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ABSTRACT
Representations are at the heart of artificial intelligence (AI). This book is devoted to the
problem of representation discovery: how can an intelligent system construct representations
from its experience? Representation discovery re-parameterizes the state space – prior to the
application of information retrieval, machine learning, or optimization techniques – facilitating
later inference processes by constructing new task-specific bases adapted to the state space
geometry. This book presents a general approach to representation discovery using the frame-
work of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression
methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine,
JPEG compression, and spectral analysis of time-series data are among the many applications of
classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical
tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces
to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing
harmonic analysis to discrete spaces poses many challenges: a discrete representation of the
space must be adaptively acquired; basis functions are not pre-defined, but rather must be con-
structed. Algorithms for efficiently computing and representing bases require dealing with the
curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis
functions outperform parametric bases as they often reflect the irregular shape of a particular
state space. Case studies from computer graphics, information retrieval, machine learning, and
state space planning are used to illustrate the benefits of the proposed framework, and the
challenges that remain to be addressed. Representation discovery is an actively developing field,
and the author hopes this book will encourage other researchers into exploring this exciting
area of research.

KEYWORDS
Artificial intelligence, Dimensionality reduction, Feature construction, Harmonic analysis,
Image processing, Information retrieval, Linear algebra, Machine learning, Natural language
processing, State space planning
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Preface
Many successes of artificial intelligence (AI) have relied on human expertise to hand-craft a set
of task-specific features that map the original state space – collections of images, problem states,
or words – into an implicit vector space. This book investigates the problem of automating
representation discovery: the development of a computational framework for constructing features
or basis functions from data well-suited to solving a particular task or range of tasks – such as
compression, information retrieval, learning, and planning – on a given state space. This book
presents a mathematically principled approach to representation discovery based on the frame-
work of harmonic analysis. The fundamental idea in harmonic analysis is to map phenomena
that occur over space and time into a frequency-oriented coordinate system.

Harmonic analysis dates back to 1807 when Joseph Fourier, in the course of solving the
heat equation, made a remarkable discovery that arbitrary real-valued functions could be de-
composed as linear combinations of highly symmetric trigonometric functions. Fourier analysis
has since played a central role in mathematics, science and technology. It connects continuous
mathematics, such as linear differential equations, to concepts in discrete mathematics, such
as linear algebra and matrix theory, using the principle of diagonalization. It has lead to many
applications, from the compact disc and JPEG image compression to the computerized axial
tomography (CAT) scanner in medicine. Despite these successes, two centuries of research
into Fourier analysis has revealed significant chinks in its armor: the basis functions are global,
making it difficult to represent piecewise-smooth functions with local discontinuities. Fourier
analysis also does not easily reveal multiscale regularities. Addressing these challenges has taken
the combined efforts of engineers, mathematicians, and scientists, giving rise to a new mathe-
matical microscope for probing the properties of functions. This new paradigm is based on the
theory of wavelets. Diagonalization is replaced by the concept of dilation, where basis elements
are constructed at multiple levels of spatial and temporal abstraction. Unlike Fourier analysis
where time or space is mapped into frequencies, wavelet analysis adaptively combines time and
space into time-frequency or space-frequency atoms of varying granularities.

Harmonic analysis provides a powerful framework for representation discovery in many
areas of AI, from classification and compression to optimization and information retrieval. A
key strength of harmonic analysis is that it produces an ordered and meaningful summarization
of the underlying data or state space. Harmonic analysis extracts regularities from data by
projecting them into invariant subspaces. Many problems in AI are naturally defined on discrete
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state spaces, such as graphs. Here, Fourier and wavelet bases are not pre-defined, but rather
have to be discovered from samples of the underlying data or state space. Fourier analysis in
discrete spaces is based on diagonalizing a discrete version of the “Laplacian” operator from
continuous spaces. This operator, commonly termed the graph Laplacian, has recently emerged
as a key object of interest in a number of areas, including dimensionality reduction, Markov
processes, spectral graph theory, and web page ranking.

While Fourier analysis is starting to play a more prominent role in discrete spaces,
wavelets have rarely been used in “mainstream” AI (a notable exception being David Marr’s
pioneering work in computer vision). A major goal of this book is to introduce a novel and
highly promising wavelet framework for multiscale analysis, where basis functions emerge from
the dilatory actions of a diffusion operator on the graph, such as the random walk. A major
challenge of using harmonic analysis is its computational complexity in large discrete and
continuous spaces. Computing eigenvectors or wavelets can be intractable: the book describes
several promising approaches to scaling harmonic analysis by combining matrix compression,
sampling, and domain knowledge. A number of case studies, from computer graphics to natural
language processing and state space planning, are used to illustrate the core concepts and the
range of possible applications.

This book summarizes research done in collaboration with many researchers. Professor
Mauro Maggioni of the Mathematics and Computer Science Departments at Duke University
has been a close collaborator, and I am indebted to him for his generous assistance. My
PhD students – Kimberly Ferguson, Mohammad Ghavamzadeh, Jeff Johns, Vimal Mathew,
Sarah Osentoski, Khashayar Rohanimanesh, and Chang Wang – as well as other members of
the PVF group, notably Marek Petrik and Illya Scheidwasser, contributed to the research in
innumerable ways. The Autonomous Learning Laboratory at the University of Massachusetts,
Amherst, provided a stimulating environment. I thank its current and former PhD students, and
its co-director Professor Andrew Barto, for helpful feedback. Finally, support for the research
described in this book was provided in part by the National Science Foundation under grant
IIS-0534999.

Sridhar Mahadevan
Amherst, Massachusetts
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C H A P T E R 1

Overview

Representations have long played a leading role in artificial intelligence (AI). Much effort has
gone into devising representations in specific subfields, from perception and problem-solving to
decision-making and robotics. The goal of designing agents that can discover novel representa-
tions from their environment has been a longstanding challenge. Amarel [2] pioneered the view
that agents should analyze state spaces to determine geometric properties such as “bottlenecks”
and “symmetries”. This book presents a unified framework for representation discovery—the
construction of a set of basis functions that capture the regularities of a particular state space,
and facilitate tasks such as compression, learning, and planning. To limit its scope, the notion
of representation in this book adheres closely to its usage in mathematics: a representation of a
set, such as a vector space, is a (usually small) number of orthogonal elements—or a basis—that
can be used to generate in a unique manner all the remaining elements. This simple notion of
representation turns out to be surprisingly rich both theoretically—it includes representations
in finite-dimensional linear algebra [110], group theory [51], and infinite-dimensional func-
tion spaces [37]—as well as in terms of applications, ranging from machine learning [16, 104],
Markov decision processes [98] and reinforcement learning [111], perception [106], computer
graphics [59], and information retrieval [36].

This book presents a general approach to automatic basis construction using the frame-
work of harmonic analysis [5, 25, 50]. Harmonic analysis is a field of mathematics that is two
centuries old: it dates at least back to 1807 when Joseph Fourier conjectured that arbitrary
real-valued functions could be decomposed into elementary combinations of highly regular
trigonometric functions. Fourier analysis has played a central role in mathematics, science, and
technology ever since, dominating many intellectual developments in these areas as well as many
successful applications. The compact disc, JPEG compression [3, 122], and the computerized
axial tomography (CAT) scanner in medicine are but a few of the hundreds of commercial
applications of Fourier analysis. For all its successes, Fourier analysis has some significant lim-
itations: it is difficult to represent certain classes of functions, and the analysis did not reveal
multiscale regularities. To address these challenges, a new paradigm emerged over the past two
decades based on the theory of wavelets [34, 81, 82]. Here, the basis elements are constructed
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at multiple levels of abstraction, and unlike Fourier analysis where time or space is mapped
into frequencies, wavelet analysis is based on combining time and space. Instead of differential
equations, which give rise to Fourier analysis, wavelets are based on dilation equations.

Much work in machine learning [16] is based on likelihood analysis, where a parametric
generative model Pθ (X) is used to fit the data X by finding the most likely setting of the
parameters θ using the likelihood function L(θ ). In contrast, harmonic analysis is based on
finding a projection of the data X onto a set of basis functions �, which span a set of invariant
subspaces. A simple example of an invariant subspace in vector spaces is the one-dimensional
space spanned by an eigenvector associated with a specific eigenvalue of a matrix T. For example,
one form of Fourier analysis on graphs is to diagonalize the Laplacian matrix L = D− A, where
A is the adjacency matrix and D is the valency matrix of row sums of A. The strength of harmonic
analysis is that it produces an ordered and meaningful summarization of the underlying data or
state space, since typically the basis functions can be ordered in terms of smoothness. The first
eigenvector of the Laplacian matrix L is the constant function, and projecting the data X onto
the first eigenvector produces the average or mean value. Thus, low-order basis functions capture
the “low-frequency” components of the data, and higher-order basis functions progressively fill
in details.

A major challenge of using harmonic analysis is its computational complexity in large
discrete and continuous spaces. Computing eigenvectors can be intractable: the book describes
several promising approaches that enable harmonic analysis to be scaled to large discrete spaces
using matrix compression, sampling, and domain knowledge.

1.1 WHAT IS A REPRESENTATION?
At the outset, it is important to precisely clarify what we mean by a representation. It is a
formalism for describing a class of objects with respect to a well-defined basis [110]. The
simplest example of representation is that of a number system: 3, III, and 011 all refer to the
same object, namely the number three. These alternate representations arise—decimal, Roman,
and binary—from a different choice of a basis. The choice of a basis can have a dramatic impact
on the efficiency of computation, as well as in the amount of storage taken up by a representation,
and above all, in revealing deeper properties of the set as a whole.

The selection of a basis is of crucial importance: the decimal number system is a notable
example. In a nutshell, this book is about the theory and algorithms for automatic basis construction.
This endeavor is in many ways a new field of research within AI: representation discovery unifies
issues that would otherwise be somewhat disparate. As we will see, the same issues of basis
construction arise regardless of whether the final objective is machine learning, optimization,
or search. Also, the objects being represented can be diverse: they range from states and actions
in discrete or continuous state spaces in tasks from robotics to games, or training data such as
documents or images for an information-retrieval or multimedia system.
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The place-value notation, a hallmark of decimal representations, was a landmark in
human representation discovery. The two occurrences of 3 in the decimal representation 323
have a very different meaning: the first occurrence of 3—reading from the right—means the
number “three”. The second occurrence means a number one hundred times larger—meaning,
the number “three hundred”. The number 323 has a linear expansion in terms of the underlying
basis functions (here, powers of 10):

323 = 3(10)2 + 2(10)1 + 3(10)0.

Each coefficient in this expansion can be determined by dividing the number by the relevant
basis function:

323÷ (102) = 3, 23÷ (10) = 2, 3÷ (100) = 3.

Thus, a number can be analyzed into its respective building blocks, as well as synthesized by
recombining these building blocks in the right manner. This analysis–synthesis perspective forms
a unifying theme for our book, and will be extensively used in subsequent chapters.

1.2 PRINCIPLES OF REPRESENTATION DISCOVERY
Representation discovery is facilitated by a change in basis: the example of human discovery
of decimal numbers was enabled by the development of the base 10 representation. Are there
broad principles underlying basis change that can be exploited in terms of designing suitable
algorithms for basis construction? In this book, we explore two broad principles, both stemming
from the field of harmonic analysis [50, 81]:

� Space or time→ frequency: One generic principle for basis construction involves remap-
ping functions over time or space into a frequency-oriented coordinate system, generi-
cally termed Fourier analysis. Examples include dimensionality reduction methods such
as principal components analysis (PCA) [57] and singular value decomposition (SVD)
[47], time-series and image-compression methods such as Fourier transforms [81] and
JPEG [122], and recent manifold and graph-based methods, such as diffusion maps
[28], ISOMAP [114], LLE [101], and Laplacian eigenmaps [90].

� Space or time→multiscale space-frequency or time-frequency atoms: A more powerful basis
conversion process involves a multiscale construction where functions over space or time
are progressively remapped into time-frequency or space-frequency atoms [34, 81]. This
multiscale construction is most characteristic of a family of more recent methods called
wavelets [34, 81]. We will explore multiscale basis construction on graphs and manifolds
using a recent graph-based approach called diffusion wavelets [30].



book MOCL006.cls July 3, 2008 15:58

4 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

FIGURE 1.1: Harmonic analysis involves a basis conversion remapping functions over time or space into
a frequency-oriented representation. There are intrinsic theoretical limitations that prevent information
from being localized in both time/space and frequency. Left: a unit delta function, which is localized in
space, but covers all frequencies. Right: an eigenvector, which is localized in frequency, but its support is
global across the space.

There are intrinsic theoretical limitations that govern basis change: a generalization of
the Heisenberg uncertainty principle states that the distribution of “energy” of a function (over
time or space) and its Fourier transform (over frequency) cannot be simultaneously arbitrarily
small [81]. Figure 1.1 illustrates this paradox. The figure shows a graph representing a spatial
environment with a centrally located “obstacle” region representing inaccessible vertices. A unit
delta function is localized in space (the unit vector is 1 on exactly one vertex and 0 everywhere
else), but the space of such functions covers all frequency bands. In contrast, an eigenvector
is localized in frequency, but spatially its support is global. Managing this tradeoff between
information localization in space/time and frequency is one of the central challenges governing
basis conversion.

1.3 OVERVIEW OF THE BOOK
Figure 1.2 illustrates a framework for representation discovery that broadly summarizes the
approach described in this book. Representation discovery (alternatively “feature discovery” or
“basis construction”) is a process that lies in between data collection or state space exploration in
a given domain, and tasks such as the analysis of data [16] or optimization [98]. That is, basis
selection precedes the application of standard data analysis or optimization methods studied
in conventional machine learning [16] or AI [102], such as clustering [88], classification
[90], regression [91], and stochastic state space planning [98]. Even more significantly, the
construction of a basis can be done independently of the specific problem being solved.

Of course, it is possible to modify the basis construction process so that it is sensitive
to the final task or the function being approximated, and as we will see, such task-specific
basis construction can yield better results. However, much of our presentation of the theory of
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FIGURE 1.2: A framework for representation discovery

basis construction will ignore specifics related to the particular problem or method. The basis
construction process may depend on the structure of the initial samples, since for example, one
step involves the construction of a graph from the data samples. This graph depends on a local
neighborhood relationship, which can be domain-specific.

As Figure 1.2 illustrates, the two major types of basis construction approaches described in
this book are Fourier and wavelet bases. These two types of bases arise in a field of mathematics
called harmonic analysis [5, 25, 50]. Its history dates back to 1807, when Joseph Fourier
discovered a general representation for arbitrary real-valued functions using highly symmetric
basis functions—the trigonometric functions. Fourier’s insight was to transform data defined
over time or space into a frequency-oriented representation. This insight has had a lasting
impact in mathematics, science, and technology for two centuries. Fourier analysis has been the
mainstay not only in scientific fields ranging from particle physics and molecular chemistry, but
also played a leading role in engineering and technology from signal processing and consumer
electronics, to time-series analysis (e.g., weather prediction) and medical devices such as CAT
scanners.

Nevertheless, gradually over the past century, limitations of Fourier analysis were discov-
ered, and through the efforts of a wide group of researchers in mathematics and engineering,
an alternate representation emerged based on the theory of wavelets [34, 81]. Here, basis func-
tions are not associated with frequencies, but rather with a multiscale decomposition of time
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(or space) and frequency taken together. Fourier and wavelet analysis constitute the most im-
portant building blocks of harmonic analysis. This field is closely associated with the study of
symmetry, or group theory [51]. We briefly review the main concepts in these areas, showing how
they generalize to discrete spaces of interest in AI. This generalization provides the foundation
for a new perspective on representation discovery. Generalizing Fourier and wavelet analy-
sis from Euclidean spaces to non-Euclidean spaces defined by graphs, groups, and manifolds
enables new basis discovery techniques to be developed in discrete data and search spaces.

1.3.1 Road Map to the Book
We give a brief road map to the book, describing each of the major parts in more detail below.
Broadly speaking, the book is divided into three parts: theoretical foundations, algorithms and
computational tractability, and applications and case studies.

1.3.2 Theory of Basis Construction: Vector Spaces
In the example above on human discovery of decimal representations, we introduced the
analysis–synthesis perspective, which will inform much of the book. In Chapter 2, we in-
troduce some of the theoretical foundations of representation discovery, building on matrix
representation theory [110]. Here, we will see how the selection of a basis is crucial for an
efficient representation of linear mappings on vector spaces. A fundamental concept that we
will use extensively is the notion of an invariant subspace: these are spaces spanned by vectors
that remain invariant under the application of a linear operator (e.g., a matrix). An example of
an invariant subspace is an eigenspace, which is the space of vectors associated with an eigen-
value. Basis construction can be formalized as the process of finding invariant subspaces. We
will also introduce an abstraction of the analysis–synthesis perspective, which is an abstraction
of the process of basis construction. In particular, an object x (e.g., a function on a graph) is
synthesized in terms of a set of basis functions B = {φ1, φ2, . . .} by the linear expansion:

x =
∑

i

αiφi ,

where each coefficient αi can be viewed as a “measurement” of the object. These measurements
will be abstractly denoted by linear functionals of the form:

αi = 〈x, ψi〉,

where 〈x, ψi〉 represents an inner product in a vector space [37], and ψ is a dual basis to φ. As
we will show in this book, this mathematical formulation is surprisingly rich, and covers many
interesting and real-world applications of AI (described below in Section 1.3.5).
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1.3.3 Generalizing Fourier and Wavelet Analysis
Classical Fourier and wavelet analysis is usually in the context of Euclidean spaces, e.g. the
space of n-dimensional real vectors or R

n [34, 82]. An important goal of this book is to show
how much of the fundamental theory underlying these approaches generalizes to discrete spaces
like graphs of central interest to AI and computer science. In Chapter 3, we describe Fourier
analysis on graphs, where basis functions span invariant eigenspaces of random walk operators
on graphs. The graph Laplacian [26] plays a central role in the construction of basis functions
on graphs, due to its close connection both to classical Fourier analysis and the continuous
Laplacian on manifolds [99], as well as its relationship to random walks. The eigenvectors of
the graph Laplacian reveal a surprising amount of information about a graph: the second Fiedler
eigenvector [44] is often used to partition a graph.

In Chapter 4, we introduce multi-resolution analysis on graphs, generalizing the theory
of wavelets [34, 82] developed in Euclidean spaces to the discrete space of graphs. Wavelets
address many of the limitations of Fourier analysis, in particular the basis functions are localized
both in time and frequency, and the analysis is intrinsically at multiple spatial and temporal
resolutions. The core new idea in wavelets is that of dilation: basis functions are constructed out
of simpler bases by stretching them in time or space. On a graph, this takes on an interesting
new interpretation. Chapter 4 introduces the idea of diffusion wavelets [30], where the basis
functions are constructed at each level by dilating the ones at the previous level using powers of
the random walk on a graph. This process constructs a hierarchy of vector spaces, and two sets
of basis functions called scaling functions representing coarser views, and wavelets, representing
the finer detailed view.

1.3.4 Algorithms and Computational Tractability
Computational tractability is one of the crucial concerns that needs to be addressed in applying
harmonic analysis to representation discovery. How expensive is the process of constructing basis
functions? Chapter 5 explores some ideas for scaling basis construction to large continuous and
discrete spaces. We will also introduce the idea of Kronecker product and sum representations,
such as the Kronecker product of two graphs [31] or matrices [120]. Chapter 5 generalizes
the Laplacian from graphs to manifolds [99], subsets of Euclidean space that can only locally
be viewed as Euclidean. Manifolds are of growing importance in AI, in particular in machine
learning where the space of parametric probability distributions forms a manifold [66]. The
Laplacian on a manifold is introduced [99], and a general result called Hodge theorem is stated
that shows the eigenfunctions of the Laplacian on a manifold provide a complete discrete basis
for all square integrable functions on a continuous manifold. The key problem in extending
eigenfunctions to continuous spaces is how to extend sample values to new unobserved values:
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FIGURE 1.3: Three challenging application problems for evaluating the representation discovery al-
gorithms described in this book. Left: a 3D object in computer graphics. Middle: a collection of text
documents; Right: a stochastic state-space planning problem.

this is the problem of out-of-sample extension. One solution based on Nyström interpolation is
described [41].

1.3.5 Case Studies
Figures 1.3 and 1.4 illustrate some of the major application areas that will be studied in this
book, as well as example basis functions that were “discovered” using the algorithms described
in this book. These examples come from a series of case studies, which form the third and
final phase of this book, illustrating the problem of basis construction in several interesting
application domains.

Chapter 6 studies the problem of basis construction in state space planning, in particular
in solving optimization problems called Markov decision processes [98]. Here, we will see new
challenges present themselves: the set of samples must be dynamically constructed by doing
random walks in state spaces. The function to be approximated, called a value function, is not
known a priori, but only gradually uncovered through solving a nonlinear equation called the
Bellman equation. We will explore both Fourier and wavelet bases in approximately solving
Markov decision processes [79].

Chapter 7 explores the application of representation discovery to 3D computer graphics.
A crucial application of Fourier and wavelet analysis is compression of multimedia content, such
as images, using well-known compression methods such as JPEG and JPEG-2000 [3, 122].
These approaches assume a rigid 2D data structure, and do not extend to graphs with arbitrary
topology. We will apply the ideas of Fourier and wavelet analysis on graphs introduced earlier,
and show how new compression algorithms may be devised for 3D graphics [59, 76]. A major
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FIGURE 1.4: Top left: Low-frequency eigenvectors of the combinatorial graph Laplacian [26] in a
discrete “two-room” spatial environment. Top right: An eigenfunction of the manifold Laplacian [99]
in a continuous 2D robotics task, showing samples (dots) and the surface generated by the Nyström
interpolation [41]. Bottom left: A scaling function from a multiscale diffusion wavelet analysis [30] of
a 3D object in computer graphics, capturing the region representing one of the horns (blue region).
Bottom right: A diffusion wavelet multiscale representation of a Markov chain, showing the original
transition matrix (top), and each successive power of two represented in an increasingly compressed form
on a newly generated basis. Matrix entries are shown in the log10 scale.
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challenge in computer graphics is scalability, since 3D objects can be very large with millions
of vertices. We will explore divide-and-conquer approaches, such as graph partitioning [60],
where basis functions are constructed on smaller subgraphs.

Chapter 8 studies the application of basis construction to information retrieval [53] and
natural language processing, an area of rapidly growing importance within AI due to the large
set of text corpora available on the World Wide Web. We will contrast Fourier and wavelet
approaches to topic discovery [18], where text documents are clustered based on finding words
that co-occur. Finally, Chapter 9 concludes with a brief discussion of some directions for future
work, including recent work in an area called compressed sensing [22], the use of harmonic
analysis with richer representations such as logic [13], and the use of group representation
theory to construct compact bases over homogeneous spaces.

1.4 BIBLIOGRAPHICAL REMARKS
A detailed description of the history behind the decimal and other number systems can be
found on Wikipedia

TM
. Strang’s book [110] (Section 7.3) contains a nice overview of the

analysis–synthesis perspective and basis construction. Mallat’s text [81] provides a comprehen-
sive overview of Fourier and wavelet analysis in Euclidean spaces. Terras [115] surveys Fourier
representations on general algebraic structures, including graphs and groups.
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C H A P T E R 2

Vector Spaces

In the first part of this book, beginning with this chapter, we review the mathematical foun-
dations of representation theory. The concept of a basis is defined, both in the coordinate-
dependent finite-dimensional linear algebraic setting [110] as well as the infinite-dimensional
setting of inner product spaces [37]. We introduce the analysis–synthesis perspective of decom-
posing a vector into components based on measurements, and then reassembling the vector,
which serves as a recurring theme in later chapters. This perspective also helps explain the con-
cept of a dual basis. In the finite-dimensional case, matrix representations depend on the choice
of bases over the input (row) and output (column) vector spaces. This explicit dependence of a
representation on a choice of basis will turn out to be essential later in the book.

2.1 ANALYSIS–SYNTHESIS FRAMEWORK
The overarching goal of this book is to describe algorithms for constructing features that represent
entities in a novel space different from the original data or state space. The approach is based on a
mathematical theory of representation, which we introduce here. The entities being represented
will be abstractly viewed as vectors v in a vector space V . Concretely, in terms of the applications
of interest, these entities are value functions in a planning problem [98], training instances in
a machine learning problem [16], 3D models in a computer graphics context [76], or text
documents in a natural language processing context [18]. All of these entities have a natural
representation using some default basis, and the problem addressed in this book is to construct
a new representation that better reveals the structure underlying the data or state space.

2.1.1 Approximating 3D Objects in Computer Graphics
To motivate the problem of basis selection, which is discussed at length in this book, we begin
with a real-world example from computer graphics [59]. Figure 2.1 illustrates the result of two
different choices of bases for approximating a 3D object. Concretely, the problem here is to
approximate three coordinate functions on a graph of 1107 vertices. On the default unit vector
basis, each function is represented using 1107 coefficients—each coefficient specifies the x, y ,
or z coordinate of a vertex.
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FIGURE 2.1: This figure illustrates the effect of two choices of bases for representing a 3D object
in computer graphics. Left: reconstruction with a wavelet basis, described in Chapter 4. Right: the
reconstruction using a Fourier basis, described in Chapter 3. Note the wavelet approach excels at
reproducing sharp discontinuities like the “horns”.

Figure 2.1 contrasts two alternative representations—one using Fourier frequency-based
eigenvector bases [26] and the other using multi-resolution wavelet bases [30]—both of which
were “discovered” specifically for representing this object by analyzing the topology of the object.
Using the Fourier basis, each coordinate function can be approximated to an accuracy of
0.004 using just 200 coefficients (the details will be described in Chapter 7), resulting in 80%
compression compared to the unit vector basis representation. Even more effective are the
wavelet bases, which require overall only 100 numbers to specify the coordinate function, a
compression efficiency of 90%.

Of course, the compression efficiency is not the only consideration—there are other issues
that need to be considered. The unit vector bases are compact by their very nature, and the
Fourier and wavelet bases take up a lot more space. The Fourier and wavelet bases require far
fewer coefficients, but the cost of computing each basis needs to be considered (for example,
computing k eigenvectors on a graph of N vertices requires O(k N2) steps [47]). The Fourier
bases are less compact than the wavelet basis, but the wavelet bases provide a multi-resolution
analysis. Thus, we see that we are trading off issues such as sparsity, compactness, expressiveness,
and tractability.

2.1.2 Abstract Fourier Expansion
We now introduce a very useful perspective called the analysis–synthesis framework [37, 110, 22],
which underlies our approach. Given an object v, a feature-based representation can be viewed as
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the reconstruction of the object from a set of measurements. We will model features in this chapter
as a set of basis vectors φi ∈ V . Measurements will be abstractly modeled as linear functionals
〈v, φ〉 : V × V → R (we will define linear functionals precisely later in Section 2.5.2, but for
now treat them as mappings from pairs of vectors to real numbers). The process of analysis of
an entity v is construed as constructing a set of measurements using the features:

v ⇒ {〈v, φ1〉, . . . , 〈v, φn〉}.
The reverse process of synthesis can be seen as reconstructing the object from the measurements.
In the ideal situation, perfect reconstruction is possible, and the synthesis space uses the same
basis vectors as the analysis space. But, for flexibility and computational tractability, it is
sometimes beneficial to think of the synthesis space as comprising a set of dual basis vectors
[110]. The synthesis phase can be modeled as taking a linear combination of basis vectors, with
the measurements constituting the weights associated with the basis vectors or features in the
dual space:

v =
∞∑

i=1

c iψi =
∞∑

i=1

〈v, φi〉ψi . (2.1)

Here, ψi are the synthesis features. In a finite-dimensional vector space, the summation will of
course be finite. Often, both the analysis and synthesis bases are orthogonal, and in fact, one can
be formed from the other. In the more general setting, each set of bases may not be orthogonal,
but each basis in the analysis set is bi-orthogonal with its corresponding element in the synthesis
set. While perfect reconstruction may be possible if all measurements are made, and all synthesis
features are used, often the object can be only approximately reconstructed. The challenge of
representation discovery is to construct dual bases such that this approximation problem is
solved optimally.

Equation (2.1) is sometimes referred to as the abstract Fourier series expansion of a vector
[37], and will play a central role throughout this book. We now explain the analysis–synthesis
perspective in more detail in this chapter, beginning with the concept of a dual basis in finite-
dimensional vector spaces, and culminating in the abstract Fourier expansion in a general
infinite-dimensional function space.

2.1.3 Issues in Basis Construction and Selection
In this book, we are most often interested in a partial basis, where some basis elements are
discarded in the Fourier expansion (Equation (2.1)). We have not yet specified how this choice
is made. Broadly speaking, there are two approaches. In the fixed approach, the subset of basis
vectors is selected from the full set, given some a priori fixed ordering on the basis elements
such as smoothness. In the adaptive approach, the subset of basis vectors selected depends on the
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vector v being approximated [82]. Regardless of which approach is used, let I refer to the set
of indices of the selected basis vectors. Then, the approximate Fourier expansion is given as

v ≈
∑

i∈I

c iψi =
∑

i∈I

〈v, φi〉ψi . (2.2)

There can be many strategies for selecting the bases out of order. For example, one strategy is to
choose the basis vectors (features) that have the largest inner product (measurement values) for
the vector v being approximated [82]. That is, the set of basis vectors is resorted for each vector
being approximated by the magnitude of the coefficients c i = 〈v, φi〉. We will have much more
to say about basis selection in this and later chapters, but we define below one key consideration
involved in constructing and choosing a basis.

We call a basis B = {φ1, . . . , } as efficient if for some space of vectors VB , the approximate
Fourier expansion of any v ∈ VB involves making the fewest measurements (coefficients), for a
desired precision ε. More formally, we have

||v −
∑

i∈SB (ε)

αivi || ≤ ε

and furthermore, for any other choice of basis B′, the size |SB′(ε)| > |SB(ε)|. Here, αi = 〈v, φi〉,
and SB(ε) refers to an index set of basis vectors, chosen either adaptively or using a fixed ordering.

It is important to stress that there are many other objectives that need to be considered,
including compactness, sparsity, and complexity, and these may be in conflict. For example, a
basis B may be efficient at representing “smooth” functions in a certain class (e.g. smoothness
is defined more precisely in Chapter 3), but almost any choice of such a basis will result in a
less compact basis than the unit vector basis.

Similarly, we describe algorithms for basis construction on graphs in Chapters 3 and 4.
These algorithms result in bases that are well-adapted to approximating functions on graphs
with a specific (usually highly irregular) topology. However, the costs of constructing such
bases can be expensive, particularly for large graphs. Also, our perspective on basis construction
assumes that the goal is to solve some class of problems on a given domain, so that the cost of
constructing the basis can be amortized. It can be hard to justify the cost of basis construction
if the ultimate goal is to solve one specific problem, since in that case, it may turn out that
constructing the basis is as expensive as solving the problem in the original (non-efficient) basis.

2.2 DUAL BASES
We begin by explaining the concept of a dual basis in finite-dimensional vector spaces. Let us
begin with a brief summary of basic linear algebra. A vector space is a set of elements called
vectors that are algebraically closed under addition and multiplication by scalars from a field. The
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concept of a vector space is far more general than R
n, the n-dimensional Euclidean space of

real numbers: the set of all symmetric matrices, polynomial and trigonometric functions, and
so on are all examples of vector spaces.

To illustrate the concept of basis, consider the vector space that is most familiar to us: R
3,

or three-dimensional Euclidean space. A fundamental property of a basis is that each vector
v ∈ R

3 can be written uniquely as a linear combination of bases. A notational remark: vectors
in this book are generally denoted by lower case letters toward the end of the alphabets, such as
u, v, w, x, and y . Basis vectors are generally denoted by Greek letters such as φi or ψi . Scalars
are denoted by Greek or Roman letters from the beginning of the alphabets, such as α, a, b,
and so on:

v =




x
y
z



 = xu1 + yu2 + zu3 = x




1
0
0



+ y




0
1
0



+ z




0
0
1



 .

Bases have two key properties: completeness—every vector can be written as a linear combination
of basis vectors—and uniqueness, the coefficients in the expansion are unique. The uniqueness
property, however, is also a weakness, since it provides for no redundancy.

Even for the vector space R
n, there are many choices of bases other than the unit or

default bases such as u1, u2, and u3 above. For example, the Haar basis [82] for R
4, which is

the earliest example of a wavelet basis, is shown below:

vh1 =





1
1
1
1



 , vh2 =





1
1

−1
−1



 , vh3 =





1
−1

0
0



 , vh4 =





0
0
1

−1



 .

Another property of a basis is that if we view the basis vectors as the columns of a basis matrix,
the resulting matrix represents an invertible linear mapping on the underlying vector space. In
other words, the basis matrix is invertible. This makes it possible to transform one basis into
another. Since this concept is crucial to much of the rest of the book, we explain it in detail in
Section 2.3. A mathematical rationale for choosing one basis over another will be discussed in
Section 2.6 in the context of least-squares approximation [37]. Intuitively, an efficient basis is
one where any given vector in the space (or more often, in a subspace) can be expressed using
the least number of coefficients.

Let us consider why we might prefer the Haar basis over the unit vector basis. If we
consider a constant vector v = [v1, . . . , v1]T 1, it is clear why the Haar basis is much more

1In this book, vectors are always interpreted to be column vectors, and will often be shown transposed to save space.
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efficient than the unit vector basis. If n = 105, it takes 105 numbers to write out the constant
vector in the unit vector basis, but only 1 number in the Haar basis! Clearly, this is a somewhat
contrived example, but consider the following less-obvious example:

v =





5
4.5
−4
−5



 = 0.125





1
1
1
1



+ 4.625





1
1

−1
−1



+ 0.25





1
−1

0
0



+ 0.5





0
0
1

−1



 .

Here, we have represented the vector v = [5, 4.5,−4,−5]T in the Haar basis. From the
coefficients, it is clear that one basis vector dominates the rest, and we can construct a reasonable
approximation of this vector using only its second coefficient in the Haar basis. In other words,
we get the approximation

v =





5
4.5
−4
−5



 ≈ 4.625





1
1

−1
−1



 =





4.625
4.625

−4.625
−4.625



 ,

where the error in approximation is around 0.8 (measured in terms of the “length” of ‖v − v̂‖F

using the Euclidean norm). It might be hard to see this as a significant issue in R
4, but in

many of the applications to be discussed later, such as computer graphics and natural language
processing, we are dealing with high-dimensional vector spaces such as R

100,000 where such
differences will be very significant.

More generally, we are interested in approximating vector spaces of functions, both in
discrete spaces such as graphs where function spaces are still finite-dimensional since they can
be viewed as vectors [26], as well as in continuous spaces where function spaces are infinite-
dimensional [82, 99]. In these richer settings, the choice of bases will prove to be crucial, and
we will explore algorithms for basis construction which dynamically construct a basis during
the course of solving an optimization problem.

2.3 LINEAR MAPPINGS AND MATRIX REPRESENTATIONS
Linear mappings T : V → W transform vectors from one vector space V into another W (where
V and W may be the same) [110]. Linear mappings satisfy the following fundamental property:

T(a1v1 + a2v2) = a1T(v1)+ a2T(v2) ∀v1, v2 ∈ V, a1, a2 ∈ F.

We will often use the term operator to denote linear mappings in both finite and infinite-
dimensional spaces, particularly in contexts where the vector space V being acted on is a space
of functions. In a finite-dimensional space, a linear mapping T can be represented by a matrix
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M, only after we have decided on a choice of basis for both the input vector space V and the output
vector space W . To make this dependence clear, we will often use the notation [T]B2

B1
to denote

the matrix representation of a linear mapping T, where the basis B1 is used for the domain
or input vector space V , and the basis B2 is used for the range or output vector space W (this
notation is adapted from [30], and will be used extensively in Chapter 4).

To define the matrix representation of a linear mapping, it is sufficient to specify its
output on the basis vectors in the input space, written in the representation of the output space,
since every vector in the input space can be written as a linear combination of basis vectors. To
make this precise, let B1 = {u1, . . . , un} be a set of basis vectors for an n-dimensional vector
space V , and let B2 = {v1, . . . , vm} be a set of basis vectors for the m-dimensional output space
W . The linear mapping T is specified as follows:

T(u1) = u ′1, T(u2) = u ′2, . . . , T(un) = u ′n .

To construct the matrix representation [T]B2
B1

, we must represent each output vector u ′i in terms
of the output basis vectors. Thus, we get

u ′1 =
m∑

i=1

ai1vi , . . . , u ′n =
m∑

i=1

ainvi .

The matrix representation [T]B2
B1

is then specified by writing the effect of the operator T on
each input basis vector in terms of the output basis vectors as the corresponding column of the
matrix:

[T]B2
B1
=





a11 . . . a1n

a21 . . . a2n
...

am1 . . . amn




.

To make this concrete, consider the identity mapping I : R
4 → R

4, where the input space is
the Haar basis and the output space is the unit basis. That is, I is defined as follows:

I (vh1 ) = vh1, I (vh2 ) = vh2, I (vh3 ) = vh3, I (vh4 ) = vh4 .

To define the matrix of the identity mapping, we now have to express each of the Haar basis
vectors in terms of the unit vectors u1 = [1, 0, 0, 0]T, u2 = [0, 1, 0, 0]T, u3 = [0, 0, 1, 0]T,
and u4 = [0, 0, 0, 1]T. In this case, the matrix is just the Haar basis vectors written out as each
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column:

[I]U
H =





1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1



 .

We will use a convenient abbreviation for this type of basis change matrix, namely [I]U
H = [H]U

will denote the Haar basis vectors written in terms of the unit vector basis U . More generally,
[I]B

B′ = [B′]B represents the basis vectors B′ in terms of the basis B. Note that if the input and
output bases are the same, [I]B

B = I , the identity matrix. By inverting the basis change matrix,
we can set up an isomorphism between two bases. For example, if we represent a vector in the
unit basis, and wish to determine its representation in the Haar basis, we need to invert the
above matrix:

[U]H = [I]H
U = ([I]U

H)−1

=





1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1





−1

=





0.25 0.25 0.25 0.25
0.25 0.25 −0.25 −0.25
0.5 −0.5 0 0

0 0 0.5 −0.5



 . (2.3)

To check that this is correct, note that

0.25vh1 + 0.25vh2 + 0.25vh3 + 0vh4 = [1, 0, 0, 0]T = u1.

Let us denote [v]B to mean the representation of the vector v in the basis B. If we want to
determine the representation [v]B′ in some other basis B′, we need to use the basis change
matrix [B′]B , which represents the new basis B′ in terms of the old basis B:

[v]B′ = [I]B′
B [v]B = [B]B′ [v]B .

In the last section, we gave two representations of the same vector, one in the unit basis, and
the other in the Haar basis:

[v]U = [5, 4.5,−4,−5]T, [v]H = [0.125, 4.625, 0.25, 0.5]T.
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How did we determine the Haar representation [v]H? Here, we need to invert the basis change
matrix giving us

[v]H = [I]H
U [v]U = [U]H [v]U = ([I]U

H)−1 [v]U =





0.125
4.625
0.25
0.5



 .

As this simple example suggests, changing a basis depends crucially on the properties of the
basis change matrix. The Haar basis change matrix has some desirable properties, such as
decomposability, which makes it very efficient to apply the inverse to determine the new
representation [110]. Since the Haar basis change matrix [I]U

H is orthogonal, its inverse is just
its transpose (we have to correct for the fact that its columns are not unit length, but that is a
trivial matter). A more subtle property of the Haar matrix is that it decomposes into the product
of smaller matrices, which makes its application much more efficient. To understand matrix
decomposition more generally, we turn now to explain the notion of an invariant subspace of
a vector space.

2.4 INVARIANT SUBSPACES
The approach to representation discovery described in this book can abstractly be characterized
as determining the invariant subspaces of a vector space under some operator T, and building
basis functions that span these subspaces. A subspace χ of a vector space V is invariant under
a linear mapping T if for each vector w ∈ χ , the result Tw ∈ χ .

Invariant subspaces are useful to identify since they enable representing linear mappings
using irreducible representations. In this chapter, the notion of invariance is tied to the action of
a linear operator on a subspace. A key theorem regarding invariant subspaces is worth stating
and proving formally [109].

Theorem 2.1. Let χ be an invariant subspace of T, and let the columns of matrix X form a basis
for χ . Then, there is a unique matrix L such that

T X = XL.

In other words, the matrix L is the representation of T on the subspace χ with respect to the basis X.
It is often useful to refer to the restriction of an operator T on a subspace χ as T|χ . In terms of the
notation introduced earlier, L = [T|χ ]X

X.

The proof is straightforward (see [109]). Since χ is an invariant subspace, for any vector
xi ∈ χ , Txi ∈ χ , and consequently can be expressed as a linear combination of the columns in
X. That is, Txi = Xli , where li is the unique set of coefficients. The matrix L = [l1, . . . , ln].
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Often, we can determine a set of invariant subspaces such that every vector in a vector
space can be written as the direct sum of vectors from each subspace. That is, given any v ∈ V ,
we can write it as

v = w1 + w2 + · · · + wk,

where each wi ∈ Wi , an invariant subspace of an operator T. We will use the following notation
for the direct sum decomposition of V :

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk .

How do we find an invariant subspace? There are several interesting alternatives, which we will
explore more thoroughly in the remainder of the book. We will summarize below a few main
avenues for constructing invariant subspaces.

2.4.1 Dual Bases and Direct Sum Decompositions
Linear algebra can be viewed as the study of matrix representations under different choices
of bases for the input (row) and output (column) spaces. One guide to developing interesting
matrix decompositions is to look for ways of representing a matrix as a linear sum of simpler
rank-one matrices, which are essentially just the outer product of two vectors [47].

More formally, the rank of a matrix A is the number of independent columns (or rows).
The basis change matrices above, such as [I]U

H were full-rank matrices because the rank was
equal to the number of columns. Such matrices are invertible, and we can use this property
to define the notion of a dual basis. Given an invertible basis change matrix [I]B2

B1
, we know

that

([I]B2
B1

)−1[I]B2
B1
=





uT
1

uT
2
...

uT
n





[
v1 . . . vn

]
= I ,

where uT
i indicates the ith row of the basis change matrix from basis B2 into basis B1, and vi

represents the columns of the basis change matrix in the reverse direction from B1 to B2. Since
the inner product of ui and vi gives us the identity matrix, these vectors must necessarily be
orthogonal to one another, and hence the vectors ui represent the dual basis to the original basis
vectors vi . For example, the dual basis to the Haar basis are the rows of the inverse of the basis
change matrix, which was given in Equation (2.3), and written below as column vectors (where
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v′hi
represents the dual basis to the ith Haar basis vector vhi ):

v′h1
=





0.25
0.25
0.25
0.25



 , v′h2
=





0.25
0.25

−0.25
−0.25



 , v′h3
=





0.5
−0.5

0
0



 , v′h4
=





0
0

0.5
−0.5



 .

Note the dual basis vectors are just the scaled versions of the original basis vectors. This is no
accident: if the original change of basis matrix is orthogonal, the dual basis matrix is just its
(scaled) transpose. We can now combine the Haar basis with its dual basis to construct a set of
invariant subspaces that results in a direct sum decomposition of the original vector space V .
Let us illustrate this decomposition for the vector space R

4. Note that we can write a vector in
the unit basis as

[w]U = ([I]U
H)([I]U

H)−1[w]U =
n∑

i

vhi (v
′
hi

)T[w]U .

Taking the same vector as before, [v]U = [5, 4.5,−4,−5]T, we can decompose this vector as
the sum of four vectors, each drawn from one of the invariant subspaces resulting from the
rank-one matrices vhi v

′
hi

, each of which is produced by taking the outer product of the Haar
basis vectors with the corresponding dual basis vectors:

[v]U =





5
4.5
−4
−5



 =





0.125
0.125
0.125
0.125



+





4.625
4.625

−4.625
−4.625



+





0.25
−0.25

0
0



+





0
0

0.5
−0.5



 .

Note that each of these subspaces can now be given a meaning. For example, the first subspace
represents the “mean” component of the vector because 0.125 = 5+4.5−4−5

4 = 0.125. Similarly,
the second subspace represents the difference between the first two components and the second
two components 4.625 = 5+4.5−(−4+−5)

4 . We can write the matrix representation of these two
subspaces as follows:

vh1(v′h1)T =





0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25



 , vh2(v′h2)T =





0.25 0.25 −0.25 −0.25
0.25 0.25 −0.25 −0.25

−0.25 −0.25 0.25 0.25
−0.25 −0.25 0.25 0.25





and their highly regular structure makes it possible to devise fast recursive basis change algo-
rithms for wavelet bases such as the Haar basis.
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2.4.2 QR Decomposition and Gram–Schmidt Orthogonalization
We now investigate more general methods for constructing invariant subspaces for general
matrices, where the original matrix may not be invertible, or the columns of the matrix may not
be independent. In constructing new representations of a matrix A, it is possible to change the
output basis, the input basis, or both. We begin with a well-known method that only changes
the output basis called QR-decomposition [47, 109].

If the columns of a matrix A are not orthogonal, a standard method called Gram–Schmidt
orthogonalization [110] can be applied that results in the construction of an invariant subspace
Q, with respect to which the matrix A can be represented as a triangular matrix R. In other
words, using the notation we have developed previously, we can write A = Q R, or in other
words, R = [A]Q

U .
Note that we have only modified the output basis of the matrix A, and hence its input

basis remains the same (by default, assumed here to be the unit basis). A simple (but not
necessarily the most efficient) algorithm for Gram–Schmidt orthogonalization is as follows:

1. Define the first basis vector q1 = a1, the first column vector of A.

2. Determine the component of the second basis vector that lies in a direction orthogonal
to the first basis vector:2

q2 = a2 −
a T

2 q1

‖q1‖ .

3. Repeat the previous step for each column vector of A.

4. Normalize each vector qi by dividing it by its length ‖qi‖.

2.4.3 Eigenspace Decomposition
We now describe ways of transforming both the input and output bases of a matrix. One of
the most useful ways of finding invariant subspaces is through eigenspace analysis. Eigenspaces
are invariant subspaces that are one-dimensional, and associated with scalar eigenvalues [110].
More formally, x is an eigenvector associated with the eigenvalue λ when

Ax = λx = xλ.

Note the similarity with Theorem 2.1: the space spanned by the eigenvector x is an invariant
space. Furthermore, λ is the representation of A on the space spanned by x. We can rewrite
the above equation using our basis notation as

[A|χ ]x
x = λ,

2We discuss orthogonality and projections in the more general case in Section 2.5.2.
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where χ is the subspace spanned by the eigenvector x. If the vector space V is defined over
the field of real numbers R, it is easy to show that not all matrices have eigenvectors. Consider
the basis change transformation produced by rotating the coordinates of R

2 by an angle θ . The
matrix corresponding to this basis transformation is defined as

R =
[

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

]
.

However, over the field of complex numbers C, such rotation matrices do admit eigenvectors.
Since we often need to consider the field of complex numbers, a brief review is in order. A
complex number z = (a, b) is defined by a pair of real numbers a ∈ R and b ∈ R, with the rules
of addition and multiplication defined as follows:

(a, b)+ (c , d ) = (a + c , b + d ) (a, b)× (c , d ) = (ac − bd , ad + bc ).

Complex numbers are often denoted as a + ib, where i2 = −1. The rule for multiplication is
easily derived from the product (a + ib)(c + id ). Returning to the problem above of determin-
ing the eigenvectors of a rotation matrix, let us consider the simple case of rotation by θ = 90◦.
The corresponding eigenvalues and eigenvectors in this case are

[
0 1

−1 0

][
1
i

]
= i

[
1
i

]
,

[
0 1

−1 0

][
1
−i

]
= −i

[
1
−i

]
.

It can be shown that any linear transformation admits at least one eigenvalue and eigenvec-
tor over C [4]. Let us consider linear transformations whose matrix representations admit a
complete set of eigenvectors. Such matrices are termed diagonalizable because of the following
property:

A[x1, . . . , xn] = [λ1x1, . . . , λnxn] ⇒ AS = S	 ⇒ 	 = S−1 A S,

where S is the matrix of eigenvectors, and 	 is a diagonal matrix of eigenvalues. Note that we
have now transformed both the output and input basis of the matrix A to the basis represented
by the eigenvectors. For an n × n matrix to be diagonalizable, the matrix must admit n different
eigenvalues, since each eigenvalue leads to (at least) one different eigenvector.

For special classes of matrices, such as symmetric matrices, where AT = A, all eigenvalues
are real, and there is a complete set of orthonormal eigenvectors. This result is so important for
the remainder of the book that it is worth stating it formally as a theorem [110].

Theorem 2.2. Any n × n symmetric matrix A can be diagonalized as A = Q	QT, where Q is an
orthonormal matrix whose columns are the (real) eigenvectors, and 	 is a diagonal matrix of n (real)
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eigenvalues:

A = Q	QT = Q	Q−1, where Q−1 = QT.

The orthonormality of the eigenvector matrix Q means that each column qi is orthogonal
to all other columns q T

i q j = 0, i �= j , and furthermore, q T
i qi = 1. One of the major applications

of this theorem will be in constructing a basis for functions on an undirected graph G = (V, E).
The adjacency matrix of an (unweighted) undirected graph G is given by A(i, j ) = 1 if and only
if (i, j ) ∈ E is an edge from vertex i ∈ V to j ∈ V . Adjacency matrices are clearly diagonalizable
since they are symmetric, and the resulting orthonormal basis of eigenvectors can be used to
represent any function f : V → R on the graph G .

Positive-definite matrices are a special class of symmetric matrices where all the eigenvalues
are not just real, but also positive. A matrix A is positive-definite if for any nonzero vector x,
xT Ax > 0. Positive semi-definite matrices allow for eigenvalues to be 0, so that xT Ax ≥ 0.
In Chapter 3, we will investigate an important class of positive semi-definite matrices called
Laplacian matrices [26].

2.4.4 Singular Value Decomposition
Arguably, the single most celebrated result in linear algebra is the singular value decomposition
(SVD) [47], which shows that any matrix representation of a finite-dimensional linear transfor-
mation A : V → W can be diagonalized. This result depends on the construction of not one,
but two sets of bases that when combined with each other, lead to a new way of constructing
invariant subspaces.

The key idea, as before, is to express the result of the linear transformation Aui on the
input basis vectors as a linear combination of output basis vectors vi . However, what is unique
about SVD is that the input and output bases are not arbitrary, but selected in such a way that
Aui = σivi . In other words, the result of applying the linear transformation to ui is a vector
that does not point in the direction of ui (which would give rise to eigenvalues), but rather in
the direction of vi , the corresponding output basis vector. Using these input and output basis
vectors, any m × n matrix A can be diagonalized as

A = U � V T, (2.4)

where U and V are orthonormal matrices whose columns are the left and right singular vectors,
respectively, so that U TU = I and V T V = I . � is a diagonal matrix of singular values (not to
be confused with eigenvalues). Here, we assume m ≥ n.

There are two types of SVD decompositions: in the regular SVD, U is of size m × m, �

is of size m × n, and V is of size n × n. This decomposition can be highly wasteful in problems
where the matrix A is “skinny” (that is, m � n). If A is a set of 100 points in R

2, in the regular
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SVD decomposition, � is of size 100× 2 with only two nonzero entries �(1, 1) and �(2, 2).
A much better alternative in such cases is the so-called thin-SVD [47], where U is a matrix of
size m × n, � is a diagonal matrix of size n × n, and V is a matrix of size n × n.

One of the most important applications of SVD is in constructing low-rank approxima-
tions of a matrix Ak , which can be explained by first rewriting the SVD decomposition in a
manner that makes explicit the underlying invariant subspaces:

A =
r∑

i=1

σi uiv
T
i ,

where r is the rank of A. Using this rewritten form of SVD decomposition, the optimal rank-k
approximation of the matrix A can be expressed as

A ≈ Ak =
k∑

i=1

σi uiv
T
i .

In Chapter 5, we will develop an interesting application of SVD to the problem of constructing
a Kronecker decomposition of a matrix A into smaller matrices B and C such that A ≈ B ⊗ C
[120].

2.5 BASES IN INFINITE-DIMENSIONAL SPACES
We now turn to develop a coordinate-free view of bases, where we will not write down explicit
matrix representations of the linear transformations (or operators). This viewpoint is essential
in the infinite-dimensional setting of function spaces on R and C, but many of these ideas turn
out to be very helpful even in finite-dimensional function spaces on graphs.

We introduce the notion of norm in a vector space, and focus on a specific type of
norm defined by the inner product, which plays a central role in approximation theory dis-
cussed in the following section. Hilbert spaces are a natural setting for formalizing a theory of
approximation, since they provide a generalized coordinate-independent notion of projection
and orthogonality.

2.5.1 Normed spaces
Intuitively, a norm is an abstraction of length. A normed space is a (possibly infinite-dimensional)
vector space V along with a real-valued function, called the norm ‖x‖ : V → R. The norm
should satisfy some properties:

� ‖x‖ ≥ 0;
� ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality);
� ‖αx‖ = |α|‖x‖.
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For example, if V = R
n, the set of all n-dimensional real numbers, one possible norm

is ‖x‖2 =
√

x2
1 + · · · + x2

n . This is usually referred to as the L2 norm. More generally, the Lp

norm is defined as ‖x‖p = (|x1|p + · · · + |xn|p)
1
p . One important case is when p = ∞, which

is referred to as the max-norm in which case ‖x‖∞ = maxi |xi |. Another example of a norm in
an infinite-dimensional case is when the vector space V is the set of all continuous functions
C[a, b] on the real interval [a, b] where ‖ f ‖ = maxa≤x≤b | f (x)|.

We will often need to use norms on matrices as well. The Frobenius norm ‖A‖F of a
matrix A is defined as ‖A‖F =

√∑
i, j a2

i j . That is, it is the L2 norm of the matrix viewed as
a vector, constructed by stacking the columns of the matrix on top of each other. The spectral
norm is defined as

‖A‖2 = max
x∈Rn

‖Ax‖2

‖x‖2
.

If a matrix is symmetric, clearly ‖A‖2 = |λmax|. For a positive-definite matrix, ‖A‖2 = λmax.

2.5.2 Inner Product Spaces
Hilbert spaces are vector spaces equipped with a special type of norm defined by the inner product.
The concept of inner products is fundamental, and generalizes the notion of orthogonality in
finite-dimensional spaces. Inner product spaces are valuable in understanding approximation
methods, including those used in machine learning. Many forms of learning can be viewed
as projecting the original data onto a lower dimensional subspace of an inner product space
[37]. To capture the concept of orthogonality in a general (infinite-dimensional) vector space,
we need to define a special kind of norm. An inner product space is a normed space V , where
the norm is defined by an inner product 〈x, y〉 : V × V → R.3 Intuitively, the inner product
〈x, y〉measures the similarity between two objects x and y . Formally, inner products satisfy the
following properties:

� 〈x, y〉 = 〈y, x〉 (symmetry);4

� 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (distributive law);
� 〈λx, y〉 = λ〈x, y〉;
� 〈x, x〉 ≥ 0 and equality holds iff x = θ (null element).

The vector space R
n is an inner product space where the inner product of x and y is

defined as
∑n

i=1 xi yi . More generally, the vector space of all square-integrable functions L
2(R)

3This definition naturally extends to the field of complex numbers 〈x, y〉 : V × V → C.
4Over complex numbers, symmetry holds only in a conjugate sense, so that 〈x, y〉 = 〈y, x〉.
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on the real interval [a, b] is an inner product space, where 〈 f, g〉 = ∫ b
a f (x)g (x)dx. If we

consider the space of complex-valued functions over R, we have 〈 f, g〉 = ∫∞
−∞ f (x)g (x)dx,

where g (x) is the complex conjugate of g (x).
The Cauchy Schwartz inequality holds in any inner product space, and is considered the

most important inequality in all of mathematics:

|〈x, y〉| ≤ ‖x‖‖y‖ where equality holds if and only if x = λy .

The two vectors x and y are said to be orthogonal if 〈x, y〉 = 0, which is written as x ⊥ y .
A vector x is orthogonal to a set S, written x ⊥ S if x ⊥ y for all y ∈ S. The generalized
Pythagorean theorem can now be stated: if x ⊥ y then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

2.5.3 Banach and Hilbert Spaces
We now introduce formally the concept of a complete vector space, which is useful in the analysis
of convergence of many approximation methods. A sequence of vectors xn is a Cauchy sequence
if ‖xn − xm‖ → 0 as n, m →∞, that is, given any ε > 0, there exists an N such that for all
m, n > N, ‖xn − xm‖ < ε. A sequence of vectors xn is said to converge to x if the sequence
‖x − xn‖ converges to 0. In a normed space, every convergent sequence is a Cauchy sequence.
If xn → x, then

‖xn − xm‖ = ‖xn − x + x − xm‖ ≤ ‖xn − x‖ + ‖x − xm‖ → 0.

In general, Cauchy sequences need not converge (e.g., consider a sequence of “ramp” functions
converging to a step function). A normed vector space X is complete if every Cauchy sequence
in X has a limit in X. Such complete spaces are called Banach spaces. A complete inner product
space is called a Hilbert space [37].

2.6 PROJECTIONS
The concept of projections will play a central role in this book: given a basis B, spanning a
subspace, we are often interested in the closest vector x̂ to x that lies in the subspace spanned
by the basis B. We begin by reviewing the concept of projections onto the column space
of a matrix, before generalizing the concept of projections to an arbitrary Hilbert space. In
Section 6.2.1, we will see how to formulate value function approximation in Markov decision
processes as approximation in a Hilbert space.

2.6.1 Projections onto Finite-Dimensional Spaces
Given a basis set of linearly independent vectors a1, . . . , an in Rm , we can find the combination
b̂ = x̂1a1 + · · · + x̂nan that is closest to a given vector b that lies outside the subspace spanned
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by the basis. Let us treat the vectors a1, . . . , an as forming a matrix A. Since the “error” vector
b − Ax̂ must be orthogonal to the space spanned by the basis vectors ai , we get

a T
1 (b − Ax̂) = 0, . . . , a T

n (b − Ax̂) = 0.

These n equations can be summarized as AT(b − Ax̂) = 0, where A is an m, n rectangular
matrix. Solving this equation gives us x̂ = (AT A)−1 ATb, or b̂ = A(AT A)−1 ATb = pb, where
the projection matrix is given by

p = A(AT A)−1 AT.

Note that in terms of the pseudo inverse of the matrix, we can write this as p = AA†, where
A† = (AT A)−1 AT.

2.6.2 Projections in Infinite-Dimensional Hilbert Spaces
A fundamental assumption made in the derivation of the solution to the problem of projecting
onto the column space of the matrix is that the error vector b − Ax̂ is orthogonal to the basis
vectors spanning the column space. This concept can be generalized to an arbitrary Hilbert
space, where it is worth stating as a theorem [37].

Theorem 2.3. Let u be a vector in a Hilbert space V , and let M be a closed subspace of V . Then, the
closest vector û ∈ M to u is one that minimizes the distance ‖v − u‖ over all other vectors v ∈ M,
and also the unique vector such that u − û is orthogonal to M.

Let us now generalize the concept of projection to a general Hilbert space. Let u be a
vector in a Hilbert space. We want to “approximate” u by finding a vector û in a subspace
M that is “closest” in norm to u. Since û ∈ M, it can be expressed as a linear weighted sum
of orthonormal basis vectors û =∑

i αiφi , where {φ1, φ2, . . .} form an orthonormal basis set
for the subspace M. Since M is a Hilbert space by itself, the “error” vector u − û must be
orthogonal to every element of the subspace M. In particular, 〈u − û, φ j 〉 = 0. This gives us
the following identities:

〈u − û, φ j 〉 = 0 ⇒ 〈(u −
∑

i

αiφi ), φ j 〉 = 0

〈u, φ j 〉 =
∑

i

αi〈φi , φ j 〉
But 〈φi , φ j 〉 = δi j ⇒ αi = 〈u, φi〉.

This gives the solution, which is sometimes referred to as the abstract Fourier expansion:

û =
∑

i

〈u, φi〉φi . (2.5)
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Generally speaking, the problem of reconstructing an unknown vector from a series of mea-
surements represented by the inner products 〈u, φi〉 is of wide interest in a number of areas,
including machine learning, optimization, and signal processing. Here, we are assuming that
there is a single basis represented by the vectors φi . It is possible to generalize the Fourier
expansion to use a bi-orthogonal basis, specified as

û =
∑

i

〈u, φi〉ψi , (2.6)

where φi represents the analysis basis space and ψi represents the synthesis basis space.

2.6.3 Reproducing Kernel Hilbert Spaces
We conclude this chapter with a discussion of a special class of Hilbert spaces, called a Repro-
ducing Kernel Hilbert Space (RKHS) [104]. It can be shown that the diffusion operators on a
graph, such as the graph Laplacian described in Chapter 3, generate a RKHS. A Hilbert space
of functions H on a set T is said to be a RKHS if there exists a kernel function K : T × T → R

having the following properties: (i) All functions k(., t) ∈ H for each t ∈ T. (ii) For any func-
tion f ∈ H and x ∈ T, the kernel serves as the representer of evaluation of the function on
the element x, namely f (x) = 〈 f, k(., x)〉. Such a function k(x, y) is called a reproducing kernel
because of the above property, and because of the following property: k(x, y) = 〈k(x, .), k(., y)〉.

Note that k(x, y) must be a symmetric function on T × T, and furthermore, k(., .) is
also positive semi-definite. That is, for all finite sequences on the domain T of length n,∑n

i, j=1 αiα j k(xi , x j ) ≥ 0. As we will see in Chapter 3, the graph Laplacian defines a positive
semi-definite matrix.

Kernels induce Gram matrices on a given set of samples. In Chapter 5, we will see how
properties of kernel-induced Gram matrices enable extending basis functions computed on a
set of samples to new points. Gram matrices also generalize the concept of a projection matrix.
The generalized normal equation is

〈u, φ j 〉 =
∑

i

αi〈φi , φ j 〉.

In matrix form, this can be written as G(φ1, . . . , φn)α = β, where α = (α1, . . . , αn)T and
β = (〈u, φ1〉, 〈u, φ2〉, . . . , 〈u, φn〉)T. The Gram matrix (which is symmetric) is defined as

G(φ1, . . . , φn) =





〈φ1, φ1〉 〈φ2, φ1〉 . . . 〈φn, φ1〉
〈φ1, φ2〉 〈φ2, φ2〉 . . . 〈φn, φ2〉

. . .

〈φ1, φn〉 〈φ2, φn〉 . . . 〈φn, φn〉



 .



book MOCL006.cls July 3, 2008 15:58

30 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

2.7 BIBLIOGRAPHICAL REMARKS
Strang [110] provides a highly readable introduction to basic coordinate-dependent finite-
dimensional linear algebra. A more advanced introduction to coordinate-free linear algebra
emphasizing the operator viewpoint is given in [4]. Deutsch [37] provides a rigorous overview
of inner product spaces, and applications to approximation theory. A comprehensive reference
for matrix computation is [47]. Theorem 2.1 is from Stewart and Sun [109], which is a detailed
study of matrix perturbation theory. Gram matrices play a central role in machine learning in
the area of kernel methods [104].
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C H A P T E R 3

Fourier Bases on Graphs

In the previous chapter, we described the construction of invariant subspaces associated with
the eigenspaces of a linear mapping on a vector space. We introduced the concept of abstract
Fourier analysis corresponding to projections of functions onto basis vectors spanning these
invariant subspaces. In the analysis phase, linear functionals provide “measurements” of a given
function, and in the synthesis phase, these measurements are then combined with the dual
bases to reconstitute the original function.

In this chapter, we explore a specific type of Fourier analysis on (undirected and directed)
graphs using a linear operator called the graph Laplacian [26]. We will show how Fourier
analysis on graphs corresponds to diagonalizing the graph Laplacian and using its eigenspaces as
invariant subspaces. The graph Laplacian has found applications in a number of areas in machine
learning, ranging from dimensionality reduction [9], clustering [88], segmentation of images
in computer vision [106], and the compression of 3D objects in computer graphics [59] to the
solution of Markov decision processes [74]. Leaving aside these specific applications to later
chapters, we focus specifically on the properties of the graph Laplacian. The graph Laplacian is
also closely connected to random walks on a graph [26], and we briefly discuss the connection to
reversible Markov chains and the Perron–Fröbenius theorem. We summarize some important
spectral properties of the graph Laplacian, which have found numerous applications including
graph partitioning [44].

3.1 ANALYSIS–SYNTHESIS PERSPECTIVE REVISITED
We begin by instantiating the general analysis–synthesis perspective in the context of Fourier
analysis on graphs. Let G = (V, E, W) represent an undirected graph on |V | = n nodes, where
(u, v) ∈ E is an edge from vertex u to v. Edges are all assumed to have a weight associated
with them, specified by the W matrix. For now, we assume W(u, v) = W(v, u), but we will
relax this assumption later. We define u ∼ v to mean an (undirected) edge between u and v,
and the degree of u to be d (u) =∑

u∼v w(u, v). D will denote the diagonal matrix defined by
Duu = d (u), and W the matrix defined by Wuv = w(u, v) = w(v, u).
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We consider the Hilbert space of functions on a graph, where each function f : V → R.
The inner product between f and g is specified as1

〈 f, g〉 =
∑

v∈V

f (v)g (v).

We now formalize the notion of a smooth function on a graph. The L
2-norm of a function on

G is

|| f ||22 =
∑

v∈V

| f (v)|2d (v) .

The gradient of a function is ∇ f (i, j ) = w(i, j )( f (i)− f ( j )) if there is an edge e
connecting i to j , 0 otherwise. The smoothness of a function on a graph can be measured by
the Sobolev norm [78]:

|| f ||2H2 = || f ||22 + ||∇ f ||22 =
∑

v∈V

| f (v)|2d (v)+
∑

u∼v

| f (u)− f (v)|2w(u, v) . (3.1)

The first term in this norm controls the size (in terms of L
2-norm) for the function f , and the

second term controls the size of the gradient. The smaller || f ||H2 , the smoother is f . In the
applications to be considered later, the functions of interest have small H2 norms, except at a
few points, where the gradient may be large.

As discussed in the previous chapter, the approximation of functions on a vector space
of dimension R

|V | is facilitated by defining a basis (or a dual basis), where the analysis basis
constructs measurements of the function, and the synthesis basis reconstructs the function from
the measurements. For simplicity, let us assume an orthonormal basis (e1, . . . , e |V |) for the
space R

|V | . For a fixed precision ε, a function f can be approximated as

|| f −
∑

i∈S(ε)

αi e i || ≤ ε

with αi = 〈 f, e i〉 since the e i ’s are orthonormal, and the approximation is measured in some
norm, such as L

2 or H2. The goal is to obtain representations in which the index set S(ε) in the
summation is as small as possible, for a given approximation error ε. This hope is well founded
at least when f is smooth or piecewise smooth, since in this case it should be compressible in
some well-chosen basis {e i}.

1There are several ways to define the inner product on the space of functions on a graph, including a weighted inner
product that takes into account the invariant (stationary) distribution of the Markov chain induced by a random
walk on the graph.
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FIGURE 3.1: Top: A simple discrete state space can be modeled by an undirected unweighted graph,
where each state is connected to its immediate neighbors. Bottom: Combinatorial graph Laplacian
L = D− W , where W is the 0, 1 unweighted adjacency matrix, and D is a diagonal valency matrix of
vertex degrees.

3.1.1 Function Approximation Using Laplacian Eigenfunctions
The combinatorial Laplacian L [26] is defined as L = D− W , where D is a diagonal matrix
whose entries are the row sums of W . An example of the combinatorial Laplacian is given
in Figure 3.1. Often, one considers the normalized Laplacian L = D− 1

2 (D− W)D− 1
2 , whose

eigenvalues lie in [0, 2] [26]. The Laplacian is an operator on the space of functions F : V → R

on a graph. In particular, it can be easily shown that

Lf (u) =
∑

u∼v

( f (u)− f (v))w(u, v) ,

that is, the Laplacian acts as a difference operator. On a two-dimensional grid, the Laplacian
can be shown to essentially be a discretization of the continuous Laplace operator

∂2 f
∂x2

+ ∂2 f
∂y2

,
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where the partial derivatives are replaced by finite differences. Another fundamental property of
the graph Laplacian is that projections of functions on the eigenspace of the Laplacian produce
the smoothest global approximation respecting the underlying graph topology:

〈 f, Lf 〉 =
∑

u∼v

wuv( f (u)− f (v))2, (3.2)

where this so-called Dirichlet sum is over the (undirected) edges u ∼ v of the graph G , and
wuv denotes the weight on the edge. Note that each edge is counted only once in the sum.
From the standpoint of regularization, this property is crucial since it implies that rather than
smoothing using properties of the ambient Euclidean space, smoothing takes the underlying
manifold (graph) into account. This Laplacian is related to the notion of smoothness as above,
since as we will show below:

〈 f, Lf 〉 =
∑

u

f (u) Lf (u) =
∑

u,v

w(u, v)( f (u)− f (v))2 = ||∇ f ||22 ,

which should be compared with (3.1). Thus, one of the key attractive properties of the (combi-
natorial or normalized) Laplacian is that it is positive semi-definite. Since both the Laplacian
operators, L and L, are also symmetric, the spectral theorem from Chapter 2 can be applied,
yielding a discrete set of eigenvalues that are all non-negative: 0 ≤ λ0 ≤ λ1 ≤ · · · λi ≤ · · ·
and a corresponding orthonormal basis of real-valued eigenfunctions {ξi}i≥0, solutions to the
eigenvalue problem Lξi = λiξi .

The eigenfunctions of the Laplacian can be viewed as an orthonormal basis of global
smooth functions that can be used for approximating any function on a graph [26]. A striking
property of these basis functions is that they capture large-scale features of a graph, and
are particularly sensitive to “bottlenecks”, a phenomenon widely studied in the Riemannian
geometry and spectral graph theory [23, 44, 26].

Observe that ξi satisfies ||∇ξi ||22 = λi . In fact, the variational characterization of eigen-
vectors (described below) shows that ξi is the normalized function orthogonal to ξ0, . . . , ξi−1

with minimal ||∇ξi ||2. Hence the projection of a function f on S onto the top k eigenvectors
of the Laplacian is the smoothest approximation to f , in the sense of the norm in H2. A
potential drawback of Laplacian approximation is that it detects only global smoothness, and
may poorly approximate a function which is not globally smooth but only piecewise smooth, or
with different smoothness in different regions. These drawbacks are addressed in the context
of analysis with diffusion wavelets described in Chapter 4, and in fact partly motivated their
construction [30].
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FIGURE 3.2: Target function (upper left), a vector ∈ R
420, and its reconstruction using 20 eigenvectors

of the normalized Laplacian (lower left). The error in reconstruction is plotted on the right.

3.1.2 Analysis–Synthesis Example
Figure 3.2 presents an example of function approximation using the eigenfunctions of the
normalized Laplacian. This example comes from state-space planning (described in more
detail in Chapter 6), where the solution to an optimization problem requires constructing a
function called a value function. As shown in the figure, Laplacian eigenfunctions are able to
approximate the desired function very efficiently.

3.2 RANDOM WALKS AND THE LAPLACIAN
Harmonic analysis on graphs and other discrete spaces can be carried out by diagonalization
or dilation of a diffusion model [28, 29]. A diffusion model is intended to capture information
flow on a graph or a manifold.2 A simple diffusion model is a random walk on an undirected
graph, where the probability of transitioning from a vertex to its neighbor is proportional to its
degree, that is Pr = D−1W . The Laplacian operators L and L defined in the previous section
are closely related spectrally to the random walk operator Pr . The random walk matrix Pr is
called a diffusion model because given any function f on the underlying graph G , the powers
of P t

r f determine how quickly the random walk will “mix” and converge to the long term
distribution. It can be shown that a random walk on an undirected graph defines a reversible

2Manifolds are defined more formally in Chapter 5.



book MOCL006.cls July 3, 2008 15:58

36 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

Markov chain whose stationary distribution at a given vertex is given by P (v) = dv

vol(G) , where
dv is the degree of vertex v and the “volume” vol(G) =∑

v∈G dv. Since the random walk
matrix Pr is not symmetric, it is convenient to find a symmetrized diffusion model closely
related to it spectrally. This is essentially the graph Laplacian matrix, which we introduced
above.

To see the connection between the normalized Laplacian and the random walk matrix
Pr = D−1W , note the following identities:

L = D− 1
2 LD− 1

2 = I − D− 1
2 W D− 1

2 (3.3)
I − L = D− 1

2 W D− 1
2 (3.4)

D− 1
2 (I − L)D

1
2 = D−1W. (3.5)

Hence, the random walk operator D−1W is similar to I − L, so both have the same
eigenvalues, and the eigenvectors of the random walk operator are the eigenvectors of I − L
point-wise multiplied by D− 1

2 . The normalized Laplacian L also acts as a difference operator on
a function f on a graph, that is

L f (u) = 1√
du

∑

v∼u

(
f (u)√

du
− f (v)√

dv

)
wuv. (3.6)

The difference between the combinatorial and normalized Laplacian is that the latter models
the degree of a vertex as a local measure.

3.2.1 Variational Analysis of Laplacian Eigenfunctions
Building on the Dirichlet sum above, a standard variational characterization of eigenval-
ues and eigenvectors views them as the solution to a sequence of minimization problems.
In particular, the set of eigenvalues can be defined as the solution to a series of mini-
mization problems using the Rayleigh quotient [26]. This provides a variational characteri-
zation of eigenvalues using projections of an arbitrary function g : V → R onto the subspace
Lg . The quotient gives the eigenvalues and the functions satisfying orthonormality are the
eigenfunctions:

〈g ,Lg〉
〈g , g〉 = 〈g , D− 1

2 LD− 1
2 g〉

〈g , g〉 =
∑

u∼v( f (u)− f (v))2wuv∑
u f 2(u)du

,

where f ≡ D− 1
2 g .

The first eigenvalue is λ0 = 0, and is associated with the constant function f (u) = 1,
which means the first eigenfunction go (u) = √

D 1 (for an example of this eigenfunction, see
the top-left plot in Figure 3.3). The first eigenfunction (associated with an eigenvalue 0) of the
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FIGURE 3.3: First four eigenfunctions of the normalized Laplacian for a “two-room” spatial environ-
ment modeled by an undirected graph with 100 vertices, divided into 57 accessible vertices (including one
doorway vertex), and 43 inaccessible states representing exterior and interior walls (which are “one-vertex”
thick).

combinatorial Laplacian is the constant function 1. The second eigenfunction is the infimum
over all functions g : V → R that are perpendicular to go (u), which gives us a formula to
compute the first nonzero eigenvalue λ1, namely

λ1 = inf
f⊥√D1

∑
u∼v( f (u)− f (v))2wuv∑

u f 2(u)du
.

The Rayleigh quotient for higher-order basis functions is similar: each function is per-
pendicular to the subspace spanned by previous functions (see the four plots in Figure 3.3). In
other words, the eigenvectors of the graph Laplacian provide a systematic organization of the
space of functions on a graph that respects its topology.
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3.3 DIRECTED GRAPH LAPLACIAN
In this section we give a brief summary of the Laplacian on directed graphs [27]. A weighted
directed graph is defined as Gd = (V, Ed , W). The major distinction between the directed and
undirected graphs is the non-reversibility of the edges. A directed graph may have weights
wi j = 0 and w j i �= 0. This is not possible in an undirected graph.

In order to define the graph Laplacians on Gd we must first introduce the Perron vector,
ψ . The directed random walk transition matrix of Gd is defined as Pd = D−1W . The Perron–
Fröbenius theorem states that if Gd is strongly connected then Pd has a unique left eigenvector
ψ with all positive entries such that ψ Pd = ρψ , where ρ is the spectral radius. ρ can be set
to 1 by normalizing ψ such that

∑
i ψi = 1. A more intuitive way of thinking of ψ is as the

long-term steady-state probability of being in any vertex at the end of a random walk on the
graph.

There is no closed-form solution for ψ , however, there are several algorithms to calculate
it. The power method is an approach to iteratively calculate ψ that starts with an initial guess for
ψ , uses the definition ψ Pd = ψ to determine a new estimate and iterates. Another technique
is the Grassman–Taksar–Heyman (GTH) algorithm [48]. This technique uses a Gaussian
elimination procedure designed to be numerically stable. The naive GTH implementation runs
in O(n3), but this can be improved in O(nm2) if Pd is sparse. Other techniques, such as Perron
complementation, have been introduced to speed up convergence [87].

The graph Laplacians for a directed graph are defined as [27]

Ld = � − � Pd + P T
d �

2
,

Ld = I − �1/2 Pd�
−1/2 +�−1/2 P T

d �1/2

2
,

where � is a diagonal matrix whose entries are the Perron vector components �ii = ψi .

3.4 GRAPH PARTITIONING AND CHEEGER CONSTANTS
Many applications of graph theory use the properties of the Fiedler eigenvector [44] (the
eigenvector associated with the smallest nonzero eigenvalue of the combinatorial or normalized
Laplacian), such as its sensitivity to bottlenecks, in order to find clusters in graphs or partition
them. To formally explain this, we briefly review spectral geometry. The Cheeger constant h G

of a graph G is defined as [24, 26]

h G (S) = min
S

|E(S, S̃)|
min(vol S, vol S̃)

.
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Here, S is a subset of vertices, S̃ is the complement of S, and E(S, S̃) denotes the set of all edges
(u, v) such that u ∈ S and v ∈ S̃. The volume of a subset S is defined as vol S =∑

x∈S dx .
Consider the problem of finding a subset S of states such that the edge boundary ∂S contains
as few edges as possible, where

∂S = {(u, v) ∈ E(G) : u ∈ S and v /∈ S}.
The relation between ∂S and the Cheeger constant is given by

|∂S| ≥ hG vol S.

In the two-room spatial environment illustrated in Figure 3.3, the Cheeger constant is min-
imized by setting S to be the vertices corresponding to locations in the first room, since this
will minimize the numerator E(S, S̃) and maximize the denominator min(vol S, vol S̃). A re-
markable identity connects the Cheeger constant with the spectrum of the graph Laplacian
operator. This theorem underlies the reason why the eigenfunctions associated with the second
eigenvalue λ1 of the graph Laplacian captures the geometric structure of environments, as
illustrated in Figure 3.3.

Theorem 3.1. [26] Define λ1 to be the first (nonzero) eigenvalue of the normalized graph Laplacian

operator L on a graph G. Let h G denote the Cheeger constant of G. Then, we have 2h G ≥ λ1 >
h2

G
2 .

3.5 BIBLIOGRAPHICAL REMARKS
A comprehensive treatment of the spectra and eigenspaces of graphs based on the adjacency
matrix is given in [31, 32]. Chung [26] gives a detailed introduction to spectral graph theory,
focusing extensively on the spectrum of the normalized Laplacian. An up-to-date overview
of the properties of the eigenvectors of the graph Laplacian is given in [119]. The directed
Laplacian is defined in [27].
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C H A P T E R 4

Multiscale Bases on Graphs

For all its successes, Fourier analysis has some significant limitations. The basis functions—for
example, the eigenvectors of a graph Laplacian—are localized in frequency, but their support
is global. Consequently, Fourier bases are relatively poor at approximating piecewise-smooth
functions with local discontinuities. Fourier analysis also does not reveal multiscale regularities.
These limitations of Fourier analysis have only recently been overcome through the collaborative
effort of engineers, mathematicians, and scientists working over the past two decades. The
resulting framework, popularly called wavelets [34, 82], can be described akin to the design of a
powerful new mathematical microscope, probing and revealing the properties of functions and
sets at multiple temporal and spatial scales.

In this chapter, we describe a specific approach to wavelets analysis in discrete spaces, such
as graphs, called diffusion wavelets [30, 21]. This approach forms a parallel in many respects with
the extension of Fourier analysis to graphs described in Chapter 3, where the graph Laplacian
was diagonalized to find basis functions. Here, the approach to constructing bases follows the
wavelet tradition of dilation [82], where a basis function is dilated in time. What does it mean
to dilate a function on a graph? The answer proposed in [30] is to define dilations through
the application of a diffusion operator, such as a random walk. The resulting multi-resolution
analysis produces both scaling functions and wavelets at multiple temporal and spatial scales.
These basis functions provide a really interesting way to compress powers of transition matrices,
which is often an essential computational step in many application domains.

4.1 INTRODUCTION
This chapter introduces a novel multiscale framework called diffusion wavelets [30, 21]. Diffu-
sion wavelet bases are adapted to the geometry of a graph, and can be learned adaptively from
sampling a data set or a state space. The wavelet framework provides significant advantages in
that the constructed bases have compact support, and the approach yields a novel approach to
the hierarchical abstraction of stochastic processes such as Markov chains and Markov deci-
sion processes [78, 72, 98]. In Chapter 3, Fourier analysis was associated with expansions on
eigenfunctions of the Laplacian. This framework is a powerful tool for the global analysis of
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functions, however it is known to be relatively poor at modeling or approximating local or tran-
sient properties [81]. This motivated the construction, about 20 years ago, of classical wavelets,
which allow a very efficient multiscale analysis, much like a powerful tunable microscope probing
the properties of a function at different locations and scales. Recently wavelet analysis has been
generalized in a natural way to manifolds and graphs, and these techniques, termed diffusion
wavelets because they are associated with a diffusion process [28, 29] that defines the different
scales, allow a multiscale analysis of functions on manifolds and graphs.

Diffusion wavelets have desirable properties in view of applications to learning, function
approximation, compression and denoising of functions on graphs and manifolds. In many ap-
plications the multiscale diffusion wavelet analysis constructed is interpretable and meaningful.
In Chapter 6, we use diffusion wavelets to construct basis functions for solving Markov decision
processes, where it results in new aggregate groupings of states and actions. In Chapter 7, we
use diffusion wavelets to construct new multiscale methods for the compression of 3D objects
in computer graphics, where the basis functions capture meaningful semantic regions of objects.
Finally, in Chapter 8, we apply this framework to the analysis of document corpora, where it
yields groupings of documents (or words) at different scales, corresponding to topics at different
levels of specificity.

Diffusion wavelets enable a hierarchical analysis of functions on a graph by constructing a
multiscale tree of wavelet-type basis functions on the graph, which allows efficient hierarchical
representation of not just functions, but also yields a fast algorithm for the inversion of operators
like the random walk or the Laplacian.

4.2 MULTI-RESOLUTION ANALYSIS AND SYNTHESIS
Wavelets generalize the analysis–synthesis perspective introduced previously to the case where
both the analysis—the “measurements” of a function f by linear functionals 〈 f, φi〉—and the
reconstruction or synthesis phase are carried out at multiple spatial or temporal scales.

Consider a one-dimensional function f (e.g. a signal, such as a sound). We want to effi-
ciently represent such a function, or perform tasks such as compression or denoising. Transform
methods use a (usually linear) invertible map f �→ f̂ , where this map ideally has the property
that simple operations on f̂ , followed by an inversion of the transformation, can be used to
perform the task at hand. We illustrated this process in Chapter 3, where the eigenfunctions
of the graph Laplacian were used to analyze and then reconstruct a function on a graph. Gen-
erally speaking, let f̂ be the set of coefficients of f onto an orthonormal basis (e.g. Fourier or
Laplacian), and simple operations include hard- and soft-thresholding (e.g., setting to 0 all the
coefficients below a certain threshold τ ). When the function f is expected to have different
behavior at different locations (for example a value function in a Markov decision process [98]
or a coordinate function for a 3D object [59]), it is natural to analyze and transform such a
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function using basis functions which are localized. Since the amount of localization is unknown,
and may change from location to location, it is desirable to have basis functions localized at all
possible scales: the ones at coarse scale analyze slow variations in the signal, while the ones at
fine scale analyze more rapid variations. Wavelets are an example of such a basis.

A consolidated framework in wavelet analysis is the idea of multi-resolution analysis
(MRA) [34, 82]. A multi-resolution analysis of the space of square-integrable functions L

2(R)
is a sequence of subspaces {Vj } j∈Z with the following properties:

(i) Vj+1 ⊆ Vj , ∪ j∈ZVj = L
2(R), ∩ j∈ZVj = {0};

(ii) f ∈ Vj+1 if and only if f (2·) ∈ Vj ;
(iii) there exists an orthonormal basis {ϕ j,k}k∈Z := {2− j

2 ϕ(2− j · −k)}k∈Z of Vj .

The subspace Vj is called the j th approximation or scaling space. The functions ϕ j,k are
called scaling functions. The function ϕ that generates, under dyadic (power of two) dilations
and integer translations, the family ϕ j,k is called the mother scaling function. The multi-scale
orthogonal projection on the scaling space Vj

Pj f =
∑

k∈Z

〈 f, ϕ j,k〉ϕ j,k (4.1)

gives an approximation at scale j . As j increases these approximations get coarser and coarser,
while as j decreases the approximations get finer and finer, and eventually (because of (ii)),
they tend to f : Pj f → f as j →−∞, where the limit is taken in L

2(R). One says that Pj f
is an approximation of f at scale j .

4.2.1 Multi-resolution Analysis on Graphs
We now specialize the above general multi-resolution analysis framework to functions on
graphs. Let T be an operator on a graph, such as the random walk T = D−1W . The key idea
underlying multiscale analysis on graphs is to generate basis functions across multiple scales
using T as a dilation operator. Define dyadic spatial scales t j as

t j =
j∑

t=0

2t = 2 j+1 − 1, j ≥ 0 .

We can define “low-pass” subspaces by selecting those eigenvalues in the spectrum of T (which
lies in [0, 1]) that are above a given threshold, where for higher levels, we take the corresponding
powers. More precisely, define the spectral subspace

σ j (T) = {λ ∈ σ (T), λt j ≥ ε}
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where ε ∈ (0, 1) is a pre-defined threshold. We can now associate with each of the spectral
subspaces a vector subspace of eigenvectors associated with each spectral subspace:

Vj = 〈{ξλ : λ ∈ σ (T), λt j ≥ ε}〉, j ≥ 0 .

By definition, we let V−1 = L
2(G), the set of all functions on the graph G . In the limit, we

obtain

lim
j→∞

Vj = 〈{ξλ : λi = 1}〉,

that is, the space spanned by the eigenvectors associated with the largest eigenvalue of T. We
now illustrate this framework with two examples, showing the basis functions spanning the Vj

subspaces, and then proceed to showing how they can be efficiently computed.

4.2.2 Examples of Diffusion Wavelets
Before we give a mathematically rigorous derivation of the diffusion wavelet framework, it will
help us to consider some examples. In Chapter 3, we considered example graphs representing
a spatial environment of two rooms with a connecting door serving as a “bottleneck” between
the rooms. Figure 4.1 shows examples of scaling function bases constructed by the diffusion
wavelet algorithm. The figure shows scaling functions from a ten-level diffusion wavelet tree.
At the lowest level (the top-left plot in the figure), the scaling functions are just the “delta”
unit vector bases. At subsequent levels, the unit vector bases are “dilated” using the random
walk on the graph, and the resulting dilated vectors are then orthogonalized to construct the
scaling functions. Note how the scaling functions get “coarser” at each succeeding level, till at
the topmost level (the bottom-right plot), they look like the eigenvectors shown in Chapter 3.

We consider another example in Figure 4.2. This graph represents a spatial environment,
in this case a single room with a square “obstacle” placed in the center representing a set of
unreachable vertices. Once again, at the bottom of the hierarchy, the scaling functions are just
the “delta” unit vector bases (the top-left plot), which are progressively dilated using powers
of the random walk. Note how the structure of the “obstacle” is clearly revealed at the higher
levels.

4.3 DIFFUSION ANALYSIS
For the purpose of this discussion, we restrict our attention to the case of a finite undirected
weighted graph (G, E, W). If P represents one step of the random walk D−1W , by the Markov
property P t represents t steps. For an initial condition δx (i.e, where x is the starting state),
P tδx(y) represents the probability of being at y at time t, conditioned on starting in state
x. The matrix P encodes local similarities between points, and the matrix P t is diffusing, or



book MOCL006.cls July 3, 2008 15:58

MULTISCALE BASES ON GRAPHS 45

FIGURE 4.1: Diffusion wavelet scaling functions on a graph representing a spatial “two-room”
environment.

integrating, this local information for t steps to larger and larger neighborhoods of each point.
The process {P t}t≥0 can be analyzed at different time scales. For very large times, the random
walk can be analyzed through its top eigenvectors, which are related to those of a Laplacian
on the graph/manifold. The analysis for large times leads to Fourier analysis of the large-scale
spatial and temporal regularities of the graph/manifold, and to the identification of useful
structures, such as large-scale clusters.

For small and medium times, the random walk in general cannot be studied effectively
with Laplacian eigenfunctions, which are global and not suited for analyzing the small- and
medium-scale behavior. On the other hand, many interesting features of the data and of func-
tions on the data can be expected to exist at small and medium time scales: one remarkable
example is complex (computer, biological, information, social) networks, where communities
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FIGURE 4.2: Diffusion wavelet scaling functions on a graph representing a spatial “room” environment
with a central “obstacle” region.

(of computers, genes and/or proteins, people) of different sizes co-exist and cluster together at
different scales. Another important example is the boundary between two classes in a classifica-
tion problem. It is easy to imagine regions of the state space where the process is smoother than
others. The task of analyzing P t for all times and locations seems tantalizing, since it would
seem to require either large time in order to compute all powers of P (which is computation-
ally expensive since, even if P is sparse, its powers are not), and/or large space to store those
powers. However, it is easy to observe that there is redundancy in time and space in the family
{P t(x, y)}t≥0;x,y∈X. First of all there is a spatial redundancy: if x and y are close and t is large
(depending on the distance between x and y), P t(x, ·) is very similar to P t(y, ·) (as distribu-
tions on X). Second, there is a redundancy across time scales: if we know P t(x, ·) and P t(y, ·),
then by the Markov property we know P 2t(x, y). It is remarkable that this redundancy can
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be eliminated, and an efficient multiscale encoding is possible. This leads to diffusion wavelet
analysis [30].

4.3.1 Basic Setup and Notation
We reintroduce notation from the previous chapters that will be useful in this chapter. x ∼ y
means that there is an edge between vertices x and y , d (x) =∑

x∼y w(x, y) is the degree of
x, D is the diagonal matrix defined by Dxx = d (x), and W is the matrix defined by Wxy =
w(x, y) = w(y, x). We can assume w(x, y) > 0 if x ∼ y . Sometimes S is naturally endowed
with a measure (weight) µ on its vertices. A typical example is µ({x}) = d (x); in some other
cases µ could be a probability distribution, for example related to sampling. In most of what
follows we shall assume that µ is simply the counting measure, but the construction generalizes
to the case of general measures µ. One defines the space of square-integrable functions

L
2(G) := { f : G → R s.t. || f ||22 :=

∑

x∈G

| f (x)|2µ({x}) < +∞} ,

which is a Hilbert space with the natural inner product (associated with || · ||2)

〈 f, g〉 =
∑

x∈G

f (x)g (x)µ({x}) .

There is a natural random walk on G , given by P = D−1W . This Markov chain is
necessarily reversible, and thus it is conjugate, together with its powers, to a symmetric operator
T:

T t = D
1
2 P t D− 1

2 = (D− 1
2 W D− 1

2 )t

= (I − L)t =
∑

i

(1− λi )tξi (·)ξi (·) , (4.2)

where

L = D− 1
2 (D− W)D− 1

2 (4.3)

is the normalized Laplacian, and 0 = λ0 ≤ λ1 ≤ · · · ≤ λi ≤ · · · are the eigenvalues of L and
{ξi} the corresponding eigenvectors: Lξi = λiξi . Clearly P t = D− 1

2 T t D
1
2 , and hence studying

T is equivalent, as far as spectral properties are concerned, to studying P .

4.3.2 Multiscale Analysis of Functions and Stochastic Processes
In this section, we view multiscale analysis from two related, but nonetheless distinct perspec-
tives. The first is an approximation of functions, the other is an approximation of stochastic
(Markov) processes. The multiscale and wavelet analysis of functions is well understood in
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Euclidean space, and is motivated by the need for studying functions (or signals) that have
different behavior at different locations at different scales.

Regarding multiscale analysis of stochastic processes, many applications require repre-
senting time series data at multiple levels of resolution, for example robot navigation [117],
sensor networks [49], and social network analysis [85]. Given the inherent uncertainty in such
domains, a computational approach that automatically abstracts stochastic processes at multiple
levels of abstraction is highly desirable. The diffusion wavelet framework provides a general and
powerful way of learning multiscale structures, relieving a human of having to hand code a suit-
able hierarchical structure. In particular, diffusion wavelets and other multiscale techniques on
graphs enable automatically constructing basis representations at multiple levels of abstraction
of a diffusion-like process.

4.4 DIFFUSION WAVELETS
Diffusion wavelets enable a fast multiscale analysis of functions on a manifold or graph, gen-
eralizing wavelet analysis and associated signal processing techniques (such as compression
or denoising) to functions on manifolds and graphs. They allow the efficient and accurate
computation of high powers of a Markov chain P on the manifold or graph, including the
direct computation of the Green’s function (or fundamental matrix) of the Markov chain,
(I − P )−1.

A multi-resolution decomposition of the functions on the graph is a family of nested
subspaces V0 ⊇ V1 ⊇ · · · ⊇ Vj ⊇ · · · spanned by orthogonal bases of diffusion scaling func-
tions � j . If we interpret T t as an operator on functions on the graph, then Vj is defined as the
numerical range, up to the precision ε, of T2 j+1−1, and the scaling functions are smooth bump
functions with some oscillations, at scale roughly 2 j+1 (measured with respect to the geodesic
distance). The orthogonal complement of Vj+1 into Vj is called Wj , and is spanned by a family
of orthogonal diffusion wavelets � j , which are smooth localized oscillatory functions at the
same scale.

4.4.1 Construction of Diffusion Wavelets
Here and in the rest of this section, we will reuse the notation introduced in Chapter 2, where
[L]B2

B1
indicates the matrix representing the linear operator L with respect to the basis B1 in the

domain and B2 in the range. A set of vectors B1 represented on a basis B2 will be written in
the matrix form [B1]B2 , where the rows of [B1]B2 are the coordinates of the vectors B1 in the
coordinate system defined by B2.

The input to the algorithm is a “precision” parameter ε > 0, and a weighted graph
(G, E, W). We assume that G is strongly connected and local, in the sense that each vertex is
connected to a small number of vertices. The construction is based on using the natural random
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FIGURE 4.3: The figure shows downsampling, orthogonalization, and operator compression. (All
triangles are commutative by construction.)

walk P = D−1W on a graph (where D is the out-degree matrix if the graph is directed) which
we assume aperiodic. We use the powers of P to “dilate”, or “diffuse” functions on the graph,
and then define an associated coarse-graining of the graph. Observe that in many cases of
interest P is a sparse matrix. We usually normalize P and consider T = �P�−1, where � is
the asymptotic distribution of P , which by the hypotheses on P exists, is unique and can be
chosen to be a strictly positive distribution by the Perron–Fröbenius theorem. If G is undirected,
P is reversible, � = D

1
2 , and T is symmetric. In the other cases, if T is not symmetric, in what

follows any statement regarding eigenvectors should be disregarded.
We assume that T is a sparse matrix, and that the numerical rank of the powers of

T decays rapidly with the power. For example, a desirable situation is when the number of
singular values of T t larger than ε is smaller than 2−γ t . A diffusion wavelet tree consists of
orthogonal diffusion scaling functions � j that are smooth bump functions, with some oscil-
lations, at scale roughly 2 j (measured with respect to the geodesic distance), and orthogonal
wavelets � j that are smooth localized oscillatory functions at the same scale. The scaling func-
tions � j span a subspace Vj , with the property that Vj+1 ⊆ Vj , and the span of � j , Wj , is
the orthogonal complement of Vj into Vj+1. This is achieved by using the dyadic powers T2 j

as “dilations”, to create smoother and wider (always in a geodesic sense) “bump” functions
(which represent densities for the symmetrized random walk after 2 j steps), and orthogonal-
izing and downsampling appropriately to transform sets of “bumps” into orthonormal scaling
functions.

We now describe the multiscale construction briefly, and further details can be found
in the original paper [30]. It may be useful to compare the description that follows with the
diagram in Figure 4.3. T is initially represented on the basis �0 = {δk}k∈G ; we consider the
columns of T, interpreted as the set of functions �̃1 = {Tδk}k∈G on G . A local multiscale
orthogonalization procedure is used to carefully orthonormalize these columns to get a basis
�1 = {ϕ1,k}k∈G1 (G1 is defined as this index set), written with respect to the basis �0, for
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the range of T up to the precision ε. This information is stored in the sparse matrix [�1]�0 .
This yields a subspace that we denote by V1. Essentially, �1 is a basis for the subspace V1

which is ε-close to the range of T, and with basis elements that are well localized. Moreover,
the elements of �1 are coarser than the elements of �0, since they are the result of applying
the “dilation” T once. Obviously |G1| ≤ |G|, but this inequality may already be strict since the
numerical range of T may be approximated, within the specified precision ε, by a subspace
of smaller dimension. Whether this is the case or not, we have computed the sparse matrix
[T]�1

�0
, a representation of an ε-approximation of T with respect to �0 in the domain and �1

in the range. We can also represent T in the basis �1: with the notation above this is the
matrix [T]�1

�1
. We compute [T2]�1

�1
= [�1]�0 [T2]�0

�0
[�1]T

�0
. If T is self-adjoint, this is equal to

[T]�1
�0

([T]�1
�0

)T, which has the advantage that numerical symmetry is forced upon [T2]�1
�1

. In
the general (non-symmetric) case, [T2]�1

�1
= ([T]�1

�0
[�1]�0 )

2.
It is now clear how to proceed: we look at the columns of [T2]�1

�1
, which are �̃2 =

{[T2]�1
�1

δk}k∈G1 . By unraveling the notation, these are functions {T2ϕ1,k}k∈G1 , up to the precision
ε. Once again we apply a local orthonormalization procedure to this set of functions, obtaining
an orthonormal basis �2 = {ϕ2,k}k∈G2 for the range of T2

1 (up to the precision ε), and also
for the range of T3

0 (up to the precision 2ε). Observe that �2 is naturally written with respect
to the basis �1, and hence encoded in the matrix [�2]�1 . Moreover, depending on the decay
of the spectrum of T, |G2| is in general a fraction of |G1|. The matrix [T2]�2

�1
is then of size

|G2| × |G1|, and the matrix [T4]�2
�2
= [T2]�2

�1
([T2]�2

�1
)T, a representation of T4 acting on �2,

is of size |G2| × |G2|.
After j iterations in this fashion, we will have a representation of T2 j

onto a basis
� j = {ϕ j,k}k∈G j , encoded in a matrix Tj := [T2 j

]� j

� j
. The orthonormal basis � j is represented

with respect to � j−1, and encoded in the matrix [� j ]� j−1 . We let �̃ j = Tj� j . We can
represent the next dyadic power of T on � j+1 on the range of T2 j

. Depending on the decay
of the spectrum of T, we expect |G j | << |G|, in fact in the ideal situation the spectrum of
T decays fast enough so that there exists γ < 1 such that |G j | < γ |G j−1| < · · · < γ j |G|.
This corresponds to downsampling the set of columns of dyadic powers of T, thought of as
vectors in L

2(G). The hypothesis that the rank of powers of T decreases guarantees that we
can down-sample and obtain coarser and coarser lattices in these spaces of columns.

While � j is naturally identified with the set of Dirac δ-functions on G j , we can extend
these functions living on the “compressed” (or “downsampled”) graph G j to the whole initial
graph G by writing

[� j ]�0 = [� j ]� j−1[� j−1]�0 = · · · = [� j ]� j−1 [� j−1]� j−2 · · · [�1]�0 [�0]�0 . (4.4)

Since every function in �0 is defined on G , so is every function in � j . Hence any function
on the compressed space G j can be extended naturally to the whole G . In particular, one can



book MOCL006.cls July 3, 2008 15:58

MULTISCALE BASES ON GRAPHS 51

{� j }J
j=0, {� j }J−1

j=0 , {[T2 j
]� j

� j
}J

j=1 ← DiffusionWaveletTree ([T]�0
�0

, �0, J , SpQR, ε)
// Input:
// [T]�0

�0
: a diffusion operator, written on the orthonormal basis �0

// �0 : an orthonormal basis which ε-spans V0

// J : number of levels
// SpQR : function to compute a sparse Q R decomposition.
// ε: precision

// Output:
// The orthonormal bases of scaling functions � j , wavelets � j , and
// compressed representation of T2 j

on � j for j in the requested range.

for j = 0 to J − 1 do

[� j+1]� j , [T2 j
]� j+1
� j

←SpQR([T2 j
]� j

� j
, ε)

Tj+1 := [T2 j+1
]� j+1
� j+1

← ([T2 j
]� j+1
� j

[� j+1]� j )
2

[� j ]� j ← SpQR(I〈� j 〉 − [� j+1]� j [� j+1]T
� j

, ε)

end

{Q, R} ←− SpQR(A, ε)
// A j : the j th column of A.
k = 0; s to p = 0; Q = {}; B = A;
while (s to p �= 1)

i ←− arg j max(‖A j‖2);
if (‖Ai‖ < ε) {s to p = 1; }
else

k = k + 1;
ek = Ai/‖Ai‖;
Q = Q

⋃
ek ; A = A \ Ai ;

Orthogonalize remaining elements of A to ek , obtaining Ã;
A ←− Ã;

end if
end while
R = QT B;

FIGURE 4.4: Pseudo-code for the construction of a Diffusion Wavelet Tree.
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compute low-frequency eigenfunctions on G j in compressed form, and then extend them to
the whole G . The elements in � j are at scale T2 j+1−1, and are much coarser and “smoother”,
than the initial elements in �0, which is how they can be represented in compressed form. The
projection of a function onto the subspace spanned by � j will be by definition an approximation
to that function at that particular scale.

There is an associated fast scaling function transform: suppose we are given f on
G and want to compute 〈 f, ϕ j,k〉 for all scales j and corresponding “translations” k. Be-
ing given f means we are given (〈 f, ϕ0,k〉)k∈G . Then we can compute (〈 f, ϕ1,k〉)k∈G1 =
[�1]�0 (〈 f, ϕ0,k〉)k∈G , and so on for all scales. The sparser the matrices [� j ]� j−1 (and [T]� j

� j
),

the faster this computation. This generalizes the classical scaling function transform. Wavelet
bases for the spaces Wj can be built analogously by factorizing IVj − Q j+1 QT

j+1, which is the
orthogonal projection on the complement of Vj+1 into Vj . The spaces can be further split
to obtain wavelet packets [21]. The wavelets can be considered as high-pass filters, in the
sense that they capture the detail lost from going from Vj to Vj+1, and also in the sense that
their expansion in terms of eigenfunctions of the Laplacian essentially only involves eigenfunc-
tions corresponding to eigenvalues in [ε−2 j−1, ε−2 j+1−1]. In particular, their Sobolev norm, or
smoothness, is controlled.

In the same way, any power of T can be applied efficiently to a function f . Also, the
Green’s function (I − T)−1 can be applied efficiently to any function, since it can be represented
as the product of the dyadic powers of T, each of which can be applied efficiently. We are at
the same time compressing the powers of the operator T and the space itself, at essentially the
optimal “rate” at each scale, as dictated by the portion of the spectrum of the powers of T which
is above the precision ε.

Observe that each point in G j can be considered as a “local aggregation” of points in
G j−1, which is completely dictated by the action of the operator T on functions on G : the
operator itself is dictating the geometry with respect to which it should be analyzed, compressed,
or applied to any vector. The algorithm is summarized in Figure 4.4.

A fast diffusion wavelet transform allows expanding in O(n) computations (where n is
the number of vertices) any function in the wavelet, or wavelet packet, basis, and efficiently
search for the most suitable basis set. Diffusion wavelets and wavelet packets are a very efficient
tool for the representation and approximation of functions on manifolds and graphs [30, 21],
generalizing to these general spaces the nice properties of wavelets that have been so successfully
applied in Euclidean spaces.

Diffusion wavelets allow computing T2k
f for any fixed f , in order O(kn). This is

non-trivial because while the matrix H is sparse, large powers of it are not, and the compu-
tation T2k

f = T · T · · · (T(T f )) · · · ) involves 2k matrix–vector products. As a notable conse-
quence, this yields a fast algorithm for computing the Green’s function, or fundamental matrix,
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FIGURE 4.5: The four panels on the top display matrices [T2 j
]� j

� j
representing compressed dyadic

powers of T, with gray level representing entry values. Observe that the size of the matrix decays, since
so does the rank of the powers of T. The four panels on the bottom illustrate some scaling function bases
on the four-state Markov chain.

associated with the Markov process T, via the Schultz expansion [72]:

(I − T1)−1 f =
∑

k≥0

Tk =
∏

k≥0

(I + T2k
) f.

In a similar way one can compute (I − P )−1. For large classes of Markov chains we can perform
this computation in time O(n), in a direct (as opposed to iterative) fashion. This is remarkable
since in general the matrix (I − T1)−1 is full and just writing down the entries would take time
O(n2). It is the multiscale compression scheme that allows efficiently representing (I − T)−1

in compressed form, taking advantage of the smoothness of the entries of the matrix.

4.4.2 Multiscale Compression of a Simple Markov Chain
To illustrate the multiscale analysis enabled by diffusion wavelets, it helps us to see the results
of the analysis on a simple example. We consider the Markov chain on four states {a, b, c , d}:

T =




0.8 0.2 0 0
0.2 0.75 0.05 0
0 0.05 0.75 0.2
0 0 0.2 0.8



 .

This chain has a “bottleneck” between states {a, b} and states {c , d}. We fix a precision
ε = 10−10. See Figure 4.5 for the discussion that follows. The scaling functions �0 are simply
{δa , δb, δc , δd }. We apply T to �0 and orthonormalize to get �1 (Figure 4.5). Each function
in �1 is an “abstract-state”, i.e. a linear combination of the original states. We represent T2

on �1, to get a matrix T2, apply to �1 and orthonormalize, and so on. At scale 5, we have the
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FIGURE 4.6: Left column: target functions. Middle two columns: approximations produced by five
diffusion wavelet bases and Laplacian eigenfunctions. Right column: least-squares approximation error
(the log scale) using up to 200 basis functions (bottom curve: diffusion wavelets; top curve: Laplacian
eigenfunctions).

basis �5 and the operator T5, representing T25
on �5. At the next level, we obtain �7, which

is only two dimensional, because T5�5 has ε-rank 2 instead of 4: of the four “abstract-states”
T5�5, only two of them are at least ε-independent. Observe the two scaling functions in �6 are
approximately the asymptotic distribution and the function which distinguishes between the
two clusters {a, b} and {c , d}. Then T6 represents T26

on �7 and is a 2 by 2 matrix. At scale
10, �10 is one-dimensional, and is simply the top eigenvector of T (represented in compressed
form, on the basis �8), and the matrix T9 is 1 by 1 and is just the top eigenvalue, 1, of T.

Already in this simple example we see that the multiscale analysis generates a sequence of
Markov chains, each corresponding to a different time scale (i.e. power of the original Markov
chain), represented on a set of scaling functions (aggregates of states) in compressed form.

4.4.3 Comparison of Eigenfunction and Diffusion Wavelet Bases
We end with an illustrative example showing where diffusion wavelet bases excel, and where
Fourier bases of the Laplacian do really poorly. The top-left panel in Figure 4.6 shows a highly
nonlinear “delta” function, which is significantly better approximated by the diffusion wavelet
bases (second panel, top) as compared to the Fourier (eigenfunction) basis (third panel, top).
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The bottom panel shows that the difference between eigenfunctions and wavelet bases is much
less pronounced for smooth functions.

4.5 BIBLIOGRAPHICAL REMARKS
A more detailed overview of diffusion wavelets is given in [30, 21], as part of a special issue of
the journal Applied and Computational Harmonic Analysis (ACHA) on diffusion analysis. The
description of diffusion wavelets in this chapter is based on [73].
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C H A P T E R 5

Scaling to Large Spaces

While harmonic analysis is a theoretically attractive framework for representation discovery,
it can be computationally intractable to apply the framework to large discrete or continuous
spaces. In this chapter, we describe ways of scaling harmonic analysis to continuous and large
discrete spaces. We investigate several approaches, ranging from exploiting the structure of
highly symmetric graphs [31, 61], to the use of sparsification and sampling methods [41] to
streamline matrix computations. In addition, there has been a recent breakthrough in solving
very large systems of linear Laplacian equations of the form Lx = b [108], with asymptotic
complexity O(n logO(1) n). We see how to construct basis functions in irregular continuous
domains called manifolds [70, 99], which are sets embedded in Euclidean spaces. Here, we are
faced with a new challenge: we only have access to samples of the underlying manifold, and have
to deal with an out-of-sample extension problem.

5.1 KRONECKER SUM DECOMPOSITION
We first analyze structured graphs that are constructed from simpler graphs, based on the
notion of a Kronecker product [31]. We describe a general framework for scaling basis construc-
tion through Fourier and wavelet analysis to large factored discrete spaces using properties of
product spaces, such as grids, cylinders, and tori. A crucial property of the graph Laplacian is
that its embeddings are highly regular for structured graphs (see Figure 5.2). We will explain
the reason for this property below, and how to exploit it to construct compact encodings of
Laplacian bases. We should also distinguish the approach described in this section, which
relies on an exact Kronecker decomposition of the Laplacian eigenspace in product spaces, with
the approximate Kronecker decomposition described in the following section. The approach
described here is applicable only to graphs which can be represented as the Kronecker sum
of simpler graphs (this notion will be defined more precisely below, but it covers many stan-
dard graphs like grids). More generally, the weight matrices for arbitrary graphs can also be
decomposed, although using the Kronecker product, where, however, the factorization is an
approximation.
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FIGURE 5.1: The spectrum and eigenspace of structured state spaces, including grids, hypercubes,
cylinders, and tori, can be efficiently computed from “building block” subgraphs, such as paths and
circles. This hierarchical framework greatly reduces the computational expense of computing and storing
basis functions.

5.1.1 Product Spaces: Complex Graphs from Simple Ones
Building on the theory of graph spectra [31], we now describe a hierarchical framework
for efficiently computing and compactly storing basis functions on product graphs. Many
applications lead to factored representations where the space is generated as the Cartesian
product of the values of variables. Consider a hypercube graph with d dimensions, where each
dimension can take on k values. The size of the resulting graph is O(kd ), and the size of
each function on the graph is O(kd ). Using the hierarchical framework presented below, the
hypercube can be viewed as the Kronecker sum of d path or chain graphs, each of whose transition
matrix is of size (in the worst case) O(k2). Now, each factored function can be stored in space
O(dk2), and the cost of spectral analysis greatly reduces as well. Even greater savings can be
accrued since usually only a small number of basis functions are needed relative to the size of
the graph. Figure 5.1 illustrates the idea of scaling Fourier and wavelet basis functions to large
product graphs.

Various compositional schemes can be defined for constructing complex graphs from
simpler graphs [31]. We focus on compositions that involve the Kronecker (or the tensor) sum
of graphs. Let G1, . . . , Gn be n undirected graphs whose corresponding vertex and edge sets
are specified as Gi = (Vi , Ei ). The Kronecker sum graph G = G1 ⊕ · · · ⊕ Gn has the vertex set
V = V1 × · · · × Vn, and edge set E(u, v) = 1, where u = (u1, . . . , un) and v = (v1, . . . , vn),
if and only if uk is adjacent to vk for some uk, vk ∈ Vk and all ui = vi , i �= k. For example, the
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grid graph illustrated in Figure 5.1 is the Kronecker sum of two path graphs; the hypercube is
the Kronecker sum of three or more path graphs.

The Kronecker sum graph can also be defined using operations on the component
adjacency matrices. If A1 is a (p, q ) matrix and A2 is a (r, s ) matrix, the Kronecker product
matrix1 A = A1 ⊗ A2 is a (pr, q s ) matrix, where A(i, j ) = A1(i, j ) ∗ A2. In other words, each
entry of A1 is replaced by the product of that entry with the entire A2 matrix. The Kronecker
sum of two graphs G = G1 ⊕ G2 can be defined as the graph whose adjacency matrix is the
Kronecker sum A = A1 ⊗ I2 + A2 ⊗ I1, where I1 and I2 are the identity matrices of size equal
to number of rows (or columns) of A1 and A2, respectively. The main result that we will
exploit is that the eigenvectors of the Kronecker product of two matrices can be expressed as
the Kronecker products of the eigenvectors of the component matrices.

Theorem 5.1. Let A and B be full rank square matrices of size r × r and s × s , respectively, whose
eigenvectors and eigenvalues can be written as

Aui = λi ui , 1 ≤ i ≤ r, Bv j = µ jv j , 1 ≤ j ≤ s .

Then, the eigenvalues and eigenvectors of the Kronecker product A⊗ B and the Kronecker sum
A ⊕ B are given as

(A ⊗ B)(ui ⊗ v j ) = λiµ j (ui ⊗ v j ),
(A ⊕ B)(ui ⊗ v j ) = (A ⊗ Is + Ir ⊗ B)(ui ⊗ v j ) = (λi + µ j )(ui ⊗ v j ).

The proof of this theorem relies on the following identity regarding Kronecker products
of matrices: (A ⊗ B)(C ⊗ D) = (AC)⊗ (B D) for any set of matrices where the products AC
and B D are well defined. We denote the set of eigenvectors of an operator T by the notation
X(T ) and its spectrum by �(T ). A standard result that follows from the above theorem shows
that the combinatorial graph Laplacian of a Kronecker sum of two graphs can be computed
from the Laplacian of each subgraph. In contrast, the normalized Laplacian is not well-defined
under sum, but has a well-defined semantics for the Kronecker or direct product of two graphs.
The Kronecker product can also be used as a general method to approximate any matrix by
factorizing it into the product of smaller matrices [120].

Theorem 5.2. If L1 = L(G1) and L2 = L(G2) are the combinatorial Laplacians of graphs G1 =
(V1, E1, W1) and G2 = (V2, E2, W2), then the spectral structure of the combinatorial Laplacian
L(G) of the Kronecker sum of these graphs G = G1 ⊕ G2 can be computed as

(�(L), X(L)) = {λi + κ j , li ⊗ k j }, 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|,

1The Kronecker product of two matrices is often also referred to as the tensor product.
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FIGURE 5.2: Left: this figure shows an embedding in R
2 of a 10× 10 grid world environment using

“low-frequency” (smoothest) eigenvectors of the combinatorial Laplacian, specifically those correspond-
ing to the second and third smallest eigenvalues. Right: the embedding of a “cylinder” graph using two
low-order eigenvectors (third and fourth) of the combinatorial Laplacian. The cylinder graph is the
Kronecker sum of a closed and open chain graph.

where λi is the ith eigenvalue of L1 with the associated eigenvector li and κ j is the j th eigenvalue of
L2 with the associated eigenvector k j .

The proof is omitted, but fairly straightforward by exploiting the property that the
Laplace operator acts on a function by summing the difference of its value at a vertex with those
at adjacent vertices. Figure 5.2 illustrates this theorem, showing that the eigenvectors of the
combinatorial Laplacian produce a regular embedding of a grid in 2D as well as a cylinder in
3D. These figures were generated as follows. For the grid shown on the left, the eigenvectors
were generated as the Kronecker product of the eigenvectors of the combinatorial Laplacian
for two chains of size 10. The figure shows the embedding of the grid graph where each state
was embedded in R

2 using the second and third smallest eigenvectors. For the cylinder on
the right, the eigenvectors were generated as the Kronecker product of the eigenvectors of the
combinatorial Laplacian for a ten-state closed chain and a five-state open chain. The embedding
of the cylinder shown on the right was produced using the third and fourth eigenvector of the
combinatorial Laplacian.

For the combinatorial Laplacian, the constant vector 1 is an eigenvector with associated
eigenvalue λ0 = 0. Since the eigenvalues of the Kronecker sum graph are the sums of the
eigenvalues of the individual graphs, 0 will be an eigenvalue of the Laplacian of the sum graph
as well. Furthermore, for each eigenvector vi , the Kronecker product vi⊗ 1 will also be an
eigenvector of the sum graph. One consequence of these properties is that geometry is well
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preserved, so for example the combinatorial Laplacian produces well-defined embeddings of
structured spaces.

5.2 SCALING TO LARGE GRAPHS USING
APPROXIMATION METHODS

A variety of other approximation methods can be used to scale basis construction to large
graphs, including matrix sparsification [1], low-rank approximation [46], graph partitioning
[60], and Kronecker product approximation [120]. We review the latter two methods first, and
then discuss the former methods in the context of approximating functions on manifolds.

5.2.1 Kronecker Product Approximation
The Kronecker product approximation [120] constructs two smaller stochastic matrices B and
C whose Kronecker product B ⊗ C approximates a given matrix A. It is important to distinguish
this approach from the Kronecker sum decomposition approach described in Section 5.1, where
the factorization was not an approximation, but an exact decomposition assuming the overall
state space was a product space. Kronecker product factorization can be applied to arbitrary
weight matrices, but the decomposition is an approximation.

Let Pr = D−1W denote the random walk matrix, as described in Chapter 3. Pr can be
approximated by a Kronecker product of two smaller stochastic matrices Pa and Pb , which
minimizes the Fröbenius norm of the error:

f (Pa , Pb) = min
Pa ,Pb

(‖Pr − Pa ⊗ Pb‖F ) .

Pitsianis [120] describes a separable least-squares method to decompose stochastic matrices, but
one problem with this approach is that the decomposed matrices, although stochastic, are not
guaranteed to be diagonalizable. This problem was addressed by Johns et al. [56], who applied
this approach for learning to solve Markov decision processes (this application is described in
more detail in Chapter 6).

To ensure the diagonalizability of the decomposed matrices, Johns et al. [56] incorporated
an additional step using the Metropolis–Hastings algorithm [15] to approximate the smaller
matrices Pa and Pb by reversible matrices Pr

a and Pr
b . Then, the eigenvectors of the original

random walk matrix Pr can be approximated as the Kronecker product of the eigenvectors of
the factorized smaller reversible matrices Pr

a and Pr
b (since the smaller matrices are reversible,

they can also be symmetrized using the normalized Laplacian, which makes the numerical task
of computing their eigenvectors much simpler). Using this approach, Johns et al. [56] were able
to reduce the size of the random walk weight matrices by a significant amount compared to the
full matrix. For example, in one problem, the original basis matrix was compressed by a factor
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of 36 : 1, without significant loss in the solution quality. An important point to emphasize
is that the full basis matrix never needs to be stored or computed in constructing the vertex
embeddings from the smaller matrices. The factorization can be carried out recursively as well,
leading to a further reduction in the size of the basis matrices.

5.2.2 Graph Partitioning and Fast Laplacian Solvers
A general divide-and-conquer strategy is to decompose the original graph into subgraphs, and
then compute local basis functions on each subgraph. This strategy can be used on any graph,
however unlike the methods described above, few theoretical guarantees can be provided except
in special circumstances. A number of graph partitioning methods are available, including
spectral methods that use the low-order eigenvectors of the Laplacian to decompose graphs
[86], as well as hybrid methods that combine spectral analysis with other techniques. In
Section 3.4, we described the connection between the eigenvectors of the graph Laplacian and
graph partitioning.

Graph partitioning is a well-studied topic, and there are a large variety of non-spectral
methods as well. METIS [60] is a fast graph partitioning algorithm that can decompose even
very large graphs on the order of 106 vertices. METIS uses a multiscale approach to graph
partitioning, where the original graph is “coarsened” by collapsing vertices (and their associated
edges) to produce a series of smaller graphs, which are successively partitioned followed by
uncoarsening steps mapping the partitions found back to the lower-level graphs. We will
illustrate the use of METIS in Chapter 7, where it is used to decompose large 3D models.

There has been a recent breakthrough in solving systems of linear equations of the
form Lx = b, where L is a graph Laplacian. In particular, Spielman and Teng [108] showed
that general Laplacian systems of linear equations can be solved in time O(n logO(1) n), and
Laplacians corresponding to planar graphs can be solved in time O(n log3 n). Similarly, Koutis
and Miller [64] describe a parallel O(n1/6) algorithm for solving linear systems of Laplacian
equations on planar graphs. Collectively, these algorithms rely on sophisticated methods for
partitioning large graphs. Another area of research into fast methods for solving symmetric
systems of linear equations, such as the Laplacian systems, is algebraic multigrid methods [20].

5.3 SCALING TO CONTINUOUS SPACES
Thus far, we have restricted our attention to Fourier and wavelet analysis in discrete spaces, or
in continuous spaces where the basis functions were already predefined. We now discuss the
use of harmonic analysis to construct basis functions in irregular continuous domains called
manifolds [70, 99], which usually refer to sets embedded in Euclidean spaces. We are faced
with a new challenge: we only have access to samples of the underlying manifold, and need to
extrapolate these samples to new points during the testing phase when the newly discovered
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basis functions are being applied. For example, in a control setting where an agent is learning to
solve a planning problem [111], the agent will encounter new situations that were not previously
observed during the process of basis construction. This problem is generally referred to as the
out-of-sample extension problem [90].

To solve the out-of-sample extension problem, we introduce a popular method called the
Nyström extension [7, 41], which allows a principled approach to extrapolating sample values
of eigenfunctions to new points. We show how the Nyström interpolation can be viewed as
doing a low-rank approximation of a positive semi-definite (kernel) matrix.

5.4 RIEMANNIAN MANIFOLDS
This section briefly introduces the Laplace–Beltrami operator in the general setting of Rieman-
nian manifolds [99], building on the intuitions gained in the more familiar setting of graphs
[26]. Riemannian manifolds have been actively studied recently in machine learning in several
contexts. It has been known for over 50 years that the space of probability distributions forms a
Riemannian manifold, with the Fisher information metric representing the Riemann metric on
the tangent space. This observation has been applied to design new types of kernels for super-
vised machine learning [66] and faster policy gradient methods using the natural Riemannian
gradient on a space of parametric policies [6, 58, 94]. One popular application of manifold
learning is semi-supervised learning [10], where a large set of unlabeled points are used to extract
a representation of the underlying manifold and improve classification accuracy. The Laplacian
on Riemannian manifolds and its eigenfunctions [99], which form an orthonormal basis for
square-integrable functions on the manifold (Hodge’s theorem), generalize Fourier analysis
to manifolds. Historically, manifolds have been applied to many problems in AI, for example
configuration space planning in robotics, but these problems assume a model of the manifold
is known [68, 69], unlike here where only samples of a manifold are given. Recently, there
has been rapidly growing interest in manifold learning methods, including ISOMAP [114],
LLE [101], and Laplacian eigenmaps [10]. These methods have been applied to nonlinear
dimensionality reduction as well as semi-supervised learning on graphs [10, 28, 128].

5.4.1 Manifolds
This section introduces the Laplace–Beltrami operator in the general setting of Riemannian
manifolds [99], as an extension of the graph Laplacian operator described earlier in the more
familiar setting of graphs [26].

Formally, a manifold M is a locally Euclidean set, with a homeomorphism (a bijective
or one-to-one and onto mapping) from any open set containing an element p ∈M to the
n-dimensional Euclidean space R

n. Manifolds with boundaries are defined using a homeomor-
phism that maps elements to the upper half plane Hn [70]. A manifold is a topological space,
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i.e. a collection of open sets closed under finite intersection and arbitrary union. In smooth
manifolds, the homeomorphism becomes a diffeomorphism, or a continuous bijective mapping
with a continuous inverse mapping, to the Euclidean space R

n.
In a smooth manifold, a diffeomorphism mapping any point p ∈M to its coordinates

(ρ1(p), . . . , ρn(p)) should be a differentiable function with a differentiable inverse. Given
two coordinate functions ρ(p) and ξ (p), or charts, the induced mapping ψ : ρ ◦ ξ−1 : R

n →
R

n must have continuous partial derivatives of all orders. Riemannian manifolds are smooth
manifolds where the Riemann metric defines the notion of length. Given any element p ∈
M, the tangent space Tp(M) is an n-dimensional vector space that is isomorphic to R

n. A
Riemannian manifold is a smooth manifold M with a family of smoothly varying positive semi-
definite inner products g p, p ∈Mwhere g p : Tp(M)× Tp(M) → R. For the Euclidean space
R

n, the tangent space Tp(M) is clearly isomorphic to R
n itself. One example of a Riemannian

inner product on R
n is simply g (x, y) = 〈x, y〉Rn =∑

i xi yi , which remains the same over the
entire space. If the space is defined by the set of probability distributions P (X|θ ), then one
example of a Riemann metric is given by the Fisher information metric I(θ ) [66].

5.4.2 Hodge Theorem
Hodge’s theorem [99] states that any smooth function on a compact manifold has a discrete
spectrum mirrored by the eigenfunctions of �, the Laplace–Beltrami self-adjoint operator. On
the manifold R

n, the Laplace–Beltrami operator is � =∑
i

∂2

∂x2
i

(often written with a − sign
for convention). Functions that solve the equation � f = 0 are called harmonic functions [5].
For example, on the plane R

2, the “saddle” function x2 − y2 is harmonic. Eigenfunctions of �

are functions f such that � f = λ f , where λ is an eigenvalue of �. If the domain is the unit
circle S1, the trigonometric functions sin(θ ) and cos(θ ) form eigenfunctions, which leads to
Fourier analysis. Abstract harmonic analysis generalizes Fourier methods to smooth functions on
arbitrary Riemannian manifolds. The smoothness functional for an arbitrary real-valued function
on the manifold f : M→ R is given by

S( f ) ≡
∫

M
| ∇ f |2 dµ =

∫

M
f � f dµ = 〈� f, f 〉L2(M),

where L
2(M) is the space of smooth functions on M, and ∇ f is the gradient vector field of f .

We refer the reader to [99] for an introduction to the Riemannian geometry and properties of the
Laplacian on Riemannian manifolds. Let (M, g ) be a smooth compact connected Riemannian
manifold. The Laplacian is defined as

� = div grad = 1√
det g

∑

i j

∂i

(√
det g g i j∂ j

)
,
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where g is the Riemannian metric, det g is the measure of volume on the manifold, ∂i denotes
differentiation with respect to the ith coordinate function, and div and grad are the Riemannian
divergence and gradient operators, respectively. We say that φ : M→ R is an eigenfunction
of � if φ �= 0 and there exists λ ∈ R such that

�φ = λφ .

If M has a boundary, special conditions need to be imposed. Typical boundary conditions
include Dirichlet conditions, enforcing φ = 0 on ∂M and Neumann conditions, enforcing
∂νφ = 0, where ν is the normal to ∂M. The set of λ’s for which there exists an eigenfunction
is called the spectrum of �, and is denoted by σ (�). We always consider eigenfunctions which
have been L

2-normalized, i.e. ||φ||L2(M) = 1.
The quadratic form associated with the Laplacian is the Dirichlet integral

S( f ) :=
∫

M
||grad f ||2d vol =

∫

M
f � f d vol = 〈� f, f 〉L2(M) = ||grad f ||L2(M),

where L
2(M) is the space of square-integrable functions on M, with respect to the natural

Riemannian volume measure. It is natural to consider the space of functions H1(M) defined
as follows:

H1(M) = {
f ∈ L

2(M) : || f ||H1(M) := || f ||L2(M) + S( f )
}

. (5.1)

So clearly H1(M) � L
2(M) since functions in H1(M) have a square-integrable gradient. The

smaller the H1-norm of a function, the “smoother” the function is, since it needs to have small
gradient. Observe that if φλ is an eigenfunction of � with eigenvalue λ, then S(φλ) = λ: the
larger is λ, the larger the square-norm of the gradient of the corresponding eigenfunction, i.e.
the more oscillating the eigenfunction is.

Theorem 5.3 (Hodge [99]). Let (M, g ) be a smooth compact connected oriented Riemannian
manifold. The spectrum 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · , λk →+∞, of � is discrete, and the cor-
responding eigenfunctions {φk}k≥0 form an orthonormal basis for L

2(M).

In other words, Hodge’s theorem shows that a smooth function f ∈ L
2(M) can be

expressed as f (x) =∑∞
i=0 ai e i (x), where e i are the eigenfunctions of �, i.e. �e i = λi e i . The

smoothness S(e i ) = 〈�e i , e i〉L2(M) = λi . In particular, any function f ∈ L
2(M) can be ex-

pressed as f (x) =∑∞
k=0〈 f, φk〉φk(x), with convergence in L

2(M) [90].

5.5 THE NYSTRÖM INTERPOLATION OF EIGENFUNCTIONS
To learn functions on manifolds, it is necessary to be able to extend eigenfunctions computed
on a set of points ∈ R

d to new unseen points. We describe here the Nyström method, which can
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be combined with iterative updates and randomized algorithms for low-rank approximations.
The Nyström method interpolates the value of eigenvectors computed on sample states to novel
states, and is an application of a classical method used in the numerical solution of integral
equations [7]. It can be viewed as a technique for approximating a positive semi-definite matrix
from a low-rank approximation. In this context it can be related to randomized algorithms for
low-rank approximation of large matrices [46]. Let us review the Nyström method in its basic
form. Suppose we have a positive semi-definite operator K , with rows and columns indexed by
some measure space (X, µ). K acts on a vector space of functions on X by the formula

K f (x) =
∫

X

K (x, y) f (y)dµ(y) , (5.2)

for f in some function space on X. Examples include

(i) X = {0, . . . , n}, µ assigns mass 1 to each element of X, then K is an n × n matrix
acting on n-dimensional vectors by matrix multiplication on the left.

(ii) X = R, µ is the Lebesgue measure, Kσ (x, y) = e−
|x−y |2

σ , and K acts on square-integral

functions f on R by Kσ f (x) = ∫ +∞
−∞ e−

|x−y |2
σ f (y)dy = Kσ ∗ f .

(iii) X is a compact Riemannian manifold (M, ρ) equipped with the measure corresponding
to the Riemannian volume, � is the Laplace–Beltrami operator on M, with Dirichlet
or Neumann boundary conditions if M has a boundary, and K = (I −�)−1 is the
Green’s function or potential operator associated with �.

Since K is positive semi-definite, by the spectral theorem (described in Chapter 2 for
the finite-dimensional case), it has a square root F , i.e. K = FT F . Sometimes this property is
expressed by saying that K is a Gram matrix (see Section 2.6.3), since we can interpret K (x, y)
as the inner product between the xth and yth columns of F . In applications, operators on
uncountable spaces (such as R or a manifold M as in the examples above) are approximated by
a finite discretization x1, . . . , xn, in which case X = {0, . . . , n}, the measure µ is an appropriate
set of weights on the n points, and K is a n × n matrix acting on n-dimensional vectors. To
simplify the notation we use this discrete setting in what follows.

The Nyström approximation starts with a choice of a partition of the columns of F into
two subsets F1 and F2. Let k be the cardinality of F1, so that F1 can be represented as n × k
matrix and F2 as a n × (n − k) matrix. One can then write

K =
(

F T
1 F1 F T

1 F2

F T
2 F1 F T

2 F2

)
.
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The Nyström method consists of the approximation

F T
2 F2 ∼ (F T

1 F2)T(F T
1 F1)−1(F T

1 F2) . (5.3)

The quantity on the right-hand side requires only the knowledge of (F T
1 F2) and F T

1 F1, i.e. the
first k rows (or columns) of K . Moreover if the matrix K has rank k and F1 spans the range of
K , then the Nyström approximation is in fact exactly equal to F T

2 F2.
This technique applies to the discretization of integral equations [7], where the k points

F1 can be chosen according to a careful mathematical and numerical analysis of the problem,
and has been applied to speeding up the computations in learning and clustering algorithms
[96, 126, 12]. The natural question that arises is of course how to choose F1 in these situations.
Various heuristics exist, and mixed results have been obtained [96]. The most desirable choice
of F1, when the error of approximation is measured by ||F T

2 F2 − (F T
1 F2)T(F T

1 F1)−1(F T
1 F2)||2

(or, equivalently, the Fröbenius norm), would be to pick F1 such that its span is as close as
possible to the span of the top k singular vectors of K . Several numerical algorithms exist,
which in general require O(k N2) computations. One can use randomized algorithms, which
pick rows (or columns) of K accordingly to some probability distribution (e.g. dependent on
the norm of the row or column). There are guarantees that these algorithms will select with
high probability a set of rows whose span is close to that of the top singular vectors: see for
example [40, 41, 46].

To learn functions on continuous manifolds, it is necessary to be able to extend eigen-
functions computed on a set of points ∈ R

n to new unexplored points. We describe here a
special instance of the Nyström method for the normalized Laplacian described in Chapter 3.
We begin by restating Equation (5.2) for eigenfunctions φ of the kernel K :

∫

D
K (x, y)φ(y)dy = λφ(x), ∀x ∈ D, (5.4)

where D can be any domain, e.g. R. Using the standard quadrature approximation, the above
integral can be written as

∫

D
K (x, y)φ(y)dy ≈

n∑

i=1

wi k(x, s i )φ̂(s i ), (5.5)

where wi are the quadrature weights, s i are n selected sample points, and φ̂ is an approximation
to the true eigenfunction. Combining Equations (5.4) and (5.5) gives us

n∑

i=1

wi k(x, s i )φ̂(s i ) = λ̂φ̂(x). (5.6)
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By letting x denote any set of n points, for example the set of quadrature points s i itself,
the kernel k(s i , s j ) becomes a symmetric matrix. This enables computing the approximate
eigenfunction at any new point as

φ̂m(x) = 1

λ̂

n∑

i=1

wi k(x, s i )φ̂m(s i ). (5.7)

Let us instantiate Equation (5.7) in the context of the normalized Laplacian L = I −
D− 1

2 W D− 1
2 . First, note that if λi is an eigenvalue of L, then 1− λi is the corresponding

eigenvalue of the diffusion matrix D− 1
2 W D− 1

2 . Applying the Nyström extension for computing
the eigenfunctions of the normalized Laplacian Lφi = λiφi , we get the equation

φi (x) = 1
1− λi

∑

y∼x

w(x, y)√
d (x)d (y)

φi (y), (5.8)

where d (z) =∑
y∼z w(z, y), and x is a new vertex in the graph. Note that the weights w(x, y)

from the new state x to its nearest neighbors y in the previously stored samples is determined
at “run time” using the same nearest-neighbor weighting algorithm used to compute the
original weight matrix W . An extensive discussion of the Nyström method is given in [41],
and more details of its application to learning control in MDPs are given in Chapter 6 as well
as in [80].

Figure 5.3 illustrates the basic idea. Note that the Nyström method does not require
recalculating eigenvectors—in essence, the embedding of a new state is computed by averaging
over the already computed embeddings of “nearby” states. In practice, significant speedups can
be exploited by using the following optimizations. Once the bases are defined over a sampled
set of points, the Nyström extended embeddings of the remaining training samples needs to be
calculated only once, and henceforth can be cached. During testing, the Nyström embeddings
of novel points encountered must be computed, but since the eigenvectors are defined over a
relatively small core set of sample states, the extensions can be computed very efficiently using
a fast nearest-neighbor algorithm.

The Nyström method can be refined with fast iterative updates as follows: first compute
an extension of the eigenvectors to new points (states), to obtain approximated eigenvectors
of the extended graph {φ̃i}. Input these eigenvectors into an iterative eigensolver as initial
approximate eigenvectors: after very few iterations the eigensolver will refine these initial
approximate eigenvectors into more precise eigenvectors on the larger graph. The extra cost
of this computation is O(I N) if I iterations are necessary, and if the adjacency matrix of the
extended graph is sparse (only N nonzero entries).
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FIGURE 5.3: This figure illustrates the Nyström interpolation method for extending eigenfunctions
on samples to new states. Left: the third eigenvector of the Laplacian plotted on a set of samples (shown
as filled dots) drawn from a random walk in the inverted pendulum domain, as well as its Nyström
interpolated values. Right: the Nyström interpolated sixth eigenvector illustrated on the entire state
space as well as on the actual samples (again shown as filled dots).

5.6 SAMPLING TECHNIQUES
The smoothness of functions on a manifold as defined by Equation (5.1) determines the
number of samples necessary to approximate the function up to a given precision. This number
of samples is independent of the number of points explored. Consider the following simple
example.

Example 5.1. Suppose the state space is the interval [0, 1], and that the function f is band-
limited with bandwidth B. This means that the Fourier transform f̂ is supported in [−B, B].
Then by the Whittaker–Shannon sampling theorem [81], only B/(2π ) equispaced samples are
needed to recover V exactly.

Suppose we have observed samples S ′ in a space S, and that the function f is smooth so
that a subset S ′′ much smaller than S ′ would suffice to determine f . We propose two simple
methods in order to select S ′′.

Purely random subsampling. We fix |S ′′|, and select |S ′′| points uniformly at random in S ′.
For very large |S ′| one would expect that the points in S ′′ are going to be well-spread in S ′.
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Well-spread random net. The previous algorithm has two main drawbacks: first, it is not clear
how to select |S ′′|, even if in theory this number can be determined by knowing the complexity
of the function to be approximated. Second, the points in S ′′ are not going to be necessarily
well-spread in S ′: while it is true that for large |S ′|, with very high probability, no two points
in S ′′ are going to be very close, it is not true that the points in S ′′ are going to be roughly
equidistant nor well equidistributed in balls contained in S ′.

In order to guarantee that the set of points is well-spread, we consider the following
construction. We define an ε-net of points in S ′ to be a subset S ′′ such that no two points are
closer than ε, and that for every point y in S ′, there is a point in S ′′ which is not farther than
ε from y . One can construct a (random) ε-net in S ′ as follows. Pick x0 ∈ S ′ at random. By
induction, for k ≥ 1 suppose x0, x1, . . . , xk have been picked so that the distance between any
pair is larger than ε. If

Rk := S ′ \ (∪k
l=1 Bε(xl )) ,

is empty, stop, otherwise pick a point xk+1 in Rk . By definition of Rk the distance between
xk+1 and any of the points x0, . . . , xk is not smaller than ε. When this process stops, say after
k∗ points have been selected, for any y ∈ S ′ we can find a point in S ′′ not farther than ε, for
otherwise y ∈ Rk∗ and the process would not have stopped. One can prove upper bounds of
the distance between the eigenfunctions of the Laplacian on S ′ and the eigenfunctions of the
Laplacian on S ′′, which depend on ε and the order of the eigenfunction.

Convergence: From Graph Laplacian to Manifold Laplacian. Theoretical guarantees on the con-
vergence of the graph Laplacian, described in Chapter 3, to the manifold Laplacian described in
this chapter have been investigated. Belkin and Niyogi [11] and Hein et al. [52] study sampling
conditions under which the various graph Laplacians converge to the Laplace–Beltrami oper-
ator on the underlying manifold. For example, Hein et al. [52] show that under non-uniform
sampling conditions, the random walk Laplacian Lr = I − D−1W converges to a weighted
Laplace–Beltrami operator.

5.7 EXPLOITING DOMAIN KNOWLEDGE
A general way to scale basis construction methods is to exploit available domain knowledge,
for example, knowledge of the global geometry of the underlying space. Chapter 6 illustrates
several examples of how domain knowledge can be used to accelerate basis construction for
solving Markov decision processes, including knowledge of the state geometry, knowledge of
distance metrics on the space, and finally task-specific information in the form of rewards.
Chapter 9 shows how to exploit the properties of a symmetry group acting on the underlying
space to scale basis function construction.
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5.8 BIBLIOGRAPHICAL REMARKS
The Kronecker sum and product decompositions of graphs are described in detail in [31].
Section 5.1 is based on [79]. Rosenberg [99] gives a highly mathematical treatment of the
Laplacian on a Riemannian manifold. Belkin and Niyogi [91] pioneered the study of the
Laplacian in machine learning, originally in the context of semi-supervised learning. Section 5.5
and Figure 5.3 is based on [79]. Section 5.6 is based on [73].
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C H A P T E R 6

Case Study: State-Space Planning

In this chapter, we describe a detailed case study of representation discovery applied to solve
stochastic state-space planning problems [74, 75, 78, 80, 79]. Markov decision processes [98]
have emerged as the standard mathematical framework to model sequential decision-making in
a variety of areas, ranging from game-playing [116], manufacturing [33], robotics [77, 89], and
scheduling [127]. Solving a Markov decision process requires computing and approximating
value functions. Often, value functions are approximated in large spaces as linear combinations
of pre-defined basis functions [14]. We show that harmonic analysis provides a powerful way
to synthesize new basis functions that in some cases can outperform carefully hand-tuned basis
functions in challenging control tasks [79]. These automatically generated basis functions are
called “proto-value” functions (PVFs) [74], since they have global support on the state space
similar to value functions, and all value functions on a given state space can be expressed within
their span. This chapter also shows that diffusion wavelets can be used to generate compact
proto-value functions, and are additionally useful in compressing powers of transition matrices,
leading to a novel way of evaluating a fixed plan (or policy) in a Markov decision process [72].

6.1 INTRODUCTION
This chapter describes a novel spectral framework for solving Markov decision processes (MDPs)
[98] where both the underlying representation or basis functions and (approximate) optimal
policies within the (linear) span of these basis functions are simultaneously learned. This
framework addresses a major open problem not addressed by much previous work in the field
of approximate dynamic programming [14] and reinforcement learning [111], where the set of
“features” or basis functions mapping a state s to a k-dimensional real vector φ(s ) ∈ R

k is usually
hand-engineered.

The overall framework can be summarized briefly as follows. The underlying task envi-
ronment is modeled as an MDP, where the system dynamics and reward function are typically
assumed to be unknown. An agent explores the underlying state space by carrying out actions
using some policy, say a random walk. The agent constructs a (directed or undirected) graph
connecting states that are “nearby”. In the simplest setting, the diffusion model is defined by the
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combinatorial graph Laplacian matrix L = D− W . Basis functions are derived by diagonaliz-
ing the Laplacian matrix L, specifically by finding its “smoothest” eigenvectors that correspond
to the smallest eigenvalues. The similarity between value functions and the eigenvectors of the
graph Laplacian sometimes can be remarkable, leading to a highly compact encoding (measured
in terms of the number of basis functions needed to encode a value function). Laplacian basis
functions can be used in conjunction with a standard “black box” parameter estimation method,
such as Q-learning [125] or least-squares policy iteration (LSPI) [67] to find the best policy
representable within the space of the chosen basis functions.

In many continuous control tasks, there are often physical constraints that limit the
“degrees of freedom” to a lower-dimensional manifold, resulting in motion along highly con-
strained regions of the state space. Instead of placing basis functions uniformly in all regions of
the state space, the proposed framework recovers the underlying manifold by building a graph
based on the samples collected over a period of exploratory activity. The basis functions are then
computed by diagonalizing a diffusion operator (the Laplacian) on the space of functions on
the graph, and are thereby customized to the manifold represented by the state (action) space
of a particular control task.

“Inaccessible” regions of the state space can be exploited in focusing the function ap-
proximator to accessible regions. Parametric approximators, as typically constructed, do not
distinguish between accessible and inaccessible regions. The spectral approach goes beyond
modeling just the reachable state space, in that it also models the local non-uniformity of a given
region. This non-uniform modeling of the state space is facilitated by constructing a graph
operator which models the local density across regions. By constructing basis functions adapted
to the non-uniform density and geometry of the state space, the spectral approach extracts
significant topological information from trajectories.

Dayan [35] proposed the idea of building successor representations. While this approach was
restricted to policy evaluation in simple discrete MDPs, the idea of constructing representations
that are faithful to the underlying dynamics of the MDP was a key motivation underlying this
work. Drummond [42] used techniques from computer vision to detect nonlinearities in value
functions. Finally, Foster and Dayan [45] attempt to find the “building blocks” of value functions
by constructing a probabilistic generative (mixture) model using maximum likelihood estimation
techniques. Proto-value functions can be viewed similarly as the building blocks of the set of
value functions on a given state space, except that they are constructed non-parametrically.

6.2 MARKOV DECISION PROCESSES
A discrete Markov decision process (MDP) M = (S, A, P a

s s ′, Ra
s s ′) is defined as a finite set of

discrete states S, a finite set of actions A, a transition model P a
s s ′ specifying the distribution over

future states s ′ when an action a is performed in state s , and a corresponding reward model
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Ra
s s ′ specifying a scalar cost or reward [98]. In continuous Markov decision processes, the set

of states ⊆ R
d . Abstractly, a value function is a mapping S → R or equivalently (in discrete

MDPs) a vector ∈ R
|S|. Given a policy π : S → A mapping states to actions, its corresponding

value function V π specifies the expected long-term discounted sum of rewards received by the
agent in any given state s when actions are chosen using the policy. Any optimal policy π∗

defines the same unique optimal-value function V ∗, which satisfies the nonlinear system of
equations referred to as the “Bellman equations”:

V
∗
(s ) = max

a

(
Rs a + γ

∑

s ′∈S

P a
s s ′V

∗(s ′)

)
, (6.1)

where Rs a =
∑

s ′∈s P a
s s ′ R

a
s s ′ is the expected immediate reward. Often, it is useful to summarize

the above equation as the fixed point of an operator T∗, where V ∗ = T∗(V ∗). Value functions
are mappings from the state space to the expected long-term discounted sum of rewards received
by following a fixed (deterministic or stochastic) policy π . The value function V π associated
with following a (deterministic) policy π can be defined also as a (linear) Bellman equation:

V
π

(s ) = Rs π (s ) + γ
∑

s ′∈S

P π(s )
s s ′ V π (s ′). (6.2)

Similarly, the above equation can be viewed as computing the fixed point of the operator T π ,
where V π = T π (V π ). It is also useful to define Bellman equations for action-value functions
Q π (s , a), which represents the expected cumulative reward received for doing action a once,
and thereafter following policy π :

Q
π

(s , a) = Rs a + γ
∑

s ′∈S

P a
s s ′V

π (s ′). (6.3)

The optimal-value function V ∗(s ) = maxa Q∗(s , a). Value functions (or action-value functions)
in an MDP are the long-term result of rewards “ diffusing” through the state space governed by
the underlying system dynamics matrix P π . Let Rπ be a (column) vector of size |S| of rewards.
The value function associated with policy π can also be expressed as the Neumann geometric
series of powers of the transition matrix:

V π = (I − γ P π )−1 Rπ = (
I + γ P π + γ 2(P π )2 + · · · ) Rπ . (6.4)

The term (I − γ P π )−1 is generally referred to as the Green’s function, particularly in the form
(I − T)−1 where T is a diffusion operator. Value functions generally satisfy two key properties:
they are typically smooth (as quantified by the Sobolev norm introduced in Chapter 3), and
they usually reflect the geometry of the environment. Smoothness derives from the fact that the
value at a given state V π (s ) is always a function of values at “neighboring” states. Consequently,
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it is natural to construct basis functions for approximating value functions that share these two
properties.

6.2.1 Hilbert Space Formulation of Value Function Approximation
Let us define a set of basis functions F� = {φ1, . . . , φk}, where each basis function represents a
“feature” φi : S → R. The basis function matrix � is an |S| × k matrix, where each column is
a particular basis function evaluated over the state space, and each row is the set of all possible
basis functions evaluated on a particular state. Approximating a value function using the matrix
� can be viewed as projecting the value function onto the column space spanned by the basis
functions φi ,

V π ≈ V̂ π = �w π =
∑

i

w π
i φi .

Mathematically speaking, this problem can be rigorously formulated using the framework of
best approximation in inner product spaces [37]. In fact, it is easy to show that the space of value
functions represents a Hilbert space, or a complete inner product space [121]. For simplicity,
we focus on the simpler problem of approximating a fixed policy π , which defines a Markov
chain where ρ π represents its invariant (long-term) distribution. This distribution defines a
Hilbert space, where the inner product is given by

〈V1, V2〉π =
∑

s∈S

V1(s )V2(s )ρ π (s ).

The “length” or norm in this inner product space is defined as ‖V ‖π =
√〈V, V 〉π . Value

function approximation can thus be formalized as a problem of best approximation in a Hilbert
space [37]. It is well known (see Equation (2.5) for the general derivation) that if the basis
functions φi are orthonormal (unit-length and mutually perpendicular), the best approximation
of the value function V π can be expressed by its projection onto the space spanned by the basis
functions, or more formally

Mπ
� (V π ) =

∑

i∈I

〈V π , φi〉π φi ,

where Mπ
� is the projection operator, and I is the set of indices that define the basis set. In

finite MDPs, the best approximation can be characterized using the weighted least-squares
projection matrix

Mπ
� = �(�T Dρ π �)−1�T Dρ π ,

where Dρ π is a diagonal matrix whose entries represent the distribution ρ π . We know the
Bellman operator T π defined above has a fixed point V π = T π (V π ). Many least-squares
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parameter estimation methods, including LSPI [67] and LSTD [19], can be viewed as finding
the fixed point of the combined operator Mπ

� T π

V̂ π = �w π = Mπ
� (T π (�w π )) ,

using a sequence of iterates V m+1 = Mπ
� (T π (V m)). How far is the fixed point of T π , namely

V π , from the fixed point of Mπ
� T π ? To answer this question precisely, first it is useful to know

that the operator T π is a contraction mapping. Formally, an operator F on the Hilbert space of
value functions is a contraction mapping if

‖FV1 − FV2‖π ≤ β‖V1 − V2‖π ,

where β ∈ [0, 1) is the contraction factor. For any operator F with contraction factor β, we can
prove a bound on the distance between the fixed point of F , say VF , and the fixed point of the
combined projection operator M�F , denoted by V̂ �

F . Here, M� is the projection operator onto
the basis spanned by F�. This proof follows directly from the general properties of projection
in Hilbert spaces given in Chapter 2:

‖V �
F − VF‖2 = ‖V �

F − M�VF + M�VF − VF‖2

= ‖V �
F − M�VF‖2 + ‖M�VF − VF‖2

= ‖M�FV �
F − M�FVF‖2 + ‖M�VF − VF‖2

≤ κ2‖V �
F − VF‖2 + ‖M�VF − VF‖2

‖V �
F − VF‖2 ≤ 1

(1− κ)2
‖M�VF − VF‖2.

Here, κ ≤ β is the contraction rate defined by the composite operator M�F . Note that the
third term follows from the second term above by Pythagoras’ theorem, since V �

F − M�VF
lies in the subspace spanned by the column space of � and M�VF − VF lies orthogonal
to this subspace. Consequently, the “distance” between the true value function V π and the
approximation V̂ π can be bounded in terms of the distance between V π and its projection
onto the space spanned by the basis functions [121]:

‖V̂ π − V π‖π ≤ 1√
1− κ2

‖Mπ
� V π − V π‖π .

The problem of value function approximation in control learning is significantly more difficult,
in that it involves finding an approximate fixed point of an initially unknown operator. One
standard algorithm for control learning is approximate policy iteration [14], which interleaves
an approximate policy evaluation step of finding an approximation of the value function V̂ πk

associated with a given policy πk at stage k, with a policy improvement step of finding the
greedy policy associated with V̂ πk . Here, there are two additional sources of error introduced
by approximating the exact value function, and approximating the policy. One way to eliminate
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one source of error is to do a least-squares approximation of the action-value function, and
avoid representing the policy directly, which we turn to describe next.

6.2.2 Least-Squares Approximation of Action-Value Functions
In this section, we briefly describe least-squares methods for approximating action-value func-
tions. In particular, we focus on an approximate policy iteration method called LSPI [67], which
constructs a least-squares estimate of the true action-value function Q π (s , a) for a policy π

using a set of (hand-coded) basis functions φ(s , a). The true action-value function Q π (s , a) is
a vector in a high dimensional space R

|S|×|A|, and using the basis functions amounts to reducing
the dimension to R

k where k � |S| × |A|. The approximated action value is thus

Q̂ π (s , a ; w) =
k∑

j=1

φ j (s , a)w j ,

where the w j are weights or parameters that can be determined using a least-squares method.
Let Q π be a real (column) vector ∈ R

|S|×|A|. φ(s , a) is a real vector of size k where each
entry corresponds to the basis function φ j (s , a) evaluated at the state action pair (s , a). The
approximate action-value function can be written as Q̂ π = �w π , where w π is a real column
vector of length k and � is a real matrix with |S| × |A| rows and k columns. Each row of
� specifies all the basis functions for a particular state action pair (s , a), and each column
represents the value of a particular basis function over all state action pairs. The least-squares
fixed-point approximation finds a set of weights w π under which the projection of the backed
up approximated Q-function T π Q̂ π onto the space spanned by the columns of � is a fixed
point, namely

Q̂ π = �(�T Dρ π �)−1�T Dρ π (T π Q̂ π ),

where T π is the Bellman “backup” operator as before, and Dρ π is a diagonal matrix whose
entries reflect varying “costs” for making approximation errors on state-action (s , a) pairs as a
result of the nonuniform distribution ρ π (s , a) of visitation frequencies. It can be shown that
the resulting solution can be written in a weighted least-squares form as Aw π = b, where the
A matrix is given by

A = (
�T Dρ π (�− γ P π�)

)
,

and the b column vector is given by

b = �T Dρ π R .
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A and b can be estimated from a database of transitions collected from some source, e.g. a
random walk. The A matrix and b vector can be estimated as the sum of many rank-one matrix
summations from a database of stored samples.

Ãt+1 = Ãt + φ(s t, at)
(
φ(s t, at)− γφ(s ′t, π (s ′t))

)T

b̃t+1 = b̃ t + φ(s t, at)rt,

where (s t, at, rt, s ′t) is the tth sample of experience from a trajectory generated by the agent
(using some random or guided policy). Once the matrix A and vector b have been constructed,
the system of equations Aw π = b can be solved for the weight vector w π either by taking the
inverse of A (if it is of full rank) or by taking its pseudo-inverse (if A is rank-deficient). The
greedy policy associated with Q̂ π (s , a) is then defined as π̂ (s ) = argmaxa Q̂ π (s , a), where we
have Q̂ π = �w π . The process is then repeated, until convergence (e.g., when the L

2-normed
difference between two successive weight vectors falls below a predefined threshold ε). Note
that in successive iterations, the A matrix will be different since the policy π has changed.
Approximation methods such as LSPI require knowing the basis functions φ(s , a) a priori.
We now turn to describing a method for automatically computing these basis functions from
sample trajectories.

6.3 REPRESENTATION POLICY ITERATION
This section summarizes a general framework called Representation Policy Iteration (RPI) for
learning representation and control for solving MDPs [75]. Figure 6.1 illustrates the overall
block diagram. RPI is decomposed into three components: sample collection, basis construction,
and policy learning. Sample collection requires a task specification, which comprises a domain
simulator (or alternatively a physically embodied agent like a robot), and an initial policy. In
the simplest case, the initial policy can be a random walk, although it can also reflect a more
informative hand-coded policy. The second phase involves constructing the bases from the
collected samples using a diffusion model, such as an undirected (or directed) graph. This
process involves finding the eigenvectors of a symmetrized graph operator such as the graph
Laplacian. The final phase involves estimating the “best” policy representable in the span of the
basis functions constructed (we are primarily restricting our attention to linear architectures,
where the value function is a weighted linear combination of the bases). The entire process can
then be iterated.

Figure 6.2 specifies a more detailed algorithmic view of the overall framework. In the
sample-collection phase, an initial random walk (perhaps guided by an informed policy) is
carried out to obtain samples of the underlying manifold on the state space. The number
of samples needed is an empirical question. Given this set of samples, in the representation
learning phase, an undirected (or directed) graph is constructed in one of the several ways:
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FIGURE 6.1: Flowchart of an unified approach to learning representation and behavior.

two states can be connected by a unit cost edge if they represent temporally successive states;
alternatively, a local distance measure such as k-nearest neighbor can be used to connect states,
which is particularly useful in the experiments on continuous domains reported below. From
the graph, proto-value functions are computed using one of the graph operators, for example
the combinatorial or normalized Laplacian. The smoothest eigenvectors of the graph Laplacian
(that is, associated with the smallest eigenvalues) are used to form the suite of proto-value
functions. The number of proto-value functions needed is a model selection question, which
will be empirically investigated in the experiments described later. The encoding φ(s ) : S → R

k

of a state is computed as the value of the k proto-value functions on that state. To compute
a state action encoding, a number of alternative strategies can be followed: the figure shows
the most straightforward method of simply replicating the length of the state encoding by the
number of actions and setting all the vector components to 0 except those associated with the
current action.

6.3.1 Sample Run of RPI on the Two-Room Environment
The result of running the algorithm is shown in Figure 6.3, which was obtained using the
following specific parameter choices.

� The state space of the two-room MDP consists of 100 states, of which 43 states are
inaccessible since they represent interior and exterior walls. The remaining 57 states
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RPI (πm, T, N, ε, k,O, µ,D):

// πm : Policy at the beginning of trial m
// T: Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation
// D: Initial set of samples

Sample-Collection Phase

� Off-policy or on-policy sampling: Collect a data set of samples Dm = {(s i , ai , s i+1, ri ), . . .} by either ran-
domly choosing actions (off-policy) or using the supplied initial policy (on-policy) for a set of T trials, each
of maximum N steps.

� (Optional) Subsampling step: Form a subset of samples Ds ⊆ D by some subsampling method such as
random subsampling or trajectory subsampling.

Representation Learning Phase

� Build a diffusion model from the data in Ds . In the simplest case of discrete MDPs, construct an undirected
weighted graph G from D by connecting state i to state j if the pair (i, j ) form temporally successive states
∈ S. Compute the operator O on graph G , for example the normalized Laplacian L = D− 1

2 (D− W)D− 1
2 .

� Compute the k smoothest eigenvectors of O on the graph G . Collect them as columns of the basis function
matrix �, a |S| × k matrix.

Control Learning Phase

� Using a standard parameter estimation method (e.g. Q-learning or LSPI), find an ε-optimal policy π that
maximizes the action-value function Q π = �w π within the linear span of the bases � using the training
data in D.

� Optional: Set the initial policy πm+1 to π and call RPI(πm+1, T, N, ε, k,O, µ,D).

FIGURE 6.2: This figure shows a generic algorithm for representation discovery and control learning.

are divided into 1 doorway state and 56 interior room states. The agent is rewarded by
+100 for reaching state 89, which is the last accessible state in the bottom right-hand
corner of room 2, and its immediate neighbors. In the 3D value function plots shown
in Figure 6.3, the axes are reversed to make it easier to visualize the value function plot,
making state 89 appear in the top-left (diagonally distant) corner.

� 3463 samples were collected using off-policy sampling from a random walk of 50
episodes, each of length 100 (or terminating early when the goal state was reached).
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FIGURE 6.3: Optimal value function for a two-room MDP, and the approximation produced by the
RPI algorithm using 20 proto-value functions, computed as the eigenvectors of the normalized graph
Laplacian on the adjacency graph. The nonlinearity represented by the walls is clearly captured.

Four actions (compass direction movements) were possible from each state. Action were
stochastic. If a movement was possible, it succeeded with probability 0.9. Otherwise,
the agent remained in the same state. When the agent reaches state 89, or its immediate
neighbors, it receives a reward of 100, and is randomly reset to an accessible interior
state.

� An undirected graph was constructed from the sample transitions, where the weight
matrix W is simply the adjacency (0, 1) matrix. The graph operator used was the
normalized Laplacian L = D− 1

2 LD− 1
2 .

� 20 eigenvectors corresponding to the smallest eigenvalues of L (duplicated four times,
one set for each action) are chosen as the columns of the state action basis matrix �.

� The parameter estimation method used was least-squares policy iteration (LSPI), with
γ = 0.8. LSPI was described in Section 6.2.2.

� The optimal value function using unit vector bases and the approximation produced by
20 PVFs are compared in Figure 6.3.

6.3.2 Comparison with Hand-coded Parametric Bases
In this section, we compare the effectiveness of PVFs with parametric bases using small discrete
MDPs, such as the two-room discrete MDP used above, before proceeding to investigate how
to scale the framework to larger discrete and continuous MDPs.

Number of Basis Functions. Figure 6.4 evaluates the learned policy by measuring the number
of steps to reach the goal, as a function of the number of training episodes, and as the number
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FIGURE 6.4: This experiment contrasts the performance of Laplacian PVFs (top left) with unit vector
bases (top right), hand-coded polynomial basis functions (bottom left), and radial basis functions (bottom
right) on a 100 state two-room discrete MDP. Results are averaged over 10 runs. The performance of
PVFs (with 25 bases) closely matches that of unit vector bases, and is considerably better than both
polynomials and RBFs on this task.

of basis functions is varied (ranging from 10 to 35 for each of the four actions). The results
are averaged over 10 independent runs, where each run consisted of a set of training episodes
of a maximum length of 100 steps, where each episode was terminated if the agent reached
the absorbing goal state. Around 20 basis functions (per action) were sufficient to get close to
optimal behavior, and increasing the number of bases to 35 produced a marginal improvement.
The variance across runs is fairly small for 20 and 35 bases, but relatively large for smaller
numbers of bases (not shown for clarity). Figure 6.4 also compares the performance of PVFs
with unit vector bases (table lookup), showing that PVFs with 25 bases closely tracks the
performance of unit vector bases on this task.
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Comparison with Parametric Bases. One important consideration in evaluating PVFs is how
they compare with standard parametric bases, such as radial basis functions and polynomials.
Figure 6.4 evaluates the effectiveness of polynomial bases and radial basis functions in the two-
room MDP. In polynomial bases, a state i is mapped to the vector φ(i) = (1, i, i2, . . . ik−1) for
k basis functions—this architecture was studied in [63, 67]. In RBFs, a state i is mapped to

φ j (i) = exp−
(i− j )2

2σ2 , where j is the center of the RBF basis function. In the experiments shown,
the basis centers were placed equidistantly from each other along the 100 states. The results
show that both parametric bases under these conditions performed worse than PVFs in this
task.

6.4 SCALING PROTO-VALUE FUNCTIONS: PRODUCT SPACES
In this section, we build on the general framework for scaling representation discovery to
large factored spaces described in Chapter 5, where we exploit the spectral properties of the
graph Laplacian in constructing embeddings that are highly regular for structured graphs (see
Figure 5.2). In particular, as we saw previously, the eigenspace of the Kronecker sum of two
graphs is the Kronecker product of the eigenvectors of each component graph.

6.4.1 Factored Representation Policy Iteration for Structured Domains
We derive the update rule for a factored form of RPI (and LSPI) for structured domains when
the basis functions can be represented as Kronecker products of elementary basis functions on
simpler state spaces. Basis functions are column eigenvectors of the diagonalized representation
of a graph operator, whereas embeddings φ(s ) are row vectors representing the first k basis
functions evaluated on state s . By exploiting the property that (A ⊗ B)T = AT ⊗ BT, it fol-
lows that embeddings for structured domains can be computed as the Kronecker products of
embeddings for the constituent state components. As a concrete example, a grid world domain
of size m × n can be represented as a graph G = Gm ⊕ Gn, where Gm and Gn are path graphs
of size m and n, respectively. The basis functions for the entire grid world can be written as
the Kronecker product φ(s ) = φm(s r )⊗ φn(s c ), where φm(s r ) is the basis (eigen)vector derived
from a path graph of size m (in particular, the row s r corresponding to state s in the grid
world), and φn(s c ) is the basis (eigen)vector derived from a path graph of size n (in particular,
the column s c corresponding to state s in the grid world).

Extending this idea to state action pairs, the basis function φ(s , a) can be written as
e I (a)⊗ φ(s ), where e I (a) is the unit vector corresponding to the index of action a (e.g., action
a1 corresponds to e1 = [1, 0, . . .]T). Actually, the full Kronecker product is not necessary if
only a relatively small number of basis functions are needed. For example, if 50 basis functions
are to be used in a 10× 10× 10 hypercube, the full state embedding is a vector of size 1000,
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but only the first 50 terms need to be computed. Such savings imply proto-value functions
can be efficiently computed even in very large structured domains. For a factored state space
s = (s 1, . . . , s m), we use the notation s i to denote the value of the ith component. We can
restate the update rules for factored RPI and LSPI as follows:

Ãt+1 = Ãt + φ(s t, at)
(
φ(s t, at)− γφ(s ′t, π (s ′t))

)T

= Ãt + e I (at ) ⊗
∏

⊗
φi (s i

t )

×
(

e I (at )

∏

⊗
φi (s i

t )− γ e I (π(s ′t )) ⊗
∏

⊗
φi (s ′t

i )

)T

.

The corresponding update equation for the reward component is

b̃ t+1 = b̃ t + φ(s t, at)rt = b̃ t + rte I (at ) ⊗
∏

⊗
φi (s i

t ).

6.4.2 Experimental Results
We now present a detailed study using a much larger factored multiagent domain called the
“Blockers” task, which was studied in [103]. This task, illustrated in Figure 6.5, is a cooperative
multiagent problem where a group of agents try to reach the top row of a grid, but are prevented
in doing so by “blocker” agents who move horizontally on the top row. If any agent reaches the
top row, the entire team is rewarded by +1; otherwise, each agent receives a negative reward
of −1 on each step. The agents always start randomly placed on the bottom row of the grid,
and the blockers are randomly placed on the top row. The blockers remain restricted to the top
row, executing a fixed strategy. The overall state space is the Cartesian product of the location
of each agent. These experiments on the blocker domain include more difficult versions of the
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FIGURE 6.5: Two versions of the blocker domain are shown, each generating a state space of > 106

states. Interior walls shown create an “irregular” factored MDP whose overall topology can be viewed as
a “perturbed” variant of a pure product space.
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FIGURE 6.6: Comparison of factored (Laplacian) PVF basis functions with hand-coded radial basis
functions (RBF) on a 10× 10 “wrap-around” grid with three agents and two blockers of >106 states.
Both approaches were tested using 100 basis functions. The plots show the performance of PVFs against
RBFs on the two blocker domains in Figure 6.5.

task not studied in [103] specifically designed to test the scalability of the Kronecker product
bases to “irregular” grids whose topology deviates from a pure hypercube or toroid. In the first
variant, shown on the left in Figure 6.5, horizontal interior walls extend out from the left and
right side walls between the second and third row. In the second variant, an additional interior
wall is added in the middle as shown on the right.1

The basis functions for the overall Blocker state space were computed as Kronecker
products of the basis functions over each agent’s state space. Each agent’s state space was
modeled as a grid or a cylinder (for the “wrap-around” case). Since the presence of interior walls
obviously violates the pure product of cylinders or grids topology, each individual agent’s state
space was learned from a random walk. The overall basis functions were then constructed as
Kronecker products of Laplacian basis functions for each learned (irregular) state grid.

Figure 6.6 compares the performance of the factored Laplacian bases with a set of radial
basis functions (RBFs) for the first Blocker domain (shown on the left in Figure 6.5). The width
of each RBF was set at 2|Sa |

k , where |Sa | is the size of each individual agent’s grid, and k is the
number of RBFs used. The RBF centers were uniformly spaced. The results shown are averages
over ten learning runs. On each run, the learned policy is measured every 25 training episodes.
Each episode begins with a random walk of a maximum of 70 steps (terminating earlier if the

1In the Blocker domain, the interior walls are modeled as having “zero width”, and hence all 100 states in each grid
remain accessible, unlike the two-room environment.
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top row was reached). After every 25 such episodes, RPI is run on all the samples collected
thus far. The learned policy is then tested over 500 test episodes. The graphs plot the average
number of steps to reach the goal. The experiments were conducted on both “normal” grids
(not shown) and “wrap-around” cylindrical grids. The results show that RBFs converge faster,
but learn a worse policy. The factored Laplacian bases converge slower than RBFs, but learn a
substantially better policy. Figure 6.6 also shows results for the second Blocker domain (shown
on the right in Figure 6.5 with both side and interior middle walls), comparing 100 factored
Laplacian bases with a similar number of RBFs. The results show a significant improvement in
the performance of the factored Laplacian bases over RBFs.

In terms of both space and time, the factored approach greatly reduces the computational
complexity of finding and storing the Laplacian bases. A worst-case estimate of the size of
the full Laplacian matrix is O(|S|2). Diagonalizing a |S| × |S| symmetric matrix and finding k
eigenvectors requires time O(k|S|2) and O(k|S|) space. Instantiating these general estimates for
the Blocker domain, let n refer to the number of rows and columns in each agent’s state space
(n = 10 in these experiments), and k refer to the number of basis functions (k = 100 in these
experiments). Then, the size of the state space is |S| = (n2)3, implying that the non-factored
approach requires O(k(n2)3) space and O(k(n6)2) time, whereas the factored approach requires
O(kn2) space and O(k(n2)2) time. Note these are the worse-case estimates. The Laplacian
matrix is in fact highly sparse in the Blocker domain, requiring far less than O(|S|2) space to be
stored. In fact, even in such a deterministic MDP where the Laplacian matrix can be stored in
O(|S|) space, the non-factored approach will still take O(kn3) space and O(kn6) time, whereas
the factored approach takes O(kn) space and O(kn2) time.

6.5 RPI IN CONTINUOUS DOMAINS
In this section, we present an experimental analysis of fully interleaved representation discovery
and policy learning on continuous MDPs [79]. By “fully interleaved”, we mean that the overall
learning run is divided into a set of discrete episodes of sample collection, basis construction,
and policy learning. At the end of each episode, a set of additional samples is collected using
either a random walk (off-policy) or the currently best-performing policy (on-policy), and then
basis functions are then recomputed and a new policy is learned.

6.5.1 Three Control Tasks
We explore the effectiveness and stability of proto-value functions in three continuous
domains—the Acrobot task, the inverted pendulum task, and the mountain car task—that
have long been viewed as benchmarks in the field [111]. These three domains are now de-
scribed in more detail.
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The Inverted Pendulum. The inverted pendulum problem requires balancing a pendulum of
unknown mass and length by applying force to the cart to which the pendulum is attached. We
used the implementation described in [67]. The state space is defined by two variables: θ , the
vertical angle of the pendulum, and θ̇ , the angular velocity of the pendulum. The three actions
are applying a force of−50, 0, or 50 N. Uniform noise from−10 and 10 is added to the chosen
action. State transitions are defined by the nonlinear dynamics of the system, and depend upon
the current state and the noisy control signal, u.

θ̈ = g sin(θ )− αml θ̇2 sin(2θ )/2− α cos(θ )u
4l/3− αml cos2(θ )

, (6.5)

where g is the gravity, 9.8 m/s2, m is the mass of the pendulum, 2.0 kg, M is the mass of the
cart, 8.0 kg, l is the length of the pendulum, 0.5 m, and α = 1/(m + M). The simulation time
step is set to 0.1 s. The agent is given a reward of 0 as long as the absolute value of the angle of
the pendulum does not exceed π/2. If the angle is greater than this value the episode ends with
a reward of −1. The discount factor was set to 0.95. The maximum number of episodes the
pendulum was allowed to balance was fixed at 3000 steps. Each learned policy was evaluated
ten times.

Mountain Car. The goal of the mountain car task is to get a simulated car to the top of a hill
as quickly as possible [111]. The car does not have enough power to get there immediately,
and so must oscillate on the hill to build up the necessary momentum. This is a minimum time
problem, and thus the reward is −1 per step. The state space includes the position and velocity
of the car. There are three actions: full throttle forward (+1), full throttle reverse (−1), and
zero throttle (0). Its position, xt and velocity ẋt , are updated by

xt+1 = bound[xt + ẋt+1], (6.6)

ẋt+1 = bound[ẋt + 0.001at +−0.0025, cos(3xt)], (6.7)

where the bound operation enforces−1.2 ≤ xt+1 ≤ 0.6 and−0.07 ≤ ẋt+1 ≤ 0.07. The episode
ends when the car successfully reaches the top of the mountain, defined as the position xt ≥ 0.5.
In the experiments we allow a maximum of 500 steps, after which the task is terminated without
success. The discount factor was set to 0.99.

The Acrobot Task. The Acrobot task [111] is a two-link under-actuated robot that is an
idealized model of a gymnast swinging on a highbar. The only action available is a torque
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raise tip above

θ1
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Torque
applied here

this line

FIGURE 6.7: The state space of the Acrobot (shown on the left) exhibits rotational symmetries. The
figure on the right plots its projection onto the subspace of R

2 spanned by the two joint angles θ1 and θ2,
which can be visualized as a torus. The angular velocities θ̇1 and θ̇2 were set to 0 for this plot. The points
shown on the torus are subsampled states from a random walk. The colors indicate the value function,
with red (darker) regions representing states with higher values.

on the second joint, discretized to one of the three values (positive, negative, and none). The
reward is−1 for all transitions leading up to the goal state. The detailed equations of motion are
given in [111]. The state space for the Acrobot is four-dimensional. Each state is a four-tuple
represented by (θ1, θ̇1, θ2, θ̇2). θ1 and θ2 represent the angle of the first and second links to the
vertical, respectively, and are naturally in the range (0, 2π ). θ̇1 and θ̇2 represent the angular
velocities of the two links. Note that angles near 0 are actually very close to angles near 2π due
to the rotational symmetry in the state space.

Figure 6.7 plots the Acrobot state space projected onto the subspace spanned by the
two joint angles θ1 and θ2. This subspace is actually a torus. To approximate computing
distances on the torus, the original states were projected upwards to a higher dimensional
state space ⊂ R

6 by mapping each angle θi to (sin(θi ), cos(θi )). Thus, the overall state space
is now (sin(θ1), cos(θ1), θ̇1, sin(θ2), cos(θ2), θ̇2). The motivation for this remapping is that now
Euclidean distances in this augmented space better approximate local distances on the torus.
In fact, ignoring the wrap-around nature of the Acrobot state space by simply using a local
Euclidean distance metric on the four-dimensional state space results in significantly poorer
performance. This example illustrates how overall global knowledge of the state space, just like
in the Blockers domain, is valuable in designing a better local distance function for learning
PVFs.
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FIGURE 6.8: The performance of PVFs with on-policy sampling in the Acrobot task. The plot on
the left shows the median average number of steps to goal averaged over 30 runs. The plot on the right
shows the variance, after scaling the y-axis to magnify the plot.

6.5.2 RPI with On-Policy Sampling
The performance of PVFs can be improved using a modified form of on-policy sampling in
Step 1 of the sample-collection phase in the RPI algorithm. Specifically, it requires keeping
track of the best-performing policy (in terms of the overall performance measure of the number
of steps). If the policy learned in the current round of RPI improved on the best-performing
policy thus far, samples were collected in the next iteration of RPI using the newly learned policy
(which was then viewed as the best performing policy in subsequent runs). Otherwise, samples
were collected using an off-policy random walk. We also found that using shorter episodes of
sample collection in between rounds of representation construction and policy estimation also
produced better results. Figure 6.8 shows the results of these two modifications in the Acrobot
domain, where convergence is fairly rapid.

6.5.3 Comparing PVFs with RBFs on Continuous MDPs
In this section, we compare the performance of PVFs with radial basis functions (RBFs),
which are a popular choice of basis functions for both discrete and continuous MDPs. We
restrict the comparison of PVFs and RBFs in this section to the inverted pendulum domain.
To choose a suitable set of parameters for RBFs, we manually tuned the kernel widths, to find
a good choice for these parameters. The comparison shown in Figure 6.9 shows that PVFs are
significantly quicker to converge, by almost a factor of two in the inverted pendulum domain.
Asymptotically, both approaches converge to the same result. PVFs take 20 trials to converge,
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FIGURE 6.9: This plot shows that PVFs (right) have significantly less variance compared to RBFs
(left) in the inverted pendulum task. Both plots show median-averaged number of steps the pole was
balanced over 100 learning runs.

but RBFs take roughly twice as long. Figure 6.9 plots the variance across 100 learning runs for
both PVFs and RBFs, showing that PVFs not only converge faster, but also have significantly
less variance.

Figure 6.10 shows the variances over 30 runs for both PVFs and RBFs in the mountain
car domain. As in the inverted pendulum, we note that PVFs clearly converge more quickly to
a more stable performance than RBFs, although the differences are not as dramatic as in the
inverted pendulum domain.

6.5.4 Policy and Reward-Sensitive PVFs
In the experiments presented above, basis functions are constructed without taking rewards
into account. This restriction is not intrinsic to the approach, and reward or policy information
when available can easily be incorporated into the construction of bases. There are also many
alternative settings to the one we have explored. One approach studied in [95] assumes that
the reward function Rπ and policy transition matrix P π are known, and combines low-order
Laplacian eigenvector bases with Krylov bases. This approach is restricted to policy evaluation,
which consists of solving an equation in the well-studied form Ax = b. Krylov bases are used
extensively in the solution of such linear systems of equations [47]. The Krylov space is defined
as the space spanned by the vectors:

Km(A, b) = 〈b Ab A2b . . . Am−1b〉.
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FIGURE 6.10: Left: The variance in the performance of a linear parametric RBF architecture is
analyzed over 30 learning runs in the mountain car domain. Right: Variance across 30 runs for PVFs in
the mountain car task.

Krylov bases have also been used to compress the belief space of a partially-observable
Markov decision process (POMDP) [97]. Finally, Keller et al. [62] and Parr et al. [93] explore
Bellman error basis functions (BEBFs) by explicitly using the error in approximating the value
function using the Bellman residual T π (V )− V . At every step of policy evaluation, the next
basis added is proportional to the estimated Bellman residual. Since T π is not known in
control learning, the Bellman residual is approximated by the sample error r + γ V (s ′)− V (s ).
BEBFs, like Krylov bases, can be more effective than PVFs since they are tailored to the Krylov
subspace spanned by powers of the transition matrix P π and the reward function. However,
this dependence also means they need to be recomputed for each specific policy and reward
function, with no savings accruing from sharing across related tasks on the same state space.

6.5.5 Extensions of Proto-Value Functions
For simplicity, thus far, we have explored the construction of basis functions using Laplacian
eigenvectors in the simplest setting of undirected graphs. Johns et al. [55] show that this
approach readily generalizes to directed graphs, where the directed Laplacian is used to construct
directional basis functions. Also, approximation of action-value functions requires constructing
state-action basis functions. The approach above assumed that state-dependent basis functions
φ(s ) are copied |A| times to construct state-action basis functions. A more elegant approach
is to construct state-action bases by diagonalizing diffusion operators on graphs whose vertices
are state-action pairs [92]. Finally, the Kronecker sum decomposition method described in
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Section 6.4.1 assumed that the global structure of the state space is known. One approach to
automatically constructing factored bases by discovering Kronecker product factorizations of
weight matrices is explored in [56].

6.6 MULTISCALE BASIS CONSTRUCTION FOR MARKOV
DECISION PROCESSES

In this section, we describe one specific application of the general diffusion wavelet framework
introduced in Chapter 4 to Markov decision processes. In particular, we show how diffusion
wavelets provide a novel algorithm for policy evaluation [72], a critical step in the solution of
large Markov decision processes (MDPs), typically requiring O(|S|3) to directly solve the Bell-
man system of |S| linear equations (where |S| is the number of samples of the underlying state
space). For a fixed policy π , this framework efficiently constructs a multiscale decomposition of
the random walk P π associated with the policy π . This enables efficiently computing medium
and long term state distributions, approximation of value functions, and the direct computation
of the potential operator (I − γ P π )−1 needed to solve Bellman’s equation. Even a preliminary
non-optimized version of the solver is shown to be competitive with highly optimized iter-
ative techniques. In particular, for MDPs where the transition matrix is “diffusion-like”, the
asymptotic complexity of building a diffusion wavelet tree is O(|S| log2 |S|).

6.6.1 Preliminaries
Bellman’s equation usually involves the solution of a sparse linear system of size |S|, where S
is the state space. A classical direct solution of the system is infeasible for large problem sizes,
since it requires O(|S|3) steps. One common technique is to use an iterative method, such
as value iteration, which has the worst case complexity O(|S|2) for sparse transition matrices,
and O(|S| log |S|) when the problem is well-conditioned and only low-precision is required.
The approach in this section is fundamentally different, and yields a direct solution in time
O(|S| log2 |S|). It consists of two parts:

(i) a pre-computation step that depends on the structure of the state space and on the policy.
The result of this step is a multiscale hierarchical decomposition of the value function
space over the state space, and a multiscale compression of powers of the transition
matrix (random walk operator) over the state space. This computation, for classes of
problems of interest in applications, has complexity O(|S| log2 |S|).

(ii) an inversion step that uses the multiscale structure built in the “pre-computation” step
to efficiently compute the solution of Bellman’s equations for a given reward function.
This phase of the computation has complexity O(|S| log |S|) for many problems of
practical importance where the transition matrix is diffusion-like (defined precisely
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below). The constants in front of this asymptotic complexity are much smaller than
those in the pre-computation step.

We will define the class of problems for which the complexity of the diffusion wavelet
method is linear up to logarithmic factors. Qualitatively, this class includes the case of state
spaces that can be represented by a finite undirected weighted graph, with all the vertices
of “small” degree in which transitions are allowed only among neighboring points, and the
spectrum of the transition matrix decays fast enough. The direct method we present offers
several advantages.

(i) The multiscale construction allows efficient approximation of reward and value func-
tions, which is an important task per se [67, 75].

(ii) It is well known that the number of iterations necessary for an iterative method to
converge can be very large, depending on the condition number of the problem (which
in general depends on the number of samples), and on the precision required. Increasing
precision in the direct inversion technique can be done more efficiently. In this context,
even a non-optimized implementation of the diffusion wavelet approach outperforms
standard iterative solvers.

(iii) When the state space and the policy are fixed, and many value functions correspond-
ing to different rewards (tasks) need to be computed, iteration schemes do not take
advantage of the common structure between the problems. In this case, the number of
iterations for finding each solution is multiplied by the number of solutions sought. The
diffusion wavelet direct inversion technique efficiently encodes the common structure
of the state space in the pre-computation step, and then takes advantage of this in the
solution of multiple problems.

A key advantage of the proposed approach is that direct inversion reveals interesting struc-
ture in the underlying problem. The multi-resolution construction has interesting connections
to methods for approximately solving hierarchical Markov decision processes [8].

6.6.2 Direct Solution of Bellman’s Equation
This section describes a multiscale approach that allows a direct solution of Bellman’s equation.
The starting point are the identities

V π = (I − γ P π )−1 R =
∑

k≥0

(γ�− 1
2 T π�

1
2 )k R

=
∏

k≥0

(I + γ 2k
�− 1

2 (T π )2k
�

1
2 )R ,

(6.8)
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where P π = �− 1
2 T π�

1
2 , � is the matrix whose diagonal is the asymptotic distribution of P ,

and R is the reward vector. The first identity follows by the definition of V π , and the second
is the usual Neumann series expansion for the inverse. The last identity is called the Schultz
formula, which is true because each term of the Neumann series appears once and only once in
the product (reordering the terms of the summation is allowed because both the sum and the
product are absolutely convergent). The formulas hold for γ ≤ 1 and Rπ not in the kernel of
(I − γ P π ). The sums and products involved are of course finite once the precision is fixed.

A key component underlying the diffusion wavelet approach is the compression of the
(quasi-)dyadic powers of the operator T π . In particular (T π )2 j−1 f , for any function f , is equal
to the product Rj Rj−1 · · · · · R0 f , where Ri represents the operator (T π )2i

on the basis �i

in the domain and �i+1 in the range, and hence the product above is T1+2+22+···+2 j−1
f =

T2 j−1 f , represented on � j+1, i.e. “in compressed form”. The matrices [� j+1]∗� j
“un-pack” this

representation back onto the basis �0. To obtain T2 j
f we only need to apply T once more.

In this way the computation of T2 j
f takes only O( j |S| log |S|) operations, since Rj contains

about O(|S| log |S|) entries. This cost should be compared to that of computing directly the
matrix T2 j

, which is O(2 j |S|) since this matrix contains about O(2 j |S|) nonzero entries; this
is also the cost of applying the matrix T to f 2 j times.

In iterative methods such as value iteration, up to |S| iterations are necessary, and the
cost is thus O(|S|2). The diffusion wavelet technique has asymptotic complexity O(|S| log2 |S|).
In some cases far fewer than |S| iterations are needed, especially when the problem is well
conditioned (e.g. γ far from 1), and of low precision. Even in this case, the diffusion wavelet
approach offers several advantages, as discussed above, in terms of understanding the structure
of the problem, of creating useful basis functions, and is competitive in terms of speed, as we
show in the experiments.

6.6.3 Experiments
In this section, we illustrate the multiscale analysis on a sample set of MDPs on a contin-
uous two-room spatial environment, where the two rooms have an elongated shape and are
connected by a corridor. The shape of the rooms and corridor is quite arbitrary, the bases
are built automatically, so we do not require any special topology or shape for them (except
connectedness, without the loss of generality). The agent has randomly explored the space, so
S consists of |S| randomly scattered points in the rooms (see Figure 6.11). The rooms could
have been of arbitrary shape and dimension, as the only input to the algorithm is the set of
sampled points (vertices) and the local distances between close-by points (edge weights). The
weights correspond to a natural diffusion associated with the random walk in the two rooms,
restricted to the states S actually explored, by setting W(i, j ) = e−2||xi−x j ||2 . We then construct
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FIGURE 6.11: Top: set of samples in a continuous two-room environment. Bottom: four diffusion
scaling functions built on the set, at increasing scale. Note the localization at the finest scales, and the
global support at the coarsest scale.
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FIGURE 6.12: Compression of the powers of the symmetrized random walk T in the two-room
environment. From top left to bottom right by rows: T0, T1, T4, and T6. All the matrices are represented
in the log10 scale. T0 is sorted to show the two-room and corridor structures (the algorithm is of course
independent of the order of the points): the two large blocks represent transitions within each room,
and the bottom-right block are transitions in the corridor, with bands at the bottom and at the right
indicating the transitions from the corridor to the rooms. Note the decreasing size of the matrices. T6

is very small, and essentially represents only the transition between two states (the two rooms): for time
scales of order 26 the algorithm has automatically decided this representation is faithful enough for the
precision requested.
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FIGURE 6.13: Left: mean and standard deviation of running time for solving a Bellman equation
on a random walk in the two-room environment, as a function of the number of states explored (x-
axis). We compared direct DWT inversion, iterative Conjugate Gradient Squared method (Matlab
implementation) and direct inversion. Left: pre-processing time, comparing computation of the full
inverse and construction of the diffusion wavelet tree. Right: computation time of applying the inversion
scheme, comparing direct inverse, Schultz’s method with diffusion wavelet transform, and symmetric
conjugate gradient. Note the scale difference between the two plots.

the corresponding multiscale analysis, with precision set to 10−10. Figure 6.11 and Figure 6.12
present some of the scaling functions obtained, and the compressed representation of powers of
T, respectively. We then pick a random reward R on S (a vector of white Gaussian noise), and
compute the corresponding value function in three ways: (i) direct computation of the matrix
I − γ P π , (ii) Schultz’s method and diffusion wavelet transform as in (6.8), and (iii) conjugate
gradient descent for symmetric matrices.
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FIGURE 6.14: Precision, defined as log10 of the residual error ||(I − γ P π )Ṽ π − R||p , where Ṽ π is
the computed solution, achieved by the different methods. The precision was set at ε = 10−10. We show
the results for p = 2 (left) and p = ∞ (right).
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In this example we set γ = 1. We repeat the above for |S| = 256 to |S| = 832 in steps
of 64, and for each S, for ten randomly generated rewards R. The first two methods are direct:
we look at both the pre-processing time for computing, respectively, the inverse matrix and
the diffusion wavelet tree (see Figure 6.13, left). We compare over several random choices of
the reward vector the mean time and standard deviation for computing the corresponding value
function, with all the three methods: see Figure 6.13, right. Finally, in Figure 6.14 we show
the L2- and L∞-norms of the residual error ((I − P π )Ṽ π − R, where Ṽ π is the estimated
value function), achieved by the three methods.

6.7 BIBLIOGRAPHICAL REMARKS
A detailed overview of classical methods for solving Markov decision processes is given in
[98]. Approximation methods for solving Markov decision processes using value functions are
described in [14, 111]. Much of this chapter is based on [79]. Section 6.6 is based on [72, 73].
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C H A P T E R 7

Case Study: Computer Graphics

Representation discovery via construction of basis functions has significant commercial poten-
tial: an appropriate choice of basis can result in a highly compressed representation of Internet
content, such as images and movies. A classic application of harmonic analysis in this regard are
the well-known JPEG and JPEG-2000 standards [122], widely used by millions of consumers
every day in digital cameras and on the Internet. JPEG relies on the discrete cosine transform
[3], a type of Fourier analysis on 2D arrays, and JPEG-2000 relies on the wavelet transform.
Both these methods, however, do not generalize to 3D objects with arbitrary topology, a
problem of much current interest in applications such as computer graphics and animation.

In this chapter, we show how representation discovery using harmonic analysis can lead
to the development of new approaches to the compression of 3D multimedia content. We
focus on one specific problem in 3D graphics, namely mesh compression [112, 113]: 3D objects
are specified by their graph topology and their mesh geometry specifying the location of each
vertex in 3D. The space taken by these objects in the default “unit vector” basis is very large,
and can be hundreds of megabytes. By generalizing Fourier and wavelet analysis to graphs, it
is possible to construct object-specific basis functions that provide the customized compression
of individual objects. These basis functions can be constructed during run-time, resulting in a
highly sparse representation.

In this domain, we will see that the wavelet approach offers a distinct performance im-
provement over the Fourier approach for objects whose 3D mesh geometry is highly nonlinear,
that is for mesh surfaces where the geometry changes from a relatively smooth function to a
highly non-smooth function (e.g. consider the geometry of an animal like an “elephant”). We
compare mesh compression using basis functions constructed using Fourier (Laplacian) eigen-
vectors versus using diffusion wavelets [76]. We also show one possible approach to scaling
these approaches to large 3D objects, using graph partitioning, where a given 3D object is
partitioned into a large number of small patches, and the basis functions are then derived on
each individual patch [59].
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7.1 INTRODUCTION
JPEG compression is widely used to capture, store, and distribute images [122]. Formally, JPEG
uses the discrete cosine transform [3] to convert images from a “spatial” basis to a Fourier basis,
where much of the image “energy” is concentrated in the low-frequency eigenvectors. However,
DCT assumes a fixed 2D topology and cannot be directly applied to compress 3D objects in
computer animation and graphics. Consequently, the problem of compression of 3D objects is
of much interest in computer graphics [112, 113]. As we saw in Chapter 3, Fourier analysis can
be easily extended to graphs, where the eigenvectors of the graph Laplacian are used as basis
functions. This provides an adaptive spectral compression method, where the compression is
customized to specific 3D objects by deriving basis functions from the object’s known graph
topology [59].

However, the compression of 3D objects is a challenging problem for harmonic analysis.
3D objects can be very large, resulting in graphs with 105 or more vertices, and millions of edges.
Computing eigenvectors of matrices resulting from such large graphs is clearly intractable.
Furthermore, even if such large matrices could be diagonalized, the resulting bases, being
global in nature, are extremely large. Storing each eigenvector requires space O(|V |), and seems
impractical for graphs of size 105 or larger. The challenge of 3D compression does not stop
there: typically, problems of interest in graphics also require approximating high-dimensional
objects, where entire matrices stored at each vertex representing texture, lighting, etc, need to
be compressed [124].

In this chapter, we explore some ways of addressing these challenges. First, since Fourier
methods are based on global eigenvector representations, they do not yield a multi-resolution
analysis, and poorly capture “transients” and “local discontinuities”. As Figure 7.1 illustrates,
these limitations have tangible consequences: it is hard to efficiently approximate piecewise
smooth mesh geometries, such as the nonlinearities represented by “horns”. We compare the
performance of multiscale diffusion wavelet bases introduced in Chapter 4 with the Laplacian
eigenvector-based approach, which was introduced in Chapter 3. To deal with the challenge of
large graphs, we use a graph-partitioning method, which was suggested in Chapter 5, where the
complete graph is decomposed into a set of subgraphs, and local basis functions are constructed
on each subgraph.

7.2 SPECTRAL MESH COMPRESSION: FOURIER VERSUS
WAVELET BASES

Figure 7.1 vividly illustrates the difference between using the Fourier approach versus
the wavelet approach [76]. Laplacian eigenvectors poorly reconstruct local nonlinearities
represented by the “horns” or the “nose”, which are rendered with much higher fidelity by
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FIGURE 7.1: Spectral approximation of the mesh geometry of a 3D object using Laplacian eigenvectors
(left) versus diffusion wavelet bases (right), both specifically constructed for this object.

diffusion wavelet bases. This object has 1107 vertices, which were partitioned into 10 sub-
graphs, and 20 basis functions were used to approximate the mesh geometry on each subgraph.
Colors indicate partitions of the object on which both basis functions were computed.

Figure 7.2 illustrates some sample diffusion wavelet bases for the “cowhead” model.
Here, the basis functions are shown illuminated over a darkly shaded region over the set of
vertices beginning with (left) levels 4, 5, 8, and (right) 9 of the diffusion wavelet hierarchy.
Note that as expected, the wavelet bases at lower levels has local support, and in fact, can be
located on semantically interesting regions of the object. In addition, because basis functions
are constructed at varying resolutions and spatial scales, they are more adept at approximating
piece-wise linear functions, as the theoretical analysis in Chapter 4 suggested. Figure 7.3 shows
two sample scaling functions from level 5, one localized in the “eye” region and the other
localized in the “horn” region.

FIGURE 7.2: Scaling functions from multiple levels of the diffusion wavelet hierarchy for a sample 3D
object.
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FIGURE 7.3: Some sample scaling functions localized in “semantically” meaningful regions of objects.

7.3 APPROXIMATION OF MESH GEOMETRY USING
OBJECT-SPECIFIC BASES

Let us define the problem of compression in 3D computer graphics more formally. Each 3D
object has an “initial” representation, where the mesh geometry is specified by 3N floating
point numbers (N is the number of vertices). To specify the topology of the object requires
additionally O(k N) space (since each vertex is usually connected to a small number of neighbors
in polygonal meshes, where typically k ≤ 10). The goal is to construct a basis matrix � of size
N × m, where m � N, such that the mesh geometry can be approximated to the desired level
of accuracy by least-squares projection on the column space of the matrix �. This implies that
only 3m � 3N numbers will be needed to specify the mesh geometry.

More formally, the problem of mesh compression is to approximate the 3D coordinate
functions mapping each vertex to its 3D position V → R

3 [112, 113]. A 3D object is specified
by a graph G = (V, E, W, M), where the 3D mesh coordinates M(v) ∈ R

3. The weight matrix
W is a set of weights on each edge e ∈ E. In the experiments below, we used binary weights so
that W(i, j ) = 1 if (i, j ) ∈ E. The problem is to approximate the mesh coordinates using a set
of basis functions that can be computed from the weight matrix of the graph. More precisely,
let vx, vy , vz be the coordinates of a vertex v ∈ G . Each of these coordinate functions can be
approximated by projecting them on the subspace spanned by the columns of �, corresponding
to either a Fourier (Laplacian) or a (diffusion) wavelet basis.

7.3.1 Global Laplacian Eigenfunctions
ptFollowing the approach described in Chapter 3, global Fourier basis functions can be
constructed on a graph G = (V, E, W) by diagonalizing the combinatorial graph Laplacian
L = D− W . These basis functions are of size |V | = n, which can be problematic if n is large.
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In the case of 3D objects, this can be as large as 105 or more. To address this, we will ac-
tually compute the Laplacian bases on subgraphs of much smaller size. In our experiments,
we used the normalized Laplacian L = D− 1

2 (D− W)D− 1
2 . A drawback of Laplacian approxi-

mation is that it detects only global smoothness, and may poorly approximate a function which
is not globally smooth but only piecewise smooth, or with different smoothness in different re-
gions (as in Figure 7.1). Diffusion wavelets were primarily designed to address these drawbacks.

7.3.2 Diffusion Wavelet Bases
Following the approach described in Chapter 4, we can construct multiscale diffusion wavelet
bases by running the diffusion wavelet tree construction on a suitable diffusion operator. In the
experiments in this chapter, we used the diffusion operator T = D− 1

2 W D− 1
2 .

A diffusion wavelet tree consist of orthogonal diffusion scaling functions � j that are
smooth bump functions, with some oscillations, at scale roughly 2 j (measured with respect to
geodesic distance, for small j ), and orthogonal wavelets � j that are smooth localized oscillatory
functions at the same scale. The scaling functions � j span a subspace Vj , with the property
that Vj+1 ⊆ Vj , and the span of � j+1, Wj , is the orthogonal complement of Vj into Vj+1.
This is achieved by using the dyadic powers of the diffusion operator as “dilations”, to create
smoother and wider (always in a geodesic sense) “bump” functions (which represent densities
for the symmetrized random walk after 2 j steps), and orthogonalizing and downsampling
appropriately to transform sets of “bumps” into orthonormal scaling functions. The algorithm
used is the one described in Chapter 4.

7.4 SCALING TO LARGE GRAPHS USING
GRAPH PARTITIONING

We now describe one method of scaling the approach of adaptive mesh compression to large
graphs—applicable to both Laplacian eigenvectors and diffusion wavelet bases. A natural divide-
and-conquer strategy is to decompose the original graph into subgraphs, and then compute
local basis functions on each subgraph. A number of graph-partitioning methods are available,
including spectral methods that use the low-order eigenvectors of the Laplacian to decompose
graphs, as well as hybrid methods that combine spectral analysis with other techniques. Karni
and Gotsman [59] used the METIS system [60], which is a fast graph-partitioning algorithm
that can decompose even very large graphs on the order of 106 vertices. METIS uses a multiscale
approach to graph partitioning, where the original graph is “coarsened” by collapsing vertices
(and their associated edges) to produce a series of smaller graphs, which are successively
partitioned followed by uncoarsening steps mapping the partitions found back to the lower-
level graphs.
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7.4.1 Computing Local Basis Functions
Once a graph G = (V, E, W) has been partitioned into a set of k partitions Gi = (Vi , Ei , Wi ),
we compute a set of basis functions on each subgraph, either using the eigenvectors of the
Laplacian, or multiscale local diffusion wavelet bases. One subtle issue is the boundary effects
that can result from the fact that there are edges that lie in the intersection of two or more
subgraphs. One approach to dealing with boundary effects is to use the Dirichlet- or Neumann-
adjusted Laplacian matrices [26], which we do not address here.

7.5 MESH COMPRESSION USING FOURIER AND
WAVELET BASES

In this section, we present a series of detailed experiments, evaluating the multiscale approach
to the adaptive compression of 3D objects [76]. To compare the effectiveness of mesh geometry
reconstruction by projection onto a set of Laplacian or diffusion wavelet bases, some notion
of error needs to be defined. The most straightforward method is to compare the difference
between the predicted mesh coordinates v̂ with the true mesh coordinates v, that is the geometric
error between two models M1 and M2 is defined as

‖M1 − M2‖g =
∑

v∈V

∑

i∈(x,y,z)

(v̂i − vi )2, (7.1)

where, for example, v̂x gives the approximated x coordinate and vx is the exact known x
coordinate of vertex v. Unfortunately, geometric error by itself is not sufficient, since it is
possible that a model may be close geometrically, and yet provide a poor “visual” reconstruction.
To deal with this, Karni and Gotsman [59] use a second metric, called the geometric Laplacian,
defined as follows:

G L(vi ) = vi −
∑

j∈n(i) l−1
i j v j

∑
j∈n(i) l−1

i j

, (7.2)

where n(v) is the set of neighbors of vertex v, and vi again is the ith index of the mesh
coordinate geometry (for i = x, y, z). This term intuitively measures the difference between
the prediction made by simply averaging the coordinates of the neighbors of a vertex versus the
actual prediction. The final error in approximation is then defined as the sum of the normalized
geometric Laplacian error and the geometric error:

‖M1 − M2‖ = 1
2n

(
‖M1 − M2‖g +

∑

v∈V

∑

i

G L(vi )

)
. (7.3)
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FIGURE 7.4: Comparison of Laplacian (top left) and diffusion wavelet (top right) approximation of a
3D “cow” model with |V | = 2904 vertices.

7.5.1 Compression of Small Objects
We first compare the mesh compression of global Laplacian eigenvectors against multiscale
diffusion wavelet bases for “small” 3D objects, where by “small” we mean objects with mesh
graphs of size ≤104 vertices. Figures 7.4–7.7 compare the performance on a “cow”, “camel”,
“pig”, and “Max Planck” models, respectively. Each experiment was carried out using the same
set of parameters. The overall graph was partitioned into 50 subgraphs, and then a varying
number of basis functions were constructed on each subgraph. The errors introduced in each
local subgraph mesh approximation were then added together to produce the final plots shown.
In each graph, the horizontal axes measures the number of basis functions, and the vertical
axes measures the sum of the geometric error and the geometric Laplacian error, as defined
above. In each graph, the bottom curve represents multiscale diffusion bases, and the top curve
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FIGURE 7.5: Comparison of Laplacian (top left) and diffusion wavelet (top right) approximation of a
3D “camel” model with |V | = 2443 vertices.
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FIGURE 7.6: Comparison of Laplacian (top left) and diffusion wavelet (top right) approximation of a
3D “pig” model with |V | = 3820 vertices.

represents Laplacian bases. It is clear that the multiscale diffusion wavelet bases consistently
perform better than the partitioned Laplacian eigenvector bases. The running times shown are
the average time for a specific number of bases.1

7.5.2 Partition Size Versus Error
The divide-and-conquer approach seems a natural way to make the adaptive spectral com-
pression problem more tractable, but it comes at a price. As the number of partitions
grows, the error is likely to increase due to boundary effects, but the running time reduces.
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FIGURE 7.7: Comparison of Laplacian (top left) and diffusion wavelet (top right) approximation of a
3D model of Max Planck with |V | = 2527 vertices.

1Unlike the eigs package in MATLAB for computing eigenvectors, the diffusion wavelet code is not yet highly
optimized.
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FIGURE 7.8: Comparison of average error and running times (seconds) over different partition sizes,
showing error increases sub-linearly, but running time reduces super-linearly as number of partitions
increase.

We explore this tradeoff for the “pig” model analyzed above. Figure 7.8 displays the change
in error and running times versus partition size for the “pig” model for the diffusion wavelet
model. Figure 7.9 shows the equivalent result for the Fourier bases. The increase in error turns
out to depend on the smoothness of the model: the camel exhibits the worst increase in error
whereas the pig exhibits the least. As shown in the figure, the error increase is at best linear,
but the running time shows a significant super-linear decrease.

7.5.3 Compression of Large Objects
In this section, we compare the performance of multiscale diffusion bases against Laplacian
bases on larger 3D objects, where the number of vertices |V | > 104. Specifically, Figure 7.10
compares multiscale diffusion wavelet bases versus global Laplacian bases on an “Elephant”
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FIGURE 7.9: Comparison of error for different partition sizes for Laplacian eigenvector bases. As the
partition size is increased, error increases as well due to boundary effects.
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FIGURE 7.10: Results for an “Elephant” model, a 3D object with 19 753 vertices and 59 053 edges.

model. The colors indicate the partitions on which local basis functions were computed. As
in the earlier “cow” model, sharp features such as the tusks are rendered with much higher
fidelity by the diffusion wavelet bases. Figure 7.11 plots the results for the “Stanford Bunny”, a
standard benchmark problem in computer graphics.

7.6 SUMMARY
This chapter explored the application of representation discovery to compression in 3D com-
puter graphics. Increasingly, multimedia content on the web, in computer games, and in the
next-generation of animated movies will rely on 3D graphics. Current Fourier and wavelet
compression standards, such as JPEG and JPEG 2000, do not readily extend to 3D topologies.
The challenges to be dealt with are the very large sizes of the graphs involved, the need for real-
time compression, and the ability to compactly store and transmit the bases. Many extensions
of this approach remain to be investigated. 3D models are sometimes specified by Euclidean
point sets ∈ R

n, which requires an additional graph construction phase such as that explored in
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FIGURE 7.11: Results for “Stanford Bunny”, a 3D object with 34 834 vertices and 104 288 edges.



book MOCL006.cls July 3, 2008 15:58

CASE STUDY: COMPUTER GRAPHICS 109

Chapter 6. The multiscale diffusion bases can also be modified to yield geometry-aware bases
[107], where the coordinate function being approximated can influence the bases constructed.

7.7 BIBLIOGRAPHICAL REMARKS
The use of the graph Laplacian to approximate mesh geometry was pioneered by Karni and
Gotsman [59], building on earlier work on Fourier descriptors by Taubin [112, 113]. The
results in this chapter comparing diffusion wavelets and Laplacian eigenvectors is based on
[76].
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C H A P T E R 8

Case Study: Natural Language

One of the most active areas in artificial intelligence is the statistical analysis of natural language,
including information extraction and retrieval (IR) from large document corpora [83]. In this
chapter, we describe the application of representation discovery to IR and learning from text.
Specifically, we describe a new wavelet-based approach to the problem of learning hierarchical
topic models from a given corpora of text documents. We begin with a classic well-studied
method in this area: latent semantic indexing (LSI) [36] applies singular value decomposition
(SVD) to extract structure from the term–document matrix, where the rows represent words,
and the columns represent documents. This approach can be viewed as Fourier analysis applied
to text, since in this case SVD finds eigenvector bases for the row space and column space of
the term–document matrix.

The limitations of LSI derive from the intrinsic limitations of Fourier analysis. The
analysis does not reveal multiscale regularities across documents. We show how diffusion
wavelets can be applied to reveal multiscale regularities across documents. We also describe
the use of diffusion wavelets to cluster documents by analyzing a diffusion process on the
graph that reflects similarity across documents [123]. The key strength of the wavelet-based
approach to topic discovery is that it can automatically determine the number of levels of the
topic hierarchy of the corpora, as well as the number of topics at each level. Further, when the
input term–term matrix is a “diffusion-like” operator, the diffusion wavelet algorithm runs in
time approximately linear (within a logarithmic factor) in the number of nonzero elements of
the matrix. We illustrate the approach on two real applications: a collection of NIPS papers
and messages from an eBay Discussion forum.

8.1 INTRODUCTION
The problem of analyzing text corpora has emerged as one of the most active areas in data
mining and machine learning for the World Wide Web. The goal here is to extract succinct
descriptions of the members of a collection that enable efficient generalization and further
processing. Topic models are an important tool because they are capable of identifying latent
semantic components in unlabeled text data. Topic models have been successfully used to
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analyze text information on the web for many tasks. A topic can be viewed as a distribution
on words. The “high-frequency” words that contribute more to each topic provide keywords
that briefly summarize the main themes in a collection. Topic modeling discovers a set of
topics expressed by documents, providing quantitative measures that can be used to identify
the content of documents. Popularly used topic models include Latent Semantic Indexing
(LSI) [36], probabilistic Latent Semantic Indexing (pLSI) [53], and Latent Dirichlet Allocation
(LDA) [18].

Given a collection of text documents, it is important to extract structural information
regarding the concepts/topics at multiple levels. A canonical example of topic discovery is the
set of papers submitted to the International Conference on Neural Information Processing
Systems or NIPS. Using the NIPS data set as an example, at the most abstract level, there are
two main topics in the published papers: machine learning and neuroscience. Researchers who
submit to the NIPS conference usually need more detailed information, such as which topic is
more popular, or whether there are some new research topics that they should pay attention to.
At the next level, there may be topics pertaining to a number of areas. In summary, the problem
of hierarchical topic modeling can be formalized as follows: given a collection of documents,
each of which contains a bag of words, can we discover common topics in the documents and
organize these topics into a hierarchy?

In this chapter, we explore the application of Fourier and wavelet bases to automatically
extracting hierarchical topics from a given corpus. In particular, we show that diffusion wavelets
provide a novel way of extracting multiscale structure across text documents [123]. The key
strength of this approach to topic discovery is that it can automatically determine the number
of levels of the topic hierarchy of the corpora, as well as the number of topics at each level.
Further, when the input term–term matrix is a “diffusion-like” operator, the diffusion wavelet
algorithm runs in time approximately linear (within a logarithmic factor) in the number of
nonzero elements of the matrix (modulo a large constant factor). We illustrate the diffusion
wavelet approach on two real applications: a collection of NIPS papers and messages from an
eBay Discussion forum.

The wavelet approach automatically reveals the geometric structures of the document
collection at different scales, and offers the following advantages. (1) It is a model-free, data-
driven, and mostly parameter-free method. It automatically generates both topic hierarchies as
well as the topics at each level. The only input information is the term–document matrix and a
resolution parameter. (2) In contrast to the topic vectors learned from latent semantic indexing,
the scaling functions in diffusion wavelets have local support. This sparsity is particularly useful
when the concept only involves a small group of words. (3) The topic hierarchy is not a tree
structure. Topic vectors at adjacent levels do not have parent–child relationships. It is well
known that tree-structured models have some limitations. For example, documents that are in
distinct subsets of a corpus might share a topic, which is hard to model using a tree structure.
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We test the wavelet approach on two real-world data sets: the NIPS paper data set [100]
and a data set collected from an eBay

TM
Computers, Networking and IT discussion board [43].

The results show that the diffusion wavelet-based method can automatically identify the struc-
ture of the collection at different scales, and the topics learned from each level nicely capture
semantically meaningful categories.

8.2 FOURIER ANALYSIS OF TEXT
We begin by introducing the term–document matrix representation, and then review latent
semantic indexing (LSI) [36], which is a classic Fourier-type analysis of text based on eigen-
vectors.

8.2.1 Term–Document Matrix Representation
In a collection of documents (defined on a vocabulary with n terms), any document can be
represented as a vector in R

n, where each dimension represents a term. The ith element of the
vector can be some function of the number of times that the ith term occurs in the document.
There are several possible ways to define the function to be used here (frequency, term frequency
inverse document frequency (TFIDF), etc), but the precise method is not important. Let A
be an n × m matrix of rank r whose rows represent terms and columns represent documents,
with singular value decomposition A = U�V T. Let the singular values of A be ordered as
δ1 ≥ δ2 ≥ · · · ≥ δr .

Each row of A is a vector corresponding to a term, giving its relation to each document.
Likewise, each column of A is a vector corresponding to a document, giving its relation to
each term. The matrix AAT defines an inner product between any two term vectors, and
gives the correlation between terms over the documents. From Chapter 2 and basic linear
algebra, we know AAT = (U�V T)(U�V T)T = U��TU T, so the column vectors of U are
the eigenvectors of AAT.

Let us define a new matrix W = AAT. Obviously, the term–term matrix W is a Gram
matrix (see Chapter 2 for a review of Gram matrices) with non-negative entries. Let D be
a diagonal matrix, where Dii is the sum of the entries on the ith row of W . Then, the
normalized Laplacian operator (discussed in detail in Chapter 3) associated with W is L =
I − D−0.5W D−0.5 [27]. We define T as D−0.5W D−0.5, which is the normalized term–term
matrix.

8.2.2 Latent Semantic Indexing
Latent semantic indexing (LSI) [36] applies singular value decomposition (SVD) to topics in
a text corpus. A brief overview of SVD was provided in Chapter 2. The key idea is to map
high-dimensional vectors to a lower-dimensional eigenvector representation, which captures
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latent semantic space. The goal of LSI is to find a mapping that reveals semantic relations
between the entities of the interest. LSA is a “flat” topic model, which means it cannot find
hierarchical topics.

The singular value decomposition of the term–document matrix A is A = U�V T, where
� = diag(δ1, . . . , δr ), U is an n × r matrix whose columns are orthonormal, and V is an m × r
matrix whose columns are also orthonormal. LSI constructs a rank-k approximation of the
matrix by keeping the k largest singular values in the above decomposition, where k is usually
much smaller than r . More precisely, the best rank-k approximation is given by Ak = Uk�k V T

k ,
and it can be shown that this approximation has the smallest error (w.r.t. the Frobenius norm)
[47]. In LSI, the columns of �k V T

k are used to represent the documents in a space spanned by
the columns of Uk . The space can be called LSI space of A. Each of the column vectors of Uk

is related to a concept, and represents a topic in the given collection of documents.

8.3 MULTISCALE ANALYSIS OF TEXT USING
DIFFUSION WAVELETS

We now illustrate how diffusion wavelets can be applied to text analysis. The diffusion-
based approach uses the diffusion scaling functions constructed by diffusion wavelets [30].
The construction of diffusion wavelets was described in Chapter 4. Diffusion wavelets can be
interpreted geometrically as projecting data to a lower-dimensional space by using the scaling
functions while preserving the large-scale information inherent in the data. The projections
provide multiscale embedding, which means they automatically reveal the geometric structure
of the data at different scales. The subspace spanned by scaling functions learned from T is
in fact the subspace spanned by certain eigenvectors of L (with smallest eigenvalues) up to a
precision ε [30]. For the normalized Laplacian, the eigenvectors of T and L are exactly the
same, so instead of learning eigenvectors of T, we can learn diffusion scaling functions from T
since they are the basis functions that effectively also span the space spanned by the singular
vectors used in LSI.

The diffusion-model approach is completely data-driven: the user only needs to provide
the desired precision, all the remaining computation is done automatically. This includes the
identification of the number of the concept levels (topic levels), basis functions (topic vectors) at
each level, and new representations of the set of documents at each new level. It can be shown
that when the relationships between examples (for this case, relationship between terms) are
characterized by “diffusion-like matrices” (matrices whose high power is of low numerical rank),
computation of the basis functions can be done in approximately linear time [72]. This is in
contrast to the computation of k eigenvectors, which is approximately O(kn2). The diffusion
model combines the concept of multiscale representation and a modified Q R decomposition.
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8.3.1 Fourier Versus Wavelet Analysis of Text
As discussed in Section 8.2.2, latent semantic indexing (LSI) is based on modeling topic vectors
from the given document collection as the eigenvectors from the normalized term–term matrix
T. However, there are two problems when we apply this technique in practice. One problem is
that LSI only learns “flat" topics, i.e. all the topics are at the same level, since the eigenvectors
of T and Ti are the same. Another problem is that the computation of k eigenvectors of a n × n
matrix is in general a O(kn2) time task, which can be expensive for large n.

The diffusion wavelet approach, in contrast, uses multiscale basis functions learned via
the computation of diffusion wavelets. From a numerical point of view, they correspond to Q R
decompositions of powers of T = I − L. The Q R decomposition of a matrix T, which was
reviewed in Chapter 2, decomposes the matrix into an orthogonal matrix (Q) and a triangular
matrix (R), where T = Q R. Columns in Q are orthogonal basis functions spanning the same
space as columns in the matrix T. Here, R can be thought as the new representation of T with
respect to the space spanned by the columns (basis functions) of Q. A well-known approach
for Q R decomposition is the Gram–Schmidt orthogonalization, but there are a variety of other
methods [47].

8.3.2 Main Algorithm
Figure 8.1 describes the precise steps needed to learn a hierarchical topic model using multiscale
diffusion wavelet analysis. This approach assumes the term–document matrix A (defined in
Section 8.2.2) is already given.

8.3.3 Advantages of the Diffusion Wavelet Approach
Fewer Parameters. As illustrated in Chapter 4, the spaces at different levels of a diffusion
wavelet tree are spanned by different numbers of basis functions. These numbers reveal the
dimensions of the relevant geometric structures of data at different levels. These numbers are
completely data-driven, so instead of requiring a user to input the number of levels, number
of topics, etc, the wavelet approach can automatically determine the structure of the hierarchy
and simultaneously generate the topics at each level. In fact, once the term–document matrix
A is given, a user only needs to specify one parameter ε—the precision. If the precision
is high, the algorithm needs more time to run, since the diffusion process is slower, and
vice versa.

Computational Complexity. The diffusion wavelet tree algorithm runs in time linear within a
logarithmic factor when T is a “diffusion-like” matrix, as shown in [30]. The main idea is that
most examples defined in the “diffusion-like matrix" have “small” degrees in which transitions
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1. Construct the normalized term–term matrix: T = D−0.5 AAT D−0.5, where A is the
term–document matrix, AAT is the term–term matrix, D is a diagonal matrix where
Dii is the sum of the entries on the ith row of AAT.

2. Optional Sparsification Step: Sparsify T to make it more “diffusion-like” by keeping
the largest k entries in each row of AAT, and setting all the other entries to zero (see
Section 8.3.3).

3. Generate Diffusion Model: Run the diffusion wavelet procedure described in
Figure 4.4 in Chapter 4.

{φ j , ψ j } = DWT(T0, φ0, Q R, J , ε)

– The initial diffusion operator, T0 = T, is the normalized term–term matrix repre-
sented on the unit vector basis φ0.

– Q R is a modified QR decomposition used in the diffusion wavelet construction,
as described in Chapter 4 (see also [30]).

– J is the number of desired levels. If J is omitted, the diffusion wavelet tree
algorithm will run until the representation of T2 j

converges to a scalar (the lead-
ing eigenvalue of T) at the topmost level, at which point the construction will
terminate.

– ε is the desired numerical precision used in the diffusion wavelet algorithm.
– φ j is the resulting set of diffusion scaling functions at level j .
– ψ j is the resulting set of wavelet functions at level j .

4. Compute extended basis functions:

– The representation of the basis functions from level j on the original space [φ j ]φ0

is computed as follows:

[φ j ]φ0 = [φ j ]φ j−1 [φ j−1]φ j−2 · · · [φ1]φ0 [φ0]φ0

– [φ j ]φ0 is a n × n j matrix. Each column vector represents a topic at level j whose
kth entry is the kth term’s contribution to this topic at level j .

5. Apply the extended basis functions:

– Construct topic hierarchy using each column vector of [φ j ]φ0 , which specifies a
topic at level j .

– Project documents represented in the original space on the subspace spanned by
extended basis functions from different levels and construct multilevel representa-
tions of each document.

FIGURE 8.1: Algorithm for constructing a multiscale diffusion wavelet representation of a collection
of text documents.
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are allowed only among neighboring points, and the spectrum of the transition matrix decays
rapidly [30]. This result is in contrast to the time needed to compute k eigenvectors, which is
O(kn2).

In many applications, the normalized term–term matrix T is already a “diffusion-like
matrix". If it is not, we can use the following procedure to convert it to such a matrix. The
basic idea is that for each term in the collection, we only consider the most relevant k terms,
since the relationships between terms that co-occur many times are more important. The same
technique has been used in manifold learning [101] to generate the relationship graph from
the given data examples. This sparsification algorithm keeps the top k entries in each row of
AAT, and sets all the other entries to zero. The resulting matrix is not symmetric, so we need
to symmetrize it at the end.

The Topic Vectors have Local Support. Given the normalized term–term matrix T, the space
spanned by the topic vectors are the same as the space spanned by some topic vectors learned
from Latent Semantic Indexing up to a precision ε. However, the topic vectors (in fact eigen-
vectors) from LSI have a potential drawback in that they only detect global smoothness, and
may poorly model the concept/topic, if they are not globally smooth but only piecewise smooth,
or have different smoothness in different regions. Unlike the global nature of eigenvectors, the
topic vectors from diffusion models are local, and better capture some concepts/topics that only
involve a particular group of words.

Hierarchical Topic Structure. A natural representation for a hierarchical topic model is to orga-
nize the topics into a tree. For example, a well-known hierarchical topic model is hLDA [17],
where each document is assigned to a path through the topic tree, and each word in a given
document is assigned to a topic at one of the levels of that path. The tree structure has some
limitations. One problem is that it is very important to identify the correct tree. In order to
learn such a tree, for example, hLDA applies the so-called nested Chinese restaurant process
[17]. Another problem is that documents sharing the same topic might be in quite different
subsets of a corpus. This is hard to model with tree structures. The multilevel structure from
the diffusion wavelet tree is not based on a tree structure. In other words, there is no such path
that goes from the root to a leaf node. We generate topic vectors (basis functions) at different
levels, but for each topic vector, there is no parent vector at the upper level. Topics at different
levels are “independent”.

Scalability. The complexity of generating a diffusion model mostly depends on the size of the
vocabulary in the corpus, but not the number of the documents, or the number of the tokens.
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We know no matter how large the corpus is, the size of the vocabulary set is determined, and
we can always set a threshold to filter terms that only appear a small number of times. So the
diffusion wavelet approach can be scaled to large data sets.

8.4 EXPERIMENTAL RESULTS
In this section, we describe the results of the diffusion wavelet-based approach to topic discovery
using two real-world data sets. Since this approach is largely parameter-free, we do not need any
special settings. The precision parameter used in all the experiments was set at ε = 10−5. One
problem that is important but we have not addressed so far is how to interpret topics learned
from diffusion models. Any given topic vector v is a column vector of length n, where n is the
size of the vocabulary set. The entry v[i] represents the contribution of the term i to this topic.
To illustrate the main concepts of the topic v, we sort the entries on v and print out the terms
corresponding to the top ten entries. These terms should summarize the topics in the collection.

8.4.1 NIPS Paper Data Set
We generated hierarchical topics from the NIPS paper data set [100], which includes 1740
papers. The original vocabulary set has 13,649 terms. The corpus has 2,301,375 tokens in total.
We filtered out the terms that appear ≤100 times in the corpus, and only 3413 terms were
kept. The number of remaining tokens was 2,003,017. We performed two tests using the data.

8.4.2 Diffusion Model: Test 1
In Test 1, we follow the procedure described in Section 8.3. Running the diffusion wavelet
algorithm results in a tree with five levels; the number of topics at each level is shown in
Table 8.1. At the first level, each column in T is treated as a topic. At the second level, the

TABLE 8.1: Number of Topics at Different
Levels (Diffusion Model, NIPS Test 1)

LEVEL NUMBER OF TOPICS

1 3413

2 1739

3 1052

4 37

5 2
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TABLE 8.2: All Two Topics from Level 5 (Diffusion Model, NIPS Test 1)

TOPIC ID TOP TEN TERMS

Topic (5,1) Network learning model neural input data time function
figure set

Topic (5,2) Cells cell neurons firing cortex synaptic visual stimulus
cortical neuron

TABLE 8.3: All 37 Topics from Level 4 (Diffusion Model, NIPS Test 1)

TOPIC ID TOP TEN TERMS

Topic (4,1) Network learning model neural input data time function figure set

Topic (4,2) Cells cell neurons firing cortex synaptic visual cortical stimulus response

Topic (4,3) Policy state action reinforcement actions learning reward MDP agent
Sutton

Topic (4,4) Mouse chain proteins region heavy receptor protein alpha human
domains

Topic (4,5) Distribution data Gaussian density Bayesian kernel posterior likelihood
EM regression

Topic (4,6) Chip circuit analog voltage VLSI transistor charge circuits gate cmos

Topic (4,7) Image motion images object eye visual velocity chip vision face

Topic (4,8) Speech hmm word speaker phonetic recognition spike Markov mixture
acoustic

Topic (4,9) iiii border iii texture ill bars suppression ground bar contextual

Topic (4,10) Face facial images faces image tangent spike object views similarity

Topic (4,11) Adaboost margin boosting classifiers head classifier hypothesis training
SVM motion

(cont.)
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TABLE 8.3: (Continued)

TOPIC ID TOP TEN TERMS

Topic (4,12) Dominance ocular orientation cortical development bands lgn lateral
striate cortex

Topic (4,13) Stress syllable song heavy linguistic vowel languages primary harmony
language

Topic (4,14) Motor control muscle arm controller inverse movement iiii trajectory
kawato

Topic (4,15) Hint hints monotonicity mostafa abu market schedules trading financial
monotonic

Topic (4,16) Sound auditory localization spectral sounds cochlear cue cues EEG
frequency

Topic (4,17) Obs obd pruning Hessian stork retraining pruned weight weights stress

Topic (4,18) Routing traffic load shortest paths route path node message recovery

Topic (4,19) Spike spikes motion trains noise rate stress spiking time timing

Topic (4,20) Tangent distance prototypes simard transformations Euclidean rotation
character vectors prototype

Topic (4,21) EEG ICA artifacts locked blind sources separation component
components independent

Topic (4,22) Clause phrase parsing sentences obs parse query documents sentence
harmony

Topic (4,23) Obs theorem threshold gates maass polynomial bounds functions
rational face

Topic (4,24) Instructions instruction scheduling schedule dec blocks execution
schedules block processor

Topic (4,25) Student teacher overlaps queries saad face biases generalization facial
documents

Topic (4,26) vor head vestibular eye reflex cerebellum ocular spike velocity gain

(cont.)
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TABLE 8.3: (Continued)

TOPIC ID TOP TEN TERMS

Topic (4,27) Oscillators oscillator oscillatory obs oscillation oscillations
synchronization phase coupling wang

Topic (4,28) Harmony tree smolensky parse trees student legal grammar child tensor

Topic (4,29) Actor critic pendulum tsitsiklis pole barto harmony signature routing
instructions

Topic (4,30) Documents query document retrieval queries words relevant collection
text ranking

Topic (4,31) Classifier classifiers clause knn rbf tree nearest neighbor centers
classification

Topic (4,32) Stack symbol strings grammars string grammar automata grammatical
automaton giles

Topic (4,33) Song template production kohonen syllable pathway harmonic nucleus
lesions motor

Topic (4,34) Rat head place direction spike navigation dominance food card sharp

Topic (4,35) Som gtm latent date map organizing parity kohonen manifold
quantization

Topic (4,36) hme experts expert tangent gating growing tree mixtures Jacobs distance

Topic (4,37) Object views objects eeg adaboost view edelman instantiation viewpoint
rigid

number of the columns is almost the same as the rank of T. At level 4, number of topics goes
down to a reasonable number 37. Finally, at level 5, the number of topics is 2.

The two topics at level 5 are shown in Table 8.2. Topic 1 is related to machine learning,
while topic 2 is related to neuroscience. These two topics are a reasonable way to partition the
space of all papers that appear in the NIPS conference. The 37 topics at level 4 are shown in
Table 8.3. Almost all these topics seem “meaningful”.
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TABLE 8.4: Number of Topics at Different Levels (Dif-
fusion Model, NIPS Test 2)

LEVEL NUMBER OF TOPICS

1 3413

2 2622

3 1180

4 136

5 22

6 2

8.4.3 Diffusion Model: Test 2
In Test 1, the diagonal elements of the normalized term–term matrix T are always large and
represent the co-occurrence of a term and itself. This might not make perfect sense. So in
Test 2, we set the diagonal elements to 0 and renormalized T. The new matrix might not be
a “diffusion-like matrix", so we applied the method described in Section 8.3.3 to first convert
it to a “diffusion-like matrix”. Then the regular diffusion model is used to retrieve hierarchical
topics.

The diffusion wavelet model identifies six levels of topics, and the number of topics at
each level is shown in Table 8.4. At the first level, each column in T is treated as a topic. Then
the number of topics at each level decreases till finally at level 6, there are two topics.

The two topics at level 6 are shown in Table 8.5. As with the results of Test 1, the two
topics are related to machine learning and neuroscience. The 22 topics at level 5 are shown in

TABLE 8.5: All Two Topics from Level 6 (Diffusion Model, NIPS Test 2)

TOPIC ID TOP TEN TERMS

Topic (6,1) Network learning model neural input data time set
function figure

Topic (6,2) Voltage cells cell firing synaptic circuit cortex synapses
cortical membrane
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TABLE 8.6: All 22 Topics from Level 5 (Diffusion Model, NIPS Test 2)

TOPIC ID TOP TEN TERMS

Topic (6,1) Network learning model neural input data time set function figure

Topic (6,2) Voltage circuit chip transistor cells cell synapse synaptic synapses
transistors

Topic (6,3) Ocular dominance eye orientation cortex cortical cells mouse head
visual

Topic (6,4) Mouse chain proteins heavy alpha region protein receptor domains
human

Topic (6,5) Policy action actions reinforcement reward sutton agent policies MDP
Singh

Topic (6,6) Word speech phonetic speaker phoneme speakers sentences hmm
spoken letter

Topic (6,7) Instructions instruction scheduling dec schedule blocks execution
schedules hints hint

Topic (6,8) Stack grammar grammars strings symbol string symbols giles
automata grammatical

Topic (6,9) Hint hints monotonicity mostafa abu market financial monotonic
trading stock

Topic (6,10) Tangent rotation distance transformations simard digit prototypes
rotations rotated digits

Topic (6,11) Motor cerebellum movement arm movements cerebellar muscle vor
muscles command

Topic (6,12) Adaboost margin boosting smola svm sch sv support vapnik svms

Topic (6,13) ICA Blind separation sources EEG artifacts mixing source kurtosis
independent

Topic (6,14) Student teacher overlaps saad documents biases queries query
symmetric document

(cont.)
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TABLE 8.6: (Continued )

TOPIC ID TOP TEN TERMS

Topic (6,15) Tensor role roles binding product representation structures
connectionist representations distributed

Topic (6,16) Tangent calcium soma dendrite conductance dendritic distance simard
somatic digit

Topic (6,17) Posterior Bayesian mixture likelihood em experts ylx Gaussian hme
kullback

Topic (6,18) Road vehicle autonomous driving lane navigation land obstacle color
food

Topic (6,19) Obs obd pruning retraining stork Hessian pruned damage remove
brain

Topic (6,20) Oscillators oscillator oscillatory oscillation synchronization wang
attractors oscillations spiral coupling

Topic (6,21) Routing traffic shortest load paths route service call calls link

Topic (6,22) Learning network neural time set input figure function training model

Table 8.6. Again, almost all these topics are reasonable. They nicely capture the function words
in the corpus. There are 136 topics at level 4; we checked these topics, and found over 90% of
them to be meaningful. We list 20 of them in Table 8.7. This test also confirms that the above
described method of converting a regular term–term matrix to a diffusion-like matrix works
reasonably well.

8.4.4 Running Times for Various Approaches
Given the collection with 2,003,017 tokens, in both of our diffusion model settings, we need
roughly 15 min (2G PC with 2G memory) to do the multiscale analysis. This includes data
preparation, construction of the diffusion wavelet tree and computing topic vectors at all the
levels (five levels for test 1 and six levels for test 2). In contrast, it took 6 min to compute 37
topics using LDA on the same machine. However, LDA only computes a single-level “flat”
topic model.



book MOCL006.cls July 3, 2008 15:58

CASE STUDY: NATURAL LANGUAGE 125

TABLE 8.7: Twenty Selected Topics from the 136 Topics at Level 4 (Diffusion Model, NIPS
Test 2)

TOP TEN TERMS
1 Kullback leibler ylx logarithmic divergence weighting pool factors yang experts

2 Arm inverse trajectory muscle kawato torque force kinematics movement workspace

3 sv sch smola kernels support kernel svm vapnik machines regularization

4 iiii border iii ill bars ground texture suppression bar figures

5 Monte Carlo posterior Bayesian hyperparameters neal mackay prior sampling Gaussian

6 Insect feeding food animal behaviors chemical behavior motivated begins Weiss

7 Lagrange multipliers constrained constraint constraints multiplier optimization
differential permutation gold

8 Color land blue grey red green illumination surround light scenes

9 Fitness genetic evaluations Holland climbing population hill outperform codes royal

10 Vertices graphs graph vertex clique maximal matching edges Hopfield planar

11 Rotations lie rotation law rotated angles cos plane group sphere

12 Linsker eigenvector eigenvectors eigenvalue centre eigenvalues Miller principal regime
largest

13 Similarity probe analogy dot spot causing products structural alignment relations

14 Magnetic sensor hall fusion sensing receptors devices sensors flow device

15 Leaf tree leaves branching trees growth suffix splits split branch

16 Wavelet coefficients transform histograms transforms video gamma marginal filters
basis

17 Planning plan robot goal world dyna thrun exploration environment experience

18 Stability Lyapunov equilibrium bifurcation stable attention stream chaos Jones
attentional

19 EM density estimation likelihood maximization expectation dempster spline densities
mixture

20 Manifold interpolation lip-dimensional gtm appearance embedded dimensionality
surface grid
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TABLE 8.8: Number of Topics at Different Levels (Dif-
fusion Model, eBay I.T. Board)

LEVEL NUMBER OF TOPICS

1 2005

2 1903

3 202

4 10

5 4

5 2

8.4.5 eBay Discussion Forum Data Set
The second real data set we tested is “Computers, Networking & I.T. Discussion Board” at
eBay [43]. This forum is created specifically for members of the eBay Computers, Networking
& I.T. community. People can share their views and suggestions in this forum.

We selected all the posts from this board on Aug 10th, 2007. This generated a data set
with 8641 posts. There are more than 20,000 terms in the vocabulary set. We only kept the
terms that occurred >20 times in the collection, which resulted in a vocabulary set with 2005
terms. There are 211, 691 tokens in this set. We follow the procedure described in Section 8.3.
Our diffusion model identifies six levels of topics, and the number of topics at each level is
shown in Table 8.8.

In such discussion boards, there are usually many topics being discussed at any time.
The 202 topics at level 3 seems a reasonable number to model the concepts that best follow
human intuition. We manually checked the topics, and confirmed that more than 90% of these
topics are meaningful. They nicely captured the function words in the corpus. The topics from
levels 4–6 are more general, but they are described in such a high-level way and are not very
interesting. To save the space, we show in Table 8.9 only 30 topics from level 3.

8.5 CONCLUSIONS
In this chapter, we explored the application of representation discovery to the statistical analysis
of text. In particular, we applied diffusion wavelets [30, 123] to learn hierarchical topics from
a given corpora of text documents. Unlike Fourier-based methods, such as latent semantic
indexing, the wavelet approach can automatically determine the number of topic levels in the
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TABLE 8.9: Thirty Selected Topics from the 202 Topics at Level 3 (eBay I.T. Board)

TOP TEN TERMS

1 press enter disk xp boot restart drive key installation unit

2 songs ipod mp3 itunes player library napster song wmp play

3 cartridge cartridges toner printer ink laser printers print printing hp

4 iphone phones apple stores demand iphones press friday calls store

5 refresh rate lcd crt monitor image display monitors rates effect

6 fb neg truth leave dont smart positive thebay buyer useless

7 hd refresh partition defrag category rate tests xl os floppy

8 pc100 pc133 ecc memory mb sticks mhz asus psu cpu

9 avg norton virus spyware av spybot aware majorgeeks anti popup

10 garmin maps gps road street car liked wife confused directions

11 clock cache mhz intel bus properties kb cpu acpi size

12 paypal protection payment credit union pp western fee shipping account

13 crt lcd monitor monitors ecc resolution space concern hooked tower

14 router wireless dsl linksys connection modem connect network defrag cable

15 cmos bios ecc zone battery lil jumper clock floppy doa

16 usps ups shipping label package weight box ship size print

17 mode safe bar nasty onetouch data icons move status loaded

18 safari opera update annoying itunes apple updates macs corner junkin 423

19 refurbished condition seller unit laptop warranty government xps sealed units

20 cingular provider mobile phones cell verizon country network addition features

21 mac apps g5 apple written marketing refurbished virtual bose testing

22 cartridges laser printers cost toner research bump scanner outlet cheaper
(cont.)
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TABLE 8.9: (Continued)

TOP TEN TERMS

23 mb memory physical swap total transfer ann ram file dsl

24 ipod itunes library external mini movies sync dvd menu license

25 blocker popup av spam google popups everytime oe personally safari

26 union western payment mhz send taxes font refurbished delivered adobe

27 pdf cant edit contents scanning document values scan clicked uninstall

28 image resolution screen perk paint manually ghost select lazy database

29 watt atx p4 psu connected unit em transfer agp file

30 wife difficult solve mine logic fun daughter refund cookies town

corpora and the topic vectors at each level. When the input term–term matrix is “diffusion-
like”, the wavelet construction algorithm can be done in approximately linear time (albeit with
a large constant factor overhead). Experiments on a NIPS conference paper data set and an
eBay discussion board data set show that the multiscale wavelet approach successfully extracts
hierarchical regularities at multiple levels, which form semantically meaningful topics. The
same approach can be used in many other applications in information retrieval, such as finding
document representations at different levels, and clustering of documents.

8.6 BIBLIOGRAPHICAL REMARKS
An overview of latent semantic indexing is given in [36]. Parametric graphical models have
been studied extensively in text learning, such as Latent Dirichlet Allocation [18]. This material
in this chapter is based on [123]. I am indebted to Chang Wang for running the experiments
described in this chapter.
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C H A P T E R 9

Future Directions

Representation discovery is an actively developing area of research, with many directions yet
to be explored. We have described a mathematically principled approach to representation
discovery, based on applying the ideas of harmonic analysis. Yet, this is but one approach, and
many other approaches remain to be explored. Staying within this framework, in this chapter
we summarize a few promising directions for future research. First, we summarize an active
area of research called compressed sensing [22]. A intriguing result shows that it is possible
to (exactly) recover a sparse signal from a set of incoherent dual bases. For example, instead
of computing the complete Fourier transform of a signal, it is sufficient to compute a small
number of random coefficients, and reconstruct the original signal using L1-norm minimization.
There are a wealth of representations used in AI not discussed in this book, in particular rich
representations such as logic. Another direction for future work is to construct factored Fourier
bases that exploit the representational power of propositional and first-order logic [54, 13].
Finally, we briefly summarize group representation theory [51, 105], an overarching framework
that unifies both Fourier and wavelet representations, and provides some broad principles for
constructing compact representations in homogeneous spaces.

9.1 COMPRESSED SENSING
Compressed sensing is one of the most active recent areas in computational harmonic analysis
[22]. To help understand this approach, let us revisit the basic framework of harmonic analysis
in terms of its use in compression. Compression of images using JPEG (and JPEG 2000) [122]
is based on the familiar analysis–synthesis perspective of reconstructing a vector v from a set
of measurements c i = 〈v, φi〉, which are then linearly combined with the dual basis

∑
i c iψi .

JPEG uses the discrete-cosine transform (DCT) [3], which is a Fourier basis for 2D images,
whereas JPEG 2000 uses a wavelet basis. Both of these approaches work because most natural
images are highly compressible: for example, often 95% or more of the coefficients in a wavelet
representation of a natural image can be discarded without any noticeable visual loss! This
implies that natural images are highly sparse, not in the original pixel basis, but in a Fourier
or wavelet basis. This phenomena is not restricted to visual images, but in fact holds for a
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large class of applications including speech, medical imaging devices such as CAT and MRI
scanners, and bioinformatics (gene assay chips).

The core idea underlying compressed sensing is remarkably simple: if the vector v is
sparse in some basis B, why is it even necessary to compute all the coefficients in the basis in
order to extract a sparse representation? For example, why do digital cameras record images
using millions of pixels (thus constructing a representation that uses millions of measurements
and resulting coefficients), only to throw away almost all this information when converting the
pixel representation to a JPEG (or JPEG 2000) basis? Is it possible to make a much smaller (say
a few thousand) set of measurements on the input image (or signal) and be able to reconstruct
it exactly? Even more interestingly, can these measurements be made non-adaptively?

Compressed sensing show that signals can be recovered (sometimes exactly) from a small
set of random non-adaptive measurements, as long as the original signal is sparse with respect
to some basis [22]. Figure 9.1 illustrates the main idea. Here, the original vector v is of length
1024, with only around 20 nonzero entries. This vector was deliberately chosen to be sparse
in the unit vector bases for simplicity. Shown below is an almost exact reconstruction of the
original vector, from only 128 random measurements. The measurements in this case were
randomly sampled from rows of the discrete-cosine transform (DCT) matrix. It is important
to stress that the sampling of the rows of the DCT matrix was not based on knowledge of
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FIGURE 9.1: An example of compressed sensing, showing that sparse signals (top) can be recovered
almost exactly (bottom) from a small number of non-adaptive random measurements.
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where the signal is nonzero. The measurements were completely non-adaptive. Compression
essentially implies using a smaller set of bases, instead of the full set, where M � N linear
measurements are made of the form:

v ⇒ {〈v, φ1〉, . . . , 〈v, φM〉}.
Define the sensing matrix � to be an M× N matrix, where we typically assume that M � N.
For example, in Figure 9.1, M = 128, but N = 1024. The reconstructed signal u∗ is the
minimizer of the L1-norm, subject to the data constraints specified as

v∗ = min
v
‖v‖1, subject to �v = u.

A central result proved by Candes and Tao [22] is that � can be chosen in a way that
does not depend on the exact knowledge of the sparsity structure of v (either in its original
basis or some other bases like a Fourier or wavelet basis). For example, if the rows of � are
randomly chosen Gaussian-distributed vectors (thus, the matrix consists of N samples of an
M-dimensional sphere), then there is a constant C such that if the support of v has size K and
M ≥ C K log( N

K ), then the solution of the above L1-norm minimization will be the original
vector v∗ = v with high probability.

Compressed sensing is an intriguing new development in sparse representation theory,
which promises to lead to new algorithms for both sensing as well as reconstruction. Applications
of this theory are currently being explored in a large number of domains, and research on the
implications of compressed sensing for representation discovery need to be fully investigated.

9.2 HARMONIC ANALYSIS AND LOGIC
In this book, we have largely focused on representations that are derived from vector spaces. A
natural question that may arise in the mind of an AI reader is whether the harmonic analysis
approach can be extended to the sort of “rich” representations used in AI, including propositional
and first-order logic. Happily, the answer to this question is yes, and we briefly summarize the
use of Fourier representations in propositional logic. As it turns out, Fourier representations
have largely displaced the more common local state-table representation in many areas, such
as VLSI design [118] where fast spectral methods have been devised to transform boolean
functions into the Fourier domain. Even more strikingly, researchers in computational learning
theory have discovered that Fourier bases make it possible to provably learn boolean functions
more reliably from data than other more commonly used representations [54].

Figure 9.2 contrasts the difference between the global Fourier representation of a simple
boolean function with the more conventional truth-table representation. Note the stark contrast
in the two representations: the truth-table representation specifies the value of the function
locally, whereas each coefficient in the Fourier representation specifies the function globally.
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f = x1 ∨ x3 ∨ ¬x2x3

x1 x2 x3 f f̂
0 0 0 0 4
0 0 1 1 0
0 1 0 0 2
0 1 1 0 −2
1 0 0 1 −2
1 0 1 1 −2
1 1 0 1 0
1 1 1 0 0

101

000 001

100 110

010 010
111

FIGURE 9.2: Boolean functions in propositional logic can be represented in a global Fourier basis. The
Fourier coefficients f̂ are the eigenvalues of the graph shown.

How are the Fourier coefficients derived from the truth table representation? There are several
approaches, but a simple way to understand the Fourier coefficients is to view them as the
eigenvalues of a graph derived from the truth table representation of the boolean function [13].
Here, each row mi of the truth table defines a vertex in the graph. There is an edge from the
vertex mi to the vertex m j if f (mi ⊕ m j ) = 1, where ⊕ represents the exclusive-or of the bit
patterns in the rows mi and m j .

Obviously, this procedure to determine the Fourier coefficients is not computationally
tractable. The size of the truth table is exponential in the number of variables (2n), and thus the
graph is going to be exponential in the number of variables. Fortunately, there are a variety of
significantly faster methods for computing the Fourier basis of boolean functions [118]. One
approach is to use the Hadamard matrix, which is defined on n variables as

Hn = Hn−1 ⊗
[

1 1
1 −1

]
,

where H1 is defined by the matrix on the right. Fast Hadamard transforms have been developed
that can take a compact representation of a boolean function specified using an algebraic decision
diagram (ADD), and compute the Fourier coefficients in time that is polynomial in the size of
the decision diagram.

Fourier representations have played a significant role in work on learning boolean func-
tions. It was first shown that boolean functions can be efficiently learned under the uniform
distribution by estimating the Fourier coefficients of the low-order basis functions [71]. In
contrast, another Fourier learning algorithm was developed that could find the largest Fourier
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coefficients > θ in time polynomial in n
θ

for a boolean function over n variables [65, 84]. This
second algorithm is recursive, and requires a membership oracle.

Let f : {0, 1}n → {−1, 1} be a boolean function over n variables. The Fourier transform
of f is defined as

f̂ (α) = 1
2n

∑

x∈{0,1}n
f (x)χα(x),

where χα is the Fourier basis function that computes the parity of a given function f on input
x with respect to the string α. In other words, there are 2n basis functions over all n-length
boolean strings α, such that χα(x) = +1 if

∑n
i=0 α(i)x(i) is even, otherwise χα(x) = −1. The

Fourier basis functions χα can be viewed as the group characters of the direct product of n
Abelian two-element groups {+1,−1} (note that the character of a direct product of two groups
is the product of the characters of each group). Also, the expression above can be written more
compactly simply as

f̂ (α) = 〈 f, χα〉,

where the inner product is with respect to the product group. The original function f can be
reconstituted from its Fourier coefficients in the analysis–synthesis tradition as

f (x) =
∑

α∈{0,1}n
f̂ (α)χα(x).

There is an interesting connection between work in compressed sensing and Fourier represen-
tations of boolean functions. In both cases, the aim is to discover a sparse representation of
the original function f by finding the (largest) coefficients of the Fourier representation by a
randomized method. Representation discovery in this setting is not the computation of a basis,
but rather, the computation of a sparse representation with respect to a given (but perhaps
exponentially large) basis. More practical variants of Fourier boolean methods are described in
[39], with promising experimental results on some data sets from the UCI Repository. The use
of Fourier and wavelet bases with rich representations, such as first-order logic, is a significantly
underdeveloped area, with much work remaining to be done.

9.3 GROUP REPRESENTATION THEORY
Harmonic analysis is often called the study of symmetry [50]. For reasons of space, we could
not provide a detailed discussion of the intimate relationship between harmonic analysis and
the representation theory of groups [51, 105]. Group representation theory builds on matrix
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representation theory in many ways. The representation of a group studies the action of a group
on a vector space. It is possible to define Fourier analysis abstractly on groups [115], and the
abstract Fourier expansion on the Hilbert space of functions on a group is similar to that used
in this book. Classical Fourier analysis emerges as a special case where the group in question is
the unit circle (or in the discrete setting, a ring graph).

Groups are often categorized into two types: in Abelian groups, the group operator
is commutative (an example is the group of integers modulo n, under addition). Classical
Fourier analysis as well as spectral analysis of time-series is largely in the setting of Abelian
groups [38]. However, in many applications, such as the group of automorphisms of a graph,
motion planning in robotics or search problems such as Rubik’s cube, the group operator is not
commutative (a translation in 3D space followed by a rotation does not yield the same outcome
as doing these operations in the opposite order).

Commutative harmonic analysis is restricted to Abelian groups, whereas non-commutative
harmonic analysis extends the setting to non-Abelian groups [25]. In commutative harmonic
analysis, functions on a group can be decomposed into irreducible one-dimensional represen-
tations. These are essentially like eigenvalues (and their associated eigenvectors). In the more
general setting of non-commutative harmonic analysis, the irreducible representations are no
longer one-dimensional and form subspaces.

Group theory provides a powerful tool for combating large spaces. One approach is to
decompose the space of functions on symmetric graphs with large automorphism groups using
character tables. A group character is the trace of the matrix representation of a group. The
character table lists the irreducible representations of a group associated with the conjugate
classes of the group. Another property we can exploit is that random walk and Laplacian
operators commute under graph automorphisms.

As a concrete illustration of the group-theoretic perspective, we show how the space
of functions on a graph can be decomposed by exploiting symmetries of the graph [31, 61].
Given an undirected graph G = (V, E, W), an automorphism π of a graph is a bijection π :
V → V that leaves the weight matrix invariant. In other words, w(u, v) = w(π (u), π (v)).
An automorphism π can be also represented in matrix form by a permutation matrix � that
commutes with the weight matrix:

�W = W�.

The set of all such automorphisms forms a group, which is obviously a subgroup of the
symmetric group S|V |. Consider the graph shown in Figure 3.1. The adjacency (or Laplacian)
matrix of this graph is invariant to rotations by multiples of 45 degrees, or reflections on the
horizontal, vertical, or diagonal axes. The set of all such transformations represents the dihedral
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FIGURE 9.3: Decomposition of the combinatorial Laplacian operator on the grid graph (left) by
exploiting the induced group of automorphisms (rotations and reflections). The original Laplacian
matrix is shown in the middle and the reduced matrix on the right.

group [105]. These automorphisms leave the valency, or degree of a vertex, invariant, and
consequently, the Laplacian is invariant under an automorphism. The set of all automorphisms
forms a non-Abelian group, in that the group operation is non-commutative. Let x be an
eigenvector of the combinatorial graph Laplacian L. Then, it is easy to show that �x must be
an eigenvector as well for any automorphism �. This result follows because

L�x = �Lx = �λx = λ�x.

It can be shown that the automorphisms of a graph factorize the graph Laplacian into ir-
reducible blocks [61]. There is a close relationship between the abstract group induced by
the automorphism group of a graph, and the spectral structure of the Laplacian matrix. One
example of a key result is stated below [31].

Theorem 9.1. Given a graph G whose Laplacian L(G) = D− A is such that no eigenvalue is
repeated, the abstract group induced by the set of all automorphisms that commute with the Laplacian
is Abelian (because all automorphisms � are involutions, that is �2 = I).

The proof of this theorem follows readily from the observation that if an eigenvalue is
simple (of geometric multiplicity = 1), then the corresponding eigenvector x and �x must be
dependent.

It can be shown that the permuted eigenvector �x is independent of the original eigen-
vector x if the corresponding eigenvalue λ is of geometric multiplicity > 1 [31]. It is possible
to exploit the theory of linear representations of groups to decompose operators on graphs,
such as shown in Figure 9.3. The use of the Laplacian in constructing representations that are
invariant to group operations is a hallmark of work in harmonic analysis [50].
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9.4 BIBLIOGRAPHICAL REMARKS
Compressed sensing is a very active area of research. The web page http://www.dsp.ece.

rice.edu/cs/ contains a detailed overview of this rapidly growing field, including software
packages. Figure 9.1 was based on the MATLAB package l1Magic. Bernasconi’s PhD disser-
tation [13] has a detailed discussion of the connection between the graph Laplacian and the
Fourier representation of boolean functions. For a detailed introduction to group representation
theory, see the classic texts by Hamermesh [51] and Serre [105].



book MOCL006.cls July 3, 2008 15:58

137

Bibliography
[1] D. Achlioptas, F. McSherry, and B. Scholkopff, “Sampling techniques for kernel meth-

ods,” in Proceedings of the 14th International Conference on Neural Information Processing
Systems (NIPS), Cambridge, MA: MIT Press, pp. 335–342, 2002.

[2] S. Amarel, “On representations of problems of reasoning about actions,” in Ma-
chine Intelligence, Vol. 3, D. Michie, Ed. Amsterdam: Elsevier/North-Holland, 1968,
pp. 131–171.

[3] N. Amhed, T. Natarajan, and K. Rao, “On image processing and a dis-
crete cosine transform,” IEEE Transactions on Computers, C-23(1):90–93, 1974.
doi:10.1109/T-C.1974.223784

[4] S. Axler, Linear Algebra Done Right. Berlin: Springer, 1997.
[5] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory. Berlin: Springer,

2001.
[6] J. Bagnell and J. Schneider, “Covariant policy search,” in Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), pp. 1019–1024, 2003.
[7] C. Baker, The Numerical Treatment of Integral Equations. Oxford: Clarendon Press,

1977.
[8] A. Barto and S. Mahadevan, “Recent advances in Hierarchical Reinforcement Learn-

ing,” Discrete Event Systems Journal, 13:41–77, 2003. doi:10.1023/A:1022140919877
[9] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for dimensionality reduc-

tion and data representation,” Neural Computation, 6(15):1373–1396, June 2003.
doi:10.1162/089976603321780317

[10] M. Belkin and P. Niyogi, “Semi-supervised learning on Riemannian manifolds,”
Machine Learning, 56:209–239, 2004. doi:10.1023/B:MACH.0000033120.25363.1e

[11] M. Belkin and P. Niyogi, “Towards a theoretical foundation for Laplacian-based man-
ifold methods,” in Proceedings of the International Conference on Computational Learning
Theory (COLT), pp. 486–500, 2005.

[12] S. Belongie, C. Fowlkes, F. Chung, and J. Malik, “Spectral partitioning with indefinite
kernels using the Nyström extension,” in Proceedings of the 7th European Conference on
Computer Vision, pp. 531–542, 2002.

[13] A. Bernasconi, Mathematical Techniques for Analysis of Boolean Functions. PhD thesis,
University of Pisa, 1998.



book MOCL006.cls July 3, 2008 15:58

138 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

[14] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Belmont, MA: Athena
Scientific, 1996.

[15] L. Billera and P. Diaconis, “A geometric interpretation of the Metropolis–Hasting
algorithm,” Statistical Science, 16:335–339, 2001. doi:10.1214/ss/1015346318

[16] C. Bishop, Machine Learning and Pattern Recognition. Berlin: Springer, 2006.
[17] D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum, “Hierarchical topic models and

the nested Chinese restaurant process,” in Proceedings of the International Conference on
Neural Information Processing Systems, 2004.

[18] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal of Machine
Learning Research, 3:993–1022, 2003.

[19] S. Bradtke and A. Barto, “Linear least-squares algorithms for temporal difference
learning,” Machine Learning, 22:33–57, 1996.

[20] A. Brandt, “Algebraic multigrid theory: The symmetric case,” Applied Mathematics and
Computation, 19(1–4):23–56, 1986.

[21] J. Bremer, R. Coifman, M. Maggioni, and A. Szlam, “Diffusion wavelet pack-
ets,” Applied and Computational Harmonic Analysis, 21(1):95–112, July 2006.
doi:10.1016/j.acha.2006.04.005

[22] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information,” IEEE Transactions on
Information Theory, 52(2):489–509, 2006. doi:10.1109/TIT.2005.862083

[23] I. Chavel, Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics. New
York: Academic, 1984.

[24] J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in Problems
in Analysis, R. C. Gunning, Ed., pp. 195–199. Princeton: Princeton University Press,
1970.

[25] G. Chirikjian and A. Kyatkin, Engineering Applications of Noncommutative Harmonic
Analysis. Boca Raton, FL: CRC Press, 2001.

[26] F. Chung, Spectral Graph Theory. Number 92 in CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997. doi:10.1007/s00026-005-0237-z

[27] F Chung, Laplacians and the Cheeger Inequality for Directed Graphs. Annals of Com-
binatorics, 9(1):1–19, April 2005.

[28] R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker,
“Geometric diffusions as a tool for harmonic analysis and structure definition of data:
part I. Diffusion maps,” Proceedings of National Academy of Science, 102(21):7426–7431,
May 2005. doi:10.1073/pnas.0500334102

[29] R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker, “Ge-
ometric diffusions as a tool for harmonic analysis and structure definition of data: part II.



book MOCL006.cls July 3, 2008 15:58

BIBLIOGRAPHY 139

Multiscale methods,” Proceedings of the National Academy of Science, 102(21):7432–7437,
May 2005. doi:10.1073/pnas.0500896102

[30] R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and Computational Har-
monic Analysis, 21(1):53–94, July 2006. doi:10.1016/j.acha.2006.04.004

[31] D. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Application. New
York: Academic, 1980.

[32] D. Cvetkovic, P. Rowlinson, and S. Simic, Eigenspaces of Graphs. Cambridge:
Cambridge University Press, 1997.

[33] T. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck, “Solving semi-markov de-
cision problems using average-reward reinforcement learning,” Management Science,
45(4):560–574, 1999.

[34] I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics,
1992.

[35] P. Dayan, “Improving generalisation for temporal difference learning: The successor
representation,” Neural Computation, 5:613–624, 1993. doi:10.1162/neco.1993.5.4.613

[36] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, “Indexing by
latent semantic analysis,” Journal of the American Society for Information, 1990.

[37] F. Deutsch, Best Approximation in Inner Product Spaces. Canadian Mathematical Society,
2001.

[38] P. Diaconis, Group Representations in Probability and Statistics. Institute of Mathematical
Statistics, 1988.

[39] A. Drake and D. Ventura, “A practical generalization of Fourier-based learning,”
in ICML ’05: Proceedings of the 22nd International Conference on Machine Learning,
pp. 185–192, New York, NY, USA, 2005. ACM.

[40] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix,” Technical Report
YALEU/DCS/TR-1270, Yale University Department of Computer Science, New
Haven, CT, February 2004.

[41] P. Drineas and M. W. Mahoney, “On the Nyström method for approximating a Gram
matrix for improved kernel-based learning,” Journal of Machine Learning and Research,
6:2153–2175, 2005.

[42] C. Drummond, “Accelerating reinforcement learning by composing solutions of auto-
matically identified subtasks,” Journal of AI Research, 16:59–104, 2002.

[43] Ebay, EBay IT Discussion Board, http://forums.ebay.com/.
[44] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. Journal, 23(98):298–305,

1973.



book MOCL006.cls July 3, 2008 15:58

140 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

[45] D. Foster and P. Dayan, “Structure in the space of value functions,” Machine Learning,
49:325–346, 2002. doi:10.1023/A:1017944732463

[46] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte Carlo algorithms for finding low-
rank approximations,” in Proceedings of the 39th Annual IEEE Symposium on Foundations
of Computer Science, pp. 370–378, 1998.

[47] G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD: John Hopkins
University Press, 1989.

[48] W. Grassmann, M. Taksar, and D. Heyman, “Regenerative analysis and steady state
distributions for Markov Chains,” Operations Research, 33(5):1107–1116, 1985.

[49] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor placements in Gaussian
processes,” in 22nd International Conference on Machine Learning, July 2005.

[50] D. Gurarie, Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Repre-
sentations and Laplacians. Amsterdam: North-Holland, 1992.

[51] M. Hamermesh, Group Theory and its Application to Physical Problems. New York: Dover,
1989.

[52] M. Hein, J. Audibert, and U. von Luxburg, “Graph Laplacians and their convergence
on random neighborhood graphs,” Journal of Machine Learning Research, 8:1325–1368,
2007.

[53] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of the 22nd Annual
International SIGIR Conference, 1999.

[54] J. Jackson, The Harmonic Sieve: A Novel Application of Fourier Analysis to Machine Learn-
ing Theory and Practice. PhD thesis, Carnegie-Mellon University, 1995.

[55] J. Johns and S. Mahadevan, “Constructing basis functions from directed graphs for
value function approximation,” in Proceedings of the International Conference on Machine
Learning (ICML), pp. 385–392. ACM Press, 2007.

[56] J. Johns, S. Mahadevan, and C. Wang, “Compact spectral bases for value function
approximation using Kronecker Factorization,” in Proceedings of the National Conference
on Artificial Intelligence (AAAI), 2007.

[57] T. Jolliffe, Principal Components Analysis. Berlin: Springer, 1986.
[58] S. Kakade, “A natural policy gradient,” In Proceedings of Neural Information Processing

Systems. Cambridge, MA: MIT Press, 2002.
[59] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in SIGGRAPH

’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interac-
tive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., 2000.
doi:10.1145/344779.344924

[60] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal of Scientific Computing, 20(1):359–392, 1999.



book MOCL006.cls July 3, 2008 15:58

BIBLIOGRAPHY 141

[61] A. Kaveh and A. Nikbakht. Block diagonalization of Laplacian matrices of symmetric
graphs using group theory. International Journal for Numerical Methods in Engineering,
69:908–947, 2007. doi:10.1002/nme.1794

[62] P. Keller, S. Mannor, and D Precup, “Automatic basis function construction for ap-
proximate dynamic programming and reinforcement learning,” in Proceedings of the 22nd

International Conference on Machine Learning (ICML), pp. 449–456. Cambridge, MA:
MIT Press, 2006.

[63] D. Koller and R. Parr, “Policy iteration for factored MDPs,” in Proceedings of the 16th
Conference on Uncertainty in AI, pp. 326–334, 2000.

[64] I. Koutis and G. Miller, “A linear work, O(n1/6) time, parallel algorithm for solv-
ing planar Laplacians,” in Symposium on Discrete Algorithms (SODA), pp. 1002–1011,
2007.

[65] E. Kushilevitz and Y. Mansour, “Learning decision trees using the Fourier spectrum,”
In STOC ’91: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pp. 455–464, New York, NY, USA, 1991. ACM. doi:10.1145/103418.103466

[66] J. Lafferty and G. Lebanon, “Diffusion kernels on statistical manifolds,” Journal of
Machine Learning Research, 6:129–163, 2005.

[67] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine Learning
Research, 4:1107–1149, 2003. doi:10.1162/jmlr.2003.4.6.1107

[68] J. C. Latombe, Robot Motion Planning. Dordrecht: Kluwer, 1991.
[69] S. Lavalle, Planning Algorithms. Cambridge: Cambridge University Press, 2006.
[70] J. M. Lee, Introduction to Smooth Manifolds. Berlin: Springer, 2003.
[71] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits, Fourier transform, and

learnability,” Journal of the ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138
[72] M. Maggioni and S. Mahadevan, “Fast direct policy evaluation using multiscale anal-

ysis of Markov diffusion processes,” in Proceedings of the 23rd International Con-
ference on Machine Learning, pp. 601–608, New York, NY, USA, 2006. ACM
Press. doi:10.1016/0004-3702(92)90058-6

[73] M. Maggioni and S. Mahadevan, A multiscale framework for markov decision processes
using diffusion wavelets, Technical Report TR-2006-36, Department of Computer
science, University of Massachusetts, 2006.

[74] S. Mahadevan, “Proto-value functions: developmental reinforcement learning,” in
Proceedings of the International Conference on Machine Learning, pp. 553–560,
2005.

[75] S. Mahadevan, “Representation policy iteration,” in Proceedings of the 21th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-05), pp. 372–37. AUAI Press,
2005.



book MOCL006.cls July 3, 2008 15:58

142 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

[76] S. Mahadevan, “Adaptive mesh compression in 3D computer graphics using multiscale
manifold learning,” in Proceedings of the International Conference on Machine Learning
(ICML), pp. 585–592. ACM Press, 2007.

[77] S. Mahadevan and J. Connell, “Automatic programming of behavior-based robots using
reinforcement learning,” Artificial Intelligence, 55:311–365, 1992 (appeared originally as
IBM TR RC16359, Dec 1990).

[78] S. Mahadevan and M. Maggioni, “Value function approximation with Diffusion
Wavelets and Laplacian Eigenfunctions,” in Proceedings of the Neural Information Pro-
cessing Systems (NIPS). Cambridge, MA: MIT Press, 2006.

[79] S. Mahadevan and M. Maggioni. Proto-Value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes. Journal of Machine
Learning Research, 8:2169–2231, 2007.

[80] S. Mahadevan, M. Maggioni, K. Ferguson, and S. Osentoski, “Learning representation
and control in continuous markov decision processes,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2006.

[81] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet represen-
tation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693,
1989. doi:10.1109/34.192463

[82] S. Mallat, A Wavelet Tour in Signal Processing. New York: Academic, 1998.
[83] C. Manning and H. Schütze, Foundations of Statistical Natural Language Processing.

Cambridge, MA: MIT Press, 1999.
[84] Y. Mansour and S. Sahar, Implementation issues in the Fourier transform algorithm,

Machine Learning, 40(1):5–33, 2000. doi:10.1023/A:1011034100370
[85] A. McCallum, A. Corrada-Emmanuel, and X. Wang, The author-recipient-topic

model for topic and role discovery in social networks: Experiments with enron and
academic email, Technical Report UM-CS-2004-096, Department of Computer Sci-
ence, University of Massachusetts, Amherst, 2004.

[86] M. Meila and J. Shi, “Learning segmentation by random walks,” in NIPS, 2001.
[87] C. Meyer, “Uncoupling the Perron Eigenvector Problem,” Linear Algebra and its Appli-

cations, 114/115:69–94, 1989. doi:10.1016/0024-3795(89)90452-7
[88] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”

in Proceedings of the Neural Information Processing Systems, 2002.
[89] A. Ng, H. Kim, M. Jordan, and S. Sastry, “Autonomous helicopter flight via reinforce-

ment learning,” in Proceedings of Neural Information Processing Systems, 2004.
[90] P. Niyogi and M. Belkin, Semi-supervised learning on Riemannian manifolds, Tech-

nical Report TR-2001-30, University of Chicago, Computer Science Dept., Nov.
2001.



book MOCL006.cls July 3, 2008 15:58

BIBLIOGRAPHY 143

[91] P. Niyogi, I. Matveeva, and M. Belkin, Regression and regularization on large graphs.
Technical report, University of Chicago, Nov. 2003.

[92] S. Osentoski and S. Mahadevan, “Learning State Action Basis Functions for Hier-
archical Markov Decision Processes,” in Proceedings of the International Conference on
Machine Learning (ICML), pp. 705–712, 2007.

[93] R. Parr, C. Painter-Wakefiled, L. Li, and M. Littman, “Analyzing feature generation for
value function approximation,” in Proceedings of the International Conference on Machine
Learning (ICML), pp. 737–744, 2007.

[94] J. Peters, S. Vijaykumar, and S. Schaal, “Reinforcement learning for humanoid robots,”
in Proceedings of the 3rd IEEE-RAS International Conference on Humanoid Robots, 2003.

[95] M. Petrik, “An analysis of Laplacian methods for value function approximation in
MDPs,” in Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2574–2579, 2007.

[96] J. C. Platt, FastMap, MetricMap, and Landmark MDS are all Nyström algorithms,
Technical Report MSR-TR-2004-26, Microsoft Research, Sep. 2004.

[97] P. Poupart and C. Boutilier, “Value directed compression of POMDPs,” in Proceedings
of the International Conference on Neural Information Processing Systems (NIPS), 2003.

[98] M. L. Puterman, Markov Decision Processes. Wiley Interscience, New York, USA, 1994.
[99] S. Rosenberg, The Laplacian on a Riemannian Manifold. Cambridge: Cambridge Uni-

versity Press, 1997.
[100] S. Roweis. Neural information processing systems NIPS 1–12 papers data set.

http://www.cs.toronto.edu/∼roweis/data.html. doi:10.1126/science.290.5500.2323
[101] S. Roweis and L. Saul, Nonlinear dimensionality reduction by local linear embedding.

Science, 290:2323–2326, 2000.
[102] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Englewood Cliffs,

NJ: Prentice-Hall, 2002.
[103] B. Sallans and G. Hinton, “Reinforcement learning with factored states and actions,”

Journal of Machine Learning Research, 5:1063–1088, 2004.
[104] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regular-

ization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2001.
[105] J. Serre, Linear Representations of Finite Groups. Berlin: Springer, 1977.
[106] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE PAMI, 22:888–

905, 2000.
[107] O. Sorkine, D. Cohen-Or, D. Irony, and S. Toledo, Geometry-aware bases for shape

approximation, IEEE Transactions on Visualization and Computer Graphics, 11(2):171–
180, 2005. doi:10.1109/TVCG.2005.33



book MOCL006.cls July 3, 2008 15:58

144 REPRESENTATION DISCOVERY USING HARMONIC ANALYSIS

[108] D. Spielman and S. Teng, “Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems,” in STOC ’04: Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, pp. 81–90, 2004.
doi:10.1145/1007352.1007372

[109] G. Stewart and J. Sun, Matrix Perturbation Theory. New York: Academic, 1990.
[110] G. Strang, Introduction to Linear Algebra. Cambridge, MA: Wellesley-Cambridge Press,

2003.
[111] R. Sutton and A. G. Barto, An Introduction to Reinforcement Learning. Cambridge, MA:

MIT Press, 1998.
[112] G. Taubin, “A signal processing approach to fair surface design,” in SIGGRAPH ’95:

Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,
pp. 351–358. ACM Press, 1995. doi:10.1145/218380.218473

[113] G. Taubin, T Zhang, and G. Golub, Optimal surface smoothing as filter design, in
ECCV (1), pp. 283–292, 1996.

[114] J. Tenenbaum, V. de Silva, and J. Langford, A global geometric frame-
work for nonlinear dimensionality reduction, Science, 290:2319–2323, 2000.
doi:10.1126/science.290.5500.2319

[115] A. Terras, Fourier Analysis on Finite Groups and Applications. Cambridge: Cambridge
University Press, 1999.

[116] G. Tesauro, “TD-Gammon, a self-teaching backgammon program, achieves master-
level play,” Neural Computation, 6:215–219, 1994. doi:10.1162/neco.1994.6.2.215

[117] G. Theocharous, K. Rohanimanesh, and S. Mahadevan, “Learning hierarchical partially
observable markov decision processes for robot navigation,” in IEEE Conference on
Robotics and Automation (ICRA), 2001.

[118] M. Thornton, R. Drechsler, and D. Miller, Spectral Methods for VLSI Design. Dordrecht:
Kluwer, 2001.

[119] B. Turker, J. Leydold, and P. Stadler, Laplacian Eigenvectors of Graphs. Berlin: Springer,
2007.

[120] C. Van Loan and N. Pitsianis, “Approximation with Kronecker Products,” in Linear
Algebra for Large Scale and Real Time Applications, pp. 293–314. Dordrecht: Kluwer,
1993.

[121] B. Van Roy, Learning and Value Function Approximation in Complex Decision Processes.
PhD thesis, MIT, 1998.

[122] G. Wallace, “The JPEG still picture compression standard,” Communications of the
ACM, 34(4):30–44, 1991. doi:10.1145/103085.103089

[123] C. Wang and S. Mahadevan, “Multiscale Analysis of Document Corpora Based on
Diffusion Models,” University of Massachusetts, Amherst, Technical Report TR-2008-
16, 2008.



book MOCL006.cls July 3, 2008 15:58

BIBLIOGRAPHY 145

[124] R. Wang, J. Traan, and D. Luebke, “All-frequency relighting of glossy objects,” ACM
Transactions on Graphics, 25(2), 2006.

[125] C. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
England, 1989.

[126] C. Williams and M. Seeger, “Using the Nyström Method to speed up Kernel Machines,”
in Proceedings of the International Conference on Neural Information Processing Systems,
pp. 682–688, 2000.

[127] W. Zhang and T. Dietterich, “A reinforcement learning approach to job-shop schedul-
ing,” in Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1114–1120, 1995.

[128] X. Zhou, Semi-Supervised Learning With Graphs. PhD thesis, Carnegie Mellon Univer-
sity, 2005.



book MOCL006.cls July 3, 2008 15:58

146



book MOCL006.cls July 3, 2008 15:58

147

Author Biography
Dr. Sridhar Mahadevan is an Associate Professor in the Department of Computer Science at
the University of Massachusetts, Amherst. He received his PhD from Rutgers University in
1990. Professor Mahadevan’s research interests span several subfields of artificial intelligence
and computer science, including machine learning, multi-agent systems, planning, perception,
and robotics. His PhD thesis introduced the learning apprentice model of knowledge acquisition
from experts, as well as a rigorous study of concept learning with prior determination knowledge
using the framework of Probably Approximately Correct (PAC) learning. In 1993, he co-edited
(with Jonathan Connell) the book Robot Learning published by Kluwer Academic Press, one
of the first books on the application of machine learning to robotics. Over the past decade, his
research has centered around Markov decision processes and reinforcement learning, where his
papers are among the most cited in the field. His recent work on spectral and wavelet methods
for Markov decision processes has generated much attention, leading to a unified framework
for learning representation and behavior.

Professor Mahadevan is an Associate Editor for the Journal of Machine Learning Research.
Previously, he served for many years as an Associate Editor for Journal of AI Research and the
Machine Learning Journal. He has been on numerous program committees for AAAI, ICML,
IJCAI, NIPS, ICRA, and IROS conferences, including area chair for at AAAI, ICML, and
NIPS conferences. In 2001, he co-authored a paper with his students Rajbala Makar and
Mohammad Ghavamzadeh that received the best student paper award in the 5th International
Conference on Autonomous Agents. In 1999, he co-authored a paper with Gang Wang that
received the best paper award (runner-up) at the 16th International Conference on Machine
Learning. He was an invited tutorial speaker at ICML 2006, IJCAI 2007, and AAAI 2007.


	Overview
	WHAT IS A REPRESENTATION?
	PRINCIPLES OF REPRESENTATION DISCOVERY
	OVERVIEW OF THE BOOK
	Road Map to the Book
	Theory of Basis Construction: Vector Spaces
	Generalizing Fourier and Wavelet Analysis
	Algorithms and Computational Tractability
	Case Studies

	BIBLIOGRAPHICAL REMARKS

	Vector Spaces
	ANALYSIS--SYNTHESIS FRAMEWORK
	Approximating 3D Objects in Computer Graphics
	Abstract Fourier Expansion
	Issues in Basis Construction and Selection

	DUAL BASES
	LINEAR MAPPINGS AND MATRIX REPRESENTATIONS
	INVARIANT SUBSPACES
	Dual Bases and Direct Sum Decompositions
	QR Decomposition and Gram--Schmidt Orthogonalization
	Eigenspace Decomposition
	Singular Value Decomposition

	BASES IN INFINITE-DIMENSIONAL SPACES
	Normed spaces
	Inner Product Spaces
	Banach and Hilbert Spaces

	PROJECTIONS
	Projections onto Finite-Dimensional Spaces
	Projections in Infinite-Dimensional Hilbert Spaces
	Reproducing Kernel Hilbert Spaces

	BIBLIOGRAPHICAL REMARKS

	Fourier Bases on Graphs
	ANALYSIS--SYNTHESIS PERSPECTIVE REVISITED
	Function Approximation Using Laplacian Eigenfunctions
	Analysis--Synthesis Example

	RANDOM WALKS AND THE LAPLACIAN
	Variational Analysis of Laplacian Eigenfunctions

	DIRECTED GRAPH LAPLACIAN
	GRAPH PARTITIONING AND CHEEGER CONSTANTS
	BIBLIOGRAPHICAL REMARKS

	Multiscale Bases on Graphs
	INTRODUCTION
	MULTI-RESOLUTION ANALYSIS AND SYNTHESIS
	Multi-resolution Analysis on Graphs
	Examples of Diffusion Wavelets

	DIFFUSION ANALYSIS
	Basic Setup and Notation
	Multiscale Analysis of Functions and Stochastic Processes

	DIFFUSION WAVELETS
	Construction of Diffusion Wavelets
	Multiscale Compression of a Simple Markov Chain
	Comparison of Eigenfunction and Diffusion Wavelet Bases

	BIBLIOGRAPHICAL REMARKS

	Scaling to Large Spaces
	KRONECKER SUM DECOMPOSITION
	Product Spaces: Complex Graphs from Simple Ones

	SCALING TO LARGE GRAPHS USING APPROXIMATION METHODS
	Kronecker Product Approximation
	Graph Partitioning and Fast Laplacian Solvers

	SCALING TO CONTINUOUS SPACES
	RIEMANNIAN MANIFOLDS
	Manifolds
	Hodge Theorem

	THE NYSTRÖM INTERPOLATION OF EIGENFUNCTIONS
	SAMPLING TECHNIQUES
	EXPLOITING DOMAIN KNOWLEDGE
	BIBLIOGRAPHICAL REMARKS

	Case Study: State-Space Planning
	INTRODUCTION
	MARKOV DECISION PROCESSES
	Hilbert Space Formulation of Value Function Approximation
	Least-Squares Approximation of Action-Value Functions

	REPRESENTATION POLICY ITERATION
	Sample Run of RPI on the Two-Room Environment
	Comparison with Hand-coded Parametric Bases

	SCALING PROTO-VALUE FUNCTIONS: PRODUCT SPACES
	Factored Representation Policy Iteration for Structured Domains
	Experimental Results

	RPI IN CONTINUOUS DOMAINS
	Three Control Tasks
	RPI with On-Policy Sampling
	Comparing PVFs with RBFs on Continuous MDPs
	Policy and Reward-Sensitive PVFs
	Extensions of Proto-Value Functions

	MULTISCALE BASIS CONSTRUCTION FOR MARKOV DECISION PROCESSES
	Preliminaries
	Direct Solution of Bellman's Equation
	Experiments

	BIBLIOGRAPHICAL REMARKS

	Case Study: Computer Graphics 
	INTRODUCTION
	SPECTRAL MESH COMPRESSION: FOURIER VERSUS WAVELET BASES
	APPROXIMATION OF MESH GEOMETRY USING OBJECT-SPECIFIC BASES
	Global Laplacian Eigenfunctions
	Diffusion Wavelet Bases

	SCALING TO LARGE GRAPHS USING GRAPH PARTITIONING
	Computing Local Basis Functions

	MESH COMPRESSION USING FOURIER AND WAVELET BASES
	Compression of Small Objects
	Partition Size Versus Error
	Compression of Large Objects

	SUMMARY
	BIBLIOGRAPHICAL REMARKS

	Case Study: Natural Language 
	INTRODUCTION
	FOURIER ANALYSIS OF TEXT
	Term--Document Matrix Representation
	Latent Semantic Indexing

	MULTISCALE ANALYSIS OF TEXT USING DIFFUSION WAVELETS
	Fourier Versus Wavelet Analysis of Text
	Main Algorithm
	Advantages of the Diffusion Wavelet Approach

	EXPERIMENTAL RESULTS
	NIPS Paper Data Set
	Diffusion Model: Test 1
	Diffusion Model: Test 2
	Running Times for Various Approaches
	eBay Discussion Forum Data Set

	CONCLUSIONS
	BIBLIOGRAPHICAL REMARKS

	Future Directions
	COMPRESSED SENSING
	HARMONIC ANALYSIS AND LOGIC
	GROUP REPRESENTATION THEORY
	BIBLIOGRAPHICAL REMARKS




