying methods, such as stacking [Wolpert (1992)], grad-
ing [Seewald and Furnkranz (2001)] and arbiter tree [Chan and Stolfo
(1993)]. Many multiple model methods were showed to improve ac-
curacy. This accuracy gain may stem from the variation in classifiers,
built by the same algorithm, or from the advantages of the sequential
process.

Space—based decomposition Tuples are divided into subsets according
to their belonging to some part of space. [Kusiak (2000)] describes the
notion of “feature value decomposition” in which objects or instances
are partitioned into subsets according to the values of selected input
attributes. Kusiak also suggests the notion of “decision value decom-
position” in which objects are partitioned according to the value of
the decision (or more generally, the target attribute). Kusiak does
not describe a method for selecting the set of attributes according to
which the partition is performed. In fact his work deals only with the
decision—making process, and does not offer an automated procedure
for space—based decomposition.

Ensemble Classification 73

A Model Class Selection (MCS) — a system that searches different clas-
sification algorithms for different regions in the instance—space is proposed
by [Brodley (1995a)]. The MCS system, which can be regarded as imple-
menting an instance—space decomposition strategy, uses dataset character-
istics and expert—rules to select one of three possible classification methods
(a decision tree, a discriminant function or an instance—based method) for
each region in the instance—space. The expert—rules are based on past
empirical comparisons of classifier performance, which can be considered as
prior knowledge.

In the neural network community, several researchers have examined the
decomposition methodology. [Nowlan and Hinton (1991)] examined the
Mixture–of–Experts (ME) methodology that decomposes the input space,
such that each expert examines a different part of the space. However the
subspaces have soft “boundaries”, namely subspaces are allowed to overlap.
A gating network is responsible for combining the various experts. [Jordan
and Jacobs (1994)] have proposed an extension to the basic mixture of
experts, known as Hierarchical Mixtures of Experts (HME). This extension
decomposes the space into subspaces and then recursively decompose each
subspace to subspaces.

Variations of the basic mixture–of–experts method have been developed
to accommodate specific domain problems. [Hampshire and Waibel (1992)]
and [Peng et al. (1996)] have used a specialized modular network called
the Meta–pi network to solve the vowel—speaker problem. [Weigend et al.
(1995)] proposed nonlinear gated experts for time—series while citeOhno–
MachadoMusen used a revised modular network for predicting the survival
of AIDS patients. [Rahman and Fairhurst (1997)] proposed a new approach
for combining multiple experts for improving recognition of handwritten
numerals.

NBTree [Kohavi (1996)] is an instance space decomposition method
that induces a decision tree and a Näıve Bayes hybrid classifier. Näıve
Bayes, which is a classification algorithm based on Bayes’ theorem and a
Näıve independence assumption, is very efficient in terms of its processing
time. To induce an NBTree, the instance space is recursively partitioned
according to attributes values. The result of the recursive partitioning is
a decision tree whose terminal nodes are Näıve Bayes classifiers. Since
subjecting a terminal node to a Näıve Bayes classifier means that the hy-
brid classifier may classify two instances from a single hyper—rectangle
region into distinct classes, the NBTree is more flexible than a pure deci-
sion tree. In order to decide when to stop the growth of the tree, NBTree

74 Pattern Classification Using Ensemble Methods

compares two alternatives in terms of error estimation — partitioning into
a hyper—rectangle regions and inducing a single Näıve Bayes classifier.
The error estimation is calculated by cross—validation, which significantly
increases the overall processing time. Although NBTree applies a Näıve
Bayes classifier to decision tree terminal nodes, classification algorithms
other than Näıve Bayes are also applicable. However, the cross—validation
estimations make the NBTree hybrid computationally expensive for more
time—consuming algorithms such as neural networks.

NBTree uses a simple stopping criterion according to which a split is
not considered when the dataset consists of 30 instances or less. Splitting
too few instances will not affect the final accuracy much yet will lead, on
the other hand, to a complex composite classifier. Moreover, since each
sub classifier is required to generalize instances in its region, it must be
trained on samples of sufficient size. [Kohavi (1996)] suggested a new
splitting criterion which is to select the attribute with the highest utility.
Kohavi defined utility as the 5—fold cross—validation accuracy estimate of
using a Näıve Bayes algorithm for classifying regions generated by a split.
The regions are partitions of the initial subspace according to a particular
attribute values.

Although different researchers have addressed the issue of instance space
decomposition, there is no research that suggests an automatic procedure
for mutually exclusive instance space decompositions, which can be em-
ployed for any given classification algorithm and in a computationally effi-
cient way. We present an algorithm for space decomposition, which exploits
the K—means clustering algorithm. It is aimed at reducing the error rate
comparing to the simple classifier embedded in it, while keeping the com-
prehensibility level.

3.2.1 Partitioning the Instance Space

This section presents a decomposition method that partitions the instance
space using the K—means algorithm and then employs an induction algo-
rithm on each cluster. Because space decomposition is not necessarily suit-
able to any given dataset and in some cases it might reduce the classifi-
cation accuracy, we suggest a homogeneity index that measures the initial
reduction in sum of square errors resulting from the clustering procedure.
Consequently the decomposition method is executed only if the homogene-
ity index obtained a certain threshold value. Additionally the proposed
procedure ensure that there is suffices number of instances in each cluster

Ensemble Classification 75

for inducing a classifier. An empirical study conducted shows that the pro-
posed method can lead to a significant increase of classification accuracy
especially in numeric datasets.

One of the main issues arising when trying to address the problem for-
mulated in the last section concerns the question of what sort of instance
space division should be taken in order to achieve as high accuracy as pos-
sible. One may come up with quite a few ways for dividing the instance
space, varying from using one attribute at a time (similarly to decision tree
construction) to the use of different combinations of attribute values.

Inspired by the idea that similar instances should be assigned to the
same subspace, it lead us towards using some clustering method as a possi-
ble tool for detecting populations. That is since “clustering is the grouping
of similar objects” [Hartigan (1975)]. We choose to define the similarity of
unlabeled data via the distance metric. In particular, the metric used will
be the Euclidean metric for continuous attributes, involving simple match-
ing for nominal ones (very similar to the similarity measure used by [Haung
(1998)] in the K—prototypes algorithm, except for the fact that there is
no special cluster—dependent weight for the categorical attributes). The
reason for this particular metric chosen lies in the clustering method we
prefer for this work, namely the K—means algorithm.

3.2.1.1 The K–Means Algorithm as a Decomposition Tool

The K—means algorithm is one of the simplest and most commonly used
clustering algorithms. It is a partitional algorithm, heuristically attempting
to minimize the sum of squared errors:

SSE =
K∑

k=1

Nk∑
i=1

‖xi − µk‖2 (3.17)

where Nk is the number of instances belonging to cluster k and µk is the
mean of k’th cluster, calculated as the mean of all the instances belonging
to that cluster:

µk,i=
1

Nk

Nk∑
q=1

xq,i∀i (3.18)

Figure 3.1 presents the pseudo—code of the K—means algorithm. The
algorithm starts with an initial set of cluster centers, chosen at random or

76 Pattern Classification Using Ensemble Methods

according to some heuristic procedure. In each iteration, each instance is
assigned to its nearest cluster center according to the Euclidean distance
between the two. Then the cluster centers are re—calculated.

A number of convergence conditions are possible. For example, the
search may stop when the partitioning error is not reduced by the relocation
of the centers. This indicates that the present partition is locally optimal.
Other stopping criteria can be used also such as exceeding a pre—defined
number of iterations.

K-Mean Clustering (S,K)

S - Instances Set

K - Number of Clusters

Randomly initialize K cluster centers.

WHILE termination condition is not satisfied {

Assign instances to the closest cluster center.

Update cluster centers using the instances assignment

}

Fig. 3.1 K-means algorithm.

The K—means algorithm may be viewed as a gradient—decent proce-
dure, which begins with an initial set of K cluster—centers and iteratively
updates it so as to decrease the error function. The algorithm starts with
an initial set of cluster centers, chosen at random or according to some
heuristic. In each iteration, each instance is assigned to its nearest clus-
ter center according to the Euclidean distance between the two. Then the
cluster centers are re—calculated.

A number of convergence conditions are possible, including no reduction
in error as a result of the relocation of centers, no (or minimal) reassignment
of instances to new cluster centers, or exceeding a pre—defined number of
iterations. A rigorous proof of the finite convergence of the K—means
type algorithms is given in [Selim and Ismail (1984)]. The complexity of
T iterations of the K—means algorithm performed on a sample size of m

instances, each characterized by N attributes is: O(T ∗K ∗m ∗N).
For T iterations of the K—means algorithm performed on a dataset

containing m instances each has n attributes, its complexity may be cal-
culated as: O(T ∗K ∗m ∗ n). This linear complexity with respect to m is
one of the reasons for the popularity of K—means: Even if the number of

Ensemble Classification 77

instances is substantially large (which often is the case nowadays) — this
algorithm is computationally attractive. Thus, K—means has an advan-
tage in comparison to other clustering methods (e.g. hierarchical clustering
methods), which have non—linear complexity with respect to the number
of instances.

Other reasons for the algorithm’s popularity are its ease of interpreta-
tion, simplicity of implementation, speed of convergence and adaptability
to sparse data [Dhillon and Modha (2001)].

Having intended to use a clustering algorithm as a means for partitioning
the dataset, and taking into account the availability, linear complexity and
high understandability of the K—means algorithm, we choose to integrate
this specific clustering method in our algorithm.

The K—means algorithm may be considered as a simplification of the
expectation maximization algorithm [Dempster et al. (1977)]. This is
a density based clustering algorithm used for identifying the parameters
of different distributions from which the data objects are assumed to be
drawn. In the case of K—means, the objects are assumed to be drawn from
a mixture of K multivariate normal distributions, sharing the same known
variance whereas the mean vectors of the K distributions are unknown
[Estivill-Castro (2000)]. When employing the K—means on the unlabeled
data, this underlying assumption of the algorithm may be written as:

x ∼ N(µk, σ2)∀k = 1, 2, . . . , K, x ∈ Ck (3.19)

According to Bayes’ theorem:

p(y = c∗j |x) =
p(y = c∗j , x)

p(x)
(3.20)

Since p(x) depends on the distribution from which the unlabeled inst-
ances are drawn and since it is plausible to assume that different clusters
has different distributions, it implies that p(y = c∗j |x) is distributed differ-
ently on different clusters. The latter distribution has a direct influence on
the predicted value of the target attribute, since:

ŷ (x) = arg max
c∗j∈dom(y)

p
(
y = c∗j |x

)
(3.21)

This supports the idea of using clustering algorithm.

78 Pattern Classification Using Ensemble Methods

3.2.1.2 Determining the Number of Subsets

In order to proceed with the decomposition of unlabeled data, a significant
parameter should be at hand — the number of subsets, or in our case,
clusters, existing in the data.

The K—means algorithm requires this parameter as input, and is af-
fected by its value. Various heuristics attempt to find an optimal number
of clusters most of them refer to inter—cluster distance or intra—cluster
similarity. Nevertheless in this case as we know the actual class of each
instance, we suggest using the mutual information criterion for clustering
[Strehl et al. (2000)]). The criterion value for m instances clustered using
C = {C1, . . . , Cg} and referring to the target attribute y whose domain is
dom(y) = {c1, . . . , ck} is defined as follows:

C =
2
m

g∑
l=1

k∑
h=1

ml,h logg·k(
ml,h ·m
m.,l ·ml,.

) (3.22)

where ml,h indicate the number of instances that are in cluster Cl and also
in class ch. m.,h denotes the total number of instances in the class ch.
Similarly ml,. indicates the number of instances in cluster Cl.

3.2.1.3 The Basic K–Classifier Algorithm

The basic K—classifier algorithm employs the K—means algorithm for the
purpose of space decomposition and uses mutual information criterion for
clustering for determining the number of clusters. The algorithm follows
the following steps:

Step 1 Apply the K—means algorithm to the training set S using K =
2, 3, . . .Kmax

Step 2 Compute the mutual information criterion for clustering for K =
2, 3, . . . , Kmax and choose the optimal number of clusters K∗.

Step 3 Produce K classifiers of the induction algorithm I, each produced
on the training data belonging to a subset k of the instance space.
A decomposition of the space is defined as follows: Bk = {x ∈ X :
k = argmin ‖x− µk‖} k = 1, 2, . . . , K∗ and therefore the classifier
constructed will be: I(x ∈ S ∩Bk) k = 1, 2, . . . , K∗

New instances are classified by the K—classifier as follows:

Ensemble Classification 79

• The instance is assigned to the cluster closest to it: Bk : k =
argmin ‖x− µk‖.

• The classifier induced using Bk is employed for assigning a class to the
instance.

We analyze the extent to which the conditions surrounding the basic
K—classifier may lead to its success or failure. This is done using three
representative classification algorithms: C4.5, Neural network and Näıve
Bayes. These algorithms, denoted by “DT”, “ANN” and “NB” respectively,
are employed on eight databases from the UCI repository, once in their basic
form and once combined with the K—classifier. The classification error
rate, resulting from the decomposition, is measured and compared to that
achieved by the basic algorithm using McNemar’s test [Dietterich (1998)].
The maximum number of clusters is set to a sufficiently large number (25).

These experiments are executed 5 times for each database and each
classifying algorithm, in order to reduce the variability resulting from the
random choice of training set in McNemar’s test.

In order to analyze the causes for the K—classifier’s success/failure, a
Meta dataset has been constructed. This dataset contains a tuple for each
experiment on each database with each classifying algorithm. Its attributes
correspond to the characteristics of the experiment:

Record—attribute ratio Calculated as training set size divided by the
attribute set size.

Initial PRE the reduction in the SSE, resulting from partitioning the
dataset from one cluster (the non partitioned form) to two. This char-
acteristic was chosen since we suspect it indicates whether the data set
should be partitioned at all.

Induction method the induction algorithm employed on the database.

In order to analyze the reduction in error rate as a function of method
and dataset characteristics, a meta—classifier is constructed. The inducer
employed for this purpose is the C4.5 algorithm.

As for the target attribute it represents the accuracy performance of the
basic K—classifier algorithm relatively to the appropriate accuracy perfor-
mance of the inducer employed in the base form. The target attribute can
have one of the following values: non—significant decrease/increase of up
to ten percent (“small ns dec/inc”), non—significant decrease/increase of
ten percent or more (“large ns dec/inc”), significant decrease/increase of
up to ten percent (“small s dec/inc”), significant decrease/increase of ten

80 Pattern Classification Using Ensemble Methods

percent or more (“large s dec/inc”), and a decrease rate of 0 percent (“no
change”). The resultant decision tree is presented in Figure 3.2.

������
����	
�������	�

�������	��

����������

����������

�������	��

���

�������

�������

���������������

��������

��	�	�
����

�����

�����

������

 !

� ��"�

Fig. 3.2 A decision tree describing the change in error achieved by the K—classifier.

As may be learned from the tree, the two attributes that determine
whether or not the K—classifier would achieve a significant decrease in
error rate are the record—attribute ratio and the initial PRE. A significant
decrease in error rate may occur when the former characteristic exceeds
20.67 and the latter exceeds 0.2.

This result also answers the question: should there always be a recom-
mended partition? This question may be viewed as a preliminary check of
the dataset, aiming at discovering whether or not it requires space decom-
position.

When the record—attribute ratio is smaller than 20.67 or equals it,
the result will be a significant increase in the error rate, or at the very
least — a non—significant increase. Therefore, it may be concluded that
datasets containing a small number of records compared to their number
of attributes should not be partitioned using the K—classifier algorithm.

Another conclusion that may be drawn from this stage is that the K—
classifier algorithm works better on integer or continuous—valued attri-
butes. Though the algorithm did not significantly decrease error on all
databases of such values, the ones on which error decreased significantly all
contained integer attributes, continuous—valued attributes or some combi-
nation of these two kinds.

Ensemble Classification 81

3.2.1.4 The Heterogeneity Detecting K–Classifier
(HDK–Classifier)

The analysis of error reduction rate provides the basic K—classifier with the
missing link regarding when clustering should be used. As we suspected,
decomposition does not always yield an accuracy gain, and may deteriorate
it on many occasions. Such results may derive from the homogeneity, or lack
of heterogeneity of the dataset: there are no distinct clusters or populations
in the dataset, and therefore it should not be partitioned.

The mutual information criterion, used in the basic K—classifier, does
not examine whether heterogeneity exists. It simply assumes it exits and
aims at finding the number of populations in the data, given that the dataset
is indeed composed of different populations.

Should we detect non—heterogeneous datasets, there is no need for
decomposing them, since their error will not decrease. The current K—
classifier, increasing the running time complexity compared to the basic
learning algorithm, only yields worse results on such datasets. In light of
this we refine the basic K—classifier, and add another step, to be taken
first. In this step the K—means is employed for K = 1 and K = 2, and
it is checked whether the resultant PRE is larger than 0.2. If so, the rest
of the K—classifier stages follow. If not, it is assumed that there is no use
in decomposition, so the inducer in its base form is employed on the entire
dataset. Thus, the algorithm maintains the accuracy of non—heterogeneous
datasets at the expense of an additional complexity that is much smaller
compared to the basic K—classifier.

3.2.1.5 Running–Time Complexity

The offered training algorithm requires the following computations:

• During the stages of determining the best number of clusters, the K—
means algorithm is run Kmax-1 times. That leads to a complexity of
O(T ∗K2

max ∗ n ∗m).
• Computation of the PRE’s value for K = 1 and K = 2 is of O(n ∗m)

complexity and is therefore negligible.
• Constructing a classifier on each of the K∗ partitions requires at most

O(Kmax∗GI(m, n) where GI is the classifier’s training complexity time.
For instance, when employing the decision tree algorithm, the time
complexity of this stage will be at most O(Kmax ∗ m

√
l) where the

number of leaves of the decision tree is l.

82 Pattern Classification Using Ensemble Methods

In light of the above analysis the total running—time complexity of the
training algorithm is O(T ∗K2

max ∗ n ∗m + Kmax ∗GI(m, n)). In the case
of decision trees classifiers, for instance, the time—complexity would be:
O(T ∗K2

max ∗ n ∗m + Kmax ∗m
√

l).

3.3 Mixture of Experts and Meta Learning

Meta-learning is a process of learning from learners (classifiers). The train-
ing of a meta-classifier is composed of two or more stages, rather than one
stage, as with standard learners. In order to induce a meta classifier, first
the base classifiers are trained (stage one), and then the Meta classifier
(second stage). In the prediction phase, base classifiers will output their
classifications, and then the Meta-classifier(s) will make the final classifica-
tion (as a function of the base classifiers). Meta-learning methods are best
suited for cases in which certain classifiers consistently correctly classify, or
consistently misclassify, certain instances.

The following sections describe the most well-known meta-combination
methods.

3.3.1 Stacking

Stacking is probably the most-popular meta-learning technique [Wolpert
(1992)]. By using a meta-learner, this method tries to induce which classi-
fiers are reliable and which are not. Stacking is usually employed to com-
bine models built by different inducers. The idea is to create a meta-dataset
containing a tuple for each tuple in the original dataset. However, instead
of using the original input attributes, it uses the predicted classifications
by the classifiers as the input attributes. The target attribute remains as
in the original training set. A test instance is first classified by each of
the base classifiers. These classifications are fed into a meta-level training
set from which a meta-classifier is produced. This classifier combines the
different predictions into a final one. It is recommended that the original
dataset should be partitioned into two subsets. The first subset is reserved
to form the meta-dataset and the second subset is used to build the base-
level classifiers. Consequently the meta-classifier predications reflect the
true performance of base-level learning algorithms. Stacking performance
can be improved by using output probabilities for every class label from
the base-level classifiers. In such cases, the number of input attributes in

Ensemble Classification 83

the meta-dataset is multiplied by the number of classes.
It is recommended that the original dataset should be partitioned into

two subsets. The first subset is reserved to form the meta-dataset and the
second subset is used to build the base-level classifiers. Consequently the
meta-classifier predications reflect the true performance of base-level learn-
ing algorithms. Stacking performance can be improved by using output
probabilities for every class label from the base-level classifiers. It has been
shown that with stacking the ensemble performs (at best) comparably to
selecting the best classifier from the ensemble by cross validation (Dzeroski
and Zenko, 2004).

It has been shown that with stacking the ensemble performs (at best)
comparably to selecting the best classifier from the ensemble by cross val-
idation [Džeroski and Ženko (2004)]. In order to improve the existing
stacking approach, they employed a new multi-response model tree to learn
at the meta-level and empirically showed that it performs better than ex-
isting stacking approaches and better than selecting the best classifier by
cross-validation.

There are many variants of the basic Stacking algorithm [Wolpert and
Macready (1996)]. The most useful Stacking scheme is specified in [Ting
and Witten (1999)]. The meta-database is composed of the posteriori class
probabilities of each classifier. it has been shown that this schema in com-
bination with multi-response linear regression as a meta-learner gives the
best results.

Džeroski and ženko (2004) demonstrated that for this schema to work
better than just selecting the best classifier, it is required the use of a meta-
classifier based on multi-response trees. Seewald (2002A) showed that from
a choice of seven classifiers it was possible for a Stacking scheme using four
of the classifiers that were considered as belonging to different classifier
types, to perform equally as well as all seven classifiers. There has been
considerably less intention given to the area of heterogeneity and Stacking
in the area of regression problems.

StackingC is a variation of the simple Stacking method. In empirical
tests Stacking showed significant performance degradation for multi-class
datasets. StackingC was designed to address this problem. In StackingC,
each base classifier outputs only one class probability prediction (Seewald,
2003). Each base classifier is trained and tested upon one particular class
while stacking output probabilities for all classes and from all component
classifiers.

Seewald (2003) has shown that all ensemble learning systems, includ-

84 Pattern Classification Using Ensemble Methods

ing StackingC (Seewald, 2002B), Grading (Seewald and Fuernkranz, 2001)
and even Bagging (Breiman, 1996) can be simulated by Stacking (Wolpert,
1992). To do this they give functionally equivalent definitions of most
schemes as Meta-classifiers for Stacking. Džeroski and ženko (2004) indi-
cated that the combination of SCANN (Merz, 1999), which is a variant of
Stacking, and MDT (Ting and Witten, 1999) plus selecting the best base
classifier using cross validation seems to perform at about the same level
as Stacking with Multi-linear Response (MLR).

Seewald (2003) presented strong empirical evidence that Stacking in the
extension proposed by Ting and Witten (1999) performs worse on multi-
class than on two-class datasets, for all but one meta-learner he investi-
gated. The explanation given was that when the dataset has a higher num-
ber of classes, the dimensionality of the meta-level data is proportionally
increased. This higher dimensionality makes it harder for meta-learners to
induce good models, since there are more features to be considered. The
increased dimensionality has two more drawbacks. First, it increases the
training time of the Meta classifier; in many inducers this problem is acute.
Second, it also increases the amount of memory which is used in the process
of training. This may lead to insufficient resources, and therefore may limit
the number of training cases (instances) from which an inducer may learn,
thus damaging the accuracy of the ensemble.

During the learning phase of StackingC it is essential to use one-against-
all class binarization and regression learners for each class model. This class
binarization is believed to be a problematic method especially when class
distribution is highly non-symmetric. It has been illustrated (Frnkranz,
2002) that handling many classes is a major problem for the one-against-
all binarization technique, possibly because the resulting binary learning
problems increasingly skewed class distributions. An alternative to one-
against-all class binarization is the one-against-one binarization in which
the basic idea is to convert a multiple class problem into a series of two-
class problems by training one classifier for each pair of classes, using only
training examples of these two classes and ignoring all others. A new exam-
ple is classified by submitting it to each of the k(k−1)

2 binary classifiers, and
combining their predictions. We have found in our preliminary experiments
that this binarization method yields noticeably poor accuracy results when
the number of classes in the problem increases. Later, after performing a
much wider and broader experiment on StackingC in conjunction with the
one-against-one binarization method, we came to this same conclusion. An
explanation might be that, as the number of classes in a problem increases,

Ensemble Classification 85

the greater is the chance that any of the k(k−1)
2 base classifiers will give a

wrong prediction. There are two reasons for this. First, when predicting
the class of an instance, only out of k(k−1)

2 classifiers may predict correctly.
This is because only k − 1 classifiers were trained on any specific class.

The second reason is that in one-against-one binarization we use only
instances of two classes – the instances of each one of the pair classes, while
in one-against-all we use all instances, and thus the number of training
instances for each base classifier in one-against-one binarization is much
smaller than in the one-against-all binarization method. Thus using the
one-against-one binarization method may yield inferior base classifier.

StackingC improves on Stacking in terms of significant accuracy differ-
ences, accuracy ratios, and runtime. These improvements are more evident
for multi-class datasets and have a tendency to become more pronounced
as the number of classes increases. StackingC also resolves the weakness of
Stacking in the extension proposed by Ting and Witten (1999) and offers
a balanced performance on two-class and multi-class datasets.

The SCANN (Stacking, Correspondence Analysis and Nearest Neigh-
bor) combining method [Merz (1999)] uses the strategies of stacking and
correspondence analysis. Correspondence analysis is a method for geomet-
rically modelling the relationship between the rows and columns of a matrix
whose entries are categorical. In this context Correspondence Analysis is
used to explore the relationship between the training examples and their
classification by a collection of classifiers.

A nearest neighbor method is then applied to classify unseen examples.
Here, each possible class is assigned coordinates in the space derived by
Correspondence Analysis. Unclassified examples are mapped into the new
space, and the class label corresponding to the closest class point is assigned
to the example.

3.3.2 Arbiter Trees

According to Chan and Stolfo’s approach [Chan and Stolfo (1993)], an
arbiter tree is built in a bottom-up fashion . Initially, the training set is
randomly partitioned into k disjoint subsets. The arbiter is induced from a
pair of classifiers and recursively a new arbiter is induced from the output
of two arbiters. Consequently for k classifiers, there are log2(k) levels in
the generated arbiter tree.

The creation of the arbiter is performed as follows. For each pair of
classifiers, the union of their training dataset is classified by the two classi-

86 Pattern Classification Using Ensemble Methods

fiers. A selection rule compares the classifications of the two classifiers and
selects instances from the union set to form the training set for the arbiter.
The arbiter is induced from this set with the same learning algorithm used
in the base level. The purpose of the arbiter is to provide an alternate
classification when the base classifiers present diverse classifications. This
arbiter, together with an arbitration rule, decides on a final classification
outcome, based upon the base predictions. Figure 3.3 shows how the final
classification is selected based on the classification of two base classifiers
and a single arbiter.

Fig. 3.3 A prediction from two base classifiers and a single arbiter.

The process of forming the union of data subsets; classifying it using
a pair of arbiter trees; comparing the classifications; forming a training
set; training the arbiter; and picking one of the predictions, is recursively
performed until the root arbiter is formed. Figure 3.4 illustrate an arbiter
tree created for k = 4. T1 − T4 are the initial four training datasets from
which four classifiers M1−M4 are generated concurrently. T12 and T34 are
the training sets generated by the rule selection from which arbiters are
produced. A12 and A34 are the two arbiters. Similarly, T14 and A14 (root
arbiter) are generated and the arbiter tree is completed.

There are several schemes for arbiter trees; each is characterized by a
different selection rule. Here are three versions of selection rules:

• Only instances with classifications that disagree are chosen (group 1).
• Like group 1 defined above, plus instances where their classifications

agree but are incorrect (group 2).
• Like groups 1 and 2 defined above, plus instances that have the same

correct classifications (group 3).

Of the two versions of arbitration rules that have been implemented, each
corresponds to the selection rule used for generating the training data at

Ensemble Classification 87

Fig. 3.4 Sample arbiter tree.

that level:

• For selection rule 1 and 2, a final classification is made by a majority
vote of the classifications of the two lower levels and the arbiter’s own
classification, with preference given to the latter.

• For selection rule 3, if the classifications of the two lower levels are not
equal, the classification made by the sub-arbiter based on the first group
is chosen. In case this is not true and the classification of the sub-arbiter
constructed on the third group equals those of the lower levels, then
this is the chosen classification. In any other case, the classification of
the sub-arbiter constructed on the second group is chosen. In fact it is
possible to achieve the same accuracy level as in the single mode applied
to the entire dataset but with less time and memory requirements [Chan
and Stolfo (1993)]. More specifically it has been shown that this meta-
learning strategy required only around 30% of the memory used by
the single model case. This last fact, combined with the independent
nature of the various learning processes, make this method robust and
effective for massive amounts of data. Nevertheless, the accuracy level
depends on several factors such as the distribution of the data among
the subsets and the pairing scheme of learned classifiers and arbiters
in each level. The decision regarding any of these issues may influence
performance, but the optimal decisions are not necessarily known in
advance, nor initially set by the algorithm.

88 Pattern Classification Using Ensemble Methods

3.3.3 Combiner Trees

The way combiner trees are generated is very similar to arbiter trees. Both
are trained bottom-up. However, a combiner, instead of an arbiter, is placed
in each non-leaf node of a combiner tree [Chan and Stolfo (1997)]. In the
combiner strategy, the classifications of the learned base classifiers form the
basis of the meta-learner’s training set. A composition rule determines the
content of training examples from which a combiner (meta-classifier) will
be generated. In classifying an instance, the base classifiers first generate
their classifications and based on the composition rule, a new instance is
generated. The aim of this strategy is to combine the classifications from
the base classifiers by learning the relationship between these classifications
and the correct classification. Figure 3.5 illustrates the result obtained from
two base classifiers and a single combiner.

Fig. 3.5 A prediction from two base classifiers and a single combiner.

Two schemes for composition rules were proposed. The first one is
the stacking scheme. The second is like stacking with the addition of the
instance input attributes. It has been shown that the stacking scheme per
se does not perform as well as the second scheme [Chan and Stolfo (1995)].
Although there is information loss due to data partitioning, combiner trees
can sustain the accuracy level achieved by a single classifier. In a few cases,
the single classifier’s accuracy was consistently exceeded.

3.3.4 Grading

This technique uses “graded” classifications as meta-level classes [Seewald
and Furnkranz (2001)]. The term “graded” is used in the sense of clas-
sifications that have been marked as correct or incorrect. The method
transforms the classification made by the k different classifiers into k train-
ing sets by using the instances k times and attaching them to a new binary
class in each occurrence. This class indicates whether the k–th classifier

Ensemble Classification 89

yielded a correct or incorrect classification, compared to the real class of
the instance.

For each base classifier, one meta-classifier is learned whose task is to
classify when the base classifier misclassifies. At classification time, each
base classifier classifies the unlabeled instance. The final classification is
derived from the classifications of those base classifiers that are classified to
be correct by the meta-classification schemes. In case several base classifiers
with different classification results are classified as correct, voting, or a
combination considering the confidence estimates of the base classifiers,
is performed. Grading may be considered as a generalization of cross-
validation selection [Schaffer (1993)], which divides the training data into
k subsets, builds k−1 classifiers by dropping one subset at a time and then
uses it to find a misclassification rate. Finally, the procedure simply chooses
the classifier corresponding to the subset with the smallest misclassification.
Grading tries to make this decision separately for each and every instance
by using only those classifiers that are predicted to classify that instance
correctly. The main difference between grading and combiners (or stacking)
is that the former does not change the instance attributes by replacing them
with class predictions or class probabilities (or adding them to it). Instead
it modifies the class values. Furthermore, in grading several sets of meta-
data are created, one for each base classifier. Several meta-level classifiers
are learned from those sets.

The main difference between grading and arbiters is that arbiters use
information about the disagreements of classifiers for selecting a training
set; grading uses disagreement with the target function to produce a new
training set.

3.3.5 Gating Network

Figure 3.6 illustrates an n-expert structure. Each expert outputs the condi-
tional probability of the target attribute given the input instance. A gating
network is responsible for combining the various experts by assigning a
weight to each network. These weights are not constant but are functions
of the input instance x. The gating network selects one or a few experts
(classifiers) which appear to have the most appropriate class distribution
for the example. In fact each expert specializes on a small portion of the
input space.

An extension to the basic mixture of experts, known as hierarchical mix-
tures of experts (HME), has been proposed in [Jordan and Jacobs (1994)].

90 Pattern Classification Using Ensemble Methods

Fig. 3.6 Illustration of n-expert structure.

This extension decomposes the space into sub-spaces, and then recursively
decomposes each sub-space into sub-spaces.

Variations of the basic mixtures of experts methods have been developed
to accommodate specific domain problems. A specialized modular networks
called the Meta-pi network has been used to solve the vowel-speaker prob-
lem [Hampshire and Waibel (1992); Peng et al. (1996)]. There have
been other extensions to the ME such as nonlinear gated experts for time-
series [Weigend et al. (1995)]; revised modular network for predicting
the survival of AIDS patients [Ohno-Machado and Musen (1997)]; and a
new approach for combining multiple experts for improving handwritten
numeral recognition [Rahman and Fairhurst (1997)].

Some of the weighting methods are trainable. Lin et al. (2005) propose
to use genetic algorithms in attempt to find the optimal weights. They
describe two different combinatorial schemes to improve the performance
of handwritten Chinese character recognition: the accuracy rate of the first
candidate class and the accuracy rate of top ten candidate classes. Their
extensive study show that this new approach can significantly improve the
accuracy performance.

Reinforcement learning (RL) has been used to adaptively combine the
base classifiers [Dimitrakakis (2005)]. The ensemble consists of a control-
ling agent that selects which base classifiers are used to classify a particular
instance. The controlling agent learns to make decisions so that classifica-
tion error is minimized. The agent is trained through a Q-learning inspired
technique. The usage of reinforcement learning improves results when there

Ensemble Classification 91

are many base classifiers.

Chapter 4

Ensemble Diversity

4.1 Overview

Ensemble methods are very effective, mainly due to the phenomenon
that various types of classifiers have different “inductive biases” [Mitchell
(1997)]. In order to make the ensemble more effective, there should be some
sort of diversity between the classifiers [Kuncheva (2005b)]. Diversity may
be obtained through different presentations of the input data, as in bag-
ging, variations in learner design, or by adding a penalty to the outputs to
encourage diversity.

Indeed, ensemble methods can effectively make use of such diversity
to reduce the variance-error [Tumer and Ghosh (1996); Ali and Pazzani
(1996)] without increasing the bias-error. In certain situations, an ensemble
can also reduce bias-error, as shown by the theory of large margin classifiers
[Bartlett and Shawe-Taylor (1998)]. In an ensemble, the combination of
the output of several classifiers is only useful if they disagree about some
inputs [Tumer and Ghosh (1996)].

Creating an ensemble in which each classifier is as different as possible
while still being consistent with the training set is theoretically known to be
an important feature for obtaining improved ensemble performance [Krogh
and Vedelsby (1995)]. According to [Hu (2001)], diversified classifiers lead
to uncorrelated errors, which in turn improve classification accuracy .

Brown et al. [Brown et al. (2005)] indicate that for classification
tasks the concept of “diversity” is still an ill-defined concept. Nevertheless
it is believed to be closely related to the statistical concept of correlation.
Diversity is obtained when the misclassification events of the base classifiers
are not correlated. Several means can be used to reach this goal: different
presentations of the input data, variations in learner design, or by adding
a penalty to the outputs to encourage diversity.

93

94 Pattern Classification Using Ensemble Methods

In the regression context, the bias-variance-covariance decomposition
has been suggested to explain why and how diversity between individual
models contribute toward overall ensemble accuracy. Nevertheless, in the
classification context, there is no complete and agreed upon theory [Brown
et al. (2005)]. More specifically, there is no simple analogue of variance-
covariance decomposition for the zero-one loss function. Instead, there are
several ways to define this decomposition. Each way has its own assump-
tions.

Sharkey [Sharkey (1999)] suggested a taxonomy of methods for creating
diversity in ensembles of neural networks. More specifically, Sharkey’s tax-
onomy refers to four different aspects: the initial weights; the training data
used; the architecture of the networks; and the training algorithm used.

Brown et al. [Brown et al. (2005)] suggest a different taxonomy which
consists of the following branches: varying the starting points within the
hypothesis space; varying the set of hypotheses that are accessible by the
ensemble members (for instance by manipulating the training set); and
varying the way each member traverses the space.

In this chapter we suggest the following taxonomy. Note however that
the components of this taxonomy are not mutually exclusive, namely, there
are a few algorithms which combine two of them.

(1) Manipulating the Inducer – We manipulate the way in which the base
inducer is used. More specifically each ensemble member is trained
with an inducer that is differently manipulated.

(2) Manipulating the Training Sample – We vary the input that is used
by the inducer for training. Each member is trained from a different
training set.

(3) Changing the target attribute representation – Each classifier in the
ensemble solve a different target concept.

(4) Partitioning the search space – Each member is trained on a different
search subspace.

(5) Hybridization – Diversity is obtained by using various base inducers or
ensemble strategies.

4.2 Manipulating the Inducer

A simple method for gaining diversity is to manipulate the inducer used
for creating the classifiers. Below we survey several strategies to gain this
diversity.

Ensemble Diversity 95

4.2.1 Manipulation of the Inducer’s Parameters

The base inducer usually can be controlled by a set of parameters. For
example, the well known decision tree inducer C4.5 has the confidence level
parameter that greatly affect learning. Drucker [Drucker (2002)] examine
the effect of early pruning of decision trees on the performance of the entire
ensemble. When an algorithm (such as decision tree) is used as a single
strong learner, then certain aspects should be taken into consideration.
But when the same algorithm is used as a weak learner then other aspects
should be taken into consideration.

In the neural network community, there were several attempts to gain
diversity by using different number of nodes [Partridge and Yates (1996);
Yates and Partridge (1996)]. Nevertheless, these researches concludes that
variation in numbers of hidden nodes is not effective method of creating
diversity in neural network ensembles. Nevertheless the CNNE algorithm
[Islam et al. (2003)] which simultaneously determines the ensemble size
along with the number of hidden nodes in individual NNs, has shown en-
couraging results.

Another effective approach for ANNs is to use several network topolo-
gies. For instance the Addemup algorithm [Opitz and Shavlik (1996)] uses
genetic algorithm to select the network topologies composing the ensem-
ble. Addemup trains with standard backpropagation, then selects groups
of networks with a good error diversity according to the measurement of
diversity.

4.2.2 Starting Point in Hypothesis Space

Some inducers can gain diversity by starting the search in the Hypothesis
Space from different points. For example the simplest way to manipulate
the back-propagation inducer is to assign different initial weights to the
network [Kolen and Pollack (1991)]. Experimental study indicate that the
resulting networks differed in the number of cycles in which they took to
converge upon a solution, and in whether they converged at all. While it
is very simple way to gain diversity, it is now generally accepted that it is
not sufficient for achieving good diversity [Brown et al. (2005)].

4.2.3 Hypothesis Space Traversal

These techniques alter the way the inducer traverses the space, thereby
leading different classifiers to converge to different hypotheses [Brown et al.

96 Pattern Classification Using Ensemble Methods

(2005)]. We differentiate between two techniques for manipulating the space
traversal for gaining diversity: Random and Collective-Performance.

Random-based strategy
The idea in this case is to “inject randomness” into the inducers in order

to increase the independence among the ensemble’s members. Ali and Paz-
zani [Ali and Pazzani (1996)] propose to change the rule learning HYDRA
algorithm in the following way: Instead of selecting the best attribute at
each stage (using, for instance, an information gain measure), the attribute
is selected randomly such that its probability of being selected is propor-
tional to its measured value. A similar idea has been implemented for C4.5
decision trees [Dietterich (2000a)]. Instead of selecting the best attribute
in each stage, it selects randomly (with equal probability) an attribute from
the set of the best 20 attributes.

Collective-Performance-based strategy
In this case the evaluation function used in the induction of each member

is extended to include a penalty term that encourages diversity. The most
studied penalty method is the Negative Correlation Learning [Brown and
Wyatt (2003); Rosen (1996)]. The idea of negative correlation learning
is to encourage different individual classifiers in the ensemble to represent
different subspaces of the problem. While simultaneously creating the clas-
sifiers, the classifiers may interact with each other in order to specialize
(for instance by using a correlation penalty term in the error function to
encourage such specialization).

4.3 Manipulating the Training Samples

In this method, each classifier is trained on a different variation or subset
of the original dataset. This method is useful for inducers whose variance-
error factor is relatively large (such as decision trees and neural networks).
That is to say, small changes in the training set may cause a major change in
the obtained classifier. This category contains procedures such as bagging,
boosting and cross-validated committees.

4.3.1 Resampling

The distribution of tuples among the different classifier could be random as
in the bagging algorithm or in the arbiter trees. Other methods distribute

Ensemble Diversity 97

the tuples based on the class distribution such that the class distribution in

each subset is approximately the same as that in the entire dataset. It has

been shown that proportional distribution as used in combiner trees [Chan

and Stolfo (1995)] can achieve higher accuracy than random distribution.

Instead of perform sampling with replacement, some methods (like Ad-

aBoost or Wagging) manipulate the weights that are attached to each inst-

ance in the training set. The base inducer should be capable to take these

weights into account. Recently a novel framework was proposed in which

each instance contributes to the committee formation with a fixed weight,

while contributing with different individual weights to the derivation of the

different constituent classifiers [Christensen et al. (2004)]. This approach

encourages model diversity without biasing the ensemble inadvertently to-

wards any particular instance.

The bagging using diversity (BUD) algorithm [Tang et al. (2006)]

elaborates on the bagging algorithm by considering the diversity among

the base classifiers in order to achieve better results. It operates on the

assumption that the more diverse the classifiers are from each other, the

better results that are achieved the classifiers are combined. The algorithm

generates a set of base-classifiers from the training instances and then selects

a subset of the generated base-classifiers by iteratively applying different

diversity-measures on the current ensemble and the potential base-classifier

which is to be added to the ensemble.

Figure 4.1 presents the pseudocode of the BUD algorithm. First, a

simple bagging ensemble with T base classifiers is created. The classi-

fier with the smallest training error constitutes the initial output ensemble

M ′. Using either “disagreement”, the “Kohavi-Wolpert variance” or “gen-

eralized diversity”, additional T/2 − 1 bases classifiers are added to M ′.

Classification of new instances is performed using distribution summation

by taking into account the output of the base classifiers included in M ′.

Figures 4.2 to 4.6 present the pseudo code for calculating the diversity

measures.

4.3.2 Creation

The DECORATE algorithm [Melville and Mooney (2003)] is a dependent

approach in which the ensemble is generated iteratively, learning a classifier

at each iteration and adding it to the current ensemble. The first member is

created by using the base induction algorithm on the original training set.

98 Pattern Classification Using Ensemble Methods

Bagging using diversity.
Require: I (a base inducer), T (number of iterations), S (the original

training set), D (diversity measure).
1: for t = 1 to T do
2: Create a dataset S′ of size of S, created using random sampling with

replacement.
3: Mt = I(S′)
4: end for
5: M ′ = argmin

t∈[1,T]

∑
x:Mt(x) �=y 1

6: for i = 1 to (T
2 − 1) do

7: if D=”disagreement” OR D=”kohavi wolpert variance” OR
D=”generalized diversity” then

8: M ′ = M ′⋃ argmax
Mt /∈M ′

[
div
(
S, D, M

′ ∪Mt

)]
9: else

10: M ′ = M ′⋃ argmin
Mt /∈M ′

[
div
(
S, D, M

′ ∪Mt

)]
11: end if
12: end for

Fig. 4.1 Bagging using diversity.

Calculating the Disagreement Measure
Require: S (the original training set), M ′ (examined set of classifiers)
1: sum=0
2: for each unique pair of base classifiers {a, b} ⊆M

′ |a �= b do
3: sum=sum + number of instances where classifiers a and b disagree
4: end for
5: return 2sum

|S|×|M ′|×(|M ′|−1)

Fig. 4.2 Calculating the disagreement measure.

The successive classifiers are trained on an artificial set that combines tuples
from the original training set and also on some fabricated tuples. In each
iteration, the input attribute values of the fabricated tuples are generated
according to the original data distribution. On the other hand, the target
values of these tuples are selected so as to differ maximally from the cur-
rent ensemble predictions. Comprehensive experiments have demonstrated
that this technique is consistently more accurate than the base classifier,

Ensemble Diversity 99

Calculating the Double Fault Measure
Require: S (the original training set), M ′ (examined set of classifiers)
1: sum=0
2: for each unique pair of base classifiers {a, b} ⊆M

′ |a �= b do
3: sum=sum + number of instances that where misclassified by both a

and b.
4: end for
5: return 2sum

|S|×|M ′|×(|M ′|−1)

Fig. 4.3 Calculating the double fault measure.

Calculating the Kohavi Wolpert Variance
Require: S (the original training set), M ′ (examined set of classifiers)
1: sum=0
2: for each 〈xi, yi〉 ∈ S do
3: li = number of classifiers misclassified xi

4: sum = sum + li × (|M ′| − li)
5: end for
6: return sum

|S|×|M ′|2

Fig. 4.4 Calculating the Kohavi Wolpert variance.

Calculating the Inter Rater Measure
Require: S (the original training set), M ′ (examined set of classifiers)
1: sum=0
2: for each 〈xi, yi〉 ∈ S do
3: li = number of classifiers misclassified xi

4: sum = sum + li × (|M ′| − li)
5: end for
6: P = 1−

∑
li

|S|×|M ′|
7: return 1− sum

|S|×|M ′|×(|M ′|−1)×P×(1−P)

Fig. 4.5 Calculating the inter rater measure.

Bagging and Random Forests. Decorate also obtains higher accuracy than
boosting on small training sets, and achieves comparable performance on
larger training sets.

100 Pattern Classification Using Ensemble Methods

Calculating Generalized Diversity
Require: S (the original training set), M ′ (examined set of classifiers)
1: for each 〈xi, yi〉 ∈ S do
2: li = number of classifiers misclassified xi

3: Vi = |M
′|−li

|M ′|
4: end for
5: return variance of Vi

Fig. 4.6 Calculating generalized diversity.

4.3.3 Partitioning

Some argue that classic ensemble techniques (such as boosting and bag-
ging) have limitations on massive datasets, because the size of the dataset
can become a bottleneck [Chawla et al. (2004)]. Moreover, it is suggested
that partitioning the datasets into random, disjoint partitions will not only
overcome the issue of exceeding memory size, but will also lead to creating
an ensemble of diverse and accurate classifiers, each built from a disjoint
partition but with the aggregate processing all of the data. This can im-
prove performance in a way that might not be possible by subsampling.
More recently a framework for building thousands of classifiers that are
trained from small subsets of data in a distributed environment was pro-
posed [Chawla et al. (2004)]. The robust learning from bites (RLB) algo-
rithm that was proposed by Christmann et al. [Christmann et al. (2007)]
is also designed to work with large data sets.

Clustering techniques can be used to partitioning the sample. The goal
of clustering is to groups the data instances into subsets in such a manner
that similar instances are grouped together, while different instances belong
to different groups. The instances are thereby organized into an efficient
representation that characterizes the population being sampled. Formally,
the clustering structure is represented as a set of subsets C = C1, . . . , Ck

of S, such that: S =
⋃k

i=1 Ci and Ci ∩Cj = ∅ for i �= j. Consequently, any
instance in S belongs to exactly one and only one subset.

The simplest and most commonly used algorithm, employing a squared
error criterion is the K-means algorithm. This algorithm partitions the data
into K clusters (C1, C2, . . . , CK), represented by their centers or means.
The center of each cluster is calculated as the mean of all the instances
belonging to that cluster. The CBCD (cluster-based concurrent decom-
position) algorithm [Rokach et al. (2005),] first clusters the instance

Ensemble Diversity 101

space by using the K-means clustering algorithm. Then, it creates disjoint
sub-samples using the clusters in such a way that each sub-sample is com-
prised of tuples from all clusters and hence represents the entire dataset.
An inducer is applied in turn to each sub-sample. A voting mechanism is
used to combine the classifiers classifications. Experimental study indicates
that the CBCD algorithm outperforms the bagging algorithm.

Ahn et al. [Ahn et al. (2007)] indicate that random partition the in-
put attribute set into several subset such that each classifier is induced
from a different subset, is particularly useful for high-dimensional datasets.
Their experiments indicate that for unbalanced data, this partition ap-
proach maintains the balance between sensitivity and specificity more ad-
equately than many other classification methods.

Denison et al. [Denison et al. (2002)] examine two schemas for parti-
tioning the instance space into disjoint subspaces: The BPM (Bayesian par-
tition model) schema has been shown to be unsuitable when there training
set is large or there are many input attributes. The PPM (product partition
model) schema provides good results in several cases especially in datasets
where there are many irrelevant input attributes and it is less suitable to
situations where there are strong interactions among input attributes.

4.4 Manipulating the Target Attribute Representation

In methods that manipulate the target attribute, instead of inducing a
single complicated classifier, several classifiers with different and usually
simpler representations of the target attribute are induced. This manipula-
tion can be based on an aggregation of the original target’s values (known
as Concept Aggregation) or more complicated functions (known as Function
Decomposition).

Classical concept aggregation replaces the original target attribute with
a function, such that the domain of the new target attribute is smaller than
the original one [Buntine (1996)].

The idea to convert K class classification problems into K-two class
classification problems has been proposed by [Anand et al. (1995)]. Each
problem considers the discrimination of one class to the other classes. Lu
and Ito [Lu and Ito (1999)] extend Anand’s method and propose a new
method for manipulating the data based on the class relations among the
training data. By using this method, they divide a K class classification
problem into a series of K(K−1)/2 two-class problems where each problem

102 Pattern Classification Using Ensemble Methods

considers the discrimination of one class to each one of the other classes.
The researchers used neural networks to examine this idea.

A general concept aggregation algorithm called Error-Correcting Output
Coding (ECOC) uses a code matrix to decompose a multi-class problem into
multiple binary problems [Dietterich and Bakiri (1995)]. ECOC for multi-
class classification hinges on the design of the code matrix. Please refer to
Section 6.2 for additional details.

A general-purpose function decomposition approach for machine learn-
ing was proposed in [Zupan et al. (1998)]. According to this approach,
attributes are transformed into new concepts in an iterative manner to
create a hierarchy of concepts.

4.4.1 Label Switching

Breiman (2000) suggests generating an ensemble by using perturbed ver-
sions of the training set where the classes of the training examples are
randomly switched.

The classifiers generated by this procedure have statistically uncorre-
lated errors in the training set. The basic idea of this method is choosing
for each run a different set of examples so that their class labels will be
changed randomly to a different class label.

In contrast to Breiman (2000), Martinez-Munoz and Suarez (2005) sug-
gest that the probability of switching class label is kept constant (i.e. in-
dependent of the original label and class distribution) for every training
example. This makes it possible to use larger values of the switching rate
in unbalanced datasets. Martinez-Munoz and Suarez (2005) show that high
accuracy can be achieved with ensembles generated by class switching pro-
vided that fairly large ensembles are generated (around 1000 classifiers).
This large ensemble may slow down the whole learning process and in some
cases even result in system out of memory.

Figure 4.7 presents the pseudocode of label switching. In each iteration,
the class value of some instances are randomly switched. An instance is
chosen to be the class label changed with a probability of p where p is an
input parameter. If an instance has been chosen to have its class changed,
the new class is picked randomly from all the other classes with equal
probability.

Ensemble Diversity 103

Label Switching
Require: I (a base inducer), T (number of iterations), S (the original

training set), p (the rate of label switching).
1: for t = 1 to T do
2: S′ = a copy of S

3: for each < x, y > in S′ do
4: R = A new random number
5: if R < P then
6: Randomly pick a new class label y′ form dom(y) that is different

form the original class of x

7: Change the class label of x to be y′

8: end if
9: end for

10: Mt = I(S′)
11: end for

Fig. 4.7 The label switching algorithm.

4.5 Partitioning the Search Space

The idea is that each member in the ensemble explores a different part of
the search space. Thus, the original instance space is divided into several
sub-spaces. Each sub-space is considered independently and the total model
is a (possibly soft) union of such simpler models.

When using this approach, one should decide if the subspaces will over-
lap. At one extreme, the original problem is decomposed into several mu-
tually exclusive sub-problems, such that each subproblem is solved using
a dedicated classifier. In such cases, the classifiers may have significant
variations in their overall performance over different parts of the input
space [Tumer and Ghosh (2000)]. At the other extreme, each classifier
solves the same original task. In such cases, “If the individual classifiers
are then appropriately chosen and trained properly, their performances will
be (relatively) comparable in any region of the problem space. [Tumer and
Ghosh (2000)]”. However, usually the sub-spaces may have soft bound-
aries, namely sub-spaces are allowed to overlap.

There are two popular approaches for search space manipulations: di-
vide and conquer approaches and feature subset-based ensemble methods.

104 Pattern Classification Using Ensemble Methods

4.5.1 Divide and Conquer

In the neural-networks community, Nowlan and Hinton [Nowlan and Hin-
ton (1991)] examined the mixture of experts (ME) approach, which parti-
tions the instance space into several subspaces and assigns different experts
(classifiers) to the different subspaces. The subspaces, in ME, have soft
boundaries (i.e., they are allowed to overlap). A gating network then com-
bines the experts’ outputs and produces a composite decision. An extension
to the basic mixture of experts, known as hierarchical mixtures of experts
(HME), has been proposed in [Jordan and Jacobs (1994)]. This extension
decomposes the space into sub-spaces, and then recursively decomposes
each sub-space into sub-spaces.

Some researchers have used clustering techniques to partition the space
[Rokach et al. (2003),]. The basic idea is to partition the instance space
into mutually exclusive subsets using K-means clustering algorithm. An
analysis of the results shows that the proposed method is well suited for
datasets of numeric input attributes and that its performance is influenced
by the dataset size and its homogeneity.

NBTree [Kohavi (1996)] is an instance space decomposition method
that induces a decision tree and a Näıve Bayes hybrid classifier. To in-
duce an NBTree, the instance space is recursively partitioned according
to attributes values. The result of the recursive partitioning is a decision
tree whose terminal nodes are Näıve Bayes classifiers. Since subjecting a
terminal node to a Näıve Bayes classifier means that the hybrid classifier
may classify two instances from a single hyper-rectangle region into dis-
tinct classes, the NBTree is more flexible than a pure decision tree. More
recently Cohen et al. (2007) generalizes the NBTree idea and examines a
decision-tree framework for space decomposition. According to this frame-
work, the original instance-space is hierarchically partitioned into multiple
subspaces and a distinct classifier (such as neural network) is assigned to
each subspace. Subsequently, an unlabeled, previously-unseen instance is
classified by employing the classifier that was assigned to the subspace to
which the instance belongs.

Altincay [Altincay (2007)] propose the use of model ensemble-based
nodes where a multitude of models are considered for making decisions at
each node. The ensemble members are generated by perturbing the model
parameters and input attributes. In generating model ensembles multi-
layer perceptron (MLP), linear multivariate perceptron and Fishers linear
discriminant type models are considered. The first node to be generated

Ensemble Diversity 105

is the root node where the data being considered is the whole training
set. The algorithm then creates an ensemble of classifiers using random
projection. However, in the random subspace approach, the individual
accuracies achieved by some of the base classifiers may be insufficient since
some of the features may be irrelevant to the learning target. In order to
avoid this, the best third classifiers having the highest individual accuracies
are selected. The training instances reaching that node are divided into
several branches according to the classification provided by the ensemble
using majority voting. Then, the algorithm is recursively executed on each
branch. The algorithm stops when the number of instances in the current
node are below a given threshold. One of the main strengths of the proposed
approach is that it uses small number of training samples that reach at
nodes close to the leafs in an efficient way. Experiments conducted on
several datasets and three model types indicate that the proposed approach
achieves better classification accuracies compared to individual nodes, even
in cases when only one model class is used in generating ensemble members.

The divide and conquer approach includes many other specific methods
such as local linear regression, CART/MARS, adaptive subspace models,
etc [Johansen and Foss (1992); Ramamurti and Ghosh (1999)].

4.5.2 Feature Subset-based Ensemble Methods

Another less common strategy for manipulating the search space is to ma-
nipulate the input attribute set. Feature subset based ensemble methods
are those that manipulate the input feature set for creating the ensem-
ble members. The idea is to simply give each classifier a different projec-
tion of the training set. Tumer and Oza. [Tumer and Oza (2003)] claim
that feature subset-based ensembles potentially facilitate the creation of
a classifier for high dimensionality data sets without the feature selection
drawbacks mentioned above. Moreover, these methods can be used to im-
prove the classification performance due to the reduced correlation among
the classifiers. Bryll et al. [Bryll et al. (2003)] also indicate that the
reduced size of the dataset implies faster induction of classifiers. Feature
subset avoids the class under-representation which may happen in instance
subsets methods such as bagging. There are three popular strategies for
creating feature subset-based ensembles: random-based, reduct-based and
collective-performance-based strategy.

106 Pattern Classification Using Ensemble Methods

4.5.2.1 Random-based Strategy

The most straightforward techniques for creating feature subset-based en-
semble are based on random selection. Ho [Ho (1998)] uses random sub-
spaces to create forest of decision trees. The ensemble is constructed sys-
tematically by pseudo-randomly selecting subsets of features. The training
instances are projected to each subset and a decision tree is constructed
using the projected training samples. The process is repeated several times
to create the forest. The classifications of the individual trees are combined
by averaging the conditional probability of each class at the leaves (dis-
tribution summation). Ho shows that simple random selection of feature
subsets may be an effective technique because the diversity of the ensem-
ble members compensates for their lack of accuracy. Furthermore, random
subspace methods are effective when the number of training instances is
comparable to number of features.

Bay [Bay (1999)] proposed MFS which uses simple voting in order
to combine outputs from multiple KNN (K-Nearest Neighbor) classifiers,
each having access only to a random subset of the original features. Each
classifier employs the same number of features. This procedure resembles
the random subspaces methods.

Bryll et al. [Bryll et al. (2003)] introduce attribute bagging (AB)
which combine random subsets of features. AB first finds an appropriate
subset size by a random search in the feature subset dimensionality. It then
randomly selects subsets of features, creating projections of the training set
on which the classifiers are trained. A technique for building ensembles of
simple Bayesian classifiers in random feature subsets was also examined
[Tsymbal and Puuronen (2002)] for improving medical applications.

4.5.2.2 Reduct-based Strategy

A reduct is defined as the smallest feature subset which has the same pre-
dictive power as the whole feature set. By definition, the size of the en-
sembles that were created using reducts are limited to the number of fea-
tures. There have been several attempts to create classifier ensembles by
combining several reducts. Wu et al. [Wu et al. (2005)] introduce the
worst-attribute-drop-first algorithm to find a set of significant reducts and
then combine them using näıve Bayes. Bao and Ishii [Bao and Ishii (2002)]
examine the idea of combining multiple K-nearest neighbor classifiers for
text classification by reducts. Hu et al. [Hu et al. (2005)] propose several
techniques to construct decision forests, in which every tree is built on a

Ensemble Diversity 107

different reduct. The classifications of the various trees are combined using
a voting mechanism.

4.5.2.3 Collective-Performance-based Strategy

Cunningham and Carney [Cunningham and Carney (2000)] introduced an
ensemble feature selection strategy that randomly constructs the initial en-
semble. Then, an iterative refinement is performed based on a hill-climbing
search in order to improve the accuracy and diversity of the base classifiers.
For all the feature subsets, an attempt is made to switch (include or delete)
each feature. If the resulting feature subset produces a better performance
on the validation set, that change is kept. This process is continued until
no further improvements are obtained. Similarly, Zenobi and Cunningham
[Zenobi and Cunningham (2001)] suggest that the search for the different
feature subsets will not be solely guided by the associated error but also by
the disagreement among the ensemble members.

Tumer and Oza [Tumer and Oza (2003)] present a new method called
input decimation (ID), which selects feature subsets based on the correla-
tions between individual features and class labels. This experimental study
shows that ID can outperform simple random selection of feature subsets.

Tsymbal et al. [Tsymbal et al. (2004)] compare several feature selection
methods that incorporate diversity as a component of the fitness function in
the search for the best collection of feature subsets. This study shows that
there are some datasets in which the ensemble feature selection method can
be sensitive to the choice of the diversity measure. Moreover, no particular
measure is superior in all cases.

Gunter and Bunke [Gunter and Bunke (2004)] suggest employing a fea-
ture subset search algorithm in order to find different subsets of the given
features. The feature subset search algorithm not only takes the perfor-
mance of the ensemble into account, but also directly supports diversity of
subsets of features.

Combining genetic search with ensemble feature selection was also ex-
amined in the literature. Opitz and Shavlik [Opitz and Shavlik (1996)]
applied GAs to ensembles using genetic operators that were designed ex-
plicitly for hidden nodes in knowledge-based neural networks. In a later
research, Opitz [Opitz (1999)] used genetic search for ensemble feature se-
lection. This genetic ensemble feature selection (GEFS) strategy begins by
creating an initial population of classifiers where each classifier is generated
by randomly selecting a different subset of features. Then, new candi-

108 Pattern Classification Using Ensemble Methods

date classifiers are continually produced by using the genetic operators of
crossover and mutation on the feature subsets. The final ensemble is com-
posed of the most fitted classifiers. Similarly, the genetic algorithm that Hu
et al. [Hu et al. (2005)] use for selecting the reducts to be included in the
final ensemble, first creates N reducts then it trains N decision trees using
these reducts. It finally uses a GA for selecting which of the N decision
trees are included in the final forest.

4.5.2.4 Feature Set Partitioning

Partitioning means dividing the original training set into smaller training
sets. A different classifier is trained on each sub-sample. After all classifiers
are constructed, the models are combined in some fashion [Maimon and
Rokach (2005)]. There are two obvious ways to partition the original
dataset: Horizontal Partitioning and Vertical Partitioning. In horizontal
partitioning the original dataset is partitioned into several datasets that
have the same features as the original dataset, each containing a subset of
the instances in the original. In vertical partitioning the original dataset is
partitioned into several datasets that have the same number of instances as
the original dataset, each containing a subset of the original set of features.

In order to illustrate the idea of partitioning, recall the training
set in Table 1.1 which contains a segment of the Iris dataset. This
is one of the best known datasets in the pattern recognition litera-
ture. The goal in this case is to classify flowers into the Iris sub-
geni according to their characteristic features. The dataset contains
three classes that correspond to three types of iris flowers: dom (y) =
{IrisSetosa, IrisV ersicolor, IrisV irginica}. Each pattern is charac-
terized by four numeric features (measured in centimeters): A =
{sepallength, sepalwidth, petallength, petalwidth}. Tables 4.1 and 4.2
respectively illustrate mutually exclusive horizontal and vertical partitions
of the Iris dataset. Note that despite the mutually exclusiveness, the class
attribute must be included in each vertical partition.

Vertical partitioning (also known as feature set partitioning) is a partic-
ular case of feature subset-based ensembles in which the subsets are pairwise
disjoint subsets. At the same time, feature set partitioning generalizes the
task of feature selection which aims to provide a single representative set of
features from which a classifier is constructed. Feature set partitioning, on
the other hand, decomposes the original set of features into several subsets
and builds a classifier for each subset. Thus, a set of classifiers is trained

Ensemble Diversity 109

Table 4.1 Horizontal Partitioning of the Iris Dataset.

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
6.0 2.7 5.1 1.6 Iris-versicolor

Sepal Length Sepal Width Petal Length Petal Width Class (Iris Type)

5.8 2.7 5.1 1.9 Iris-virginica
5.0 3.3 1.4 0.2 Iris-setosa
5.7 2.8 4.5 1.3 Iris-versicolor
5.1 3.8 1.6 0.2 Iris-setosa

Table 4.2 Vertical Partitioning of the Iris Dataset.

Petal Length Petal Width Class (Iris Type)

1.4 0.2 Iris-setosa
1.4 0.2 Iris-setosa
5.1 1.6 Iris-versicolor
5.1 1.9 Iris-virginica
1.4 0.2 Iris-setosa
4.5 1.3 Iris-versicolor
1.6 0.2 Iris-setosa

Sepal Length Sepal Width Class (Iris Type)

5.1 3.5 Iris-setosa
4.9 3.0 Iris-setosa
6.0 2.7 Iris-versicolor
5.8 2.7 Iris-virginica

5.0 3.3 Iris-setosa
5.7 2.8 Iris-versicolor
5.1 3.8 Iris-setosa

such that each classifier employs a different subset of the original feature
set. Subsequently, an unlabelled instance is classified by combining the
classifications of all classifiers.

Several researchers have shown that the partitioning methodology can
be appropriate for classification tasks with a large number of features
[Rokach (2006); Kusiak (2000)]. The search space of a feature subset-
based ensemble contains the search space of feature set partitioning, and
the latter contains the search space of feature selection.

110 Pattern Classification Using Ensemble Methods

In the literature there are several works that deal with feature set parti-
tioning. In one research, the features are grouped according to the feature
type: nominal value features, numeric value features and text value features
[Kusiak (2000)]. A similar approach was also used for developing the lin-
ear Bayes classifier [Gama (2000)]. The basic idea consists of aggregating
the features into two subsets: the first subset containing only the nominal
features and the second only the continuous features.

In another research, the feature set was decomposed according to the
target class [Tumer and Ghosh (1996)]. For each class, the features with low
correlation relating to that class were removed. This method was applied
on a feature set of 25 sonar signals where the target was to identify the
meaning of the sound (whale, cracking ice, etc.).

The feature set decomposition can be obtained by grouping features
based on pairwise mutual information, with statistically similar features
assigned to the same group [Liao and Moody (2000)]. For this purpose one
can use an existing hierarchical clustering algorithm. As a consequence,
several feature subsets are constructed by selecting one feature from each
group. A neural network is subsequently constructed for each subset. All
networks are then combined.

In statistics literature, the well-known feature-oriented ensemble algo-
rithm is the MARS algorithm [Friedman (1991)]. In this algorithm, a
multiple regression function is approximated using linear splines and their
tensor products. It has been shown that the algorithm performs an ANOVA
decomposition, namely, the regression function is represented as a grand
total of several sums. The first sum is of all basic functions that involve
only a single attribute. The second sum is of all basic functions that in-
volve exactly two attributes, representing (if present) two-variable interac-
tions. Similarly, the third sum represents (if present) the contributions from
three-variable interactions, and so on. In a recent study, several methods
for combining different feature selection results have been proposed [Chizi
et al. (2002)]. The experimental results indicate that combining different
feature selection methods can significantly improve the accuracy results.

The EROS (Ensemble Rough Subspaces) algorithm is a rough-set-based
attribute reduction algorithm [Hu et al. (2007)]. It uses an accuracy-guided
forward search strategy to sequentially induce base classifiers. Each base
classifier is trained on a different reduct of the original data set. Then a
post-pruning strategy is employed to filter out non-useful base classifiers.
Experimental results show that EROS outperforms bagging and random
subspace methods in terms of accuracy and size of ensemble systems.

Ensemble Diversity 111

A general framework that searches for helpful feature set partitioning
structures has also been proposed [Rokach and Maimon (2005b)]. This
framework nests many algorithms, two of which are tested empirically over
a set of benchmark datasets. This work indicates that feature set decom-
position can increase the accuracy of decision trees. More recently, genetic
algorithm has been successfully applied for feature set partitioning [Rokach
(2008a)]. This GA uses a new encoding schema and a Vapnik-Chervonenkis
dimension bound for evaluating the fitness function. The algorithm also
suggest a new caching mechanism to speed up the execution and avoid
recreation of the same classifiers.

4.5.2.5 Rotation Forest

Rotation Forest is an ensemble generation method which aims at building
accurate and diverse classifiers [Rodriguez (2006)]. The main idea is to
apply feature extraction to subsets of features in order to reconstruct a full
feature set for each classifier in the ensemble. Rotation Forest ensembles
tend to generate base classifiers which are more accurate than those created
by AdaBoost and by Random Forest, and more diverse than those created
by bagging. Decision trees were chosen as the base classifiers because of
their sensitivity to rotation of the feature axes, while remaining very accu-
rate. Feature extraction is based on principal components analysis (PCA)
which is a valuable diversifying heuristic.

Figure 4.8 presents the Rotation Forest pseudocode. For each one of the
T base classifiers to be built, we divide the feature set into K disjoint sub-
sets Fi,j of equal size M . For every subset, we randomly select a nonempty
subset of classes and then draw a bootstrap sample which includes 3/4 of
the original sample. Then we apply PCA using only the features in Fi,j

and the selected subset of classes. The obtained coefficients of the princi-
pal components, a1

i,1, a
2
i,1, . . ., are employed to create the sparse “rotation”

matrix Ri. Finally we use SRi from training the base classifier Mi. In
order to classify an instance, we calculate the average confidence for each
class across all classifiers, and then assign the instance to the class with the
largest confidence.

Zhang and Zhang (2008) present the RotBoost algorithm which com-
bines the ideas of Rotation Forest and AdaBoost. RotBoost achieves an
even lower prediction error than either one of the two algorithms. Rot-
Boost is presented in Figure 4.9. In each iteration a new rotation matrix is
generated and used to create a dataset. The AdaBoost ensemble is induced
from this dataset.

112 Pattern Classification Using Ensemble Methods

Rotation Forest
Require: I (a base inducer), S (the original training set), T (number of

iterations), K (number of subsets),
1: for i = 1 to T do
2: Split the feature set into K subsets: Fi,j (for j=1..K)
3: for j = 1 to K do
4: Let Si,j be the data set S for the for the features in Fi,j

5: Eliminate from Si,j a random subset of classes
6: Select a bootstrap sample from Si,j of size 75% of the number of

objects in Si,j . Denote the new set by S
′
i,j

7: Apply PCA on S
′
i,j to obtain the coefficients in a matrix Ci,j

8: end for
9: Arrange the Ci,j , for j = 1 to K in a rotation matrix Ri as in the

equation:

Ri =




a
(1)
i,1 , a

(2)
i,1 , . . . , a

(M1)
i,1 [0] ... [0]

[0] a
(1)
i,2 , a

(2)
i,2 , ..., a

(M2)
i,2 ... [0]

...

[0] [0] ... a
(1)
i,k , a

(2)
i,k , . . . , a

(Mk)
i,k




10: Construct Ra
i by rearranging the columns of Ri so as to match the

order of features in F
11: end for
12: Build classifier Mi using (SRa

i , X) as the training set

Fig. 4.8 The Rotation Forest.

4.6 Multi-Inducers

In Multi-Inducer strategy, diversity is obtained by using different types of
inducers [Michalski and Tecuci (1994)]. Each inducer contains an explicit
or implicit bias that leads it to prefer certain generalizations over others.
Ideally, this multi-inducer strategy would always perform as well as the best
of its ingredients. Even more ambitiously, there is hope that this combi-
nation of paradigms might produce synergistic effects, leading to levels of
accuracy that neither atomic approach by itself would be able to achieve.

Most research in this area has been concerned with combining empirical
approaches with analytical methods (see for instance [Towell and Shavlik
(1994)]. Woods et al. [Woods et al. (1997)] combine four types of base

Ensemble Diversity 113

RotBoost
Require: I (a base inducer), S (the original training set), K (number of

attribute subsets), T1 (number of iterations for Rotation Forest), T2

(number of iterations for AdaBoost).
1: for s = 1, · · ·T2 do
2: Use the steps similar in Rotation Forest to compute the rotation

matrix, Ra
s and let Sa = [XRa

sY] be the training set for classifier Cs.
3: Initialize the weight distribution over Sa as D1(i) = 1/N(i =

1, 2, · · · N).
4: for t = 1, · · ·T2 do
5: According to the distribution Dt, perform N extractions randomly

f or Sa with replacement to compose a new set Sa
t .

6: Apply I to Sa
t to train a classifier Ca

t and then compute the error
of Ca

t as εt = Pri∼Dt(Ca
t (xi) �= yi) =

∑N
i=1 Ind(Ca

t (xi) �= yi)Dt(i).
7: if ξit > 0.5 then
8: set Dt(i) = 1/N(i = 1, 2, · · · N) and continue with the next

loop iteration
9: end if

10: if εt = 0〉 then
11: set εt = 10−10

12: end if
13: Choose αt =

1
2

ln(
1 − εt

εt
)

14: Update the distribution Dt over Sa as Dt+1(i) = Dt(i)
Zt
×{

e−αt , ifCa
t (xi) = yi

eαt)ifCa
t (xi) �= yi

where Zt is a normalization factor being cho-

sen so that Dt+1 is a probability distribution over Sa.
15: end for
16: end for

Fig. 4.9 The RotBoost algorithm.

inducers (decision trees, neural networks, k-nearest neighbor, and quadratic
Bayes). They then estimate local accuracy in the feature space to choose
the appropriate classifier for a given new unlabeled instance. Wang et al.
[Wang et al. (2004)] examined the usefulness of adding decision trees to
an ensemble of neural networks. The researchers concluded that adding a
few decision trees (but not too many) usually improved the performance.
Langdon et al. [Langdon et al. (2002)] proposed using Genetic Program-

114 Pattern Classification Using Ensemble Methods

ming to find an appropriate rule for combining decision trees with neural
networks.

Brodley [Brodley (1995b)] proposed the model class selection (MCS)
system. MCS fits different classifiers to different subspaces of the instance
space, by employing one of three classification methods (a decision-tree,
a discriminant function or an instance-based method). In order to select
the classification method, MCS uses the characteristics of the underlined
training-set, and a collection of expert rules. Brodley’s expert-rules were
based on empirical comparisons of the methods’ performance (i.e., on prior
knowledge).

The NeC4.5 algorithm, which integrates decision tree with neural net-
works [Zhou and Jiang (2004)], first trains a neural network ensemble.
Then, the trained ensemble is employed to generate a new training set by
replacing the desired class labels of the original training examples with the
output from the trained ensemble. Some extra training examples are also
generated from the trained ensemble and added to the new training set.
Finally, a C4.5 decision tree is grown from the new training set. Since its
learning results are decision trees, the comprehensibility of NeC4.5 is better
than that of neural network ensembles.

Using several inducers can solve the dilemma which arises from the “no
free lunch” theorem. This theorem implies that a certain inducer will be
successful only insofar its bias matches the characteristics of the application
domain [Brazdil et al. (1994)]. Thus, given a certain application, the
practitioner need to decide which inducer should be used. Using the multi-
inducer obviate the need to try each one and simplifying the entire process.

4.7 Measuring the Diversity

As stated above, it is usually assumed that increasing diversity may de-
crease ensemble error [Zenobi and Cunningham (2001)]. For regres-
sion problems, variance is usually used to measure diversity [Krogh and
Vedelsby (1995)]. In such cases it can be easily shown that the ensemble
error can be reduced by increasing ensemble diversity while maintaining
the average error of a single model.

In classification problems, a more complicated measure is required to
evaluate the diversity. There have been several attempts to define diversity
measure for classification tasks.

Ensemble Diversity 115

In the neural network literature two measures are presented for exam-
ining diversity:

• Classification coverage: An instance is covered by a classifier, if it yields
a correct classification.
• Coincident errors: A coincident error amongst the classifiers occurs

when more than one member misclassifies a given instance.

Based on these two measures, Sharkey [Sharkey and Sharkey (1997)] def-
ined four diversity levels:

• Level 1 - No coincident errors and the classification function is com-
pletely covered by a majority vote of the members.
• Level 2 - Coincident errors may occur, but the classification function is

completely covered by a majority vote.
• Level 3 - A majority vote will not always correctly classify a given

instance, but at least one ensemble member always correctly classifies
it.
• Level 4 - The function is not always covered by the members of the

ensemble.

Brown et al. [Brown et al. (2005)] claim that the above four-level
scheme provides no indication of how typical the error behavior described
by the assigned diversity level is. This claim, especially, holds when the
ensemble exhibits different diversity levels on different subsets of instance
space.

There are other more quantitative measures which categorize these mea-
sures into two types [Brown et al. (2005)]: pairwise and non-pairwise. Pair-
wise measures calculate the average of a particular distance metric between
all possible pairings of members in the ensemble, such as Q-statistic [Brown
et al. (2005)] or kappa-statistic [Margineantu and Dietterich (1997)]. The
non-pairwise measures either use the idea of entropy (such as [Cunningham
and Carney (2000)]) or calculate a correlation of each ensemble member
with the averaged output. The comparison of several measures of diversity
has resulted in the conclusion that most of them are correlated [Kuncheva
and Whitaker (2003)].

Kuncheva and Whitaker (2003) divide the diversity measures into two
categories: pairwise diversity measures and non-pairwise diversity mea-
sures. Here we discuss the pairwise diversity measures. For an en-
semble of n classifiers the total pairwise diversity measure is calculated
as the mean pairwise measure over all n · (n − 1)/2 pairs of classifiers:

116 Pattern Classification Using Ensemble Methods

FTotal = 2
n(n−1)

∑
∀i�=j

fi,j where fi,j is a similarity or diversity measure of

two classifiers outputs i and j. Kuncheva and Whitaker (2003) find the
following two diversity pairwise measures useful:

(1) The disagreement measure is defined as the ratio between the number
of instances on which one classifier is correct and its counterpart is in-
correct to the total number of instances: Disi,j = mī j+mi j̄

mī j+mi j̄+mi j+mī j̄

where mi j specifies the number of instances in which both classifier
i and classifier j are correct while mī j̄ indicates the number of inst-
ances that are misclassified by both classifiers. Similarly, mi j̄ and mī j

indicate the number of instances in which one classifier has correctly
classified the instances but its counterpart has misclassified these inst-
ances.

(2) The double-fault measure is defined as the proportion of the cases that
have been misclassified by both classifiers: DFi,j = mī j̄

mī j+mi j̄+mi j+mī j̄

Instead of measuring the diversity, we can complementarily use the fol-
lowing pairwise similarity measures:

(1) The Q statistics varies between −1 and 1 and is defined as: Qi,j =(
mi j ·mī j̄ −mi j̄ ·mī j

)/(
mi j ·mī j̄ + mi j̄ ·mī j

)
. Positive values indi-

cate that the two classifiers are correlated (namely they tend to cor-
rectly classify the same instances). A value close to 0 indicates that
the classifiers are independent.

(2) The correlation coefficient – The ρ measure is very similar to the Q mea-
sure. It has the same numerator as Q measure. Moreover, it always has
the same sign but the value magnitude is never greater than the corre-

sponding Q value: ρi,j = (mi j ·mī j̄−mi j̄ ·mī j)√
(mi j+mi j̄)·(mi j+mī j)·(mī j̄+mi j̄)·(mī j̄+mī j)

Kuncheva and Whitaker (2003) show that these measures are strongly
correlated between themselves. Still on specific real classification tasks,
the measures might behave differently, so they can be used as a comple-
mentary set. Nevertheless, Kuncheva and Whitaker (2003) could not find
a definitive connection between the measures and the improvement of the
accuracy. Thus, they conclude that it is unclear if diversity measures have
any practical value in building classifier ensembles.

Tang et al. (2006) explain the relation between diversity measures and
the concept of margin, which is more explicitly related to the success of

Ensemble Diversity 117

ensemble learning algorithms. They present the uniformity condition for
maximizing both the diversity and the minimum margin of an ensemble
and demonstrated theoretically and experimentally the ineffectiveness of
the diversity measures for constructing ensembles with good generalization
performance. Tang et al. (2006) specify three reasons for that:

(1) The alteration in the diversity measures does not afford consistent guid-
ance on whether a set of base classifiers provide low generalization error.

(2) The existing diversity measures are correlated to the mean accuracy of
the base classifiers. Thus, they do not provide any additional informa-
tion to the accuracy measure.

(3) Most of the diversity measures has no regularization term. Thus, even
if we maximize their values, we may over-fit the ensemble.

Chapter 5

Ensemble Selection

5.1 Ensemble Selection

An important aspect of ensemble methods is to define how many base
classifiers should be used.

Ensemble selection, also known as ensemble pruning or shrinkage aims
at dilute the ensemble. There are two main reasons for reducing the ensem-
ble size: a) Reducing computational overhead: Smaller ensembles require
less computational overhead and b) Improving Accuracy: Some members
in the ensemble may reduce the predictive performance of the whole. Prun-
ing these members can increase the accuracy. Still, in some cases shrinkage
can actually cause the ensemble to overfit in a situation where it otherwise
would not have [Mease and Wyner (2008)].

There are several factors that may determine this size:

• Desired accuracy — In most cases, ensembles containing ten classifiers
are sufficient for reducing the error rate. Nevertheless, there is empiri-
cal evidence indicating that: when AdaBoost uses decision trees, error
reduction is observed in even relatively large ensembles containing 25
classifiers [Opitz and Maclin (1999)]. In disjoint partitioning appro-
aches, there may be a trade-off between the number of subsets and the
final accuracy. The size of each subset cannot be too small because
sufficient data must be available for each learning process to produce
an effective classifier.
• Computational cost — Increasing the number of classifiers usually in-

creases computational cost and decreases their comprehensibility. For
that reason, users may set their preferences by predefining the ensemble
size limit.

119

120 Pattern Classification Using Ensemble Methods

• The nature of the classification problem - In some ensemble methods,
the nature of the classification problem that is to be solved, determines
the number of classifiers.
• Number of processors available — In independent methods, the number

of processors available for parallel learning could be put as an upper
bound on the number of classifiers that are treated in paralleled process.

There are three approaches for determining the ensemble size, as de-
scribed by the following subsections.

5.2 Pre Selection of the Ensemble Size

This is the most simple way to determine the ensemble size. Many ensemble
algorithms have a controlling parameter such as “number of iterations”,
which can be set by the user. Algorithms such as Bagging belong to this
category. In other cases the nature of the classification problem determine
the number of members (such as in the case of ECOC).

5.3 Selection of the Ensemble Size While Training

There are ensemble algorithms that try to determine the best ensemble size
while training. Usually as new classifiers are added to the ensemble these
algorithms check if the contribution of the last classifier to the ensemble
performance is still significant. If it is not, the ensemble algorithm stops.
Usually these algorithms also have a controlling parameter which bounds
the maximum size of the ensemble.

Random forests algorithm uses out-of-bag (oob) procedure to get an
unbiased estimate of the test set error [Breiman (1999)]. The effectiveness
of using out-of-bag error estimate, to decide when a sufficient number of
classification trees have been recently examined in [Banfield et al. (2007)].
Specifically, the algorithm works by first smoothing the out-of-bag error
graph with a sliding window in order to reduce the variance. After the
smoothing has been completed, the algorithm takes a larger window on
the smoothed data points and determines the maximum accuracy within
that window. It continues to process windows until the maximum accuracy
within a particular window no longer increases. At this point, the stopping
criterion has been reached and the algorithm returns the ensemble with the
maximum raw accuracy from within that window. It has been shown that

Ensemble Selection 121

out-of-bag obtain an accurate ensemble for those methods that incorporate
bagging into the construction of the ensemble.

Mease and Wyner (2008) indicate that using stopping rules, may be
harmful in certain cases since they would stop the algorithm after only a
few iterations when the overfitting first takes place, despite the fact that
the best performance is again achieved after adding more base classifiers.

5.4 Pruning - Post Selection of the Ensemble Size

As in decision tree induction, it is sometimes useful to let the ensemble
grow freely and then prune the ensemble in order to get more effective and
compact ensembles. Post selection of the ensemble size allows ensemble op-
timization for such performance metrics as accuracy, cross entropy, mean
precision, or the ROC area. Empirical examinations indicate that pruned
ensembles may obtain a similar accuracy performance as the original en-
semble [Margineantu and Dietterich (1997)]. In another empirical study
that was conducted in order to understand the affect of ensemble sizes on
ensemble accuracy and diversity, it has been shown that it is feasible to
keep a small ensemble while maintaining accuracy and diversity similar to
those of a full ensemble [Liu et al., 2004].

The problem of ensemble pruning is to find the best subset such that the
combination of the selected classifiers will have the highest possible degree
of accuracy. Consequently the problem can be formally phrased as follows:

Given an ensemble Ω = {M1, . . . , Mn}, a combination method C, and
a training set S from a distribution D over the labeled instance space, the
goal is to find an optimal subset Zopt ⊆ Ω . which minimizes the gener-
alization error over the distribution D of the classification of classifiers in
Zopt combined using method C.

Note that we assume that the ensemble is given, thus we do not attempt
to improve the creation of the original ensemble.

It has been shown that the pruning effect is more noticeable on en-
semble whose the diversity among its members is high (Margineantu and
Dietterich, 1997). Boosting algorithms create diverse classifiers by using
widely different parts of the training set at each iteration (Zhang et al.,
2006). Specifically we employ the most popular methods for creating the
ensemble: Bagging and AdaBoost. Bagging (Breiman, 1996) employs boot-
strap sampling to generate several training sets and then trains a classifier
from each generated training set. Note that, since sampling with replace-

122 Pattern Classification Using Ensemble Methods

ment is used, some of the original instances may appear more than once in
the same generated training set and some may not be included at all. The
classifier predictions are often combined via majority voting. AdaBoost
(Freund and Schapire, 1996) sequentially constructs a series of classifiers,
where the training instances that are wrongly classified by a certain classi-
fier will get a higher weight in the training of its subsequent classifier. The
classifiers’ predictions are combined via weighted voting where the weights
are determined by the algorithm itself based on the training error of each
classifier. Specifically the weight of classifier i is determined by Equation
5.1:

αi =
1
2

ln
(

1− εi

εi

)
(5.1)

where εiis the training error of classifier i.
The ensemble pruning problem resemble to the well known feature se-

lection problem. However, instead of selecting features one should select
the ensemble’s members (Liu et al., 2004). This lead to the idea of adapting
the Correlation-based Feature Selection method (Hall, 2000) to the current
problem. The CFS algorithm is suitable to this case, because in many
ensembles there are many correlated base-classifiers.

In earlier research on ensemble Pruning (Margineantu and Dietterich,
1997), the goal was to use a small size of ensemble to achieve an equivalent
performance of a boosted ensemble. This has been proved to be NP-hard
and is even hard to approximate (Tamon and Xiang, 2000), and the pruning
may sacrifice the generalization ability of the final ensemble. After Zhou
et al. (2002) proved the “many-could-be-better-than-all” theorem, it be-
comes well-known that it is possible to get a small yet strong ensemble.
This arose many new ensemble pruning methods. Tsoumakas et al. (2008)
propose the organization of the various ensemble selection methods into the
following categories: a) Search-based, b) Clustering based c) Ranking-based
and d) Other.

5.4.1 Ranking-based

The idea of this approach is to once rank the individual members according
to a certain criterion and choosing the top ranked classifiers according to
a threshold. For example Prodromidis et al. (1999) suggest ranking classi-
fiers according to their classification performance on a separate validation
set and their ability to correctly classify specific classes. Similarly Caru-

Ensemble Selection 123

ana et al. (2004) presented a forward stepwise selection procedure in order
to select the most relevant classifiers (that maximize the ensemble’s per-
formance) among thousands of classifiers. The algorithm FS-PP-EROS
generates a selective ensemble of rough subspaces (Hu et al., 2007). The
algorithm performs an accuracy-guided forward search to select the most
relevant members. The experimental results show that FS-PP-EROS out-
performs bagging and random subspace methods in terms of accuracy and
size of ensemble systems. In attribute bagging (Bryll et al., 2003), clas-
sification accuracy of randomly selected m-attribute subsets is evaluated
by using the wrapper approach and only the classifiers constructed on the
highest ranking subsets participate in the ensemble voting. Margineantu
and Dietterich (1997) present an agreement based ensemble pruning which
measures the Kappa statistics between any pair of classifiers. Then pairs
of classifiers are selected in ascending order of their agreement level till the
desired ensemble size is reached.

5.4.2 Search-based Methods

Instead of separately ranking the members, one can perform a heuristic
search in the space of the possible different ensemble subsets while evaluat-
ing the collective merit of a candidate subset. The GASEN algorithm was
developed for selecting the most appropriate classifiers in a given ensemble
(Zhou et al., 2002). In the initialization phase, GASEN assigns a random
weight to each of the classifiers. Consequently, it uses genetic algorithms
to evolve those weights so that they can characterize to some extent the
fitness of the classifiers in joining the ensemble. Finally, it removes from
the ensemble those classifiers whose weight is less than a predefined thresh-
old value. A revised version of the GASEN algorithm called GASEN-b has
been suggested (Zhou and Tang, 2003). In this algorithm, instead of assign-
ing a weight to each classifier, a bit is assigned to each classifier indicating
whether it will be used in the final ensemble. In an experimental study
the researchers showed that ensembles generated by a selective ensemble
algorithm, which selects some of the trained C4.5 decision trees to make up
an ensemble, may be not only smaller in size but also stronger in the gener-
alization than ensembles generated by non-selective algorithms. A similar
approach can also be found in (Kim et al., 2002). Rokach et al. (2006)
suggest first to rank the classifiers according to their ROC performance.
Then, they suggest evaluating the performance of the ensemble subset by
using the top ranked members. The subset size is increased gradually un-

124 Pattern Classification Using Ensemble Methods

til there are several sequential points with no performance improvement.
Prodromidis and Stolfo (2001) introduce a backwards correlation based
pruning. The main idea is to remove the members that are least correlated
to a meta-classifier which is trained based on the classifiers outputs. In
each iteration they remove one member and recompute the new reduced
meta-classifier (with the remaining members). The meta-classifier in this
case is used to evaluate the collective merit of the ensemble. Windeatt and
Ardeshir (2001) compared several subset evaluation methods that were ap-
plied to Boosting and Bagging. Specifically the following pruning methods
have been compared: Minimum Error Pruning (MEP), Error-based Prun-
ing (EBP), Reduced-Error Pruning(REP), Critical Value Pruning (CVP)
and Cost-Complexity Pruning (CCP). The results indicate that if a single
pruning method needs to be selected then overall the popular EBP makes
a good choice. Zhang el al. (2006) formulate the ensemble pruning prob-
lem as a quadratic integer programming problem to look for a subset of
classifiers that has the optimal accuracy-diversity trade-off. Using a semi-
definite programming (SDP) technique, they efficiently approximate the
optimal solution, despite the fact that the quadratic problem is NP-hard.

Which approach to use? Search Based Methods provide a better classi-
fication performance than the ranking based methods (Prodromidis et al.,
1999). However Search Based methods are usually computational expen-
sive due to their need for searching a large space. Thus one should select
a feasible search strategy. Moreover independently to the chosen search
strategy, the computational complexity for a evaluating a single candidate
subset usually is at least linear in the number of instances in the training
set (see Tsoumakas et al., 2008 for complexity analysis of existing evolution
measures.)

5.4.2.1 Collective Agreement-based Ensemble Pruning Method

The Collective Agreement-based Ensemble Pruning (CAP) calculates the
member-class and member-member agreements based on the training data.
Member-class agreement indicates how much the member’s classifications
agree with the real label while member-member agreement is the agreement
between the classifications of two members. The merit of an ensemble
subset Z with nz members can be estimated from:

Meritz =
nzκcm√

nz + nz(nz − 1)κmm

(5.2)

Ensemble Selection 125

where κcf is the mean agreement between the Z’s members and the class
and κmm is the average member-member agreements in Z.

Eq. 2 is adopted from test theory. It is mathematically derived (Gul-
liksen, 1950, pages 74-89) from Spearman formula (Spearman, 1913) for
the sake of measuring the augmented validity coefficient of a psychological
test which consists of nz unit tests. Later, it has been used in human re-
lations studies for evaluating the validity of aggregating experts’ opinions
(Hogarth, 1977) which is similar to the problem addressed in this paper.
According to Eq. 2 the following properties can be observed:

(1) The lower the inter-correlations among classifiers, the higher the merit
value.

(2) The higher the correlations between the classifiers and the real class,
the merit value increases.

(3) As the number of classifiers in the ensemble increases (assuming the
additional classifiers are the same as the original classifiers in terms of
their average intercorrelation with the other classifiers and with the real
class), the higher the merit value. However, it is unlikely that a large
ensemble of classifiers that are all highly correlated with the real class
will at the same time bear low correlations with each other (Hogarth,
1977).

The above properties indicate that removing a classifier from an ensem-
ble might be beneficial. Moreover it might not necessarily pay to remove
the classifier with the lowest individual agreement with the real class (if it
has low intercorrelation with other members).

Several measures can be incorporated in Eq 2, for measuring the agree-
ment. Specifically, the Kappa statistics can be used to measure the agree-
ment in Eq. 2:

κi,j =
ϑi,j − θi,j

1− θi,j
(5.3)

where ϑi,j is the proportion of instances on which the classifiers i and j
agree with each other on the training set, and θi,j is the probability that
the two classifiers agree by chance.

Alternatively one can use the symmetrical uncertainty (a modified in-
formation gain measure) to measure the agreement between two members
(Hall, 2000):

SUi,j =
H(ŷi) + H(ŷj)−H(ŷi, ŷj)

H(ŷi) + H(ŷj)
(5.4)

126 Pattern Classification Using Ensemble Methods

where ŷi is the classification vector of classifier i and H is the entropy
function.

Both Kappa statistics and the Entropy measure have been previously
mentioned in the ensemble literature (Kuncheva, 2004). However, they
have been merely used for measuring the diversity in classifier ensembles.
The novelty of this research relies on the way they are incorporated in the
ensemble’s merit estimation (Eq 2). Instead of just averaging the agreement
measure across all pairs of classifiers (κmm) and obtain a global pairwise
agreement measure. We suggest also taking into consideration the agree-
ment between the classifier’s outputs and the real class (κcm). Thus, the
proposed method prefers sub-ensemble whose members have greater agree-
ment with the real class (i.e. more accurate) and have lesser agreement
among themselves.

In this sense, the proposed merit measure reminds Breiman’s upper
bound on the generalization error of random forest (Breiman, 2001) which
is expressed “in terms of two parameters that are measures of how accurate
the individual classifiers are and of the agreement between them.” While
Brieman’s bound is theoretically justified, it is not considered to be very
tight (Kuncheva, 2004). Moreover it is merely designed for decision forests.

As the search space is huge (2n), we are using best first search strategy
as the preferred strategy. It explores the search space by making local
changes to the current ensemble subset. Best first search strategy begins
with an empty ensemble subset. If the path being explored does not achieve
an improved merit, the best first strategy backtracks to a more promising
previous subset and continues the search from there. The search stops if
five consecutive iterations obtain non-improving subsets.

The pseudocode of the proposed algorithm is presented in Figure 5.1.
The algorithm gets as input the training set, the ensemble of classifiers,
the method for calculating the agreement measure (for example Kappa
statistics) and the search strategy. It first calculates the classifiers’ out-
put (prediction) on each instance in the training set (Lines 1-5). Then it
calculates the mutual agreement matrix among the classifiers’ outputs and
the agreement between each classifier’s output and the actual class (Lines
6-11). Finally it searches the space according to the given search strategy.
The search procedure uses the merit calculation for evaluating a certain
solution (Lines 14-24).

Ensemble Selection 127

CAP (S,Q,CT,k)
Input: S Training set

Ω Ensemble of classifiers {M1, . . . , Mn}
Agr A method for calcuating the agreement measure
Src A search startegy

Output: Z Pruned ensemble set

1: FOR each < x q , yq >∈ S /* Getting members’ classifications */
2: FOR each Mi ∈ Ω

3 : ŷi,q ←Mi(xq)

4: END FOR
5: END FOR
6: FOR each Mi ∈ Ω /* Preparing the agreement matrix */

7 : CMi = Agr (y, ŷi)

8: FOR each Mj ∈ Ω ; j > i

9 : MMi,j = Agr (ŷi, ŷj)

10: END FOR
11: END FOR
12: Z ← Src(Ω, MM, CM) /* Searching the space using the merit function
*/
13: Return Z

EvaluateMerit (Z,CM,MM)
Input: Z The Ensemble Subset

CM Class-Member agreement vecor
MM Member-Member agreement matrix

Output:Meritz - The merit of Z.

14 : nz ← |Z|

15 : κcm ← 0

128 Pattern Classification Using Ensemble Methods

16 : κmm ← 0

17: FOR each Mi ∈ Z

18 : κcm ← κcm + CMi

19: FOR each Mj ∈ Z; j > i

20 : κmm ← κmm + MMi,j

21: END FOR
22: END FOR

23 : Meritz ← nzκcm√
nz + nz(nz − 1)κmm

24: Return Meritz

Fig. 5.1 A pseudocode of collective agreement-based pruning of ensembles.

The computational complexity of the agreement matrix calculation
(lines 6-11) is o(n2m) assuming that the complexity of the agreement mea-
sure is o(m). This assumption is true for the two measures presented in
equations 3 and 4. The computational complexity of the merit evaluation
(lines 14-24) is: o(n2). If the search strategy imposes a partial ordering
on the search space, then the merit can be calculated incrementally. For
example if backward search is used then it is requires one addition to the
numerator and up to n additions/subtractions in the denominator.

Note that the actual computational complexity depends on the com-
putational complexity of the classifier making a classification (line 3) and
the computational complexity of the search strategy which is being used
(line 12). Nevertheless neither the computational complexity of evaluat-
ing a solution’s merit nor the search space size depends on the training set
size. Thus, the proposed method makes it possible to thoroughly search the
space for problems with large training sets. For example the complexity
for a forward selection or backward elimination is o(n2). Best first search
is exhaustive, but the use of a stopping criterion makes the probability of
exploring the entire search space small.

Ensemble Selection 129

5.4.3 Clustering-based Methods

Clustering-based methods have two stages. In the first phase, a clustering
algorithm is used in order to discover groups of classifiers that make sim-
ilar classifications. Then in the second phase, each group of classifiers is
separately pruned in order to ensure the overall diversity of the ensemble.

Lazarevic and Obradovic (2001) use the well-known k-means algorithm
to perform the clustering of classifiers. They iteratively increase k until the
diversity between them starts to decrease. In the second phase they prune
the classifiers of each cluster by considering the classifiers in turn from the
least accurate to the most accurate. A classifier is kept in the ensemble if
its disagreement with the most accurate classifier is more than a predefined
threshold and is sufficiently accurate.

Giacinto et al. (2000) use Hierarchical Agglomerative Clustering (HAC)
for identifying the groups of classifiers. HAC returns a hierarchy of different
clustering results starting from as many clusters as classifiers and ending
at a single cluster which is identical to the original ensemble. In order to
create the hierarchy, they define a distance metric between two classifiers as
the probability that the classifiers do not make coincident misclassification
and estimate it from a validation set. A distance between two groups is
defined as the maximum distance between two classifiers belonging to these
clusters. In the second phase, they prune each cluster by selecting the single
best performing classifier. Similarly Fu et al. (2005) use k-means algorithm
to cluster the classifiers into groups but then select the best classifier from
each cluster.

5.4.4 Pruning Timing

The pruning methods can be divided into two groups: pre-combining prun-
ing methods and post-combining pruning methods.

5.4.4.1 Pre-combining Pruning

Pre-combining pruning is performed before combining the classifiers. Clas-
sifiers that seem to perform well are included in the ensemble. Prodromidis
et al. [Prodromidis et al. (1999)] present three methods for pre-combining
pruning: based on an individual classification performance on a separate
validation set, diversity metrics, the ability of classifiers to classify correctly
specific classes.

In attribute bagging [Bryll et al. (2003)], classification accuracy of

130 Pattern Classification Using Ensemble Methods

randomly selected m-attribute subsets is evaluated by using the wrapper
approach and only the classifiers constructed on the highest ranking subsets
participate in the ensemble voting.

5.4.4.2 Post-combining Pruning

In post-combining pruning methods, we remove classifiers based on their
contribution to the collective.

Prodromidis [Prodromidis et al. (1999)] examines two methods for post-
combining pruning assuming that the classifiers are combined using meta-
combination method: Based on decision tree pruning and the correlation
of the base classifier to the unpruned meta-classifier.

A forward stepwise selection procedure can be used in order to select
the most relevant classifiers (that maximize the ensemble’s performance)
among thousands of classifiers [Caruana et al. (2004)]. It has been shown
that for this purpose one can use feature selection algorithms. However,
instead of selecting features one should select the ensemble’s members [Liu
et al., 2004].

Rokach et al. [Rokach et al. (2006),] suggest first to rank the classifiers
according to their ROC performance. Then, they suggest to plot a graph
where the Y- axis displays a performance measure of the integrated classi-
fication . The X-axis presents the number of classifiers that participated in
the combination. i.e., the first best classifiers from the list are combined by
voting (assuming equal weights for now) with the rest getting zero weights.
The ensemble size is chosen when there are several sequential points with
no improvement.

The algorithm FS-PP-EROS generates a selective ensemble of rough
subspaces [Hu et al. (2007)]. The algorithm performs an accuracy-guided
forward search and post-pruning strategy to select part of the base classi-
fiers for constructing an efficient and effective ensemble system. The exper-
imental results show that FS-PP-EROS outperform bagging and random
subspace methods in terms of accuracy and size of ensemble systems.

The GASEN algorithm was developed for selecting the most appropri-
ate classifiers in a given ensemble [Zhou et al. (2002)]. In the initialization
phase, GASEN assigns a random weight to each of the classifiers. Conse-
quently, it uses genetic algorithms to evolve those weights so that they can
characterize to some extent the fitness of the classifiers in joining the en-
semble. Finally, it removes from the ensemble those classifiers whose weight
is less than a predefined threshold value.

Ensemble Selection 131

Recently a revised version of the GASEN algorithm called GASEN-b
has been suggested [Zhou and Tang (2003)]. In this algorithm, instead
of assigning a weight to each classifier, a bit is assigned to each classifier
indicating whether it will be used in the final ensemble. In an experimental
study the researchers showed that ensembles generated by a selective en-
semble algorithm, which selects some of the trained C4.5 decision trees to
make up an ensemble, may be not only smaller in size but also stronger in
the generalization than ensembles generated by non-selective algorithms.

A study had compared several post combining pruning methods that
were applied to Boosting and Bagging [Windeatt and Ardeshir (2001)].
Specifically the following pruning methods have been compared: Minimum
Error Pruning (MEP), Error-based Pruning (EBP), Reduced-Error Prun-
ing(REP), Critical Value Pruning (CVP) and Cost-Complexity Pruning
(CCP). The results indicate that if a single pruning method needs to be
selected then overall the popular EBP makes a good choice.

A comparative study of pre combining pruning and post combining
pruning methods when meta-combining methods are used has been per-
formed in [Prodromidis et al. (1999)]. The results indicate that the post-
combining pruning methods tend to perform better in this case.

Zhang et al. [Zhang et al. (2009)] use boosting for determining the
order in which the base classifiers are fused, and then construct a pruned
ensemble by stopping the fusion process early. Two heuristics rules are
used to stop fusion: one is to select the upper twenty percent of the base
classifiers from the ordered full Double-Bagging ensemble and the other is
to stop the fusion when the weighted training error reaches 0.5.

Croux et al. [Croux et al. (2007)] propose the idea of trimmed bag-
ging which aims to prune classifiers that yield the highest error rates, as
estimated by the out-of-bag error rate. It has been shown that trimmed
bagging performs comparably to standard bagging when applied to unsta-
ble classifiers as decision trees, but yields improved accuracy when applied
to more stable base classifiers, like support vector machines.

Chapter 6

Error Correcting Output Codes

Some machine learning algorithms are designed to solve binary classification
tasks, i.e. to classify an instance into only two classes. For example in
the direct marketing scenario, a binary classifier can be used to classify
potential customers as to whether they will positively or negatively respond
to a particular marketing offer.

In many real problems, however, we are required to differentiate between
more than two classes. Examples of such problems are the classification of
handwritten letters [Knerr et al. (1992)], differentiating between multiple
types of cancer [Statnikov et al. (2005)] and text categorization [Berger
(1999); Ghani (2000)].

A multiclass classification task is essentially more challenging than a
binary classification task, since the induced classifier must classify the inst-
ances into a larger number of classes, which also increases the likelihood
for misclassification. Let us consider, for example, a balanced classification
problem, with a similar number of data per class, with equiprobable classes
and a random classifier. If the problem is binary, the probability of obtain-
ing a correct classification is 50%. For four classes, this probability drops
to 25%.

Several machine learning algorithms, such as SVM [Cristianini and
Shawe-Taylor (2000)], were originally designed to solve only binary clas-
sification tasks. There are two main approaches for applying such algo-
rithms to multiclass tasks. The first approach, which involves extending
the algorithm, has been applied to SVMs [Weston and Watkins (1999)]
or boosting[Freund and Schapire (1997)]. However, extending these algo-
rithms into a multiclass version may be either impractical or, frequently,
not easy to perform [Passerini et al. (2004)]. For SVMs, in particular,
Hsu and Lin (2002) observed that the reformulation of this technique into

133

134 Pattern Classification Using Ensemble Methods

multiclass versions leads to high costs in training algorithms.
The second approach is to convert the multiclass task into an ensem-

ble of binary classification tasks, whose results are then combined. The
decomposition that has been performed can be generally represented by a
code-matrix �M [Allwein et al. (2000)]. There are several alternatives to
decomposing the multiclass problem into binary subtasks [Allwein et al.
(2000)].This matrix has k rows, representing codewords ascribed to each of
the k classes in the multiclass task; the columns correspond to the desired
outputs of the binary classifiers induced in the decomposition.

In order to illustrate the idea of multiclass decomposition, recall the
training set in Table 1.1 which contains a segment of the Iris dataset, one
of the best known datasets in pattern recognition literature. The goal in this
case is to classify flowers into Iris subspecies according to their characteristic
features. The dataset contains three classes that correspond to three types
of irises: dom (y) = {IrisSetosa, IrisV ersicolor, IrisV irginica}. Table
6.1 illustrates a code-matrix for the Iris dataset. It contains one row for
each class and one column for each classifier to be built. The first clas-
sifier attempts to distinguish between {IrisSetosa, IrisV irginica}, which
is represented by the binary value of 1 in column 1 and {IrisV ersicolor},
represented by the value −1 in column 1. Similarly, the second classifier
attempts to distinguish between {IrisV ersicolor, IrisV irginica}, repre-
sented by the binary value of 1 in column 2 and {IrisSetosa} , represented
by the value −1 in column 2. Finally, the third classifier attempts to dis-
tinguish between {IrisSetosa, IrisV ersicolor}, represented by the binary
value of 1 in column 3 and {IrisV irginica}, represented by the value −1
in column 3.

Table 6.1 Illustration of Code-matrix for the Iris dataset.

Class Label First Classifier Second Classifier Third Classifier

Iris Setosa 1 -1 1
Iris Versicolor -1 1 1
Iris Virginica 1 1 -1

In order to classify a new instance into one of the three classes, we first
obtain the binary classification from each of the base classifiers. Based on
these binary classifications, we search for the most probable class. We sim-
ply measure the Hamming distance of the obtained code to the codewords
ascribed to each class. The class with the shortest distance is chosen to be
the output class. In case of a tie, we arbitrarily select the class. This pro-

Error Correcting Output Codes 135

cess is also known as decoding. Table 6.2 presents the Hamming distance
for each possible output of an unseen instance. For example, if a certain
instance is classified as −1, 1,−1 by classifiers 1 to 3 respectively, then its
predicted class is either Versicolor or Virginica.

Table 6.2 Decoding Process for the Iris dataset.

Output Hamming Distance
Classifier 1 Classifier 2 Classifier 3 Setosa Versicolor Virginica Predicted Class

-1 -1 -1 4 4 4 Any Class
-1 -1 1 2 2 6 Setosa OR Versicolor
-1 1 -1 6 2 2 Versicolor OR Virginica
-1 1 1 4 0 4 Versicolor
1 -1 -1 2 6 2 Setosa OR Virginica
1 -1 1 0 4 4 Setosa
1 1 -1 4 4 0 Virginica
1 1 1 2 2 2 Any Class

6.1 Code-matrix Decomposition of Multiclass Problems

There are several reasons for using decomposition tactics in multiclass so-
lutions. Mayoraz and Moreira (1996), Masulli and Valentini (2000) and
Frnkranz (2002) state that implementing a decomposition approach may
lessen the computational complexity required for inducing the classifier.
Thus, even multiclass induction algorithms may benefit from converting
the problem into a set of binary tasks. Knerr et al. (1992), claim that the
classes in a digit recognition problem (such as the LED problem) could be
linearly separated when the classes are analyzed in pairs. Consequently ,
they combine linear classifiers for all pairs of classes. This is simpler than
using a single multiclass classifier that separates all classes simultaneously.
Pimenta and Gama (2005) claims that the decomposition approach sug-
gests new possibilities for parallel processing, since the binary subproblems
are independent and can be solved in different processors.

Crammer and Singer (2002) differentiate between three sub-categories:

(1) Type I - Given a code matrix, find a set of binary classifiers that result
in a small empirical loss;

(2) Type II - Find simultaneously both a set of binary classifiers and a code
matrix that produces a small empirical loss.

(3) Type III – Given a set of binary classifiers, find a code matrix that
yields a small empirical loss;

In this chapter we focus on type I and II tasks.

136 Pattern Classification Using Ensemble Methods

6.2 Type I - Training an Ensemble Given a Code-Matrix

The most simple decomposition tactic is the one-against-one (1A1) decom-
position also known as the round robin classification. It consists of building
k(k − 1)/2 classifiers, each distinguishing a pair of classes i and j, where
i �= j [Knerr et al. (2000); Hastie and Tibshirani (1998)]. To combine
the outputs produced by these classifiers, a majority voting scheme can be
applied [Kreβel (1999)]. Each 1A1 classifier provides one vote to its pre-
ferred class. The final result is the class with most of the votes. Table 6.3
illustrates the 1AA matrix for a four-class classification problem.

In certain cases, only a subset of all possible pairwise classifiers should
be used [Cutzu (2003)]. In such cases it is preferable to count the “against”
votes, instead of counting the “for” votes since there is a greater chance of
making a mistake when counting the latter. If a certain classifier attempts
to differentiate between two classes, neither of which is the true class, count-
ing the “for” votes inevitably causes a misclassification. On the other hand,
voting against one of the classes will not result in misclassification in such
cases. Moreover, in the 1A1 approach, the classification of a classifier for a
pair of classes (i, j) does not provide useful information when the instance
does not belong to classes i or j [Alpaydin and Mayoraz (1999)]

1A1 decomposition is illustrated in Figure 6.1. For the four-class prob-
lem presented in Figure 6.1(a), the 1A1 procedure induces six classifiers,
one for each pair of classes. Figure 6.1(b) shows the classifier of class 1
against 4.

Table 6.3 Illustration of One-Against-One (1A1) Decomposition for Four Classes
Classification Problem.

Class Label Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5 Classifier 6

Class 1 1 1 1 0 0 0
Class 2 -1 0 0 1 1 0
Class 3 0 -1 0 -1 0 1
Class 4 0 0 -1 0 -1 -1

Another standard methodology is called one-against-all (1AA). Given a
problem with k classes, k binary classifiers are generated. Each binary clas-
sifier is responsible for differentiating a class i from the remaining classes.
The classification is usually chosen according to the class with the highest
probability. Table 6.4 illustrates the 1AA matrix for a four-class classifica-
tion problem.

Error Correcting Output Codes 137

Table 6.4 Illustration of One-Against-All Code-matrix for Four
Classes Classification Problem.

Class Label Classifier 1 Classifier 2 Classifier 3 Classifier 4

Class 1 1 -1 -1 -1
Class 2 -1 1 -1 -1
Class 3 -1 -1 1 -1

Class 4 -1 -1 -1 1

Some difficulties arise in 1AA decomposition when the training set is
unbalanced. The number of instances that are associated with a certain
class is much smaller than the number of instances in other classes. In
such cases it will be difficult to generate a classifier with good predictive
performance in the considered class.

Figure 6.1(c) illustrates one of the classifiers using the 1AA procedure,
namely, the one that examine class 1 against all other classes. It is obvious
that in the 1A1 procedure, each base classifier uses fewer instances and thus
according to [Fürnkranz (2002)] “has more freedom for fitting a decision
boundary between the two classes”.

Fig. 6.1 Illustration of 1A1 and 1AA for a four classes problem.

138 Pattern Classification Using Ensemble Methods

6.2.1 Error correcting output codes

Error-correcting systems, which date back to the mid-20th century, have
been used to increase the reliability of communication channels. Com-
munication channels suffer from undesired noise that distorts the received
message from the original. Due to noise, an arbitrary bit in a message will
be changed from its original state. To reduce the possibility of this occur-
ring, the submitted message should be encoded in such a way that simple
errors can be detected, making it possible in some cases to correct the error
at the receiver end.

Each submitted symbol is encoded as a different codeword that is known
in advance to both ends. When a codeword is obtained, the receiver searches
for the most similar codeword using the Hamming distance. The coding is
designed in such a way that the probability the receiver will misidentify the
correct codeword is low. Peterson and Weldon (1972) noted that “much of
binary coding theory has been based on the assumption that each symbol
is affected independently by the noise, and therefore the probability of a
given error pattern depends only on the number of errors.”

Dietterich and Bariki (1995) employ communication techniques to trans-
form multiclass problems into an ensemble of binary classification tasks.
The idea is to transmit the correct class of a new instance via a channel
composed of the instance attributes, the training data and the learning
algorithm. Due to errors that may be present in the attributes, in the
training data and/or failures in the classifier learning process, the class
information can be disrupted. To provide the system with the ability to
recover from these transmission errors, the class is codified by an error cor-
recting code and each of its bits is transmitted separately, that is, through
separate executions of the learning algorithm.

Accordingly, a distributed output code is used to represent the k classes
associated to the multiclass problem. A codeword of length l is ascribed to
each class. Commonly, the size of the codewords has more bits than needed
in order to uniquely represent each class. The additional bits can be used to
correct eventual classification errors. For this reason, the method is named
error-correcting output coding (ECOC).

The generated codes are stored on a matrix �M ∈ {−1, +1}kxl. The
rows of this matrix represent the codewords of each class and the columns
correspond to the desired outputs of the l binary classifiers (f1(�x), . . . , fl(�x))
induced.

Error Correcting Output Codes 139

A new pattern �x can be classified by evaluating the classifications of the
l classifiers, which generate a vector �f(�x) of length l. This vector is then
measured against the rows of �M . The instance is ascribed to the class with
the smallest Hamming distance.

In order to assess the goodness of ECOC, Dietterich and Bariki (1995)
propose two criteria for row separation and column diversity:

Row separation. Codewords should be well-separated in Hamming dis-
tance;

Column diversity. Columns should be as uncorrelated as much as possi-
ble.

Dietterich and Bariki (1995) proposed that codewords should be de-
signed in order to maximize their error-correcting capability and presented
four techniques for constructing good error correcting codes. The choice of
each technique is determined by the number of classes in the problem.

6.2.2 Code-Matrix Framework

Allwein et al (2000) presented a framework that which can be generally
used to represent decomposition techniques. In this framework, the decom-
position techniques are transformed into code-matrix based methods in
which. a value from the set {−1, 0, +1} is ascribed to each entry of the
matrix �M . An entry mij with +1 value indicates that the class correspon-
dent to row i assumes a positive label in the classifier fj induction. The
−1 value designates a negative label and the 0 value indicates that the
data from class i does not participate in the classifier fj induction. Binary
classifiers are then trained to learn the labels represented in the columns of
�M .

In the 1AA decomposition, �M has dimension kxk, with diagonal entries
equal to +1. All other entries receive the value −1. In the 1A1 case, �M

has dimension kxk(k − 1g)/2 and each column corresponds to a binary
classifier for a pair of classes (i, j). In each column representing a pair
(i, j), the value of the entries corresponding to lines i and j are defined as
+1 and −1, respectively. The remaining entries are equal to 0, indicating
that patterns from the other classes do not participate in the induction of
this particular binary classifier.

The classification of a new pattern’s class involves a decoding step, as
with EsCOC technique. Several decoding methods have been proposed in
the literature [Passerini et al. (2004); Allwein et al. (2000); Windeatt and

140 Pattern Classification Using Ensemble Methods

Ghaderi (2003); Escalera et al. (2006); Klautau et al. (2003)].
No clear winner among various coding strategies such as 1AA, 1A1,

dense random codes and sparse random codes, has been found in various
experimental studies [Allwein et al. (2000)]. Thus, finding an adequate
combination of binary classifiers for a given multiclass task can be consid-
ered a relevant research issue.

The next section presents the code-matrix design problem and discusses
some of the main methods developed in this area. This problem can be
defined as a search for codes to represent each class. Other issues to be
addressed are the size of these codewords.

6.2.3 Code-matrix Design Problem

Several alternatives can be employed in order to decompose a multiclass
problem into multiple binary subproblems. The most compact decom-
position of a problem with k classes can be performed with the use of
l = �log2 (k)� binary classifiers [Mayoraz and Moreira (1996)]. One inst-
ance of a compact matrix for a problem with four classes is presented in
Table 6.5.

Table 6.5 Illustration of Compact Code-matrix
for a Four-class Classification Problem.

Class Label First Classifier Second Classifier

Class 1 1 1
Class 2 1 -1
Class 3 -1 1
Class 4 -1 -1

The total number of different binary classifiers for a problem with k

classes is 0.5
(
3k + 1

) − 2k, considering that f = −f . In other words, the
inversion of the positive and negative labels produces the same classifier
[Mayoraz and Moreira (1996)]. Among them, 2k−1 − 1 include all classes
simultaneously, i. e., they have only the labels +1 and −1, without the
0 entry. An example of a code-matrix constituted of such classifiers for a
problem with four classes is illustrated in Table 6.6.

The next section reviews some strategies for obtaining ECOC matrices,
i. e., code-matrices with an error-correcting capability and other strategies
employed in obtaining code-matrices . Section 6.3 describes techniques for
adapting code-matrices to each multiclass problem under consideration.

Error Correcting Output Codes 141

Table 6.6 Illustration of Compact Code-Matrix for a Four-Class Classification Problem.

Class Label Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5 Classifier 6

Class 1 1 1 1 1 1 1
Class 2 1 1 -1 -1 -1 -1
Class 3 -1 -1 1 1 -1 -1
Class 4 1 -1 1 -1 1 -1

Unless it is explicitly stated, the described works use binary code-
matrices, that is, code-matrices with only +1 and −1 entries.

Dietterich and Bariki (1995) enforce two characteristics necessary to
ensure error-correcting capability when designing ECOC matrices:

• Row separation;
• Column separation.

where the separation is measured through the Hamming distance, which
is equal to the differences between different bit strings.

Constant columns (with only positive or negative entries) should also
be avoided, since they do not represent a binary decision problem.

Let dm designate the minimum Hamming distance between any pair
of rows of �M . The final ECOC multiclass classifier is able to correct at
least
⌊

dm−1
2

⌋
errors of the binary classifiers outputs. Since, according to

the Hamming distance, each incorrect classification implies a deviation of
one unity from the correct class codeword, committing

⌊
dm−1

2

⌋
errors, the

closest codeword will still be that of the correct class [Dietterich and Bakiri
(1995)]. This is the reason why a high row separation is demanded. Acco-
rding to this principle, the 1AA coding is unable to recover from any error,
since its dm is equal to 2. The row separation requirement is also demanded
in designing error-correcting codes (ECC) in telecommunications [Alba and
Chicano (2004)].

In addition to the above requirement, the errors of the binary classi-
fiers that have been induced must be uncorrelated to obtain good error-
correcting codes when solving the multiclass problem. In order to achieve
this, column separation is also demanded, that is, the Hamming distance
between each pair of columns of �M must be high. If, in the learning algo-
rithm, the inversion of the positive and negative labels produces the same
classifier (f = −f), the Hamming distance between each column and the
complement of the others must also be maximized.

Based on these observations, Dietterich and Bariki (1995) proposed four
techniques for designing code-matrices with good error-correcting capabil-

142 Pattern Classification Using Ensemble Methods

ity. The choice of each one is determined by the number of classes in the
multiclass problem. No justification is given as to how the numbers of
classes were stipulated for each method.

• For k � 7, it is recommended to use an exhaustive code. The first row
(i.e. codeword of the first class) is composed of only +1 values. All
other rows are composed of alternate runs of 2k−i positive values and
negative values when i is the row number. Table 6.5 illustrates the
exhaustive code-matrix for the four-class problem.
• If 8 � k � 11, a method that selects columns from the exhaustive code

is applied.
• For k > 11, there are two options: a method based on the hill-

climbing algorithm and the generation of BCH (Bose-Chaudhuri and
Hocquenghem) codes [Boser and Ray-Chaudhuri (1960)]. The BCH
algorithm employs polynomial functions to design nearly optimal error-
correcting codes. One problem with BCH codes is that they do not
ensure a good column separation. Moreover, if the number of classes is
not a power of two, the code must be shortened by removing rows (and
possibly columns) while maintaining good row and column separations.

Pimenta and Gama (2005) present an algorithm for designing ECOCs
that obtain competitive predictive performance in relation to traditional
decompositions, using decision trees (DTs) [Quinlan (1986)] and SVMs
as base classifiers. They use d a function for evaluating the quality of
ECOCs according to their error-correcting properties. An iterative per-
secution algorithm (PA) is used to construct the ECOCs by adding or
removing columns from an initial ECOC in order to maximize the quality
function.

A good ECOC is an ECOC that maximizes the minimum Hamming
distance among codewords. Thus, they define a straight line y = m.e + b

where n = 2k−2−1
(2k−1−1)−	log2(k)
 and b = 1 −m�log2(k)�. This line represents

the best minimum Hamming distance for a certain k (number of classes) and
e (the codeword size). Because Hamming distance obtain integer values,
the support function a(k, e) is defined as y(k1e) rounded down. Based on
this support function a Quality function q(k, e) of an ECOC can be defined
(assuming the values W, B, B+ comply with W < B < B+):

• q(k, e) = W when the minimum Hamming distance of the ECOC is
under the support function a(k, e) at a distance greater than 1.

Error Correcting Output Codes 143

• q(k, e) = B when the minimum Hamming distance of the ECOC is
under the support function a(k, e) at a distance lass than 1.
• q(k, e) = B+ when the minimum Hamming distance of the ECOC is

in or over the support function a(k, e).

Pimenta and Gama (2005) compared the performance of Repulsion
Algorithm (RA) to the performance of Persecution Algorithm (PA). The
RA tries to maximize an evaluation function that gets higher as dm in-
creases. Since row separation is not required in the design of an ECC, the
evaluation function is used to penalize matrices with identical or comple-
mentary columns. Moreover, genetic algorithms (GAs) are used to design
the code-matrices, for maximizing the evaluation function. The RA is used
in the mutation step of the GA. The comparative study indicated that the
PA performbetter in finding valid ECOCs, where the validity was measured
by the criteria of avoiding equal, complementary and constant columns;
the RA was the worst method. Among the valid ECOCs generated, the
PA still performed, in general, better, obtaining ECOCs with good qual-
ity according to the evaluation function proposed by Pimenta and Gama
(2005). Nevertheless, GARA (GA with RA) also designed ECOCs of good
quality. Pimenta and Gama (2005) also suggested a method of determin-
ing the number of columns in the ECOC (i. e., the number of classifiers
employed in the decomposition). This method involves examining an eval-
uation function based on the number of errors that can be corrected by
ECOCs of different sizes.

There are some studies that claim that randomly designed ECOCs
show good multiclass predictive performance [Berger (1999); Windeatt and
Ghaderi (2003); Tapia et al. (2003)]. Allwein et al (2000) compared the use
of two randomly designed matrices: dense and sparse. In the dense matrix,
10,000 random matrices were generated, with �10 ∗ log2(k)� columns and
entries receiving the values −1 or +1 with the same probability. The mat-
rix with the higher dm and without identical or complementary columns is
chosen, following the recommendations of Dietterich and Bariki (1995) . In
the sparse matrix, which uses the ternary alphabet, the number of columns
in the code-matrix is �15 log2 k�, and the entries are chosen as 0 with 0.5
probability and +1 or −1 with probability 0.25 each. Again, 10,000 random
matrices are generated and the one with higher dm is chosen.

Berger (1999) gives statistical and combinatorial arguments about why
random matrices can perform well. Among these arguments, are theorems
that state that random matrices are likely to show good row and column

144 Pattern Classification Using Ensemble Methods

separation, specially as the number of columns increases. Nevertheless, it
is assumed that the errors of the individual classifiers are uncorrelated, a
state which does not hold for real applications.

Windeatt and Ghaderi (2002) also note the desirability of using equidis-
tant codes. In equidistant codes the Hamming distance between rows is
approximately constant. They showed that if �M is an equidistant code-
matrix, the number of +1’s in different rows is the same and the num-
ber of common +1’s between any pair of rows is equal. They used this
heuristic to select a subset of rows from BCH codes, producing equidistant
code-matrices. Experimentally, they verified that equidistant codes were
superior to 1AA and random codes for shorter codes (with less columns),
using multilayer perceptron (MLP) neural networks (NNs) [Haykin (1999)]
as base classifiers. As the length of the codes increases, the coding strategy
seems to be less significant, favoring a random design.

6.2.4 Orthogonal Arrays (OA)

In designing experiments, the aim is to minimize the number of experiments
required to collect useful information about an unknown process (Mont-
gomery, 1997). The collected data is typically used to construct a model
for the unknown process. The model may then be used to optimize the
original process.

A full factorial design is an experiment design in which the experi-
menter chooses n attributes that are believed to affect the target attribute.
Then, all possible combinations of the selected input attributes are acquired
[Montgomery (1997)]. Applying a full factorial design is impractical when
there are many input attributes.

A fractional factorial design is a design in which only a fraction of the
combinations required for the complete factorial experiment is selected.
One of the most practical forms of fractional factorial design is the orthog-
onal array. An orthogonal array OA(n,k,d,t) is a matrix of k rows and n
columns, with every entry being one of the d values. The array has strength
t if, in every t by n submatrix, the dt possible distinct rows all appear the
same number of times. An example of a strength 2 OA is presented in Ta-
ble 6.7. Any two classes in this array have all possible combinations (“1,1”,
“1,-1”, “-1,1”, “-1,-1”). Each of these combinations appears an equal num-
ber of times. In an orthogonal array of strength 3 presented in Table 6.8,
we can find all combinations of any three classes.

Error Correcting Output Codes 145

Table 6.7 The OA(8,7,2,2) Design.

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 +1 +1 -1 -1

+1 +1 -1 -1 -1 -1 +1 +1

+1 -1 +1 -1 +1 -1 +1 -1

+1 -1 +1 -1 -1 +1 -1 +1

+1 -1 -1 +1 +1 -1 -1 +1

+1 -1 -1 +1 -1 +1 +1 -1

The columns, called runs of the OA matrix, represent tests which re-
quire resources such as time, money and hardware. OA aims to create the
minimum number of runs to ensure the required strength. The advantage
of compact representation of the OA is that we can use it to create the
minimal number of binary classifiers.

Table 6.8 The OA(8,7,2,3) Design.

-1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1

-1 +1 -1 +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 -1 +1 -1

-1 -1 +1 +1 -1 -1 +1 +1 +1 +1 -1 -1 +1 +1 -1 -1

-1 +1 +1 -1 -1 +1 +1 -1 +1 -1 -1 +1 +1 -1 -1 +1

-1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1

-1 +1 -1 +1 +1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1

-1 -1 +1 +1 +1 +1 -1 -1 +1 +1 -1 -1 -1 -1 +1 +1

-1 +1 +1 -1 +1 -1 -1 +1 +1 -1 -1 +1 -1 +1 +1 -1

The number of rows k in the OA should be equal to the cardinality of the
class set. The number of columns is equal to the number of classifiers that
will be trained. Constructing a new OA design for any number of classes
is not an easy task. Usually, it is possible to use a ready-made design for
a specific number of classes. The orthogonal designs can be taken from
Sloane’s library of OAs (Sloane 2007). If no OA with the required number
of rows k, can be found, then we can still take a OA with a larger number
of rows and reduce it to the appropriate size. Note that any Nxk′ subarray
of an OA(N, k, s, t) is an OA(N, k′, s, t′), where t′ = min{k′, t}.

Before using the OA, we first need to remove columns that are the
inverse of other columns, because the inversion of the positive and nega-
tive labels produces the same classifier [Mayoraz and Moreira (1996)]. For
example columns 9 to 16 in Table 6.8 should be removed as they are an in-
version of columns 1 to 8 respectively. Moreover, columns that are entirely
labeled with +1 or −1 also need to be removed since there is no meaning
to training a classifier with a single class. Accordingly, the first column 1

146 Pattern Classification Using Ensemble Methods

in Table 6.7 should be removed.

6.2.5 Hadamard Matrix

Zhang et al (2003) study the usefulness of Hadamard matrices for generating
ECOCs in ensemble learning. Hadamard matrices may be regarded as
special classes of two-level orthogonal arrays of strengths 2 and 3. These
matrices are named after the French mathematician Jacques Hadamard
(1865-1963).

They point out that these matrices can be considered optimal ECOCs,
within the pool of k class codes that combine k − 1 base learners, where
the optimality is measured according to the row and column separations
criteria. Nevertheless, the Hadamard matrices are designed with numbers
of rows of the power two. For other numbers of classes, some rows have
to be deleted. Hadamard matrix provided a higher accuracy than random
and 1AA matrices, when SVM algorithm is used as the binary classifiers
induction.

A Hadamard matrix (HM) Hn consists of square matrices of +1’s and
-1’s whose rows are orthogonal which satisfies HnHT

n = nIn. where In is
the nth order identity matrix. A Hadamard matrix Hn is often written in
the normalized form with both the first row and column consisting of all
+1’s.

A Hadamard output code, obtained by removing the first column from
any normalized Hadamard matrix, has two beneficial properties: every pair
of codewords has the same Hamming distance; and b) every pair of columns
is orthogonal.

6.2.6 Probabilistic Error Correcting Output Code

Up to this point we assumed that the binary classifiers were crisp classifiers
and provided only the class label 1 or −1. However, most binary classifiers
are probabilistic and thus provide the class distribution in addition to the
class label. This distribution can be used to better select the appropriate
class in case of ambiguous output code. For example rows 1, 2, 3, 5 and 8
in Table 6.2 have more than one predicted class.

We assume that the output of each classifier i is a 2-long vector
pi,1(x), pi,2(x). The values pi,1(x) and pi,2(x) represent the support that
instance x belongs to class −1 and +1 respectively according to the clas-
sifier i. For the sake of simplicity, we assume the provided vector is the

Error Correcting Output Codes 147

correct distribution i.e., pi,1(x) + pi,2(x) = 1. Kong and Dietterich (1995)
use the following revised Hamming distance between the classifier outputs
and the codeword of class j:

HD (x, j) =
l∑

i=1

{
pi,2 (x) If M̃j,i = −1
pi,1 (x) If M̃j,i = +1

(6.1)

where �M represents the code-matrix such as in Table 6.1. We now return
to the decoding process presented in Table 6.2. However, we now assume
that the classifier provides a classification distribution. Thus, instead of the
classification outputs of (−1,−1,−1) as in row 1 of Table 6.2 we obtain,
for the sake of the example, the following distributions 0.8, 0.2, 0.6, 0.4 and
0.7, 0.3 from classifiers 1 to 3 respectively. Note that these distributions
correspond to the classification outputs of row 1. Using equation 6.1, we
conclude that the distance from class Setosa (with codeword of 1,−1, 1) is
0.8 + 0.4 + 0.7 = 1.9. The distance from class Versicolor (with codeword of
−1, 1, 1) is 0.2 + 0.4 + 0.7 = 1.3. The distance from class Virginica (with
codeword of 1, 1,−1) is 0.8 + 0.4 + 0.3 = 1.5. Therefore the selected class
is Versicolor. Recall from Table 6.2 that if we use only the corresponding
classification outputs of (−1,−1,−1), any class could have been chosen
(ambiguous case).

6.2.7 Other ECOC Strategies

This section presents code-matrix design works that could not be fully
characterized into one of the classes described in the previous sections,
either because they employ alternative criteria in the code-matrix design
or because a combination of the error-correcting and adaptiveness criteria
is used.

Sivalingam et al. [Sivalingam et al. (2005)] propose transforming a
multiclass recognition problem into a minimal binary classification problem
using the minimal classification method (MCM) aided by error-correcting
codes. Instead of separating only two classes at each classification, MCM
requires only log2K classifications since this method separates two groups
of multiple classes. Thus the MCM requires a small number of classifiers
but can still provide similar accuracy performance to binary ECOC.

Mayoraz and Moreira (1996) introduce an iterative algorithm for code-
matrix generation. The algorithm takes into account three criteria. The

148 Pattern Classification Using Ensemble Methods

first two are the same criteria suggested by Dietterich and Bariki (1995).
The third criterion is that each inserted column should be pertinent, acco-
rding to the positions of the classes in the input space. A binary partition
of classes is considered pertinent if it is easy to learn. The most important
contribution of this algorithm is that the obtained classifiers are usually
simpler than those induced by the original ECOC procedure.

Using concepts from telecommunications coding theory, Tapia et al
(2001) present a particular class of ECOCs, recursive ECOCs (RECOC).
The recursive codes are constructed from component subcodes of small
lengths, which may be weak when working on their own, but strong when
working together. This results in an ensemble of ECOCs, where each com-
ponent subcode defines a local multiclass learner. Another interesting fea-
ture of RECOCs, noted by the authors, is that they allow a regulated degree
of randomness in their design. Tapia et al (2003) indicate that a random
code is the ideal way to protect information against noise.

As in channel coding theory, a puncturing mechanism can be used to
prune the dependence among the binary classifiers in a code-matrix [Pérez-
Cruz and Artés-Rodŕıguez (2002)]. This algorithm eliminates classifiers
that degrade the performance of a previously designed code-matrix, delet-
ing columns from it. As a result, less complex multiclass schemes can be
obtained. In order to obtain these schemes, a ternary coding was employed,
that is, the code-matrices could have positive, negative and null entries. Ex-
perimentally, they achieved a good performance when puncturing 1A1 and
BCH ECOC codes.

Several attempts have been made to design code-matrices by maximiz-
ing certain diversity measures of classifier ensembles [Kuncheva (2005a)].
Specifically, the search for code combinations, in conjunction with the num-
ber of binary classifiers to compose the multiclass solution, constitute a
combinatorial problem. In order to solve this combinatorial problem, we
can employ genetic algorithms (GAs) [Mitchell (1999); Lorena and Car-
valho (2008)]. The GAs are used to determine code-matrices according
to: their accuracy performance; diversity measures among columns defined
by Kuncheva (2005); or the margins of separation among codes of differ-
ent classes [Shen and Tan (2005)]. Since the implemented GA also aims
to minimize the ensemble size, the code-matrices are tailor-made for each
multiclass problem.

Error Correcting Output Codes 149

6.3 Type II - Adapting Code-matrices to the Multiclass
Problems

A common criticism of the 1AA, 1A1 and other ECOC strategies is that
all of them perform the multiclass problem decomposition a priori, without
taking into account the properties and characteristics of each application
[Allwein et al. (2000); Mayoraz and Moreira (1996); Alpaydin and Mayoraz
(1999); Mayoraz and Alpaydim (1998); Dekel and Singer (2003); Rätsch
et al. (2003); Pujol et al. (2006)]. Furthermore, as Allwein et al (2000)
point out, although the ECOC codes have good error-correcting properties,
several of the binary subproblems created may be difficult to learn.

Data-driven error correcting output coding (DECOC) [Zhoua et al.
(2008)]. explores the distribution of data classes and optimizes both the
composition and number of base learners needed to design an effective and
compact code matrix. Specifically, DECOC calculates the confidence score
of each base classifier based on the structural information of the training
data and use sorted confidence scores to assist in determining the code
matrix of ECOC. The results show that the proposed DECOC is able to
deliver competitive accuracy compared with other ECOC methods, using
parsimonious base learners rather than the pairwise coupling (one-vs-one)
decomposition scheme.

The key idea of DECOC is to reduce the number of learners by selec-
tively including some of the binary learners into the code matrix. This
optimizes both the composition and the number of base learners necessary
to design an effective and compact code-matrix. Classifier selection is done
by calculating a quality measure for each classifier which predicts how well
each base-learner separates the training-set into two relatively homogenous
groups. The main strength of DECOC is its ability to provide a compet-
itive accuracy compared with other ECOC methods, using parsimonious
base-learners. But this does not come for free. In the process of building,
the DECOC uses cross-validation procedures. This process takes a lot of
time, because in every iteration it builds a classifier for every base learner.
This latter step is done as a pre-process and doesn’t affect the running
time for testing samples. But if there are time and space limitations for
our pre-process with the training-set, it might be a problem.

Some attempts have been made to simultaneously find a code-matrix
and the set of binary classifiers that produce the smallest empirical loss.
Usually the columns of the code matrix and binary classifiers are created
in a stage-wise manner.

150 Pattern Classification Using Ensemble Methods

Finding the optimal solution for this problem has been shown to be
NP-hard [Crammer and Singer (2002)]. Nevertheless, several heuristics
have been developed. The most popular heuristics attempt to combine the
ECOC framework with the AdaBoost framework. More specifically, two
algorithms are very widely used: output-code AdaBoost (AdaBoost.OC)
[Schapire (1997)], and error-correcting code AdaBoost (AdaBoost.ECC)
[Guruswami and Sahai (1999)].

Figure 6.2 presents the AdaBoost.OC algorithm. In each iteration, a
weak classifier is induced. The instances are reweighted by focusing on the
misclassified instances. Then, as in ECOC, a new binary decomposition
(coloring) is selected in each iteration . There are several ways to find the
coloring function. The simplest option is to uniformly and independently
choose each value at random from {−1, 1}. A better option is to choose at
random but to ensure an even split of the labels, i.e. half should be labeled
as −1 and half as 1. The third option is to maximize the value of Ut by
using optimization algorithms.

Fig. 6.2 The algorithm AdaBoost.OC combining boosting and output coding.

Figure 6.3 presents the AdaBoost.ECC algorithm. The AdaBoost.ECC
algorithm works similarly to AdaBoost.OC. However, instead of reweighting
the instances based on the pseudo-loss, it uses the structure of the current
classifier and its performance on the binary learning problem.

Sun et al (2005) prove that AdaBoost.ECC performs stage-wise func-
tional gradient descent on a cost function, defined in the domain of margin
values. Moreover Sun et al (2005) prove that AdaBoost.OC is a shrink-

Error Correcting Output Codes 151

age version of AdaBoost.ECC. Shrinkage can be considered as a method,
for improving accuracy in the case of noisy data. Thus, Sun et al (2005)
conclude that in low noise datasets, AdaBoost.ECC may have some ad-
vantages over AdaBoost.OC. Yet, in noisy data sets, AdaBoost.OC should
outperform AdaBoost.ECC.

Fig. 6.3 The algorithm AdaBoost.ECC combining boosting and output coding.

Crammer and Singer (2000) explain how to design code-matrix by
adapting it to each multiclass problem under consideration. Finding a
discrete code-matrix can be considered a NP-hard problem. Thus, they
relaxed the problem, by allowing the matrix elements having continuous
values. Thereupon, they obtained a variant of SVMs for the direct solution
of multiclass problems. The predictive performance of this technique is
comparable to those of the 1AA and 1A1 strategies [Hsu and Lin (2002)].
Nevertheless, the computational cost of this adaptive training algorithm is
higher than the ready made matrices.

One can also combine linear binary classifiers in order to obtain a non-
linear multiclass classifier [Alpaydin and Mayoraz (1999)] . In this process,
a MLP NN is obtained in which the first weight layer represents the pa-
rameters of the linear classifiers; the internal nodes correspond to the linear
classifiers; and the final weight layer is equivalent to the code-matrix. This
NN has an architecture and second layer weights initialized according to
a code-matrix. As a result, the code-matrix and classifiers parameters are
optimized jointly in the NN training. The proposed method showed higher
accuracy than those of 1AA, 1A1 and ECOC decompositions employing
linear binary classifiers.

152 Pattern Classification Using Ensemble Methods

Dekel and Singer (2003) develop a bunching algorithm which adapts
code-matrices to the multiclass problem during the learning process. First,
the training instances are mapped to a common space where it is possible
to measure the divergence between input instances and their labels. Two
matrices are used in the mapping process, one for the data and the other
for the labels, which is the code-matrix. These two matrices are itera-
tively adapted by the algorithm in order to obtain a minimum error for
the training data. This error is measured by the divergence between the
training data and their labels in the common space. The code-matrices are
probabilistic. Given an initial code-matrix, the the algorithm modifies it
according to the previous procedure. Given a new instance, it is mapped
to the new space and the predicted class is the one closer to the instance
in this space. This algorithm was used for improving the performance of
logistic regression classifiers [Collins et al. (2002)].

Rätsch et al (2003) define an optimization problem, in which the codes
and the embedding functions f are determined jointly by maximizing a
margin measure. The embedding functions ensure that instances from the
same class are close to their respective codeword vector. The margin is
defined as the difference between the distance of �f(�x) from the actual class
and the to closer incorrect class.

In [Pujol et al. (2006)] a heuristic method for designing ternary code-
matrices is introduced. The design is based on a hierarchical partition of the
classes according to a discriminative criterion. The criterion used was the
mutual information between the feature data and its class label. Initiating
with all classes, they are recursively partitioned into two subsets in order
to maximize the mutual information measure until each subset contains
one class. These partitions define the binary classifiers to be employed in
the code-matrix. For a problem with k classes, k − 1 binary classifiers are
generated in this process. Experimental results demonstrated the potential
of the approach using DTs and boosted decision stumps (BDS) [Freund
and Schapire (1997)] as base classifiers. The algorithm showed results that
were competitive to 1AA, 1A1 and random code-matrices.

In [Lorena and Carvalho (2007)], GAs were used to determine ternary
code-matrices according to their performance in multiclass problem solu-
tion. In such cases, the code-matrices are adapted to each multiclass prob-
lem. Another goal in implementing GAs is to minimize the number of
columns in the matrices in order to produce simpler decompositions.

Chapter 7

Evaluating Ensembles of Classifiers

In this chapter we introduce the main concepts and quality criteria in clas-
sifiers ensemble evaluation.

Evaluating the performance of an ensemble is a fundamental aspect of
pattern recognition. The evaluation is important for understanding the
quality of a certain ensemble algorithm and for tuning its parameters.

While there are several criteria for evaluating the predictive performance
of ensemble of classifiers, other criteria such as the computational complex-
ity or the comprehensibility of the generated ensemble can be important as
well.

7.1 Generalization Error

Historically predictive performance measures are the main criteria for se-
lecting inducers. Moreover, the predictive performance measures, such as
accuracy, are considered to be an objective and quantified, which can be
easily used to benchmark algorithms.

In addition to the experimental studies that are performed to validate
the contribution of a new specific ensemble method, there are several large
comparative studies, which aim to assist the practitioner in his decision
making.

Let E(S) represent an ensemble trained on dataset S. The general-
ization error of E(S) is its probability to misclassify an instance selected
according to the distribution D of the labeled instance space. The classifi-
cation accuracy of an ensemble is one minus the generalization error. The
training error is defined as the percentage of examples in the training set
correctly classified by the ensemble, formally:

153

154 Pattern Classification Using Ensemble Methods

ε̂(E(S), S) =
∑

〈x,y〉∈S

L (y, E(S)(x)) (7.1)

where L(y, E(S)(x)) is the zero-one loss function defined in Equation 1.3.
In this book, classification accuracy is the primary evaluation criterion.
Although generalization error is a natural criterion, its actual value is

known only in rare cases (mainly synthetic cases). The reason for that is
that the distribution D of the labeled instance space is not known.

One can take the training error as an estimation of the generalization
error. However, using the training error as is will typically provide an
optimistically biased estimate, especially if the inducer over-fits the training
data. There are two main approaches for estimating the generalization
error: Theoretical and Empirical. In this book we utilize both approaches.

7.1.1 Theoretical Estimation of Generalization Error

A low training error does not guarantee low generalization error. There is
often a trade-off between the training error and the confidence assigned to
the training error as a predictor for the generalization error, measured by
the difference between the generalization and training errors. The capacity
of the inducer is a major factor in determining the degree of confidence
in the training error. In general, the capacity of an inducer indicates the
variety of classifiers it can induce. Breiman’s upper bound on the general-
ization error of random forest (Breiman, 2001) which is expressed “in terms
of two parameters that are measures of how accurate the individual clas-
sifiers are and of the agreement between them”. While Breiman’s bound
is theoretically justified, it is not considered to be very tight (Kuncheva,
2004). Bartlett and Traskin (2007) showed that AdaBoost is almost surely
consistent (i.e. ensemble’s risk converges to the Bayes risk), if stopped
sufficiently early, after m1−α iterations where m is the training set size.
However they could not determine whether this number can be increased.

Large ensemble with many members, relative to the size of the training
set, are likely to obtain a low training error. On the other hand, they
might just be memorizing or overfitting the patterns and hence exhibit
a poor generalization ability. In such cases, the low error is likely to be
a poor predictor of the higher generalization error. When the opposite
occurs, that is to say, when capacity is too small for the given number of
examples, inducers may underfit the data, and exhibit both poor training
and generalization error.

Evaluating Ensembles 155

In “Mathematics of Generalization”, [Wolpert (1995)] discuss four the-
oretical frameworks for estimating the generalization error: Probably Ap-
proximately Correct (PAC), VC and Bayesian, and statistical physics. All
these frameworks combine the training error (which can be easily calcu-
lated) with some penalty function expressing the capacity of the inducers.

7.1.2 Empirical Estimation of Generalization Error

Another approach for estimating the generalization error is the holdout
method in which the given dataset is randomly partitioned into two sets:
training and test sets. Usually, two-thirds of the data is considered for the
training set and the remaining data are allocated to the test set. First, the
training set is used by the inducer to construct a suitable classifier and then
we measure the misclassification rate of this classifier on the test set. This
test set error usually provides a better estimation of the generalization error
than the training error. The reason for this is the fact that the training
error usually under-estimates the generalization error (due to the overfitting
phenomena). Nevertheless since only a proportion of the data is used to
derive the model, the estimate of accuracy tends to be pessimistic.

A variation of the holdout method can be used when data is limited. It
is common practice to resample the data, that is, partition the data into
training and test sets in different ways. An inducer is trained and tested for
each partition and the accuracies averaged. By doing this, a more reliable
estimate of the true generalization error of the inducer is provided.

Random subsampling and n-fold cross-validation are two common meth-
ods of resampling. In random subsampling, the data is randomly parti-
tioned several times into disjoint training and test sets. Errors obtained
from each partition are averaged. In n-fold cross-validation, the data is
randomly split into n mutually exclusive subsets of approximately equal
size. An inducer is trained and tested n times; each time it is tested on one
of the k folds and trained using the remaining n− 1 folds.

The cross-validation estimate of the generalization error is the overall
number of misclassifications divided by the number of examples in the data.
The random subsampling method has the advantage that it can be repeated
an indefinite number of times. However, a disadvantage is that the test sets
are not independently drawn with respect to the underlying distribution of
examples. Because of this, using a t-test for paired differences with random
subsampling can lead to an increased chance of type I error, i.e., identifying
a significant difference when one does not actually exist. Using a t-test on

156 Pattern Classification Using Ensemble Methods

the generalization error produced on each fold lowers the chances of type
I error but may not give a stable estimate of the generalization error. It
is common practice to repeat n-fold cross-validation n times in order to
provide a stable estimate. However, this, of course, renders the test sets
non-independent and increases the chance of type I error. Unfortunately,
there is no satisfactory solution to this problem. Alternative tests suggested
by [Dietterich (1998)] have a low probability of type I error but a higher
chance of type II error that is, failing to identify a significant difference
when one does actually exist.

Stratification is a process often applied during random subsampling and
n-fold cross-validation. Stratification ensures that the class distribution
from the whole dataset is preserved in the training and test sets. Stratifi-
cation has been shown to help reduce the variance of the estimated error
especially for datasets with many classes.

Another cross-validation variation is the bootstraping method which is
a n-fold cross validation, with n set to the number of initial samples. It
samples the training instances uniformly with replacement and leave-one-
out. In each iteration, the classifier is trained on the set of n − 1 samples
that is randomly selected from the set of initial samples, S. The testing is
performed using the remaining subset.

Dietterich [Dietterich (2000a)] has compared three methods for con-
structing forest of C4.5 classifiers: Randomizing, Bagging , and Boosting.
The experiments show that when there is little noise in the data, boost-
ing gives the best results. Bagging and Randomizing are usually equivalent.
Another study [Bauer and Kohavi (1999)] compared Bagging and Boosting
using decision trees and naive Bayes. The study determines that Bagging
reduced variance of unstable methods, while boosting methods reduced
both the bias and variance of unstable methods but increased the variance
for stable methods.

Additional study [Opitz and Maclin (1999)] that compared Bagging
with Boosting using neural networks and decision trees indicates that Bag-
ging is sometimes significantly less accurate than Boosting. The study
indicates that the performance of the Boosting methods is much more sen-
sitive to the characteristics of the dataset, specifically Boosting may overfit
noisy data sets and reducing classification performance.

Villalba et al. (2003) compared seven different boosting methods. They
conclude that for binary classification tasks - the well-known AdaBoost
should be preferred. However for multi-class tasks other boosting methods
such as GentleAdaBoost should be considered.

Evaluating Ensembles 157

A recent research has experimentally evaluated bagging and seven other
randomization-based approaches for creating an ensemble of decision tree
classifiers [Banfield et al. (2007)]. Statistical tests were performed on
experimental results from 57 publicly available datasets. When cross-
validation comparisons were tested for statistical significance, the best
method was statistically more accurate than bagging on only eight of the
57 datasets. Alternatively, examining the average ranks of the algorithms
across the group of datasets, Banfield et al found that boosting, random
forests, and randomized trees is statistically significantly better than bag-
ging.

Sohna and Shinb [Sohna (2007)] compared the performance of several
ensemble methods (bagging, modified random subspace method, classifier
selection, parametric fusion) to a single classifier assuming that the base
inducer is logistic regression. They argue that several factors should be
taken into consideration when performing such comparison, including cor-
relation between input variables; variance of observation, and training data
set size. They show that for large training sets, the performances of a sin-
gle logistic regression and bagging are not significantly different. However,
when training set size are small, bagging is superior to a single logistic
regression classifier. When training data set size is small and correlation
is strong, both modified random subspace method and bagging perform
better than the other methods. When correlation is weak and variance is
small, both parametric fusion and classifier selection algorithm appear to
be the worst.

7.1.3 Alternatives to the Accuracy Measure

Accuracy is not a sufficient measure for evaluating a model with an imbal-
anced distribution of the class. There are cases where the estimation of an
accuracy rate may mislead one about the quality of a derived classifier. In
such circumstances, where the dataset contains significantly more major-
ity class than minority class instances, one can always select the majority
class and obtain good accuracy performance. Therefore, in these cases, the
sensitivity and specificity measures can be used as an alternative to the
accuracy measures [Han and Kamber (2001)].

Sensitivity (also known as recall) assesses how well the classifier can
recognize positive samples and is defined as

158 Pattern Classification Using Ensemble Methods

Sensitivity =
true positive

positive
(7.2)

where true positive corresponds to the number of the true positive samples
and positive is the number of positive samples.

Specificity measures how well the classifier can recognize negative sam-
ples. It is defined as

Specificity =
true negative

negative
(7.3)

where true negative corresponds to the number of the true negative exam-
ples and negative the number of samples that is negative.

Another well-known performance measure is precision. Precision mea-
sures how many examples classified as “positive” class are indeed “positive”.
This measure is useful for evaluating crisp classifiers that are used to classify
an entire dataset. Formally:

Precision =
true positive

true positive + false positive
(7.4)

Based on the above definitions the accuracy can be defined as a function
of sensitivity and specificity:

Accuracy = Sensitivity · positive
positive+negative +

Specificity · negative
positive+negative

(7.5)

7.1.4 The F-Measure

Usually there is a tradeoff between the precision and recall measures. Try-
ing to improve one measure often results in a deterioration of the second
measure. Figure 7.1 illustrates a typical precision-recall graph. This two-
dimensional graph is closely related to the well-known receiver operating
characteristics (ROC) graphs in which the true positive rate (recall) is plot-
ted on the Y-axis and the false positive rate is plotted on the X-axis [Ferri
et al. (2002)]. However unlike the precision-recall graph, the ROC diagram
is always convex.

Given a probabilistic classifier, this trade-off graph may be obtained by
setting different threshold values. In a binary classification problem, the
classifier prefers the class “not pass” over the class “pass” if the probability

Evaluating Ensembles 159

Precision

Recall

Fig. 7.1 A typical precision-recall diagram.

for “not pass” is at least 0.5. However, by setting a different threshold
value other than 0.5, the trade-off graph can be obtained.

The problem here is described as multi-criteria decision-making
(MCDM). The simplest and the most commonly used method to solve
MCDM is the weighted sum model. This technique combines the crite-
ria into a single value by using appropriate weighting. The basic princi-
ple behind this technique is the additive utility assumption. The criteria
measures must be numerical, comparable and expressed in the same unit.
Nevertheless, in the case discussed here, the arithmetic mean can mislead.
Instead, the harmonic mean provides a better notion of “average”. More
specifically, this measure is defined as [Van Rijsbergen (1979)]:

F =
2 · P ·R
P + R

(7.6)

The intuition behind the F-measure can be explained using Figure 7.2.
Figure 7.2 presents a diagram of a common situation in which the right
ellipsoid represents the set of all defective batches and the left ellipsoid
represents the set of all batches that were classified as defective by a certain
classifier. The intersection of these sets represents the true positive (TP),
while the remaining parts represent false negative (FN) and false positive
(FP). An intuitive way of measuring the adequacy of a certain classifier
is to measure to what extent the two sets match, namely to measure the
size of the unshaded area. Since the absolute size is not meaningful, it
should be normalized by calculating the proportional area. This value is
the F-measure:

Proportion of unshaded area =
2·(True Positive)

False Positive + False Negative + 2·(True Positve) = F
(7.7)

160 Pattern Classification Using Ensemble Methods

The F-measure can have values between 0 to 1. It obtains its highest
value when the two sets presented in Figure 7.2 are identical and it obtains
its lowest value when the two sets are mutually exclusive. Note that each
point on the precision-recall curve may have a different F-measure. Fur-
thermore, different classifiers have different precision-recall graphs.

Fig. 7.2 A graphic explanation of the F-measure.

7.1.5 Confusion Matrix

The confusion matrix is used as an indication of the properties of a classi-
fication (discriminant) rule. It contains the number of elements that have
been correctly or incorrectly classified for each class. We can see on its main
diagonal the number of observations that have been correctly classified for
each class; the off-diagonal elements indicate the number of observations
that have been incorrectly classified. One benefit of a confusion matrix is
that it is easy to see if the system is confusing two classes (i.e. commonly
mislabelling one as an other).

For every instance in the test set, we compare the actual class to the
class that was assigned by the trained classifier. A positive (negative)
example that is correctly classified by the classifier is called a true positive
(true negative); a positive (negative) example that is incorrectly classified
is called a false negative (false positive). These numbers can be organized
in a confusion matrix shown in Table 7.1.

Based on the values in Table 7.1, one can calculate all the measures
defined above:

• Accuracy is: (a+d)/(a+b+c+d)
• Misclassification rate is: (b+c)/(a+b+c+d)

Evaluating Ensembles 161

Table 7.1 A Confusion Matrix.

Predicted
negative

Predicted
positive

Negative
Examples

A B

Positive
Examples

C D

• Precision is: d/(b + d)
• True positive rate (Recall) is: d/(c + d)
• False positive rate is: b/(a + b)
• True negative rate (Specificity) is: a/(a + b)
• False negative rate is: c/(c + d)

7.1.6 Classifier Evaluation under Limited Resources

The above mentioned evaluation measures are insufficient when probabilis-
tic classifiers are used for choosing objects to be included in a limited quota.
This is a common situation that arises in real-life applications due to re-
source limitations that require cost-benefit considerations. Resource limita-
tions prevent the organization from choosing all the instances. For example,
in direct marketing applications, instead of mailing everybody on the list,
the marketing efforts must implement a limited quota, i.e., target the mail-
ing audience with the highest probability of positively responding to the
marketing offer without exceeding the marketing budget.

Another example deals with a security officer in an air terminal. Follow-
ing September 11, the security officer needs to search all passengers who
may be carrying dangerous instruments (such as scissors, penknives and
shaving blades). For this purpose the officer is using a classifier that is ca-
pable of classifying each passenger either as class A, which means, “Carry
dangerous instruments” or as class B, “Safe”.

Suppose that searching a passenger is a time-consuming task and that
the security officer is capable of checking only 20 passengers prior to each
flight. If the classifier has labeled exactly 20 passengers as class A, then the
officer will check all these passengers. However if the classifier has labeled
more than 20 passengers as class A, then the officer is required to decide
which class A passenger should be ignored. On the other hand, if less than
20 people were classified as A, the officer, who must work constantly, has

162 Pattern Classification Using Ensemble Methods

to decide who to check from those classified as B after he has finished with
the class A passengers.

There also cases in which a quota limitation is known to exist but its
size is not known in advance. Nevertheless, the decision maker would like
to evaluate the expected performance of the classifier. Such cases occur,
for example, in some countries regarding the number of undergraduate stu-
dents that can be accepted to a certain department in a state university.
The actual quota for a given year is set according to different parameters
including governmental budget. In this case, the decision maker would like
to evaluate several classifiers for selecting the applicants while not knowing
the actual quota size. Finding the most appropriate classifier in advance
is important because the chosen classifier can dictate what the important
attributes are, i.e. the information that the applicant should provide the
registration and admission unit.

In probabilistic classifiers, the above mentioned definitions of precision
and recall can be extended and defined as a function of a probability thresh-
old τ . If we evaluate a classifier based on a given a test set which consists
of n instances denoted as (< x1, y1 >, . . . , < xn, yn >) such that xi repre-
sents the input features vector of instance i and yi represents its true class
(“positive” or “negative”), then:

Precision (τ) =

∣∣∣{< xi, yi >: P̂E(pos |xi) > τ, yi = pos}
∣∣∣∣∣∣{< xi, yi >: P̂E(pos |xi) > τ

∣∣∣ (7.8)

Recall (τ) =

∣∣∣{< xi, yi >: P̂E(pos |xi) > τ, yi = pos}
∣∣∣

|{< xi, yi >: yi = pos}| (7.9)

where E represents a probabilistic ensemble that is used to estimate the
conditional likelihood of an observation xi to “positive” which is denoted
as P̂E(pos |xi). The typical threshold value of 0.5 means that the predicted
probability of “positive” must be higher than 0.5 for the instance to be
predicted as “positive”. By changing the value of τ,one can control the
number of instances that are classified as “positive”. Thus, the τ value can
be tuned to the required quota size. Nevertheless because there might be
several instances with the same conditional probability, the quota size is
not necessarily incremented by one.

The above discussion is based on the assumption that the classifica-
tion problem is binary. In cases where there are more than two classes,
adaptation could be easily made by comparing one class to all the others.

Evaluating Ensembles 163

7.1.6.1 ROC Curves

Another measure is the receiver operating characteristic (ROC) curves
which illustrate the tradeoff between true positive to false positive rates
[Provost and Fawcett (1998)]. Figure 7.3 illustrates a ROC curve in which
the X-axis represents a false positive rate and the Y-axis represents a true
positive rate. The ideal point on the ROC curve would be (0,100), that is,
all positive examples are classified correctly and no negative examples are
misclassified as positive.

True positive
rate

False
positive

rate
0.20.40.60.81

1

0.8

0.6

0.4

Fig. 7.3 A typical ROC curve.

The ROC convex hull can also be used as a robust method of identi-
fying potentially optimal classifiers [Provost and Fawcett (2001)]. Given
a family of ROC curves, the ROC convex hull can include points that are
more towards the north-west frontier of the ROC space. If a line passes
through a point on the convex hull, then there is no other line with the same
slope passing through another point with a larger true positive (TP) inter-
cept. Thus, the classifier at that point is optimal under any distribution
assumptions in tandem with that slope.

7.1.6.2 Hit Rate Curve

The hit rate curve presents the hit ratio as a function of the quota size[An
and Wang (2001)]. Hit rate is calculated by counting the actual positive
labeled instances inside a determined quota. More precisely for a quota of
size j and a ranked set of instances, hit rate is defined as:

HitRate(j) =

j∑
k=1

t[k]

j
(7.10)

164 Pattern Classification Using Ensemble Methods

where t[k] represents the truly expected outcome of the instance located in
the k’th position when the instances are sorted according to their condi-
tional probability for “positive” by descending order. Note that if the k’th
position can be uniquely defined (i.e. there is exactly one instance that can
be located in this position) then t[k] is either 0 or 1 depending on the actual
outcome of this specific instance. Nevertheless if the k’th position is not
uniquely defined and there are mk,1 instances that can be located in this
position, and mk,2 of which are truly positive, then:

t[k] = mk,2/mk,1
(7.11)

The sum of t[k] over the entire test set is equal to the number of instances
that are labeled “positive”. Moreover Hit − Rate(j) ≈ Precision(p[j])
where p[j] denotes the j’th order of P̂I(pos |x1), ·, P̂I(pos |xm). The values
are strictly equal when the value of j ’th is uniquely defined.

7.1.6.3 Qrecall (Quota Recall)

The hit-rate measure, presented above, is the “precision” equivalent for
quota-limited problems. Similarly, we suggest the Qrecall (for quota recall)
to be the “recall” equivalent for quota-limited problems. The Qrecall for
a certain position in a ranked list is calculated by dividing the number of
positive instances, from the head of the list until that position, by the total
positive instances in the entire dataset. Thus, the Qrecall for a quota of j

is defined as:

Qrecall(j) =

j∑
k=1

t[k]

n+
(7.12)

The denominator stands for the total number of instances that are clas-
sified as positive in the entire dataset. Formally it can be calculated as:

n+ = |{< xi, yi >: yi = pos}| (7.13)

7.1.6.4 Lift Curve

A popular method of evaluating probabilistic models is lift [Coppock
(2002)]. After a ranked test set is divided into several portions (usually
deciles), lift is calculated as follows: the ratio of really positive instances in
a specific decile is divided by the average ratio of really positive instances in
the population. Regardless of how the test set is divided, a good model is

Evaluating Ensembles 165

10

8

6

4

2

1 2 3 4 5 6 7 8 9 Deciles

Lift

Fig. 7.4 A typical lift chart.

achieved if the lift decreases when proceeding to the bottom of the scoring
list. A good model would present a lift greater than 1 in the top deciles and
a lift smaller than 1 in the last deciles. Figure 7.4 illustrates a lift chart for
a typical model prediction. A comparison between models can be done by
comparing the lift of the top portions, depending on the resources available
and cost/benefit considerations.

7.1.6.5 Pearson Correlation Coefficient

There are also some statistical measures that may be used as performance
evaluators of models. These measures are well-known and can be found
in many statistical books. In this section we examine the Pearson correla-
tion coefficient. This measure can be used to find the correlation between
the ordered estimated conditional probability (p[k]) and the ordered actual
expected outcome (t[k]). A Pearson correlation coefficient can have any
value between -1 and 1 where the value 1 represents the strongest positive
correlation. It should be noticed that this measure take into account not
only the ordinal place of an instance but also its value (i.e. the estimated
probability attached to it). The Pearson correlation coefficient for two ran-
dom variables is calculated by dividing the co-variance by the product of
both standard deviations. In this case, the standard deviations of the two

166 Pattern Classification Using Ensemble Methods

variables assuming a quota size of j are:

σp(j) =

√√√√1
j

j∑
i=1

(
p[i] − p̄(j)

)
; σt(j) =

√√√√1
j

j∑
i=1

(
t[i] − t̄(j)

)
(7.14)

where p̄(j), t̄(j) represent the average of p[i]’s and t[i]’s respectively:

p̄(j) =

j∑
i=1

p[i]

j
; t̄(j) =

j∑
i=1

t[i]

j
= HitRate(j) (7.15)

The co-variance is calculated as follows:

Covp,t(j) =
1
j

j∑
i−1

(
p[i] − p̄(j)

)(
t[i] − t̄(j)

)
(7.16)

Thus, the Pearson correlation coefficient for a quota j, is:

ρp,t(j) =
Covp,t(j)

σp(j) · σt(j)
(7.17)

7.1.6.6 Area Under Curve (AUC)

Evaluating a probabilistic model without using a specific fixed quota is not
a trivial task. Using continuous measures like hit curves, ROC curves and
lift charts, mentioned previously, is problematic. Such measures can give
a definite answer to the question “Which is the best model?” only if one
model dominates in the curve space, meaning that the curves of all the
other model are beneath it or equal to it over the entire chart space. If a
dominating model does not exist, then there is no answer to that question,
using only the continuous measures mentioned above.. Complete order
demands no intersections of the curves. Of course, in practice there is
almost never one dominating model. The best answer that can be obtained
is in regard to which areas one model outperforms the others. As shown in
Figure 7.5, every model gets different values in different areas. If a complete
order of model performance is needed, another measure should be used.

Area under the ROC curve (AUC) is a useful metric for classifier per-
formance since it is independent of the decision criterion selected and prior
probabilities. The AUC comparison can establish a dominance relationship
between classifiers. If the ROC curves are intersecting, the total AUC is
an average comparison between models [Lee (2000)]. The bigger it is, the
better the model is. As opposed to other measures, the area under the

Evaluating Ensembles 167

True positive

False positive
0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

Fig. 7.5 Areas of dominancy. A ROC curve is an example of a measure that gives
areas of dominancy and not a complete order of the models. In this example the equally
dashed line model is the best for f.p (false positive) < 0.2. The full line model is the
best for 0.2 < f.p <0.4. The dotted line model is best for 0.4 < f.p < 0.9 and from 0.9
to 1 again the dashed line model is the best.

ROC curve (AUC) does not depend on the imbalance of the training set
[Kolcz (2003)]. Thus, the comparison of the AUC of two classifiers is fairer
and more informative than comparing their misclassification rates.

7.1.6.7 Average Hit Rate

The average hit rate is a weighted average of all hit-rate values. If the
model is optimal, then all the really positive instances are located in the
head of the ranked list, and the value of the average hit rate is 1. The use of
this measure fits an organization that needs to minimize type II statistical
error (namely, to include a certain object in the quota although in fact this
object will be labeled as “negative”). Formally the Average Hit Rate for
binary classification problems is defined as:

AverageHitRate =

n∑
j=1

t[j] ·HitRate(j)

n+
(7.18)

where t[j] is defined as in Equation 4 and is used as a weighting factor. Note
that the average hit rate ignores all hit rate values on unique positions that
are actually labeled as “negative” class (because t[j]=0 in these cases).

168 Pattern Classification Using Ensemble Methods

7.1.6.8 Average Qrecall

Average Qrecall is the average of all the Qrecalls which extends from the
position that is equal to the number of positive instances in the test set
to the bottom of the list. Average Qrecall fits an organization that needs
to minimize type I statistical error (namely, not including a certain object
in the quota although in fact this object will be labeled as “positive”).
Formally, average Qrecall is defined as:

n∑
j=n+

Qrecall(j)

n− (n+ − 1)
(7.19)

where n is the total number of instances and n+ is defined in Equation
(7.13).

Table 7.2 illustrates the calculation of average Qrecall and average hit-
rate for a dataset of ten instances. The table presents a list of instances
in descending order according to their predicted conditional probability to
be classified as “positive”. Because all probabilities are unique, the third
column (t[k]) indicates the actual class (“1” represents “positive” and “0”
represents “negative”). The average values are simple algebraic averages of
the highlighted cells.

Table 7.2 An Example for Calculating Average Qrecall and Average
Hit-rate.

Place in
list (j)

Positive
proba-
bility

t[k] Qrecall Hit rate

1 0.45 1 0.25 1

2 0.34 0 0.25 0.5

3 0.32 1 0.5 0.667

4 0.26 1 0.75 0.75

5 0.15 0 0.75 0.6

6 0.14 0 0.75 0.5

7 0.09 1 1 0.571

8 0.07 0 1 0.5

9 0.06 0 1 0.444

10 0.03 0 1 0.4

Average: 0.893 0.747

Evaluating Ensembles 169

Note that both average Qrecall and average hit rate get the value 1 in
an optimum classification, where all the positive instances are located at
the head of the list. This case is illustrated in Table 7.3. A summary of
the key differences are provided in Table 7.4.

Table 7.3 Qrecall and Hit-rate in an Optimum Prediction.

Place in
list (j)

Positive
proba-
bility

t[k] Qrecall Hit rate

1 0.45 1 0.25 1

2 0.34 1 0. 5 1

3 0.32 1 0.75 1

4 0.26 1 1 1

5 0.15 0 1 0.8

6 0.14 0 1 0.667

7 0.09 0 1 0.571

8 0.07 0 1 0.5

9 0.06 0 1 0.444

10 0.03 0 1 0.4

Average: 1 1

Table 7.4 Characteristics of Qrecall and Hit-rate.

Parameter Hit-rate Qrecall

Function increas-
ing/decreasing

Non monotonic Monotonically in-
creasing

End point Proportion of posi-
tive samples in the
set

1

Sensitivity of the
measures value to
positive instances

Very sensitive to
positive instances
at the top of the
list. Less sensitive
on going down to
the bottom of the
list.

Same sensitivity to
positive instances
in all places in the
list.

Effect of negative
class on the mea-
sure

A neg-
ative instance af-
fects the measure
and cause its value
to decrease.

A negative inst-
ance does not af-
fect the measure.

Range 0≤ Hit-rate ≤1 0≤ Qrecall ≤1

170 Pattern Classification Using Ensemble Methods

7.1.6.9 Potential Extract Measure (PEM)

To better understand the behavior of Qrecall curves, consider the cases of
random prediction and optimum prediction.

Suppose no learning process was applied on the data and the list pro-
duced as a prediction would be the test set in its original (random) order.
On the assumption that positive instances are distributed uniformly in the
population, then a quota of random size contains a number of positive inst-
ances that are proportional to the a-priori proportion of positive instances
in the population. Thus, a Qrecall curve that describes a uniform distribu-
tion (which can be considered as a model that predicts as well as a random
guess, without any learning) is a linear line (or semi-linear because values
are discrete) which starts at 0 (for zero quota size) and ends in 1.

Suppose now that a model gave an optimum prediction, meaning that
all positive instances are located at the head of the list and below them, all
the negative instances. In this case, the Qrecall curve climbs linearly until
a value of 1 is achieved at point n+ (n+ = number of positive samples).
From that point any quota that has a size bigger than n+, fully extracts
test set potential and the value 1 is kept until the end of the list.

Note that a “good model”, which outperforms random classification,
though not an optimum one, will fall “on average” between these two curves.
It may drop sometimes below the random curve but generally, more area is
delineated between the “good model” curve and the random curve, above
the latter than below it. If the opposite is true then the model is a “bad
model” that does worse than a random guess.

The last observation leads us to consider a measure that evaluates the
performance of a model by summing the areas delineated between the Qre-
call curve of the examined model and the Qrecall curve of a random model
(which is linear). Areas above the linear curve are added and areas be-
low the linear curve are subtracted. The areas themselves are calculated
by subtracting the Qrecall of a random classification from the Qrecall of
the model’s classification in every point as shown in Figure 7.6. The ar-
eas where the model performed better than a random guess increase the
measure’s value while the areas where the model performed worse than a
random guess decrease it. If the last total computed area is divided in the
area delineated between the optimum model Qrecall curve and the random
model (linear) Qrecall curve, then it reaches the extent to which the poten-
tial is extracted, independently of the number of instances in the dataset.

Formally, the PEM measure is calculated as:

Evaluating Ensembles 171

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91

quota size

Q
re

ca
ll

Random Classifier
Optimum Classifier
Examined Classifier

S3

S1

S2

Fig. 7.6 A qualitative representation of PEM.

PEM =
S1 − S2

S3
(7.20)

where S1 is the area delimited by the Qrecall curve of the examined model
above the Qrecall curve of a random model; S2 is the area delimited by the
Qrecall curve of the examined model under the Qrecall curve of a random
model; and S3 is the area delimited by the optimal Qrecall curve and the
curve of the random model. The division in S3 is required in order to
normalize the measure, thus datasets of different size can be compared. In
this way, if the model is optimal, then PEM gets the value 1. If the model
is as good as a random choice, then the PEM gets the value 0. If it gives
the worst possible result (that is to say, it puts the positive samples at the
bottom of the list), then its PEM is -1. Based on the notations defined
above, the PEM can be formulated as:

PEM =
S1 − S2

S3
=

n∑
j=1

(
qrecall(j)− j

n

)
n+∑
j=1

(
j

n+

)
+ n− −

n∑
j=1

(
j
n

) (7.21)

172 Pattern Classification Using Ensemble Methods

=

n∑
j=1

(qrecall(j))− (n+1)
2

(n++1)
2 + n− − (n+1)

2

=

n∑
j=1

(qrecall(j))− (n+1)
2

n−
2

(7.22)

where n− denotes the number of instances that are actually classified as
“negative”. Table 7.5 illustrates the calculation of PEM for the instances
in Table 7.2. Note that the random Qrecall does not represent a certain
realization but the expected values. The optimal qrecall is calculated as if
the “positive” instances have been located in the top of the list.

Table 7.5 An Example for Calculating PEM for Instances of Table 7.2.

Place
in
list

Success
probability

t[k] Model
Qrecall

Random
Qrecall

Optimal
Qrecall

S1 S2 S3

1 0.45 1 0.25 0.1 0.25 0.15 0 0.15

2 0.34 0 0.25 0.2 0.5 0.05 0 0.3

3 0.32 1 0.5 0.3 0.75 0.2 0 0.45

4 0.26 1 0.75 0.4 1 0.35 0 0.6

5 0.15 0 0.75 0.5 1 0.25 0 0.5

6 0.14 0 0.75 0.6 1 0.15 0 0.4

7 0.09 1 1 0.7 1 0.3 0 0.3

8 0.07 0 1 0.8 1 0.2 0 0.2

9 0.06 0 1 0.9 1 0.1 0 0.1

10 0.03 0 1 1 1 0 0 0

Total 1.75 0 3

Note that the PEM somewhat resembles the Gini index produced from
Lorentz curves which appear in economics when dealing with the distribu-
tion of income. Indeed, this measure indicates the difference between the
distribution of positive samples in a prediction and the uniform distribu-
tion. Note also that this measure gives an indication of the total lift of
the model at every point. In every quota size, the difference between the
Qrecall of the model and the Qrecall of a random model expresses the lift
in extracting the potential of the test set due to the use in the model (for
good or for bad).

7.1.7 Statistical Tests for Comparing Ensembles

Below we discuss some of the most common statistical methods proposed
[Dietterich (1998)] for answering the following question: Given two indu-
cers A and B and a dataset S, which inducer will produce more accurate
classifiers when trained on datasets of the same size?

Evaluating Ensembles 173

7.1.7.1 McNemar’s Test

Let S be the available set of data, which is divided into a training set R

and a test set T . Then we consider two inducers A and B trained on the
training set and the result is two classifiers. These classifiers are tested on
T and for each example x ∈ T we record how it was classified. Thus, the
contingency table presented in Table 7.6 is constructed.

Table 7.6 McNemar’s Test: Contingency Table.

Number of examples misclassified Number of examples misclassified by

by both classifiers (n00) f̂A but not by f̂B(n01)

Number of examples misclassified Number of examples misclassified

by f̂B but not by f̂A(n10) neither by f̂A nor by f̂B(n11)

The two inducers should have the same error rate under the null hy-
pothesis H0. McNemar’s test is based on a χ2 test for goodness-of-fit that
compares the distribution of counts expected under null hypothesis to the
observed counts. The expected counts under Ho are presented in Table 7.7.

Table 7.7 Expected Counts Under Ho.

n00 (n01 + n10)/2)

(n01 + n10)/2) n11)

The following statistic, s, is distributed as χ2 with 1 degree of freedom.
It incorporates a “continuity correction” term (of -1 in the numerator) to
account for the fact that the statistic is discrete while the χ2 distribution
is continuous:

s =
(|n10 − n01| − 1)2

n10 + n01
(7.23)

According to the probabilistic theory [Athanasopoulos, 1991], if the null
hypothesis is correct, the probability that the value of the statistic, s, is
greater than χ2

1,0.95 is less than 0.05, i.e. P (|s| > χ2
1,0.95) < 0.05. Then, to

compare the inducers A and B, the induced classifiers f̂A and f̂B are tested
on T and the value of s is estimated as described above. Then if |s| > χ2

1,0.95

, the null hypothesis could be rejected in favor of the hypothesis that the
two inducers have different performance when trained on the particular
training set R.

174 Pattern Classification Using Ensemble Methods

The shortcomings of this test are:

(1) It does not directly measure variability due to the choice of the train-
ing set or the internal randomness of the inducer. The inducers are
compared using a single training set R. Thus McNemar’s test should
be only applied if we consider that the sources of variability are small.

(2) It compares the performance of the inducers on training sets, which
are substantially smaller than the size of the whole dataset. Hence we
must assume that the relative difference observed on training sets will
still hold for training sets of size equal to the whole dataset.

7.1.7.2 A Test for the Difference of Two Proportions

This statistical test is based on measuring the difference between the error
rates of algorithms A and B [Snedecor and Cochran (1989)]. More specifi-
cally, let pA = (n00 +n01)/n be the proportion of test examples incorrectly
classified by algorithm A and let pB = (n00 + n10)/n be the proportion
of test examples incorrectly classified by algorithm B. The assumption un-
derlying this statistical test is that when algorithm A classifies an example
x from the test set T, the probability of misclassification is pA. Then the
number of misclassifications of n test examples is a binomial random vari-
able with mean npA and variance pA(1− pA)n.

The binomial distribution can be well approximated by a normal distri-
bution for reasonable values of n. The difference between two independent
normally distributed random variables is itself normally distributed. Thus,
the quantity pA − pB can be viewed as normally distributed if we assume
that the measured error rates pA and pB are independent. Under the null
hypothesis, Ho, the quantity pA − pB has a mean of zero and a standard
deviation error of

se =

√
2p ·
(

1− pA + pB

2

)
/n (7.24)

where n is the number of test examples.
Based on the above analysis, we obtain the statistic:

z =
pA − pB√
2p(1− p)/n

(7.25)

which has a standard normal distribution. According to the probabilistic

Evaluating Ensembles 175

theory, if the z value is greater than Z0.975, the probability of incorrectly
rejecting the null hypothesis is less than 0.05. Thus, if |z| > Z0.975 = 1.96,
the null hypothesis could be rejected in favor of the hypothesis that the
two algorithms have different performances. Two of the most important
problems with this statistic are:

(1) The probabilities pA and pB are measured on the same test set and
thus they are not independent.

(2) The test does not measure variation due to the choice of the training
set or the internal variation of the learning algorithm. Also it measures
the performance of the algorithms on training sets of a size significantly
smaller than the whole dataset.

7.1.7.3 The Resampled Paired t Test

The resampled paired t test is the most popular in machine learning. Usu-
ally, there are a series of 30 trials in the test. In each trial, the available
sample S is randomly divided into a training set R (it is typically two thirds
of the data) and a test set T . The algorithms A and B are both trained
on R and the resulting classifiers are tested on T . Let p

(i)
A and p

(i)
B be

the observed proportions of test examples misclassified by algorithm A and
B respectively during the i-th trial. If we assume that the 30 differences
p(i) = p

(i)
A −p

(i)
B were drawn independently from a normal distribution, then

we can apply Student’s t test by computing the statistic:

t =
p̄ · √n√∑
n
i=1(p

(i)−p̄)2

n−1

(7.26)

where p̄ = 1
n ·
∑n

i=1 p(i). Under the null hypothesis, this statistic has a
t distribution with n − 1 degrees of freedom. Then for 30 trials, the null
hypothesis could be rejected if |t| > t29,0.975 = 2.045. The main drawbacks
of this approach are:

(1) Since p
(i)
A and p

(i)
B are not independent, the difference p(i) will not have

a normal distribution.
(2) The p(i)’s are not independent, because the test and training sets in

the trials overlap.

176 Pattern Classification Using Ensemble Methods

7.1.7.4 The k-fold Cross-validated Paired t Test

This approach is similar to the resampled paired t test except that instead of
constructing each pair of training and test sets by randomly dividing S, the
dataset is randomly divided into k disjoint sets of equal size, T1, T2, . . . , Tk.
Then k trials are conducted. In each trial, the test set is Ti and the training
set is the union of all of the others Tj, j �= i. The t statistic is computed as
described in Section 7.1.7.3. The advantage of this approach is that each
test set is independent of the others. However, there is the problem that
the training sets overlap. This overlap may prevent this statistical test
from obtaining a good estimation of the amount of variation that would
be observed if each training set were completely independent of the others
training sets.

7.2 Computational Complexity

Another useful criterion for comparing inducers and classifiers is their com-
putational complexity. Strictly speaking computational complexity is the
amount of CPU consumed by each inducer. It is convenient to differentiate
between three metrics of computational complexity:

• Computational complexity for generating a new classifier: This is the
most important metric, especially when there is a need to scale the
data mining algorithm to massive datasets. Because most of the algo-
rithms have computational complexity, which is worse than linear in
the numbers of tuples, mining massive datasets might be prohibitively
expensive.
• Computational complexity for updating a classifier: Given new data,

what is the computational complexity required for updating the current
classifier such that the new classifier reflects the new data?
• Computational complexity for classifying a new instance: Generally

this type of metric is neglected because it is relatively small. However,
in certain methods (like k-nearest neighborhood) or in certain real-time
applications (like anti-missiles applications), this type can be critical.

A smaller ensemble requires less memory for storing its members. More-
over, smaller ensembles have a faster classification speed. It is particularly
crucial in several near real-time applications, such as worm detection. In
addition to the pursuing the highest possible accuracy, these applications,
require that the classification time should be kept to the minimum.

Evaluating Ensembles 177

7.3 Interpretability of the Resulting Ensemble

Interpretability (also known as comprehensibility) indicates the user ability
to understand the ensemble results. While the generalization error measures
how the classifier fits the data, comprehensibility measures the “mental fit”
of that classifier. This is especially important in applications in which the
user is required to understand the system behavior or explain its classifica-
tion. For example the revised version of AdaBoost presented in [Friedman
et al. (2000)] is considered to provide interpretable descriptions of the
aggregate decision rule.

Interpretability is usually a subjective criterion. Nevertheless, there are
several quantitative measures and indicators that can help us in evaluating
this criterion. For example:

• Compactness - measures the knowledge representation size efficiency.
Obviously, results presented by a smaller size are easier to understand.
In ensemble methods compactness can be measured by the ensemble
size (number of classifiers) and the complexity of each classifier. Acco-
rding to Freund and Mason [Freund and Mason (1999)] Even for mod-
est values of ensemble size, boosting of decision trees could result in a
final combined classifier with thousands (or millions) of nodes which it
is difficult to visualize.
• Base Inducer Used - The base inducer used by the ensemble can deter-

mine its interpretability. Many techniques, like neural networks or sup-
port vector machines (SVM), are designed solely to achieve accuracy.
However, as their classifiers are represented using large assemblages of
real valued parameters, they are also difficult to understand and are
referred to as black-box models. On the other hand, decision trees are
easier to understand than black-box methods.

However it is often important for the researcher to be able to inspect
an induced classifier. For such domains as medical diagnosis, users must
understand how the system makes its decisions in order to be confident of
the outcome. Since data mining can also play an important role in the
process of scientific discovery, a system may discover salient features in the
input data whose importance was not previously recognized. If the repre-
sentations formed by the inducer are comprehensible, then these discoveries
can be made accessible to human review [Hunter and Klein (1993)].

178 Pattern Classification Using Ensemble Methods

7.4 Scalability to Large Datasets

Scalability refers to the ability of the method to construct the classification
model efficiently given large amounts of data. Classical induction algo-
rithms have been applied with practical success in many relatively simple
and small-scale problems. However, trying to discover knowledge in real
life and large databases introduces time and memory problems.

There are ensemble methods (such as partitioning methods) that are
more suitable to scale to large dataset than other. Moreover independent
methods are considered to be more scalable than dependent methods be-
cause the former case, classifiers can be trained in parallel.

As large databases have become the norm in many fields (including
astronomy, molecular biology, finance, marketing, health care, and many
others), the use of data mining to discover patterns in them has become
a potentially very productive enterprise. Many companies are staking a
large part of their future on these “data mining” applications, and looking
to the research community for solutions to the fundamental problems they
encounter.

While a very large amount of available data used to be a dream of any
data analyst, nowadays the synonym for “very large” has become “ter-
abyte”, a hardly imaginable volume of information. Information-intensive
organizations (like telecom companies and banks) are supposed to accumu-
late several terabytes of raw data every one to two years.

However, the availability of an electronic data repository (in its en-
hanced form known as a “data warehouse”) has caused a number of pre-
viously unknown problems, which, if ignored, may turn the task of effi-
cient data mining into mission impossible. Managing and analyzing huge
data warehouses requires special and very expensive hardware and soft-
ware, which often causes a company to exploit only a small part of the
stored data.

According to [Fayyad et al. (1996)] the explicit challenges for the data
mining research community is to develop methods that facilitate the use of
data mining algorithms for real-world databases. One of the characteristics
of a real-world databases is high volume data.

Huge databases pose several challenges:

• Computing complexity: Since most induction algorithms have a com-
putational complexity that is greater than linear in the number of attri-
butes or tuples, the execution time needed to process such databases

Evaluating Ensembles 179

might become an important issue.
• Poor classification accuracy due to difficulties in finding the correct

classifier. Large databases increase the size of the search space, and
thus it increases the chance that the inducer will select an over fitted
classifier that is not valid in general.
• Storage problems: In most machine learning algorithms, the entire

training set should be read from the secondary storage (such as mag-
netic storage) into the computer’s primary storage (main memory) be-
fore the induction process begins. This causes problems since the main
memory’s capability is much smaller than the capability of magnetic
disks.

The difficulties in implementing classification algorithms as-is on high vol-
ume databases derives from the increase in the number of records/instances
in the database and from the increase in the number of attributes/features
in each instance (high dimensionality).

Approaches for dealing with a high number of records include:

• Sampling methods — statisticians are selecting records from a popula-
tion by different sampling techniques.
• Aggregation — reduces the number of records either by treating a group

of records as one, or by ignoring subsets of “unimportant” records.
• Massively parallel processing — exploiting parallel technology — to

simultaneously solve various aspects of the problem.
• Efficient storage methods — enabling the algorithm to handle many

records.
• Reducing the algorithm’s search space.

7.5 Robustness

The ability of the model to handle noise or data with missing values and
make correct predictions is called robustness. Different ensembles algo-
rithms have different robustness levels. In order to estimate the robustness
of an ensemble, it is common to train the ensemble on a clean training
set and then train a different ensemble on a noisy training set. The noisy
training set is usually the clean training set to which some artificial noisy
instances have been added. The robustness level is measured as the differ-
ence in the accuracy of these two situations.

180 Pattern Classification Using Ensemble Methods

7.6 Stability

Formally, stability of a classification algorithm is defined as the degree to
which an algorithm generates repeatable results, given different batches
of data from the same process. In mathematical terms, stability is the
expected agreement between two models on a random sample of the original
data, where agreement on a specific example means that both models assign
it to the same class. The instability problem raises questions about the
validity of a particular ensemble provided as an output of a given algorithm.
The users view the learning algorithm as an oracle. Obviously, it is difficult
to trust an oracle that says something radically different each time you
make a slight change in the data.

7.7 Flexibility

Flexibility indicates the ability to use any inducer (inducer-independent),
any combiner (Combiner-independent), provide a solution to variety of clas-
sification tasks (for example it is should not be limited to a binary clas-
sification task), a set of controlling parameters which enable the user to
examine several variations of the ensemble techniques.

7.8 Usability

Machine learning is highly iterative process. Practitioners typically ad-
just algorithm’s parameters to generate better classifiers. A good ensemble
method should provide a set of controlling parameters that are comprehen-
sive and can be easily tuned.

7.9 Software Availability

Software Availability of an ensemble method indicates how many off-the-
shelf software packages support this ensemble method. High Availability
implies that the practitioner can move from one software to another, with-
out the need to replace his ensemble method. Table 7.8 indicates the pop-
ularity (as measured by the number of citation in Google scholar in June,
2009) of the ten methods presented in Table 7.8 and the total availabil-
ity of these methods in five open source packages: Weka [Frank et. al

Evaluating Ensembles 181

(2005)], Orange [Demsar et al. (2004)], Tanagra [Rakotomalala (2005)],
RapidMiner (formerly YALE)[Mierswa et al. (2006)], OpenDT [Banfield
(2005)], Java-ML /citeAbeel and R programming environment [R statisti-
cal computing Language (2005)]. The table indicates that high popularity
is a necessary condition for high availability, but still there are popular
methods with relatively low availability.

In addition, there are several open source packages which specifically
implement variants of boosting algorithms. OAIDTB (Other Application
Interactively Demonstrating Techniques of Boosting)[Villalba et al. (2003)]
extends Weka framework by adding the following implementations: Ad-
aBoost.real, AdaBoost.M1W, GentleAdaBoost, AdaBoost.OC, AdaCost,
AdaBoost.ECC, CSBx, AdaBoost.MH and CSAdaBoostMH. The package
JBoost (http://jboost.sourceforge.net/) implements algorithms such as Ad-
aBoost, LogitBoost, RobustBoost, Boostexter and BrownBoost (included
in JBoost 1.4). A source code of Boostexter can be also obtained from:
http://www.cs.princeton.edu/ schapire/boostexter.html.

Table 7.8 Software Availability of the Ensemble Method.

Google Scholar
Algorithm (June 2009) Software Availability Reference

AdaBoost 2730 Weka, Orange, Tanagra, [Freund and Schapire (1996)]

RapidMiner, R

Bagging 4907 All [Breiman (1996a)]

RandomForest 1988 All [Breiman (2001)]

DECORATE 81 Weka [Melville and Mooney (2003)]

MultiBoosting 184 Weka, RapidMiner [Webb (2000)]

Wagging 993 Weka, RapidMiner [Bauer and Kohavi (1999)]

Attribute 52 Weka [Bryll et al. (2003)]

Bagging

Stacking 1582 Weka, Tanagra, RapidMiner [Wolpert (1992)]

ECOC 1007 Weka, RapidMiner [Dietterich and Bakiri (1995)]

Arc-x4 644 Weka, Tanagra [Breiman (1998)]

7.10 Which Ensemble Method Should be Used?

Given the vast repertoire of ensemble methods to choose from, and the
various potentially contradicting criteria, it is not surprising that choosing
an ensemble method is not a simple task.

Empirical comparison of the performance of different approaches and
their variants in a wide range of application domains has shown that each

182 Pattern Classification Using Ensemble Methods

performs best in some, but not all, domains. This has been termed the
selective superiority problem [Brodley (1995a)].

It is well known that no induction algorithm can be the best in all pos-
sible domains; each algorithm contains an explicit or implicit bias [Mitchell
(1980)] that leads it to prefer certain generalizations over others. The algo-
rithm will be successful only insofar as this bias matches the characteristics
of the application domain [Brazdil et al. (1994)]. Furthermore, other re-
sults have demonstrated the existence and correctness of the “conservation
law” [Schaffer (1994)] or “no free lunch theorem” [Wolpert (1996)]: if one
inducer is better than another in some domains, then there are necessarily
other domains in which this relationship is reversed.

The “no free lunch theorem” implies that for a given problem, a cer-
tain approach can yield more information from the same data than other
approaches.

A distinction should be made between all the mathematically possible
domains, which are simply a product of the representation languages used,
and the domains that occur in the real world, and are therefore the ones
of primary interest [Rao et al. (1995)]. Without doubt there are many
domains in the former set that are not in the latter, and average accuracy
in the realworld domains can be increased at the expense of accuracy in the
domains that never occur in practice. Indeed, achieving this is the goal of
inductive learning research. It is still true that some algorithms will match
certain classes of naturallyoccurring domains better than other algorithms,
and so achieve higher accuracy than these algorithms. While this may
be reversed in other realworld domains, it does not preclude an improved
algorithm from being as accurate as the best in each of the domain classes.

Indeed, in many application domains, the generalization error of even
the best methods is far above 0%, and the question of whether it can
be improved, and if so how, is an open and important one. One aspect
in answering this question is determining the minimum error achievable
by any classifier in the application domain (known as the optimal Bayes
error). If existing classifiers do not reach this level, new approaches are
needed. Although this problem has received considerable attention (see for
instance [Tumer and Ghosh (1996)]), no generally reliable method has so
far been demonstrated.

The “no free lunch” concept presents a dilemma to the analyst ap-
proaching a new task: Which inducer should be used?

If the analyst is looking for accuracy only, one solution is to try each one
in turn, and by estimating the generalization error, to choose the one that

Evaluating Ensembles 183

appears to perform best [Schaffer (1994)]. Another approach, known as
multistrategy learning [Michalski and Tecuci (1994)], attempts to combine
two or more different paradigms in a single algorithm. Most research in
this area has been concerned with combining empirical approaches with
analytical methods (see for instance [Towell and Shavlik (1994)]. Ideally,
a multistrategy learning algorithm would always perform as well as the
best of its “parents” obviating the need to try each one and simplifying the
knowledge acquisition task. Even more ambitiously, there is hope that this
combination of paradigms might produce synergistic effects (for instance
by allowing different types of frontiers between classes in different regions
of the example space), leading to levels of accuracy that neither atomic
approach by itself would be able to achieve.

Unfortunately, this approach has often been used with only moderate
success. Although it is true that in some industrial applications (like in
the case of demand planning) this strategy proved to boost the error per-
formance, in many other cases the resulting algorithms are prone to be
cumbersome, and often achieve an error that lies between those of their
parents, instead of matching the lowest. The dilemma of what method to
choose becomes even greater, if many criteria are taken into consideration.

The difficulty in choosing the ensemble methods results from the fact
that this is a MCDM (Multiple Criteria Decision Making) problem. There
are trade off relationships among the criteria and some criteria can not be
measured in commensurate units. Thus, in order to systematically chose
the right method, the practitioner is encouraged to implement one of the
MCDM solving technique such as AHP (Analytic Hierarchy Process).

Moreover, the context of the specific classification problem to be solved
has tremendous effect on the results. In general, all comparative studies
that have been performed in the literature and aim to compare the predic-
tive performance, show that the no-free-lunch theorem holds [Brown et al.
(2005); Sohna (2007)], i.e. the best ensemble technique depends much on
the particular training dataset. Thus, the current challenge is to automat-
ically choose the best ensemble technique. There are two alternatives to
achieve this goal:

• The wrapper approach – Given a certain dataset, use each ensemble
method and select the one that appears to give the highest success
rate. The main advantage of this approach is its ability to predict
quite well the performance of each examined method. The main dis-
advantage of this method is it’s prolonged processing time. For some

184 Pattern Classification Using Ensemble Methods

inducers the induction times may be very long, particularly in large
real-life datasets. Several researchers have implemented this approach
for selecting induction algorithms or dimension reduction algorithms
and showed that it produces superior results [Schaffer (1993)].
• The meta-learning approach [Vilalta et al. (2005)]– Based on datasets

characteristics, the meta-classifier decides whether to use ensemble
method or not and what technique to use. If a certain ensemble method
outperforms other methods in a particular dataset, then one should ex-
pect that this method will be preferable when other problems with
similar characteristics are presented. For this purpose one can employ
meta-learning. Meta-learning is concerned with accumulating experi-
ence on the performance of multiple applications of a learning system.
One possible output of the meta-learning process is a meta-classifier
that is capable to indicate which learning method is most appropriate
to a given problem. This goal can be accomplished by performing the
following phases: In the first phase one should examine the performance
of all investigated ensemble methods on various datasets. Upon exami-
nation of each dataset, the characteristics of the dataset are extracted.
The dataset’s characteristics, together with the indication of the most
preferable ensemble method, (in this dataset) are stored in a meta-
dataset. This meta-dataset reflects the experience accumulated across
different datasets. In the second phase, an inducer can be applied to
this meta-dataset to induce a meta-classifier that can map a dataset to
the most appropriate ensemble method (based on the characteristics of
the dataset). In the last phase, the meta-classifier is actually used to
match a new unseen dataset to the most appropriate ensemble method.
Several researchers have implemented this approach for selecting an en-
semble method and showed that it produces superior results [Rokach
(2006)]

Bibliography

Abeel Thomas, Yves Van de Peer, Yvan Saeys, Java-ML: A Machine Learning
Library, Journal of Machine Learning Research 10 (2009) 931-934

Adem, J., Gochet, W., 2004. Aggregating classifiers with mathematical program-
ming. Comput. Statist. Data Anal. 47 (4), 791-807.

Aha, D. W.; Kibler, D.; and Albert, M. K., Instancebased learning algorithms.
Machine Learning 6(1):37-66, 1991.

Ahn H., Moon H., Fazzari M. J., Noha Lim,James J. Chen, Ralph L. Kodell, Clas-
sification by ensembles from random partitions of high-dimensional data,
Computational Statistics and Data Analysis 51 (2007) 6166-6179

Al-Sultan K. S. , Khan M. M. : Computational experience on four algorithms for
the hard clustering problem. Pattern Recognition Letters 17(3): 295-308,
1996.

A1-Sultan K. S., A tabu search approach to the clustering problem, Pattern
Recognition, 28:1443-1451,1995.

Alba, E., Chicano, J.F., (2004), Solving the error correcting code problem with
parallel hybrid heuristics. In: Proceedings of 2004 ACM Symposium on
Applied Computing. Volume 2. 985–989.

Alba, E., Cotta, C., Chicano, F., Nebro, A.J., (2002), Parallel evolutionary algo-
rithms in telecommunications: two case studies. In: Proceedings of Con-
gresso Argentino de Ciências de la Computación.

Ali K. M., Pazzani M. J., Error Reduction through Learning Multiple Descrip-
tions, Machine Learning, 24: 3, 173-202, 1996.

Allwein, E.L., Shapire, R.E., Singer, Y., (2000), Reducing multiclass to binary: a
unifying approach for magin classifiers. In: Proceedings of the 17th Inter-
national Conference on Machine Learning, Morgan Kaufmann 9–16.

Almuallim H,. and Dietterich T.G., Learning Boolean concepts in the presence of
many irrelevant features. Artificial Intelligence, 69: 1-2, 279-306, 1994.

Almuallim H., An Efficient Algorithm for Optimal Pruning of Decision Trees.
Artificial Intelligence 83(2): 347-362, 1996.

Alpaydin, E., Mayoraz, E., (1999), Learning error-correcting output codes from
data. In: Proceedings of the 9th International Conference on Neural Net-
works. 743–748.

185

186 Pattern Classification Using Ensemble Methods

Alsabti K., Ranka S. and Singh V., CLOUDS: A Decision Tree Classifier for Large
Datasets, Conference on Knowledge Discovery and Data Mining (KDD-98),
August 1998.

Altincay H., Decision trees using model ensemble-based nodesPattern Recognition
40 (2007) 3540 - 3551.

An A. and Wang Y., ”Comparisons of classification methods for screening po-
tential compounds”. In IEEE International Conference on Data Mining,
2001.

Anand R, Methrotra K, Mohan CK, Ranka S. Efficient classification for multiclass
problems using modular neural networks. IEEE Trans Neural Networks,
6(1): 117-125, 1995.

Anderson, J.A. and Rosenfeld, E. Talking Nets: An Oral History of Neural Net-
work Research. Cambridge, MA: MIT Press, 2000.

Arbel, R. and Rokach, L., Classifier evaluation under limited resources, Pattern
Recognition Letters, 27(14): 1619–1631, 2006, Elsevier.

Archer K. J., Kimes R. V., Empirical characterization of random forest vari-
able importance measures, Computational Statistics and Data Analysis 52
(2008) 2249-2260

Ashenhurst, R. L., The decomposition of switching functions, Technical report,
Bell Laboratories BL-1(11), pp. 541-602, 1952.

Athanasopoulos, D. (1991). Probabilistic Theory. Stamoulis, Piraeus.
Attneave F., Applications of Information Theory to Psychology. Holt, Rinehart

and Winston, 1959.
Averbuch, M. and Karson, T. and Ben-Ami, B. and Maimon, O. and Rokach, L.,

Context-sensitive medical information retrieval, The 11th World Congress
on Medical Informatics (MEDINFO 2004), San Francisco, CA, September
2004, IOS Press, pp. 282-286

Averbuch M., Maimon O., Rokach L., and Ezer E., Free-Text Information Re-
trieval System for a Rapid Enrollment of Patients into Clinical Trials, Clin-
ical Pharmacology and Therapeutics, 77(2): 13-14, 2005.

Avnimelech R. and Intrator N., Boosted Mixture of Experts: an ensemble learning
scheme, Neural Computations, 11(2):483-497, 1999.

Bäck, T., Fogel, D.B., Michalewicz, T., (2000), Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing.

Baker E., and Jain A. K., On feature ordering in practice and some finite sam-
ple effects. In Proceedings of the Third International Joint Conference on
Pattern Recognition, pages 45-49, San Diego, CA, 1976.

Bala J., Huang J., Vafaie H., De Jong K., Wechsler H., Hybrid Learning Using
Genetic Algorithms and Decision Trees for Pattern Classification, IJCAI
conference, 1995.

Banfield R., OpenDT, http://opendt.sourceforge.net/, 2005.
Banfield J. D. and Raftery A. E. . Model-based Gaussian and non-Gaussian clus-

tering. Biometrics, 49:803-821, 1993.
Robert E. Banfield, Lawrence O. Hall, Kevin W. Bowyer, W.P. Kegelmeyer, A

Comparison of Decision Tree Ensemble Creation Techniques, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp.

Bibliography 187

173-180, Jan., 2007
Bao Y., Ishii N., Combining multiple K-nearest neighbor classifiers for text clas-

sification by reducts. In: Proceedings of 5th international conference on
discovery science, LNCS 2534, Springer, 2002, pp 340-347

Bartlett P. and Shawe-Taylor J., Generalization Performance of Support Vector
Machines and Other Pattern Classifiers, In “Advances in Kernel Methods,
Support Vector Learning”, Bernhard Scholkopf, Christopher J. C. Burges,
and Alexander J. Smola (eds.), MIT Press, Cambridge, USA, 1998.

Bartlett, P., Traskin, M., 2007. Adaboost is consistent. Journal of Machine Learn-
ing Research 8, 2347-2368.

Basak J., Online adaptive decision trees, Neural Computations, 16(9):1959-1981,
2004.

Basak J., Online Adaptive Decision Trees: Pattern Classification and Function
Approximation, Neural Computations, 18(9):2062-2101, 2006.

Bauer, E. and Kohavi, R., “An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants”. Machine Learning, 35: 1-
38, 1999.

Baxt, W. G., Use of an artificial neural network for data analysis in clinical
decision making: The diagnosis of acute coronary occlusion. Neural Com-
putation, 2(4):480-489, 1990.

Bay, S., Nearest neighbor classification from multiple feature subsets. Intelligent
Data Analysis, 3(3): 191-209, 1999.

Beasley, D. (2000), [Bäck et al. (2000)] 4–18
Bellman, R., Adaptive Control Processes: A Guided Tour, Princeton University

Press, 1961.
Bennett X. and Mangasarian O.L., Multicategory discrimination via linear pro-

gramming. Optimization Methods and Software, 3:29-39, 1994.
Kristin P. Bennett and Ayhan Demiriz and Richard Maclin, Exploiting unlabeled

data in ensemble methods, Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pp. 289–296,
ACM Press, New York, NY, USA, 2002.

Bensusan H. and Kalousis A., Estimating the Predictive Accuracy of a Classi-
fier, In Proc. Proceedings of the 12th European Conference on Machine
Learning, pages 25-36, 2001.

Bentley J. L. and Friedman J. H., Fast algorithms for constructing minimal
spanning trees in coordinate spaces. IEEE Transactions on Computers, C-
27(2):97-105, February 1978. 275

BenBassat M., Myopic policies in sequential classification. IEEE Trans. on Com-
puting, 27(2):170-174, February 1978.

Berger, A., (1999), Error-correcting output coding for text classification.
Bernard M.E., Decision trees and diagrams. Computing Surveys, 14(4):593-623,

1982.
Berry M., and Linoff G., Mastering Data Mining, John Wiley & Sons, 2000.
Bhargava H. K., Data Mining by Decomposition: Adaptive Search for Hypothesis

Generation, INFORMS Journal on Computing Vol. 11, Iss. 3, pp. 239-47,
1999.

188 Pattern Classification Using Ensemble Methods

Biermann, A. W., Faireld, J., and Beres, T. (1982). Signature table systems and
learning. IEEE Trans. Syst. Man Cybern., 12(5):635-648.

Black, M. and Hickey, R.J., Maintaining the Performance of a Learned Classifier
under Concept Drift, Intelligent Data Analysis 3(1),pp. 453474, 1999.

Blake, C.L., Merz, C.J., (1998), UCI repository of machine learning databases.
Blum, A. L. and Langley, P., 1997, Selection of relevant features and examples in

machine learning, Artificial Intelligence, 97, pp.245-271.
Blum A., and Mitchell T., Combining Labeled and Unlabeled Data with CoTrain-

ing. In Proc. of the 11th Annual Conference on Computational Learning
Theory, pages 92-100, 1998.

Bonner, R., On Some Clustering Techniques. IBM journal of research and devel-
opment, 8:22-32, 1964.

Booker L., Goldberg D. E., and Holland J. H., Classifier systems and genetic
algorithms. Artificial Intelligence, 40(1-3):235-282, 1989.

Boser, R.C., Ray-Chaudhuri, D.K., (1960), On a class of error-correcting binary
group codes. Information and Control 3 68–79.

Brachman, R. and Anand, T., 1994, The process of knowledge discovery
in databases, in: Advances in Knowledge Discovery and Data Mining,
AAAI/MIT Press, pp. 37-58.

Bratko I., and Bohanec M., Trading accuracy for simplicity in decision trees,
Machine Learning 15: 223-250, 1994.

Brazdil P., Gama J., Henery R., Characterizing the Applicability of Classification
Algorithms using Meta Level Learning, in Machine Learning: ECML-94,
F.Bergadano e L. de Raedt (eds.), LNAI No. 784: pp. 83-102, Springer-
Verlag, 1994.

Breiman, L., Random forests. Machine Learn-ing, 45, 532, 2001.
Breiman L., Friedman J., Olshen R., and Stone C.. Classification and Regression

Trees. Wadsworth Int. Group, 1984.
Breiman L. (1996a), Bagging predictors, Machine Learning, 24(2):123-140, 1996.
Breiman L. (1996b), Stacked regressions, Machine Learning, 24(2):4964, 1996.
Breiman L., Arcing classifiers, Annals of Statistics, vol. 26,no. 3, pp. 801-849,

1998.
Breiman, L., Pasting small votes for classification in large databases and on-

line.Machine Learning, 36, 85-103.
Breiman, L., Randomizing outputs to increase prediction accuracy, Mach. Learn.

40 (3) (2000) 229-242.
Brodley C. E. and Utgoff. P. E., Multivariate decision trees. Machine Learning,

19:45-77, 1995.
Brodley, C. E., Automatic selection of split criterion during tree growing based

on node selection. In Proceedings of the Twelth International Conference
on Machine Learning, 73-80 Taho City, Ca. Morgan Kaufmann, 1995a.

Brodley C.E., Recursive automatic bias selection for classifier construction, Ma-
chine Learning 20 (1995b) 63-94.

Brown G., Wyatt J. L., Negative Correlation Learning and the Ambiguity Family
of Ensemble Methods. Multiple Classifier Systems 2003: 266–275

Brown G., Wyatt J., Harris R., Yao X., Diversity creation methods: a survey and

Bibliography 189

categorisation, Information Fusion, 6(1):5–20.
Bruzzone L., Cossu R., Vernazza G., Detection of land-cover transitions by com-

bining multidate classifiers, Pattern Recognition Letters, 25(13): 1491–
1500, 2004.

R. Bryll, Gutierrez-Osuna R., Quek F., Attribute bagging: improving accuracy of
classifier ensembles by using random feature subsets, Pattern Recognition
Volume 36 (2003): 1291-1302

Buchanan, B.G. and Shortliffe, E.H., Rule Based Expert Systems, 272-292,
Addison-Wesley, 1984.

Buczak A. L. and Ziarko W., “Neural and Rough Set Based Data Mining Methods
in Engineering”, Klosgen W. and Zytkow J. M. (Eds.), Handbook of Data
Mining and Knowledge Discovery, pages 788-797. Oxford University Press,
2002.

Buja, A. and Lee, Y.S., Data mining criteria for tree based regression and clas-
sification, Proceedings of the 7th International Conference on Knowledge
Discovery and Data Mining, (pp 27-36), San Diego, USA, 2001.

Buntine W., Niblett T., A Further Comparison of Splitting Rules for Decision-
Tree Induction. Machine Learning, 8: 75-85, 1992.

Buntine, W., A Theory of Learning Classification Rules. Doctoral dissertation.
School of Computing Science, University of Technology. Sydney. Australia,
1990.

Buntine, W. (1992), ”Learning Classification Trees”, Statistics and Computing,
2, 63–73.

Buntine, W., “Graphical Models for Discovering Knowledge”, in U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pp 59-82. AAAI/MIT Press, 1996.

Buttrey, S.E., Karo, C., 2002. Using k-nearest-neighbor classification in the leaves
of a tree. Comput. Statist. Data Anal. 40, 27-37.

Buhlmann, P. and Yu, B., Boosting with L2 loss: Regression and classification,
Journal of the American Statistical Association, 98, 324338. 2003.

Califf M.E. and Mooney R.J., Relational learning of pattern-match rules for infor-
mation extraction. Proceedings of the Sixteenth National Conf. on Artificial
Intelligence, page 328-334, 1999.

Can F. , Incremental clustering for dynamic information processing, in ACM
Transactions on Information Systems, no. 11, pp 143-164, 1993.

Cantu-Paz E., Kamath C., Inducing oblique decision trees with evolutionary algo-
rithms, IEEE Trans. on Evol. Computation 7(1), pp. 54-68, 2003.

Cardie, C. (1995). Using decision trees to improve cased- based learning. In Pro-
ceedings of the First International Conference on Knowledge Discovery and
Data Mining. AAAI Press.

Caropreso M., Matwin S., and Sebastiani F., A learner-independent evaluation
of the useful-ness of statistical phrases for automated text categorization,
Text Databases and Document Management: Theory and Practice. Idea
Group Publishing , page 78-102, 2001.

Caruana R., Niculescu-Mizil A. , Crew G. , Ksikes A., Ensemble selection from
libraries of models, Twenty-first international conference on Machine learn-

190 Pattern Classification Using Ensemble Methods

ing, July 04-08, 2004, Banff, Alberta, Canada.
Carvalho D.R., Freitas A.A., A hybrid decision-tree - genetic algorithm method

for data mining, Information Science 163, 13-35, 2004.
Catlett J., Mega induction: Machine Learning on Vary Large Databases, PhD,

University of Sydney, 1991.
Chai B., Huang T., Zhuang X., Zhao Y., Sklansky J., Piecewise-linear classi-

fiers using binary tree structure and genetic algorithm, Pattern Recognition
29(11), pp. 1905-1917, 1996.

Chan P. K. and Stolfo, S. J., Toward parallel and distributed learning by meta-
learning, In AAAI Workshop in Knowledge Discovery in Databases, pp.
227-240, 1993.

Chan P.K. and Stolfo, S.J., A Comparative Evaluation of Voting and Meta-
learning on Partitioned Data, Proc. 12th Intl. Conf. On Machine Learning
ICML-95, 1995.

Chan P.K. and Stolfo S.J, On the Accuracy of Meta-learning for Scalable Data
Mining, J. Intelligent Information Systems, 8:5-28, 1997.

Charnes, A., Cooper, W. W., and Rhodes, E., Measuring the efficiency of decision
making units, European Journal of Operational Research, 2(6):429-444,
1978.

Chawla N. V., Moore T. E., Hall L. O., Bowyer K. W., Springer C., and
Kegelmeyer W. P.. Distributed learning with bagging-like performance. Pat-
tern Recognition Letters, 24(1-3):455-471, 2002.

Chawla N. V., Hall L. O., Bowyer K. W., Kegelmeyer W. P., Learning Ensembles
from Bites: A Scalable and Accurate Approach, The Journal of Machine
Learning Research archive, 5:421–451, 2004.

Cheeseman P., Stutz J.: Bayesian Classification (AutoClass): Theory and Re-
sults. Advances in Knowledge Discovery and Data Mining 1996: 153-180

Chen K., Wang L. and Chi H., Methods of Combining Multiple Classifiers with
Different Features and Their Applications to Text-Independent Speaker
Identification, International Journal of Pattern Recognition and Artificial
Intelligence, 11(3): 417-445, 1997.

Cherkauer, K. J. and Shavlik, J. W., Growing simpler decision trees to facilitate
knowledge discovery. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining. AAAI Press, 1996.

Cherkauer, K.J., Human Expert-Level Performance on a Scientific Image Analysis
Task by a System Using Combined Artificial Neural Networks. In Working
Notes, Integrating Multiple Learned Models for Improving and Scaling Ma-
chine Learning Algorithms Workshop, Thirteenth National Conference on
Artificial Intelligence. Portland, OR: AAAI Press, 1996.

Chizi, B., Maimon, O. and Smilovici A. On Dimensionality Reduction of High
Dimensional Data Sets, Frontiers in Artificial Intelligence and Applications,
IOS press, pp. 230-236, 2002.

Christensen S. W. , Sinclair I., Reed P. A. S., Designing committees of mod-
els through deliberate weighting of data points, The Journal of Machine
Learning Research, 4(1):39–66, 2004.

Christmann A., Steinwart I., Hubert M.,Robust learning from bites for data min-

Bibliography 191

ing, Computational Statistics and Data Analysis 52 (2007) 347-361
Cios K. J. and Sztandera L. M., Continuous ID3 algorithm with fuzzy entropy

measures, Proc. IEEE lnternat. Con/i on Fuzz)’ Systems,1992, pp. 469-476.
Clark, P. and Boswell, R., “Rule induction with CN2: Some recent improve-

ments.” In Proceedings of the European Working Session on Learning, pp.
151-163, Pitman, 1991.

Clark P., and Niblett T., The CN2 rule induction algorithm. Machine Learning,
3:261-284, 1989.

Clearwater, S., T. Cheng, H. Hirsh, and B. Buchanan. Incremental batch learning.
In Proceedings of the Sixth International Workshop on Machine Learning,
San Mateo CA:, pp. 366-370. Morgan Kaufmann, 1989.

Clemen R., Combining forecasts: A review and annotated bibliography. Interna-
tional Journal of Forecasting, 5:559–583, 1989

Cohen S., Rokach L., Maimon O., Decision Tree Instance Space Decomposition
with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp.
3592-3612, 2007.

Collins, M., Shapire, R.E., Singer, Y., (2002), Logistic regression, adaboost and
bregman distances. Machine Learning 47(2/3) 253–285.

Coppock D. S., Data Modeling and Mining: Why Lift?, Published in DM Review
online, June 2002.

Crammer, K., Singer, Y., (2002), On the learnability and design of output codes
for multiclass problems. Machine Learning 47(2-3) 201–233.

Crawford S. L., Extensions to the CART algorithm. Int. J. of ManMachine Stud-
ies, 31(2):197-217, August 1989.

Cristianini, N., Shawe-Taylor, J., (2000), An introduction to Support Vector Ma-
chines and other kernel-based learning methods. Cambridge University
Press.

Croux C., Joossens K., Lemmens A., Trimmed bagging, Computational Statistics
and Data Analysis 52 (2007) 362-368

Cunningham P., and Carney J., Diversity Versus Quality in Classification Ensem-
bles Based on Feature Selection, In: R. L. de Mntaras and E. Plaza (eds.),
Proc. ECML 2000, 11th European Conf. On Machine Learning,Barcelona,
Spain, LNCS 1810, Springer, 2000, pp. 109-116.

Curtis, H. A., A New Approach to the Design of Switching Functions, Van Nos-
trand, Princeton, 1962.

Cutzu F., Polychotomous classification with pairwise classifiers: A new voting
principle. In Proc. 4th International Workshop on Multiple Classifier Sys-
tems (MCS 2003), Lecture Notes in Computer Science, Guildford, UK,
2003, Vol. 2709, pp. 115-124.

Dasarathy B.V. and Sheela B.V., Composite classifier system design: Concepts
and methodology, Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713,
1979.

Džeroski S., Ženko B., Is Combining Classifiers with Stacking Better than Select-
ing the Best One?, Machine Learning, 54(3): 255–273, 2004.

Darwin, C., (1859), On the origin of species by means of natural selection. John
Murray, London.

192 Pattern Classification Using Ensemble Methods

Deb, K., (2000), An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering 186 311–338.

Dekel, O., Singer, Y., (2003), Multiclass learning by probabilistic embeddings.
In: Advances in Neural Information Processing Systems. Volume 15., MIT
Press 945–952.

Dempster A.P., Laird N.M., and Rubin D.B., Maximum likelihood from incom-
plete data using the EM algorithm. Journal of the Royal Statistical Society,
39(B), 1977.

Demsar J., Zupan B., Leban G. (2004) Orange: From ExperimentalMachine
Learning to Interactive Data Mining, White Paper(www.ailab.si/orange),
Faculty of Computer and InformationScience, University of Ljubljana.

Denison D.G.T., Adams N.M., Holmes C.C., Hand D.J., Bayesian partition mod-
elling, Computational Statistics and Data Analysis 38 (2002) 475-485

Derbeko P. , El-Yaniv R. and Meir R., Variance optimized bagging, European
Conference on Machine Learning, 2002.

Dhillon I. and Modha D., Concept Decomposition for Large Sparse Text Data
Using Clustering. Machine Learning. 42, pp.143-175. (2001).

Dietterich, T. G., and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,
2:263-286, 1995.

Dietterich, T. G., and Kong, E. B., Machine learning bias, statistical bias, and
statistical variance of decision tree algorithms. Tech. rep., Oregon State
University, 1995.

Dietterich, T. G., and Michalski, R. S., A comparative review of selected methods
for learning from examples, Machine Learning, an Artificial Intelligence
approach, 1: 41-81, 1983.

Dietterich, T. G., Kearns, M., and Mansour, Y., Applying the weak learning
framework to understand and improve C4.5. Proceedings of the Thirteenth
International Conference on Machine Learning, pp. 96-104, San Francisco:
Morgan Kaufmann, 1996.

Dietterich, T. G., “Approximate statistical tests for comparing supervised classi-
fication learning algorithms”. Neural Computation, 10(7): 1895-1924, 1998.

Dietterich, T. G., An Experimental Comparison of Three Methods for Construct-
ing Ensembles of Decision Trees: Bagging, Boosting and Randomization.
40(2):139-157, 2000.

Dietterich T., Ensemble methods in machine learning. In J. Kittler and F. Roll,
editors, First International Workshop on Multiple Classifier Systems, Lec-
ture Notes in Computer Science, pages 1-15. Springer-Verlag, 2000

Dimitrakakis C., Bengio S., Online adaptive policies for ensemble classi-
fiers,Neurocomputing 64:211-221, 2005.

Dimitriadou E., Weingessel A., Hornik K., A cluster ensembles framework, Design
and application of hybrid intelligent systems, IOS Press, Amsterdam, The
Netherlands, 2003.

Domingos, P. and Hulten, G., Mining Time-Changing Data Streams, Proc. of
KDD-2001, ACM Press, 2001.

Domingos, P., & Pazzani, M., On the Optimality of the Naive Bayes Classifier

Bibliography 193

under Zero-One Loss, Machine Learning, 29: 2, 103-130, 1997.
Domingos, P., Using Partitioning to Speed Up Specific-to-General Rule Induction.

In Proceedings of the AAAI-96 Workshop on Integrating Multiple Learned
Models, pp. 29-34, AAAI Press, 1996.

Dominigos P. (1999): MetaCost: A general method for making classifiers cost sen-
sitive. In proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, pp. 155-164. ACM Press.

Domingo, C., and Watanabe, O. (2000). Madaboost: A modification of adaboost.
colt2000 pp. 180-189.

Dontas, K., Jong, K.D., (1990), Discovery of maximal distance codes using genetic
algorithms. In: Proceedings of the 2nd International IEEE Conference on
Tools for Artificial Intelligence, IEEE Computer Society Press 905–811.

Dougherty, J., Kohavi, R, Sahami, M., Supervised and unsupervised discretiza-
tion of continuous attributes. Machine Learning: Proceedings of the twelfth
International Conference, Morgan Kaufman pp. 194-202, 1995.

Drucker H., Effect of pruning and early stopping on performance of a boosting
ensemble, Computational Statistics and Data Analysis 38 (2002) 393-406

Duda, R., and Hart, P., Pattern Classification and Scene Analysis, New-York,
Wiley, 1973.

Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, New York, 2001.
Duin, R. P. W., The combining classifier: to train or not to train? In Proc. 16th

International Conference on Pattern Recognition, ICPR02, Canada, 2002,
pp. 765-770.

Dunteman, G.H., Principal Components Analysis, Sage Publications, 1989.
Eiben, A.E., Smith, J.E., (2003), Introduction to Evolutionary Computing.

Springer.
Elder I. and Pregibon, D., “A Statistical Perspective on Knowledge Discovery in

Databases”, In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy editors., Advances in Knowledge Discovery and Data Mining, pp.
83-113, AAAI/MIT Press, 1996.

Escalera, S., Pujol, O., Radeva, R., (2006), Decoding of ternary error correct-
ing output codes. In: Proceedings of the 11th Iberoamerican Congress on
Pattern Recognition. Volume 4225 of Lecture Notes in Computer Science.,
Springer-Verlag 753–763.

Esmeir, S., and Markovitch, S. 2004. Lookahead-basedalgorithms for anytime
induction of decision trees. InICML04, 257264.

Esposito F., Malerba D. and Semeraro G., A Comparative Analysis of Methods
for Pruning Decision Trees. EEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):476-492, 1997.

Ester M., Kriegel H.P., Sander S., and Xu X., A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In E. Simoudis, J.
Han, and U. Fayyad, editors, Proceedings of the 2nd International Confer-
ence on Knowledge Discovery and Data Mining (KDD-96), pages 226-231,
Menlo Park, CA, 1996. AAAI, AAAI Press.

Estivill-Castro, V. and Yang, J. A Fast and robust general purpose clustering
algorithm. Pacific Rim International Conference on Artificial Intelligence,

194 Pattern Classification Using Ensemble Methods

pp. 208-218, 2000.
Fürnkranz, J., (2002), Round robin classification. Journal of Machine Learning

Research 2 721–747.
Fan, W. and Stolfo, S.J. and Zhang, J. and Chan, P.K. (1999), AdaCost: Mis-

classication Cost-sensitive Boosting, ICML 1999, pp. 97-105.
Fraley C. and Raftery A.E., “How Many Clusters? Which Clustering Method?

Answers Via Model-Based Cluster Analysis”, Technical Report No. 329.
Department of Statistics University of Washington, 1998.

Fayyad U., and Irani K. B., The attribute selection problem in decision tree
generation. In proceedings of Tenth National Conference on Artificial In-
telligence, pp. 104–110, Cambridge, MA: AAAI Press/MIT Press, 1992.

Fayyad, U., Piatesky-Shapiro, G. & Smyth P., From Data Mining to Knowledge
Discovery: An Overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, &
R. Uthurusamy (Eds), Advances in Knowledge Discovery and Data Mining,
pp 1-30, AAAI/MIT Press, 1996.

Fayyad, U., Grinstein, G. and Wierse, A., Information Visualization in Data
Mining and Knowledge Discovery, Morgan Kaufmann, 2001.

Feigenbaum E. (1988): Knowledge Processing – From File Servers to Knowledge
Servers. In J.R. Queinlan ed., “Applications of Expert Systems”. Vol. 2,
Turing Institute Press, Chpater 1, pp. 3-11

Ferri C., Flach P., and Hernández-Orallo J., Learning Decision Trees Using the
Area Under the ROC Curve. In Claude Sammut and Achim Hoffmann, ed-
itors, Proceedings of the 19th International Conference on Machine Learn-
ing, pp. 139-146. Morgan Kaufmann, July 2002

Fifield D. J., Distributed Tree Construction From Large Datasets, Bachelor’s
Honor Thesis, Australian National University, 1992.

Fisher,R.A., 1936, The use of multiple measurements in taxonomic problems”
Annual Eugenics, 7, Part II, pp. 179-188.

Fisher, D., 1987, Knowledge acquisition via incremental conceptual clustering, in
machine learning 2, pp. 139-172.

Fischer, B., “Decomposition of Time Series - Comparing Different Methods in
Theory and Practice”, Eurostat Working Paper, 1995.

Fix, E., and Hodges, J.L., Discriminatory analysis. Nonparametric discrimination.
Consistency properties. Technical Report 4, US Air Force School of Aviation
Medicine. Randolph Field, TX, 1957.

Fortier, J.J. and Solomon, H. 1996. Clustering procedures. In proceedings of the
Multivariate Analysis, ’66, P.R. Krishnaiah (Ed.), pp. 493-506.

Fountain, T. Dietterich T., Sudyka B., “Mining IC Test Data to Optimize VLSI
Testing”, ACM SIGKDD Conference, 2000, pp. 18-25, 2000.

Frank E., Hall M., Holmes G., Kirkby R., Pfahringer B., WEKA - A Machine
Learning Workbench for Data Mining, in O. Maimon, L. Rokach, editors
The Data Mining and Knowledge Discovery Handbook, Springer, pp. 1305-
1314, 2005.

Frawley W. J., Piatetsky-Shapiro G., and Matheus C. J., “Knowledge Discovery
in Databases: An Overview,” G. Piatetsky-Shapiro and W. J. Frawley,
editors, Knowledge Discovery in Databases, 1-27, AAAI Press, Menlo Park,

Bibliography 195

California, 1991.
Freitas A. (2005), ”Evolutionary Algorithms for Data Mining”, in Oded Mai-

mon and Lior Rokach (Eds.), The Data Mining and Knowledge Discovery
Handbook, Springer, pp. 435-467.

Freitas X., and Lavington S. H., Mining Very Large Databases With Parallel
Processing, Kluwer Academic Publishers, 1998.

Frelicot C. and Mascarilla L., Reject Strategies Driver Combination of Pattern
Classifiers, 2001.

Freund S. (1995), Boosting a weak learning algorithm by majority. Information
and Computation, 121(2):256-285, 1995

Freund S. (2001), An adaptive version of the boost by majority algorithm, Ma-
chine Learning 43(3): 293-318.

Freund S., A more robust boosting algorithm, arXiv:0905.2138, 2009.
Yoav Freund and Llew Mason. The Alternating Decision Tree Algorithm. Pro-

ceedings of the 16th International Conference on Machine Learning, pages
124-133 (1999)

Freund, Y., Schapire, R.E., (1997), A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 1(55) 119–139.

Freund Y. and Schapire R. E., Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference,
pages 325-332, 1996.

Friedman, J.H. & Tukey, J.W., A Projection Pursuit Algorithm for Exploratory
Data Analysis, IEEE Transactions on Computers, 23: 9, 881-889, 1973.

Friedman, J., Kohavi, R., Yun, Y. 1996. Lazy decision trees. Proceedings of the
Thirteenth National Conference on Artificial Intelligence. (pp. 717-724).
Cambridge, MA: AAAI Press/MIT Press.

Friedman N., Geiger D., and Goldszmidt M., Bayesian Network Classifiers, Ma-
chine Learning 29: 2-3, 131-163, 1997.

Friedman, J., T. Hastie and R. Tibshirani (2000) Additive Logistic Regression: a
Statistical View of Boosting, Annals of Statistics, 28(2):337-407.

Friedman J. H., A recursive partitioning decision rule for nonparametric classi-
fiers. IEEE Trans. on Comp., C26:404-408, 1977.

Friedman, J. H., “Multivariate Adaptive Regression Splines”, The Annual Of
Statistics, 19, 1-141, 1991.

Friedman, J.H. (1997a). Data Mining and Statistics: What is the connection?
1997.

Friedman, J.H. (1997b). On bias, variance, 0/1 - loss and the curse of dimen-
sionality, Data Mining and Knowledge Discovery, 1: 1, 55-77, 1997.

Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Statist. Data Anal.
38 (4), 367-378.

Fu Q., Hu S., and Zhao S. (2005), Clusterin-based selective neural network en-
semble, Journal of Zhejiang University SCIENCE, 6A(5), 387-392.

Fukunaga, K., Introduction to Statistical Pattern Recognition. San Diego, CA:
Academic, 1990.

Fürnkranz, J., More efficient windowing, In Proceeding of The 14th national

196 Pattern Classification Using Ensemble Methods

Conference on Artificial Intelegence (AAAI-97), pp. 509-514, Providence,
RI. AAAI Press, 1997.

Gago, P. and Bentos, C. (1998). A metric for selection of the most promising
rules. In Proceedings of the 2nd European Conference on The Pronciples of
Data Mining and Knowledge Discovery (PKDD’98).

Gallinari, P., Modular Neural Net Systems, Training of. In (Ed.) M.A. Arbib. The
Handbook of Brain Theory and Neural Networks, Bradford Books/MIT
Press, 1995.

Gama J., A Linear-Bayes Classifier. In C. Monard, editor, Advances on Artificial
Intelligence – SBIA2000. LNAI 1952, pp 269-279, Springer Verlag, 2000

Gams, M., New Measurements Highlight the Importance of Redundant Knowl-
edge. In European Working Session on Learning, Montpeiller, France, Pit-
man, 1989.

Garcia-Pddrajas N., Garcia-Osorio C., Fyfe C., Nonlinear Boosting Projections
for Ensemble Construction, Journal of Machine Learning Research 8 (2007)
1-33.

Gardner M., Bieker, J., Data mining solves tough semiconductor manufacturing
problems. KDD 2000: pp. 376-383, 2000.

Gehrke J., Ganti V., Ramakrishnan R., Loh W., BOAT-Optimistic Decision Tree
Construction. SIGMOD Conference 1999: pp. 169-180, 1999.

Gehrke J., Ramakrishnan R., Ganti V., RainForest - A Framework for Fast Deci-
sion Tree Construction of Large Datasets,Data Mining and Knowledge Dis-
covery, 4 (2/3) 127-162, 2000.

Gelfand S. B., Ravishankar C. S., and Delp E. J., An iterative growing and prun-
ing algorithm for classification tree design. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 13(2):163-174, 1991.

Geman S., Bienenstock, E., and Doursat, R., Neural networks and the
bias/variance dilemma. Neural Computation, 4:1-58, 1995.

George, E. and Foster, D. (2000),Calibration and empirical Bayes variable selec-
tion, Biometrika, 87(4):731-747.

Gey, S., Poggi, J.-M., 2006. Boosting and instability for regression trees Comput.
Statist. Data Anal. 50, 533-550.

Ghani, R., (2000), Using error correcting output codes for text classification.
In: Proceedings of the 17th International Conference on Machine Learning,
Morgan Kaufmann 303–310.

Giacinto G., Roli F., and Fumera G., Design of effective multiple classifier systems
by clustering of classifiers, in 15th International Conference on Pattern
Recognition, ICPR 2000, pp. 160-163, September 2000.

Gilad-Bachrach, R., Navot, A. and Tisliby. (2004) N. Margin based feature selec-
tion - theory and algorithms. Proceeding of the 21’st International Confer-
enc on Machine Learning, 2004.

Gillo M. W., MAID: A Honeywell 600 program for an automatised survey analysis.
Behavioral Science 17: 251-252, 1972.

Giraud–Carrier Ch., Vilalta R., Brazdil R., Introduction to the Special Issue of
on Meta-Learning, Machine Learning, 54 (3), 197-194, 2004.

Gluck, M. and Corter, J. (1985). Information, uncertainty, and the utility of

Bibliography 197

categories. Proceedings of the Seventh Annual Conference of the Cogni-
tive Science Society (pp. 283-287). Irvine, California: Lawrence Erlbaum
Associates.

Grossman R., Kasif S., Moore R., Rocke D., and Ullman J., Data mining research:
Opportunities and challenges. Report of three NSF workshops on mining
large, massive, and distributed data, 1999.

Grumbach S., Milo T., Towards Tractable Algebras for Bags. Journal of Computer
and System Sciences 52(3): 570-588, 1996.

Guha, S., Rastogi, R. and Shim, K. CURE: An efficient clustering algorithm for
large databases. In Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 73-84, New York, 1998.

Gunter S., Bunke H. , Feature Selection Algorithms for the generation of multiple
classifier systems, Pattern Recognition Letters, 25(11):1323–1336, 2004.

Guo Y. and Sutiwaraphun J., Knowledge probing in distributed data mining, in
Proc. 4h Int. Conf. Knowledge Discovery Data Mining, pp 61-69, 1998.

Guruswami, V., Sahai, A. (1999). Multiclass learning, boosting, and error-
correcting codes. Proc. 12th Annual Conf. Computational Learning Theory
(pp. 145155). Santa Cruz, California.

Guyon I. and Elisseeff A., ”An introduction to variable and feature selection”,
Journal of Machine Learning Research 3, pp. 1157-1182, 2003.

Hall, M. Correlation- based Feature Selection for Machine Learning. University
of Waikato, 1999.

Hampshire, J. B., and Waibel, A. The meta-Pi network - building distributed
knowledge representations for robust multisource pattern-recognition. Pat-
tern Analyses and Machine Intelligence 14(7): 751-769, 1992.

Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2001.

Hancock T. R., Jiang T., Li M., Tromp J., Lower Bounds on Learning Decision
Lists and Trees. Information and Computation 126(2): 114-122, 1996.

Hand, D., Data Mining – reaching beyond statistics, Research in Official Stat.
1(2):5-17, 1998.

Hansen, L. K., and Salamon, P., Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(10), 993–1001, 1990.

Hansen J., Combining Predictors. Meta Machine Learning Methods and
Bias/Variance & Ambiguity Decompositions. PhD dissertation. Aurhus
University. 2000.

Hartigan, J. A. Clustering algorithms. John Wiley and Sons., 1975.
Hastie, T., Tibshirani, R., (1998), Classification by pairwise coupling. The Annals

of Statistics 2 451–471.
Huang, Z., Extensions to the k-means algorithm for clustering large data sets

with categorical values. Data Mining and Knowledge Discovery, 2(3), 1998.
Haykin, S., (1999), Neural Networks - A Compreensive Foundation. 2nd edn.

Prentice-Hall, New Jersey.
He D. W., Strege B., Tolle H., and Kusiak A., Decomposition in Automatic

Generation of Petri Nets for Manufacturing System Control and Scheduling,
International Journal of Production Research, 38(6): 1437-1457, 2000.

198 Pattern Classification Using Ensemble Methods

Hilderman, R. and Hamilton, H. (1999). Knowledge discovery and interesting-
ness measures: A survey. In Technical Report CS 99-04. Department of
Computer Science, University of Regina.

Ho T. K. , Hull J.J., Srihari S.N.,Decision Combination in Multiple Classifier
Systems, PAMI 1994, 16(1):66–75.

Ho T. K., Nearest Neighbors in Random Subspaces, Proc. of the Second Interna-
tional Workshop on Statistical Techniques in Pattern Recognition, Sydney,
Australia, August 11-13, 1998, 640–648.

Ho T. K., The Random Subspace Method for Constructing Decision Forests,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20,
No. 8, 1998, pp. 832-844.

Ho T. K., Multiple Classifier Combination: Lessons and Next Steps, in Kandel
and Bunke, (eds.), Hybrid Methods in Pattern Recognition, World Scien-
tific, 2002, 171–198.

Holland, J.H., (1975), Adaptation in Natural and Artificial Systems. University
of Michigan Press.

Holmes, G. and Nevill-Manning, C. G. (1995) . Feature selection via the discovery
of simple classification rules. In Proceedings of the Symposium on Intelligent
Data Analysis, Baden- Baden, Germany.

Holmstrom, L., Koistinen, P., Laaksonen, J., and Oja, E., Neural and statistical
classifiers - taxonomy and a case study. IEEE Trans. on Neural Networks,
8,:5–17, 1997.

Holte, R. C.; Acker, L. E.; and Porter, B. W., Concept learning and the problem
of small disjuncts. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence, pp. 813-818, 1989.

Holte R. C., Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11:63-90, 1993.

Hong S., Use of Contextual Information for Feature Ranking and Discretiza-
tion, IEEE Transactions on Knowledge and Data Engineering, 9(5):718-730,
1997.

Hoppner F. , Klawonn F., Kruse R., Runkler T., Fuzzy Cluster Analysis, Wiley,
2000.

Hothorn T., Lausen B., Bundling classifiers by bagging trees, Computational
Statistics and Data Analysis 49 (2005) 1068-1078

Hrycej T., Modular Learning in Neural Networks. New York: Wiley, 1992.
Hsu, C.W., Lin, C.J., (2002), A comparison of methods for multi-class support

vector machines. IEEE Transactions on Neural Networks 13(2) 415–425.
Hu, X., Using Rough Sets Theory and Database Operations to Construct a Good

Ensemble of Classifiers for Data Mining Applications. ICDM01. pp 233-240,
2001.

Hu Q., Yu D., Xie Z., Li X., EROS: Ensemble rough subspaces,Pattern Recogni-
tion 40 (2007) 3728 - 3739.

Hu Q. H., Yu D. R., Wang M. Y., Constructing Rough Decision Forests, D. Slezak
et al. (Eds.): RSFDGrC 2005, LNAI 3642, Springer, 2005, pp. 147-156

Huang Y. S. and Suen C. Y. , A method of combining multiple experts for
the recognition of unconstrained handwritten numerals, IEEE Trans. Patt.

Bibliography 199

Anal. Mach. Intell. 17 (1995) 90-94.
Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of Classification,

5. 193-218.
Hunter L., Klein T. E., Finding Relevant Biomolecular Features. ISMB 1993, pp.

190-197, 1993.
Hwang J., Lay S., and Lippman A., Nonparametric multivariate density esti-

mation: A comparative study, IEEE Transaction on Signal Processing,
42(10): 2795-2810, 1994.

Hyafil L. and Rivest R.L., Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 5(1):15-17, 1976.

Islam M. M., Yao X., Murase K., A constructive algorithm for training cooper-
ative neuralnetwork ensembles, IEEE Transactions on Neural Networks 14
(4)(2003) 820-834.

Jackson, J., A User’s Guide to Principal Components. New York: John Wiley
and Sons, 1991.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. Adaptive mixtures
of local experts. Neural Computation 3(1):79-87, 1991.

Jain, A. and Zonker, D., Feature Selection: Evaluation, Application, and Small
Sample Performance. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 19, 153-158, 1997.

Jain, A.K. Murty, M.N. and Flynn, P.J. Data Clustering: A Survey. ACM Com-
puting Surveys, Vol. 31, No. 3, September 1999.

Jang J., ”Structure determination in fuzzy modeling: A fuzzy CART approach,”
in Proc. IEEE Conf. Fuzzy Systems, 1994, pp. 480485.

Janikow, C.Z., Fuzzy Decision Trees: Issues and Methods, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 28, Issue 1, pp. 1-14. 1998.

Jenkins R. and Yuhas, B. P. A simplified neural network solution through problem
decomposition: The case of Truck backer-upper, IEEE Transactions on
Neural Networks 4(4):718-722, 1993.

Jimenez, L. O., & Landgrebe D. A., Supervised Classification in High- Dimen-
sional Space: Geometrical, Statistical, and Asymptotical Properties of Mul-
tivariate Data. IEEE Transaction on Systems Man, and Cybernetics — Part
C: Applications and Reviews, 28:39-54, 1998.

Johansen T. A. and Foss B. A., A narmax model representation for adaptive con-
trol based on local model -Modeling, Identification and Control, 13(1):25-
39, 1992.

John G. H., and Langley P., Estimating Continuous Distributions in Bayesian
Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo, 1995.

John G. H., Kohavi R., and Pfleger P., Irrelevant features and the subset selection
problem. In Machine Learning: Proceedings of the Eleventh International
Conference. Morgan Kaufmann, 1994.

John G. H., Robust linear discriminant trees. In D. Fisher and H. Lenz, editors,
Learning From Data: Artificial Intelligence and Statistics V, Lecture Notes
in Statistics, Chapter 36, pp. 375-385. Springer-Verlag, New York, 1996.

Jordan, M. I., and Jacobs, R. A. Hierarchies of adaptive experts. In Advances in

200 Pattern Classification Using Ensemble Methods

Neural Information Processing Systems, J. E. Moody, S. J. Hanson, and R.
P. Lippmann, Eds., vol. 4, Morgan Kaufmann Publishers, Inc., pp. 985-992,
1992.

Jordan, M. I., and Jacobs, R. A., Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6, 181-214, 1994.

Joshi, V. M., “On Evaluating Performance of Classifiers for Rare Classes”, Second
IEEE International Conference on Data Mining, IEEE Computer Society
Press, pp. 641-644, 2002.

Kamath, C., and E. Cantu-Paz, Creating ensembles of decision trees through
sampling, Proceedings, 33-rd Symposium on the Interface of Computing
Science and Statistics, Costa Mesa, CA, June 2001.

Kamath, C., Cant-Paz, E. and Littau, D. (2002). Approximate splitting for en-
sembles of trees using histograms. In Second SIAM International Conference
on Data Mining (SDM-2002).

Kanal, L. N., “Patterns in Pattern Recognition: 1968-1974”. IEEE Transactions
on Information Theory IT-20, 6: 697-722, 1974.

Kang H., Lee S., Combination Of Multiple Classifiers By Minimizing The Up-
per Bound Of Bayes Error Rate For Unconstrained Handwritten Numeral
Recognition, International Journal of Pattern Recognition and Artificial
Intelligence, 19(3):395 - 413, 2005.

Kargupta, H. and Chan P., eds, Advances in Distributed and Parallel Knowledge
Discovery , pp. 185-210, AAAI/MIT Press, 2000.

Kass G. V., An exploratory technique for investigating large quantities of cate-
gorical data. Applied Statistics, 29(2):119-127, 1980.

Kaufman, L. and Rousseeuw, P.J., 1987, Clustering by Means of Medoids, In
Y. Dodge, editor, Statistical Data Analysis, based on the L1 Norm, pp.
405-416, Elsevier/North Holland, Amsterdam.

Kaufmann, L. and Rousseeuw, P.J. Finding groups in data. New-York: Wiley,
1990.

Kearns M. and Mansour Y., A fast, bottom-up decision tree pruning algorithm
with near-optimal generalization, in J. Shavlik, ed., ‘Machine Learning:
Proceedings of the Fifteenth International Conference’, Morgan Kaufmann
Publishers, Inc., pp. 269-277, 1998.

Kearns M. and Mansour Y., On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and Systems Sciences, 58(1): 109-
128, 1999.

Kenney, J. F. and Keeping, E. S. “Moment-Generating and Characteristic Func-
tions,” “Some Examples of Moment-Generating Functions,” and “Unique-
ness Theorem for Characteristic Functions.” §4.6-4.8 in Mathematics of
Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 72-77, 1951.

Kerber, R., 1992, ChiMerge: Descretization of numeric attributes, in AAAI-92,
Proceedings Ninth National Conference on Artificial Intelligence, pp. 123-
128, AAAI Press/MIT Press.

Kim J.O. & Mueller C.W., Factor Analysis: Statistical Methods and Practical
Issues. Sage Publications, 1978.

Kim, D.J., Park, Y.W. and Park,. A novel validity index for determination of the

Bibliography 201

optimal number of clusters. IEICE Trans. Inf., Vol. E84-D, no.2 (2001),
281-285.

King, B. Step-wise Clustering Procedures, J. Am. Stat. Assoc. 69, pp. 86-101,
1967.

Kira, K. and Rendell, L. A., A practical approach to feature selection. In Machine
Learning: Proceedings of the Ninth International Conference., 1992.

Klautau, A., Jevtić, N., Orlistky, A., (2003), On nearest-neighbor error-correcting
output codes with application to all-pairs multiclass support vector ma-
chines. Journal of Machine Learning Research 4 1–15.

Klosgen W. and Zytkow J. M., “KDD: The Purpose, Necessity and Chalanges”,
Klosgen W. and Zytkow J. M. (Eds.), Handbook of Data Mining and Knowl-
edge Discovery, pp. 1-9. Oxford University Press, 2002.

Knerr, S., Personnaz, L., Dreyfus, G., (1992), Handwritten digit recognition by
neural networks with single-layer training. IEEE Transactions on Neural
Networks 3(6) 962–968.

Knerr, S., Personnaz, L., Dreyfus, G., (1990), In: Single-layer learning revisited:
a stepwise procedure for building and training a neural network. Springer-
Verlag, pp. 41–50

Kohavi R. and John G., The Wrapper Approach, In Feature Extraction, Con-
struction and Selection: A Data Mining Perspective, H. Liu and H. Motoda
(eds.), Kluwer Academic Publishers, 1998.

Kohavi, R. and Kunz, C. (1997), Option decision trees with majority votes, in D.
Fisher, ed., ‘Machine Learning: Proceedings of the Fourteenth International
Conference’, Morgan Kaufmann Publishers, Inc., pp. 161–169.

Kohavi R., and Provost F., Glossary of Terms, Machine Learning 30(2/3): 271-
274, 1998.

Kohavi R. and Quinlan J. R., Decision-tree discovery. In Klosgen W. and Zytkow
J. M., editors, Handbook of Data Mining and Knowledge Discovery, chapter
16.1.3, pages 267-276. Oxford University Press, 2002.

Kohavi R. and Sommerfield D., Targeting business users with decision table clas-
sifiers, in R. Agrawal, P. Stolorz & G. Piatetsky-Shapiro, eds, ‘Proceedings
of the Fourth International Conference on Knowledge Discovery and Data
Mining’, AAAI Press, pp. 249-253, 1998.

Kohavi R. and Wolpert, D. H., Bias Plus Variance Decomposition for Zero-One
Loss Functions, Machine Learning: Proceedings of the 13th International
Conference. Morgan Kaufman, 1996.

Kohavi R., Becker B., and Sommerfield D., Improving simple Bayes. In Proceed-
ings of the European Conference on Machine Learning, 1997.

Kohavi, R., Bottom-up induction of oblivious read-once decision graphs, in F.
Bergadano and L. De Raedt, editors, Proc. European Conference on Ma-
chine Learning, pp. 154-169, Springer-Verlag, 1994.

Kohavi R., Scaling up the accuracy of naive-bayes classifiers: a decision-tree hy-
brid. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pages 114–119, 1996.

Kolcz, A. Chowdhury, and J. Alspector, Data duplication: An imbalance problem
”In Workshop on Learning from Imbalanced Data Sets” (ICML), 2003.

202 Pattern Classification Using Ensemble Methods

Kolen, J. F., and Pollack, J. B., Back propagation is sesitive to initial conditions.
In Advances in Neural Information Processing Systems, Vol. 3, pp. 860-867
San Francisco, CA. Morgan Kaufmann, 1991.

Koller, D. and Sahami, M. (1996). Towards optimal feature selection. In Ma-
chine Learning: Proceedings of the Thirteenth International Conference on
machine Learning. Morgan Kaufmann, 1996.

Kolter, Z. J., Maloof, M. A. (2007). Dynamic Weighted Majority: An Ensemble
Method. Journal of Machine Learning Research , 2756-2790.

Kong E. B. and Dietterich T. G., Error-correcting output coding corrects bias
and variance. In Proc. 12th International Conference on Machine Learning,
Morgan Kaufmann, CA, USA, 1995, pp. 313321.

Kononenko, I., Comparison of inductive and Naive Bayes learning approaches to
automatic knowledge acquisition. In B. Wielinga (Ed.), Current Trends in
Knowledge Acquisition, Amsterdam, The Netherlands IOS Press, 1990.

Kononenko, I., SemiNaive Bayes classifier, Proceedings of the Sixth European
Working Session on Learning, pp. 206-219, Porto, Portugal: SpringerVerlag,
1991.

Kreβel, U., (1999), Pairwise classification and support vector machines. In
Schölkopf, B., Burges, C.J.C., Smola, A.J., (Eds.), Advances in Kernel
Methods - Support Vector Learning, MIT Press 185–208.

Krogh, A., and Vedelsby, J., Neural network ensembles, cross validation and
active learning. In Advances in Neural Information Processing Systems 7,
pp. 231-238 1995.

Krtowski M., Grze M., Global learning of decision trees by an evolutionary algo-
rithm (Khalid Saeed and Jerzy Peja), Information Processing and Security
Systems, Springer, pp. 401-410, 2005.

Krtowski M., An evolutionary algorithm for oblique decision tree induction, Proc.
of ICAISC’04, Springer, LNCS 3070, pp.432-437, 2004.

Kuhn H. W., The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

Kuncheva, L.I., (2005a), Using diversity measures for generating error-correcting
output codes in classifier ensembles. Pattern Recognition Letters 26 83–90.

Kuncheva L., Combining Pattern Classifiers, Wiley Press 2005.
Kuncheva, L., & Whitaker, C., Measures of diversity in classifier ensembles and

their relationship with ensemble accuracy. Machine Learning, pp. 181–207,
2003.

Kuncheva L.I. (2005b) Diversity in multiple classifier systems (Editorial), Infor-
mation Fusion, 6 (1), 2005, 3-4.

Kusiak A., Kurasek C., Data Mining of Printed-Circuit Board Defects, IEEE
Transactions on Robotics and Automation, 17(2): 191-196, 2001.

Kusiak, E. Szczerbicki, and K. Park, A Novel Approach to Decomposition of
Design Specifications and Search for Solutions, International Journal of
Production Research, 29(7): 1391-1406, 1991.

Kusiak, A., Decomposition in Data Mining: An Industrial Case Study, IEEE
Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 4, pp.
345-353, 2000.

Bibliography 203

Kusiak, A., Rough Set Theory: A Data Mining Tool for Semiconductor Manufac-
turing, IEEE Transactions on Electronics Packaging Manufacturing, 24(1):
44-50, 2001A.

Kusiak, A., 2001, Feature Transformation Methods in Data Mining, IEEE Trans-
actions on Elctronics Packaging Manufacturing, Vol. 24, No. 3, pp. 214–221,
2001B.

Lam L., Classifier combinations: implementations and theoretical issues. In J.
Kittlerand F. Roli, editors, Multiple Classifier Systems, Vol. 1857 of Lecture
Notes in ComputerScience, Cagliari, Italy, 2000, Springer, pp. 78-86.

Langdon W. B., Barrett S. J., Buxton B. F., Combining decision trees and neural
networks for drug discovery, in: Genetic Programming, Proceedings of the
5th European Conference, EuroGP 2002, Kinsale, Ireland, 2002, pp. 60–70.

Langley, P. and Sage, S., Oblivious decision trees and abstract cases. in Working
Notes of the AAAI-94 Workshop on Case-Based Reasoning, pp. 113-117,
Seattle, WA: AAAI Press, 1994.

Langley, P. and Sage, S., Induction of selective Bayesian classifiers. in Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 399-
406. Seattle, WA: Morgan Kaufmann, 1994.

Langley, P., Selection of relevant features in machine learning, in Proceedings of
the AAAI Fall Symposium on Relevance, pp. 140-144, AAAI Press, 1994.

Larsen, B. and Aone, C. 1999. Fast and effective text mining using linear-time
document clustering. In Proceedings of the 5th ACM SIGKDD, 16-22, San
Diego, CA.

Lazarevic A. and Obradovic Z., Effective pruning of neural network classifiers,
in 2001 IEEE/INNS International Conference on Neural Networks, IJCNN
2001, pp. 796-801, July 2001.

Lee, S., Noisy Replication in Skewed Binary Classification, Computational Statis-
tics and Data Analysis, 34, 2000.

Leigh W., Purvis R., Ragusa J. M., Forecasting the NYSE composite index with
technical analysis, pattern recognizer, neural networks, and genetic algo-
rithm: a case study in romantic decision support, Decision Support Systems
32(4): 361–377, 2002.

Lewis D., and Catlett J., Heterogeneous uncertainty sampling for supervised
learning. In Machine Learning: Proceedings of the Eleventh Annual Con-
ference, pp. 148-156 , New Brunswick, New Jersey, Morgan Kaufmann,
1994.

Lewis, D., and Gale, W., Training text classifiers by uncertainty sampling, In
seventeenth annual international ACM SIGIR conference on research and
development in information retrieval, pp. 3-12, 1994.

Jing Li, Nigel Allinson, Dacheng Tao, and Xuelong Li, Multitraining Support Vec-
tor Machine for Image Retrieval, IEEE Transactions on Image Processing,
vol. 15, no. 11, pp. 3597-3601, November 2006.

Li X. and Dubes R. C., Tree classifier design with a Permutation statistic, Pattern
Recognition 19:229-235, 1986.

Liao Y., and Moody J., Constructing Heterogeneous Committees via Input Fea-
ture Grouping, in Advances in Neural Information Processing Systems,

204 Pattern Classification Using Ensemble Methods

Vol.12, S.A. Solla, T.K. Leen and K.-R. Muller (Eds.),MIT Press, 2000.
Lim X., Loh W.Y., and Shih X., A comparison of prediction accuracy, complexity,

and training time of thirty-three old and new classification algorithms .
Machine Learning 40:203-228, 2000.

Lin Y. K. and Fu K., Automatic classification of cervical cells using a binary tree
classifier. Pattern Recognition, 16(1):69-80, 1983.

Lin L., Wang X., Yeung D., Combining Multiple Classifiers Based On A Statisti-
cal Method For Handwritten Chinese Character Recognition, International
Journal of Pattern Recognition and Artificial Intelligence, 19(8):1027 - 1040,
2005.

Lin H., Kao Y., Yang F., Wang P., Content-Based Image Retrieval Trained By
Adaboost For Mobile Application, International Journal of Pattern Recog-
nition and Artificial Intelligence, 20(4):525-541, 2006.

Lindbergh D.A.B. and Humphreys B.L., The Unified Medical Language System.
In: van Bemmel JH and McCray AT, 1993 Yearbook of Medical Informatics.
IMIA, the Nether-lands, page 41-51, 1993.

Ling C. X., Sheng V. S., Yang Q., Test Strategies for Cost-Sensitive Decision Trees
IEEE Transactions on Knowledge and Data Engineering,18(8):1055-1067,
2006.

Liu C., Classifier combination based on confidence transformation, Pattern Recog-
nition 38 (2005) 11 - 28

Liu H. & Motoda H., Feature Selection for Knowledge Discovery and Data Mining,
Kluwer Academic Publishers, 1998.

Liu, H. and Setiono, R. (1996) A probabilistic approach to feature selection: A
filter solution. In Machine Learning: Proceedings of the Thirteenth Interna-
tional Conference on Machine Learning. Morgan Kaufmann.

Liu, H., Hsu, W., and Chen, S. (1997). Using general impressions to analyze
discovered classification rules. In Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining (KDD’97). Newport
Beach, California.

Liu H., Mandvikar A., Mody J., An Empirical Study of Building Compact En-
sembles. WAIM 2004: pp. 622-627.

Liu Y.: Generate Different Neural Networks by Negative Correlation Learning.
ICNC (1) 2005: 149-156

Loh W.Y.,and Shih X., Split selection methods for classification trees. Statistica
Sinica, 7: 815-840, 1997.

Loh W.Y. and Shih X., Families of splitting criteria for classification trees. Statis-
tics and Computing 9:309-315, 1999.

Loh W.Y. and Vanichsetakul N., Tree-structured classification via generalized dis-
criminant Analysis. Journal of the American Statistical Association, 83:715-
728, 1988.

Long C., Bi-Decomposition of Function Sets Using Multi-Valued Logic, Eng.Doc.
Dissertation, Technischen Universitat Bergakademie Freiberg 2003.

Lopez de Mantras R., A distance-based attribute selection measure for decision
tree induction, Machine Learning 6:81-92, 1991.

Lorena, A.C., (2006),Investigação de estratégias para a geração de máquinas de

Bibliography 205

vetores de suporte multiclasses [in portuguese], Ph.D. thesis, Departamento
de Ciências de Computação, Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, São Carlos, Brazil.

Lorena, A.C., Carvalho, A.C.P.L.F., Evolutionary design of multiclass support
vector machines. Journal of Intelligent and Fuzzy Systems, 18(5): 445-454
(2007)

Lorena A. and de Carvalho A. C. P. L. F. : Evolutionary Design of Code-matrices
for Multiclass Problems, in Oded Maimon and Lior Rokach (Eds.), Soft
Computing for Knowledge Discovery and Data Mining, Springer, pp. 153-
184, 2008.

Lu B.L., Ito M., Task Decomposition and Module Combination Based on Class
Relations: A Modular Neural Network for Pattern Classification, IEEE
Trans. on Neural Networks, 10(5):1244-1256, 1999.

Lu H., Setiono R., and Liu H., Effective Data Mining Using Neural Networks.
IEEE Transactions on Knowledge and Data Engineering, 8 (6): 957-961,
1996.

Luba, T., Decomposition of multiple-valued functions, in Intl. Symposium on
Multiple-Valued Logic’, Bloomigton, Indiana, pp. 256-261, 1995.

Lubinsky D., Algorithmic speedups in growing classification trees by using an
additive split criterion. Proc. AI&Statistics93, pp. 435-444, 1993.

Maher P. E. and Clair D. C,, Uncertain reasoning in an ID3 machine learning
framework, in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, 1993, pp. 712.

Maimon O., and Rokach, L. Data Mining by Attribute Decomposition with semi-
conductors manufacturing case study, in Data Mining for Design and Man-
ufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic
Publishers, pp. 311-336, 2001.

Maimon O. and Rokach L., “Improving supervised learning by feature decom-
position”, Proceedings of the Second International Symposium on Founda-
tions of Information and Knowledge Systems, Lecture Notes in Computer
Science, Springer, pp. 178-196, 2002.

Maimon O., Rokach L., Ensemble of Decision Trees for Mining Manufacturing
Data Sets, Machine Engineering, vol. 4 No1-2, 2004.

Maimon, O. and Rokach, L., Decomposition Methodology for Knowledge Dis-
covery and Data Mining: Theory and Applications, Series in Machine Per-
ception and Artificial Intelligence - Vol. 61, World Scientific Publishing,
ISBN:981-256-079-3, 2005.

Mallows, C. L., Some comments on Cp . Technometrics 15, 661- 676, 1973.
Mangiameli P., West D., Rampal R., Model selection for medical diagnosis deci-

sion support systems, Decision Support Systems, 36(3): 247–259, 2004.
Mansour, Y. and McAllester, D., Generalization Bounds for Decision Trees, in

Proceedings of the 13th Annual Conference on Computer Learning Theory,
pp. 69-80, San Francisco, Morgan Kaufmann, 2000.

Marcotorchino, J.F. and Michaud, P. Optimisation en Analyse Ordinale des
Donns. Masson, Paris.

Margineantu, D. (2001). Methods for Cost-Sensitive Learning. Doctoral Disser-
tation, Oregon State University.

206 Pattern Classification Using Ensemble Methods

Margineantu D. and Dietterich T., Pruning adaptive boosting. In Proc. Four-
teenth Intl. Conf. Machine Learning, pages 211–218, 1997.

Mart́ı, R., Laguna, M., Campos, V., (2005), Scatter search vs. genetic algo-
rithms: An experimental evaluation with permutation problems. In Rego,
C., Alidaee, B., eds.: Metaheuristic Optimization Via Adaptive Memory
and Evolution: Tabu Search and Scatter Search. Kluwer Academic Pub-
lishers 263–282.

Martin J. K., An exact probability metric for decision tree splitting and stopping.
An Exact Probability Metric for Decision Tree Splitting and Stopping, Ma-
chine Learning, 28 (2-3):257-291, 1997.

Martinez-Munoz G., Suarez A., Switching class labels to generate classification
ensembles, Pattern Recognition, 38 (2005): 1483–1494.

Masulli, F., Valentini, G., (2000), Effectiveness of error correcting output codes
in multiclass learning problems. In: Proceedings of the 1st International
Workshop on Multiple Classifier Systems. Volume 1857 of Lecture Notes in
Computer Science., Springer-Verlag 107–116.

Mayoraz, E., Alpaydim, E., (1998), Support vector machines for multi-class clas-
sification. Research Report IDIAP-RR-98-06, Dalle Molle Institute for Per-
ceptual Artificial Intelligence, Martigny, Switzerland.

Mayoraz, E., Moreira, M., (1996), On the decomposition of polychotomies into
dichotomies. Research Report 96-08, IDIAP, Dalle Molle Institute for Per-
ceptive Artificial Intelligence, Martigny, Valais, Switzerland.

Mease D., Wyner W., Evidence Contrary to the Statistical View of Boosting,
Journal of Machine Learning Research 9 (2008) 131-156

Mehta M., Rissanen J., Agrawal R., MDL-Based Decision Tree Pruning. KDD
1995: pp. 216-221, 1995.

Mehta M., Agrawal R. and Rissanen J., SLIQ: A fast scalable classifier for data
mining: In Proc. If the fifth Int’l Conference on Extending Database Tech-
nology (EDBT), Avignon, France, March 1996.

Meir R., Ratsch G., An introduction to boosting and leveraging, In Advanced
Lectures on Machine Learning, LNCS (2003), pp. 119-184.

Melville P., Mooney R. J., Constructing Diverse Classifier Ensembles using Arti-
ficial Training Examples. IJCAI 2003: 505-512

Menahem, E., Rokach, L., Elovici, Y., Troika - An Improved Stacking Schema for
Classification Tasks, Information Sciences (to appear).

Menahem, E., Shabtai, A., Rokach, L., Elovici, Y., Improving malware detection
by applying multi-inducer ensemble. Computational Statistics and Data
Analysis, 53(4):1483–1494, 2009.

Meretakis, D. and Wthrich, B., Extending Nave Bayes Classifiers Using Long
Itemsets, in Proceedings of the Fifth International Conference on Knowl-
edge Discovery and Data Mining, pp. 165-174, San Diego, USA, 1999.

Merkwirth C., Mauser H., Schulz-Gasch T., Roche O., Stahl M., Lengauer T., En-
semble methods for classification in cheminformatics, Journal of Chemical
Information and Modeling, 44(6):1971–1978, 2004.

Merler S., Caprile B., Furlanello C., Parallelizing AdaBoost by weights dynamics,
Computational Statistics and Data Analysis 51 (2007) 2487-2498

Bibliography 207

Merz, C. J. and Murphy. P.M., UCI Repository of machine learning databases.
Irvine, CA: University of California, Department of Information and Com-
puter Science, 1998.

Merz, C. J., Using Correspondence Analysis to Combine Classifier, Machine
Learning, 36(1-2):33-58, 1999.

Michalewicz, Z., Fogel, D.B., (2004), How to solve it: modern heuristics. Springer.
Michalski R. S., and Tecuci G.. Machine Learning, A Multistrategy Approach,

Vol. J. Morgan Kaufmann, 1994.
Michalski R. S., A theory and methodology of inductive learning. Artificial Intel-

ligence, 20:111- 161, 1983.
Michalski R. S., Understanding the nature of learning: issues and research direc-

tions, in R. Michalski, J. Carbonnel and T. Mitchell,eds, Machine Learning:
An Artificial Intelligence Approach, Kaufmann, Paolo Alto, CA, pp. 3–25,
1986.

Michie D., Spiegelhalter D.J., Taylor C .C., Machine Learning, Neural and Sta-
tistical Classification, Prentice Hall, 1994.

Michie, D., Problem decomposition and the learning of skills, in Proceedings of
the European Conference on Machine Learning, pp. 17-31, Springer-Verlag,
1995.

Mierswa I., Wurst M., Klinkenberg R., Scholz M., and Euler T.: YALE: Rapid
Prototyping forComplex Data Mining Tasks, in Proceedings of the 12th
ACM SIGKDDInternational Conference on Knowledge Discovery and Data
Mining(KDD-06), 2006.

Mingers J., An empirical comparison of pruning methods for decision tree induc-
tion. Machine Learning, 4(2):227-243, 1989.

Minsky M., Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs.
Scruffy, in Artificial Intelligence at MIT., Expanding Frontiers, Patrick H.
Winston (Ed.), Vol 1, MIT Press, 1990. Reprinted in AI Magazine, 1991.

Mishra, S. K. and Raghavan, V. V., An empirical study of the performance of
heuristic methods for clustering. In Pattern Recognition in Practice, E. S.
Gelsema and L. N. Kanal, Eds. 425436, 1994.

Mitchell, M., (1999), An introduction to Genetic Algorithms. MIT Press.
Mitchell, T., The need for biases in learning generalizations. Technical Report

CBM-TR-117, Rutgers University, Department of Computer Science, New
Brunswick, NJ, 1980.

Mitchell, T., Machine Learning, McGraw-Hill, 1997.
Montgomery D.C. (1997) Design and analysis, 4th edn. Wiley, New York.
Moody, J. and Darken, C., Fast learning in networks of locally tuned units. Neural

Computations, 1(2):281-294, 1989.
Francisco Moreno-Seco, Jose M. Inesta, Pedro J. Ponce de Leon, and Luisa

Mic, Comparison of Classifier Fusion Methods for Classification in Pat-
tern Recognition Tasks, D. Y. Yeung et al. (Eds.): SSPR-SPR 2006, LNCS
4109, pp. 705–713, 2006.

Morgan J. N. and Messenger R. C., THAID: a sequential search program for the
analysis of nominal scale dependent variables. Technical report, Institute
for Social Research, Univ. of Michigan, Ann Arbor, MI, 1973.

208 Pattern Classification Using Ensemble Methods

Moskovitch R, Elovici Y, Rokach L, Detection of unknown computer worms based
on behavioral classification of the host, Computational Statistics and Data
Analysis, 52(9):4544–4566, 2008.

Muller W., and Wysotzki F., Automatic construction of decision trees for classi-
fication. Annals of Operations Research, 52:231-247, 1994.

Murphy, O. J., and McCraw, R. L. 1991. Designing storage efficient decision trees.
IEEE-TC 40(3):315320.

Murtagh, F. A survey of recent advances in hierarchical clustering algorithms
which use cluster centers. Comput. J. 26 354-359, 1984.

Murthy S. K., Kasif S., and Salzberg S.. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1-33, August 1994.

Murthy, S. and Salzberg, S. (1995), Lookahead and pathology in decision tree
induction, in C. S. Mellish, ed., ‘Proceedings of the 14th International Joint
Con- ference on Articial Intelligence’, Morgan Kaufmann, pp. 1025-1031.

Murthy S. K., Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345-389,
1998.

Myers E.W., An O(ND) Difference Algorithm and Its Variations, Algorithmica,
1(1): page 251-266, 1986.

Naumov G.E., NP-completeness of problems of construction of optimal decision
trees. Soviet Physics: Doklady, 36(4):270-271, 1991.

Neal R., Probabilistic inference using Markov Chain Monte Carlo methods.
Tech. Rep. CRG-TR-93-1, Department of Computer Science, University
of Toronto, Toronto, CA, 1993.

Ng, R. and Han, J. 1994. Very large data bases. In Proceedings of the 20th
International Conference on Very Large Data Bases (VLDB94, Santiago,
Chile, Sept.), VLDB Endowment, Berkeley, CA, 144155.

Niblett T. and Bratko I., Learning Decision Rules in Noisy Domains, Proc. Expert
Systems 86, Cambridge: Cambridge University Press, 1986.

Niblett T., Constructing decision trees in noisy domains. In Proceedings of the
Second European Working Session on Learning, pages 67-78, 1987.

Nowlan S. J., and Hinton G. E. Evaluation of adaptive mixtures of competing
experts. In Advances in Neural Information Processing Systems, R. P. Lipp-
mann, J. E. Moody, and D. S. Touretzky, Eds., vol. 3, pp. 774-780, Morgan
Kaufmann Publishers Inc., 1991.

Nunez, M. (1988): Economic induction: A case study. In D. Sleeman (Ed.),
Proceeding of the Third European Working Session on Learning. London:
Pitman Publishing

Nunez, M. (1991): The use of Background Knowledge in Decision Tree Induction.
Machine Learning, 6(1), pp. 231-250.

Oates, T., Jensen D., 1998, Large Datasets Lead to Overly Complex Models: An
Explanation and a Solution, KDD 1998, pp. 294-298.

Ohno-Machado, L., and Musen, M. A. Modular neural networks for medical prog-
nosis: Quantifying the benefits of combining neural networks for survival
prediction. Connection Science 9, 1 (1997), 71-86.

Olaru C., Wehenkel L., A complete fuzzy decision tree technique, Fuzzy Sets and

Bibliography 209

Systems, 138(2):221–254, 2003.
Oliveira L.S., Sabourin R., Bortolozzi F., and Suen C. Y. (2003) A Method-

ology for Feature Selection using Multi-Objective Genetic Algorithms for
Handwritten Digit String Recognition, International Journal of Pattern
Recognition and Artificial Intelligence, 17(6):903-930.

Opitz, D., Feature Selection for Ensembles, In: Proc. 16th National Conf. on
Artificial Intelligence, AAAI,1999, pp. 379-384.

Opitz, D. and Maclin, R., Popular Ensemble Methods: An Empirical Study,
Journal of Artificial Research, 11: 169-198, 1999.

Opitz D. and Shavlik J., Generating accurate and diverse members of a neural-
network ensemble. In David S. Touretzky, Michael C. Mozer, and Michael
E. Hasselmo, editors, Advances in Neural Information Processing Systems,
volume 8, pages 535–541. The MIT Press, 1996.

Pérez-Cruz, F., Artés-Rodŕıguez, A., (2002), Puncturing multi-class support vec-
tor machines. In: Proceedings of the 12th International Conference on
Neural Networks (ICANN). Volume 2415 of Lecture Notes in Computer
Science., Springer-Verlag 751–756.

Pagallo, G. and Huassler, D., Boolean feature discovery in empirical learning,
Machine Learning, 5(1): 71-99, 1990.

S. Pang, D. Kim, S. Y. Bang, Membership authentication in the dynamic group
by face classification using SVM ensemble. Pattern Recognition Letters, 24:
215–225, 2003.

Park C., Cho S., Evolutionary Computation for Optimal Ensemble Classifier in
Lymphoma Cancer Classification. 521-530. Ning Zhong, Zbigniew W. Ras,
Shusaku Tsumoto, Einoshin Suzuki (Eds.): Foundations of Intelligent Sys-
tems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan,
October 28-31, 2003, Proceedings. Lecture Notes in Computer Science, pp.
521-530, 2003.

Parmanto, B., Munro, P. W., and Doyle, H. R., Improving committee diagnosis
with resampling techinques. In Touretzky, D. S., Mozer, M. C., and Hes-
selmo, M. E. (Eds). Advances in Neural Information Processing Systems,
Vol. 8, pp. 882-888 Cambridge, MA. MIT Press, 1996.

Partridge D. , Yates W. B. (1996), Engineering multiversion neural-net systems,
Neural Computation, 8(4):869-893.

Passerini, A., Pontil, M., Frasconi, P., (2004), New results on error correcting
output codes of kernel machines. IEEE Transactions on Neural Networks
15 45–54.

Pazzani M., Merz C., Murphy P., Ali K., Hume T., and Brunk C. (1994): Re-
ducing Misclassification costs. In Proc. 11th International conference on
Machine Learning, 217-25. Morgan Kaufmann.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan-Kaufmann, 1988.

Peng, F. and Jacobs R. A., and Tanner M. A., Bayesian Inference in Mixtures-of-
Experts and Hierarchical Mixtures-of-Experts Models With an Application
to Speech Recognition, Journal of the American Statistical Association 91,
953-960, 1996.

210 Pattern Classification Using Ensemble Methods

Peng Y., Intelligent condition monitoring using fuzzy inductive learning, Journal
of Intelligent Manufacturing, 15 (3): 373-380, June 2004.

Perkowski, M.A., Luba, T., Grygiel, S., Kolsteren, M., Lisanke, R., Iliev, N.,
Burkey, P., Burns, M., Malvi, R., Stanley, C., Wang, Z., Wu, H., Yang, F.,
Zhou, S. and Zhang, J. S., Unified approach to functional decompositions
of switching functions, Technical report, Warsaw University of Technology
and Eindhoven University of Technology, 1995.

Perkowski, M., Jozwiak, L. and Mohamed, S., New approach to learning noisy
Boolean functions, Proceedings of the Second International Conference
on Computational Intelligence and Multimedia Applications, pp. 693–706,
World Scientific, Australia, 1998.

Perkowski, M. A., A survey of literature on function decomposition, Technical
report, GSRP Wright Laboratories, Ohio OH, 1995.

Perner P., Improving the Accuracy of Decision Tree Induction by Feature Pre-
Selection, Applied Artificial Intelligence 2001, vol. 15, No. 8, p. 747-760.

Peterson W. W,, Weldon E. J., Error-correcting codes, The MIT Press; 2 edition,
March 15, 1972.

Pfahringer, B., Bensusan H., and Giraud-Carrier C., Tell Me Who Can Learn You
and I Can Tell You Who You are: Landmarking Various Learning Algo-
rithms, In Proc. of the Seventeenth International Conference on Machine
Learning (ICML2000), pages 743-750, 2000.

Pfahringer, B., Controlling constructive induction in CiPF, In Bergadano, F. and
De Raedt, L. (Eds.), Proceedings of the seventh European Conference on
Machine Learning, pp. 242-256, Springer-Verlag, 1994.

Pfahringer, B., Compression- based feature subset selection. In Proceeding of the
IJCAI- 95 Workshop on Data Engineering for Inductive Learning, pp. 109-
119, 1995.

Phama T., Smeuldersb A., Quadratic boosting, Pattern Recognition 41(2008):
331 - 341.

Piatetsky-Shapiro, G. (1991). Discovery analysis and presentation of strong rules.
Knowledge Discovery in Databases, AAAI/MIT Press.

Pimenta, E., Gama, J., (2005), A study on error correcting output codes. In:
Proceedings of the 2005 Portuguese Conference on Artificial Intelligence,
IEEE Computer Society Press 218–223.

Poggio T., Girosi, F., Networks for Approximation and Learning, Proc. lEER,
Vol 78(9): 1481-1496, Sept. 1990.

Polikar R., “Ensemble Based Systems in Decision Making,” IEEECircuits and
Systems Magazine, vol.6, no. 3, pp. 21-45, 2006.

Pratt, L. Y., Mostow, J., and Kamm C. A., Direct Transfer of Learned Infor-
mation Among Neural Networks, in: Proceedings of the Ninth National
Conference on Artificial Intelligence, Anaheim, CA, 584-589, 1991.

Prodromidis, A. L., Stolfo, S. J. and Chan, P. K., Effective and efficient pruning
of metaclassifiers in a distributed data mining system. Technical report
CUCS-017-99, Columbia Univ., 1999.

Provan, G. M. and Singh, M. (1996). Learning Bayesian networks using feature
selection. In D. Fisher and H. Lenz, (Eds.), Learning from Data, Lecture

Bibliography 211

Notes in Statistics, pages 291– 300. Springer- Verlag, New York.
Provost, F. (1994): Goal-Directed Inductive learning: Trading off accuracy for

reduced error cost. AAAI Spring Symposium on Goal-Driven Learning.
Provost F. and Fawcett T. (1997): Analysis and visualization of Classifier Per-

formance Comparison under Imprecise Class and Cost Distribution. In Pro-
ceedings of KDD-97, pages 43-48. AAAI Press.

Provost F. and Fawcett T. (1998): The case against accuracy estimation for com-
paring induction algorithms. Proc. 15th Intl. Conf. On Machine Learning,
pp. 445-453, Madison, WI.

Provost, F. and Fawcett, T. (2001), Robust {C}lassification for {I}mprecise
{E}nvironments, Machine Learning, 42/3:203-231.

Provost, F.J. and Kolluri, V., A Survey of Methods for Scaling Up Inductive
Learning Algorithms, Proc. 3rd International Conference on Knowledge
Discovery and Data Mining, 1997.

Provost, F., Jensen, D. and Oates, T., 1999, Efficient Progressive Sampling, In
Proceedings of the Fifth International Conference on Knowledge Discovery
and Data Mining, pp.23-32.

Pujol, O., Tadeva, P., Vitrià, J., (2006), Discriminant ECOC: a heuristic method
for application dependetn design of error correcting output codes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(6) 1007–
1012.

Quinlan, J. R. and Rivest, R. L., Inferring Decision Trees Using The Minimum
Description Length Principle. Information and Computation, 80:227-248,
1989.

Quinlan, J.R. Learning efficient classification procedures and their application to
chess endgames. R. Michalski, J. Carbonell, T. Mitchel. Machine learning:
an AI approach. Los Altos, CA. Morgan Kaufman , 1983.

Quinlan, J.R., Induction of decision trees, Machine Learning 1, 81-106, 1986.
Quinlan, J.R., Simplifying decision trees, International Journal of Man-Machine

Studies, 27, 221-234, 1987.
Quinlan, J.R., Decision Trees and Multivalued Attributes, J. Richards, ed., Ma-

chine Intelligence, V. 11, Oxford, England, Oxford Univ. Press, pp. 305-318,
1988.

Quinlan, J. R., Unknown attribute values in induction. In Segre, A. (Ed.), Pro-
ceedings of the Sixth International Machine Learning Workshop Cornell,
New York. Morgan Kaufmann, 1989.

Quinlan, J. R., Unknown attribute values in induction. In Segre, A. (Ed.), Pro-
ceedings of the Sixth International Machine Learning Workshop Cornell,
New York. Morgan Kaufmann, 1989.

Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, Los
Altos, 1993.

Quinlan, J. R., Bagging, Boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 725-730, 1996.

R Development Core Team (2004), R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-00-3, http://cran.r-project.org/, 2004

212 Pattern Classification Using Ensemble Methods

R’enyi A., Probability Theory, North-Holland, Amsterdam, 1970
Rätsch, G., Smola, A.J., Mika, S., (2003), Adapting codes and embeddings for

polychotomies. In: Advances in Neural Information Processing Systems.
Volume 15., MIT Press 513–520.

Ragavan, H. and Rendell, L., Look ahead feature construction for learning hard
concepts. In Proceedings of the Tenth International Machine Learning Con-
ference: pp. 252-259, Morgan Kaufman, 1993.

Rahman, A. F. R., and Fairhurst, M. C. A new hybrid approach in combining
multiple experts to recognize handwritten numerals. Pattern Recognition
Letters, 18: 781-790,1997.

Rakotomalala R., ”TANAGRA: a free software for research andacademic pur-
poses”, in Proceedings of EGC’2005, RNTI-E-3, vol. 2,pp.697-702, 2005

Ramamurti, V., and Ghosh, J., Structurally Adaptive Modular Networks for
Non-Stationary Environments, IEEE Transactions on Neural Networks, 10
(1):152-160, 1999.

Rand, W. M., Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66: 846–850, 1971.

Rao, R., Gordon, D., and Spears, W., For every generalization action, is there
really an equal or opposite reaction? Analysis of conservation law. In Proc.
of the Twelveth International Conference on Machine Learning, pp. 471-
479. Morgan Kaufmann, 1995.

Rastogi, R., and Shim, K., PUBLIC: A Decision Tree Classifier that Integrates
Building and Pruning,Data Mining and Knowledge Discovery, 4(4):315-344,
2000.

Ratsch G., Onoda T., and Muller K. R., Soft Margins for Adaboost, Machine
Learning 42(3):287-320, 2001.

Ray, S., and Turi, R.H. Determination of Number of Clusters in K-Means Clus-
tering and Application in Color Image Segmentation. Monash university,
1999.

Buczak A. L. and Ziarko W., “Stages of The Discovery Process”, Klosgen W. and
Zytkow J. M. (Eds.), Handbook of Data Mining and Knowledge Discovery,
pages 185-192. Oxford University Press, 2002.

Ridgeway, G., Madigan, D., Richardson, T. and O’Kane, J. (1998), “Interpretable
Boosted Naive Bayes Classification”, Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining, pp 101-104.

Rifkin, R., Klautau, A., (2004), In defense of one-vs-all classification. Journal of
Machine Learning Research 5 1533–7928.

Rigoutsos I. and Floratos A., Combinatorial pattern discovery in biological se-
quences: The TEIRESIAS algorithm., Bioinformatics, 14(2): page 229,
1998.

Rissanen, J., Stochastic complexity and statistical inquiry. World Scientific, 1989.
Rodriguez J. J. (2006). Rotation Forest: A New Classifier Ensemble Method.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10):
1619-1630

Rokach L., Ensemble Methods for Classifiers, in Oded Maimon and Lior Rokach
(Eds.), The Data Mining and Knowledge Discovery Handbook, Springer,

Bibliography 213

pp. 957-980, 2005.
Rokach L., Decomposition Methodology for Classification Tasks - A Meta De-

composer Framework, Pattern Analysis and Applications, 9(2006):257-271.
Rokach L., Genetic algorithm-based feature set partitioning for classification

problems,Pattern Recognition, 41(5):1676–1700, 2008.
Rokach L., Mining manufacturing data using genetic algorithm-based feature set

decomposition, Int. J. Intelligent Systems Technologies and Applications,
4(1):57-78, 2008.

Rokach, L., Collective-agreement-based pruning of ensembles. Computational
Statistics and Data Analysis, 53(4):1015–1026, 2009.

Rokach L., Taxonomy for characterizing ensemble methods in classification tasks:
A review and annotated bibliography, Computational Statistics and Data
Analysis, 53(12):4046-4072, 2009.

Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining: A
Clustering Approach, Proceedings of the 14th International Symposium On
Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes in
Computer Science, Springer-Verlag, 2003, pp. 24–31.

Rokach L., Averbuch M. and Maimon O., Information Retrieval System for Med-
ical Narrative Reports, Lecture Notes in Artificial intelligence 3055, page
217-228 Springer-Verlag, 2004.

Rokach L., Maimon O., Arad O., “Improving Supervised Learning by Sample
Decomposition”, International Journal of Computational Intelligence and
Applications, 5(1):37-54, 2005.

Rokach L., R. Arbel, O. Maimon, “Selective Voting - Getting More For Less in
Sensor Fusion”, International Journal of PatternRecognition and Artificial
Intelligence, 20(3):329-350, 2006.

Rokach L., Chizi B., Maimon O., A Methodology for Improving the Performance
of Non-ranker Feature Selection Filters, International Journal of Pattern
Recognition and Artificial Intelligence, 21(5): 809-830, 2007.

Rokach L., Romano R., Maimon O., Negation Recognition in Medical Narrative
Reports, Information Retrieval, 11(6): 499-538, 2008

Rokach L. and Maimon O., “Theory and Application of Attribute Decom-
position”, Proceedings of the First IEEE International Conference on Data
Mining, IEEE Computer Society Press, pp. 473-480, 2001

Rokach L. and Maimon O., Top Down Induction of Decision Trees Classifiers: A
Survey, IEEE SMC Transactions Part C. Volume 35, Number 3, 2005a.

Rokach L. and Maimon O., Feature Set Decomposition for Decision Trees, Journal
of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131-158.

Rokach, L. and Maimon, O., Clustering methods, Data Mining and Knowledge
Discovery Handbook, pp. 321–352, 2005, Springer.

Rokach, L. and Maimon, O., Data mining for improving the quality of man-
ufacturing: a feature set decomposition approach, Journal of Intelligent
Manufacturing, 17(3):285–299, 2006, Springer.

Rokach, L., Maimon, O., Data Mining with Decision Trees: Theory and Appli-
cations, World Scientific Publishing, 2008.

Ronco, E., Gollee, H., and Gawthrop, P. J., Modular neural network and self-

214 Pattern Classification Using Ensemble Methods

decomposition. CSC Research Report CSC-96012, Centre for Systems and
Control, University of Glasgow, 1996.

Rosen B. E., Ensemble Learning Using Decorrelated Neural Networks. Connect.
Sci. 8(3): 373-384 (1996)

Rounds, E., A combined non-parametric approach to feature selection and binary
decision tree design, Pattern Recognition 12, 313-317, 1980.

Rudin C., Daubechies I., and Schapire R. E., The Dynamics of Adaboost: Cyclic
behavior and convergence of margins, Journal of Machine Learning Resea-
rch Vol. 5, 1557-1595, 2004.

Rumelhart, D., G. Hinton and R. Williams, Learning internal representations
through error propagation. In Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Foundations, D. Rumelhart
and J. McClelland (eds.) Cambridge, MA: MIT Press., pp 2540, 1986.

Saaty, X., The analytic hierarchy process: A 1993 overview. Central European
Journal for Operations Research and Economics, Vol. 2, No. 2, p. 119-137,
1993.

Safavin S. R. and Landgrebe, D., A survey of decision tree classifier methodology.
IEEE Trans. on Systems, Man and Cybernetics, 21(3):660-674, 1991.

Sakar A., Mammone R.J., Growing and pruning neural tree networks, IEEE
Trans. on Computers 42, 291-299, 1993.

Salzberg. S. L., On Comparing Classifiers: Pitfalls to Avoid and a Recommended
Approach. Data Mining and Knowledge Discovery, 1: 312-327, Kluwer Aca-
demic Publishers, Bosto, 1997.

Samuel, A., Some studies in machine learning using the game of checkers II:
Recent progress. IBM J. Res. Develop., 11:601-617, 1967.

Schaffer, C., When does overfitting decrease prediction accuracy in induced deci-
sion trees and rule sets? In Proceedings of the European Working Session
on Learning (EWSL-91), pp. 192-205, Berlin, 1991.

Schaffer, C., Selecting a classification method by cross-validation. Machine Learn-
ing 13(1):135-143, 1993.

Schaffer J., A Conservation Law for Generalization Performance. In Proceedings
of the 11th International Conference on Machine Learning: pp. 259-265,
1993.

Schapire, R.E., The Strength of Weak Learnability. Machine learning 5(2), 197-
227, 1990.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems.
Proc. 14th Intl Conf. Machine Learning (pp. 313321). Nashville, TN, USA.

Schclar A., Rokach L.: Random Projection Ensemble Classifiers. ICEIS 2009:
309–316.

Schclar A., Rokach L., A. Meisels, Ensemble Methods for Improving the Perfor-
mance of Neighborhood-based Collaborative Filtering, Proc. ACM RecSys
2009 (to appear).

Schlimmer, J. C. , Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning. In Proceedings of the 1993
International Conference on Machine Learning: pp 284-290, San Mateo,
CA, Morgan Kaufmann, 1993.

Bibliography 215

Schmitt , M., On the complexity of computing and learning with multiplicative
neural networks, Neural Computation 14: 2, 241-301, 2002.

Seewald, A. K., Exploring the Parameter State Space of Stacking. In: Proc. of
the 2002 IEEE Int. Conf. on Data Mining, pp. 685–688, 2002A.

Seewald A.K., How to Make Stacking Better and Faster While Also Taking Care
of an Unknown Weakness. In: Nineteenth International Conference on Ma-
chine Learning, 554–561, 2002B.

Seewald A.K., Towards Understanding Stacking. PhD Thesis, Vienna University
of Technology, 2003.

Seewald, A.K. and Fürnkranz, J., Grading classifiers, Austrian research institute
for Artificial intelligence, 2001.

Selfridge, O. G. Pandemonium: a paradigm for learning. In Mechanization of
Thought Processes: Proceedings of a Symposium Held at the National
Physical Laboratory, November, 1958, 513-526. London: H.M.S.O., 1958.

Selim, S. Z. AND Al-Sultan, K. 1991. A simulated annealing algorithm for the
clustering problem. Pattern Recogn. 24, 10 (1991), 10031008.

Selim, S.Z., and Ismail, M.A. K-means-type algorithms: a generalized conver-
gence theorem and characterization of local optimality. In IEEE transac-
tions on pattern analysis and machine learning, vol. PAMI-6, no. 1, January,
1984.

Servedio, R., On Learning Monotone DNF under Product Distributions. Infor-
mation and Computation 193, pp. 57-74, 2004.

Sethi, K., and Yoo, J. H., Design of multicategory, multifeature split decision
trees using perceptron learning. Pattern Recognition, 27(7):939-947, 1994.

Sexton J., Laake P., LogitBoost with errors-in-variables, Computational Statistics
and Data Analysis 52 (2008) 2549-2559

Shafer, J. C., Agrawal, R. and Mehta, M. , SPRINT: A Scalable Parallel Clas-
sifier for Data Mining, Proc. 22nd Int. Conf. Very Large Databases, T. M.
Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L.
Sarda (eds), 544-555, Morgan Kaufmann, 1996.

Shapiro, A. D. and Niblett, T., Automatic induction of classification rules for a
chess endgame, in M. R. B. Clarke, ed., Advances in Computer Chess 3,
Pergamon, Oxford, pp. 73-92, 1982.

Shapiro, A. D., Structured induction in expert systems, Turing Institute Press in
association with Addison-Wesley Publishing Company, 1987.

Sharkey A., Sharkey N., Combining diverse neural networks, The Knowledge
Engineering Review 12(3): 231–247, 1997.

Sharkey, A., On combining artificial neural nets, Connection Science, Vol. 8,
pp.299-313, 1996.

Sharkey, A., Multi-Net Iystems, In Sharkey A. (Ed.) Combining Artificial Neural
Networks: Ensemble and Modular Multi-Net Systems. pp. 1-30, Springer-
Verlag, 1999.

Shen, L., Tan, E.C., (2005), Seeking better output-codes with genetic algorithm
for multiclass cancer classification. Submitted to Bioinformatics.

Shilen, S., Multiple binary tree classifiers. Pattern Recognition 23(7): 757-763,
1990.

216 Pattern Classification Using Ensemble Methods

Shilen, S., Nonparametric classification using matched binary decision trees. Pat-
tern Recognition Letters 13: 83-87, 1992.

Simn, M.D.J., Pulido, J.A.G., Rodrguez, M.A.V., (2006), Prez, J.M.S., Criado,
J.M.G., A genetic algorithm to design error correcting codes. In: Pro-
ceedings of the 13th IEEE Mediterranean Eletrotechnical Conference 2006,
IEEE Computer Society Press 807–810.

Sivalingam D., Pandian N., Ben-Arie J., Minimal Classification Method With
Error-Correcting Codes For Multiclass Recognition, International Journal
of Pattern Recognition and Artificial Intelligence 19(5): 663 - 680, 2005.

Sklansky, J. and Wassel, G. N., Pattern classifiers and trainable machines.
SpringerVerlag, New York, 1981.

Skurichina M. and Duin R.P.W., Bagging, boosting and the random subspace
method for linear classifiers. Pattern Analysis and Applications, 5(2):121–
135, 2002

Sloane N.J.A. (2007) A library of orthogonal arrays.
Smyth, P. and Goodman, R. (1991). Rule induction using information theory.

Knowledge Discovery in Databases, AAAI/MIT Press.
Sneath, P., and Sokal, R. Numerical Taxonomy. W.H. Freeman Co., San Fran-

cisco, CA, 1973.
Snedecor, G. and Cochran, W. (1989). Statistical Methods. owa State University

Press, Ames, IA, 8th Edition.
Sohn S. Y., Choi, H., Ensemble based on Data Envelopment Analysis, ECML

Meta Learning workshop, Sep. 4, 2001.
Sohna S.Y., Shinb H.W., Experimental study for thecomparison of classifier com-

bination methods, Pattern Recognition40 (2007) 33–40.
van Someren M.,Torres C. and Verdenius F. (1997): A systematic Description

of Greedy Optimisation Algorithms for Cost Sensitive Generalization. X.
Liu, P.Cohen, M. Berthold (Eds.): “Advance in Intelligent Data Analysis”
(IDA-97) LNCS 1280, pp. 247-257.

Sonquist, J. A., Baker E. L., and Morgan, J. N., Searching for Structure. Institute
for Social Research, Univ. of Michigan, Ann Arbor, MI, 1971.

Spirtes, P., Glymour C., and Scheines, R., Causation, Prediction, and Search.
Springer Verlag, 1993.

Statnikov, A., Aliferis, C.F., Tsamardinos, I., (2005), Hardin, D., Levy, S., A
comprehensive evaluation of multicategory methods for microarray gene
expression cancer diagnosis. Bioinformatics 21(5) 631–643.

Steuer R.E.,Multiple Criteria Optimization: Theory, Computation and Applica-
tion. John Wiley, New York, 1986.

Strehl A. and Ghosh J., Clustering Guidance and Quality Evaluation Using
Relationship-based Visualization, Proceedings of Intelligent Engineering
Systems Through Artificial Neural Networks, 5-8 November 2000, St. Louis,
Missouri, USA, pp 483-488.

Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page
clustering. In Proc. AAAI Workshop on AI for Web Search, pp 58–64, 2000.

Sun Y., Todorovic S., Li L. Reducing The Overfitting Of Adaboost By Con-
trolling Its Data Distribution Skewness, International Journal of Pattern

Bibliography 217

Recognition and Artificial Intelligence, 20(7):1093-1116, 2006.
Sun Y., Todorovic S., Li J., Wu D., Unifying the Error-Correcting and Output-

Code AdaBoost within the Margin Framework, Proceedings of the 22nd
international conference on Machine learning (2005), pp. 872-879.

Tadepalli, P. and Russell, S., Learning from examples and membership queries
with structured determinations, Machine Learning, 32(3), pp. 245-295,
1998.

Tan A. C., Gilbert D., Deville Y., Multi-class Protein Fold Classification using a
New Ensemble Machine Learning Approach. Genome Informatics, 14:206–
217, 2003.

Tang E. K., Suganthan P. N., Yao X., An analysis of diversity measures, Machine
Learning (2006) 65:247271

Tani T. and Sakoda M., Fuzzy modeling by ID3 algorithm and its application
to prediction of heater outlet temperature, Proc. IEEE lnternat. Conf. on
Fuzzy Systems, March 1992, pp. 923-930.

Dacheng Tao and Xiaoou Tang, SVM-based Relevance Feedback Using Ran-
dom Subspace Method, IEEE International Conference on Multimedia and
Expo, pp. 647-652, 2004

Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu, Asymmetric Bag-
ging and Random Subspace for Support Vector Machines-based Relevance
Feedback in Image Retrieval, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no.7, pp. 1088-1099, July 2006

Dacheng Tao, Xuelong Li, and Stephen J. Maybank, Negative Samples Anal-
ysis in Relevance Feedback, IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 4, pp. 568-580, April 2007.

Tapia, E., González, J.C., Garćıa-Villalba, J., Villena, J., (2001), Recursive adap-
tive ECOC models. In: Proceedings of the 10th Portuguese Conference on
Artificial Intelligence. Volume 2258 of Lecture Notes in Artificial Intelli-
gence., Springer-Verlag 96–103.

Tapia, E., González, J.C., Garćıa-Villalba, J., (2003), Good error correcting out-
put codes for adaptive multiclass learning. In: Proceedings of the 4th
International Workshop on Multiple Classifier Systems 2003. Volume 2709
of Lecture Notes in Computer Science., Springer-Verlag 156–165.

Taylor P. C., and Silverman, B. W., Block diagrams and splitting criteria for
classification trees. Statistics and Computing, 3(4):147-161, 1993.

Tibshirani, R., Walther, G. and Hastie, T. (2000). Estimating the number of
clusters in a dataset via the gap statistic. Tech. Rep. 208, Dept. of Statistics,
Stanford University.

Ting K.M. and Witten I.H. (1999), Issues in stacked generalization, J. Artif.
Intell. Res. 10: 271289, 1999.

Towell, G. Shavlik, J., Knowledge-based artificial neural networks, Artificial In-
telligence, 70: 119-165, 1994.

Tresp, V. and Taniguchi, M. Combining estimators using non-constant weighting
functions. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in
Neural Information Processing Systems, volume 7: pp. 419-426, The MIT
Press, 1995.

218 Pattern Classification Using Ensemble Methods

Tsallis C., Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat.Phys.,
52, 479-487, 1988.

Tsao, C.A., Chang, Y.I., 2007. A stochastic approximation view of boosting.
Comput. Stat. Data Anal. 52 (1), 325-344.

Tsoumakas G., Partalas I., Vlahavas I., A Taxonomy and Short Review of Ensem-
ble Selection, Proc. Workshop on Supervised and Unsupervised Ensemble
Methods, ECAI, Patras, Greece, 2008.

Tsymbal A., and Puuronen S., Ensemble Feature Selection with the Simple
Bayesian Classification in Medical Diagnostics, In: Proc. 15thIEEE Symp.
on Computer-Based Medical Systems CBMS2002, Maribor, Slovenia,IEEE
CS Press, 2002, pp. 225-230.

Tsymbal A., and Puuronen S., and D. Patterson, Feature Selection for Ensem-
bles of Simple Bayesian Classifiers,In: Foundations of Intelligent Systems:
ISMIS2002, LNAI, Vol. 2366, Springer, 2002, pp. 592-600

Tsymbal A., Pechenizkiy M., Cunningham P., Diversity in search strategies for
ensemble feature selection. Information Fusion 6(1): 83-98, 2005.

Tukey J.W., Exploratory data analysis, Addison-Wesley, Reading, Mass, 1977.
Tumer, K. and Ghosh J., Error Correlation and Error Reduction in Ensemble

Classifiers, Connection Science, Special issue on combining artificial neural
networks: ensemble approaches, 8 (3-4): 385-404, 1996.

Tumer, K., and Ghosh J., Linear and Order Statistics Combiners for Pattern
Classification, in Combining Articial Neural Nets, A. Sharkey (Ed.), pp.
127-162, Springer-Verlag, 1999.

Tumer, K., and Ghosh J., Robust Order Statistics based Ensembles for Dis-
tributed Data Mining. In Kargupta, H. and Chan P., eds, Advances in
Distributed and Parallel Knowledge Discovery , pp. 185-210, AAAI/MIT
Press, 2000.

K. Tumer, C. N. Oza, Input decimated ensembles. Pattern Analysis and Appli-
cation 6 (2003) 65-77.

Turney P. (1995): Cost-Sensitive Classification: Empirical Evaluation of Hybrid
Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence
Research 2, pp. 369-409.

Turney P. (2000): Types of Cost in Inductive Concept Learning. Workshop on
Cost Sensitive Learning at the 17th ICML, Stanford, CA.

Tutz, G., Binder, H., 2006. Boosting ridge regression. Computational Statistics
and Data Analysis. Corrected Proof, Available online 22 December 2006,
in press.

Tuv, E. and Torkkola, K., Feature filtering with ensembles using artificial con-
trasts. In Proceedings of the SIAM 2005 Int. Workshop on Feature Selection
for Data Mining, Newport Beach, CA, 69-71, 2005.

Tyron R. C. and Bailey D.E. Cluster Analysis. McGraw-Hill, 1970.
Urquhart, R. Graph-theoretical clustering, based on limited neighborhood sets.

Pattern recognition, vol. 15, pp. 173-187, 1982.
Utgoff, P. E., and Clouse, J. A., A Kolmogorov-Smirnoff Metric for Decision Tree

Induction, Technical Report 96-3, University of Massachusetts, Department
of Computer Science, Amherst, MA, 1996.

Bibliography 219

Utgoff, P. E., Perceptron trees: A case study in hybrid concept representations.
Connection Science, 1(4):377-391, 1989.

Utgoff, P. E., Incremental induction of decision trees. Machine Learning, 4:161-
186, 1989.

Utgoff, P. E., Decision tree induction based on efficient tree restructuring, Ma-
chine Learning 29 (1):5-44, 1997.

Vafaie, H. and De Jong, K. (1995). Genetic algorithms as a tool for restructuring
feature space representations. In Proceedings of the International Confer-
ence on Tools with A. I. IEEE Computer Society Press.

Valentini G. and Masulli F., Ensembles of learning machines. In R. Tagliaferri
andM. Marinaro, editors, Neural Nets, WIRN, Vol. 2486 of Lecture Notes
in ComputerScience, Springer, 2002, pp. 3-19.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM
1984, pp. 1134-1142.

Van Rijsbergen, C. J., Information Retrieval. Butterworth, ISBN 0-408-70929-4,
1979.

Van Zant, P., Microchip fabrication: a practical guide to semiconductor process-
ing, New York: McGraw-Hill, 1997.

Vapnik, V.N., The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

Veyssieres, M.P. and Plant, R.E. Identification of vegetation state-and-transition
domains in California’s hardwood rangelands. University of California,
1998.

Vilalta R., Giraud–Carrier C., Brazdil P., “Meta-Learning”, in O. Maimon and
L. Rokach (Eds.), Handbook of Data Mining and Knowledge Discovery in
Databases, pp. 731-748, Springer, 2005.

Villalba Santiago D., Rodrguez Juan J., Alonso Carlos J., An Empirical Compar-
ison of Boosting Methods via OAIDTB, an Extensible Java Class Library,
In II International Workshop on Practical Applications of Agents and Mul-
tiagent Systems - IWPAAMS’2003.

Wallace C. S. and Dowe D. L., Intrinsic classification by mml – the snob pro-
gram. In Proceedings of the 7th Australian Joint Conference on Artificial
Intelligence, pages 37-44, 1994.

Wallace, C. S., and Patrick J., Coding decision trees, Machine Learning 11: 7-22,
1993.

Wallace, C. S., MML Inference of Predictive Trees, Graphs and Nets. In A. Gam-
merman (ed), Computational Learning and Probabilistic Reasoning, pp
43-66, Wiley, 1996.

Wallet, B.C., Marchette, D.J., Solka, J.L., (1996), A matrix representation for
genetic algorithms. In: Automatic object recognition VI, Proceedings of
the International Society for Optical Engineering. 206–214.

Wallis, J.L., Houghten, S.K., (2002), A comparative study of search techniques
applied to the minimum distance problem of BCH codes. Technical Report
CS-02-08, Department of Computer Science, Brock University.

Walsh P., Cunningham P., Rothenberg S., O’Doherty S., Hoey H., Healy R., An
artificial neural network ensemble to predict disposition and length of stay

220 Pattern Classification Using Ensemble Methods

in children presenting with bronchiolitis. European Journal of Emergency
Medicine. 11(5):259-264, 2004.

Wan, W. and Perkowski, M. A., A new approach to the decomposition of incom-
pletely specified functions based on graph-coloring and local transforma-
tions and its application to FPGAmapping, In Proc. of the IEEE EURO-
DAC ’92, pp. 230-235, 1992.

Wanas Nayer M., Dara Rozita A. , Kamel Mohamed S., Adaptivefusion and co-
operative training for classifier ensembles, PatternRecognition 39 (2006)
1781 - 1794

Wang, X. and Yu, Q. Estimate the number of clusters in web documents via gap
statistic. May 2001.

Wang W., Jones P., Partridge D., Diversity between neural networks and decision
trees for building multiple classifier systems, in: Proc. Int. Workshop on
Multiple Classifier Systems (LNCS 1857), Springer, Calgiari, Italy, 2000,
pp. 240–249.

Ward, J. H. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58:236-244, 1963.

Warshall S., A theorem on Boolean matrices, Journal of the ACM 9, 1112, 1962.
Webb G., and Zheng Z., Multistrategy Ensemble Learning: Reducing Error by

Combining Ensemble Learning Techniques. IEEE Transactions on Knowl-
edge and Data Engineering, 16 No. 8:980-991, 2004.

Webb G., MultiBoosting: A technique for combining boosting and wagging. Ma-
chine Learning, 40(2): 159-196, 2000.

Weigend, A. S., Mangeas, M., and Srivastava, A. N. Nonlinear gated experts
for time-series - discovering regimes and avoiding overfitting. International
Journal of Neural Systems 6(5):373-399, 1995.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recog-
nition. In M. Verleysen (ed.) Proceedings of the 7th European Symposium
on Artificial Neural Networks (ESANN-99), pp. 219224, Bruges, Belgium,
1999.

Widmer, G. and Kubat, M., 1996, Learning in the Presence of Concept Drift and
Hidden Contexts, Machine Learning 23(1), pp. 69101.

Windeatt T. and Ardeshir G., An Empirical Comparison of Pruning Methods for
Ensemble Classifiers, IDA2001, LNCS 2189, pp. 208-217, 2001.

Windeatt, T., Ghaderi, R., (2003), Coding and decoding strategies for multi-class
learning problems. Information Fusion 4(1) 11–21.

Wolf L., Shashua A., Feature Selection for Unsupervised and Supervised Infer-
ence: The Emergence of Sparsity in a Weight-Based Approach, Journal of
Machine Learning Research, Vol 6, pp. 1855-1887, 2005.

Wolpert, D., Macready, W. 1996. Combining Stacking with Bagging to Improve
a Learning Algorithm. Santa Fe Institute Technical Report 96-03-123.

Wolpert, D.H., Stacked Generalization, Neural Networks, Vol. 5, pp. 241-259,
Pergamon Press, 1992.

Wolpert, D. H., The relationship between PAC, the statistical physics framework,
the Bayesian framework, and the VC framework. In D. H. Wolpert, editor,
The Mathematics of Generalization, The SFI Studies in the Sciences of

Bibliography 221

Complexity, pages 117-214. AddisonWesley, 1995.
Wolpert, D. H., “The lack of a priori distinctions between learning algorithms,”

Neural Computation 8: 1341–1390, 1996.
Wolpert, D. H., “The supervised learning no-free-lunch theorems”, Proceedings

of the 6th Online World Conference on Soft Computing in Industrial Ap-
plications, 2001.

Woods K., Kegelmeyer W., Bowyer K., Combination of multiple classifiers using
local accuracy estimates, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 19:405–410, 1997.

Q. X. Wu , D. Bell and M. McGinnity, Multi-knowledge for decision making,
Knowledge and Information Systems, 7(2005): 246-266

Wyse, N., Dubes, R. and Jain, A.K., A critical evaluation of intrinsic dimension-
ality algorithms, Pattern Recognition in Practice, E.S. Gelsema and L.N.
Kanal (eds.), North-Holland, pp. 415–425, 1980.

Xu L., Krzyzak A., Suen C.Y., Methods of combining multiple classifiers and their
application to handwriting recognition, IEEE Trans. SMC 22, 418-435, 1992

Yanim S., Kamel Mohamad S., Wong Andrew K.C., Wang Yang (2007). Cost-
sensitive boosting for classification of imbalanced data. Pattern Recognition
(40): 3358-3378

Yates W., Partridge D., Use of methodological diversity to improve neural net-
work generalization,Neural Computing and Applications 4 (2) (1996) 114-
128.

Yuan Y., Shaw M., Induction of fuzzy decision trees, Fuzzy Sets and Systems
69(1995):125-139.

Zadrozny B. and Elkan C. (2001): Learning and Making Decisions When Costs
and Probabilities are Both Unknown. In Proceedings of the Seventh Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’01).

Zahn, C. T., Graph-theoretical methods for detecting and describing gestalt clus-
ters. IEEE trans. Comput. C-20 (Apr.), 68-86, 1971.

Zaki, M. J., Ho C. T., Eds., Large- Scale Parallel Data Mining. New York:
Springer- Verlag, 2000.

Zaki, M. J., Ho C. T., and Agrawal, R., Scalable parallel classification for data
mining on shared- memory multiprocessors, in Proc. IEEE Int. Conf. Data
Eng., Sydney, Australia, WKDD99, pp. 198– 205, 1999.

Zantema, H., and Bodlaender H. L., Finding Small Equivalent Decision Trees is
Hard, International Journal of Foundations of Computer Science, 11(2):343-
354, 2000.

Zeira, G., Maimon, O., Last, M. and Rokach, L,, Change detection in classifica-
tion models of data mining, Data Mining in Time Series Databases. World
Scientific Publishing, 2003.

Zenobi, G., and Cunningham, P. Using diversity in preparing ensembles of classi-
fiers based on different feature subsets to minimize generalization error. In
Proceedings of the European Conference on Machine Learning, 2001.

Zhang, C.X., Zhang, J.S., 2008. A local boosting algorithm for solving classifica-
tion problems. Comput. Stat. Data Anal. 52 (4), 1928-1941.

Zhang, A., Wu, Z.L., Li, C.H., Fang, K.T., (2003), On hadamard-type output

222 Pattern Classification Using Ensemble Methods

coding in multiclass learning. In: Proceedings of IDEAL. Volume 2690 of
Lecture Notes in Computer Science., Springer-Verlag 397–404.

Zhang, C.X., Zhang, J.S. (2008), RotBoost: A technique for combining Rotation
Forest and AdaBoost, Pattern Recognition Letters, Volume 29, pages 1524-
1536.

Zhang, C.X., Zhang, J.S., Zhang G. Y., Using Boosting to prune Double-Bagging
ensembles. Computational Statistics and Data Analysis, 53(4):1218-1231

Zhang, C.X., Zhang, J.S., Zhang G. Y., An efficient modified boosting method
for solving classification problems , Journal of Computational and Applied
Mathematics 214 (2008) 381 - 392

Zhou Z., Chen C., Hybrid decision tree, Knowledge-Based Systems 15, 515-528,
2002.

Zhou Z., Jiang Y., NeC4.5: Neural Ensemble Based C4.5, IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 6, pp. 770-773, Jun., 2004.

Zhou Z. H., and Tang, W., Selective Ensemble of Decision Trees, in Guoyin
Wang, Qing Liu, Yiyu Yao, Andrzej Skowron (Eds.): Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing, 9th International Conference,
RSFDGrC, Chongqing, China, Proceedings. Lecture Notes in Computer
Science 2639, pp.476-483, 2003.

Zhou, Z. H., Wu J., Tang W., Ensembling neural networks: many could be better
than all. Artificial Intelligence 137: 239-263, 2002.

Zhoua J., Pengb H., Suenc C., Data-driven decomposition formulti-class classifi-
cation, Pattern Recognition 41: 67 - 76, 2008.

Zimmermann H. J., Fuzzy Set Theory and its Applications, Springer, 4th edition,
2005.

Zitzler, E., Laumanns, M., Thiele, L., (2002), SPEA2: Improving the strength
pareto evolutionary algorithm. In: Evolutionary Methods for Design, Op-
timisation, and Control, CIMNE, Barcelona, Spain. 95–100.

Zitzler, E., Laumanns, M., Bleuler, S., (2004), A tutorial on evolutionary multiob-
jective optimization. In Gandibleux, X., Sevaux, M., Srensen, K., T’kindt,
V., eds.: Metaheuristics for Multiobjective Optimisation. Volume 535 of
Lecture Notes in Economics and Mathematical Systems., Springer-Verlag
3–37.

Zupan, B., Bohanec, M., Demsar J., and Bratko, I., Feature transformation by
function decomposition, IEEE intelligent systems & their applications, 13:
38-43, 1998.

Index

Accuracy, 158
AdaBoost, 19, 28, 97, 119, 154, 177,

181
AdaCost, 62, 181
CSAdaBoostMH, 181
ECC, 150, 181
ECOC, 150
GentleAdaBoost, 181
KL, 46
M1, 43
M1W, 51, 181
M2, 44
MH, 181
Norm2, 46
OC, 150, 181
p, 48
r, 49
real, 44, 181

Arc-x4, 29, 43, 181
Area Under Curve (AUC), 166
Attribute, 2, 179

nominal, 2
numeric, 2, 6

Bagging, 22, 24, 39, 53, 54, 69, 96,
131, 156, 157, 181
attribute, 106, 123
trimmed, 131
using diversity, 97

Bayes rule, 9
Bayesian learning, 8, 9, 14
Bayesian networks, 14

Bias-variance decomposition, 38, 39,
94

Boost-by-majority, 59
Boosting, 28, 54, 72, 96, 131, 156, 177
BoostMA, 49
Bootstraping, 22, 156
BrownBoost, 59

C4.5, 4, 8
CART, 8
Classification, 71, 133

accuracy, 153
Classifier, 2, 4, 19

Bayes optimal, 38
crisp, 4
probabilistic, 4
weak, 20

Clustering, 71, 75, 100, 129
K-Means, 76

Comprehensibility, 5, 6
Computational complexity, 176
Concept drift, 63
Conservation law, 36, 182
Cross-validated Committees, 58
Cross-validated committees, 96
Cross-validation, 24, 58, 74, 83, 149,

155, 176

Data warehouse, 178
Decision boundaries, 46
Decision Stump, 21
Decision tree, 5, 6, 142

223

224 Pattern Classification Using Ensemble Methods

pruning, 8
Dempster-Shafer, 69

Ensemble pruning, 119
Ensemble selection, 119
Ensemble shrinkage, 119
Entropy, 70, 115, 121, 126
Error

bias, 38
generalization, 153
intrinsic, 38
training, 153
variance, 38

Error correcting output codes
(ECOC), 133
codeword, 134
data-driven, 149
exhaustive codes, 142
random codes, 143

F-Measure, 158
Feature, 2
Feature selection, 12, 17, 105, 107,

122
Fishers Linear Discriminant, 104

Generalization error, 7
Genetic algorithm, 17, 95, 111, 143
Gini index, 172

High dimensionality, 179

ID3, 8
Inducer, 2, 4
Induction algorithm, 4
Instance, 179
Instance based learning, 17
Instance space, 2, 17

universal, 2
ivoting, 47

k-means, 100
k-Nearest-neighbors, 18
Kappa statistics, 126

Label Switching, 102

Laplace correction, 13
Learner, 4
Leave-one-out method, 156
Lift, 164
Linear classifier, 135, 151
Local boosting, 48
Logistic regression, 152
Logitboost, 59
Lorentz curves, 172

Majority vote, 24, 28, 55, 66, 87, 115
Misclassification rate, 3, 11, 31, 155,

167
Mixture of experts, 73, 82, 104
Multi-strategy learning, 37
Multiclass tasks, 133
Multilayer perceptron (MLP), 104,

144
Multistrategy learning, 183

Naive Bayes, 8, 9, 156
Nearest neighbor, 18, 55, 85, 106, 176
Neural Network, 4, 14, 19, 58, 73, 94,

144, 156, 177
No free lunch theorem, 36
Non-linear boosting projection, 56

One-against-all, 136
One-against-one, 136
Oracle, 180
Order statistics, 71
Over-fitting, 154
Overfitting, 154

Perceptron, 16
Potential Extract Measure (PEM),

170
Precision, 158
Prediction, 216
Principal Components Analysis

(PCA), 111
Probably Approximately Correct

(PAC), 20, 155
Pruning

decision tree, 8
ensemble, 119

Index 225

Quadratic Boosting, 45

Random forest, 55, 99, 120, 154, 157
Random subspace, 55, 106, 130, 157
Recall, 157
Reject driven classification, 63
Robust Boosting, 59
Robustness, 179
Rotation Forest, 111
Round robin classification, 136
Rule induction, 5

Sampling, 179
Scalability, 178
Sensitivity, 157
Specificity, 158
Stability, 180
Stacking, 72, 88

Statistical tests
McNemar, 173
paired t-test, 175

Stratification, 156
Support Vector Machines (SVM), 18,

151

Training set, 2

Usability, 180

Vapnik-Chervonenkis (VC)
dimension, 18, 155

Vogging, 69

Wagging, 54
Weka, 181
Windowing, 72

	Preface
	Contents
	1 Introduction to Pattern Classification
	1.1 Pattern Classification
	1.2 Induction Algorithms
	1.3 Rule Induction
	1.4 Decision Trees
	1.5 Bayesian Methods
	1.6 Other Induction Methods

	2 Introduction to Ensemble Learning
	2.1 Back to the Roots
	2.2 The Wisdom of Crowds
	2.3 The Bagging Algorithm
	2.4 The Boosting Algorithm
	2.5 The AdaBoost Algorithm
	2.6 No Free Lunch Theorem and Ensemble Learning
	2.7 Bias-Variance Decomposition and Ensemble Learning
	2.8 Occam’s Razor and Ensemble Learning
	2.9 Classifier Dependency
	2.10 Ensemble Methods for Advanced Classification Tasks

	3 Ensemble Classification
	3.1 Fusions Methods
	3.2 Selecting Classification
	3.3 Mixture of Experts and Meta Learning

	4 Ensemble Diversity
	4.1 Overview
	4.2 Manipulating the Inducer
	4.3 Manipulating the Training Samples
	4.4 Manipulating the Target Attribute Representation
	4.5 Partitioning the Search Space
	4.6 Multi-Inducers
	4.7 Measuring the Diversity

	5 Ensemble Selection
	5.1 Ensemble Selection
	5.2 Pre Selection of the Ensemble Size
	5.3 Selection of the Ensemble Size While Training
	5.4 Pruning - Post Selection of the Ensemble Size

	6 Error Correcting Output Codes
	6.1 Code-matrix Decomposition of Multiclass Problems
	6.2 Type I - Training an Ensemble Given a Code-Matrix
	6.3 Type II - Adapting Code-matrices to the Multiclass
	Problems

	7 Evaluating Ensembles of Classifiers
	7.1 Generalization Error
	7.2 Computational Complexity
	7.3 Interpretability of the Resulting Ensemble
	7.4 Scalability to Large Datasets
	7.5 Robustness
	7.6 Stability
	7.7 Flexibility
	7.8 Usability
	7.9 Software Availability
	7.10 Which Ensemble Method Should be Used?

	Bibliography
	Index

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

