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Preface

Intersection graphs provide theory to underlie much of graph theory. They
epitomize graph-theoretic structure and have their own distinctive concepts
and emphasis. They subsume concepts as standard as line graphs and as
nonstandard as tolerance graphs. They have real applications to topics
like biology, computing, matrix analysis, and statistics (with many of these
applications not well known).

While there are other books covering various topics of intersection graph
theory, these books have focus and intent that are different from ours. Even
those that are out of date are still valuable sources that we urge our readers
to consult further. [Golumbic, 1980], with its partial updating in [Golumbic,
1984], remains a standard, excellent source, organized around perfect graphs.
There is much related content in [Roberts, 1976, 1978b], both of which em-
phasize intersection graphs and applications. Among others, [Berge, 1989]
develops many of the general concepts in terms of hypergraphs, [Fishburn,
1985] and [Trotter, 1992] stress an order-theoretic viewpoint, [Kloks, 1994]
emphasizes treewidth, and [Prisner, 1995] focuses on graph operators. [Ma-
hadev & Peled, 1995] is devoted to threshold graphs. [Brandstédt, 1993] and
[Brandstadt, Le, & Spinrad, to appear] discuss many of the relevant graph
classes. [Zykov, 1987] includes valuable references to the Russian literature
up to that date.

We have tried to write a concise book, packed with content. The first four
chapters focus on what we feel are the most developed topics of intersection
graph theory, emphasizing chordal, interval, and competition graphs and
their underlying common theory; Chapter 5 discusses the allied topic of
threshold graphs. Chapter 6 extends the common theory to p-intersection,
multigraphs, and tolerance. Chapter 7 adopts a different spirit, serving as a
guide to an active, scattered literature; we hope it communicates the flavor
of various topics of intersection graph theory by offering tastes of enough
different topics to lure interested readers into pursuing the citations and
learning more. We have pointed in a multitude of directions, while resisting
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trying to point in all directions.

We have made the book self-contained modulo the basics present in any
introductory graph theory text, whether one like [Chartrand & Lesniak,
1996] with virtually no overlap with our topics, or one like [West, 1996] that
introduces several of the same topics. We hope it can serve as a platform
from which one can launch more detailed investigations of the broad array of
topics that involve intersection graphs. The more than one hundred simple
exercises scattered throughout the first six chapters are meant to be done
as they occur, to reinforce and extend the discussion.

In spite of its size, the Bibliography does not pretend to be complete.
Many relevant papers are not included—even some of our own—partly by
design and partly reflecting our ignorance and prejudices. We hope that
even connoisseurs will find a few surprises, though. We have made a special
effort to include early papers and recent papers with good bibliographies,
but we have typically included very few papers that emphasize solving par-
ticular problems (e.g., coloring, domination, identifying maxcliques, and a
host of others) or that emphasize details of algorithms and complexity. Pa-
pers marked as “to appear” had not been published when this book was
completed and should be looked for using the American Mathematical So-
ciety’s MathSciNet. We also intend limited updating (including, inevitably,
corrections) on a web site locatable though the authors’ home institutions.

The following are among the possible uses of this book: (i) as a source
book for mathematical scientists and others who are not familiar with this
material; (il) as a guide for a research seminar, utilizing the references to
explore additional topics in depth; (iii) as a 56 week “unit” in an advanced
undergraduate/graduate level course in graph theory.

We acknowledge the valuable input of anonymous reviewers and the en-
couragement and interest of many colleagues, Peter Hammer in particular.
We thank Jend Lehel in particular for comments on certain portions of the
manuscript, while of course we retain all responsibility for lapses and short-
comings.

(Mc)?



Chapter 1

Intersection Graphs

The goal of this chapter is to present basic definitions and results for in-
tersection graphs of arbitrary families of sets. This machinery will then be
used as the basis for the more specialized topics in the following chapters.
Much of the viewpoint of this chapter reflects [Roberts, 1985].

1.1 Basic Concepts

We follow the standard terminology and notation that is common to most
graph theory texts, such as [Chartrand & Lesniak, 1996] or [West, 1996]. For
instance, V(G) and E(G) refer respectively to the sets of vertices and edges
of a graph G of order |V(G)| and, for u,v € V(G), uv refers to the edge
joining u and v. Uncommonly, we allow the null subgraph of G, meaning the
graph Ky having V(Kjp) = 0 = E(Kp). In particular, the null subgraph is
a complete subgraph of every graph (section 4.2 will show one reason why
this is desirable).

By a family {S1,...,Sn} of sets or graphs we mean a multiset, which
allows the possibility that S; = S; even though i # j. Unless we specifically
say otherwise, all graphs and digraphs will be finite and graphs will have
neither loops nor multiple edges.

We define a mazclique of a graph to be any complete subgraph that is not
properly contained in another complete subgraph. (Warning: some authors
use “clique” for what we call “maxclique,” while for many others a clique
can be any complete graph.) For instance, the graph shown on the left in
Figure 1.1 has two maxcliques, of orders two and three.

Let F = {S1,...,5n} be any family of sets. The intersection graph of
F, denoted Q(F), is the graph having F as vertex set with .S; adjacent to
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2 CHAPTER 1. INTERSECTION GRAPHS

T1T3T4%s
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1223
Figure 1.1: An intersection graph G, both “plain” and set labeled.

S; if and only if ¢ # j and S;N.S; # 0. A graph G is an intersection graph if
there exists a family F such that G 2 Q(F), where we typically display this
isomorphism by writing V(G) = {v1,...,v,} with each v; corresponding to
Si; thus v;v; € E(G) if and only if S;NS; # 0. When G = Q(F), F is then
called a set representation of G.

Example 1.1 Suppose F = {51, Sy, S3, 51} where §; = {1}, S2 = {z1,
z2, 23}, S3 = {x4}, and Sy = {x1,z3,24,25}. Then G = Q(F) is shown
in Figure 1.1. It is sometimes useful to label the vertices of an intersection
graph G with the actual sets of F (abbreviating {z1, 22, 23} as 12273, etc.),
producing the graph on the right in Figure 1.1, which we call a set-labeled
intersection graph.

Suppose G = Q(F) where F = {S1,...,59,} and each v; € V(G) cor-
responds to S; € F under the isomorphism. For each z € U],S;, set
G, = {vi : z € S;}. It is easy to see that each G; induces a complete graph
of G of order |{i: z € 5;}| > 1.

Example 1.1 (continued) For the given family F and G = Q(F),
Gz, = {v1,v2,v4} (these being the vertices corresponding to the three S;’s
that contain x1); similarly |Gg,| = 1, |G| = |Gzy| = 2, and |G| = 1.

An edge clique cover of G is any family € = {Q,...,Qr} of complete
subgraphs of G such that every edge of G is in at least one of E(Q1),..
E(Qy); in other words, zy € E(G) implies zy € Ut E(Q;). Remember
that any of these @);’s may be the null subgraph of G We customarily use
Q’s (often with subscripts, superscripts, or other ornamentation) to denote
complete subgraphs of G or, interchangeably, the vertex sets of complete
subgraphs.

Clearly, the set of all maxcliques of any graph G forms an edge clique
cover of G, as does the set E(G) when each edge is viewed as a 2-element
subset of V(G). But a graph can have many other edge clique covers.
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Example 1.1 (continued) For the given graph G, taking Q1 = Gy,
= {v1, v2, va}, Q2 = Gey = {¥2}, Q3 = Gz = {vo, 4}, Q1 = Gz, =
{vs,v4}, and Q5 = Gz = {vs} forms a 5-member edge clique cover &
of G. Alternatively, @] = {v1, vo, 4}, @5 = {v1,va}, Q5 = {vs}, and
Q% = {vs,v4} form a 4-member edge clique cover Q' of G.

The 5-member edge clique cover considered in Example 1.1 illustrates
how each set representation F = {S1,...,S,} of any intersection graph G
determines a dual edge clique cover E(F) of G defined to be the family

E(F) ={Gz : x € U;S;}, where each G, = {v; : z € 5},

letting each v; € V(G) correspond to S; € F under the isomorphism G £
QF).

Suppose G is any graph with V(G) = {v1,...,v,}. Every particular edge
clique cover &€ = {Q1,...,Qx} of G determines a dual set representation
F(E) of G defined to be the family

F(E) = {S1,...,Sn}, where each S; = {j : v; € Q;}

for each 7 € {1,...,n}. Observe that each S; in a dual set representation
F () is a set of integers, and that S; N S; # O if and only if viv; € E(G).

Example 1.1 (continued) For the 5-member edge clique cover £(F)
as above, the dual set representation F(E(F)) consists of §; = {j : v; €
Qj} = {1}, Sy = {] 1V € QJ} = {1,2,3}, S3 = {4}, and 54 = {1,3, 4,5}.
Notice how this set representation corresponds, set by set, to the F at the
beginning of the example.

For the 4-member edge clique cover &' = {Q1, @5, Q%, @4} given earlier,
the dual edge clique cover F(£') consists of S1 = {j : 1 € Q;} = {1,2},
SQ = {1}, S3 = {3,4}, and S4 = {1,2,4}.

Exercise 1.1 Given any graph G with edge clique cover £, show that
the dual set representation F = F(€) defined above actually is a set rep-
resentation; in other words, show that G = Q(F) with each v; € V(G)
corresponding to S; € F.

Exercise 1.2 Show that if G is any intersection graph with set repre-
sentation F, then F(E(F)) corresponds, set by set, to F. Similarly, if G is
any intersection graph with edge clique cover £, then £(F(£)) corresponds,
set by set, to £.
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The back-and-forth interplay—duality—between set representations and
edge clique covers is a characteristic feature of intersection graph theory. We
will see how it allows the interrelation of two different sorts of structures,
each of which can be viewed as being represented by the other. Sections 1.4
and 1.5 will show examples of this, with many others appearing in later
chapters. This interplay will show up in many of the results we present; it
is a large part of what makes them work. (We present one enticing example
in section 4.3: intersection graphs are used to consider whether ecological
“food webs” can be represented by “competition graphs,” and then whether
those graph representations in turn have “interval representations”—back
and forth and back again between set representations and edge clique cov-
ers.)

Every graph G has the edge clique cover £ = E(G), or at the other
extreme £ could consist of all the maxcliques of G. Thus Exercise 1.1 proves
the “first theorem” of intersection graph theory, from [Marczewski, 1945].

Theorem 1.1 (Marczewski) Every graph is an intersection graph. O

While every graph has a set representation, intersection graph theory
uses properties of the set representations and various conditions imposed
thereon, rather than the conventional graph-theoretic properties that “for-
get” the sets. In many interesting examples a set representation F of a
graph G actually consists of the vertex sets of subgraphs of another graph
H. We will often identify the vertex sets of subgraphs with the subgraphs
themselves and say that F consists of the subgraphs. When this happens,
we call G the guest graph, H the host graph, and the set representation a
graph representation of G. Theorem 1.1 can be strengthened to show that
every graph has a graph representation.

Theorem 1.2 Every graph G is the intersection graph of a family of
subgraphs of a graph.

Proof. Suppose G is any graph, £ = {Q1,...,Qn} is any edge clique
cover of G, and F = F(€) is the dual set representation of G determined
from &; thus G = Q(F). Define H to have vertex set {1,...,m} with
ij € E(H) if and only if {3,j} C Sk for some S € F. Then each Sy € F
induces a complete subgraph of H and, since F is a set representation of G,
these induced complete subgraphs will form a graph representation of G. O
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1 < 2 U1 U204 U2
e 3 U3y Voly

Figure 1.2: A host graph H for the graph G in Figure 1.1 (and H as a
set-labeled intersection graph as in Lemma 1.3).

Example 1.1 (continued) We illustrate the construction in the proof
of Theorem 1.2 using the graph G and the 5-member edge clique cover
£ given earlier in Example 1.1. The host graph H corresponding to this
guest graph G is shown in Figure 1.2. The subgraph S of H is induced by
{1} since @, is the only member of £ that contains vy, and Sy is induced
by {1,2,3} since @1, Q2, and Q3 are the members of £ that contain wvy;
similarly, S3 is induced by {4} and S4 by {1,3,4,5}.

Exercise 1.3 Suppose the pairs G,€ and H,F are as in the proof of
Theorem 1.2. Show that 3 {|Q:|: @ € £} = 1 {|Si| : Si € F}.

Focusing on the graph H constructed in the proof of Theorem 1.2, the
following lemma shows how to go from a graph G with edge clique cover £
to a graph H with edge clique cover F such that G = Q(F) and H = Q(£).
Figure 1.2 shows H from Example 1.1 as the set-labeled intersection graph
Q(E). Notice the symmetry—we can go either direction between H,F and
G, €&, and so each graph can be thought of as a host for the other. We
exploit this dual relationship between pairs of graphs in section 1.4 and
later chapters.

Lemma 1.3 Suppose G is any graph and € = {Q1,...,Qm} is any edge
clique cover of G. Let F and H be as in the proof of Theorem 1.2. Then F
is an edge clique cover of H, £ = E(F), and H = Q(£).

Proof. This can be proved as a straightforward extension of the proof
of Theorem 1.2, with each ¢ € V(H) corresponding to Q; € £ under the
isomorphism H = Q(£). a

Exercise 1.4 Fill in the details in the proof of Lemma 1.3.
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1.2 Intersection Classes

Theorem 1.1 shows that for every graph G there is a family F of sets such
that G = Q(F). Interesting problems arise when restrictions are placed on
G and F. Specifically, let G be a set of graphs and X be a set of sets. We
write G = Q(X) if each graph G € G is isomorphic to an intersection graph
G’ = Q(F) for some family F of sets from ¥ and, vice versa, each G' = Q(F)
for a family F from ¥ is isomorphic to a G € G. It is not always the case
that each G has a X for which G = Q(X), and the situation in which it does
happen will be of considerable interest to us (for instance with ¥ the set of
all subtrees of a tree in Chapter 2 and X the set of all intervals of the real
line in Chapter 3). Most of this section is based on [Scheinerman, 1985a],
in which a set G of graphs is defined to be an intersection class if there is a
¥ such that G = Q(X).

A set G of graphs (or, equivalently, a property of graphs) is closed under
induced subgraphs if G’ € G whenever G’ is an induced subgraph of some G €
G. Equivalently, classes (properties) of graphs that are closed under induced
subgraphs are precisely those that can be defined by a list of forbidden
induced subgraphs—a potentially infinite list, with [McKee, 1978] describing
what more is needed to ensure a finite list. As examples, the set of all planar
graphs (or the graph-theoretic property of being planar) is closed under
induced subgraphs, but the set of all connected graphs is not. The following
exercise shows that the connected graphs do not form an intersection class.

Exercise 1.5 Show that every intersection class is closed under induced
subgraphs.

Define a set G of graphs to be closed under vertezx expansion if G’ € G
whenever G’ results from G € G by repeatedly replacing an existing vertex
v by a pair v/, v"” of new adjacent vertices, each having the same pre-existing
neighbors as v did. The set of all connected graphs is closed under vertex
expansion, but the set of all planar graphs is not.

Exercise 1.6 Show that every intersection class is closed under vertex
expansion.

A set G of graphs has a composition series if there exists a countable
sequence (G, Gy, ...) of graphs in G such that each G; is an induced sub-
graph of G;;; and each G € G is the induced subgraph of some G;. Notice
that if the set G is closed under disjoint unions, then G has a composition
series where, for instance, each G, can be taken to be the disjoint union of
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{G € G : |V(G)| = i}. This shows that the set of all planar graphs has
a composition series; somewhat similarly, so does the set of all connected
graphs.

Exercise 1.7 (Scheinerman) Show that the set of all graphs that do
not contain both cycles C4 and Cs as induced subgraphs does not have a
composition series.

Lemma 1.4 (Scheinerman) If G is an intersection class, then there
is a countable ¥ such that G = Q(X), and G has a composition series.

Proof. Consider an intersection class G = Q(X). Since there are only
finitely many graphs of each possible order, G is certainly countable—say,
G = {G1,Ga4,...} where each Gy = Q(F,) and each F;, C X. Since each
V(Gy) is finite, for each i there is a finite F}, C Fi such that Gy = Q(F}).
Let ¥’ be the countable subset F] UF5 U --- of X. Then G = Q(¥).

Therefore, we can assume that G = Q(X) where & = {5,S5;,...} is
countable. Define graphs Hy, Ho, ..., where each H; has

V(Hy)={W:1<i<kand 1<p<k}

and

E(Hy) = {v}v] : (p,i) # (¢,4) and S;N S; # 0}.

Let each F}/ be the family consisting of k copies of each of Sy, ..., Sk. Then
making each v’ correspond to S; produces an isomorphism Hy = Q(FY).
Each Hj, is easily seen to be an induced subgraph of Hy,,. For each G € G,
suppose G = Q(F) where F C ¥ and let A be the maximum subscript 2
for which a vertex of G corresponds to an S; € F under that isomorphism.
Setting k = max{h,|V(G)|} ensures that G is an induced subgraph of Hy.
Therefore, (Hy, H,...) is a composition series for G. 0

Theorem 1.5 (Scheinerman) A set G of graphs is an intersection
class if and only if all three of the following conditions are satisfied:

(1) G is closed under induced subgraphs;

(2) G is closed under vertex expansion;

(3) G has a composition series.
Moreover, if repeated members of ¥ are not allowed in the F'’s, then condi-
tions (1) and (3) are necessary and sufficient.

Proof. Exercises 1.5 and 1.6 and Lemma 1.4 prove the “only if” direc-
tion. For the “if” direction, suppose G satisfies conditions (1), (2), and (3)
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and has a composition series (G1,G2,...). By (1) we can insert additional
members into the composition series and, since each G; is an induced sub-
graph of G4 1, we can even assume that each V(G;) = {v1,...,v;}. For each
1, define

Si = {(j,) : 0 < j < i and vv; € E(G;))}U{(4,5) : > 0}.

Let ¥ = {51, S, ...} (toward showing that G = Q(X)).

Each Gy = Q({851,...,5k}) since, for i < j <k, §;N S; # 0 if and only
if $;NS; = {(4,7)}; that is equivalent to v;v; € (G;), and so to viv; € (Gg).
Each G € G is, by condition (3), an induced subgraph of some Gy, and so
G = Q(F) such that F C ¥ by Exercise 1.5. This shows one direction of
G = Q(%).

Conversely, suppose G = Q(F) where F C . Let 7' = {S;,,...,8:,}
be the subset of F consisting of one copy of each distinct member of F
(remember that the family F may have repeated members). Define a graph
G’ on vertex set {w,...,wn} where wpw, € E(G’) if and only if p # g and
Sp NS, # 0. This makes G’ an induced subgraph of G, with G resulting
from G’ by vertex expansion. Since G’ is an induced subgraph of Gy where
k = max{41,...,in}, condition (1) implies that G’ € G, and so condition (2)
implies that G € G.

The “Moreover” portion of the theorem follows by a similar argument. O

Exercise 1.8 Fill in the details in the proof of the “Moreover” portion
of the theorem, including checking Exercise 1.5 and Lemma 1.4 when the
F’s in ¥ are required to be sets rather than families.

While Scheinerman’s theorem can be used to show that a particular set
G is an intersection class, that is a long way from actually finding a suitable
3 and proving that it works. For instance, Chapter 2 will define “chordal
graphs” as graphs that have no induced cycles larger than triangles, and
these graphs can easily be shown to satisfy all three conditions and so form
an intersection class. Yet chordal graphs were studied for many years before
an intersection characterization was found (or looked for); section 2.1 tells
the story. As another example, planar graphs satisfy conditions (1) and (3)—
but not condition (2)—and so always can be characterized as intersection
graphs of families of distinct sets; yet in spite of this, no natural intersection
characterization is known for them.

Scheinerman’s approach is extended in [Scheinerman, 1985¢, 1986], and
[Quilliot, 1988] presents an abstract approach to similar questions in a hy-
pergraph context.
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[Moorhouse, 1994, to appear(a)] perform a similar analysis for graph-
based intersection classes, the intersection graphs of families of subgraphs
of a set ¥ of graphs. Perhaps surprisingly, this greater restriction on the
objects being intersected allows less restriction on the graphs. Moorhouse
shows that G is a graph-based intersection class if and only if G is closed
under induced subgraphs and closed under vertex expansion. Moreover, if
repeated members of ¥ are not allowed in the F’s, then G being closed
under induced subgraphs is necessary and sufficient. This work is extended
in [Moorhouse, to appear(b)].

It should be noted that while Scheinerman’s and Moorhouse’s work gives
very reasonable characterizations of those classes of graphs that are defin-
able as intersection graphs, less stringent interpretations are possible. The
following exercise, suggested only for those fond of arcana, contains an “in-
tersection characterization” of hamiltonian graphs (a class of graphs that is
not even closed under induced subgraphs!).

Exercise 1.9 (see [Zamfirescu, 1973/74]) Show that a graph G is hamil-
tonian if and only if there exists a family F = {C},...,C,} of cycles of G
such that the following three conditions hold:

e every vertex of G is in at least one cycle in F;

e the intersection-like graph F™ is a tree, where F* is defined to have
V(F*) = F with C;C; € E(F*) if and only if the subgraph C; N C;
consists precisely of a single edge; and

e the intersection graph Q(F) is a tree, where each Cj is now viewed as
a subset of V(G).

1.3 Parsimonious Set Representations

Since every graph is an intersection graph, it may seem that more struc-
ture has to be required of the set representation in order to ask interesting
questions about particular graphs. But several challenging problems arise
instantly, including finding smallest set representations and identifying when
a set representation is unique. Define the intersection number i(G) to be
the minimum cardinality of a set S such that G is an intersection graph of
a family of subsets of §.

Exercise 1.10 Show that i(K2) = 1, i(P3) = 2, {(2K3) = 2, and
i(K3) = 1.
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Figure 1.3: A graph G with intersection number 3. (Graph H will be ez-
plained in Section 1.5.)

Our next result characterizes i(G) in terms of the more “internal” pa-
rameter §(G), the minimum cardinality of an edge clique cover of G. The-
orem 1.6 was proved in [Erdds, Goodman, & Pdsa, 1966] and has been
rediscovered several times by other authors in slightly different contexts.

Theorem 1.6 (Erdds, Goodman, & Pésa) For every graph G, i(G)
= 6(G).

Proof. Let £ be an edge clique cover of G with |£| = 8(G). Then the
set representation F = F(€) of G has |U{S; : S; € F}| = 6(G), so that
i(G) < 6(G). Conversely, since G has a set representation by Theorem 1.2,
we can pick F to have |U {S; : S; € F}| minimum. Then F determines the
edge clique cover £ = £(F) of G with |E] = |U{S; : S; € F}| = i(G), so
that 6(G) < i(G). a

Example 1.2 If G is as in Figure 1.3, then 8(G) = 3: taking £ to
consist of Q1 = {v1,v2,v4}, Q2 = {v2,v3,vs}, and Q3 = {v4, vs,ve} shows
that a 3-member edge clique cover is sufficient, and it is easy to see that no
fewer than three will work. Observe that F(£) = {{1}, {1,2}, {2}, {1,3},
{2,3}, {3}} is a set representation of G with U{S; : S; € F} of minimum
cardinality.

It is not easy in general to determine 8(G) or i(G)—in fact [Kou, Stock-
meyer, & Wong, 1978] shows it to be NP-hard—Dbut they have been deter-
mined for some special cases. Recall that a triangle-free graph is a graph
that does not contain K3 as a subgraph.

Corollary 1.7 Every graph G has i(G) < |E(G)|, with i(G) = |E(G)|
if and only if G is triangle-free. m|
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Now define 7*(G) to be the minimum cardinality of a set S such that G is
an intersection graph of distinct subsets of S. Clearly i(G) < i*(G) for every
graph G. (Warning: Some authors call *(G) the “intersection number” and
i(G) the “pseudointersection number” of G.)

Exercise 1.11 Show i*(K3) = 2, *(P3) = 2, i*(2K3) = 4, and ¢*(K3) =
3.

Exercise 1.12 Modify the proof of Theorem 1.1 to show that every
graph is the intersection graph of a family of distinct sets.

If v € V(G), then the closed neighborhood of v, denoted N[v}, is the set
of all vertices of G adjacent to v together with v itself. A graph G is point
determining if, for all u,v € V(G) with u # v, Nu] # N[v]. [Sumner, 1973]
introduced this notion, and [Lim, 1978], calling them supercompact graphs,
contains many characterizations and properties.

Exercise 1.13 (see [Slater, 1976]) Show that if G is a point determi-
nating graph with no isolated vertices, then i(G) = ¢*(G).

Corollary 1.8 If G is triangle-free and each component has at least
three vertices, then i(G) = i*(G). m

Corollary 1.9 If G is a connected graph with [V (G)| > 4, then i*(G) =
|E(G)| if and only if G is triangle-free. O

Exercise 1.14 Show that the converse to Exercise 1.13 is not true.

Note that if G is a triangle, then i*(G) = 3 = |E(G)|, so the hypothesis
of |[V(G)| > 4 is necessary in Corollary 1.9.

Theorem 1.10 (see [Erdds, Goodman, & Pésa, 1966]) For any graph
G with n = |V(G)|, i(G) < |n?/4].

Proof. First note that we may assume that G contains no isolated
vertices. We show the stronger result that there is an edge clique cover of
G that consists of at most |n?/4] edges and triangles of G.

The result is easily checked for n = 2,3. By way of induction, assume the
result is true for all graphs that have no more than n + 2 vertices, and sup-
pose |V(G)| = n+2. Pick zy € E(G) and consider the graph G' = G\ {z,y}.
By the inductive hypothesis, G’ has an edge clique cover that consists of at
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most |n2/4) edges and triangles. By considering for each v € V(G’) whether
the subgraph induced by {z,y,v} is K3, P3, or K7 U K3, it is clear that at
most n + 1 additional edges or triangles are needed to make an edge clique
cover of G. Since |(n + 2)2/4| = |n?/4] + n + 1, the proof is complete. O

A slightly different proof technique than above shows that, for any graph
G with n = |V(G)| > 4, i*(G) < |n?/4).

Exercise 1.15 Show that the number |n?/4] is best possible in The-
orem 1.10 by finding a graph of order n that requires |n2/4] members in
every edge clique cover.

We now turn briefly to the question of uniqueness. Let G be a graph that
is an intersection graph of a family of distinct subsets of S where |S| = *(G).
Then G is said to be uniquely intersectable if, for every two families F; and
F, of distinct subsets of S, Q(F1) = Q(F2) = G implies that F; can be
obtained from F; by permuting the elements of S.

Example 1.3 The cycle Cy is uniquely intersectable since i*(Cy) = 4
and, for each z € § where |S| = 4, z is in exactly two sets in any F, with
four distinct subsets required.

The complete graph K3 is not uniquely intersectable. To see this, first
note that i*(G) = 3. Let S = {a,b,c}. Now, QF}) = QF,) = G, where
F1 = {{a, b}, {a,c}, {b,c}} and F, = {{a}, {a, b}, {a,b,c}}. Clearly F; can-
not be obtained from F, by permuting the elements of S.

Corollary 1.9 shows that the condition of being triangle-free can lead to
a nice result. The following is another example of this.

Exercise 1.16 (see [Alter & Wang, 1977]) Show that every triangle-free
graph is uniquely intersectable.

Alter and Wang also show that no K, with n > 3 is uniquely inter-
sectable and give many types of uniquely intersectable graphs. However,
the problem of giving a complete characterization of uniquely intersectable
graphs remains open. [Mahadev & Wang, 1997, to appear| contains more
recent developments. [Era & Tsuchiya, 1991] and [Tsuchiya, 1994] discuss
intersection numbers when conditions are placed on the family F of subsets
of S, for instance when F is an antichain, meaning that no two members of
F are comparable.
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[Lim & Peng, 1991} defines uniquely pseudointersectable graphs by drop-
ping the requirement that the members of F; and F3 be distinct in the defini-
tion of uniquely intersectable graphs and shows that the notions of uniquely
intersectable and unique pseudointersectable are equivalent for point deter-
mining graphs.

Exercise 1.17 Show that the complete graph K3 is uniquely pseudoin-
tersectable.

1.4 Clique Graphs

Recall that a maxclique of a graph is a complete subgraph that is not prop-
erly contained in another complete subgraph.

Exercise 1.18 Given maxcliques @ and Q' of G with v € Q such that
v € @', show that there exists v/ € @' such that v € Q and vv' & E(G).

We define the clique graph operator K(-) such that, for any graph H,
K(H) is the intersection graph of all the maxcliques of H. A graph is a
clique graph if it is isomorphic to K(H) for some graph H.

Clique graphs (and the clique graph operator) will be important to us
in later chapters. They are characterized in [Roberts & Spencer, 1971] in
terms of the following condition. A family F = {Si,..., Sk} of subsets of a
set S is said to satisfy the Helly condition if the following holds: For every
subfamily 7/ C F, if the members of F’ intersect pairwise, then all the
members have a common element—in other words, if every S;, S; € F' has
S5;NS; # @, then N{S;: S; € F'} # 0.

Lemma 1.11 Suppose a graph G has edge clique cover € = {Q1,...,Qm}
determining the dual set representation F = F(E) of G. Define a graph H
on V(H)={1,...,m} such that H = Q&) with each i € V(H) correspond-
ing to Q; under that isomorphism. Then &€ satisfies the Helly condition if
and only if F contains every mazclique of H.

Proof. Suppose G, &, F, and H are as in the statement of the lemma.
By Lemma 1.3, F is an edge clique cover of H, making each S; € F induce
a complete subgraph of H, and H = Q(£).

Suppose & satisfies the Helly condition and R is any maxclique of H
(toward showing that R € F). If j, k € R, then jk € E(H) and so @Q;NQx #
0 by H = Q(€); thus the subfamily {Q; : j € R} of £ has pairwise nonempty
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intersections. By the Helly condition, there is some v; € N{Q; : 7 € R}. So
J € R implies v; € Q;, which implies j € S; = {j : vi € Q;} by the definition
of F(£). Thus R C S; and so, since R is a maxclique, R = S; € F.
Conversely, suppose F = F(€) = {S1,...,Sn} contains every maxclique
of H and we are given £ C &£ that has pairwise nonempty intersections
(toward showing that some v; € V(G) is in every Q; € £’). Thus, for every
Qj,Qr € &' there is some v; € Q; N Q, and so j,k € S; = {j : v; € Qj}
by the definition of F(€); since S; induces a complete subgraph of H, this
implies jk € E(H). Thus {j : Q; € £’} induces a complete subgraph of
H and so is contained in some S; € F that is a maxclique of H. By the
definition of F(E), v; is then contained in every Q; € £'. a

Notice that the final conclusion on the dual set representation F in
Lemma 1.11 can be restated as follows: For every subset V/ C V(H), if every
two elements of V'’ are in a common member of F, then all the elements of
V' are in a common member of F. This situation is sometimes described as
F satisfying the conformality condition, dual to the Helly condition.

Theorem 1.12 (Roberts & Spencer) A graph is a clique graph if
and only if it has an edge clique cover that satisfies the Helly condition.

Proof. Given any graph H = K(G), let £ be the edge clique cover of
G consisting of the maxcliques of G; thus H = (£). Then F = F(£) is an
edge clique cover of H by Lemma 1.3 and satisfies the Helly condition by
Lemma 1.11.

Conversely, suppose a graph G has an edge clique cover £ that satisfies
the Helly condition. Let H and F = {S;,...,5,} be as in Lemma 1.3, so
G = Q(F). Define H* on V(H*) = V(H)UF to have E(H*) = E(H)U{jS; :
j € S;}. Each S; € F is a vertex of H* that is in a unique maxclique of H*—
namely, S; U {S;}. Since F contains every maxclique of H by Lemma 1.11,
each maxclique of H* contains a unique vertex S; € F. Thus G & Q(F)
ensures that G & K(H™*), showing that G is indeed a clique graph. ]

Exercise 1.19 Use the proof of Theorem 1.12 to find an H such that
K(H) is the graph in Figure 1.1. Repeat for the graph in Figure 7.12.

Exercise 1.20 Show that the graph G in Figure 1.3 is not a clique
graph.
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Figure 1.4: The graphs that cannot be induced subgraphs of line graphs.

1.5 Line Graphs

We include a discussion of line graphs since they form the first intersection
class to be widely studied and since they typify much that is common to all
intersection classes. They are also somewhat opposite in nature to clique
graphs, which are based on maxcliques, in that line graphs are based on
edges, which could be called “mincliques.”

We define a line graph operator L(-) such that, for any graph H, L(H)
is the intersection graph of all the edges of H, each viewed as a 2-element
subset of V(H). A graph is a line graph if it is isomorphic to L(H) for some
graph H. [Hemminger & Beineke, 1978] surveys the extensive literature on
line graphs up to that date, and [Prisner, 1996a) discusses many more recent
results and generalizations.

Example 1.4 Show that L(K3) = L(K; 3) (K13 is the upper-left graph
in Figure 1.4). [Whitney, 1932] shows that these are the only two nontrivial
graphs that have isomorphic line graphs.

The following theorem, from [Krausz, 1943], is the prototype of what are
sometimes called Krausz-type characterizations, meaning the characteriza-
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tion of an intersection class by requiring each graph of that class to possess a
family of complete subgraphs that satisfies some sort of property intimately
related to the specific intersection class being studied. This is obviously only
a rough description; we give several examples in this monograph, and [Mc-
Kee, 1991a] contains formal details and shows a sense in which Krausz-type
characterizations can be, typically in hindsight, mechanically constructed
from the intersection definitions. This analysis requires formulating graph-
theoretic properties within a formal logical system. This is similar to what
is done in [McKee, 1991d] for certain characterizations of chordal graphs
(Chapter 2) and of interval graphs (Chapter 3), for instance showing how
their intersection definitions can lead, again in hindsight, to other charac-
terizations.

The following theorem can be thought of as translating the properties
“every edge has exactly two vertices,” and “no two edges have two vertices in
common”—in other words, no loops or parallel edges—into simple conditions
on an edge clique cover. This sort of translation is common to many of our
theorems; Lemma 1.11 can also be viewed as an example, translating “every
complete subgraph is contained in a maxclique” into the Helly condition on
an edge clique cover.

Theorem 1.13 (Krausz) A graph G is a line graph if and only if it
has an edge clique cover £ such that both the following conditions hold:

(1) every vertex of G 1s in ezactly two members of £;

(2) every edge of G is in ezactly one member of £.

Proof. First suppose G & L(H) and let F be the edge clique cover of
H that consists of the edges of H. Thus G = Q(F), and we can suppose
subscripts are assigned so that each v; € V(G) corresponds to S; € F
under that isomorphism. Let £ = £(F) be the dual edge clique cover of G
determined from F. Then for each v; € V(G), [{z : v € Gz} =|[{r: z €
Si}| = |Si] = 2, and so condition (1) holds. Similarly for each v;v; € E(G),
Hz :vi,v; € Ge}| = {z : £ € 53,5} £ 1 and equals 1 since £ is an edge
clique cover, and so condition (2) holds.

Conversely, suppose G has an edge clique cover £ = {Q1,...,Qmn} that
satisfies conditions (1) and (2). Let H = Q(£) and let F = F(£) be the dual
set representation of G. Thus G 2 Q(F), and we can suppose subscripts
are assigned so that each S; € F corresponds to v; € V(G) under that
isomorphism. For each edge Q;Q of H there exists some v; € Q; N Q,
and so some S; exists that contains both j and k. By condition (1), each
1Si] = {j : v € Qj}] = 2, and so each Q;Qx € E(H) corresponds to
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S; = {j,k} € F. Moreover, by condition (2), each |S; N Sk} = |{j : vi, v €
Q;}| £ 1, so the members of F are distinct. Therefore, 7 = E(H), and so
G = Q(F) = L(H), showing that G is indeed a line graph. o

Example 1.5 In Figure 1.3, G is the line graph of H. In the first
part of the proof of the theorem, taking S; = {a,c}, S2 = {¢,d}, 53 =
{b,d}, S4 = {c,e}, S5 = {d,e}, and Sg = {e, f} for F leads to G, = {v1},
Gy = {vs}, G. = {v1,v2,v4}, and so on for £. In proving the converse,
taking Q1 = {v1,ve, w4}, @2 = {v2,v3,v5}, @3 = {vg,vs,06}, Q4 = {w1},
Qs = {v3}, and Qg = {uvs} for & leads to Sy = {1,4}, S, = {1,2}, and so on
for F.

Exercise 1.21 Use the proof of Theorem 1.13 to find an H such that
L(H) is the graph in Figure 1.1.

Exercise 1.22 Choose any three graphs in Figure 1.4 and show that
they are not line graphs.

Unlike for clique graphs, other characterizations are available for line
graphs that do not involve finding edge clique covers. For instance, [Beineke,
1968] shows that a graph is a line graph if and only if it has none of the
graphs in Figure 1.4 as an induced subgraph. Efficient recognition algo-
rithms appear in [Roussopoulos, 1973] and [Lehot, 1974].

Line graphs can be generalized to many other sorts of intersection graphs,
for instance using the intersection of other kinds of induced subgraphs (in-
stead of edges—those subgraphs isomorphic to K3), where each is viewed
as a set of still other kinds of induced subgraphs (instead of vertices—those
subgraphs isomorphic to K1). [Cai, Corneil, & Proskurowski, 1996] discusses
such generalizations.

1.6 Hypergraphs

Many of the concepts of intersection graph theory have natural analogues
for hypergraphs—indeed, they have frequently been developed within hy-
pergraph theory. Because of that, we include sections on hypergraphs in the
first three chapters, introducing terminology as needed; hypergraphs also
appear throughout Chapter 7. The present section shows how hypergraphs
interconnect the ideas from earlier in the present chapter.

A hypergraph H = (X, £) consists of a finite set X of vertices and a
family € = {S1,...,S,} of edges—nonempty subsets of X. [Berge, 1989]
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is a standard reference for hypergraph theory, although we warn the reader
that terminology and notation are far from standardized. [Duchet, 1995] is
a recent thorough survey.

A hypergraph (X, &) is a simple hypergraph when the family £ is a set,
that is, when all the edges are distinct. Thus, graphs are precisely the
simple hypergraphs in which each edge contains exactly two vertices. A
hypergraph (X, £) is a Helly hypergraph when & satisfies the Helly condition
from section 1.4. Because Helly hypergraphs will be very important to us
later, we include the following useful Gilmore criterion from [Roberts &
Spencer, 1971].

Exercise 1.23 (Berge & Gilmore) Show that a hypergraph (X, €) is
a Helly hypergraph if and only if, for every u,v,w € X, there exists z € X
such that every edge in £ that contains at least two of u, v, w also contains
z. (Hint: Use induction on |€|, & C &, for the harder direction.)

The line graph of the hypergraph (X, &) is defined to be §2(£). Theo-
rem 1.2 implies that every graph is isomorphic to the line graph of a hyper-
graph, but the following theorem shows that more is true.

Theorem 1.14 FEvery graph is isomorphic to the line graph of a Helly
hypergraph.

Proof. Suppose G is any graph and £ = {Qi,...,Q@mn} is the edge
clique cover of G consisting of the maxcliques of G. Let F = F(£) be the
set representation of G determined from £, and let H be the hypergraph
({1,...,m},F). Then G = Q(F) implies that G = L(H), and H can be
shown to be a Helly hypergraph. O

Exercise 1.24 Finish the proof of the preceding theorem by showing
that F satisfies the Helly condition.



Chapter 2

Chordal Graphs

A graph is a chordal graph if it has no induced cycles larger than triangles. A
chord of a cycle is an edge between nonconsecutive vertices of the cycle; thus
a graph is chordal if and only if every cycle large enough to have a chord does
have a chord. The study of chordal graphs goes back to [Hajnal & Surédnyi,
1958], frequently under the names rigid-circuit graphs or triangulated graphs.
Chapter 4 of [Golumbic, 1980] is the standard reference for chordal graphs.
[Blair & Peyton, 1993] is more up to date and more in the style presented
here.

In spite of there having been considerable activity during the 1960s, it
was not until the 1970s that chordal graphs were characterized in terms of
intersection graphs. Many of the most sophisticated applications of chordal
graphs, which we sketch in section 2.4, came later and involved the redis-
covery of chordal graph theory in statistics and matrix analysis. The recent
dates on many of our references show that chordal graphs are still being
intensively studied today.

Contrary to history, we begin with the intersection graph approach to
chordal graphs.

2.1 Chordal Graphs as Intersection Graphs

For the purpose of this section only, we define a graph to be a subtree graph
if it is the intersection graph of a family of subtrees of a tree. But you
should keep in mind that Theorem 2.4 at the end of this section will show
that the subtree graphs are precisely the chordal graphs! The tree and family
of subtrees in the definition are called a tree representation of the subtree
graph and, while a tree is a topological object, it is clear that it can always

19
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Figure 2.1: A chordal graph and two tree representations.

be taken to be a tree in the graph-theoretic sense.

Example 2.1 The graph G shown on the left in Figure 2.1 is a subtree
graph isomorphic to Q({T3,...,T7}) where each T; is the subtree of the
tree in the middle induced by those vertices that contain i. For instance,
V(Ts) = {15, 245, 3456, 4567, 5}. There are, of course, many such tree
representations of G. For instance, the tree shown on the right is a tree

representation for G, but now the vertex set is precisely the set of maxcliques
of G.

It is easy to see that G is a subtree graph if and only if it has an edge
clique cover £ whose members can be associated with vertices of a tree T
such that, for every v € V(G), {Q : v € Q@ € £} induces a subtree T, of
T. This is a very transparent translation of being a subtree graph into a
condition on an edge clique cover. Theorem 2.1 shows that the edge clique
cover can always be taken to be the set of the maxcliques of G. Theorem 2.3
then shows how to test whether the maxcliques of G can be arranged into a
tree as just described.

When a tree representation exists whose vertex set is the set of max-
cliques of G, then it is called a clique tree representation (or a clique tree
for) G. Equivalently, a clique tree is a spanning tree of the clique graph
K(G) such that, for each v € V(G), T, is connected. (Lemma 2.2 will
give an alternative condition to check.) Given any clique tree T' for G and
any two maxcliques @Q; and @; of G, let T(Q;,Q;) denote the path in T
connecting ; and Q;.

Exercise 2.1 Show that in any clique tree T for a chordal graph G, the
family {T, : v € V(G)} of subtrees of T, with each subtree viewed as a set
of vertices of T, satisfies the Helly condition.
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Theorem 2.1 A graph is a subtree graph if and only if it has a clique
tree representalion. ]

Exercise 2.2 Use Lemma 1.11 to prove Theorem 2.1.

Exercise 2.3 Show that every subtree graph is the intersection graph of
a family of distinct subtrees of a tree. Is every subtree graph the intersection
graph of a family of distinct subtrees of a clique tree?

The following lemma essentially appears in [Acharya & Las Vergnas,
1982] (see also [Levin, 1983]) modulo knowing other results that we prove
in this section and the next; the lemma seems to first appear in this simple
“clique tree check” form in [McKee, 1993].

Lemma 2.2 A spanning subtree T of K(G) is a clique tree for a con-
nected graph G if and only if

Ve = > 1Ql - Y 1Qing;l. (2.1)

QeV(T) Q:Q;€E(T)

Proof. Suppose T is a spanning tree of K(G). For each v € V(G),
the subgraph T, satisfies 1 < |V(T)| — |E(Ty)|, with equality if and only if
T, is connected and thus is a subtree. Summing over all v € V(G) proves
equality (2.1). O

Example 2.2 The cycle C; is not a subtree graph: each of the four
spanning trees of K(C}) leaves one T, disconnected, and 4 < 8 — 3 in equal-
ity (2.1).

Exercise 2.4 Show that a subtree graph of order n can have at most n
maxcliques.

Theorem 2.3 will show how easy it is to find clique tree representations
of subtree graphs. It first appeared in [Bernstein & Goodman, 1981] in the
computer science context we discuss in section 2.4, and it has been rediscov-
ered many times. [Gavril, 1987] and [Shibata, 1988] give nice treatments.

It is important to realize that the approach in Theorem 2.3 requires
knowing all the maxcliques of G, a computationally hard problem in general—
the number of maxcliques of G can grow exponentially in the number of ver-
tices of G—yet one that can be done efficiently for subtree graphs because of
Exercise 2.4. In certain applications, for instance the one in subsection 2.4.4
below, G is given at the start as the set of its maxcliques.
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Exercise 2.5 Show that the order-2p complete p-partite graph Ks _ o
has 2P maxcliques.

For any graph G, define the weighted clique graph K™ (G) to be the clique
graph K (G) with each edge @;Q; given weight |Q; N Q;|. Theorem 2.3 will
involve maximum spanning trees of K% (G), which can be found efficiently
by using Kruskal’s well-known greedy algorithm. Recall that the usual mini-
mum spanning tree version of Kruskal’s algorithm finds a(ll) minimum span-
ning tree(s) of a connected weighted graph by repeatedly choosing an edge
of smallest weight that does not form a cycle with previously chosen edges.
The mazimum spanning tree version that we use is the same, except that we
now always choose an edge with largest weight that does not form a cycle
with previously chosen edges.

Example 2.3 For the graph G on the left in Figure 2.1, a maximum
spanning tree of K (G) must contain the weight-three edge joining vertex
3456 to 4567, one of the two weight-two edges incident with 245, and one of
the three weight-one edges incident with 15; one maximum spanning tree is
shown on the right in the figure. Checking that such a tree is a clique tree
requires either checking that each of the seven T;’s is connected or checking
that 7 = 21 — 14 in equality (2.1).

Theorem 2.3 A connected graph G is a subtree graph if and only if
some mazimum spanning tree of K*(G) is a clique tree for G. Moreover,
this is equivalent to every mazimum spanning tree of K*(G) being a clique
tree for G, and every clique tree of G is such a mazimum spanning tree.

Proof. If some maximum spanning tree of K*(G) is a clique tree for G,
then by definition G is a connected subtree graph.

Conversely, suppose G is a connected subtree graph with clique tree
T. Thus T is a spanning tree of K¥(G), but suppose, arguing toward a
contradiction, that T is not a mazimum spanning tree of K*(G). Among all
maximum spanning trees of K*(G), choose T” to have a maximum number
of edges in common with T. Pick any edge e = Q;Q; € E(T")\ E(T) having
weight |Q; N Q;| as large as possible. Since T is a tree representation of G,
each v € V(G) that is in Q; N Q; must also be in every vertex of the path
T(Qi,Q;) in Ty, and so each edge of this path must have weight at least
|QiNQ;]. There must be some edge f of this path that is not in E(T”). But
the spanning tree 7" = T’ — e + f then has total weight at least as large as
the weight of 7'. Thus 7” is a maximum spanning tree of K¥(G) having
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Figure 2.2: A graph having three minimal vertex separators.

one more edge in common with 7" than does T”, contradicting the choice of
T

Therefore, being a clique tree implies some maximum spanning tree of
K¥(G) is a clique tree. The rest of the theorem follows from Lemma 2.2
since every maximum spanning tree T of K¥(G) will have the same total

welght ZQQ'EE(T) lQ N Q’l. O

A set S of vertices of G is a minimal vertex separator of G whenever
there exist u,v € V(G) such that every path connecting v and v contains a
vertex in S and no proper subset of S has this same property.

Example 2.4 In the graph shown in Figure 2.2, the minimal vertex
separators are {2}, {4}, and {4,6}.

The following two exercises show how Kruskal’s algorithm locates the
minimal vertex separators of a subtree graph and that, even though a subtree
graph can have many clique trees T, the multiset {Q; N Q; : Q:Q; € E(T)}
is uniquely determined.

Exercise 2.6 (see [Barrett, Johnson, & Lindquist, 1989] and [Ho &
Lee, 1989]) Suppose G is a connected subtree graph with clique tree T and
S C V(G). Show that S is a minimal vertex separator of G if and only if
there exists Q;Q; € E(T) such that S = Q; N Q;.

Exercise 2.7 For a subtree graph G with clique tree 7', show that the
multiplicity of each Q; N Q; in the multiset {Q; NQ; : Q:Q; € E(T')} equals
one fewer than the number of components in the subgraph of G induced by
those vertices that are adjacent to every vertex in ; N Q;.

Exercise 2.8 Construct several clique trees for the chordal graph in
Figure 2.2 and then use them to illustrate Exercise 2.7.
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Exercise 2.9 For any graph G, define § C V(G) to be a minimal vertex
weak separator of G if there exist two vertices in a common component of
the subgraph of G induced by V(G) \ S such that the distance between the
two vertices is greater in that subgraph than in G. Call an edge Q;Q; of
K“(G) a “dominated chord” of a clique tree T of G if Q;:Q; ¢ E(T) and
Qi N Qsl < 1Q N Q| for every QQ’ € E(T(Qi, Q5)-

Show that § is a minimal vertex weak separator of G if and only if there
exists a dominated chord Q;Q; of T such that S = Q; N Q;.

The next theorem is from [Buneman, 1974], [Gavril, 1974a], and [Walter,
1978]. Our argument follows [Shibata, 1988].

Theorem 2.4 (Buneman, Gavril, and Walter) A graph is a sub-
tree graph if and only if it is a chordal graph.

Proof. First, suppose G is a subtree graph with clique tree T'. Arguing
toward a contradiction, suppose that G contains an induced cycle C whose
vertices are, in order, wvy,...,Vx,v; wWhere k > 4. Putting vp = v and
Vk+1 = v1, we know that, for i € {1,...,k}, T, NTo,_, # 0 # T, N Ty,
but, since C is induced, T,,,NT,; = @ for all other vertices v; of C. Thus there
exists a path II through T connecting some vertex of T;,, with some vertex
of Ty, and containing along the way vertices from each T,; with 1 < j < k.
But v; is also adjacent to v, so Ty, N Ty, # @ with Tp,, N T, NQ = 0 for
every vertex @ of IT in T,,, where 1 < i < k. This contradicts T being a tree.

Conversely, suppose G contains no induced cycle larger than a triangle
and that T is any maximum spanning tree of K*(G). Arguing toward a
contradiction, suppose that there are nonadjacent vertices Q and Q' of T
such that (i) there is some vertex in 7(Q, Q') that does not contain Q N Q’
and, among all such, that (ii) [Q N Q’| = k is as large as possible. More-
over, among all such Q, Q’, suppose that (iii) 7(Q, Q') is as short a path as
possible. Say T(Q, Q) is Q = Q1, Q, .-+, Qp-1, @p = @', Where p > 3.

For each i € {1,...,p— 1}, define R; = (@Q; N Qi+1)\(@N Q') C V(G).
Let each |Q; N Qi+1] = ki (1 <7 < p). Since T is a maximum spanning tree
for K¥(G) and QQ' ¢ E(T), each k; > k. By (iii), QN Q' € Q; for each
i € {2,...,p— 1}. Therefore, each R; # 0. Since R; N Ri+1 C Qi+1, the
subgraph of G induced by UR; is connected and we can pick a shortest path
T1,Z2,...,Z, therein such that x; € R; and x4 € Rp_1. Foreachv € QNg’,
v will be adjacent to z1 and z, and so v, z1,...,z4, v will be a cycle in G.
Since the path z1,z2,...,2, was chosen to be shortest and since G has no
induced cycles larger than triangles, each x; must be adjacent to v. Since v
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was chosen arbitrarily from @N¢Y, it must be that, for each i € {1,...,¢—1},
there is a maxclique S; of G containing {z;, ;+1 }U(QNQ’). Set Sy = Q and
S, = @', and note that each 5;NS;41 2 (QNQ)U{xiy1}, s0 [SiNSip1] > k.
So by (ii), S; N Si4+1 is contained in each vertex along T'(S;, Si+1) for each
1€ {0,...,g—1}. Thus QNQ’ C S;N S;41 is contained in each vertex along
T(Q,Q"), contradicting (i). O

See [Hsu & Ma, 1991] for a linear-time algorithm for finding a clique
tree of a chordal graph. Other authors pay attention to what sorts of clique
trees a chordal graph can have. For instance, [Blair & Peyton, 1994] gives a
linear-time algorithm for finding minimum diameter clique trees of a chordal
graph, while [Lih, 1993] investigates finding clique trees that have paths to
which all vertices are close. [Lin, McKee, & West, to appear| investigates
clique trees having a minimum number of leaves, and [Prisner, 1992] studies
chordal graphs that have clique trees with only three leaves. Chapter 3 is
devoted to chordal graphs that have clique trees with only two leaves.

[Chen & Lih, 1990] and [Bandelt & Prisner, 1991] characterize chordal
graphs whose clique graph is not chordal and show that if G is chordal then
K(K(G)) is chordal. Section 7.5 is devoted to the clique graphs of chordal
graphs.

Exercise 2.10 (Chen & Lih and Bandelt & Prisner) Give an ex-
ample of a chordal graph of order eight whose clique graph is not chordal.

[Raychaudhuri, 1988] gives a polynomial algorithm for finding the inter-
section number of a chordal graph.

2.2 Other Characterizations

One measure of the richness of chordal graph theory is the large number
of different characterizations of chordal graphs in the literature; see The-
orem 7.47, [Benzaken, Crama, Duchet, Hammer, & Maffray, 1990], and
[Bakonyi & Johnson, 1996] for just a few examples. This section considers
several standard characterizations, but because of our focus on clique trees
and intersection graphs our proofs are not necessarily the standard ones.

Exercise 2.11 (see [Dirac, 1961]) Show that a graph is chordal if and
only if every minimal vertex separator is complete.

We need two standard definitions for Theorem 2.5, from [Fulkerson &
Gross, 1965] end [Rose, 1970]. A vertex is a simplicial vertex of a graph if
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its neighbors induce a complete graph (which, remember, includes the case
of the null graph). Equivalently, a vertex is simplicial if it is in a unique
maxclique. An ordering (v1,...,v,) of all the vertices of G is a perfect
elimination ordering of G if, for each i € {1,...,n}, v; is a simplicial vertex
of the subgraph induced by {vj,...,vp}.

Example 2.5 In the graph on the left in Figure 2.1, vertices 1, 2, 3, and
7 are the simplicial vertices. The vertices have been labeled so that their
numerical ordering is one possible perfect elimination ordering.

Theorem 2.5 (Fulkerson & Gross and Rose) A graph is chordal if
and only if it has a perfect elimination ordering.

Proof. First, suppose G is a subtree graph with clique tree T. We argue
by induction on the order of T with the result trivial when the order is one.
Suppose @ is any maxclique of G corresponding to a leaf of T. Since no
maxclique can be contained in any other, @) must contain some v € V(G)
that occurs in only that one maxclique, and so v is simplicial. Let G~ result
from G by removing v, and let T~ result from T by removing v from each
vertex of T. Then G~ is still a chordal graph, since it has tree representation
T~. By inductive hypothesis, @~ has a perfect elimination ordering that,
when v is inserted at the beginning, makes a perfect elimination ordering
for G.

Conversely, suppose (v1, ..., v,) is a perfect elimination ordering for G.
We argue by induction on n with the result trivial when n = 1. Suppose
Q is the maxclique of G consisting of v; and all its neighbors. Let G~ be
the subgraph of G induced by {vq,...,v,}. Since (ve,...,v,) is a perfect
elimination ordering for G~, the inductive hypothesis implies that there is a
clique tree T~ for G~. Notice that @~ = Q\{v1} will be contained in some
vertex Rof T~. If @~ = R, then let T result by simply inserting v; into R;
if Q™ is properly contained in R, then let T result by creating a new vertex
Q@ and making it adjacent to R. In either case, T is a tree representation for

G. ]

Exercise 2.12 Show that a graph is chordal if and only if every induced
subgraph has a simplicial vertex.

Exercise 2.13 Show that finding perfect elimination orderings is “fool-
proof” in the sense that, if G has a perfect elimination ordering, then taking
any simplicial vertex v of G as a first vertex, then any simplicial vertex of
the subgraph induced by V(G)\{v} as the second, and so on, will always
result in a perfect elimination ordering of G.
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Exercise 2.14 Show how a perfect elimination ordering for G can be
used to give a direct construction of a clique tree for G.

We conclude this section with a characterization from [Tarjan & Yan-
nakakis, 1984] that can be implemented in O(|V(G)|+|E(G)]) time; see also
[Golumbic, 1984} and [Shier, 1984]. A mazimum cardinality search “marks”
the vertices of G as follows: First mark an arbitrary vertex; then repeatedly
mark any previously unmarked vertex having as many marked neighbors as
possible. Stop when all vertices have been marked.

Example 2.5 (continued) In the graph in Figure 2.1, taking the ver-
tices in the opposite of their numerical order shows one possible order in
which they might be marked by a maximum cardinality search. If vertices
5, 6, and 7 (in any order) are the first three marked, then the remaining
vertices must be marked in the order 4, 3,2, 1.

Theorem 2.6 (Tarjan & Yannakakis) A graph G is chordal if and
only if in some mazimum cardinality search of G, as each vertexr becomes
marked, its previously marked neighbors are pairwise adjacent in G. More-
over, this is equivalent to, in every mazimum cardinality search of G, as
each vertex becomes marked, its previously marked neighbors are pairwise
adjacent in G.

Proof. If some maximum cardinality search marks the vertices of G in
the order vy, .. ., v, such that the neighbors of v; among v, ..., v;—; are pair-
wise adjacent in G, then (vn,...,v1) is automatically a perfect elimination
ordering the G, and so G is chordal by Theorem 2.5.

Conversely, suppose G is connected and chordal with clique tree T.
Suppose a maximum cardinality search marks the vertices of G in the or-
der vy,...,vn. (We show how maximum cardinality search locates max-
cliques of G.) No matter which v; was chosen, vertices v,..., v (for some
k < n) will form a maxclique Q of G, because of always marking a vertex
that is adjacent to as many previously marked vertices as possible, and so
{vi,..., v} = Q € V(T); for the purpose of this proof, call such a vertex @
a “saturated vertex” of T'. Since T is a maximum spanning tree of K¥(G)
by Theorem 2.3, the next vertex v marked in G will occur in some neighbor
Q' of Q in T for which Q N Q' (the previously marked vertices that v is
adjacent to) is as large as possible. Any unmarked vertices occurring in Q'
will now be adjacent to more than |Q N Q'] previously marked vertices, and
so these will be marked next, making @’ saturated. This process continues
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to make saturated vertices of T one at a time, with the vertices saturated
at any time always forming a subtree of T'. Since each newly marked vertex
of G is always in the same maxclique as its previously marked neighbors,
these neighbors will be pairwise adjacent. a

Exercise 2.15 Suppose G is chordal. The first paragraph of the proof of
Theorem 2.6 shows that every maximum cardinality search of G corresponds
to a reversed perfect elimination ordering of G. Show by example that the
converse fails—that a perfect elimination ordering of a chordal graph need
not correspond to a reversed maximum cardinality search marking.

Exercise 2.16 (Blair, England, & Thomason) Prim’s algorithm
constructs a(ll) maximum spanning tree(s) of a weighted graph by start-
ing at an arbitrary vertex and repeatedly choosing an edge of largest weight
that joins a vertex already in the tree with a vertex not yet in the tree.
([Tarjan, 1983} and [Graham & Hell, 1985] contain detailed analysis of both
the Kruskal and Prim algorithms.) Discuss how the second paragraph of the
proof of Theorem 2.6 illustrates the central theme of [Blair & Peyton, 1993]:
that “the maximum cardinality search algorithm is just Prim’s algorithm in
disguise.”

See [Panda, 1996)] for deeper discussion of maximum cardinality-type
algorithms, and [Simon, 1995] for the role of minimal vertex separators in
maximum cardinality-type search algorithms on chordal graphs. [Galinier,
Habib, & Paul, 1995| contains more information on clique trees and their role
in algorithms. [Kumar & Veni Madhavan, 1989] presents a simple linear-time
algorithm for testing the planarity of a chordal graph based on a chordal
graph being planar if and only if it is K;s-free and each 3-vertex minimal
vertex separator has multiplicity one.

2.3 Tree Hypergraphs

Continuing the discussion of section 1.6, a hypergraph (X, ) is a tree hy-
pergraph if there is a tree T with X = V(T) such that, for each S; € £, there
is a subtree T; of T with V(T;) = S;.

Exercise 2.17 Show that the hypergraph ({a, b, ¢,d},£) with £ = {{a},
{c}, {b,d}, {a,b,d}, {a,b,c,d}} is a tree hypergraph, and that the tree T in
the definition can be any tree with vertex set {a, b, ¢, d} so long as it contains
the edge bd and one of the edges ab, ad.
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Clearly, the line graph Q(&) of a tree hypergraph (X,€) is a subtree
graph, and so is a chordal graph by Theorem 2.4. The next example, how-
ever, shows that being a tree hypergraph requires more than just having a
chordal line graph.

Example 2.6 The hypergraph ({1,2,3},€) having £ = {{1,2}, {1,3},
{2,3}} has a chordal line graph (=2 K3), yet is not a tree hypergraph; the
following exercise shows that (at least part of) the problem is that £ does
not satisfy the Helly condition.

Exercise 2.18 Show that every tree hypergraph is a Helly hypergraph.

The following theorem appeared independently in [Duchet, 1978], [Fla-
ment, 1978, and [Slater, 1978]; our argument follows Slater’s.

Theorem 2.7 (Duchet, Flament, and Slater) A hypergraph is a tree
hypergraph if and only if it is a Helly hypergraph with a chordal line graph.

Proof. We have already observed the implication one way. For the
converse, suppose (X, £) is a Helly hypergraph and its line graph G = Q(£)
is chordal. Say £ = {S;,...,Sn}. We argue by induction on m. For the
m =1 basis, (X,£) is a tree hypergraph for which T' can be any tree with
vertex set Sy. Suppose m > 1. Since G is chordal, Theorem 2.5 allows
us to reorder the S;’s as necessary so that S) is a simplicial vertex of G
and {S,..., Sk} induces the unique maxclique of G that contains S;. We
can assume k > 2 since if £k = 1, meaning that S; is an isolated vertex
in G, then the remainder of the argument becomes trivial. By the Helly
condition, there is some z € S1N---NSg. Put §] = S1\{z} and 5] = S;\ 5]
when ¢ > 2. Note that £ < j < m implies S; N S; = @ and SJ’- = S;.
Suppose ¢ and j are such that 2 < i < j < m. If S{NS; # 0, then
SinS; 2 S{OS;- #0. If SiNS; # 0, then either j <k and z € S{OS} # 0,
or j >k and S{NS; = (8;\ §7) N S; = SN S; # B since §1 N S; = . Thus
S;NS; # 0 if and only if S{N S} # . In this way, {5, ..., Sy, } satisfies the
Helly condition and Q({S5,...,S.,}) =& Q({S2,...,Sm}) is chordal. So by
the induction hypothesis, (X \ S1,{S%,...,S,}) is a tree hypergraph with
respect to some tree 7”. Form T from T’ by adding, for each element of 57,
a new vertex of degree one adjacent to x. Then each §; is the vertex set of
a subtree of T and V(T) = X. 0

Exercise 2.19 Show that a graph is chordal if and only if it is the line
graph of a tree hypergraph.
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Let H = (X, &) be a hypergraph. A partial hypergraph of H is a hy-
pergraph H' = (X’ £’) where & C € and X’ = UgreerS’. If A C X, the
subhypergraph of X induced by A is the hypergraph Hq = (A,E4) where
Ea={SNA:Se€€&}.

While sections 2.1 and 2.2 show that every induced subgraph of a sub-
tree graph is itself a subtree graph, the following example shows that this
hereditary property fails for tree hypergraphs.

Example 2.7 Consider the tree hypergraph ({1,2,3,4},£) in which &
= {{1,2,3}, {1,2,4}, {2,3,4}}. If A = {1,3,4}, then Theorem 2.7 shows
that H4 is not a tree hypergraph.

The dual hypergraph H* = (X*,£*) of a hypergraph H = (X, &) has
X* =& with & = {S; : z € X} where each S; = {S € £ : z € S}.
Note that H** = H. Given a graph G, the clique hypergraph of G is the
hypergraph (V(G), &) where € is the set of all maxcliques of G.

Exercise 2.20 Show that a graph G is chordal if and only if H* is a
tree hypergraph where H is the clique hypergraph of G.

Exercise 2.21 Show that the dual of a subhypergraph of the hyper-
graph H is isomorphic to a partial hypergraph of H*.

Section 2.4.2 will sketch an application of tree hypergraphs in database
theory. See [Naiman & Wynn, 1992] for an application in probability theory
of duals of tree hypergraphs (called “generalized simple tubes” there).

A cycle of length k in the hypergraph H = (X, £) is a sequence vy, 81, va,
Ss,...,Sk,v1 where Sy, ..., Sk are distinct edges, vy, ..., vx are distinct ver-
tices, v;,vit+; € S;foralli =1,...,k—1, and vk, v1 € Sk. A totally balanced
hypergraph is a hypergraph in which every cycle of length greater than two
contains an edge S; that contains at least three of the vertices vj,...,v; of
the cycle.

Exercise 2.22 Suppose H is any totally balanced hypergraph. Show
that H* and all the partial hypergraphs and subhypergraphs of H are also
totally balanced and that H must be a Helly hypergraph.

The following theorem can be found in [Lehel, 1983, 1985] and [Ryser,
1969).

Theorem 2.8 A hypergraph is totally balanced if and only if each of its
subhypergraphs is a tree hypergraph.
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Proof. Suppose H is a totally balanced hypergraph. Exercise 2.22 shows
that every subhypergraph of H is a totally balanced Helly hypergraph that,
by the definition of totally balanced, has a chordal line graph. Theorem 2.7
then implies that every subhypergraph of H is a tree hypergraph.

Conversely, suppose every subhypergraph of H is a tree hypergraph, yet
suppose H has a cycle of length three with none of its edges containing three
vertices of the cycle. If this cycle has length three, then those three vertices
would induce a subhypergraph of H that is not a Helly hypergraph; if it has
length greater than three, then its vertices would induce a subhypergraph
of H whose line graph is not chordal. Either case contradicts Theorem 2.7. O

A hypergraph is a strong Helly hypergraph if each of its subhypergraphs
is a Helly hypergraph. Compare the following with the Gilmore criterion in
Exercise 1.23.

Theorem 2.9 (Lehel) A hypergraph H = (X,€) is a strong Helly hy-
pergraph if and only if, for all u,v,w € X, there exists x € {u,v,w} such
that every edge in £ that contains at least two of u,v, w also contains x.

Proof. This follows from applying Exercise 1.23 to all the subhyper-
graphs induced by distinct u,v,w € X. |

Corollary 2.10 (Lehel) If a hypergraph is totally balanced, then it is
both a tree hypergraph and a strong Helly hypergraph.

Proof. Suppose H is totally balanced. Theorem 2.8 implies H is a tree
hypergraph. Since every cycle of H of length three has an edge containing
at least three vertices of the cycle, Theorem 2.9 can be used to show that
H is strong Helly. |

Exercise 2.23 Use the hypergraph H = ({0,1,2, 3,4}, {51, S2, S3, S4})
with S = {0,2,3}, S2 ={0,3,4}, S3 = {0,1,4}, and S4 = {0, 1,2} to show
that the converse to Corollary 2.10 fails.

Totally balanced hypergraphs also play an important role with respect
to “strongly chordal graphs,” as discussed in section 7.12, as do strong Helly
hypergraphs with respect to “hereditary clique-Helly graphs” in section 7.5.
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2.4 Some Applications of Chordal Graphs

Each of the following subsections is merely a brief sketch of one applica-
tion of chordal graphs. As an example of a type of application that is not
represented in our collection, [Chandrasekaran & Tamir, 1982] studies the
location of “supply centers” on a network having a tree structure. Sec-
tion 3.4 consists of additional examples when the tree representations are
required to be paths.

2.4.1 Applications to Biology

Let S denote a given set of molecular sequences, where each sequence corre-
sponds to a tazon (an organism). For simplification, assume each sequence
in S has length k and is built from the four letter alphabet B = {A,C,G,T};
thus each corresponds to a DNA sequence on the four bases A, C, G, and
T. (Protein sequences are similarly built from a 20 letter alphabet.) In the
language of numerical taxonomy, the taxa (organisms) are described by k
characters, each having one of four possible states. These characters can be
represented as functions fi,..., fy where f; : § — B with fi(z) the base at
position 7 for taxon z € S. Note that each character f; induces a partition
of the set S of taxa into at most four nonempty equivalence classes, the
preimages of the bases in B.

Compatibility analysis seeks to find collections of characters from among
f1,- -+, frx that are compatible (consistent) in that there exists a tree T with
S C V(T') on which, for each f; in the collection, each equivalence class
of f; corresponds to a subtree of T. If a collection of characters is not
compatible—if there is no such tree—then insofar as the evolutionary history
for S is a tree, the true evolutionary history for S is not reflected in those
characters. Thus compatibility analysis, considered as a consistency test, is
a valuable method in that it can tell us something definite (albeit negative)
about evolutionary aspects of certain characters.

Now suppose B is any finite set of states and each character f; corre-
sponds to a partition P, = {X{'), . ,X#;Z} of S, with each m; < |B| and
st‘) # (. Note that it is possible to have X §") and Xt(j ) equal as sets, even
though ¢ # j. Define the partition intersection graph Q(Py,...,Py), k > 2,
to have vertices {X( ). X,(,}l), . X(k) (k)} with Xs( ) adjacent to

X(J) if and only if 7 # j and x ap.¢ ]) # @ Notlce that Q(Py,...,P)isa
k-partite graph with chromatic number &, and each taxonxz € § corresponds
to a maxclique of order k. [McMorris & Meacham, 1983] characterizes all
graphs that arise this way.
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Theorem 2.11 (McMorris & Meacham) A graph with chromatic
number k > 1 is a partition intersection graph if and only if it has no
isolated vertices and has an edge clique cover, each member of which has
order k.

Proof. Assume G has chromatic number &k > 1. .

First suppose G = Q(Py, ..., Px). Check that (1) each xP e V(G) has
at least £ — 1 > 1 neighbors; (2) for each taxon z € S and each B € B,
{X §’) : fi(x) = B} induces a complete subgraph of order k£ in G; and (3) the
family of all such induced subgraphs is an edge clique cover of G.

Conversely, suppose £ = {Q1,...,Q@m} is an edge clique cover for G
where each |Q;| = k, G has been properly k-colored (meaning that no two
adjacent vertices have the same color), and no vertex of G is isolated. For
each v € V(G), set & = {Q; : v € Q;}. Since each v € V(G) is on at least
one edge of G and that edge is in at least one member of the edge clique

cover &, each &, # 0. Suppose {vy,...,v} is any one of the k color classes.
Then each @; € £ will contain exactly one of vy, ..., v, and so will be con-
tained in exactly one of &,,,...,&,,. Since &,,,...,&,, are disjoint subsets

of £, they partition £. So each of the k color classes corresponds to one of
k partitions Py, ..., Py of £. Moreover, uv € E(G) if and only if, for some i,
both u,v € J; where u and v are in different color classes. But this is equiv-
alent to @Q; € £, N &, with &,,&, in different partitions among Py,..., P,
which in turn is equivalent to £,&, being an edge of Q({Py,. .., Px}). Hence
G%Q({Pl,...,Pk}). O

In the case of just two characters f; and f;, being compatible is equiv-
alent to the bipartite graph Q(P;, P;) being acyclic. Pairwise compatibility
can be used to construct a compatibility graph, using the characters as ver-
tices with adjacency corresponding to pairwise compatibility. Compatibility
analysis seeks the largest collections of compatible characters. In the special
case where every character has only two possible states, [McMorris, 1977]
shows that maxcliques of the compatibility graph correspond to maximal
compatible collections of characters. See also [Gusfield, 1991]. However,
this fails in general, as shown in [Fitch, 1977] and by an infinite family of
examples in [Meacham, 1983].

By assigning each character f; (and so each corresponding partition P
of S) a color 7 and coloring each vertex ng) of Q(Py, ..., P) with color i, we
have a chromatic chordal completion problem, as in [Buneman, 1974]: Given
a graph whose vertices are properly k-colored, determine whether edges can
be added between vertices of different colors in order to make the graph
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Figure 2.3: A graph with no chromatic chordal completion.

chordal. Edges can be added in this way if and only if the collection of
characters is compatible.

Example 2.8 The graph shown in Figure 2.3, 3-colored with “colors”
1, 2, and 3, cannot be made chordal by adding edges between vertices of
different colors: The second 2-3 edge would have to be added to eliminate
the length-four “1,2,1,3” cycle, creating a new length-four “2,3,2,3” cycle
that could not be eliminated.

Finding the complexity of the chromatic chordal completion problem was
posed in [McMorris & Meacham, 1983]. Note that the chromatic restriction
is important since an arbitrary uncolored graph can obviously be made into
a chordal graph; thus the only problem in the single color case is to find
minimal and minimum such sets of edges. See [Rose & Tarjan, 1975] and
[Rose, Tarjan, & Lueker, 1976] for the complexity of these problems.

Recently, there has been a lot of activity in assessing the computational
complexity of all the variations on the chromatic chordal completion prob-
lem. See [Bodlaender & Kloks, 1993], [McMorris, Warnow, & Wimer, 1994],
[Agarwala & Ferndndez-Baca, to appear], [Kannan & Warnow, 1992, 1994],
[Indury & Schaeffer, 1993], and [Bodlaender, Fellows, & Warnow, 1992].

There is still a lot of theoretical work to do before these results can
be useful for compatibility analysis. For example, how can a largest set
of compatible characters be selected when chromatic chordal completion is
impossible?

2.4.2 Applications to Computing

The application discussed in subsection 2.4.1 is an example of a general “fili-
ation” problem, determining whether certain data or objects are compatible
with arrangement in a tree pattern. Corresponding “seriation” problems,
with arrangement in a linear pattern, will be discussed in Chapter 3.
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Another filiation application occurs in computer science. A database
scheme can be thought of as a collection of tables—for instance, a man-
ager’s table with columns for “employee name,” “social security number,”
“position,” “job skills,” etc.; a payroll table with columns for “social security
number,” “date of employment,” “salary,” etc.; a receptionist’s table with
columns for “employee name,” “telephone extension,” “hours,” etc.; and so
on—with the tables called relations and their columns called attributes.

Suppose a database scheme consists of a family R of relations and a set X
of attributes (so (X, R) is a hypergraph). This is an acyclic database scheme
if the relations in R can be arranged as the vertices of a tree, commonly
called a join tree, such that the vertices containing any given attribute induce
a subtree. Join trees are like tree representations, and paths within the join
tree constitute unique retrieval paths for data. Having a join tree represen-
tation is one of a large number of desirable properties of database schemes—
matters of consistency, efficiency, and compatibility—that are shown to be
equivalent to each other in [Beeri, Fagin, Maier, & Yannakakis, 1983], which
also cites evidence that database schemes that possess these desirable prop-
erties are “sufficiently general to encompass most ‘real-world’ situations.”
[Golumbic, 1988] provides a simple introduction.

In terms of graphs, define G = G(R) to have V(G) = X with E(G) =
{zy:z,y € R€ R} (so R is an edge clique cover of G(R)).

Proposition 2.12 A database scheme R is an acyclic database scheme
if and only if each complete subgraph of G(R) is contained in a common
member of R and G(R) is a chordal graph. a

In terms of hypergraphs, R is an acyclic database scheme if and only if
the dual of the hypergraph (X, R) is a tree hypergraph; Proposition 2.12
then corresponds to Theorem 2.7. (Warning: There are many different no-
tions of “cycle” and “acyclic” in use for hypergraphs, and being “acyclic”
very often means something different from not having a “cycle”; acyclic
database schemes correspond to what are often called “a-acyclic” hyper-
graphs.)

Subsection 2.4.4 will mention a somewhat related role of chordal graphs
connected with expert systems.

Here is another, completely different application in computing: Many
problems that are NP-complete in general become tractable, sometimes even
solvable in linear time, when restricted to chordal graphs. While for many
people this is the most important application of chordal graphs, it often
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Figure 2.4: A matric M and its graph G(M).

involves little of the specific nature of chordal graphs as intersection graphs—
other highly structured families can do as well. [Klein, 1996) discusses similar
computational concerns for parallel computing.

[Chung & Mumford, 1994] is an example of such computational concerns,
dealing with problems arising in computer vision. The specific problem faced
is to determine bounds on the number of edges needed to be added to make a
nonchordal graph chordal—the minimum fill-in problem—and so susceptible
to more efficient algorithms. [Kloks, Bodlaender, Miiller, & Kratsch, 1993],
[Kloks & Kratsch, 1994], and [Parra & Scheffler, 1995, 1997], for instance,
discuss how to use the minimal vertex separators of the nonchordal graph
to determine how to add a minimal set of edges. Similar concerns also arise
with sparse matrix computation in subsection 2.4.3 and maximum likelihood
estimation in subsection 2.4.4.

2.4.3 Applications to Matrices

Gaussian elimination on an n X n matrix M = (m,-j) involves the choice of a
nonzero pivot entry m;;, then using elementary row and column operations
to change m;; into 1 and all other ith row and jth column entries into 0. An
elimination scheme is a sequence of n pivots used to reduce a matrix to the
identity matrix, and a perfect elimination scheme has the further property
that no zero entry is ever made nonzero along the way. Perfect elimination
schemes minimize both computation and data storage.

The graph of M, denoted G(M), has vertex set {1,...,n}, with vertices
i # j adjacent if and only if either m;; # 0 or mj; # 0.

Example 2.9 Figure 2.4 shows a matrix and its graph.

Proposition 2.13 is from [Rose, 1970] and has led to much further work;
see [Rose, 1972], Chapter 12 of [Golumbic, 1980], [Golumbic, 1984], and
various papers in [George, Gilbert, & Liu, 1993].
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Proposition 2.13 (Rose) A symmetric matriz M with nonzero diag-
onal entries has a perfect elimination scheme using the diagonal entries as
pivots if and only if G(M) is chordal.

Proof sketch. Pivoting on m;; results in removing all the edges incident
to vertex i in G(M) and simultaneously creating a new edge hj whenever
mp; # 0 # mi; but my; = 0, as below:

My ... My

Mp; ... 0

(Other entries might also inadvertently become zero in M, and so other
edges disappear from G(M).) Hence no zero entry is made nonzero in M
precisely when every two neighbors of i (h and j above) are adjacent in
G(M); equivalently, when ¢ is a simplicial vertex. (For instance, in the ma-
trix in Example 2.9, you could pivot on either of the entries —1 or 2 but
not on 4.) A perfect elimination scheme on the diagonal entries of M thus
corresponds to a perfect elimination ordering for G(M), and such a perfect
elimination scheme exists if and only if G is chordal. 0

The remainder of this subsection will describe a less practical, but more
surprising, appearance of chordal graphs in matrix analysis.

It is trivial to compute the determinant of A when A~! is a diagonal
matrix: det A = [[iL; ai;. There are also simple methods to compute det A
whenever A™! is known to be “tridiagonal,” meaning that the entries bij
of A™! are zero whenever |i — j| > 1. Observe that G(A™!) is then a
union of paths. In the early 1980s, this was generalized to larger families of
matrices, including, in [Klein, 1982), when A~! is “treediagonal” (meaning
that G(A™!) is a tree). This work culminated in Proposition 2.14 from
[Barrett & Johnson, 1984] (“reinventing” chordal graphs). See [Barrett,
Johnson, & Lundquist, 1989] and [Johnson, 1990] for more recent surveys of
where this led next. For any n x n matrix M and any set S C {1,...,n}
(or any subgraph S of G(M)), let M[S] denote the submatrix determined
by those rows and columns of M indexed by the elements of S.
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Figure 2.5: A family of matrices having the same chordal graph G, with one
clique tree for G.

Proposition 2.14 (Barrett & Johnson) If G(A™!) is chordal with
clique tree T, then

Hoev(r) det A[Q)

, 2.2
HQinEE(T) det A[Q; N Q] (2:2)

det A=

provided the denominator is nonzero.

Example 2.10 Suppose A is any matrix whose inverse A~! is as shown
in Figure 2.5, with the ? entries unspecified (possibly zero). The graph
G(A™1) is shown in the middle, and one of the two possible clique trees T
for G(A™1) is shown at the right; for either clique tree, E(T) = {{2, 3}, {3}}
Formula (2.2) becomes

_ det A[{1,2,3}] - det A[{2,3,5}] - det A[{3,4}]

det A
© det A[{2, 3}] - det A[{3]]
ap;pz 12 13 Q@22 G23 a2 a a
det| ag1 ase ago3 | -det]| aszx ass ass ~det< 33 34)
Q43 Q44

031 032 G33 G52 as3 ass
a2 a3
det -a
( a32 as3 ) i
Proof sketch. Suppose G = G(A™!) is chordal with clique tree 7.
Suppose L is any leaf vertex of T and R is the set of all entries that are in

vertices of T other than L. Thus L N R corresponds to the edge joining L
to the rest of . We show that

det A[L] - det A[R)
det A[L N R]

det A = , (2.3)
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from which Proposition 2.14 follows inductively.

Suppose, for convenience, that the elements of L \ R come first in the
matrices A and A™!, with those in L N R coming next and those not in L
coming last. Thus the matrices consist of nonempty blocks as shown below,
with two blocks of A~} consisting entirely of zero entries, reflecting that no
vertex in L \ R is adjacent to any vertex not in L:

An | Aiz | Ass By |Bp| 0
A=| An[An|Ap |, A '=| By |[Bxn]| Bz
Az | Asz | Asz 0 | B3z | Bss
It is easy to verify that
_ Bin| 0
det Bj; - det Bys = det( 0 | Bas ) . (24)
By a result of Jacobi from 1834 relating minors of A and A™1,
_ Agg | Az
det By - det A = det ( Az | A |
An | Arg
det B33 - det A = det | —————— |,
o ree el ( Ag1 | Az

Bl 0 _
and det( 0 | B ) det A = det Ags.

Multiplying both sides of (2.4) by (det A)? and then using these three equal-
ities gives

Ao ] Ags An I Al
det | ————"| -det | ————=—1] =det A ‘th,
( A32 l A33 ) € ( A21 I A22 © 2 ©

from which (2.3) follows by dividing through by det Ags. O

Perfect Gaussian elimination and determinantal formulas, the two topics
of this subsection, can be interrelated as in [Bakonyi, 1992].

Exercise 2.24 (see [Grone, Johnson, S, & Wolkowicz, 1984]) Show
that, in any chordal graph, new edges can be inserted one at a time, always
maintaining a chordal graph, all the way up to a complete graph.

This exercise is important in another broad topic—“matrix completion
problems.” See [Johnson, 1990}, [Bakonyi & Johnson, 1995], and [Johnson,
Jones, & Kroschel, 1995] for examples. [Bakonyi & Johnson, 1996] deals
directly with several algebraic characterizations of chordal graphs.
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2.4.4 Applications to Statistics

The application of chordal graphs to statistics dates from the seminal pa-
per [Darroch, Lauritzen, & Speed, 1980] (another “reinvention” of chordal
graphs). Recent textbook introductions to this use of graphs include [Sant-
ner & Dufly, 1989], [Wickens, 1989], [Christensen, 1990], [Whittaker, 1990],
and [Lauritzen, 1996]. [Khamis & McKee, 1997] is a guide to this literature
written for graph theorists, while [McKee & Khamis, 1996] and [Khamis,
1996] present a multigraph approach to some of the same topics. [Lauritzen
& Spiegelhalter, 1988], [Pearl, 1988], and [Neapolitan, 1990] move on into
the propagation of probabilistic evidence in expert systems.

For a set {1,...,d} of factors, a level ¢; of factor i is an allowable value
of factor i. We denote the common occurrence of levels ¢;,...,¢; by the
conjunction A{¢; : 1 < i < d}. A (“d-dimensional hierarchical loglinear”)
model M consists of a set of generators: incomparable subsets of {1,...,d}.
Generators correspond to inclusion-maximal sets of factors having interre-
lationships taken to be significant within the model. The interaction graph
of M, denoted G(M), has the factors as vertices, with two adjacent when-
ever the factors are in a common generator; thus the generators of M form
an edge clique cover of G(M). If the generators of M are precisely the
maxcliques of G(M), then M is called a graphical model.

Example 2.11 Suppose d = 7 where factor 1 corresponds to “sex” with
?; € {male, female}, factor 2 is “age” with £ € {under 30, 30-45, 46-60,
over 60}, and so on. Suppose the generators are {1, 5}, {2,4, 5}, {3,4,5, 6},
and {4,5,6,7}, so G(M) is the graph shown on the left in Figure 2.1. In
this model, the interaction of factor 1 (“sex”) is not taken as important with
factor 2 (“age”), but only with factor 5 (perhaps “occupation”).

Choosing which model to apply to observed data involves various statis-
tical techniques that are not of concern here. But not all models are equally
easy to make inferences from. Those with particularly desirable properties,
usually called decomposable models, were shown in [Darroch, Lauritzen, &
Speed, 1980] to be precisely those that have chordal interaction graphs.

Suppose a large population is sampled and, for that sample, the number
of individuals having each possible combination of levels of factors is deter-
mined. The principal advantage of a decomposable model with g generators
for these data is that the predictive value of all the data is contained in
knowing these numbers for a small number of special sets of factors: the g
generators and a certain g — 1 intersections of pairs of generators. Propo-
sition 2.15, from [Darroch, Lauritzen, & Speed, 1980], shows how this is
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done. In this proposition, for any S C {1,...,d}, p(A{f : i € S}) de-
notes the number of individuals in the sample who have the combination
A{4 : i € S} of levels of factors in S, divided by the total number of indi-
viduals in the sample. This proposition actually characterizes decomposable
models, and so chordal interaction graphs, and replaces iterative methods
that are needed in the general case.

Proposition 2.15 (Darroch, Lauritzen, & Speed) If G(M) is chordal
with clique tree T, then for every choice £1,...,4y4 of levels of the factors,

Hoevr p(A{4 i€ Q})
[.0;eEm) PNt i€ QinQy})

provided the denominator is nonzero.

p(A{t:iev@)}) = (2.5)

Proof sketch. Suppose G = G(M) is chordal with clique tree T'. Sup-
pose L is any leaf vertex of T and R is the set of all factors that are in
vertices of T other than L. Thus L N R corresponds to the edge joining L
to the rest of . We show that

£; it ¢ :i € R})
p(N:ievE)) = P /\El[ef?)ze(LArER})e Do (2

from which Proposition 2.15 follows inductively.

For any set S of factors, let A S abbreviate the compound event of each
factor ¢ € S having level ¢;. Then p(A{¢; : i € S}) approximates, for the
entire population sampled, the joint probability of the compound event A S;
abbreviate this probability by Pr[A S]. Then (2.6) corresponds to

Pr[A L] - Pr[A R]
Pr [/\ V(G)] = SINIA R (2.7)

Since L N R corresponds to the edge of T joining L to the rest of T
every path from a vertex of L\ R to a vertex of R\L passes through a vertex
of L N R. This means that the compound events A(L\R) and A(K\L) are
conditionally independent, conditioning on A{(L N R); in symbols.

Pr [/\(L\R) | AN R)] PrAR\L)| A(LNR)] (2.8)
=Pr{A\(L\RUR\L)| A\(LN R)}.

By the definition of conditional probability,

PrA L
P AR AEN R = g A2
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Pr[AR\L) | ALNR)| = %

and

PrIA(Z\RUR\L)| A\(LNR)]
_ PrAL\RUR\LU(LNR))] _ PrAV(G)]
Pr[A(L N R)] Pr[A(LNR)]

Using these three equalities in (2.8) and then multiplying through by Pr[A(LN
R)]? gives

Pr{A\L]-Pr[AB| =Pr[AV(®)] -Pr[AEZNR)],

from which (2.7) follows by dividing through by Pr[A(L N R)] and using
Pr[AS] = p(A{¢; : i € S}) again. O

Propositions 2.14 and 2.15 are obviously similar in form, each using a
product over V(T') divided by a product over E(T). This similarity is no
coincidence, as may be sensed from the proof sketches, but a more abstract
viewpoint is needed in order to be precise; [Speed & Kiiveri, 1986] and
[McKee, 1993] present such viewpoints.

2.5 Split Graphs

A graph G is a split graph if V(G) can be partitioned into Q U I, where
@ induces a complete graph and I induces an edgeless graph; thus G has
|QI(|Q| — 1)/2 edges within @ and anywhere from zero to |@Q] - |I| other
edges, between @) and I. Split graphs were introduced in [Féldes & Ham-
mer, 1977al; also see Chapter 6 of [Golumbic, 1980]. (Warning: [Féldes &
Hammer, 1977b)] gives a different meaning to “split.”) They were indepen-
dently studied in [Tyskevic & Cernjak, 1978a, 1978b, 1979]. While split
graphs may seem too special to be of interest, the theorem and corollary in
this section guarantee the place of split graphs in intersection graph theory.

Exercise 2.25 Show that the definition of split graphs could have equiv-
alently required that ¢} be a maxclique of G.

Theorem 2.16 (Foldes & Hammer) A graph G is a split graph if
and only if both G and its complement G are chordal.
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Proof. First suppose G is a split graph. Then it is easy to see that G
is also split and that both G and G are chordal.

Conversely, suppose that G and G are both chordal. Suppose T is a
minimum-diameter clique tree of G and, arguing toward a contradiction,
that the diameter of T is at least three, and so T is not a star. Then there
exist vertices (1 and (o that are the middle two vertices in an induced Py
in T. Among the other neighbors of @ in T there must be a Qg for which
there exists a vertex v € (Qo N Q1)\Q2, since otherwise all the neighbors
(other than @) of Q; in T could be made adjacent to Qo instead of Q1
and so create a clique tree for G with smaller diameter than 7. Let u be a
vertex in Qo\ Q1. Similarly, there is a neighbor Q3 # Q; of Q2 and vertices
w € (Q2NQ3)\Q1, and z € Q3\Q2. Then {u,v,w,z} induces a subgraph
of G with edge set {uv,wz}. But that would force an induced Cy in G,
contradicting that G is chordal. a

Exercise 2.26 (Foldes & Hammer) Show that a graph is a split
graph if and only if none of its induced subgraphs is isomorphic to 2K5, Cy,
or Cs.

The following corollary, from [McMorris & Shier, 1983], characterizes
split graphs as intersection graphs. (Compare it with Exercise 2.3.) Recall
that a star is a graph isomorphic to K, (n > 0); in other words, a tree T’
with diameter at most two. A substar of a star is then simply a subtree of
the star.

Corollary 2.17 (McMorris & Shier) A graph is a split graph if and
only if it is the intersection graph of a set of distinct substars of a star.

Proof. First suppose G is a split graph. Then G is chordal by Theo-
rem 2.16, and by its proof any minimum-diameter clique tree T for G has
diameter less than three and so is a star. Then G is the intersection graph
of the substars {T, : v € V(G)} of that star. If the diameter of T is two,
then these subtrees are distinct; if the diameter is one, then leaves can be
added for each v € V(G) to produce distinct subtrees.

Conversely, suppose G is the intersection graph of a set of distinct sub-
stars of a star T. We can suppose that T" is a clique tree for G and that
Q € V(T) is adjacent to all other vertices of 7. Then G is split, as shown
by the partition of V(G) into the complete subgraph @ and the independent
subset I = V(G)\Q. O
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Exercise 2.27 Find an example of a graph that is not a split graph, yet
is the intersection graph of a family of (not necessarily distinct) substars of
a star. (What does Theorem 1.5 have to do with this?)



Chapter 3

Interval Graphs

An interval graph is defined to be any graph that is isomorphic to the in-
tersection graph of a family of finite closed intervals of the real line, with
each vertex v corresponding to a closed interval J,; the family of intervals
is called an interval representation for the interval graph.

Interval graphs were first studied in [Hajés, 1957]. The standard refer-
ences are section 3.4 of [Roberts, 1976] and Chapter 8 of [Golumbic, 1980].

Example 3.1 The graph shown on the left in Figure 3.1 could have
the representation J, = [1,4], J, = [1,1] (a single-point closed interval),
Jo=1[1,2], Jg = [2,3], Je = [3,4], and J; = [4,4]. If you are squeamish about
length-zero intervals, you could of course use J, = [1,1.1] and J; = [3.1,4]
instead. You could also use all open intervals, instead of closed.

3.1 Definitions and Characterizations

Much as in Chapter 2 for subtrees of a tree, it is easy to see that we can
equivalently define interval graphs using subpaths of a path and so talk about
path representations. Since subpaths of a path satisfy the Helly condition,
Lemma 1.11 can be used to show that every interval graph has a clique path
representation, or clique path (paralleling Theorem 2.1 for trees).

Example 3.1 (continued) The graph shown in Figure 3.1 has the
clique path P shown there in which P, has length three, P, and P; have
length zero, and FP,, Py, and P, have length one.

Since paths are trees, interval graphs are chordal graphs, and so the cycle
Cy4 is a cheap example of a graph that is not an interval graph. A signifi-
cantly different example would result from adding an edge dg to the graph

45
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Figure 3.1: An interval graph with a path representation.

Figure 3.2: Some graphs that are not interval graphs; each of the lower two
has order at least siz.

on the left in Figure 3.1, producing the upper-right graph in Figure 3.2. (It
might be instructive to attempt to find an interval representation or a path
representation for that graph right now, instead of waiting for the character-
izations just ahead in this chapter that show why it is impossible.) Indeed,
none of the graphs shown in Figure 3.2 is an interval graph, while the graph
in Figure 2.2 is an interval graph.

The following theorem consolidates the connection between interval and
chordal graphs, extending a well-known theorem from [Fulkerson & Gross,
1965].

Theorem 3.1 A connected graph G is an interval graph if and only if
some mazimum spanning tree of the weighted cligue graph K¥(G) is a clique
path for G. Moreover, this is equivalent to every mazimum spanning tree of
the weighted clique graph K¥(G) that is a path being a clique path for G.
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Proof. This is immediate from Theorem 2.3. 0

Corollary 3.2 (Fulkerson & Gross) A graph is an interval graph if
and only if the edge cliqgue cover of all maxcliqgues can be arranged into a
clique path representation. a

It is impractical to look for clique path representations by using Kruskal’s
algorithm to find all the maximum spanning trees and then trying to cull
the nonpaths (indeed, being able to do that would be tantamount to solving
the NP-hard problem of recognizing graphs that have hamiltonian paths).
Yet interval graphs can be recognized efficiently. [Booth & Leuker, 1976]
contains the classical, linear-time recognition algorithm, using the influential
“PQ-tree” data structure that was introduced for that purpose; see also
section 8.3 of [Golumbic, 1980]. [Simon, 1991}, [Hsu & Ma, 1991], [Hsu,
1993|, and [Corneil, Olariu, & Stewart, 1998] contain more recent recognition
algorithms.

Theorem 3.1 relates to two prescient applications: Benzer’s 1959 study of
the fine structure of the gene, and Petrie’s late nineteenth century work with
archaeological seriation (see [Roberts, 1976] or [Golumbic, 1980}). Interval
graphs could have been used in these contexts, but working with the appro-
priate incidence matrices as in Corollary 3.9 was quite sufficient. Section 3.4
contains “real” applications of interval graphs.

Three vertices form an asteroidal triple in a graph G if, for each two, there
exists a path containing those two but no neighbor of the third. For instance,
the three vertices of degree one in the upper-left graph in Figure 3.2 form
an asteroidal triple. Notice that no two vertices of an asteroidal triple can
be adjacent. (Section 7.6 will discuss those graphs that have no asteroidal
triples.)

Exercise 3.1 Show that each of the graphs in Figure 3.2 has a unique
asteroidal triple.

Theorem 3.3 is from [Lekkerkerker & Boland, 1962]. Recall from Chap-
ter 2 that a graph is chordal if and only if contains no cycle C having k > 4
as an induced subgraph.

Theorem 3.3 (Lekkerkerker & Boland) A graph is an interval graph
if and only if it is chordal and has no asteroidal triple.

Proof. First suppose G is an interval graph with a clique path P. As
we have already observed, P is also a clique tree and so G is chordal by
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Theorem 2.1. Suppose u, v, w are pairwise nonadjacent and, without loss of
generality, that P, is in between P, and P, along P. Since P is a clique
path, every path from u to w in G will have to contain a neighbor of v, and
so u, v, w cannot be an asteroidal triple.

Conversely, suppose G is a chordal graph and, among all clique trees
for G, that T has a minimum number of leaves and that number is at least
three; we show that G must then contain an asteroidal triple. Suppose @,
Q2, and Q3 are three different leaves of T and let, respectively, @}, @5, and
Q5 (not necessarily distinct) be their unique neighbors in T

For each i = 1,2, 3, choose v; € V(Q;) such that v; & V(Q}). We show
that {v1,v9,v3} is an asteroidal triple. Suppose rather, without loss of gen-
erality, arguing toward a contradiction, that every path in G connecting v,
and v3 contains a neighbor of va. Not every edge of the path T(Q;,Q3) in T
can contain a nonneighbor of vy, since otherwise those nonneighbors could
be used to induce a vi-to-vz path in G that contained no neighbor of wvs.
Therefore, the path T(Q1,Q3) in T would contain some edge Q*Q** with
Q* NQ** consisting entirely of neighbors of vy, making @* NQ** C Q2N Q5.
Without loss of generality, suppose Q* is closer to @2 in T than is @**. Then
replacing edge Q*Q** with a new edge Q**Q2 would create a clique tree for
G that has one fewer leaf than T', which is a contradiction. m]

Using Theorem 3.3, [Lekkerkerker & Boland, 1962] proves that a graph is
an interval graph if and only if it is chordal and contains none of the graphs
in Figure 3.2 as an induced subgraph. [Harary & Kabell, 1984] contains a
similar characterization of “infinite-interval graphs” in which the intervals
are taken to be one- or two-way infinite intervals of the real line.

Exercise 3.2 Let G be a split graph. Show that G is an interval graph
if and only if G contains none of the graphs in Figure 3.3 as an induced
subgraph.

Before stating the next characterization of interval graphs, we need to
review some terminology and results about directed graphs (digraphs). A
digraph D is defined to have a vertex set V(D) and a set A(D) of arcs, where
vw € A(D) denotes an arc from vertex v to vertex w. We assume that there
are no multiple arcs (meaning that there are never two arcs from v to w,
although it is possible to have both vw, wv € A(D)) and, in this chapter, no
loops (meaning no vv € A(D)). A digraph is transitive if, for u, v, w € V(D),
wv,vw € A(D) with u # w implies that uw € A(D). Given any graph G, an
orientation of G is a digraph formed by specifying a direction for each edge
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Figure 3.3: Three split graphs that are not interval graphs.

of G, producing an oriented graph. The orientation is a transitive orientation
if the oriented graph is transitive.

Exercise 3.3 Show that the cycle C4 has a transitive orientation but
that Cs does not.

A directed hamiltonian path of a digraph is a directed path that includes
every vertex. A tournament is an orientation D of a complete graph; thus
u,v € V(D) and u # v imply that either uv € A(D) or vu € A(D) but not
both. The following is from [Rédei, 1934].

Lemma 3.4 (Rédei) Every tournament has a directed hamiltonian path.

Proof. Suppose D is a tournament. We argue by induction on n =
|V (D)|, with the result trivial for n < 2. Suppose n > 2 and v € V(D). By
induction hypothesis, the tournament D — v has a directed hamiltonian path
V1, U2y ..., Un—1. fvv; € A(D), then v, v1,...,v,—_1 is a directed hamiltonian
path in D. Otherwise, v1v € A(D) and we choose i to be the largest integer
for which v;v € A(D). If i = n, then vy,...,v,_1, v is a directed hamiltonian
path in D. If ¢ < n, then vv;4; € A(D), making vy, ..., 0,0, Vit1, -, Un-1
a directed hamiltonian path in D. 0O

Exercise 3.4 Show that every transitive tournament of order n has a
unique vertex of each possible out-degree 0,...,n — 1 and that taking these
in order determines a directed hamiltonian path.

Exercise 3.5 Show that every transitive tournament has a unique di-
rected hamiltonian path.

Recall that, for a graph G, the complement of G, denoted G, is the

graph having V(G) = V(G) where, for any distinct vertices v and v of G,
wv € E(G) if and only if uv € E(G).
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We are finally ready to state and prove the characterization from [Gilmore
& Hoffman, 1964).

Theorem 3.5 (Gilmore & Hoffman) A graph is an interval graph if
and only if it does not contain Cy as an induced subgraph and its complement
has a transitive orientation.

Proof. First suppose G is an interval graph with clique path P laid out
horizontally. Since G must be chordal, it cannot contain an induced Cj.

Form a oriented graph G by putting uv € A(é) if and only if P, is totally
to the left of P, in P (i.e., every vertex of P, is to the left of every vertex
of P,), noting that uv € A(G) implies P, N P, = § and so wv € E(G). It is
easy to see that this is a transitive orientation of G.

Conversely, suppose G contains no induced Cy and that G has a tran-
sitive orientation G. We form a digraph D whose vertices are precisely the
maxcliques of G, with arcs as follows: For every two maxcliques Q, Q' of G
pick v € Q and v’ € Q' such that vv' € E(G), and then put QQ’ € A(D) if
and only if vv' € A(@) Of course we must show that D really is well de-
fined. Arguing toward a contradiction, suppose that u,v € Q and v/,v' € Q'
where uu/, vv’ € E(G) and uw/,v'v € A(G). Observe that either uv/ € E(G)
or u'v € E(G), since the cycle u, v, v, v’, u cannot be induced in G. Without
loss of generality, we suppose that uv’ ¢ E(G). Thus either uv’ € A(G) or
v'u € A(G). If w’ € A(G), then w/,v'v € A(G) forces uv € A(G), since G
is transitively oriented. But then uv € E(G), contradicting that u and v are
in a common maxclique of G. A similar contradiction occurs if v'u € A(G).
Thus D is well defined.

It is easy to check that D is transitive since G is transitive, so D is a
transitive tournament. By Lemma 3.4, D has a directed hamiltonian path
P:Ch,...,Qm. We now show that P is a clique path for G. Suppose that
v € V(G) is in two nonadjacent vertices @,Q"” of P yet, arguing toward
a contradiction, that v € @’ for some Q' € V(P(Q,Q")). Without loss of
generality, we can assume that QQ” € A(D). Pick u,w € Q' such that u & Q
and wv ¢ E(G), while w ¢ Q" and wv € E(G). Then vu,wv € A(G), so
u # w and, by transitivity, wu € A(G") But then vw ¢ E(G), contradicting
that uv,w € Q' O

Example 3.2 Figure 3.4 shows one possible transitive orientation of @,
where G is the graph in Figure 3.1. Check that the only other transitive
orientation is the reverse of this one. The corresponding digraph D used
in the preceding proof is also shown. Notice that the directed hamiltonian
path in D corresponds to the clique path in Figure 3.1.
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Figure 3.4: A transitively oriented digraph to illustrate the proof of Theo-
rem 3.5.

[Opsut & Roberts, 1981] shows that the intersection number of an in-
terval graph equals the number of maxcliques minus the number of isolated
vertices.

3.2 Interval Hypergraphs

Continuing the discussion of tree hypergraphs in section 2.3, a hypergraph
(X,€) is an interval hypergraph if there is a path P with X = V(P) such
that, for each S; € £, there is a subpath P; of P with V(P;) = S;.

Exercise 3.6 Show that the hypergraph given in Exercise 2.17 is an
interval hypergraph.

Precisely as in the easy direction of Theorem 2.7, every interval hyper-
graph must be a Helly hypergraph with an interval line graph. But, unlike
what happened for tree hypergraphs, the following exercise shows that the
converse fails.

Exercise 3.7 Show that the hypergraph ({a, b, c,d},&) with £ = {{a, c},
{b,c}, {c,d}} is a Helly hypergraph and its line graph Q(€) is an interval
graph, but no path P exists as required in the definition of an interval hy-
pergraph.

A path in a hypergraph (X, £) is a sequence vg, S, v1, Sa, . . ., Sk, Vx Where
S1, ..., Sk are distinct edges, v, . . ., v are distinct vertices, and each v;_1v; €
Si; such a path is said to join the vertices vg and vg. The hypergraph (X, &)
is connected if every two vertices are joined by a path. A vertex v is said to
lie between vertices u and w in a hypergraph if every path in the hypergraph
that joins u and w contains an edge that contains v. [Duchet, 1978. 1984]
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contain proofs of the following characterization that is in the spirit of the
Fulkerson—-Gross result in Corollary 3.2.

Theorem 3.6 (Duchet) A connected hypergraph is an interval hyper-
graph if and only if, for every three vertices, one of them lies between the
other two.

Proof. First, suppose (X, ) is any connected hypergraph and there is
a path P with X = V(P) for which each S; € £ corresponds to a subpath
P; of P such that V(P;) = S;. Then a vertex y lies between vertices z and
z along P if and only if y lies between z and z in the hypergraph.

Conversely, suppose that (X, £) satisfies the condition in the theorem—
so for every three vertices, one of them lies between the other two. Choose
a hypergraph (X, £*) with £ C £* such that, among hypergraphs satisfying
the condition in the theorem, £* is maximal. Let £ be the set of minimal
edges S of £* for which |S| > 2.

Suppose a and b are distinct vertices in S € &'. If S # {a,b}, then
{a,b} ¢ £* and so the hypergraph (X,&€* U {{a,b}}) will not satisfy the
condition in the theorem—X contains z,y, z and (X, £*U{{a, b}}) contains
minimal-length paths

z,Ey,...,Ep,y with 2 € Ey U---U Ep,

Y, Eq,..., B,z withz g E{U---UE,

z,E!,...,El,zwithy g EfU-.-UE/,
where {a,b} € {E1,...,Ep, EY,...,Ey, E{,..., E/}. But if each occurrence
of {a,b} among the E;’s, E’s, and E!"s is replaced by S € £*, then by
the condition in the theorem one of z,y, z will be between the other two;
without loss of generality, say that y is between x and 2. That means that
{a,b} = E! forsome 1 < i <r,andsoa # y # b and y € S. Without
loss of generality, using the minimality of the path z, EY,...,E/, z, we can
suppose that a € E} | (or, possibly, @ = z). By the assumed maximality
of £*, we can assume that A = E{ U---UE! , € &* (or, if a = z, that
A = {a} € £*). Thus there exists A € £* such that a,z € A and b,y & A.
Similarly, there exists B € £* such that b,z € B and a,y ¢ B. Again using
the assumed maximality of £*, we can assume that S\ A, S\B € £*, and so
a and b are connected by the path a, S\ B,y, S\4,b in (X, &*).

Thus we have shown that every pair of vertices in an edge S € £* are
linked by a path in (X,£*) whose edges are subsets of S, and that every
edge S € £’ has cardinality two, since otherwise S\ B € £* would contradict
S’s assumed minimality. Therefore, (X, £’) is a graph. The assumed maxi-
mality of £* implies that X € £, so (X, £’) is connected, and the condition
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Figure 3.5: The four noncycle forbidden subhypergraphs for an interval hy-
pergraph.

in the theorem implies that (X,€’) is a path. Finally, every edge S € &*
can be seen to be a connected subset of (X,£’) by an inductive argument
on |S|. a

[Tucker, 1972] proves that a hypergraph is an interval hypergraph if
and only if it contains none of the following five induced subhypergraphs
({v1,...,vn},€) (see Figure 3.5 for the last four):

(1) n > 3 and € = {{v1, v}, {va,vs}, ..., {vn,v1}}.

(2) n=>5 and € = {{v1, v2}, {vo, v3, va}, {va, vs}, {v1,v2, v4, v5}}.

(3) n =6 and & = {{vy, va}, {va, v3,va}, {va, vs}, {vs,v6}}.

(4) n >4 and € = {{vz,v3},..., {vn-1,vn}, {vi,v2,...,vn1},

{v1,vs,..., v} }.

(5) n >4 and &€ = {{vg,v3},..., {vn-1,vn}, {v1,v3,...,0n-1}}.

(Trotter & Moore, 1976] gives a shorter proof, and [Duchet, 1984] contains
a short proof using Theorem 3.6.

See [Lehel, 1983] and [Duchet, 1984, 1995] and their references for more

on various sorts of representation of hypergraphs by intervals.

3.3 Proper Interval Graphs

A proper interval graph is the intersection graph of a family of closed intervals
of the real line, none of which is properly contained in another. This is
equivalent to being the intersection graph of a family of subpaths of a path,
none of which is a proper subpath of another; such a path is called a proper
path representation of the graph. For instance, Figure 3.6 shows a proper
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Figure 3.6: A proper interval graph with a proper path representation.

interval graph and a proper path representation for it. (Notice that we
cannot have the vertices of the path just be the maxcliques, as was true for
clique paths.) Proper interval graphs were introduced in [Roberts, 1969a]
as “indifference graphs,” for reasons we discuss in subsection 3.4.2; see also
section 8.5 of [Golumbic, 1980]. They also were introduced in epidemiology
as “time graphs”; see [Hedman, 1984].

Exercise 3.8 Show that a proper interval graph cannot contain K3
(the graph on the left in Figure 3.7) as an induced subgraph, and so that
the graph in Figure 3.1 is not a proper interval graph.

Exercise 3.9 Show that the clique graph of an interval graph must be
a proper interval graph.

Exercise 3.10 Show that every chordal graph has a “proper tree rep-
resentation,” meaning a tree representation 7' in which no T, is properly
contained in a T,.

Theorem 3.7 (Roberts) A graph is a proper interval graph if and only
if it is an interval graph that does not contain an induced subgraph isomor-
phic to K 3.

Proof. Exercise 3.8 gives the implication one way. For the converse,
suppose G has a clique path P and contains no induced subgraph isomorphic
to K1 3. Suppose the subpath P, is properly contained in P,,. We first show
that there cannot be vertices Q¢, Q" in P, with P, in between such that
there are z € Q\{Q : Q € P,} and y € Q"\{Q : Q € P,}, since otherwise
v, w, Z,y would induce a K3 3 centered at w. Thus we can assume that P,
and P, share one common end-vertex. Without loss of generality, assume
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Figure 3.7: Three graphs that are not proper interval graphs.

Q is their common left end-vertex. Now modify P by inserting a new vertex
@' just to the left of Q with Q' = Q\{u : Q is a left end-vertex of P, and
P, is properly contained in P,}. After this modification, P is still a path
representation of G but P, is no longer contained in P, (or in any of the
P,’s in the definition of Q). Repeating this lengthens P into a proper path
representation of G. a

Exercise 3.11 Use the construction in the proof of Theorem 3.7 to
make a clique path for the graph in Figure 3.6 into a proper path represen-
tation.

Exercise 3.12 (Roberts) Show that a graph is a proper interval graph
if and only if it contains no cycle of length greater than or equal to four and
contains none of the graphs of Figure 3.7 as induced subgraphs.

[Wegner, 1967] and [Roberts, 1969a] define a unit interval graph to be
the intersection graph of a family of closed intervals of the real line, all of
which have the same length (which is often taken to be one). Tais is equiv-
alent to being the intersection graph of a family of subpaths of a path, all
of which have the same length; such a path is called a unit path represen-
tation of the graph. Since every unit path representation is a proper path
representation, every unit interval graph is a proper interval graph. But the
following theorem shows that much more is true.

Theorem 3.8 (Roberts) A graph is a proper interval graph if and only
if it is a unit interval graph.

Proof. As we observed, the implication one way is immediate. To
prove the converse, suppose G is a proper interval graph. Arguing induc-
tively, suppose that, for every proper subgraph G’ of G, every proper path
representation of G’ can be made into a unit path representation of G’ by
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simply inserting duplicates of some of the vertices into the path. Suppose
P is a proper path representation for G and pick a v € V(G) that occurs
in an end-vertex of P. Obtain a proper path representation P* from P
by inserting duplicate vertices into P so that removing all occurrences of v
from P* would leave a unit path representation of the subgraph induced
by V(G)\{v}. We can assume that v still occurs in an end-vertex of P+
Let k = |V(P})| for each w # v. Then k > |V(P})|, since P* is still a
proper path representation, and so adding k — |V (P;)| new vertices, each
equal to {v}, to the end-vertex that contains v will produce a unit path
representation of G. O

[Jackowski, 1992] defines an astral triple in a graph as three vertices such
that, for each two, there exists a path containing those two but not the third
vertex that does not have two consecutive vertices that are neighbors of the
third. For instance, the three vertices of degree one in the graph on the left
in Figure 3.7 form an astral triple (but not an asteroidal triple). Paralleling
the characterization of interval graphs in Theorem 3.3, Jackowski proves
that a graph is a proper interval graph if and only if it contains no astral
triple.

Exercise 3.13 (Jackowski) Show that every nonchordal graph con-
tains an astral triple of vertices.

For any graph G with vertices indexed by {1,...,n} and maxcliques
indexed by {1,...,m}, define the mazclique-vertez matriz M(G) to be the
m X n matrix with entry m;; = 1 if the ith maxclique contains the jth
vertex, and m;; = 0 otherwise. For instance, the graph G in Figure 3.6 has
the maxclique-vertex matrix

1100000 0
00011010
MG =191 111000]
00001111

where the columns correspond to the vertices in alphabetical order and the
rows correspond to the maxcliques in the order ab, deg, bede, efgh.

A matrix has the consecutive ones property for columns if its rows can
be permuted so as to make all the 1 entries in each column consecutive. The
consecutive ones property for rows is defined similarly. For instance, you can
show that the above matrix has the consecutive ones property for columns
by interchanging the second and third rows; it also has the consecutive ones
property for rows. The following merely rephrases Corollary 3.2.
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Corollary 3.9 A graph G is an interval graph if and only if M(G) has
the consecutive ones property for columns. 0O

The following result seems to have been first stated in this form in [De-
ogun & Gopalakrishnan, to appear], in connection with the application in
section 3.4.3, although all the pieces were certainly in [Roberts, 1968]. Sec-
tion 7.1 contains more about variations of the consecutive ones properties.

Theorem 3.10 A graph G is a proper interval graph if and only if M(G)
has the consecutive ones property for both rows and columns.

Proof. First suppose G has a proper path representation P. Corol-
lary 3.9 shows that M(G) has the consecutive ones property for columns.
Let vy, ..., v, be the vertices in the order of their leftmost appearance along
P. Suppose i < j < k and vjvg € E(G). Then P,, (the subpath of P corre-
sponding to v;) will intersect P, and so also P,;, ensuring that v;v; € E (G).
Because P,; cannot be properly contained in P,,, path P,; will have to in-
tersect P,,, ensuring that vjuy € E(G). Thus, each maxclique of G will
correspond to consecutive vertices in the ordering v1, ..., v,, and this means
that M(G) has the consecutive ones property for rows.

Conversely, suppose M(G) has the consecutive ones property for both
columns and rows. The former of these implies that G is an interval by
Corollary 3.9. The latter implies that G does not contain K; 3 as an in-
duced subgraph, and so G is a proper interval graph by Exercise 3.7. m|

Sections 3.4.2, 7.1, and 7.2 contain other characterizations of proper
interval graphs, and [Gutierrez & Oubifia, 1996] contains various order-
theoretic characterizations. [Gutierrez & Oubifia, 1995] shows that every
proper interval graph satisfies

[V(G)] 2 2¢(G) - «(K(G)),

where K (-) is the clique graph operator from section 1.4 and ¢(-) counts the
number of maxcliques and then investigates the graphs for which equality
holds.

See [Corneil, Kim, Natarajan, Olariu, & Sprague, 1995], [Hell & Huang,
1995], and [de Figueiredo, Meidanis, & de Mello, 1995] for recognition al-
gorithms for proper interval graphs, and [Hell & Huang, 1995] and [Deng,
Hell, & Huang, 1996] for representation algorithms.

[Leibowitz, Assman, & Peck, 1982] generalizes the notion of a unit in-
terval graph by defining the “interval count” of an interval graph to be the
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minimum number of different lengths of intervals needed in an interval repre-
sentation. [Skrien, 1984] characterizes graphs that have interval count two,
where one of the allowed lengths is zero—in other words, the intersection
graphs of points and unit intervals; section 5.2 will show that “threshold”
graphs are of this type.

[Pe’er & Shamir, 1995] investigates a host of restrictions on interval
graphs, including bounding the maximum lengths of intervals.

3.4 Some Applications of Interval Graphs

Each of the following subsections is merely a brief sketch of one application of
interval graphs. As we did in section 2.4, we have selected applications that
make essential use of the intersection definition of interval graphs, rather
than other important applications that involve interval graphs. One example
of the latter involves on-line coloring algorithms: a graph is presented one
vertex at a time, along with its neighbors among earlier vertices, and the
graph is to be properly colored with as few colors as possible. This is a
highly practical problem in many contexts, dynamic storage problems for
one. Papers such as [Gyéarfis & Lehel, 1988], [Slusarek, 1989, [Kierstead,
1991} and [Kierstead & Qin, 1995] contain results for interval graphs; the
first of these also studies proper interval graphs, while [Slusarek, 1995] and
[Marathe, Hunt, & Ravi, 1996] study circular-arc graphs (section 7.1).

3.4.1 Applications to Biology

Probably the first paper on interval graphs was an application in biology.
Although stated in terms of incidence matrices rather than graphs, the ques-
tion in [Benzer, 1959] was whether certain fragment overlap data on the
DNA making up a bacterial gene was consistent with the gene having a lin-
ear structure—in other words, whether the graph constructed from the data
was an interval graph. Of course today we know that the gene is indeed
a linear arrangement and, as mentioned in section 2.4.1, DNA strands are
sequences (words) built from the four letter alphabet {A,C,G,T}.

One of the problems involving DNA is to try to assemble subsequences
involving possible overlaps into longer sequences. Certainly one would ex-
pect interval graphs and their variants to be useful, and indeed this has
been the case. [Jungck, Dick, & Dick, 1982] is a very readable introductory
paper. See [Fellows, Hallett, & Wareham, 1993], [Goldberg, Golumbic, Ka-
plan, & Shamir, 1995], and [Nicholson, 1995] for more recent views. [Mirkin
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& Rodin, 1984} and [Waterman, 1995] are two excellent books with in-depth
treatment.

We now briefly present some oversimplified background relevant to what
is called physical mapping of DNA. Sequence fragments called clones are
obtained from an unknown DNA sequence and form a “clone library.” Ex-
periments are then carried out that can decide if a very short molecule, called
a probe, overlaps each clone. The goal is to reconstruct the placement of the
clones along the DNA sequence, the sequence having been destroyed during
the construction of the clone library. If only some of the clones are used
as probes, then the overlap information is not available between clones that
are not probes. [Zhang, to appear| introduced the following generalization
of interval graphs to deal with this situation.

A graph G is a probe interval graph if V(G) can be partitioned into
subsets P and N (corresponding to the probes and nonprobes) and each
v € V(G) can be assigned to an interval I,, such that uv € E(G) if and only
if both I, NI, #  and at least one of u and v is in P. Interval graphs are
simply probe interval graphs with N = §.

Exercise 3.14 Show that, although C; and the graph in the middle of
Figure 3.7 are not interval graphs, they are both probe interval graphs.

Results on probe interval graphs and their variants can be found in
[Zhang, to appear|, [McMorris, Wang, & Zhang, to appear], [Wan, Lee,
Wang, & Zhang, to appear| and [Sheng, Wang, & Zhang, to appear]; also
see [Atkins & Middendorf, 1996]. The following result considerably restricts
the possible structure of probe interval graphs; the graphs described therein
are the weakly chordal graphs, that are discussed further in section 7.3.

Theorem 3.11 (McMorris, Wang, & Zhang) Neither a probe inter-
val graph nor its complement can contain an induced cycle of length greater
than or equal to five.

Proof. Suppose G is a probe interval graph with respect to the partition
V(G) = PU N, with I, the interval assigned to each v € V(G). Let G*
be defined precisely the same as G except with wv € E(G*) if and only if
I, N1, # 0 (without the addition {u, v} NP # 0 assumption). Clearly G* is
an interval graph. Suppose C is an induced cycle of G of length at least four
and u,v € P are adjacent along C. Since the only edges in E(G*)\ E(G) are
between vertices of N, u and v have the same neighborhoods in G and G*.
But then some subset of the vertices of C' would induce a chordless cycle
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containing v and v of length at least four in G*, contradicting that G* is an
interval (and so chordal) graph. Therefore, vertices of P and N alternate
on C, and so G has no induced cycles of odd length greater than three.

Now suppose C is an induced cycle of G of even length at least six.
Let z,y,2 € P be nonadjacent vertices along C, and let paths P;, Py, and
P3 be, respectively, the segments of C' between z and y, between y and z,
and between z and z; thus z is not adjacent to any vertex on Pj, z is not
adjacent to any vertex on P, and y is not adjacent to any vertex on Pj.
Since z, y, z € P, they have no new neighbors in G* and so form an asteroidal
triple in G*, again contradicting that G* is an interval graph. Therefore, a
probe interval graph has no induced cycles of length greater than or equal
to five.

To show that G contains no complement of an induced cycle of length
larger than four, first notice that the complement of an induced cycle of
length five would also be an induced cycle of length five, which we now
know is impossible in G. Therefore, we only need to show that G contains
no complement of an induced cycle of length six or more. Suppose to the
contrary that {vi,...,vn} induces a complement of an induced cycle in G
with n > 6, where viv, € E(G) and each vjviy1 € E(G), while all other
v;v;’s are in E(G). Then vy, vy, v, vs, v1 will be an induced cycle in G, and
so we can assume without loss of generality that vy, vs € P and v4,v5 € N.
Therefore, v3vs € E(G) implies that vs € P and vqug € E(G) implies that
vg € P. But then vy, vs,vs, vg, v2 would be a length-four chordless cycle
in G having three vertices from P, contradicting vertices from P and N
alternating around induced cycles in G. ]

Exercise 3.15 (Zhang) Show that “enhancing” a probe interval graph
by adding edges between pairs of nonprobes that have two nonadjacent
probes as common neighbors produces a chordal graph.

Also related to DNA matters, [Bodlaender & de Fluiter, 1996] discusses a
“chromatic interval completion problem,” paralleling the chromatic chordal
completion problem—inserting edges so as to make an interval graph—in
section 2.4.1. Going the other way, [Wang, 1994] discusses removing edges
from a bipartite graph so as to leave an interval graph.

3.4.2 Applications to Psychology

While classical theories of measurement are based on the physical sciences,
much work has also been done on notions of measurement that are more
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suitable for the social sciences. Much of this work has been within the con-
text of psychology. Our discussion below is based on [Roberts, 1976, 1978b].
[Roberts, 1979] is a related treatment of various aspects of “measurement
theory.”

Suppose A is a set of alternatives, such as types of cars or food prod-
ucts, and a person has preferences among the elements of A. [Luce, 1956]
motivates seeking a real-valued function f on A such that, for a,b € A,
preferring alternative a to alternative b implies f(a) > f(b) + 6, where the
positive constant 6 represents a threshold or just noticeable difference be-
tween alternatives.

Define a binary relation R on a finite set A to be an interval order if it
satisfies the two following axioms.

Axiom 1: Foralla € A, not aRa.
Axiom 2: Foralla,b,c,d € A, if aRb and cRd, then either aRd or cRb.

Exercise 3.16 Suppose f is a real-valued function defined on A, and
aRb is defined to mean that f(a) > f(b) + 6, where § is a positive constant.
Show that R is an interval order on A.

For any binary relation R on any finite set A, define the graph G(R) to
have V(G(R)) = A with ab € E(G(R)) if and only if neither aRb nor bRa;
edges thereby correspond to “indifference” with respect to R. (Warning: An
“indifference graph” per se is defined somewhat differently and is equivalent

to being a proper interval graph.) The following result is from [Fishburn,
1970a, 1970b].

Proposition 3.12 (Fishburn) A binary relation R on a finite set A is
an interval order on A if and only if R is transitive and G(R) s an interval
graph.

Proof sketch. First suppose R satisfies Axioms 1 and 2; transitivity
follows directly. Theorem 3.5 shows that G = G(R) is an interval graph as
follows: G cannot contain an induced cycle a,b,¢,d, a since ac,bd ¢ E(G)
would imply both (aRc or cRa) and (bRd or dRb), and each of the four
possible cases would lead to a contradiction using Axiom 2; and R is itself
a transitive orientation of G.

Conversely, suppose R is transitive and G = G(R) is an interval graph.
Axiom 1 follows from G being loopless. Arguing toward a contradiction
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with Axiom 2, suppose aRb and cRd, so ab,cd & E(G), yet neither aRd nor
cRb. Then by transitivity, neither dRa nor bRc, so ad,bc € E(G). Transi-
tivity similarly shows ac, bd € E(G), producing an induced cycle a,d, b, ¢, a,
contradicting Theorem 3.5. 0

Exercise 3.17 Discuss whether or not our proof of Proposition 3.12
actually shows something stronger: that a binary relation R on a finite set
A is an interval order on A if and only if R is transitive and G(R) contains
no induced Cy.

Define a binary relation R on a finite set A to be a semiorder if it satisfies
Axioms 1 and 2 and also the following axiom.

Axiom 3: Foralla,b,c,d € A, if aRb and bRc, then either aRd or dRc.

Exercise 3.18 Suppose f, §, A, and R are as in Exercise 3.16. Show
that R is a semiorder of A.

We state the following result of [Roberts, 1969a, 1971], as stated in
[Fishburn, 1985], without proof.

Proposition 3.13 (Roberts) A binary relation R on a finite set A is
a semiorder on A if and only if R is transitive and G(R) is a proper interval
graph.

Again with [Luce, 1956] as motivation, [Roberts, 1971] defines a graph G
to be representable by just noticeable differences if, for each v € V(G), there
exists a real number 7, contained in a closed interval J, of the real line such
that wv € E(G) if and only if r, € Jy (or, equivalently, r, € J,). (Compare
this with the concept of “catch graphs” in section 7.2.) While we state the
following result without proof, Exercise 3.19 will be a simpler special case.

Proposition 3.14 (Roberts) A graph is representable by just notice-
able differences if and only if it is a proper interval graph.

Exercise 3.19 (Roberts) Show that a graph G is a proper interval
graph if and only if, for each v € V(G), there exists a real number r, and
a closed unit interval J, centered at r, such that uv € E(G) if and only if
Ty € Jp.
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More general applications to psychology involve general seriation prob-
lems. For instance in developmental psychology, [Coombs & Smith, 1973]
studies whether psychological “traits” could correspond to chronological
intervals—interval graph models would clearly be useful here. [Hubert, 1974]
surveys the role of interval and proper interval graphs in seriation problems
in psychology. [Troxell, 1995] also considers proper interval graphs.

3.4.3 Applications to Computing

Applications of interval graphs tend to be examples of general “seriation”
problems, determining whether certain data or objects are compatible with
arrangement in a linear pattern. Such examples are often scheduling prob-
lems, with the linear dimension corresponding to time. A common example
involves a graph having university courses as vertices, with two vertices ad-
jacent if and only if the courses overlap in time of day and so cannot be
assigned a common room. Such a graph will be an interval graph, and find-
ing the minimum number of rooms needed corresponds to finding the graph’s
chromatic number, a problem that is much easier for interval graphs than in
general. (Making a hard—in this case NP-complete—problem tractable is
an important role of interval graphs in computing, much as we mentioned for
chordal graphs at the end of subsection 2.4.2; [Olariu, Schwing, & Zhang,
1995] is an up-to-date discussion.) [Kendall, 1969] contains another well-
known “seriation in time” problem to which interval graphs are applicable,
in this case to archaeology.

There are many applications to computing in which the seriation is not
with respect to time. [Golumbic, 1984] gives one interesting example, and
there are others in section 8.4 of {Golumbic, 1980]. Our discussion is in
terms of the widely studied topic of consecutive retrieval file organization.
The original idea appeared in [Ghosh, 1972], with [Eswaran, 1975] linking
it to interval graphs. [Ghosh, Kambayashi, & Lipski, 1983] is a collection of
articles on this subject, with [Lipski, 1983] listing almost 200 references on
consecutive retrieval and interval graphs.

Suppose R is a set of records (files) and Q is a set of gqueries, each
linked to a particular set of relevant records so that each query Q; € Q
can be identified with a subset of R. Such R and Q are said to satisfy the
consecutive retrieval property if the records relevant to each query can be
stored consecutively in linear storage without repeating records.

Example 3.3 Suppose A, B, C, D, E, F, G, H, | are nine records with
Ql = {A’ Ba C}a Q2 = {D7 E, F7G}a Q3 = {Ca Da H7 |}’ Q4 = {D> |}7 and QS =
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{C,D,E,H,1}. Then one way to satisfy the consecutive retrieval property is
shown by the linear arrangement

A-B-C-H-1-D-E-F-G.

Clearly R and Q satisfy the consecutive retrieval property if and only
if H = (R, Q) is an interval hypergraph. As we observed in section 3.2,
this means that if the records of R can be arranged so as to satisfy the
consecutive retrieval property with respect to the queries in Q, then the line
graph Q(Q) of H must be an interval graph. But, as we also observed in
section 3.2, the converse fails. This is a subtle, but important, point that can
cause confusion in various seriation applications. The subtlety is shown by
its incorrect inclusion as a theorem in [Ghosh, 1977] and its removal from the
second edition, [Ghosh, 1986]. That ©(Q) is an interval graph corresponds to
@ being representable by intervals, not to the arrangement of the members
of R. The hypergraphs of Example 2.6 and Exercise 3.7 can both be thought
of as examples of R and Q where Q(Q) is an interval graph, yet the records
cannot be linearly arranged so as to satisfy the consecutive retrieval property.
[Deogun & Gopalakrishnan, to appear| proves the following.

Proposition 3.15 (Deogun & Gopalakrishnan) Suppose the hyper-
graph H = (R, Q) is such that there are not two Q;,Q; € Q with Q; C Q.
Then the records in R can be arranged so as to satisfy the consecutive re-
trieval property with respect to Q if and only if the line graph of H is iso-
morphic to the clique graph of the line grapk of the dual hypergraph H* and
this cligue graph is a proper interval graph.

The consecutive retrieval property has been generalized in various ways,
many of them in [Ghosh, Kambayashi, & Lipski, 1983]. In particular,
[Tanaka, 1983] investigates replacing linear storage with storage on trees,
thereby replacing interval hypergraphs with tree hypergraphs.



Chapter 4

Competition Graphs

This chapter considers intersection graphs of various sorts of neighborhoods
in graphs and digraphs, the most studied of which are the “competition
graphs” in section 4.2. But, in a generic sense, they all can be thought of in
terms of “competition.”

The development of these topics differs from that of chordal and interval
graphs in that they are intersection graphs of the set of all subgraphs (neigh-
borhoods) of a certain sort, rather than an arbitrary multiset of them. They
resemble clique and line graphs in this regard. In particular, each of these
topics has an associated graph operator that is discussed more thoroughly
in [Prisner, 1995).

4.1 Neighborhood Graphs

Recall that for any graph G and any v € V(G), the open neighborhood
of v, denoted Ng(v), is the subgraph induced by {u : uv € E(G)}. The
closed neighborhood of v in G, denoted Ng[v], is the subgraph induced by
Ng(v) U {v}. We write N(v) and N[v] when G is clear from the context.

4.1.1 Squared Graphs

For any graph G, the square of G, denoted G?, has the same vertices as G,
with two vertices v and v adjacent if and only if d(u,v) < 2 in G, where
d(u,v) denotes the usual graph distance; this can be thought of as saying
that 4 and v are close enough to “compete” in some sense. A graph G is a
squared graph if G = H? for some graph H.

Example 4.1 The graph G in Figure 4.1 is the square of the graph H.

65
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Figure 4.1: A graph H and its square G = H?.

Exercise 4.1 Describe the relationship between the incidence matrices
of G and G2.

Theorem 4.1 A graph is a squared graph if and only if it is the inter-
section graph of all the closed neighborhoods of the vertices of some graph.

Proof. This follows immediately from the observation that, for u # v,
Nu] N Nv] # 0 if and only if d(u,v) < 2. o

Squared graphs originated in [Harary & Ross, 1960], where the squares
of trees were characterized. Squared graphs in general were characterized in
[Mukhopadhyay, 1967]. Notice how “v € N[v]” translates into condition (1)
on an edge clique cover in the following theorem, and “u € N|v] if and only
if v € N(u]” translates into condition (2).

Theorem 4.2 (Mukhopadhyay) A graph G with V(G) = {v1,...,v,}
is a squared graph if and only if G has an edge clique cover £ = {Q1,...,Qn}
such that both the following hold:

(1) fO'I" every i, v € Qi;

(2) for every i # j, vi € Q; if and only if v; € Q.

Proof. First suppose G has vertex set {v1,...,v,} and edge clique cover
£ ={Q1,...,Qn} satisfying conditions (1) and (2). Put F = F(€), the dual
set representation of G determined from £. Thus G = Q(F) where, in the
definition of F(£), F = {81,...,5,} and each §; = {j : v; € Q;}.

Define a graph H on V(H) = {1,...,n} where jk € E(G) if and only if
J # k and v € Qj, noting that adjacency is indeed symmetric by (2). Fix
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k € V(H). Then j € Ng[k] if and only if either jk € E(H) or j = k. So
by (1), 7 € Ny[k] is equivalent to vy € @;, and so to j € S,. Thus each
Sk = Npylk], and so G is a squared graph by Theorem 4.1.

Conversely, suppose G = H? where for convenience we assume V(G) =
V(H?) = {v1,...,v,} with each v; € V(G) corresponding to v; € V(H?)
under the isomorphism. Thus G 2 Q(F) where F = {S1,..., Sy} and each
S; = Nylvi]. Put & = E(F), the dual edge clique cover of G determined by
E; thus £ = {Q1,...,Qn} where, in the definition of £(F), each

Qj = ij = {Ui 1v; € S;} = {’Ui TU; € NH[’Ui]} = NH[vj].

Condition (1) holds since each v; € Ng|v;], and (2) holds since v; € Ny |v;]
is equivalent to v; € Ng[v;]. w]

Example 4.1 (continued) For the squared graph G in Figure 4.1,
Q1 = {v1, v, vs, v}, Q2 = {v1, v, v3}, Q3 = {v1, vo, v, vs}, Qs = {v3, vy,
vs}, Qs = {vs, vs, vs}, Qs = {vs, vs, v7}, Q7 = {v1, ve, v7} form an edge
clique cover as described in Theorem 4.2.

4.1.2 Two-Step Graphs

For any graph G, the two-step graph (or two-path graph) of G, denoted Gs,
has the same vertices as G, with two vertices v and v adjacent if and only
if there is a path of length exactly two connecting v and v in G. A graph G
is a two-step graph if G = H; for some graph H.

Example 4.2 The graph G in Figure 4.2 is the two-step graph of the
graph H.

Theorem 4.3 A graph is a two-step graph if and only if it is the inter-
section graph of all the open neighborhoods of the vertices of some graph.

Proof. This follows immediately from the observation that, for u # v,
N(u) N N(v) # 0 if and only if there is a path of length two connecting u
and v. a

[Escalante, Montejano, & Rojano, 1974] is a good reference on two-step
graphs, which were characterized in [Acharya & Vartak, 1973], noting the
“striking similarity” with squared graphs.
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Figure 4.2: A graph H and its two-step graph G = Hs.
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Theorem 4.4 (Acharya & Vartak) A graph G with V(G) = {uv,
...,Un} 18 a two-step graph if and only if G has an edge clique cover £ =
{Q1,-..,Qn} such that both the following hold:

(1) for every i, v; € Qi;

(2) for every i # j, vi € Q; if and only if v; € Q;.

Proof. This can be proved by a minor modification of the proof of
Theorem 4.2. ]

Exercise 4.2 Find the edge clique cover £ as in Theorem 4.4 for the
two-step graph G in Figure 4.2.

Exercise 4.3 Verify the details in the proof of Theorem 4.4.

4.2 Competition Graphs

Recall that a digraph D can be defined to have a finite vertex set V(D) and
a set A(D) of arcs, where vw € A(D) denotes an arc from vertex v to vertex
w. We assume that there are no multiple arcs (meaning that there are never
two arcs from v to w, although it is possible to have both vw, wv € A(D)).
In this chapter, we will sometimes allow loops (meaning an arc vv). For
each v € A(D), define the out-neighborhood of v in D, denoted N7 (v) or
N*(v), to be the subdigraph of D induced by {w : vw € A(D)}. (Notice
that v € N (v) if and only if D contains a loop at v.) A sink of D is a
vertex v € V(D) such that N*(v) = @. Similarly, the in-neighborhood of v
in D, denoted Np(v) or N~ (v), denotes the subdigraph of D induced by
{w: wv € A(D)}. A sourceof D is a vertex v € V(D) such that N~ (v) = §.
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Figure 4.3: A digraph D and its competition graph G = C(D).

Competition graphs were introduced by Joel Cohen in 1968 in the con-
text of a food web (an acyclic digraph) D whose vertices are species with
vw € A(D) whenever species v feeds on species w. Competition graphs are
sometimes called niche overlap graphs or consumer graphs for this reason.
(Warning: Graph theorists direct arcs from “predators” toward “prey,” but
biologists use the opposite directions for the arcs when they draw foodwebs.)
[Cohen, 1978] and [Roberts, 1976, 1978a] contain much more information.
This biological motivation also explains the frequent restriction to acyclic
(and so, automatically, to loopless) digraphs. [Lundgren, 1989] is a recent
survey.

The competition graph C(D) of a digraph D has vertex set V(D) and
edges so as to make C(D) = Q({N*(v) : v € V(D)}). Notice that a sink in
D will be an isolated vertex in C(D), and that uv € E(C(D)) if and only
if there is some w € V(D) such that both uw, vw € A(D)—which means if
and only if v and v are in some common N~ (w). In other words, two species
are adjacent in the competition graph if and only if they compete for (both
feed on) some common prey.

Example 4.3 The graph G in Figure 4.3 is the competition graph of
the acyclic digraph D shown there. For instance, vivs € E(G) because
N*¥ ()N N*(v3) = {va,v3,v4} N {v4,vs} # B—species v; and vz compete
for species v4—while vivy € E(G) because NT(v))NN*(vq) = {va,v3,v4} N
{vs} = 0—species v; and v4 do not both feed on a common species. Vertex
vs is isolated in G, since it is a sink in D. The vertex labels used in Figure 4.3
are as described in the following lemma.

Lemma 4.5 If a digraph D s acyclic, then V(D) can be labeled as
{v1,...,vn} so that viv; € A(D) implies that i < j.

Proof. Suppose D is acyclic. If every vertex of D had positive in-degree,
then moving backward along arcs would eventually determine a directed
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cycle. Thus some vertex must have in-degree zero; label it v; and remove it
from the digraph. Repeat this procedure—each time labeling a vertex with
in-degree zero using the next available label—until all vertices are labeled.

Arguing toward a contradiction, suppose v;v; € A(D) yet i > j. When
v; becomes labeled, v; will already have become labeled within a digraph
containing the vertex that becomes v;. But this means that v; had positive
in-degree when it became labeled, which is a contradiction. O

Exercise 4.4 Prove the converse of Lemma 4.5.

The basic characterization of competition graphs of acyclic digraphs is
in both [Dutton & Brigham, 1983] and [Lundgren & Maybee, 1983a]. Recall
that the definition of an edge clique cover £ in section 1.1 allows any Q); € £
to be the null subgraph.

Theorem 4.6 (Dutton & Brigham and Lundgren & Maybee) A
graph G is a competition graph of an acyclic digraph if and only if V(G) can
be labeled as {v1,...,vn} and G has an edge clique cover € = {Q1,...,Qn}
such that v; € Q; implies i < j.

Proof. First suppose G has vertex set {v1, ..., vn} and edge clique cover
E={Q1,...,Qn} such that v; € Q; implies ¢ < j. Define a digraph D with
V(D) = V(G), where vv; € A(D) if and only if v; € Q;, noting that D is
acyclic by Exercise 4.4. Then vxv; € E(G) if and only if v, v; € Q; for some
j. But that is equivalent to vyv;,viv; € A(D) and so to vk, v; € N~ (v;)-
making G a competition graph by definition.

Conversely, suppose G = C(D), where D is acyclic with V(D) = {v,...,
vn}. By Lemma 4.5, we can assume the vertices of D have been labeled so
that vjv; € A(D) implies ¢ < j. Checkthat N~ (v1) = Q1, ..., N (vp) = Qn
is an edge clique cover of G. Moreover, v; € Q; is equivalent to v;v; € A(D),
which implies i < j. O

Example 4.3 (continued) For the competition graph G in Figure 4.3,

Q1 =0, Q2 = {n}, Qs = {v1,v2}, Q1 = {v1,v3}, and Q5 = {va,v3,v4} form
an edge clique cover as described in Theorem 4.6.

Exercise 4.5 In the first paragraph of the proof of Theorem 4.6, show
that F(€) = {S1,...,Sn}, the dual set representation of G determined from
£, corresponds to the family of out-neighborhoods of D, with each j € §; if
and only if v; € N ().
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In the second paragraph of the proof, G has the set representation F =
{N*(v1),...,N*t(v,)}. Show that E(F) = {Gy,,...,Gy,}, the dual edge
cover of G determined from F, corresponds to the family of in-neighborhoods
of D, with each Gy, = N (v;).

Competition graphs of arbitrary (not necessarily acyclic) digraphs are
characterized in [Dutton & Brigham, 1983] as follows.

Theorem 4.7 (Dutton & Brigham) A graph G is a competition graph
of an arbitrary digraph if and only if G has an edge clique cover £ such that
€l = [V(G)].

Proof. This can be proved by a minor modification of the proof of
Theorem 4.6. a

Exercise 4.6 Fill in the details in the proof of Theorem 4.7.

Recall from section 1.3 that §(G) denotes the minimum cardinality of an
edge clique cover of G. Theorem 4.7 can be rephrased as follows.

Corollary 4.8 (Dutton & Brigham) A graph G is a competition graph
of an arbitrary digraph if and only if (G) < |[V(G)]. O

As an elegant, but nontrivial, modification of this corollary, [Roberts &
Steif, 1983] shows that a graph G is a competition graph of a loopless digraph
if and only if (G) < |V(G)| and G 2 K. The proof of Theorem 4.6 can be
modified to produce the following more straightforward characterization.

Exercise 4.7 (Dutton & Brigham) Show that a graph G is a com-
petition graph of a loopless digraph if and only if V(G) can be labeled as
{v1,...,vn} and G has an edge clique cover £ = {Q1,...,Qr} such that
v; € Q5 implies 7 # j.

[Fraughnaugh, Lundgren, Merz, Maybee, & Pullman, 1995] and [Guichard,
1998] describe competition graphs of strongly connected digraphs and of
hamiltonian digraphs.

Given a competition graph G, the competition number of G, denoted
k(G), is the minimum number of isolated vertices that have to be added to
G to make it into a competition graph of an acyclic digraph.

Exercise 4.8 (see [Roberts, 1978a]) Show that k(G) is well defined by
showing that at most |E(G)| isolated vertices need to be added to any graph
G to make it into a competition graph of an acyclic digraph.
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[Lundgren, 1989] and [Kim, 1993] survey the rich theory of competi-
tion numbers that has developed, and NP-completeness is shown in [Opsut,
1982]. This last paper also contains Opsut’s conjecture: If every v € V(G)
has N(v) coverable by at most two complete subgraphs of G, then k(G) < 2.
[Kim & Roberts, 1990, 1997] and [Wang, 1992, 1995b] further discuss com-
petition numbers and variants of Opsut’s conjecture.

Note that every competition graph of an acyclic digraph has at least
one isolated vertex, since every acyclic digraph has at least one sink; the
following result from [Roberts, 1978b] is a sort of converse to that.

Exercise 4.9 (Roberts) Suppose G is a chordal graph that contains an
isolated vertex. Prove that G is a competition graph of an acyclic digraph.
(Hint: Use the fact that G must contain a simplicial vertex.)

The common enemy graph (or resource graph) of a digraph D is the inter-
section graph Q({N~(v) : v € V(D)}). Competition-common enemy graphs,
in which u,v € V(D) are adjacent whenever both Nt*(u) N N*(v) # 0 and
N~ (u)NN~(v) # 0, and niche graphs, in which adjacency means that either
Nt(w)NN* () #0 or N~(u) N N~ (v) # 0, have been studied extensively,
along with the corresponding analogues of competition numbers—again, see
[Lundgren, 1989] and [Kim, 1993] for details and results, along with [An-
derson, 1995], [Anderson, Jones, Lundgren, & Seager, 1991], [Hefner, Jones,
Kim, Lundgren, & Roberts, 1991}, and [Wang, 1995a). [Raychaudhuri &
Roberts, 1985] discusses other generalizations and applications of competi-
tion graphs.

4.3 Interval Competition Graphs

The impetus behind the intensive study of competition graphs was Joel Co-
hen’s provocative 1968 observation, leading to the book [Cohen, 1978], that
naturally occurring food webs tend to have interval competition graphs.
Insofar as this is true, there would be potential ramifications for the ecolog-
ical notion of “niche space.” [Cohen & Palka, 1990] and [Cohen, Briand, &
Newman, 1990] are recent sources describing the literature spawned by these
questions and the status of Cohen’s observation. (Building on the present
section, we continue the food web story in the middle of section 6.2.)

The fundamental open problem in this area is to characterize those
acyclic digraphs whose competition graph is an interval graph. [Lundgren,
1989] discusses this in detail, but we only include the one following result
from [Lundgren & Maybee, 1984].
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Given an acyclic digraph D, a competition cover D = {Dy,...,Dn}
of D is a set of subsets of V(D) such that, for all v;,v; € V(D), both
vi,vj € Dy for some Dy € D if and only if both v;vg, vjur € A(D) for some
v € V(D). A competition cover D has a consecutive ranking if its members
can be arranged as vertices of a path P such that, for each v; € V(G),
{Dj € D: v; € D;} induces a subpath of P.

Theorem 4.9 (Lundgren & Maybee) An acyclic digraph has an in-
terval competition graph if and only if it has a competition cover that has a
consecutive ranking.

Proof. Suppose D is an acyclic digraph with competition graph C(D).

First suppose C(D) is an interval graph, say with clique path P as in
section 3.1. Take D = V(P). Then v;,v; € Dy € D for some ¢ if and
only if wv; € E(C(D)), and so if and only if v;vg, vjup € A(D) for some k.
Moreover, P determines a consecutive ranking of D.

Conversely, suppose D is a competition cover of D that has a consecutive
ranking by a path P. Then v;,v; € Dy € D for some ¢ if and only if
viuk, Vv, € A(D) for some k, and so if and only if v;v; € E(C(D)). So D
is an edge clique cover of C(D) and P is a path representation for C(D).
Therefore, C(D) is an interval graph. a

Exercise 4.10 Use Theorem 4.9 to show that the digraph in Figure 4.3
has an interval competition graph, but the digraph produced from the graph
on the left in Figure 4.4 by directing each edge downward does not.

As far back as [Cohen, 1978], questions were also raised about digraphs
that have chordal competition graphs. [Sugihara, 1984] considers various
rationales to explain why competition graphs (and common enemy graphs)
of naturally occurring food webs might tend to be chordal. See also {Pimm,
1991] for an ecology textbook’s introduction to interval and chordal com-
petition graphs and [McKee, 1995a] for several graph-related concepts that
are potentially relevant.

[Lundgren & Merz, 1994] contains more characterizations of digraphs
that have interval or chordal competition graphs. [Lundgren, Merz, & Ras-
mussen, 1993] contains characterizations of digraphs that have interval or
chordal squared graphs. [Lundgren, Maybee, Merz, & Rasmussen, 1995]
discusses digraphs that have interval or chordal two-step graphs.
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Figure 4.4: A poset with its upper bound graph.

4.4 Upper Bound Graphs

A partially ordered set, or poset, (X, <) consists of a nonempty set X with
an irreflexive, transitive binary relation < defined on it. The upper bound
graph of (X, <) is the graph G with V(G) = X and wv € E(G) if and only
if v # v and there exists w € X such that v < w and v < w; in other words,
u and v are distinct and have a common upper bound. A graph is an upper
bound graph if it is isomorphic to the upper bound graph of some poset.

Example 4.4 The figure on the left in Figure 4.4 shows a poset, where
v; < v; if and only if there is a downward path from v; to v;. The upper
bound graph of this poset is the graph on the right.

Exercise 4.11 For any acyclic digraph D and v € V(D), define the
ancestor set of v to be the subdigraph of D induced by {w # v : there is a
directed w-to-v path in D}. Show that a graph is an upper bound graph
if and only if it is the intersection graph of ancestor sets of some acyclic
digraph.

Upper bound graphs were introduced and characterized in [McMorris &
Zaslavsky, 1982].

Theorem 4.10 (McMorris & Zaslavsky) A graph G is an upper bound
graph if and only if G has an edge clique cover £ = {Q1,...,Qk} such that,
foreach j € {1,...,k}, there exists v; € V(G) such thatv; € Q;, butv; & Q;
fori#j.

Proof. First suppose G is the upper bound graph of ({vy,...,vn}, <).
Without loss of generality, assume that vy,...,vx (k > 1) are the maximal
elements of (X,<). For each i € {1,...,k}, let Qi = {v; : v; < vi}. It



4.4. UPPER BOUND GRAPHS 75

is easy to check that @,...,Q form an edge clique cover of G and each
vj € Q;. Fori # jin {1,...,k}, v; maximal implies that v; £ v; and so
v; € Qi

Conversely, suppose £ is an edge clique cover of G as described in the
theorem. Define < on V(G) = {v1,...,vn} byv; < v;ifandonlyifi <k < j
and v; € Q;. Then v;v; € E(G) with i < j if and only if either ¢ < k < j with
vi,v; € Q; or there exists h < k < i < j with v;,v; € Qp; these happen if
and only if v; and v; have a common upper bound (respectively, v; or v). O

Notice that, in the poset produced in the second part of the above proof,
each v; is either a maximal element (when ¢ < k) or a minimal element
(when ¢ > k); that is, “height-one posets suffice.”

Exercise 4.12 Find the edge clique cover £ as in Theorem 4.10 for the
upper bound graph on the right in Figure 4.4. Then find the poset (X, <)
for G as produced in the proof. Also, show that removing vertex vy from G
would produce a graph that is not an upper bound graph.

Exercise 4.13 (McMorris & Zaslavsky) Show that the edge clique
cover £ in the statement of Theorem 4.10 can always be required to consist
of maxcliques of G.

Recall from section 2.2 that a simplicial vertex is defined to be a ver-
tex whose neighbors induce a complete subgraph (which may be the null
subgraph).

Exercise 4.14 (see [Bergstrand & Jones, 1988] and [Cheston, Hare,
Hedetniemi, & Laskar, 1988]). Show that a graph is an upper bound graph
if and only if every edge is in the closed neighborhood of a simplicial vertex.

The following more fundamental characterization of upper bound graphs
appeared in [Lundgren & Maybee, 1983b)].

Theorem 4.11 (Lundgren & Maybee) A graph G is an upper bound
graph if and only if V(G) can be labeled as {v1,...,vn} and G has an edge
clique cover € = {Q1,...,Qn} such that both the following hold:

(1) each v; € Q;;

(2) if v; € Qj, then j < i and Q; C Q.

Proof. This can be proved by modifying the proof of Theorem 4.10,
using ideas from Exercise 4.11 and the proof of Theorem 4.6. a
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Exercise 4.15 Prove Theorem 4.11.

[Scott, 1986) characterizes those posets that have interval and chordal
upper bound graphs. [McMorris & Myers, 1983] discusses upper bound
graphs that correspond to a unique poset.

[Lundgren, Maybee, & McMorris, 1988] contains various related topics
concerning upper bound graphs (and similarly defined lower bound graphs)
in relation to competition graphs (and common enemy graphs). [Bergstrand
& Jones, 1989], [Bergstrand, Jones, & Sherman, to appear], and [Era &
Tsuchiya, 1997, 1998] discuss more relations between upper and lower bound
graphs.



Chapter 5

Threshold Graphs

Recall from section 2.5 that a graph G is a split graph if V(G) can be
partitioned into Q U I, where @ induces a complete graph and I induces
an edgeless graph (that is, I is an independent set). Threshold graphs are
special split graphs that were introduced in [Chvatal & Hammer, 1973] and
that have been extensively studied since that time. In keeping with the style
of the previous chapters, this chapter will provide only a short introduction
to threshold graphs; [Mahadev & Peled, 1995] is a very nice comprehensive
study.

5.1 Definitions and Characterizations

The definition that we give in this section is from [Chvédtal & Hammer,
1973], in which set-packing problems are studied. For each vertex v of a
graph G, let w, denote a nonnegative real number, the weight of v. A graph
G is a threshold graph if there is an assignment of weights to the vertices
of G and a nonnegative real number ¢, the threshold, such that, for every
X C V(G), X is an independent set if and only if }_ . x wy < t—in other
words, if weights can be assigned to the vertices of G so that a subset of
vertices is independent if and only if the total weight of the set is no greater
than a certain constant threshold. Figure 5.1 shows two threshold graphs
with weight assignments and thresholds.

The notion of degree partition of a vertex set is crucial to the under-
standing of threshold graphs. Let G be a graph whose nonisolated vertices
have the distinct degrees 6; < 2 < -+ < b. Set 6p = 0 and 6,41 = |V| -1,
and let D; be the set of all vertices having degree 6; for i = 0,...,m. The
sequence Dy, ..., Dy, is called the degree partition of G.

77
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a3 baa) €(2)
N4 /N
Z0) b(1) == a(7) ——— c(g)
\
d@1) e(1) dz fa)

Figure 5.1: Two threshold graphs having thresholds 4 and 7, respectively,
using v(;) to denote that vertez v has weight w, = 1.

Figure 5.2: Another view of the graph on the right in Figure 5.1, as ezplained
in the text.

Example 5.1 The threshold graph on the left in Figure 5.1 has m = 2
with 6; =1, 83 =4, Dy =0, D = {a,b,d, e}, and Dy = {c}. The threshold
graph on the right has m = 4 with Dy = 0, D; = {b}, Dy = {d,e, f},
D3 = {c}, and Dy = {a}.

Figure 5.2 shows another view of the graph on the right in Figure 5.1,
with its vertices now grouped into “cells” corresponding to the degree par-
tition. The D;’s in the left column represent independent sets, the D;’s in
the right column represent complete subgraphs, and a line between cells D;
and D; means that every vertex in D; is adjacent to every vertex in D;.

Notice that the graph in Example 5.1 is a split graph, with the union
of the cells on the left in Figure 5.2 forming the independent set I and the
union of those on the right inducing the complete subgraph Q. Also notice
that the open neighborhoods of the vertices in the left column of cells are
nested with respect to set inclusion in that the open neighborhood of every
vertex in the left column is contained in the open neighborhood of every
vertex below it; similarly, the closed neighborhoods of vertices in the right
column are nested in that the closed neighborhood of every vertex in the
right column is contained in the closed neighborhood of every vertex above
it. One of the consequences of Theorem 5.1 will be that this sort of structure
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characterizes threshold graphs. This theorem is from [Chvétal & Hammer,
1973], with the equivalence of conditions (1) and (3) independently found
in [Henderson & Zalcstein, 1977]).

Theorem 5.1 (Chvatal & Hammer) Let G = (V, E) be a graph with
degree partition Dy, ..., D,,. Then the following statements are equivalent:

(1) G is a threshold graph;

(2) forz € D; andy € D;, zy € E if and only if i +j > m;

(3) there exist nonnegative integer weights w, and threshold t such that,
for distinct vertices u and v, uv € E if and only if wy, +w, > £;

(4) G does not contain Py, Cy, or 2K5 as an induced subgraph,

(5) G is a split graph where the open neighborhoods of the vertices of the
independent set I can be nested with respect to set inclusion;

(6) G can be obtained from Ky by recursively adding either an isoloted
vertezr or a verter adjacent to every ezisting vertexz.

Proof. (1 = 2): Assume G is a threshold graph with weights wy,
threshold ¢, and degree partition Dy, ..., Dy, and suppose 0 < i < j < m.
Our proof is by induction on m, with the m = 0 case—when G is edgeless—
immediate. Now assume that y € Dy, and x ¢ Dg. Then there is a vertex z
such that zz € E(G), so that

t<wy+w, < wy + wy,

which implies that zy € E(G). Thus every vertex in Dy, is adjacent to every
nonisolated vertex, and so é,, = |V| — |Dg| — 1. This shows condition (2)
when j = m. Exercise 5.1 will show that 6, = |D,,[, thus showing condition
(2) when ¢ = 1. Suppose m > 1, and let V/ =V — Dy — D), and G’ be
the subgraph of G induced by V’. Then G’ is a threshold graph with degree
partition Dy, ..., D!, _, where each D} = D;y;. The induction hypothesis
can then be used on G’ to show that condition (2) holds when j = m —1 or
i = 2; repetition shows that condition (2) holds in general.

(2 = 3): This follows by assigning the weight j to every vertex in D
and letting t = m.

(3 = 4): Suppose each vertex v € V(G) is assigned weight w, and
there is a threshold ¢ as in condition (3). Suppose a,b,c,d € V(G) with
ab,cd € E(G) while ad,bc ¢ E(G). Then wg + wp > t, we + wq < ¢,
we + wy > t, and wy + w, < t, an inconsistent set of inequalities.

(4 = 5): Let Q be a largest maxclique of G and I = G\@Q. Suppose there
exist z,y € I such that xzy € E(G). Because @ is a largest maxclique, there
would exist vertices u,v € Q (possibly u = v) such that zu,yv ¢ E(G),
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leading in every case to an induced Py, Cy, or 2K3. Thus G is a split graph.
Now let z,y € I have open neighborhoods N(z) and N(y). If N(z) € N(y)
and N(y) € N(z), then it is easy to see that z and y would be in an induced
P4 or 2K2 in G.

(5 = 6): Suppose G satisfies condition (5). Since the removal of an
isolated vertex or a vertex adjacent to every other vertex results in a graph
that still satisfies condition (5), it suffices to show that G contains such a
vertex. Assume I # @ and G has no isolated vertices. Pick xz € I such that
N(z) € N(y) for every y € I. Then any z € N(z) is adjacent to every
vertex in G.

(6 = 1): Assume G satisfies condition (6) and proceed by induction on
|[V(G)|. Clearly G is a threshold graph if |[V(G)| = 1,2, 3. Now assume that
G is a threshold graph with weights w, and threshold t. If we add a vertex
z that is adjacent to all the vertices of G, assign x the weight ¢t and leave
the other weights and threshold unchanged. If we add an isolated vertex y
to G, then assign weight 2w, to each v € V(G), make the new threshold
2t + 1, and assign to y the weight 1. m]

Exercise 5.1 In the (1 = 2) step of the proof of Theorem 5.1, show
that vertices in D, are only adjacent to vertices in D,,.

Notice that condition (2) of Theorem 5.1 means that, for each v € Dy,

k
N(v) = U Dpyi—jfork=1,...,|m/2]
j=1

and

k
N[ = | Dmy1-j for k= |m/2] +1,...,m.
j=1
Therefore, the typical threshold graph G has the structure shown in Fig-
ure 5.3, generalizing Figure 5.2: Dy,...,D,, is the degree partition of G
with Do possibly empty and Dy, o) present only if m is odd. A line be-
tween cells D; and D; means that every vertex in D; is adjacent to every
vertex in D;. The D;’s in the left column represent independent sets, with
the open neighborhoods of their vertices ordered by inclusion downward,
and the D;’s in the right column represent complete subgraphs, with the
closed neighborhoods of their vertices ordered by inclusion upward.

Exercise 5.2 Show that G is a threshold graph if and only if V(G) can
be ordered vi,...,vn such that v; is adjacent to either none or all of the
vertices in the subgraph induced by {uvi,...,vn}.
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Figure 5.3: The structure of a typical threshold graph.

Also, find such an ordering of the vertices of the graph oun the right in
Figure 5.1.

Corollary 5.2 The complement of a threshold graph is o threshold groph.

Proof. This follows immediately from condition (4) of Theorem 5.1 and
the facts that Py is self-complementary and that Cy and 2K5 are comple-
ments of each other. ]

Exercise 5.3 Show that a graph is a threshold graph if and only if
neither it nor its complement contains Py or Cy as an induced subgraph.
(Such Py, Cy-free graphs are discussed further in section 7.9.)

5.2 Threshold Graphs as Intersection Graphs

Since Theorem 5.1 shows that threshold graphs are split graphs, the in-
tersection characterization of split graphs in Corollary 2.17 can be used to
produce the following characterization of threshold graphs.
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Exercise 5.4 Show that a graph is a threshold graph if and only if it
is the intersection graph of a set of distinct substars of a star where the
substars containing the center of the star are nested with respect to set
inclusion.

Let G be an interval graph. A threshold interval representation for G is
an interval representation for G that consists of a family of intervals {J,,}
such that Jy, is either the interval [0, r;] or the trivial interval {s;, s;] where
s; # sy for all j # k and where s; # 7y for all j and k. The following is
from [Mahadev & Peled, 1995].

Theorem 5.3 A graph is a threshold graph if and only if it is an interval
graph with a threshold interval representation.

Proof. Assume G is an interval graph with a threshold interval repre-
sentation. Then the nontrivial intervals in the representation correspond to
vertices that induce a maxclique @ of G, the trivial intervals correspond to
vertices that form an independent set I in G, and the neighborhoods of ver-
tices in I are nested in the order in which their representing trivial intervals
appear along the real line. Therefore, G is a threshold graph by part (5) of
Theorem 5.1.

Conversely, suppose that G is a threshold graph. By part (5) of Theo-
rem 5.1, G is a split graph with V(G) partitioned into the complete subgraph
@ and the independent set I with the neighborhoods of I nested. Assign
each vertex v in @ an interval J, = [0, r,) such that N[u] € N[v] if and only
if r, <7y for all u,v € Q. For each w € I, let r(w) = max{r, : wv € E(G)}.
Each such w can be assigned a trivial interval J,, that is a small distance ¢,
to the left of r(w) in such a way that the intervals form a threshold interval
representation for G. a

Example 5.2 To illustrate the proof of Theorem 5.3, the threshold
graph on the left in Figure 5.1 could receive the threshold interval repre-
sentation determined by 0 < s, < sp < 84 < 8¢ < 7. The threshold graph
on the right could receive the threshold interval representation determined
by 0 < sg < 8¢ < 85 <7< 8p<Tg.

Exercise 5.5 Verify that if each of the cells in the general threshold
graph shown in Figure 5.3 is the singleton D; = {v;} (and if m is odd),
then any choice of r;’s and s;’s as in Figure 5.4 would determine a threshold
interval representation of the graph.
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0 <7pm/2) < Simy2) < Timy2)+1 < -+ <82 <Tm-1 < 81 <7y < Sp
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Figure 5.4: A threshold interval representation for a typical threshold graph

as in Figure 5.3.

Figure 5.5: An interval graph that requires only two lengths of intervals, yet
is not a threshold graph.

Recall that a unit interval graph is an interval graph with an interval
representation using intervals all of the same length. There are threshold
graphs that are unit interval graphs (K, for example) and others that are
not unit interval graphs (K3, for example). However, as first observed
in [Leibowitz, 1978)], a threshold graph will never require more than two
distinct lengths of intervals in its interval representation.

Theorem 5.4 (Leibowitz) Every threshold graph has an interval rep-
resentation whose intervals have at most two distinct lengths.

Proof. Let G be a threshold graph with V(G) partitioned into the
maxclique () and independent set I, and suppose {J,} is a threshold in-
terval representation as constructed in the proof of Theorem 5.3. By that
construction, there exists a z € @ such that r, < r, for all t € Q. For
each u € @ assign the interval J, = [ry — 7,7y, while for each w € I let
Jj, = Jy. Then J) is an interval representation for G using only the two

lengths r, and 0. O

The converse to Theorem 5.4 fails since the nonthreshold graph Py is a
unit interval graph.

Exercise 5.6 Show that the nonthreshold graph in Figure 5.5 is an in-
terval graph whose interval representations require two but only two different
interval lengths. ([Skrien, 1984] characterizes all such graphs.)
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Figure 5.6: Py is a difference graph with weights wz, = 3, Wz, = 2, wy, =
=2, wy, = -1, and T = 4; Gx is as in Theorem 5.5 using X = {z1,z2}.

5.3 Difference Graphs and Ferrers Digraphs

This section is a brief introduction to two types of graphs that are closely
related to threshold graphs. [Mahadev & Peled, 1995] contains a more thor-
ough treatment and extensive references.

Define a difference graph to be a graph G = (V, E) such that each vertex
v € V can be assigned a real number weight w, and there exists a positive
real number 7" such that both the following hold:

(1) |lwy| < T for all v € V;

(2) if u # v, then wv € E if and only if jw, — wy} > T.
Difference graphs were first introduced in [Hammer, Peled, & Sun, 1990],
emphasizing their similarity to threshold graphs. Notice that every dif-
ference graph G is bipartite, since V(G) can be partitioned into the two
independent sets X = {v:w, >0} and Y = {u : w, < 0}. Thus K3 is a
threshold graph that is not a difference graph. Figure 5.6 assigns weights
to Py to show that it is a difference graph that, by Theorem 5.1, is not a
threshold graph.

Let G = (V, E) be any bipartite graph with V' partitioned into indepen-
dent sets X and Y, and define the split graph Gx = (V, E U Ex) to have
Ex = {uv : u,v € X and u # v}; see Figure 5.6.

Theorem 5.5 (Hammer, Peled, & Sun) A graph G = (V,E) is a
difference graph if and only if there is a partition of V into independent sets
X and Y such that Gx is a threshold graph.

Proof. Let G = (V, E) be a difference graph with vertex weights w, for
v € V and with V partitioned into the independent sets X = {v : w, > 0}
and Y = {u : w, < 0}. To each v € X assign the new weight w!, = T + w,,
and to each u € Y assign the new weight w], = —w,. Let t = 2T. If
z,v € X, then w), + w), > ¢ since both wy,w, > 0. fx € X andy €Y,
then w, +w?”, > tif and only if |lwy —wy| > T. If y,u €Y, then w&+w; <t
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>
A Q CEHN & A
Figure 5.7: Forbidden configurations in a Ferrers digraph: in each, if the
two solid arcs occur, then at least one of the two dashed arcs must occur.

since both |wy|, |wy| < T. Therefore, condition (3) of Theorem 5.1 shows
that Gx is a threshold graph with weights w/ and threshold ¢.

For the converse, suppose V is partitioned into independent sets X and
Y such that Gx is a threshold graph with degree partition Dy,...,Dp;
furthermore, we can assume that X and Y are chosen so that

Y =DoU--UDmsz and X = Dpso+1Y -+ U Dp.

To each z € D; C X assign wy =i — [m/2], and to each y € D; C Y assign
wy = j— |m/2] —1. Thus for u # v, wv € EUEY if and only if w, +wy > 0,

and in addition w; > 0 for x € X and wy < 0 for y € Y. Pick T such that
T > max{wy : z € X} and T > max{—wy : y € Y}. To each z € X assign
w,, = wg, and to each y € Y assign 'w; = —w, — T. It is easy to check that

conditions (1) and (2) of the definition of a difference graph are satisfied. O

Theorem 5.6 (Hammer, Peled, & Sun) A graph is a difference graph
if and only if it does not contain K3, Cs, or 2K5 as an induced subgraph.

Exercise 5.7 Prove Theorem 5.6.

Introduced in [Riguet, 1951], a Ferrers digraph is a digraph D = (V, A)—
with loops allowed—such that for all w,z,y,z € V' (not necessarily distinct
except that w # y and z # z), it is not the case that wz,yz € A and wz,yz ¢
A. (This says that D satisfies Axiom 2 from section 3.4.2; a loopless digraph
is a Ferrers digraph if and only if it is an interval order.) Figure 5.7 illustrates
what is forbidden in Ferrers digraphs, taking the allowed coalescence of
w, T, Yy, z into account.

Exercise 5.8 Show that the digraph on the left in Figure 3.4 is not a
Ferrers digraph.
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Exercise 5.9 Show that D = (V, A) is a Ferrers digraph if and only if
the out-neighborhoods N*(v) for v € V are nested (or, equivalently, the
in-neighborhoods N~ (v) for v € V are nested).

Exercise 5.10 (Cogis) Show that if D = (V, A) is a symmetric Ferrers
digraph—“symmetric” meaning that uv € A if and only if vu € A—then the
underlying graph of D (discarding any loops) is a threshold graph. ([Cogis,
1982] also shows how to go from an arbitrary threshold graph to a symmetric
Ferrers graph with properly chosen loops.)

For a digraph D = (V,A) with V = {v,...,v,}, define the bipar-
tite representation of D to be the bipartite graph B(D) on V(B(D)) =
{z1,..-,%Tn;¥1,-- ., Yn} With x;y; € E(B(D)) exactly when vjv; € A. For
instance, the graph G in Figure 7.6 is the bipartite representation of the
digraph D shown there.

Exercise 5.11 Show that a digraph D is a Ferrers digraph if and only
if its bipartite representation B(D) is a difference graph.

5.4 Some Applications of Threshold Graphs

The study of threshold graphs began in [Chvétal & Hammer, 1973, 1977]
with applications to the “aggregation” of linear inequalities in integer pro-
gramming and set packing problems. There have been several other appli-
cation areas such as the synchronization of parallel processes in [Golumbic,
1978c], [Henderson & Zalcstein, 1977], and [Ordman, 1989], and to cyclic
scheduling in [Koop, 1986]. This section focuses on an application in the
social sciences that fits in more naturally with our approach to threshold
graphs.

Suppose S is a set of “subjects” and I is a set of “items,” where for
example the (S, I) pairs might be (students, tests), (soldiers, combat situ-
ations) or (people, opinion poll questions). Assume further that there is a
binary relation p between S and I; for the three previous examples p might
be, respectively, “can pass,” “fears,” and “agrees with.” It is often desired
to linear order SUI so that the p relation is preserved. Formally, a Guttman
scale is a mapping g : SUI — R such that for each u € S and v € I, upv if
and only if g(u) < g(v).

Illustrating this with the polling example, the existence of a Guttman
scale means that the people and opinions can be linearly ordered (“scaled”)
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so that each person agrees with the opinions succeeding her in the scale and
disagrees with each opinion preceding her in the scale.

We want to determine for which S, I, and p a Guttman scale exists. To
do this, consider the bipartite graph G in which V(G) = SUI, S and I are
independent and, for v € S and v € I, wv € E(G) if and only if upv. Let
Gg be the split graph formed from G by adding all edges between vertices
in S in order to make S complete.

The following theorem from [Cozzens & Leibowitz, 1984] and [Leibowitz,
1978] combines with Theorem 5.5 to show that the bipartite graph of a
Guttman scale is a difference graph.

Theorem 5.7 (Cozzens and Leibowitz) A Guttman scale exists if
and only if Gg is a threshold graph.

Proof. Suppose Gg is a threshold graph. Then by condition (6) of
Theorem 5.1, the vertices of Gg can be linearly ordered such that every
vertex in S is adjacent to every vertex preceding it in the order but to no
others. The reverse of this order leads to a mapping ¢ that satisfies the
definition of a Guttman scale.

Now assume that G'g has a Guttman scale g yet is not a threshold graph.
By condition (4) of Theorem 5.1 and Gg being split, there exists an induced
Py, say a,b,c,d with b,c € S and a,d € I. This implies the contradictory
inequalities g(d) < g(b) < g(a) and g(a) < g(c) < g(d). O

[Cozzens & Leibowitz, 1987] contains further discussion of the connection
between Guttman scales and graphs.
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Chapter 6

Other Kinds of Intersection

Given a family F = {51, ..., Sy} of nonempty sets, the existence of edges in
the intersection graph Q(F) depends only on whether S; N S; # . Clearly,
however, the cardinality of the intersections and other features can also be
relevant. This chapter considers three of the other kinds of intersection
that have been worked on and shows for each how the basic theory from
Chapter 1 can be modified and what analogues exist for various sorts of
intersection graphs we have studied.
Chapter 7 contains other examples of different kinds of intersection.

6.1 p-Intersection Graphs

For each integer p > 1, the p-intersection graph Q,(F) of the family F =
{81, ...,5,} of subsets of a finite set S is defined to be the graph G having
V(G) = F with S;S; € E(G) if and only if ¢ # j and |S; N S;| > p. A graph
G is a p-intersection graph if there exists a family F such that G = Q,(F),
and F is then called a p-intersection set representation for G. Thus the
1-intersection graphs are precisely the ordinary intersection graphs on finite
sets. The concept of the p-intersection graph was introduced in [Jacobson,
McMorris, & Scheinerman, 1991]; see also [McKee, 1991a] and [Kim, McKee,
McMorris, & Roberts, 1995].

Example 6.1 Suppose F = {S1,...,S5} where S; = {a,b,c}, Sz =
{b,c,d}, S3 ={b,c,d, f,g}, Ss = {c,d,e, f,9}, and S5 = {a,d, e}. Then the
2-intersection graph G = {2(F) is shown on the left in Figure 6.1, with a
set-labeled version on the right. The graph Q3(F) corresponds to the path
52835, and two isolated vertices, £24(F) corresponds to the edge 5354 and
three isolated vertices, Qx(F) is edgeless for k£ > 4, and ;(F) is complete.

89



90 CHAPTER 6. OTHER KINDS OF INTERSECTION

N N

Figure 6.1: A 2-intersection graph.

Exercise 6.1 Show that every graph is a p-intersection graph for every
pzl

The key concept for p-intersection graph theory is a p-edge clique cover
of a graph G, which is a family {V},...,V;,} of not necessarily distinct
subsets of V(G) such that, for every set {i1,...,ip} of p distinct subscripts,
T =YV, N-.-NV, induces a complete subgraph of G—recall that T may
be the null subgraph of G—and such that the collection of sets of the form
T is an edge clique cover of G. The proof of Theorem 6.1 will show that
{V1,...,Vn} is a p-edge clique cover of G if and only if vv; € E(G) is
equivalent to v; and v; being in at least p common sets V;. This shows that
p-edge clique covers are what are called p-generators in [Chung & West,
1994].

Exercise 6.2 Show that Vi = {S1, S5}, Va = {51, 52, S3}, V3 = {51, 5,
S3, S4}, Vo = {52,853,81,85}, Vs = {54,85}, V& = {S3,54}, and V7 =
{Ss3, 84} is a 2-edge clique cover of the graph G in Example 6.1. Show
that V1 = {51,852}, Vo = {51,853}, V3 = {51,852, 83}, Vi = {82, 853,54},
Vs = {52,54}, Vs = {53,854}, V& = {S4, S5}, and Vg = {54, S5} is another
2-edge clique cover.

Exercise 6.3 Check that being a l-edge clique cover is the same as
being an edge clique cover.

Theorem 6.1 Suppose G is the p-intersection graph of F = {S1,..., 5.}
on the set S. For each element x € S, put V, = {S; € V(G) : z € S;}. Then
the family of these V,’s forms a p-edge clique cover for G.

Proof. Suppose G and F are as in the theorem and {zy,...,zp} is
a set of distinct elements of S and S;,5; € T = V;; N---NV,,. Then
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{z1,...,2p} € SiNS;, s0 |S;NS;| > p, and so S;S; € E(G). Thus T induces
a complete subgraph (possibly the null subgraph) of G. To show the sets of
form T cover E(G), suppose S;S; € E(G). This implies |S; N S;| > p and
thus there exist distinct x1,...,z, € §; N §;. By definition of the V;’s, we
have 5,55 € Vi, N+ Vo, 0O

Exercise 6.4 Show that the first 2-edge clique cover listed in Exer-
cise 6.2 is the sort described in Theorem 6.1. Also check that we really have
shown that p-edge clique covers are the same as p-generators (as defined
above).

Exercise 6.5 Suppose G has p-edge clique cover {V4,...,V,}. Foreach
v;i € V(G) = {v1,...,vn}, define R; = {j : v; € V;}. Show that Ry,..., R,
is a p-intersection set representation for G.

For any graph G, the p-intersection number of G is the minimum cardi-
nality of a set S such that G is a p-intersection graph on S. The following
is analogous to Theorem 1.6.

Theorem 6.2 For every graph G, the p-intersection number of G equals
the minimum cardinality of a p-edge clique cover of G.

Proof. This follows by a similar argument to that used for Theorem 1.6,
using Theorem 6.1 and Exercise 6.5. o

Actually finding p-intersection numbers is hard, even in the p = 2 case;
see {Chung & West, 1994], [Ganter, Gronau, & Mullin, 1994}, [Jacobson,
Kézdy, & West, 1995], and [Eaton, 1997]. For instance, Jacobson, Kézdy,
and West show that the 2-intersection number of the n-vertex path P, is
asymptotic to 2v/n. Also see [Brigham, Dutton, & McMorris, 1992, 1993],
[Eaton, Gould, & Rédl, 1996}, and [Fiiredi, 1997].

Paralleling section 1.3, define a graph to be a p-cligue graph if it is
isomorphic to the p-intersection graph of all maxcliques of some graph. It is
not hard to show that the direct analogue of Theorem 1.12 holds: A graph
is a p-clique graph if and only if it has a p-edge clique cover that satisfies the
Helly condition; see [McKee, 1991al, which also shows that p-clique graphs
are clique graphs.

Exercise 6.6 Show that, for every p > 1, a graph is the p-intersection
graph of a family of subtrees of a tree if and only if the graph is chordal.
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Thus chordal graphs do not have interesting p-analogues, and the same
is true for interval graphs, proper interval graphs, unit interval graphs, and
line graphs. However, parts of intersection graph theory can have inter-
esting p-intersection graph analogues in unexpected ways. In particular,
section 4.2 motivates the most-studied topic in p-intersection graph theory:
p-competition graphs, meaning graphs isomorphic to the p-intersection graph
of the out-neighborhoods of vertices of a digraph. [Kim, McKee, McMor-
ris, & Roberts, 1995] is the most general source, although not the earliest.
For instance, the following direct analogue of Theorem 4.7, the Dutton and
Brigham characterization, appeared in [Isaak, Kim, McKee, McMorris, &
Roberts, 1992].

Theorem 6.3 A graph G is the p-competition graph of an arbitrary di-
graph if and only if G has a p-edge clique cover of cardinality |V (G)|.

Proof. First suppose G is the p-competition graph of D, where V(G) =
V(D) = {v1,...,vn}. It is easy to check that {N~(v;) : 1 < i < n}, the
family of all in-neighborhoods of D, is a p-edge clique cover of G.

Conversely, suppose G has a p-edge clique cover {Vj,...,V,}, where r <
n; since repetitions are allowed, we can assume that r = n. Define a digraph
D with V(D) = V(G) with v;v; € A(D) if and only if v; € Vj. It is easy to
check that G is the p-competition graph of D. (]

Exercise 6.7 Show that Cy is not the 2-competition graph of an arbi-
trary digraph.

However, not everything goes over directly from competition graphs
to p-competition graphs. For instance, Theorem 4.7 made it easy to tell
which complete bipartite graphs K, » are competition graphs of arbitrary
digraphs: precisely those for which mn < m+4n. But only partial results are
known even for which complete bipartite graphs are 2-competition graphs of
arbitrary digraphs; for instance [Isaak, Kim, McKee, McMorris, & Roberts,
1992] shows that Ky, is the 2-competition graph of an arbitrary digraph if
and only if n = 1 or n > 9, and [Jacobson, 1992] shows that K, ,, is the
2-competition graph of an arbitrary digraph if and only if m = 1. There
are also analogous questions for p-competition numbers of graphs in [Kim,
McKee, McMorris, & Roberts, 1993].

[Kim, McKee, McMorris, & Roberts, 1995 also shows the direct ana-
logues—replacing “competition” with “p-competition” and “edge clique cover”
with “p-edge complete cover”—of Theorem 4.6, for acyclic digraphs, and Ex-
ercise 4.7, for loopless digraphs. But no simple analogue is known for the
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characterization in {Roberts & Steif, 1983] that a graph G is a competition
graph of a loopless digraph if and only if §(G) < |V(G)| and G # K».

See [Major & McMorris, 1990] for p-intersection graph analogues of var-
ious other intersection graph concepts. [Lundgren, McKenna, Merz, & Ras-
mussen, 1995, to appear]|, [Lundgren, McKenna, Langley, Merz, & Ras-
mussen, 1997, and [Anderson, Langley, Lundgren, McKenna, & Merz, 1994]
are some of the recent papers on p-competition graphs of special types of
digraphs and other related topics.

[Eaton & Grable, 1996] and [McMorris & Wang, 1996] discuss notions
related to p-intersection graphs, such as having 5;5; € E(G) depend on the
congruence class of |S; N S;| modulo a given number—in particular, when
lS,' M SJI is odd.

6.2 Intersection Multigraphs and Pseudographs

The intersection multigraph Q,(F) of the family F = {5, ..., Sp} of subsets
of a finite set S is the multigraph M having V(M) = F with S; and S; joined
by |S; N S;| parallel edges whenever i # j. When |S; N S;| > 1, S;S; is a
multiple edge with multiplicity |S;N.S;|. Let E(M) be the set of all multiple
edges of M. A multigraph M is an intersection multigraph if there exists a
family F such that M = Q,(F).

For any multigraph, its underlying graph is obtained by replacing each
multiple edge by a simple edge, an edge of multiplicity one. Thus the or-
dinary intersection graph Q(F) is the underlying graph of the intersection
multigraph Q,(F).

Example 6.2 Suppose F = {S1,...,S55} where S = {a,b,c}, Sy =
{b,c,d}, S3 = {b,¢c,d, f,g}, S4 = {c,d,e, f, g}, and S5 = {a,d,e}. Then the
intersection multigraph M = Q,,(F) is shown on the left in Figure 6.2, with a
set-labeled version on the right. Notice how this multigraph simultaneously
displays all the Q;(F)’s from Example 6.1.

Exercise 6.8 Show that every multigraph is an intersection multigraph.

An edge clique partition of a multigraph M is a family {Q,...,Qn} of
not necessarily distinct complete subgraphs of the underlying graph of M
such that each v;v; € E(M) has multiplicity |{k : viv; € E(Qk)}|. Thus M
can be thought of as the superposition of @y, ..., Qn, identifying vertices
while collecting edges into bundles of parallel edges.
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Figure 6.2: An intersection multigraph.

Example 6.2 (continued) The complete subgraphs induced by {Sj,
327‘837 S47 S5}y {Sla S2aS3}v {S2’ 83,54}, {S4y55}1 {837 S4}7 and {S31S4}
form one edge clique partition of the multigraph M in Figure 6.2. Another
consists of the 19 K»’s.

Paralleling section 1.4, define a multigraph to be the cligue multigraph
of a graph G if it is isomorphic to the intersection multigraph of all max-
cliques of G. It is straightforward to modify the proof of Theorem 1.12 from
[Roberts & Spencer, 1971] to show that a multigraph is a clique multigraph
of a graph if and only if it has an edge clique partition that satisfies the
Helly condition. [McKee, 1991c] contains more about clique multigraphs.

Exercise 6.9 Use the above-mentioned characterization of clique multi-
graphs to show that removing an edge from K4 produces a clique graph that
is not a clique multigraph.

The analogues of Theorem 4.2, characterizing squared graphs, and The-
orem 4.4, characterizing two-step graphs, are also straightforward; see [Mc-
Kee, 1990a]. In fact, [Harary & McKee, 1994] shows that the “squared multi-
graph” of a chordal graph is particularly nice in that its “square root” —the
chordal graph whose square is the given multigraph—can be uniquely con-
structed. [Prisner, to appear]| shows an advantage of considering “triangle
multigraphs” —intersection multigraphs of the K3’s of a graph—rather than
“triangle graphs.” [McKee, 1989] introduces “upper bound multigraphs,”
showing how they determine their associated posets up to isomorphism.
[Anderson, Jones, Lundgren, & McKee, 1990] discusses “competition multi-
graphs” and “multicompetition numbers,” and [Bylka & Komar, 1997) con-
siders intersection numbers of intersection multigraphs.

[McKee, 1991b] characterizes chordal multigraphs, the intersection multi-
graphs of subtrees of a tree, and interval multigraphs, the intersection multi-
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Figure 6.3: A chordal multigraph with a tree representation.

graphs of subpaths of a path. For instance, Figure 6.3 shows a chordal
multigraph with a tree representation.

We state and prove the characterization of chordal multigraphs; the cor-
responding theorem for interval multigraphs is more involved.

Theorem 6.4 (McKee) A multigraph M with underlying graph G is
a chordal multigraph if and only if both the following hold:

(1) the multiplicity of each uv € E(M) is greater than or equal to the
number of mazcliques in G that contain both u and v,

(2) G is chordal.

Proof. First suppose that M is the intersection multigraph of a family
of subtrees of some tree T and G is the underlying graph of M. Since T is
also a tree representation for G, condition (2) follows from Theorem 2.4. If
wv € E(M) has multiplicity u, then |7, N Ty| = p and {u,v} will be in p of
the vertices of T' that are maxcliques of G (by the proof of Theorem 2.1).
Condition (1) then follows.

Conversely, suppose M has underlying graph G and satisfies condi-
tions (1) and (2). Construct a multigraph M* from M as follows: For
each edge wv € E(M) with multiplicity u, let & be the number of max-
cliques of G that contain uv; by condition (1), we can create p — k > 0 new
simplicial vertices, each joined (only) to w and v by simple edges in M*.
(Thus M* satisfies condition (1) with equality always holding.) Let G be
the underlying graph of M, and note that G is chordal by condition (2).
Let T* be a clique tree for G*, and construct T from 7' by removing
occurrences of vertices in V(M%) \ V(M) from vertices of T+. Then it is
straightforward to verify that M = Q,({T, : v € V(M)}). O

Exercise 6.10 Show that in a chordal multigraph M, every circuit of
length greater than or equal to four must contain at least two (possibly
parallel) chords.
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Exercise 6.11 Show that the multigraph obtained by removing edge
5185 from the multigraph in Figure 6.2 is not a chordal multigraph. Also
show that the tree representation for the chordal multigraph in Figure 6.3
can be constructed as in the proof of Theorem 6.4.

We now return to the topic of section 4.3, the premise of [Cohen, 1978]
that “...it is possible for niche overlaps to be described in a one-dimensional
niche space if and only if the niche overlap graph [competition graph] is an in-
terval graph.” Define a competition multigraph of a digraph D to be a multi-
graph isomorphic to the intersection multigraph of the out-neighborhoods
of vertices of D, and recall that a food web is an acyclic digraph.

Theorem 6.5 A multigraph M 1is a competition multigraph of an acyclic
digraph if and only if V(M) can be labeled as {vi,...,v,} and M has an
edge clique partition € = {Q1,...,Qn} such that v; € Q; implies i < j.

Proof. This follows by a modification of the proof of Theorem 4.6. O
Exercise 6.12 Complete the details of the proof of Theorem 6.5.

[McKee, 1990b] observes that the competition multigraphs of the stan-
dard food web examples are not even chordal, let alone interval multigraphs
(as they should be for a one-dimensional niche space). [McKee, 1995a) con-
siders other deficiencies of food web models and uses competition multi-
graphs (and pseudographs) to predict possible omissions in observed food
webs.

'[McKee, 1994] introduces intersection pseudographs, formed by creating
|Si| parallel loops at each vertex S; in M = Q,({S1,...,S,}). When |5;| >
1, there is a multiple loop at S; with multiplicity |S;|; all such multiple loops
are also included in E(M).

Example 6.3 Suppose F = {Sj,...,S¢} where S; = {a}, 52 = {e},
S3 = {a,b,c}, S4 = {a,b,c,d}, S5 = {c,d,e, f}, and Sg = {c,d,e, f}. Then
the intersection pseudograph of F is shown on the left in Figure 6.4 with a
set-labeled version on the right.

Exercise 6.13 Show that every pseudograph is an intersection pseudo-
graph.

We describe intersection pseudographs in further detail in order to illus-
trate concepts that are important in working with both intersection multi-
graphs and intersection pseudographs. A mazclique M of a pseudograph is a
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Figure 6.4: An intersection pseudograph (with multiple loops).

maxclique, together with one loop at each vertex, of the graph obtained by
replacing each multiple edge and multiple loop in E(M) by a simple edge
or loop. Thus a maxclique contains exactly one edge and one loop from
each bundle of parallel edges or loops having the same endpoints in M. If
it is possible to remove simultaneously the edges and loops of all the max-
cliques of M, then the resulting pseudograph is denoted rM. If, moreover,
this process can be repeated, forming r(rM), etc., until all edges and loops
are gone, then M is called a reducible pseudograph and the family (allowing
repetitions) of all maxcliques of M,rM,r(r(M)),... are the residual cliques
of M.

Example 6.3 (continued) The intersection pseudograph M in Exam-
ple 6.3 is reducible, with M and r(r(M)) shown in Figure 6.5. This M has
six residual cliques: {S1,S3,S4}, {53, Ss, S5, Se}, and {Ss, Ss, 56}, the max-
cliques of M; {Ss3, S4} and {S4, S5, Sg}, the maxcliques of rM; and {Ss, Ss},
the maxclique of »(r(M)).

Exercise 6.14 Show that the intersection pseudograph of the family F
in Example 6.2 is reducible, with eight residual cliques. Also show that the
intersection pseudograph of the family 7' = {{a}, {a, b}, {a, ¢}, {b,c}} is not
reducible.

Define the residual clique pseudograph K (M) of a reducible pseudograph
M to be the intersection pseudograph of all the residual cliques of M. The
residual clique pseudograph of the pseudograph M from Example 6.3 is
shown in Figure 6.6. If K(M) is also reducible and if K(K(M)) = M, then
K(M) is called the pseudo dual of M.



98 CHAPTER 6. OTHER KINDS OF INTERSECTION

S

Figure 6.5: Reduced pseudographs of Figure 6.4.
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Figure 6.6: The residual clique pseudograph of Figure 6.4.

Exercise 6.15 Show that the pseudograph in Example 6.3 has a pseudo
dual.

Exercise 6.16 Verify that the intersection pseudograph M of the family
F ={%,...,57} with S; = {a,b,¢c,d}, S2 = {a,b,c,e}, S3s = {a,b,d, f},
S4 = {a,c,d,g9}, S5 = {b, f}, Se = {d, g}, S7 = {c, e}, is “self-dual” in the
sense that M = K(M).

[McKee, 1994] characterizes those pseudographs that have pseudo duals.
Moreover, by defining interval pseudographs to be intersection pseudographs
of subpaths of paths, every interval pseudograph can be shown to have a
pseudo dual. [Fulkerson & Gross, 1965] shows algebraically, and [Duchet,
1984] states set-theoretically, that interval pseudographs have subpath rep-
resentations that are unique up to isomorphism.
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By defining competition pseudographs to be intersection pseudographs of
out-neighborhoods of digraphs, every competition pseudograph of an acyclic
digraph that also is an interval pseudograph can be shown to have a pseudo
dual-—namely, the digraph’s “common-enemy pseudograph,” paralleling sec-
tion 4.2. [McKee, 1995a] relates this to the ecological application in sec-

tion 4.3.

6.3 Tolerance Intersection Graphs

Suppose F = {Si,...,5,} is a family of subsets of a finite set S, ¢ is
a symmetric binary function taking pairs of positive reals to nonnegative
reals, p is a unary function taking subsets of S to nonnegative reals, and
each S; is assigned a positive real tolerance t;. The ¢-tolerance intersection
graph G of the family F with respect to ¢, u, and the t;’s has vertex set
V(G) = F with §5;S; € E(G) if and only if i # j and p(S; N S;) > o(ti, t;).
A graph G is a ¢-tolerance intersection graph if there exist F, ¢, u, and t;’s
such that G is isomorphic to the ¢-tolerance intersection graph of F with
respect to ¢, u, and the #;’s.

This very general notion of ¢-tolerance was introduced in [Jacobson, Mc-
Morris, & Mulder, 1991] and [Jacobson, McMorris, & Scheinerman, 1991].
Frequently, u measures the cardinality of a set or the length of an inter-
val. Natural basic choices for the ¢;’s include making them all a constant
or setting each t; = p(S;). Natural choices for ¢ include the minimum,
maximum, product, sum, and absolute difference functions, resulting in the
following types of tolerance graphs: min-tolerance intersection graphs from
taking ¢(z, y) = min{z, y}, maz-tolerance intersection graphs from ¢(z,y) =
max{z,y}, product-tolerance intersection graphs from ¢(z,y) = zy, sum-
tolerance intersection graphs from ¢(z,y) = = + y, and abdiff-tolerance in-
tersection graphs from ¢(z,y) = |z — y|. The following exercise presents one
extreme case of ¢-tolerance intersection graphs.

Exercise 6.17 Show that if u(S’) = |S'| for each ' C S, each ¢t; =
©(S;), and ¢(z,y) = p (a positive integer) is a constant function, then the
¢-tolerance intersection graphs of a family F are precisely the p-intersection
graphs of F.

Exercise 6.18 Show that every graph is a ¢-tolerance intersection graph
for every ¢.
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Theorem 6.6 (Jacobson, McMorris, & Mulder) Every graph is a
man-tolerance intersection graph of substars of a star with all the t;’s equal
to a constant.

Proof. Let G be a graph and m = |E(G)|. Label the pendant vertices
of the star K ,, with the elements of E(G). For each v € V(G), let S,
denote the substar of K1 ., that consists of the central vertex together with
those pendant vertices labeled with the edges that are incident with v in G.
Thus uv € E(G) if and only if S, and S, have an edge of K} ,, in common,
namely the edge between the central vertex and the pendant vertex labeled
uv. Thus G is the min-tolerance intersection graph of the substars S, of
K g with each ¢; = 2 and p(S;) = |Sil. mi

Note that Theorem 6.6 shows that every graph is the “edge intersection
graph” of substars of a star, as shown in [Golumbic & Jamison, 1985a,
1985b]; also compare this with Corollary 2.17.

The definition of ¢-tolerance intersection graphs was motivated by the
following special case from [Golumbic & Monma, 1982] and [Golumbic,
Monma, & Trotter, 1984). A min-tolerance interval graph is a min-tolerance
intersection graph of a family of intervals of R in which x measures the length
of intervals. (Warning: in the literature, min-tolerance interval graphs are
frequently referred to simply as “tolerance graphs.”) In other words, the
vertices of G correspond to intervals S, ..., S, with two vertices S; and S
adjacent in G if and only if |S; N S;| > min{¢;,¢;} for the corresponding in-
tervals. [Golumbic, Monma, & Trotter, 1984] discusses possible applications
that involve tolerating certain degrees of overlap of intervals.

Exercise 6.19 Show that the cycle Cj, although not an interval graph,
is a min-tolerance interval graph.

Exercise 6.20 (see [Golumbic & Monma, 1982]) Show that if all the
t;’s equal a constant ¢, then the resulting min-tolerance interval graphs are
interval graphs. Conversely, for every interval graph G, show that there
is a constant ¢ such that G is a min-tolerance interval graph with every
i = ¢. (Using the results on “containment graphs” in section 7.6, if each
ti = |Si|, then the resulting min-tolerance interval graphs can be shown to
be “permutation graphs” as in section 7.6, and conversely.)

A wide variety of papers have been written on min-tolerance interval
graphs, including [Monma, Reed, & Trotter, 1988}, [Narasimhan & Man-
ber, 1992], [Andreae, Hennig, & Parra, 1993], [Felsner, 1993], and [Holm &
Bogart, to appear].
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[Jacobson, McMorris, & Scheinerman, 1991] investigates maa-, sum-,
and product-tolerance interval graphs, where these are defined in the same
sort of way as min-tolerance interval graphs.

Theorem 6.7 (Jacobson, McMorris, & Scheinerman) Every tree
s a maz-tolerance interval graph.

Proof. The proof is by induction and shows something even stronger:
every tree is a max-tolerance interval graph such that, for each vertex, there
is a representation in which the interval corresponding to that vertex is “left-
most,” meaning that its left-hand endpoint is less than or equal to all the
other left-hand endpoints of intervals in the representation. To start the
induction, note that such representations exist for trees having only one or
two vertices.

Now let T be a tree with n vertices and assume that all trees with
fewer than n vertices are max-tolerance interval graphs where each vertex
can be made to correspond to a left-most interval. Fix any z € V(T).
Let T1,...,T% be the connected components of T — x and let xz; be the
vertex of T; adjacent to x in 7. By the induction hypothesis, each T; has a
max-tolerance interval representation with xz; corresponding to a left-most
interval. Note that, for each i, all the intervals in a representation of T}
can be translated so that the left-hand endpoint of each left-most interval
is 0. Assume that this has been done. Let r; denote the largest right-hand
endpoint of this representation for T;, and let m be the length of the longest
interval over all of these representations for 73,...,T;. Choose t' > m and
set m’ = max(¥,ty,,...,tr,). Now extend the left-hand endpoint of each
interval corresponding to an z; down to —m’. Each of these intervals is
now m’ units longer and there are no new intersections among the 7i’s. Set
w; = 23-=1 Ts.

We now define a max-tolerance interval representation of T having x
correspond to a left-most interval. Let S; = [0,wy + 2km/] and t, = ¢/,
with the remaining tolerances as before and all the intervals in the 7;’s now
translated w; + im units to the right. The new intervals corresponding to
vertices in T; do not intersect those corresponding to vertices in T} for i # j
because they have been moved sufficiently far apart in the translations to
the right. Thus we only need check those adjacencies caused by intervals
intersecting S,. Since ' > m and each interval not corresponding to z or
an x; has length at most m, vertex z can only possibly be adjacent to an
z;. Each |Sg,| = m/, so |S; N Sy,| = m' > max(tz, ts,), and so z is adjacent
to each of x1, ..., Tk. 0
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Figure 6.7: A tree that is not a min-tolerance interval graph.

Exercise 6.21 (Jacobson, McMorris, & Scheinerman) Show that
every tree is a sum-tolerance interval graph and a product-tolerance interval
graph. (Note that the same argument would work whenever ¢ satisfies

limg 00 ¢(z,y) = 00.)

In contrast to these results, [Golumbic, Monma, & Trotter, 1984] shows
that not every tree is a min-tolerance interval graph—indeed that a tree is a
min-tolerance interval graph if and only if it contains no subtree isomorphic
to the tree shown in Figure 6.7.

Motivated by Theorem 3.8 from [Roberts, 1969a], that the proper in-
terval graphs are precisely the unit interval graphs, a natural question is
whether every ¢-tolerance proper interval graph is a ¢-tolerance unit inter-
val graph. As expected, a ¢-tolerance proper interval graph is a ¢-tolerance
interval graph of a family of intervals where no interval is properly con-
tained in another, and a ¢-tolerance unit interval graph is a ¢-tolerance
interval graph of a family of unit-length intervals. Golumbic, Monma, and
Trotter first posed this question for min-tolerance interval graphs and it was
surprisingly answered in the negative in [Bogart, Fishburn, Isaak, & Lang-
ley, 1995]. The question remains open for max-tolerance. [Shull & Trenk,
1997] proves the equivalence of “unit” and “proper” for bitolerance interval
digraphs, where the two endpoints are allowed to have different tolerances.
[Jacobson & McMorris, 1991] answers the question in the affirmative for
sum-tolerance interval graphs. This result will appear as Theorem 6.11,
after we consider a couple of closely related classes of tolerance graphs.

[Bogart, Fishburn, Isaak, & Langley, 1995] defines a 50% tolerance graph
to be a min-tolerance interval graph represented by the intervals S; with
tolerances t; = |S;|/2.
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Theorem 6.8 (Bogart, Fishburn, Isaak, & Langley) A graph is a
50% tolerance graph if and only if it is a min-tolerance unit interval graph.

Proof. Suppose GG has a min-tolerance unit interval representation using
the unit intervals S; and tolerances #;. Note that each t; can be picked so
that t; < |Si| = 1. Let ¢; be the center of S; and set t; = 1 —t;. Create the
new intervals S} = [¢; — t], ¢; + t] with tolerances ¢;. These intervals and
tolerances give a representation for G as a 50% tolerance graph.

Conversely, suppose G has a 50% tolerance representation using intervals
S! and tolerances t] = |S!|/2. Scale the representation so that ¢ < 1 for all
i and let ¢; then be the center of the ith interval. Create the new intervals
Si = [ — %, ¢ + %] with tolerances t; = 1 — ¢;. This new representation
makes G a min-tolerance unit interval graph. a

Exercise 6.22 Verify the last step in each paragraph of the proof of
Theorem 6.8.

[Jacobson, McMorris, & Mulder, 1991] and {Jacobson, Lehel, & Lesniak,
1993] study the ¢-tolerance chain graphs in which the family S1,...,S, is a
chain of finite sets with respect to set inclusion, with S; C --- C S, and pu
measuring cardinality.

Exercise 6.23 Show that a graph is a ¢-tolerance chain graph if and
only if it is the ¢-tolerance intersection graph of the sets S; = {1,...,k;i}
where each k; is an integer and 1 < k; < --- < k.

Exercise 6.24 Show that a graph is a ¢-tolerance chain graph if and
only if it is a ¢-tolerance interval graph where the intervals S; = [0, ;] where
eachr;isrealand 0 < ry <1 < -+ < 1y

The next exercise demonstrates what happens when the two natural
restrictions are placed on the tolerances and the measure p.

Exercise 6.25 Show the following:

(1) A graph is a ¢-tolerance chain graph with constant tolerances if and
only if it consists of a complete graph and isolated vertices.

(2) A graph is a min-tolerance chain graph with tolerances equal to set-
sizes if and only if it is a complete graph.

(3) A graph is a max-tolerance chain graph with tolerances equal to
set-sizes if and only if it is a disjoint union of complete graphs.

(4) A graph is a sum-tolerance chain graph with tolerances equal to
set-sizes if and only if it is an edgeless graph.
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We now introduce some convenient notation. If G is the ¢-tolerance
interval graph of the intervals [l;, ;] with corresponding tolerances t; for
i = 1,...,n, we simply say that G has the representation [l1,m];t1, ...,
[lnsTn);tn (or [li,7i];t;). Exercise 6.24 shows that a graph is a ¢-tolerance
chain graph if and only if it has a representation [0,71];t1,...,[0,7n];tn,
where 0 < 73 £ -+ £ 7,,. The following lemma is easy to prove.

Lemma 6.9 Suppose G is a ¢-tolerance interval graph.

(1) If G has the representation [l;,r;];t;, then G has the representation
[li + k,7i + k]; 8 for every k.

(2) Suppose ¢ satisfies the condition that ¢(kz,ky) = k¢(z,y) for all
positive k. Then G has the representation (l;, 7i]; t; if and only if G has the
representation [kl;, kr;]; kt; for every positive k. O

Theorem 6.10 (Jacobson & McMorris) FEvery ¢-tolerance chain graph
is a ¢-tolerance proper interval graph.

Proof. Let G = (V, E) be a ¢-tolerance chain graph with representation
[0,7;];t; with r; < r; whenever ¢ < j. If G is complete we are done. If not,
then let € = min{¢(t;, t;) — min(r;, ;) : viv; € E}. Since G is not complete,
€ > 0. Now set §; = [:%T—jk,rj + *21%] Clearly |S;j| = rj + §. It follows
that |S; N S;| > ¢(ti, t;) if and only if minfry,r;] > ¢(t;,t;). Therefore,
S1;t1,...,9;ty is a proper interval representation of G. O

Theorem 6.11 (Jacobson & McMorris) A graph is a sum-tolerance
proper interval graph if and only if it is a sum-tolerance unit interval graph.

Proof. It is easy to see that every sum-tolerance unit interval graph is
a sum-tolerance proper interval graph. Let G be a sum-tolerance proper
interval graph having representation [l1,71};t1,. .., [ln, n]; tn. By Lemma 6.9
we are done if we show that G has a representation using intervals of equal
length. Using induction, assume that the first k intervals have equal length.
If k¥ = n we are done, so assume that k& < n.

We now show how to construct a representation for G where the first k41
intervals all have the same length. Let S; = [l;,r;]. Assume |Sk| > [Sk41l
and set 6 = |Sy| — [Sk4+1|- Form the intervals S} as follows: For j < k let
S; = Sy, and for j > k let S} = [l; — %,Tj +8]. Let t; =tj for all j < k and
t =1t + % for j > k. It is easy to show that S;t; is a representation for
G for each j = 1,...,n. Similarly if |Sk| < |Sk+1], let § = |Sk+1] — |Sk| and
set §§ = Sj for j > k. For j < k, let §j = [I; — §,7; + 5] and define the new
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tolerances by t; = ¢; for j < k and t; = ¢; + % for j > k. e

The next three theorems demonstrate the robustness of ¢-tolerance chain
graphs.

Theorem 6.12 (Jacobson & McMorris) A graph is a sum-tolerance
proper interval graph if and only if it is a sum-tolerance chain graph.

Proof. From Theorem 6.10, every sum-tolerance chain graph is a sum-
tolerance proper interval graph. To prove the converse, let G be a sum-
tolerance proper interval graph with representation [l1,71]; t1, ..., [ln, 7n]; tn-
Since the intervals are proper we may assume that /; < -+ <, and m <
-+ < 1. By Lemma 6.9, we can take 0 < [;. We now show that G is a
sum-tolerance chain graph with representation [0, 71 +{1];¢1+11,...,[0,7n +
In)itn + In: For i < g, |[0,mi + L] N[0, 75 + ]| = (8 + L) + (¢; + ;) if and
only if ry +1; > t; + 1; +t; + 1, if and only if r; —; > t; + t; if and only if
I[Ii,r,']ﬂ[lj,rjﬂ 2t +t. O

Theorem 6.13 (Jacobson, McMorris, & Mulder) A graph is a maz-
tolerance chain graph if and only if it is an interval graph.

Proof. Suppose G is a max-tolerance chain graph with, by Exercise 6.23,
each S; = {1,..., k;} where 1 < k; < --- < k,. Consequently, vertices
corresponding to S; and S§; are adjacent in G if and only if min{k;, k;} >
max{t;,t;}. We may assume that each ¢; < k;, since if ¢; > k;, then S;
corresponds to an isolated vertex of G and can be disregarded. So vertices
corresponding to S; and S; are adjacent if and only if [t;, k] N [t;, k;] # 0.
Thus, the max-tolerance chain graph of N is the interval graph of the set
{lti;ks) : i = 1,...,n}. Conversely, it is easy to show that every interval
graph has an interval representation of this form. O

Theorem 6.14 (Jacobson, McMorris, & Mulder) A graph is a min-
tolerance chain graph if and only if it is a threshold graph.

Proof. Suppose G is a min-tolerance chain graph with a representation
[0,71];t1,...,[0,7n); tn where r; < --- < 7, with vertex v; corresponding to
[0,7;]. By Theorem 5.1, it suffices to show that every such G either has a
vertex adjacent to all other vertices or has an isolated vertex. If £ < ry,
then v; is adjacent to all other vertices of G. If ¢; > r; and vy is not isolated,
let v; be adjacent to v;. This implies that t; < ry, and thus v; is adjacent
to all other vertices of G.
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Figure 6.8: A threshold graph with a min-tolerance representation for the
proof of Theorem 6.14.

For the converse, Figure 6.8 shows a min-tolerance representation for
a typical threshold graph G (as in Figure 5.3): Dy,..., Dy is the degree
partition of G with Dg possibly empty and Dy, /91 present only if m is odd.
A line between cells D; and D; means that every vertex in D; is adjacent to
every vertex in D;. The D;’s in the left column represent independent sets,
with the open neighborhoods of their vertices ordered by inclusion down-
ward, and the D;’s in the right column represent complete subgraphs, with
the closed neighborhoods of their vertices ordered by inclusion upward. The
representing set and tolerance are next to each D;. a

There are other interesting ways to extend the notion of threshold graphs.
[Jacobson, Lehel, & Lesniak, 1993] calls a graph G a ¢-threshold graph if
there exists a positive number ¢ assigned to G and a positive weight w,
assigned to each vertex v such that

wv € E(G)if and only if ¢ > ¢(wy, wy).

Since the complement of a threshold graph is a threshold graph by Corol-
lary 5.2, the ordinary threshold graphs are precisely the sum-threshold
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graphs. [Jacobson, Lehel, & Lesniak, 1993] goes on to characterize ¢-
threshold graphs where ¢ = a(z + y) + blz — y|.

[Monma, Reed, & Trotter, 1988] defines a graph G to be a threshold
tolerance graph if it is possible to assign a positive weight w, to each vertex
v of G and a positive tolerance ¢, to each v such that

wv € E(G) if and only if wy, + wy > min(ty, ty).

Thus if all the tolerances are equal in a threshold tolerance graph, it is
an ordinary threshold graph. Complements of threshold tolerance graphs,
called coTT graphs, are characterized in ([Monma, Reed, & Trotter, 1988].
Using the same parameters as above, adjacency in a coTT graph is defined
by

Wy + Wy < min(ty, ty).

By changing the t,’s to r,’s and then the w,’s to t,’s, it is clear from
Exercise 6.24 that coTT graphs are precisely sum-tolerance chain graphs.
The following summarizes these results on sum-tolerance chain graphs.

Theorem 6.15 (Jacobson, McMorris, & Mulder) Let G be a graph.
Then the following statements are equivalent:

(1) G is a coTT graph;

(2) G is a sum-tolerance chain graph;

(3) G is a sum-tolerance unit interval graph;

(4) G is a sum-tolerance proper interval graph. O

[Brigham, McMorris, & Vitray, 1995] studies ¢-tolerance competition
graphs, defined the same way that competition graphs and p-competition
graphs were in sections 4.2 and 6.1. Specifically, let ¢ be a symmetric binary
function that takes pairs of nonnegative integers to nonnegative integers.
The graph G is a ¢-tolerance competition graph if G is isomorphic to the
¢-tolerance intersection graph of the out-neighborhoods of the vertices of
some digraph. Thus

viv; € E(G) if and only if [N (v;) N N*(v;)| = ¢(ti, t5)

for some tolerances t,...,t,. As expected, there is a clique cover analogue
of Theorem 6.3. Let ¢ be as above and T = ({y, ..., t,) be an n-tuple of (not
necessarily distinct) nonnegative integers. A ¢ -T-edge clique cover of the
graph G is a family {\1,...,Vi} of subsets of V(G) such that v;v; € E(G)
if and only if v; and v; are elements of at least ¢(¢;,¢;) common sets V.
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Exercise 6.26 (Brigham, McMorris, & Vitray) Show that a graph
G is a ¢-tolerance competition graph if and only if there is a ¢ -T-edge clique
cover of G with |V| elements.

While there are many results concerning various ¢-tolerance competi-
tion graphs, major questions remain open. It is not even known whether
there are graphs (possibly even tripartite graphs) that are not min-tolerance
competition graphs. Related papers include [Anderson, Langley, Lund-
gren, McKenna, & Merz, 1994] and [Brigham, McMorris, & Vitray, 1995].
[Brigham, Carrington, & Vitray, to appear] introduces abdiff-tolerance com-
petition graphs and characterizes those complete bipartite graphs that are
abdiff-tolerance competition graphs.



Chapter 7

Guide to Related Topics

This chapter consists of sections involving clusters of concepts related to
intersection graphs. Arranged alphabetically, they can be read in any order
and the index should help in navigating between related topics.

Fach section contains selected definitions and states results without
proof, concentrating on the flavor of the topic and pointers to both the
original papers and recent work, especially to surveys with extensive bib-
liographies. [Brandstadt, 1993] contains more information on many of the
families of graphs considered (and [Brandstadt, Le, & Spinrad, to appear]
will surely contain much more).

We are well aware that we have not covered many topics in which work
is being done, and that we have not given complete coverage of any of
these topics—these are all areas of active research. Also, while many of
these families are widely studied in terms of the computational complexity
of problems like domination and coloring, our attention is concentrated on
structural aspects.

7.1 Assorted Geometric Intersection Graphs

It is clearly possible, and sometimes useful, to consider intersection graphs of
all sorts of geometric objects; occasionally, nice results have surfaced. While
we are admittedly spotty in our treatment of the array of possibilities, we
emphasize what seem to be natural examples, yet try to mention a few of
the unexpected (for instance, [Maire, 1993] studies the intersection graphs
of maximal rectangles in polyominoes).

Motivated by the success of interval graphs, and since intervals are the
convex subsets of R!, (Wegner, 1967] shows that K5 with each edge bisected

109
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Figure 7.1: A boxicity two graph with a 2-box representation.

is an example of a graph that is not an intersection graph of convex subsets
of R2. The problem of characterizing those graphs that are intersection
graphs of convex subsets of R? is still open, but the following two results
from [Duchet, 1978, 1984] and [Wegner, 1967 are known.

Theorem 7.1 (Duchet) Every chordal graph is the intersection graph
of convex subgraphs of the plane.

Theorem 7.2 (Wegner) Every graph is the intersection graph of con-
vez subsets of R3.

A d-dimensional boz is the cartesian product of intervals [a;, b;] for 1 <
t < d. A graph is a d-box graph if it is the intersection graph of d-dimensional
boxes in R%. Hence interval graphs are precisely the 1-box graphs. Just as
interval graphs can also be viewed as intersection graphs of subpaths of
paths, d-box graphs can be viewed as intersection graphs of subgrids of
d-dimensional grids: d-dimensional integer lattice points, with two points
adjacent if and only if they differ by 1 at one coordinate position and not
at all at the other positions.

[Roberts, 1969b] observes that every graph of order n is an n-box graph.
Thus the bozicity of a graph G can be defined to be the minimum d for which
G is a d-box graph. Figure 7.1 shows an example of a graph of boxicity two.

Theorem 7.3 (Roberts) Every complete multipartite graph Ky, . 5,
has bogicity equal to |{i: n; > 1}|.
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Hence C4 = Ky 9 has boxicity two and the octahedron K» 22 has boxic-
ity three, showing that the following results from [Scheinerman, 1984] and
[Thomassen, 1986] are best possible. (Recall that a graph is outerplanar if
it can be embedded in the plane with all of its vertices on the unbounded
face.)

Theorem 7.4 (Scheinerman) Every outerplanar graph has bozicity at
most two.

Theorem 7.5 (Thomassen) Every planar graph has bozicity at most
three.

[Roberts, 1989] contains a short survey of known results about d-box
graphs and boxicity, including NP-completeness and other references, but
surprisingly little is known in general. [Quest & Wegner, 1990] gives a
matrix-based characterization of graphs that have boxicity at most two,
and [Rim & Nakajima, 1995] discusses computational problems on 2-box
graphs. [Trotter & West, 1987] presents a related notion of representability,
replacing boxes in d-space with intervals in d-dimensional partially ordered
sets.

Generalizing d-box graphs—d-dimensional boxes in d-dimensional grids—
[Hartman, Newman, & Ziv, 1991] and [Bellantoni, Hartman, Przytycka, &
Whitesides, 1993| define the grid dimension of a graph to be the smallest
k such that the graph is the intersection graph of d-dimensional boxes in a
(d + 1)-dimensional grid.

Theorem 7.6 (Bellantoni, Hartman, Przytycka, & Whitesides)
Every graph has grid dimension equal to or one less than its bozity.

A bipartite graph has bozicity less than or equal to two if and only if it
has grid dimension less than or equal to one.

[Maehara, 1984b| and [Erdés, Godsil, Krantz, & Parsons, 1988] study
intersections graphs of balls in R", and [Sachs, 1994] studies their tangency
graphs. [Clark, Colbourn, & Johnson, 1990] and [Marathe, Breu, Hunt,
Ravi, & Rosenkrantz, 1995] consider computational problems on the special
case of unit disk graphs, an intersection class with obvious applications to
cellular telephone networks.

A circular-arc graph G is isomorphic to the intersection graph of a family
of closed arcs of a circle or, equivalently, of a family of connected subgraphs
of a cycle. Interval graphs clearly are circular-arc graphs, but circular-arc
graphs are, in general, very different from interval graphs since they need not
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Figure 7.2: A circular-arc graph with corresponding subpaths in a cycle.

even be chordal: every cycle C,, is a circular-arc graph. Figure 7.2 shows a
circular-arc graph with a subpaths-of-a-cycle intersection representation that
can easily be smoothed into an arcs-of-a-circle representation. Section 8.6
of [Golumbic, 1980), [Tucker, 1978), and [Flotow, 1996] discuss applications
of circular-arc graphs, and [Gavril, 1974b] is a key paper. Recognition al-
gorithms for circular-arc graphs are discussed in [Eschen & Spinrad, 1993]
(using chordal bipartite graphs), [Hsu, 1995, and [Hell & Huang, 1997].
[Kloks, Kratsch, & Wong, 1996] gives a cubic algorithm for the minimum
fill-in problem.

Circular-arc graphs do not have the graph-theoretic characterizations
that might be expected from their superficial resemblance to interval graphs,
largely due to arcs (those in Figure 7.2 corresponding to vertices 2, 3, and
4, for instance) of a circle not having to satisfy the Helly condition.

Recall the maxclique-vertex matrix M(G) of a graph G defined in sec-
tion 3.3, and that G is an interval graph if and only if M(G) has the con-
secutive ones property for columns. Define M(G) to have the circular ones
property for columns if all the 1 entries in each column are consecutive when
the matrix is thought of as wrapped around a horizontal cylinder. If M(G)
has the circular ones property for columns, then G is a circular-arc graph,
but the example in Figure 7.2 shows that the converse fails. [Gavril, 1974b]
defines a graph to be a Helly circular-arc graph if it is isomorphic to the
intersection graph of a family of arcs of a circle that satisfies the Helly con-
dition, and proves that M(G) has the circular ones property for columns
if and only if G is a Helly circular-arc graph. Chapter 6 of [Golumbic,
1980] and [Cozzens & Mahadev, 1989] contain more on the consecutive ones
property and its generalizations.

Define the augmented adjacency matriz AY(G) of a graph G to be its
adjacency matrix with each diagonal entry set equal to 1. [Roberts, 1968]
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proves that G is a proper interval graph if and only if A*(G) has the con-
secutive ones property for columns. [Tucker, 1971] proves that, if A*{G)
has the circular ones property for columns, then G is a circular-arc graph.
but the example in Figure 7.2 again shows that the converse fails. Tucker
does characterize circular-arc graphs by A*(G) satistying a “quasi circular
ones property.”

[Tucker, 1971, 1974] give characterizations of proper circular-arc graphs—
graphs with a circular-arc representation in which none of the arcs properly
contains another—and unit circular-arc graphs—graphs with a circular-arc
representation of equal-length arcs. Unlike what happened in section 3.3,
unit circular-arc graphs form a proper subclass of the proper circular-arc
graphs. The nonintersection of chords that subtend nested arcs of a circle
leads to the following connection with circle graphs (section 7.4).

Theorem 7.7 Every proper circular-arc graph is a circle graph.

The following characterization of proper circular-arc graphs is in [Skrien,
1982]. (The same statement can be used to characterize proper interval
graphs by also requiring the orientation to be acyclic.)

Theorem 7.8 (Skrien) A connected graph is a proper curcular-arc graph
if and only if it has an orientation that contains no induced subdigraph iso-
morphic to e——e——e o e—eo——e,

[Hell & Huang, 1995] and [Deng, Hell, & Huang, 1996] contain proper
circular-arc graph algorithms. [Stueckle, Piazza, & Ringeisen, 1995] con-
tains an application of proper circular-arc graphs to questions involving how
graphs can be drawn. [Bang-Jensen & Hell, 1994] discusses chordal proper
circular-arc graphs.

Stepping up from R!, [Ehrlich, Even, & Tarjan, 1976] and (Kratochvil
& Matousek, 1994] study the intersection graphs of line segments in R2,
showing that recognizing such graphs is NP-hard even when all the segments
lie in a fixed number (greater than one) of directions. Section 7.4 discusses
several other special cases that are more nicely behaved.

[Ehrlich, Even, & Tarjan, 1976] and [Kratochvil, 1991a, 1991b] study
string graphs, the intersection graphs of arbitrary curves in R%. If the curves
are all “graphs” of continuous functions on the closed unit interval, then
[Golumbic, Rotem, & Urrutia, 1983] shows that the intersection graphs are
precisely the complements of the comparability graphs {section 7.6). On the
other hand, every graph is the intersection graph of arbitrary curves in R3,
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Figure 7.3: A trapezoid graph with an intersection representation.

[Corneil & Kamula, 1987 and [Degan, Golumbic, & Pinter, 1988] gener-
alize interval graphs in another way. Suppose L and M are two parallel lines
of which, respectively, {f1,...,In} and {J1,..., Jn} are families of intervals.
Then, each i € {1,...,n} determines a trapezoid having parallel sides I;
and J; (allowing degenerate trapezoids with either I; or J; a single point).
A graph is a trapezoid graph if it is isomorphic to the intersection graph of
such a family of trapezoids.

Every interval graph is a trapezoid graph, taking each pair I; and J; so as
to make the trapezoid a rectangle. Every permutation graph (section 7.4)
is a trapezoid graph, taking each I; = {i} and J; = {7(i)} where 7 is a
permutation of {1,...,n}. The graph shown in Figure 7.3, from [Corneil &
Kamula, 1987|, shows a trapezoid graph that is neither an interval graph
nor a permutation graph. [Cheah & Corneil, 1996] contains more on the
structure of trapezoid graphs and their relation to permutation graphs.

[Flotow, 1995] introduces higher-dimensional analogues of trapezoid
graphs. [Felsner, Miiller, & Wernisch, 1997] contains many relevant ideas,
including a more general notion of a “circle trapezoid graph” that subsumes
both circle graphs (section 7.4) and circular-arc graphs. The following two
theorems from [Corneil & Kamula, 1987] and [Felsner, 1993] link trapezoid
graphs with cocomparability graphs (section 7.6).

Theorem 7.9 (Corneil) Every trapezoid graph is a cocomparability
graph.

Theorem 7.10 (Kamula and Felsner) Every cocomparability graph
that is also a min-tolerance intersection graph is a trapezoid graph.

[Trotter & Harary, 1978] and [Griggs & West, 1979] independently in-
troduce a natural generalization of interval graphs by allowing each vertex
of a graph to be represented by a union of intervals. The interval number
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of a graph G is the smallest number ¢ such that G is an intersection graph
with each vertex corresponding to a union of at most ¢ intervals. The in-
terval graphs are, of course, precisely the graphs having interval number
one. Every cycle Cy, : v1,v9,...,v,,v1 with n > 4 clearly has interval num-
ber two, using two intervals to correspond to v; and one each for the rest.
[West & Shmoys, 1984] shows that recognizing graphs having a fixed interval
number is NP-complete. [Scheinerman & West, 1983] contains an extensive
discussion, including that K39 has interval number three and the following
theorem.

Theorem 7.11 (Scheinerman & West) Every planar graph has in-
terval number at most three.

The interval number of G is bounded above by the maximum degree
of G, by [(I[V(G)| + 1)/4] from [Griggs, 1979], and by 1 + [/]E(G)]/2]
from [Spinrad, Vijayan, & West, 1987]. While chordal graphs can have
arbitrarily large interval numbers, [Scheinerman, 1988a] discusses specific
upper bounds. [Kratzke & West, 1993, 1996] discuss other parameters that
resemble interval numbers. [Joseph, Meidanis, & Tiwari, 1992] contains a
molecular biology application of graphs having interval number at most two.
[Raychaudhuri, 1992b] uses multiple interval assignments in a traffic phasing
context.

Partially motivated by [Kumar & Deo, 1994], [Gyérfds & West, 1995]
discusses multitrack interval graphs in which vertices correspond to inter-
vals from separate copies of the real line (“parallel tracks”). [Scheinerman,
1985b] contains a very general treatment of multiple-set representations.

As we change our focus from interval graphs to chordal graphs, observe
that a graph G having boxicity at most d can be equivalently phrased as
saying that it is the “intersection” of interval graphs Gy, ..., G4, where this
means that V(G) = V(Gy) = --- = V(Gy) and E(G) = E(G1)N---NE(Gy).
(The equivalence can be seen by viewing the projections of two-dimensional
boxes on the z- and y-axes as intervals.) Motivated by this, a graph is said to
have chordality at most d if it is similarly an intersection of d chordal graphs.
For instance, Figure 7.4 shows that C5 is the intersection of two chordal
graphs and so has chordality two. The octahedron K399 has chordality
three. Every bipartite graph has chordality at most two since it is the
intersection of two split graphs. The analogues of Theorems 7.4 and 7.5
hold since chordality is always less than or equal to boxicity. [Cozzens &
Roberts, 1989] and [McKee & Scheinerman, 1993] contain many bounds and
other results on chordality, of which we mention only one.
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Figure 7.4: A cycle as the intersection of two chordal graphs.

A k-tree can be defined as a chordal graph that has a perfect elimina-
tion ordering (v1,...,v,) such that each v; has degree min{k,n — i} in the
subgraph induced by vj,...,vn (so the 2-trees are exactly the trees). The
treewidth of G is the least k such that G is a partial k-tree, meaning that G
is a subgraph of a k-tree. [Kloks, 1994| contains an extensive discussion of
treewidth and other topics that have grown out of the pioneering work of
Robertson and Seymour—see, for instance, [Robertson & Seymour, 1985]—
including calculating and approximating the treewidth of many of the same
families of graphs that we study.

Theorem 7.12 (McKee & Scheinerman) Every graph has chordality
less than or equal to its treewidth.

Thus the series-parallel graphs—the partial 2-trees—have chordality at
most two, in contrast to an example in [McKee & Scheinerman, 1993] of a
series-parallel graph that has boxicity three.

[Kratochvil & Tuza, 1994] and [Hlinény & Kubéna, 1995] discuss more
general “intersection dimensions” for classes of graphs. Mimicking multi-
track interval graphs, [Chang, Jacobson, Monma, & West, 1993] gives results
involving unions of subtrees (or substars) of trees.

Motivated by chordal graphs being the intersection graphs of subtrees
of trees, [Renz, 1970] characterizes the intersection graphs of subpaths of a
tree, and [Gavril, 1978] gives a recognition algorithm. [Golumbic & Jami-
son, 1985a, 1985b] and [Syslo, 1985] investigate what happens when the
paths are considered as sets of edges (rather than sets of vertices). [Monma
& Wei, 1986] presents an extensive study of path graphs, including many
sorts of intersection graphs involving various sorts of families of subpaths
of a tree. Viewing each subpath as a set of vertices, there are three possi-
ble intersection classes: UV: intersection graphs of undirected paths of an
undirected tree, DV: intersection graphs of directed paths of a directed tree,
and RDYV: intersection graphs of directed paths of a rooted directed tree;
three other possible intersection classes— UFE, DE, and RDE, respectively—
result by viewing each subpath as a set of edges. In particular, Monma,
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Figure 7.5: A bipartite intersection graph G from Sy, = {a,b}, Sz, = {c},
Ty = {b,c}, Ty, = {a}, Ty, = {c}, and its associated intersection digraph
D.

and Wei present clique tree characterizations of these classes, in the style of
Theorem 2.1.

Theorem 7.13 (Monma & Wei) The siz intersection classes are dis-
tinct and related as follows: RDV = DV = UV = chordal, and RDE =
DE = UE. (Cs is an example of a graph in UE that is not chordal.)

Theorem 7.14 (Monma & Wei and Golumbic & Jamison) Mem-
bership in UV, DV, RDV, DE, or RDE can be recognized by a unified polyno-
mial algorithm, but recognizing members of UE (or even recognizing whether
a member of UV is in UE) is NP-complete.

[Panda & Mohanty, 1995] discusses some of these classes further. [Gavril,
1994, 1996), {Gavril & Urrutia, 1994], and [Prisner, 1994] go another way
from chordal graphs by looking at intersection graphs of various sorts of
subtrees of classes of graphs that are more general than trees.

7.2 Bipartite Intersection Graphs, Intersection Di-
graphs, and Catch (Di)Graphs

[Harary, Kabell, & McMorris, 1982] defines a bipartite graph G with V(G) =
X UY and XNY = 0 to be a bipartite intersection graph, sometimes called
an intersection bigraph, if each x € X can be assigned a set S, and each
y € Y aset Ty such that zy € E(G) if and only if S; N T, # 0. Figure 7.5
gives an example.

[Sen, Das, Roy, & West, 1989] defines a directed graph D, with loops
allowed, to be an intersection digraph if each v € V(D) can be assigned two
sets S, and T, such that uw € A(D) if and only if S, N Ty, # 0. (This is
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Figure 7.6: An intersection digraph D from S,, = {a}, T, = {b,c}, Sy, =
{a}, T, = {c,d}, Sy; = {d}, T, = {a}, Su, = {e}, T, = {c,d, €}, and its
associated bipartite intersection graph G.

a specialization of the earlier notion of “connection digraph,” introduced in
[Beineke & Zamfirescu, 1982].) Figure 7.6 gives an example.

Bipartite intersection graphs and intersection digraphs are intimately
interrelated, a feature that is frequently useful in their study. For instance,
each bipartite intersection graph G as above leads to an intersection digraph
D on V(D) = X UY by setting T, = 0 for each z € X and S, = @ for each
y € Y'; this means that D results from G by directing each edge zy € E(G)
from z € X toward y € Y. See Figure 7.5.

Conversely, each intersection digraph D as above leads to a bipartite
intersection graph G on V(G) = {zy,y, : v € V(D)} by setting, for each
v € V(D), 8z, = Sv, Tz, =0, Sy, = 0, and T, = T,; this means that D
results from G by directing each edge z,y, € E(G) from z, toward y,, and
then identifying each z,,y, pair. See Figure 7.6.

[Harary, Kabell, & McMorris, 1982] focuses on bipartite interval graphs,
where each S; and Ty is an interval of a line; [Miiller, 1997] updates work
toward a characterization. [Sen, Das, Roy, & West, 1989]—see also [West,
1998]—similarly focuses on interval digraphs, where each S, and T, is an
interval of a line. Sen, Das, and West give an elegant adjacency matrix
characterization of interval digraphs. The analogy between interval graphs
G and interval digraphs D involves replacing the fundamental role of a
complete subgraph @ of G with a subdigraph of D formed from X,Y C V(D)
with uw € A(D) if and only if u € X and w € Y, and with a loop at any
vertex in X NY. [Miiller, 1997] gives a polynomial algorithm for recognizing
interval digraphs, and so for recognizing bipartite interval graphs. [Langley,
Lundgren, & Merz, 1995] studies the competition graphs of interval digraphs.

[Sen & Sanyal, 1994] introduces notions of unit interval, proper inter-
val, and indifference digraphs as the natural modifications of the undirected
notions from sections 3.3 and 3.4.2; see also [West, 1998].
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Theorem 7.15 (Sen & Sanyal) The properties of being a unit inter-
val digraph, a proper interval digraph, or an indifference digraph are all
equivalent.

[Steiner, 1996] gives a linear recognition algorithm for the digraphs in
Theorem 7.15; [Lin & West, 1995] characterizes them with forbidden sub-
matrices. [Sanyal & Sen, 1996] studies other classes of interval digraphs.

[Sen, Das, & West, 1989, 1992] introduce circular-arc digraphs, in anal-
ogy with circular-arc graphs (section 7.1), and [Sen, Sanyal, & West, 1995]
studies various other sorts of intersection digraphs, including directed con-
tainment graphs in analogy with section 7.6.

In looking for analogies to chordal graphs, it is also natural to consider
bipartite subtree graphs (and subtree digraphs) in which all the sets S;, T}, (or
Sy, Ty) are subtrees of a tree 7. But then, as observed in [Harary, Kabell,
& McMorris, 1982], every bipartite graph G is a bipartite subtree graph
and, as observed in [Sen, Das, & West, 1989), every digraph D is a subtree
digraph. For the latter, T can be taken to be the bipartite graph K, v (p)
having V(T') = V(D) U {z} where z € V(D) and E(T) = {vz:v € V(D)};
then set Sy, = {v} and T, = N~ (v) U {z} = {u : uwv € A(D)} U {z} for all
v e V(D).

Various other notions of “bipartite chordal graphs,” defined by means
other than intersection, have been proposed in [Golumbic & Goss, 1978] (or
section 12.4 of [Golumbic, 1980]), [McKee, 1987], and [Brandstadt, 1991].
Golumbic introduced the now-standard notion of chordal bipartite graph,
a bipartite graph in which every cycle of length greater than four has a
chord, that is discussed in detail in section 7.3. Other bipartite analogues of
intersection graphs are considered in [Frost, Jacobson, Kabell, & McMorris,
1990] and [Miiller, 1997].

[Harary, Kabell, & McMorris, 1990] introduces a different sort of inter-
section acyclic digraph. For instance, a digraph D is an interval acyclic
digraph if each v € V(D) can be assigned an interval S, of the real line
such that the S,’s all have distinct left endpoints and vw € A(D) if and
only if S, NSy # § and the left endpoint of S, is less than the left end-
point of S,,. ([McMorris & Mulder, 1996] corrects the forbidden induced
subgraph characterization of interval acyclic digraph stated in the earlier
paper.) [Harary, Kabell, & McMorris, 1992] extends interval acyclic di-
graphs to subtree acyclic digraphs, with vertices corresponding to subtrees
of a rooted tree and with the role of left endpoints of intervals now played
by vertices of the subtrees that are closest to the tree’s root; the subtree
acyclic digraphs constitute a proper subset of the acyclic digraphs.
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Figure 7.7: An interval catch graph and an interval representation (with base
point b; the vertex in which i is underlined).

Theorem 7.16 (Harary, Kabell, & McMorris) An acyclic digraph
is a subtree acyclic digraph if and only if it contains no induced subdigraph
isomorphic to e—e—e,

Compare this with Theorem 2.5, which essentially says that a graph is
chordal if and only if it has an acyclic orientation that contains no induced
subdigraph isomorphic to the digraph in Theorem 7.16; see [Rose, 1970].
[McMorris & Mulder, 1996] also considers subpath acyclic digraphs (using
subpaths of a tree, analogous to the path graphs in section 7.1).

Related concepts were introduced (using different terminology than we
use) in [Roberts, 1969a, 1971] and [Maehara, 1984a]. Given a set S, call
a distinguished element b € S a base point of S. Given a family F =
{(S1,b1),...,(Sn,bn)} of sets with base points (“pointed sets”), the catch
digraph of F is the digraph D with V(D) = {1,...,n} and ij € A(G) if
and only if ¢ # j and b; € 5;. The catch graph of F is the graph G with
V(G) ={1,...,n} and ij € E(G) if and only if ¢ # j and either b; € S; or
b; € Sj.

[Roberts, 1969a, 1971] focus on interval catch graphs, in which the S;’s
are intervals of a line and the base points are chosen so that b; € §; & b; €
S;j. Figure 7.7 shows an interval catch graph with corresponding intervals
(shown as subpaths of a path as in Chapter 3) and base points (shown by
underlining); for instance, if the path shown there is labeled, left to right,
as P :a,b,c,d,e, then S; = {a,b,c,d}, by = b and S5 = {a,b,c}, bs = a.
Roberts showed that S;’s and b;’s can always be taken so that b; is the
midpoint S; and all the S;’s have the same length; moreover, as was his
original motivation, interval catch graphs are precisely the graphs repre-
sentable by just noticeable differences as in the application to psychology in
subsection 3.4.2.

Theorem 7.17 (Roberts) Interval catch graphs are precisely the proper
interval graphs.
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[McKee, 1992] generalizes some of Roberts’s work to catch graphs of
subtrees of trees. The following, from [Ogden & Roberts, 1970], contrasts
to what happens for intervals (convex subsets of a line).

Theorem 7.18 (Ogden & Roberts) Fvery graph is the catch graph
of convex subsets of a plane.

[Maehara, 1984a] focuses on catch digraphs of n-dimensional spheres and
boxes when the base point is the midpoint. [Sen, Das, Roy, & West, 1989]
and [Prisner, 1989] study catch digraphs of intervals. [Brauner, Brualdi,
& Sneyd, 1995] studies pseudo-interval graphs—the underlying graphs of
interval catch digraphs.

7.3 Chordal Bipartite and Weakly Chordal Graphs

Chordal bipartite graphs were introduced in [Golumbic & Goss, 1978] as the
bipartite graphs in which every cycle of length greater than four has a chord,
equivalently, the graphs in which every induced cycle is a Cy. (Warning:
As (4 itself shows, chordal bipartite graphs need not be chordal, much as
complete bipartite graphs need not be complete.)

The original motivation for chordal bipartite graphs came from applica-
tions to nonsymmetric matrices. These applications, somewhat paralleling
those presented in section 2.4.3, are described in [Golumbic & Goss, 1978§],
[Golumbic, 1980], and [Bakonyi & Bono, 1997] (to gaussian elimination in
sparse matrices); in [Hoffman, Kolen, & Sakarovitch, 1985] (to integer pro-
gramming); and in [Johnson & Whitney, 1991] and [Johnson & Miller, 1997]
(to matrix analysis).

Much of the literature on chordal bipartite graphs involves analogies with
chordal graphs, analogies that are often edge based because of the matrix
applications.

For instance, [Golumbic & Goss, 1978| defines an edge vw € E(G) to be
a bisimplicial edge if N(v) U N(w) induces a complete bipartite subgraph of
G. An ordering (ej,...,en) of all the edges of G is a perfect edge elimina-
tion ordering of G if, for each ¢ € {1,...,m}, ¢; is a bisimplicial edge of the
spanning subgraph of G having edge set ¢;, ..., e,. For instance, Figure 7.8
shows a chordal bipartite graph that has a perfect edge elimination ordering
beginning (1b, 2b, 2¢, 3¢, . ..), with the remaining edges taken in any order.
Perfect edge elimination orderings were introduced (with different names) in
[Brandstadt, 1993] and [Bakonyi & Bono, 1997]. [Miiller, 1997] and [Kloks &
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Figure 7.8: A chordal bipartite graph.

Kratsch, 1995] discuss algorithmic aspects of perfect edge elimination order-
ings and recognition of chordal bipartite graphs. ([Golumbic & Goss, 1978]
introduces a related but different notion of “perfect elimination scheme” that
is relevant to the matrix applications but for which the following theorem
fails.)

Theorem 7.19 (Brandstadt and Bakonyi & Bono) A bipartite
graph is chordal bipartite if and only if it has a perfect edge elimination or-
dering.

The following analogy of Dirac’s characterization of chordal graphs is
from [Golumbic & Goss, 1978]; see also [Golumbic, 1978b]. (Warning: The
only if direction of Theorem 4 of the latter paper fails—see [Golumbic,
1980].) A set S C V(G) is a minimal edge separator of G whenever there
exist e, f € E(G) that are in different components in the subgraph induced
by V(G)\ S, and no proper subset of S has this same property. For instance,
S = {a,d,2} is a minimal edge separator in the graph in Figure 7.8. An
independent set of vertices is said to induce a “complete bipartite subgraph”
of a bipartite graph G if and only if every two of its vertices are an even
distance apart in Gj i.e., all its vertices are of the same “color.”

Theorem 7.20 (Golumbic & Goss) A bipartite graph G is chordal
bipartite if and only if every minimal edge separator induces a complete
bipartite subgraph of G.

Recall from Theorem 2.5 that a graph is chordal if and only if its vertices
can be eliminated one at a time, where each eliminated vertex is simplicial—
which can be thought of as meaning that the vertex is not the center vertex
of an induced path of length two—in the subgraph induced by the remaining
vertices.
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Theorem 7.21 (Hammer, Maffray, & Preissmann) A greph is
chordal bipartite if and only if its vertices can be eliminated one at a time,
where each eliminated vertex is not the center verter of an induced path of
length four in the subgraph induced by the remaining vertices.

[Hammer, Maffray, & Preissmann, 1989] also shows that if v is a vertex
of a chordal bipartite graph G that is not the center vertex of an induced
path of length four and if w is a neighbor of v of smallest degree, then vw
is a bisimplicial edge of G; thus a vertex elimination ordering as described
in Theorem 7.21 also determines a perfect edge elimination ordering.

[Brouwer, Duchet, & Schrijver, 1983] contains the following theorem,
which should be compared with Theorem 7.67. (Theorem 7.70 and the
paragraph following it contain related characterizations of chordal bipartite
graphs.)

Theorem 7.22 (Brouwer, Duchet, & Schrijver) A graph G s
chordal bipartite if and only if the hypergraph (V(G),E), with £ the fam-
iy of all open neighborhoods of G, is totally balanced.

Define the bipartite adjacency matriz of a bipartite graph G with color
classes {ai,...,an} and {b1,..., bk} to be the h x k (0, 1)-matrix M = (m;;)
where m;; = 1 if and only if a;b; € E(G). [Hoffman, Kolen, & Sakarovitch,
1985| shows that a graph G is chordal bipartite if and only if the rows and
columns of its bipartite adjacency matrix can be permuted so as to contain
no (}}) submatrix. Further refinements of this appear in [Lubiw, 1982, 1987]
and [Spinrad, 1993, 1995]. This approach allows chordal bipartite graphs to
be used as a tool in recognizing and studying various special kinds of graphs.
For instance, [Eschen & Spinrad, 1993] use them for circular-arc graphs and
[Eschen, Hayward, Spinrad, & Sritharan, to appear] use them for weakly
chordal comparability graphs and weakly chordal cocomparability graphs.

Observe that the complement of a chordal graph cannot contain an in-
duced cycle of length greater than four. This motivates the following defi-
nition from [Hayward, 1985]. A graph is weakly chordal (very often called
weakly triangulated) if neither it nor its complement contains an induced cy-
cle of length greater than four. Thus every chordal graph is weakly chordal,
and so is the graph in Figure 7.8. In fact, it is easy to see the following.

Theorem 7.23 A graph is chordal bipartite if and only if it is both
weakly chordal and bipartite.

The following is from [Spinrad & Sritharan, 1995] and [Hayward, 1996).
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Theorem 7.24 (Spinrad & Sritharan and Hayward) A graph is
weakly chordal if and only if its edges can be eliminated one at a time, where
each eliminated edge is not the center edge of an induced path of length three
in the subgraph consisting of the remaining edges.

Algorithms on weakly chordal graphs, including recognition algorithms,
make use of the following characterization from [Hayward, Hoang, & Maf-
fray, 1989]. [Spinrad & Sritharan, 1995] contains more details on algorithmic
aspects.

Theorem 7.25 (Hayward, Hoang, & Maffray) A graph is weakly
chordal if and only if every induced subgraph is either complete or contains
two nonadjacent vertices such that each induced path connecting them has
length two.

7.4 Circle Graphs and Permutation Graphs

A graph is a circle graph if it is isomorphic to an intersection graph of chords
of a circle. (For simplicity, all the chords can be taken to have distinct end-
points.) Circle graphs are characterized in [Even & Itai, 1971], and their
early history and applications are the subject of Chapter 11 of [Golumbic,
1980], where they are introduced as “stack sorting graphs.” Using stereo-
graphic projection, these are also exactly the interval overlap graphs—the
graphs isomorphic to graphs obtained from intervals of a line with adja-
cency of two vertices corresponding to the intervals intersecting without
either containing the other.

Other characterizations of circle graphs appear in [Fournier, 1978}, [Frays-
seix, 1984], [Naji, 1985] (as the consistency of a set of linear equations—
[Gasse, 1997] contains a simpler proof), and [Bouchet, 1994]. [Spinrad,
1994] gives a recognition algorithm that is quadratic in the order of the
graph, and [Kloks, Kratsch, & Wong, 1996] gives a cubic algorithm for the
minimum fill-in problem.

For any vertex v of a graph G, define a local complementation of G at
v to be the graph obtained by replacing N(v)—the graph induced by the
neighbors of v—by its complement. Two graphs are locally equivalent if one
can be obtained from the other by a sequence of local complementations.

Theorem 7.26 (Bouchet) A graph is a circle graph if and only f it
contains no subgraph that is locally equivalent to one of the graphs shown in
Figure 7.9.



7.4. CIRCLE GRAPHS AND PERMUTATION GRAPHS 125

Figure 7.9: Three graphs that are not circle graphs.

If the radius of the circle is thought of as infinitely large, then the chords
become intersecting or parallel lines and the associated intersection graphs
are precisely the complete multipartite graphs (with parallel classes of lines
corresponding to independent “parts” of the graph)-—if we happen to be in
the euclidean plane. In elliptic geometry there are no parallel lines, and so
the intersection graphs of lines are precisely the complete graphs. While the
question would seem to be much harder in hyperbolic geometry, the common
“Beltrami-Klein circle model,” as for instance in [Greenberg, 1980}, shows
that the intersection graphs of lines are again precisely the circle graphs.

[Elmallah & Stewart, 1993 defines a k-polygon graph to be a graph
isomorphic to the intersection graph of line segments drawn between points
on distinct sides of a k-sided polygon. The circle graphs are precisely the
graphs that are k-polygon graphs for some k.

The smallest k for which G is a k-polygon graph is a measure of how far
G is from being a permutation graph, an intersection graph of line segments
drawn between two parallel lines (so a sort of “2-polygon graph”). Permu-
tation graphs are frequently useful in specific computational problems, and
so they have been looked at in a wide variety of contexts. We, however,
only mention their structural properties. Chapter 7 of [Golumbic, 1980] is
a standard reference, and |[Pnueli, Lempel, & Even, 1971] is a key paper.
Permutation graphs are special sorts of trapezoid graphs (section 7.1) and
of asteroidal triple-free graphs (section 7.6).

The following motivates the name “permutation.” Suppose 7 is any
permutation of {1,...,n} and consider the resulting list [n(1),...,7w(n)].
The permutation graph G(r) has vertices vy,...,v, with an edge between
v; and v; whenever ¢ and j occur “out of order” in the list. In other words,
viv; € E(G(w)) if and only if 4 < j and i is to the right of j in the list,
meaning that 7~ 1(i) > 7~!(j). Alternatively, if you place (1,...,n) and
(m(1),...,m(n)) on parallel lines and draw the n line segments for each
i,7(1) pair, then G(7) is isomorphic to the intersection graph of these line
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(1) =4 1 4 1—2
n(2) =2 2 2 \ |
7(3)=1 3 1 3 4
w(4)=3 4 3 G

Figure 7.10: A permutation graph example.

segments.

As an example, suppose n = 4, with 7(1) = 4, n(2) = 2, n(3) = 1,
and 7(4) = 3. Then the list is [4,2,1, 3] and four line segments and the
permutation graph are as shown in Figure 7.10.

By looking at the permutation with reversed list, [3,1,2,4] in the exam-
ple, it is easy to see that the complement G of a permutation graph G is
also a permutation graph. [Pnueli, Lempel, & Even, 1971] relates permuta-
tion graphs with containment and comparability graphs (section 7.6) using
Theorem 7.36.

Theorem 7.27 (Pnueli, Lempel, & Even) A graph G is a permuta-
tion graph if and only if both G and G are comparability graphs and so if
and only if G is the containment graph of intervals of a line.

This led to considerable work on polynomial recognition algorithms for
permutation graphs, culminating in a linear-time recognition algorithm in
[McConnell & Spinrad 1994].

7.5 Clique Graphs of Chordal Graphs and Clique-
Helly Graphs

The clique graphs of chordal graphs were independently studied in [Brand-
stadt, Dragan, Chepoi, & Voloshin, 1994] as dually chordal graphs (called
“HT-graphs” in earlier work in, for instance, [Dragan, 1993)), in [Szwarcfiter
& Bornstein, 1994] as “expanded trees,” and in [Gutierrez & Oubifia, 1996
as “tree-clique graphs” (based on earlier work in [Batbedat, 1990]). We
include only some of their characterizations.

Theorem 7.28 (Szwarcfiter & Bornstein) A graph G is the clique
graph of a chordal graph if and only if G has a spanning tree T such that, for
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Figure 7.11: A chordal graph G and its clique graph K(G).

each uv € E(G), the vertices of the u-to-v subpath in T induce a complete
subgraph in G.

This appears in a slightly different form in {Brandstadt, Dragan, Chepoi,
& Voloshin, 1994] and [Gutierrez & Oubiiia, 1996]: G is the clique graph of
a chordal graph if and only if G has a spanning tree T such that, for each
maxclique @ of G, the vertices of @ induce a subtree of T'.

Figure 7.11 shows a chordal graph G, which is not the clique graph of
a chordal graph, and its clique graph K(G), which is not a chordal graph.
The spanning tree of K(G) described in the preceding theorem consists of
the four spokes of the wheel.

The motivation for calling these “dually chordal graphs” is that, in the
terminology of section 2.3, G is the clique graph of a chordal graph if and
only if G’s clique hypergraph is a tree hypergraph, whereas G is a chordal
graph if and only if the dual of G’s clique hypergraph is a tree hypergraph.

Theorem 7.29 (Brandstidt, Dragan, Chepoi, & Voloshin) A
graph G is the cliqgue graph of a chordal graph if and only if V(G) can be
ordered (vy, ..., v,) such that, for each v;, there is a v; with j > i such that,
relative to the subgraph of G induced by vj,...,vn, N[w) C Nlv;] for each
weN [Ul]

[Brandstadt, Chepoi, & Dragan, 1995] gives a recognition algorithm that
finds such vertex orderings. [Brandstadt, Dragan, Chepoi & Voloshin, 1994]
shows that if G is the clique graph of a chordal graph, then so is every
power of G. That paper also contains the following connection with strongly
chordal graphs (section 7.12).

Theorem 7.30 (Brandstadt, Dragan, Chepoi, & Voloshin) A
graph G is strongly chordal if and only if every induced subgraph of G is
the clique graph of a chordal graph.
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Figure 7.12: A cligue graph that is not a clique-Helly graph.

[Bandelt & Prisner, 1991] shows that K(G) is chordal whenever G is the
clique graph of a chordal graph.

A graph G is a clique-Helly graph if the family of all the maxcliques of
G satisfies the Helly condition—if the members of any family of maxcliques
of G intersect pairwise, then they all have a common element. Clique-Helly
graphs were first studied in [Hamelink, 1968], showing that clique-Helly
graphs are clique graphs. Figure 7.12 shows a clique graph (Exercise 1.19)
that is not clique-Helly. [Escalante, 1973] strengthens Hamelink’s result.

Theorem 7.31 (Escalante) A graph G is a dique-Helly graph if and
only if G = K(H) where H is another clique-Helly graph.

For every triangle uvw of a graph G, let Gy denote the subgraph of
G induced by those vertices that are adjacent to at least two of u,v,w.
[Szwarcfiter, 1997] proves that a graph G is clique-Helly if and only if every
such Gy contains a vertex adjacent to all the other vertices of Gyyy. This
also gives an efficient recognition algorithm.

Let K™1(G) = K(K™(G)), where K}(G) = K(G). The following is
from [Brandstadt, Dragan, Chepoi, & Voloshin, 1994].

Theorem 7.32 (Brandstddt, Dragan, Chepoi, & Voloshin) A4
graph G is both chordal and clique-Helly if and only if G = K?(H) where
H is a chordal graph (and so if and only if G = K(H) where H is a clique
graph of a chordal graph).

[Escalante, 1973] and [Bandelt & Prisner, 1991] show that every clique-
Helly graph G has parameters p < 2 and n such that K"*?(G) = K"(G).
This leads into many questions involving iterating the clique graph operator;
see, for instance, [Bandelt & Prisner, 1991], [Prisner, 1995], and [Bornstein
& Szwarcfiter, 1995].
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[Prisner, 1993] and [Wallis & Zhang, 1990] study hereditary clique-Helly
graphs—graphs for which every induced subgraph is a clique-Helly graph.
A family F = {S1, ..., Si} of subsets of a set S is said to satisfy the strong
Helly condition if, for every subfamily 7' C F,

{Si : Si € F'}| = min{|S; N S;| : S;, S; € F' and i # 5}
By induction, this is equivalent to, for every three members S;, S;, Sy € F,
[SiN S; N Sk = min{|S; N Sj‘, [S; N Skl, ISj N Skl}

It can be shown that F satisfies the strong Helly condition if and only if the
hypergraph (V(G), F) is a strong Helly hypergraph (section 2.3).

Theorem 7.33 (Prisner) A graph G is a hereditary clique-Helly graph
if and only if the family of all the mazcliques of G satisfies the strong Helly
condition.

[Wallis & Zhang, 1990] defines a graph G to be irreducible if each max-
clique of G contains an edge that is in no other maxclique. Based on that
work, Prisner gives a forbidden induced subgraph characterization of hered-
itary clique-Helly graphs and shows that a graph is a hereditary clique-Helly
graph if and only if each of its induced subgraphs is irreducible.

Theorem 7.34 (Prisner) A graph G is a hereditary clique-Helly graph
if and only if G = K(H) where H is another hereditary clique-Helly graph.

[McKee, 1994] defines a notion of an “absolutely clique-Helly pseudo-
graph” that characterizes those pseudographs from section 6.2 that have
pseudo duals.

7.6 Containment, Comparability, Cocomparabil-
ity, and Asteroidal Triple-Free Graphs

A graph G is a containment graph of some family F = {S1,...,Sn} of
nonempty sets if V(G) = F and S;S; € E(G) if and only if one of S;
and S; is properly contained in the other. Recall that (X, <) is a partially
ordered set (or poset) if < is an irreflexive, transitive binary relation on the
nonempty set X. [(Golumbic & Scheinerman, 1989] observes that a graph G
is a containment graph if and only if it is a comparability graph of a poset
(X, <), where this means that V(G) = X and uv € E(G) if and only if either
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Figure 7.13: A poset and its comparability graph.
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u < vorv < u. Alternatively, a graph G is a comparability graph if and only
if E(G) can be transitively oriented—meaning that an orientation D of G
has arc set A(D) such that wv,vw € A(D) implies uw € A(D). Figure 7.13
shows a poset on the left, with v; < v; whenever v; is below v; on a path,
and its comparability graph G on the right; G is also the containment graph
of the “downsets” S; = {j : v; < v;} and can be transitively oriented by
directing all arcs downward. Chapter 8 of [Golumbic, 1980] is a standard
reference on comparability graphs, and [Hell & Huang, 1995] gives an up-
to-date description of algorithms.

The following two results, from [Golumbic & Scheinerman, 1989] and
[Dushnik & Miller, 1941], respectively, show that containment graphs be-
have very differently from intersection graphs with regard to the topics in
Chapters 2 and 3.

Theorem 7.35 (Golumbic & Scheinerman) Every containment
graph is the containment graph of a family of subtrees of a tree.

Theorem 7.36 (Dushnik & Miller) A graph G is the containment
graph of a family of intervals of the real line if and only if both G and its
complement G are containment graphs.

As a corollary of this and Theorem 7.27, G is the containment graph of
a family of intervals of the real line if and only if G is a permutation graph
(section 7.4). Dushnik & Miller show that these containment graphs are
also precisely the comparability graphs of posets of “dimension two.”

Paralleling section 1.2, [Golumbic & Scheinerman, 1989] characterizes
containment classes, sets of graphs that are exactly those isomorphic to
containment graphs of arbitrary families F of members of some set X of sets
(for instance, the set of all subtrees of a tree or of all intervals of the real
line). Define a set G of graphs to be closed under vertex multiplication if
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G’ € G whenever G’ results from G € G by repeatedly replacing an existing
vertex v by a pair v’,v” of new nonadjacent vertices, each having the same
pre-existing neighbors as v did.

Theorem 7.37 (Golumbic & Scheinerman) A set G of comparabil-
ity graphs is o containment class if and only if all three of the following
conditions are satisfied:

(1) G is closed under induced subgraphs;

(2) G is closed under vertex multiplication;

(3) G has a composition series.

Moreover, if repeated members of ¥ are not allowed in the F'’s, then condi-
tions (1) and (3) are necessary and sufficient.

[Golumbic & Scheinerman, 1989] also characterizes related kinds of graphs
and classes based on overlap and disjointedness, instead of intersection or
comparability.

[Sen, Sanyal, & West, 1995] considers a directed version of containment
graphs. [Ma & Spinrad, 1991] studies chordal comparability graphs and
[Eschen, Hayward, Spinrad, & Sritharan, to appear] studies weakly chordal
comparability graphs.

[Golumbic & Scheinerman, 1989)] also contains results on d-box contain-
ment, paralleling section 7.1. [McKee & McMorris, 1992] discusses com-
parability multigraphs, paralleling section 6.2. [McKee, 1995b] introduces
“connection graphs,” generalizing both intersection and containment graphs
(and also catch graphs as in section 7.2), emphasizing the appropriate ana-
logues of edge clique covers and characterizing “connection classes.”

A graph G is a cocomparability graph if its complement G is a compa-
rability graph (or, equivalently, a containment graph). Theorem 3.5 says
that a graph is an interval graph if and only if it is a cocomparability graph
that contains no induced cycle Cy4, and Theorem 7.27 says that a graph is
a permutation graph if and only if it is both a comparability graph and a
cocomparability graph.

[Corneil & Kamula, 1987] shows that every trapezoid graph (section 7.1)
is a cocomparability graph, and so that is also true of interval graphs and
permutation graphs. Conversely, [Felsner, 1993] shows that every cocompa-
rability graph that is also a min-tolerance interval graph must be a trapezoid
graph. [Langley, 1994] shows that every bipartite cocomparability graph is
a min-tolerance interval graph.

The following is from [Golumbic, Rotem, & Urrutia, 1983].



132 CHAPTER 7. GUIDE TO RELATED TOPICS

Theorem 7.38 (Golumbic, Rotem, & Urrutia) A graph is a cocom-
parability graph if and only if it is the intersection graph of continvous func-
tions f : [0,1] — R, each viewed as a set of points in R2.

Just as interval, permutation, and trapezoid graphs have linear struc-
tures, so do cocomparability graphs: a graph G is a cocomparability graph
if and only if its vertices can be arranged in a path such that uwv € E(G)
if and only if, for each vertex z in between u and v on the path, either
uz € E(G) or vz € E(G).

Interval, permutation, trapezoid, and cocomparability graphs are all spe-
cial cases of asteroidal triple-free graphs—graphs that contain no asteroidal
triples (section 3.1). [Corneil, Olariu, & Stewart, 1997] is an excellent survey
and synthesis of all aspects of these only recently studied graphs (including,
for instance, a cubic recognition algorithm). The following two theorems
are from that paper, with one direction of the second from [M6hring, 1996].
(Notice the ramifications for the minimum fill-in problem.) Recall that
S C V(G) dominates G if every w € V(G) is either in S or is adjacent to a
vertex in S.

Theorem 7.39 (Corneil, Olariu, & Stewart) Every connected as-
teroidal triple-free graph G contains a pair u,v of vertices such that every
u, v-path dominates G (and u,v can be found such that their distance in G
equals the diameter of G).

Theorem 7.40 (Mohring and Corneil, Olariu, & Stewart) A graph
G is asteroidal triple-free if and only if adding a minimal set of new edges
to G so as to create a chordal graph always creates an interval graph.

7.7 Infinite Intersection Graphs

Although we have been making the common graph-theoretic restriction to
finite vertex sets throughout the rest of this monograph, much work on
intersection graphs has involved infinite graphs. [Diestel, 1990] is a recent,
exhaustive survey of many aspects of this work.

Interestingly, the earliest paper on chordal graphs, [Hajnal & Suréanyi,
1958], was most definitely interested in the infinite case in connection with
the “Souslin hypothesis” (that the real line can be characterized as a dense
linear order without endpoints, complete under the formation of sups and
infs, such that every collection of pairwise disjoint open intervals is count-
able). [Wolk, 1962] also introduced P4-free chordal graphs (section 7.9) with
the Souslin hypothesis as motivation.



7.8. MISCELLANEOUS TOPICS 133

Define an infinite subtree graph to be the intersection graph of an infinite
family of subtrees of an infinite tree and an infinite chordal graph to be a
graph that contains no induced cycles larger than triangles. While every
infinite subtree graph is an infinite chordal graph, the converse was disproved
in [Halin, 1984|, even for graphs with just a countably infinite vertex set.
[Diestel, 1988] gives the following example of a countable chordal graph Hy
that is not a subtree graph: take V(H)) = {z1,z2,...;%1,82,...;¢} and
EH) = {xizig1 : ¢ 2 1} U {xis; : 1 <0 < 5} U {885 1 4,5 2 1} U
{sig : © > 1}. Another example is given by H;, which is obtained from
H, by including all edges z;x; where 7,5 > 1. Diestel then proves that a
countable graph is a subtree graph if and only if it is chordal and contains
neither H; nor Hy as a “simplicial minor.”

Note that each of Diestel’s two problematic subgraphs contains an in-
finite complete subgraph. [Halin, 1984] characterizes the infinite subtree
graphs in terms of a suitable version of perfect elimination orderings from
which the following is a corollary.

Theorem 7.41 (Halin) A graph with no infinite complete subgraphs is
an infinite subtree graph if and only if it is an infinite chordal graph.

[Halin, 1982] also considers infinite interval graphs, meaning the inter-
section graph of an infinite number of intervals of the real line.

Theorem 7.42 (Halin) A graph is an infinite interval graph if and
only if every finite induced subgraph is an interval graph and is equivalent
to every three mazcliques having one that separates the other two.

7.8 Miscellaneous Topics

Completion Sequences. A completion sequence for a graph G within a
class of graphs is a sequence of edges of the complement G such that, when
these edges are inserted one at a time, each of the resulting graphs from G
up to Kjy(c) is also in the class. This notion was introduced in [Grone,
Johnson, S4, & Wolkowicz, 1984, where it is shown that the class of chordal
graphs allows such completion sequences. [Rasmussen, 1994] shows that
the classes of chordal, interval, proper interval, split, circular-arc, proper
circular-arc, comparability, and permutation graphs allow completion se-
quences. [Odom & Rasmussen, 1995] adds strongly chordal graphs to this
list and emphasizes polynomial algorithms for finding completion sequences.
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[Bakonyi & Bono, 1997] contains the corresponding result for chordal bipar-
tite graphs. See [Spinrad & Sritharan, 1995] for a related approach to weakly
chordal graphs.

Dot Product Representations. [Fiduccia, Scheinerman, Trenk, & Zito,
1998] defines the dot product graph of a family F of k-tuples of reals to
have vertex set F with vectors ¥,w € F adjacent if and only if ¥ - w > 1.
This generalizes the intersection graph Q({Sy,...,S,}) in that each set S;
corresponds to a characteristic vector #; in {0, 1}%:5il and S; NS; # 0 if and
only if 7; - ¥; > 1.

Fiduccia, Scheinerman, Trenk, & Zito define the dot product dimension
of G to be the minimum k such that G is the dot product graph of a set of
k-vectors. The dot product dimension of a graph is less than or equal to the
intersection number of the graph. Among a wealth of results on dot prod-
uct graphs (and their generalizations!), they show that every interval graph
has dot product dimension at most two and every chordal graph G has dot
product dimension at most one plus the order of the largest maxclique in G.

Fuzzy Intersection Graphs. A fuzzy set is a set in which each poten-
tial element is in the set with a particular value (“degree of membership”)
between 0 and 1. Fuzzy set theory (along with fuzzy logic and the like) is
currently popular among certain mathematicians and computer scientists. A
“fuzzy graph” is a graph in which each pair of vertices is joined by a “fuzzy
edge” with a value between 0 and 1. Fuzzy intersection graphs—defined
in terms of “fuzzy intersection” of fuzzy sets—are discussed in [McAllister,
1988].

See [Craine, 1994] for another notion of fuzzy intersection graphs with
an analogue of Marczewski’s theorem (Theorem 1.1) and a notion of “fuzzy
interval graph” that has an analogue of the Gilmore-Hoffman characteriza-
tion (Theorem 3.5) but not of the Fulkerson-Gross characterization (Corol-
lary 3.2).

Intersection Graphs from Designs. Design theory is one of the cen-
tral areas of combinatorics and has many applications. A design on a set
is a collection of subsets, called blocks, such that every pair of elements of
the underlying set is contained in a fixed number of blocks. The block-
intersection graph of a design (not to be confused with a graph-theoretic
“block graph”) is the intersection graph of its blocks. See [Alspach & Hare,
1991] and its references for results on (and extending) the hamiltonicity of
the block-intersection graph, and [Hare & McCuaig, 1993] for discussion of
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questions of connectivity.

Intersection Graphs of Algebraic Structures. [Csédkény & Polldk,
1969] defined the graph of subgroups of a group G to be the intersection
graph of every H \ {e}, where H is a proper, nontrivial subgroup of G and
e is the identity element of G. The study of the interplay of the structures
of the group and its graph was continued in [Zelinka, 1975a]. All sorts of
algebraic structures can be similarly treated, with [Bosék, 1975] considering
the graph of subalgebras of an algebra.

Some of the earliest work involved the graph G(S) of subsemigroups of
a semigroup of a group S, the intersection graph of all the proper subsemi-
groups of S. This began with [Bosdk, 1964] and continued over the next
decade, considering such things as the connectivity, diameter, and girth of
G(S); see [Shevrin & Ovsyannikov, 1983] for references. The topic was res-
urrected in [Luedeman & McMorris, 1986], characterizing when G(S) is a
tree, and in [Ackerman, McMorris, & Seif, 1993], focusing on the question
of when G(S) is chordal. [Luedeman & McMorris, 1986] also studies the
intersection graphs of right ideals, [Luedeman, 1987] the intersection graphs
of quasi-ideals and bi-ideals of semigroups, and [Pondéli¢ek, to appear] the
intersection graphs of semigroups in which every element is idempotent.

It is easy to see that graphs G = G(S) for a semigroup S are upper
bound graphs, but a complete characterization of such graphs remains an
interesting open problem.

Intersection Graphs of Graphs. [Zelinka, 1975b] defines the intersection
graph of a graph G to be the intersection graph of the edge sets of all the
proper induced subgraphs of G. The paper contains results and examples
concerning the conjecture that every graph of order at least four is uniquely
determined by its intersection graph.

Partition Graphs. Partition graphs (not to be confused with the “parti-
tion intersection graphs” described in section 2.4) were introduced in [De-
Temple, Robertson, & Harary, 1984). A partition graph is an intersection
graph G of a family of subsets of a set S such that the vertices in every maxi-
mal independent subset of V(&) correspond to a partition of S. The graph in
Figure 7.14 is an example of a partition graph on the set S = {1,2, 3,4, 5}, as
is witnessed by the set-labeled intersection representation shown there: the
maximum independent subsets of V(G) are {a,e}, {b, f}, {c,d}, {a,d, f},
and each corresponds to a partition of S.

[McAvaney, Robertson, & DeTemple, 1993] characterizes partition graphs
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Figure 7.14: A partition graph G on the set {1,2,3,4,5}.

by the existence of an edge clique cover @ such that each Q is a maxclique
that has a nonempty intersection with every maximal independent set of
vertices. [DeTemple, Dineen, Robertson, & McAvaney, 1993] contains re-
lated details.

Random Intersection Graphs. The various models for random graphs
provide powerful tools for understanding many graph-theoretic concepts,
including intersection graphs. [Janson & Kratochvil, 1992] has a broad
discussion; see also [Maehara, 1991].

Random interval graphs are discussed in [Scheinerman, 1988b, 1990b]
and applied to queuing theory in [Nawijn, 1991]. See [Scheinerman, 1990a]
for connections with interval numbers as in section 7.1. [McMorris & Schein-
erman, 1991] discusses random chordal graphs, and [Maehara, 1990] dis-
cusses random circular-arc graphs (as in section 7.1).

7.9 Ps-Free Chordal Graphs and Cographs

The P4-free chordal graphs are easily seen to be the same as the Cy, Py-free
graphs: the graphs that have no induced 4-vertex cycle or path. These
graphs form one of several well-studied forbidden-subgraph subclasses of
chordal graphs; we include a section on this particular one because of its
many relationships to other concepts we have considered. These graphs first
appeared in [Wolk, 1962, 1965].

Theorem 7.43 (Wolk) A graph is a Py-free chordal graph if and only
if it is the comparability graph of a tree poset.

More directly relevant to intersection graphs, [Skrien, 1982] defines a
graph to be a nested interval graph if it is the intersection graph of a family
of nested intervals of the real line, meaning that two intervals in the family
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have a nonempty intersection only when one of them is contained in the
other. Equivalently, a graph is a nested interval graph if and only if it is the
containment graph (section 7.6) of nested intervals.

Theorem 7.44 (Skrien) A graph is a Py-free chordal graph if and only
if it is a nested interval graph.

A graph G is perfect if, for every induced subgraph G’ of G, the cardi-
nality of the largest independent set in G’ equals the minimum number of
maxcliques needed to cover V(G’). (Perfect graphs, introduced by Berge in
the early 1960s, have an immense literature that includes [Golumbic, 1980,
the classic textbook on intersection graph theory.) [Golumbic, 1978a] de-
fines a graph G to be trivially perfect if, for every induced subgraph G’ of
G, the cardinality of the largest independent set in G’ equals the number of
maxcliques of G'.

Theorem 7.45 (Golumbic) A graph is a Py-free chordal graph if and
only if it is trivially perfect.

A set S C V(@) dominates a graph G if every vertex of G is either in S
or has a neighbor in S. The domination number of G, denoted v(G), is the
smallest cardinality of a set S that dominates G. For any complete subgraph
Q of G, define N(Q), the common neighborhood of Q, to be N{N(v) : v € Q}.
The following theorems are from [McKee, 1990c, to appear(a)], respectively;
there is related material in [Kelleher & Cozzens, 1990].

Theorem 7.46 (McKee) A graph G is a Py-free chordal graph if and
only if V(G) can be ordered (vy,...,v,) where each v; dominates its compo-
nent in the subgraph of G induced by v, ..., v,.

Theorem 7.47 (McKee) For every graph G,

D= @) < +6),
Q

where the sum is taken over all nonempty complete subgraphs Q of G, with
equality holding if and only if G is a Py-free chordal graph. ( The inequality
also holds when the v parameter is replaced with the number of components,
with equality then holding if and only if G is chordal.)
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Define a graph to be a hereditary upper bound graph if every induced
subgraph is an upper bound graph. [Myers, 1982] shows that a graph is a Py-
free chordal graph if and only if it is a hereditary upper bound graph. [Ma,
Wallis, & Wu, 1989] characterize Pj-free chordal graphs as quasi-threshold
graphs, a weakening of the notion of threshold graphs from Chapter 5; [Yan,
Chen, & Chang, 1996] discusses quasi-threshold graphs further. Pj-free
chordal graphs also show up in [Peyton, Pothen, & Yuan, 1995] in connection
with sparse matrix computations.

[Skrien, 1982] refers (equivalently) to the Py-free chordal graphs as being
the Py-free interval graphs. Replacing Py with the 5-vertex tree F having
degrees 1, 1, 1, 2, and 3 (like the letter F), [McKee, 1998] shows that F-free
interval graphs are those for which clique path representations are produced
by a simple-minded greedy path algorithm obtained by modifying Kruskal’s
algorithm to repeatedly choose an edge of largest weight that does not form
either a cycle or a vertex of degree three with previously chosen edges. This
gives an analogue of the chordal graph greedy tree algorithm of Theorem 2.3:
The Py-free interval graphs (equivalently, the nested interval graphs) are
precisely the graphs for which the simple-minded greedy path algorithm
produces a nested interval representation.

Those Py-free graphs that are not necessarily chordal have also been in-
dependently investigated and are also known by many different names, the
most frequent being complement reducible graphs or, more often, cographs.
[Corneil, Lerchs, & Stewart Burlingham, 1981] is the key paper, organizing
many people’s work from the 1970s, with an assortment of characteriza-
tions and applications. [Chaiken, Murray, & Rosenthal, 1989] contains even
more, featuring an application to automated theorem proving. Cographs
form a subclass of the permutation graphs (section 7.4). The “complement
reducible” name comes from the following.

Theorem 7.48 (Corneil, Lerchs, & Stewart Burlingham) A graph
is a cograph if and only if it can be reduced to an edgeless graph by repeat-
edly taking complements within components. In other words, if G = G
and G s the union of the complements of all the components of G,
then G is a cograph if and only if these G® all exist and become edgeless
for sufficiently large i.

Figure 7.15 shows an example of a cograph G and GV and G(?; the
G with 7 > 3 are all edgeless. Trying the same process on P clearly never
even begins to lead to an edgeless graph.

Paralleling Theorem 7.43, a graph is a cograph if and only if it is the
comparability graph of a series-parallel poset. Paralleling Theorem 7.45,
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Figure 7.15: A cograph G with its nonedgeless subsidiary cographs G,

G is a cograph if and only if, in every induced subgraph G’ of G, every
maxclique and every maximal independent set have exactly one vertex in
common. Other simple characterizations include the following:

e In every nontrivial (meaning |V(G')| > 1) induced subgraph G’ of G,
there are vertices u, w such that N(u) \ {v,w} = N(w) \ {v,w} in G'.

e For every nontrivial induced subgraph G’ of G, either G’ or its com-
plement G’ is not connected.

e Every connected induced subgraph of G has diameter at most two.

¢ (G can be generated from trivial graphs by a sequence of disjoint unions
and joins.

[McKee, 1990c] further studies the connections among cographs, inter-
section graphs, and comparability graphs (as well as their multigraph ana-
logues), including the statement of the following “odd” intersection char-
acterization. Call a graph the odd intersection graph of a family F =
{S1,--.,8n} of sets if it has F as its vertex set with S; and S; adjacent
if and only if |S; N S;| is odd.

Theorem 7.49 A graph G is a cograph if and only if there exists a
rooted tree T with no nonroot vertex of degree two such that G is isomorphic
to the odd intersection graph of all the root-to-leaf paths of T

These trees are essentially the cotrees in [Corneil, Lerchs, & Stewart
Burlingham, 1981]. For instance, a cotree representation for the cograph
in Figure 7.15 is shown in Figure 7.16; notice how its subtrees correspond
to the components of the G()’s. [Corneil, Perl, & Stewart, 1985] contains
more information on cographs, including a linear algorithm for recognizing
cographs and constructing cotree representations.
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Figure 7.16: A cotree representation for the cograph in Figure 7.15.
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Figure 7.17: A chordal graph whose square is not chordal.

7.10 Powers of Intersection Graphs

Generalizing the notion of squared graph from section 4.1.1, the k-power of
a graph G, denoted G*, has the same vertices as G, with two vertices u and
w adjacent if and only if d(u, w) < k, where d(u, w) denotes the usual graph
distance in G. Section 16.2 of [Prisner, 1995] discusses powers of all sorts of
intersection graphs.

Many intersection classes G are closed under powers, meaning that G € G
implies that G¥ € G for all k > 1. An intersection class G is strongly closed
under powers if, for every k > 1, G* € G implies that G**! € G; in other
words, if a power of G is in the class, then so are all higher powers.

[Laskar & Shier, 1980] effectively began the study of powers of chordal
graphs, noting that the class of all chordal graphs is not closed under powers:
the example in Figure 7.17 is a chordal graph whose square is not chordal.
[Laskar & Shier, 1983] and [Wallis & Wu, 1995] both characterize when the
square of a chordal graph is chordal.

Theorem 7.50 (Wallis & Wu) A chordal graph G has G? chordal if
and only if the cligue graph K(G) of G is chordal. For any graph G, K(G)
chordal implies G? is chordal.
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[Duchet, 1984], [Balakrishnan & Paulraja, 1983}, and [Flotow, 1997] con-
tain further results on powers of chordal graphs. Call the graph formed from
a triangle by adding two nonadjacent pendant edges (like the letter A) an
A-graph, and recall that K 3 is the upper-left graph in Figure 1.4.

Theorem 7.51 (Duchet) If G* is chordal, then so is G2, If G and
G? are both chordal, then all powers of G are chordal.

Theorem 7.52 (Balakrishnan & Paulraja) If G is chordal and k is
odd, then G* is chordal. If G is chordal and G?* is not chordal, then none
of the edges of any chordless cycle of G* is an edge of G™ for r < 2k.

Theorem 7.53 (Flotow) If G contains no induced A-graph or K1 3 or
Cn with n > 2k + 2, then G* is chordal. If G contains no induced K 1,3 O
Cp with n > 4, then every power of G is chordal. If G contains no induced
K3 or C,, withn > 6, then every odd power Gk, k>3, of G is chordal.

[Brandstadt, Chepoi, & Dragan, 1996] shows that if G™ and G™ are both
chordal, then they have a common perfect elimination ordering that can be
found efficiently using a modified maximum cardinality search.

[Raychaudhuri, 1987], [Prisner, 1996b], and [Flotow, 1996] investigate
the classes of (proper) interval graphs and circular-arc graphs.

Theorem 7.54 (Raychaudhuri) The intersection classes of interval
graphs, asteroidal triple-free graphs, and proper interval graphs are strongly
closed under powers.

Theorem 7.55 (Prisner) The intersection class of proper circular-arc
graphs is strongly closed under powers.

Theorem 7.56 (Flotow) The intersection class of circular-arc graphs
is closed under powers, and for all k > 2, G* a circular-arc graph implies
that G**2 is a circular-arc graph.

The result of [Lubiw, 1982] and [Dahlhaus & Duchet, 1987] that strongly
chordal graphs (section 7.12) are closed under powers is strengthened in
[Raychaudhuri, 1992a].

Theorem 7.57 (Raychaudhuri) The intersection class of strongly
chordal graphs is strongly closed under powers.
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[Lundgren, Merz, & Rasmussen, 1993} investigates characterizing graphs
whose squares are interval graphs. [Brandstadt, Dragan, Chepoi, & Voloshin,
1994] shows that the intersection class of clique graphs of chordal graphs
(section 7.5) is closed under powers.

[Jamison, to appear] shows that every power of a block graph is chordal,
where a block graph is any graph isomorphic to the intersection graph of the
vertex sets of all the blocks—maximal 2-connected subgraphs—of a graph.
(Block graphs are not to be confused with the block-intersection graphs of
designs in section 7.8).) [Harary, 1963] characterizes block graphs as the
graphs in which every block is complete.

7.11 Sphere-of-Influence Graphs

Suppose X is any finite set of points in R? and each € X is associated
with the open ball centered at z with radius equal to the smallest distance
from z to any other point of X. A graph is a sphere-of-influence graph if it
is isomorphic to the intersection graph of such open balls for some X C R?;
[Lipman, 1992] shows that the points  can always be assumed to be lattice
points of the plane. Closed sphere-of-influence graphs are defined similarly
using closed balls. The geometric delicacy involved in these definitions can
be glimpsed in Figure 7.18, which shows that the cycle Cs is a sphere-of-
influence graph. Note the tangency of the upper left and upper right circles;
by Theorem 7.59, Cs is not a closed sphere-of-influence graph.

Sphere-of-influence graphs grew out the [Toussaint, 1988} discussion of
pattern recognition and computer vision; [Jaromczyk & Toussaint, 1992]
contains references and discussion of general prozimity graphs of this sort.

Much work has been done attempting to characterize which graphs are
(closed) sphere-of-influence graphs, but the general problems remain open.
One awkward fact is that the classes of all sphere-of-influence graphs and of
all closed sphere-of-influence graphs are not closed under induced subgraphs,
and so are not intersection classes in the sense of section 1.2.

A {Gy,...,Gy}-factor of a graph is a spanning subgraph consisting of
vertex-disjoint copies of graphs isomorphic to graphs each of which is iso-
morphic to one of Gy,...,Gy; a {Kz}-factor is a perfect matching. The fol-
lowing results are from [Jacobson, Lipman, & McMorris, 1995] and [Michael
& Quint, to appear]. (Recall that P, denotes a path with n — 1 edges.)

Theorem 7.58 (Jacobson, Lipman, & McMorris) A tree is a sphere-
of-influence graph if and only if it has a perfect matching and is a closed
sphere-of-influence graph if and only if it has a {Pa, P3}-factor.
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Figure 7.18: Open balls showing that Cs is a sphere-of-influence graph.

Theorem 7.59 (Jacobson, Lipman & McMorris) Every triangle-
free closed sphere-of-influence graph has a perfect matching.

Theorem 7.60 (Michael & Quint) Ewvery triangle-free sphere-of-
influence graph or triangle-free closed sphere-of-influence graph is planar.

Even the status of complete graphs is not fully known: there is a gap
between Kjg, which is known to be a sphere-of-influence graph, and Kia,
which is known not to be by the following result of [Kézdy & Kubicki,
1997]. [Harary, Jacobson, Lipman, & McMorris, 1993] conjectures that Ky
is not a sphere-of-influence graph.

Theorem 7.61 (Kézdy & Kubicki) Ky is not a sphere-of-influence
graph.

[Michael & Quint, 1994] surveys sphere-of-influence graphs and has a
bibliography that is complete through 1993. It also shows how the work on
sphere-of-influence graphs finds natural expression when extended to arbi-
trary metric spaces. [Chen, Gould, Jacobson, Schelp, & West, 1992] and
[Harary, Jacobson, Lipman, & McMorris, 1994] present a related notion of
influence graph, replacing euclidean distance with the usual graph-theoretic
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distance metric. [Guibas, Pach, & Sharir, 1994] investigates sphere-of-
influence graphs in higher dimensions. [Holm & Bogart, to appear| studies
min- and sum-tolerance sphere-of-influence graphs.

Theorem 7.62 (Holm & Bogart) Every tree is both a min-tolerance
sphere-of-influence graph and a sum-tolerance sphere-of-influence graph.

[Lipman, 1996] studies max-tolerance sphere-of-influence graphs and
shows that not every tree is a max-tolerance sphere-of-influence graph.

Theorem 7.63 (Lipman) The complete bipartite graph Ky, is a maz-
tolerance sphere-of-influence graph if and only if 1 <n <45.

[McMorris & Wang, to appear] initiates the study of sphere-of-attraction
graphs, motivated by applications to marketing in [Crama, Hansen, & Jau-
mard, 1995]. These are defined by two sets X, and &, of points, whose
elements can be thought of as, respectively, “customers” and “products,”
with balls (open or closed) centered at points of X, where each radius is de-
termined by the shortest distance to a point in A;,. McMorris & Wang prove
that, in R!, closed sphere-of-attraction graphs are proper interval graphs,
and they give a forbidden subgraph characterization of the R! closed sphere-
of-attraction graphs. They also show that every proper interval graph is an
R? closed sphere-of-attraction graph.

Theorem 7.64 (McMorris & Wang) A triangle-free graph is an R?
sphere-of-attraction graph (or, equivalently, a closed R? sphere-of-attraction
graph) if and only if it is planar.

7.12 Strongly Chordal Graphs

A chordal graph is strongly chordal if it has the additional property that
every cycle C of even length at least six has a chord that divides C into
two odd-length paths. Strongly chordal graphs form an intermediate fam-
ily between the families of interval graphs and chordal graphs. They have
been particularly important because certain graph-theoretical problems have
efficient computational solutions for subfamilies of the family of strongly
chordal graphs. However, we will focus on structural properties, primarily
from the fundamental paper [Farber, 1983].

Define a trampoline, sometimes called a k-sun, to be a graph formed
from an even-length cycle vi,...,ve,v1 by adding edges between even-
subscripted vertices so that {va,vs,...,vot} induces a complete subgraph.
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Figure 7.19: A strongly chordal graph and its clique tree.

/_R 2347 === 2457
2 —4—
O |

Figure 7.20: A chordal, but not strongly chordal, graph and its clique tree.

For instance, the graphs on the left in Figures 7.11 and Figure 7.14 are
trampolines. (Warning: Some authors use “trampoline” and “k-sun” with
the same meaning except with “complete” replaced with “chordal”; the two
meanings are equivalent in the following characterization by results in [Far-
ber, 1983] and [Chang & Nemhauser, 1984].)

Theorem 7.65 (Farber) A graph is strongly chordal if and only if it
is chordal and contains no induced trampoline.

Define a vertex v € V(G) to be simple if, for every u,w € N[v}, the
closed neighborhoods N{u] and N{w] are comparable by inclusion. For
instance, vertex 1 in Figure 7.19 is simple since N[1] = {1,2,4,5} and
N[1} C N[2] € N[4] = N[5]; the graph in Figure 7.20 has no simple vertex.
Call an ordering (vy,...,v,) of all the vertices of G a simple elimination
ordering of G if, for each i € {1,...,n}, v; is a simple vertex of the sub-
graph induced by v;,...,v,. The vertices in the strongly chordal graph in
Figure 7.19 are numbered in a simple elimination ordering. The following
theorem parallels the perfect elimination ordering characterization of chordal
graphs in Theorem 2.5. ([Farber, 1983] also introduces a different, somewhat
less simple notion of “strong elimination ordering” that also characterizes
strongly chordal graphs.)

Theorem 7.66 (Farber) A graph is strongly chordal if and only if it
has a simple elimination ordering.
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[Chang & Nembhauser, 1984] observes that a graph is chordal if and only
if, for every cycle C of length greater than three, there is a triangle consisting
of two edges of C' and one chord of C. [Dahlhaus, Manuel, & Miller, 1998]
proves that a chordal graph is strongly chordal if and only if, for every cycle
C of length greater than five, there is a triangle consisting of one edge of C
and two chords of C.

[Brandstadt, Dragan, Chepoi, & Voloshin, 1994] shows that a graph is
strongly chordal if and only if every induced subgraph is the clique graph of
a chordal graph (section 7.5). [Bandelt & Prisner, 1991] shows that a graph
G is strongly chordal if and only if G = K (H) where H is another strongly
chordal graph. [Raychaudhuri, 1988] gives an algorithm for the intersection
number of strongly chordal graphs.

Strongly chordal graphs are intimately related to totally balanced hy-
pergraphs in [Anstee & Farber, 1984]; see also [Lubiw, 1987]. The second
part of the following theorem also appears in [Brouwer, Duchet, & Schrijver,
1983], which contains the very similar characterization of chordal bipartite
graphs stated in Theorem 7.22. [Ma & Wu, 1990] shows that Theorem 7.67
is also true when & is the family of all minimal vertex separators of a chordal
graph G.

Theorem 7.67 (Farber) A graph G is strongly chordal if and only if
the hypergraph (V(G),E), with £ the family of all mazcliques of G, is to-
tally balanced; moreover, the same is true when & is the family of all closed
neighborhoods of vertices of G.

Call a clique tree T a strong clique tree representation for a graph G when
there are net vertices vy, ...,vx € V(G) and Q,...,Qx € V(T), k > 3, such
that Q1 is in 7} and Ty, Q2 is in T» and T3, ..., and @y is in T} and T3,
with no Q; in any other Tj for i,j € {1,...,k}. For instance, the clique
tree in Figure 7.20 can be seen not to be a strong clique tree by taking
v1 =2, vy =5, v3 =17, and Q1 = 1245, Q2 = 4567, Q3 = 2347 (in other
words, T is not a strong clique tree because of the “cyclic” arrangement of
the subtrees T, 75, and T%). This is expressed in terms of either of the
hypergraphs (V(G),V(T)) and (V(T),{Ty : v € V(G)}) not being strongly
balanced. The following characterization, paralleling Theorem 2.1, follows
from Theorem 7.67, Exercise 2.20, and Corollary 2.10.

Theorem 7.68 A graph is strongly chordal if and only if it has a strong
clique tree representation.
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[McKee, to appear(b)] characterizes such strong clique tree representa-
tions T of G by, for all v € V(G), each T, T/, ... being connected, where
(mimicking section 2.1) T is defined to be any maximum spanning tree of
the weighted intersection graph K¥(E(T)) of the set {Q : @ € E(T)}, T”
is defined similarly in terms of K*(E(T")), and so on.

Reflecting their connection to totally balanced hypergraphs, strongly
chordal graphs are also intimately related to chordal bipartite graphs in
[Dahlhaus, 1989], [Hoffman, Kolen, & Sakarovitch, 1985], [Hammer, Maffray,
& Preissmann, 1989, and [Brandstadt, 1991]. For instance, Brandstadt’s
paper includes proofs of the following two results (which should be compared
with Exercise 5.11 and Theorem 5.5).

Theorem 7.69 (Brandstidt and Miiller) A graph G onV(G) = {v1,
..., Vn} is strongly chordal if and only if B(G) is chordal bipartite, where
B(G) is defined to be the bipartite graph on V(B(G)) = {z1,...,Zn;y1, - -,
yn} with z;y; € E(B(G)) exactly when either i = j or vjvj; € E(G).

Theorem 7.70 (Dahlhaus) A bipartite graph G is chordal bipartite if
and only if the split graph obtained from G by making one of its two color
classes complete is strongly chordal.

Paralleling Theorem 7.68, [McKee, to appear(b)] also defines a “strong
neighborhood tree representation” T in the same way as strong clique tree
representations, as a maximum spanning tree T' of the weighted intersection
graph K¥(N(G)) of the set N(G) = {N(v) : v € V(G)} of all open neigh-
borhoods of vertices of G such that every T, T, T/, ... is connected. Then,

related to Theorem 7.22 or 7.70, a graph is chordal bipartite if and only if
it has a “strong neighborhood tree representation.”



This page intentionally left blank



Bibliography

B. D. Acharya & M. Las Vergnas (1982).
Hypergraphs with cyclomatic number zero, triangulated graphs, and
an inequality. J. Combin. Theory Ser. B 33, 52-56. (Cited in §2.1.)

B. D. Acharya & M. N. Vartak (1973).
Open Neighborhood Graphs. Research Report of the Indian Institute
of Technology, Bombay. (Cited in §4.1.2.)

M. Ackerman, F. R. McMorris, & S. Seif (1993).
Chordal intersection graphs of semigroups. Congr. Numer. 93, 45-49.
(Cited in §7.8.)

R. Agarwala & D. Fernandez-Baca (to appear).
Fast and simple algorithms for perfect phylogeny and triangulating
colored graphs. (Cited in §2.4.1.)

B. Alspach & D. Hare (1991).
Edge-pancyclic block-intersection graphs. Discrete Math. 97, 17-24.
(Cited in §7.8.)

R. Alter & C. C. Wang (1977).
Uniquely intersectable graphs. Discrete Math. 18, 217-226. (Cited in

§1.3.)

C. A. Anderson (1995).
Loop and cyclic niche graphs. Linear Algebra Appl. 217, 5-13. (Cited
in §4.2.)

C. A. Anderson, K.F. Jones, J. R. Lundgren, & T. A. McKee (1990).
Competition multigraphs and the multicompetition number. Ars Com-
bin. 29B, 185-192. (Cited in §6.2.)

149



150 BIBLIOGRAPHY

C. A. Anderson, K. F. Jones, J. R. Lundgren, & S. Seager (1991).
A suggestion for new niche numbers for graphs. Congr. Numer. 81,
23-32. (Cited in §4.2.)

C. A. Anderson, L. Langley, J. R. Lundgren, P. A. McKenna, &
S. K. Merz (1994). New classes of p-competition graphs and ¢-
tolerance competition graphs. Congr. Numer. 100, 97-107. (Cited in
§6.1, 6.3.)

T. Andreae, U. Hennig, & A. Parra (1993).
On a problem concerning tolerance graphs. Discrete Appl. Math. 46,
73-78. (Cited in §6.3.)

R. P. Anstee & M. Farber (1984).
Characterization of totally balanced matrices. J. Algorithms 5, 215
230. (Cited in §7.12.)

J. E. Atkins & M. Middendorf (1996).
On physical mapping and the consecutive ones property for sparse
matrices. Discrete Appl. Math. 71, 23-40. (Cited in §3.4.1.)

M. Bakonyi (1992).
On Gaussian elimination and determinant formulas for matrices with
chordal inverses. Bull. Austral. Math. Soc. 46, 435-440. [Corrigen-
dum, 49, p. 175.] (Cited in §2.4.3.)

M. Bakonyi & A. Bono (1997).
Several results on chordal bipartite graphs. Czechoslovak Math. J.
47, 577-583. (Cited in §7.3, 7.8.)

M. Bakonyi & C. R. Johnson (1995).
The Euclidean distance matrix completion problem. SIAM J. Matriz
Anal. Appl. 16, 646-654. (Cited in §2.4.3.)

M. Bakonyi & C. R. Johnson (1996).
Algebraic characterizations of chordality. Linear and Multilinear Al-
gebra 40, 187-191. (Cited in §2.2, 2.4.3.)

R. Balakrishnan & P. Paulraja (1983).
Powers of chordal graphs. J. Austral. Math. Soc. Ser. A 85, 211-217.
(Cited in §7.10.)



BIBLIOGRAPHY 151

H.-J. Bandelt & E. Prisner (1991).
Clique graphs and Helly graphs. J. Combin. Theory Ser. B 51, 34-45.
(Cited in §2.1, 7.5, 7.12.)

J. Bang-Jensen & P. Hell (1994).
On chordal proper circular arc graphs. Discrete Math. 128, 395-398.
(Cited in §7.1.)

W. W. Barrett & C. R. Johnson (1984).
Determinantal formulae for matrices with sparse inverses. Linear Al-
gebra Appl. 56, 73-88. (Cited in §2.4.3.)

W. W. Barrett, C. R. Johnson, & M. Lundquist (1989).
Determinantal formulae for matrix completions associated with chordal
graphs. Linear Algebra Appl. 121, 265-289. (Cited in §2.1, 2.4.3.)

A. Batbedat (1990).
Les approches pyramidales dans la classification arboree. Masson,
Paris. (Cited in §7.5.)

C. Beeri, R. Fagin, D. Maier, & M. Yannakakis (1983).
On the desirability of acyclic database schemes. J. Assoc. Comput.
Mach. 30, 479-513. (Cited in §2.4.2.)

L. W. Beineke (1968).
Derived graphs and digraphs. In Beitrage zur Graphentheorie (H. Sachs,
H.-J. Voss, & H. Walther, eds.), Teubner, Leipzig; pp. 17-33. (Cited
in §1.5.)

L. W. Beineke & C. M. Zamfirescu (1982).
Connection digraphs and second order line graphs. Discretz Math. 39,
237-254. (Cited in §7.2.)

S. Bellantoni, I. B. A. Hartman, T. Przytycka, & S. Whitesides
(1993). Grid intersection graphs and boxicity. Discrete Math. 114,
41-49. (Cited in §7.1.)

C. Benzaken, Y. Crama, P. Duchet, P. L. Hammer, & F. Maffray
(1990). More characterizations of triangulated graphs. J. Graph The-
ory 14, 413-422. (Cited in §2.2.)

S. Benzer (1959).
On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
U.S.A. 45, 1607-1620. (Cited in §3.4.1.)



152 BIBLIOGRAPHY

C. Berge (1989).
Hypergraphs. Combinatorics of Finite Sets. North-Holland, Amster-
dam. (Cited in Preface and §1.6)

D. J. Bergstrand & K. F. Jones (1988).
On upper bound graphs of partially ordered sets. Congr. Numer. 66,
185-193. (Cited in §4.4.)

D. J. Bergstrand & K. F. Jones (1989).
Graphs that are both the upper and lower bound graphs of a poset.
Ars Combin. 28, 109-121. (Cited in §4.4.)

D. J. Bergstrand, K. F. Jones, & W. R. Sherman (to appear).
Posets with isomorphic upper and lower bound graphs. (Cited in §4.4.)

P. A. Bernstein & N. Goodman (1981).
Power of natural semijoins. SIAM J. Comput. 10, 751-771. (Cited in

§2.1.)

J. R. S. Blair & B. Peyton (1993).
An introduction to chordal graphs and clique trees. In Graph Theory
and Sparse Matriz Computation (A. George, J. R. Gilbert, & J. W.
H. Liu, eds.), Springer, New York; pp. 1-29. (Cited in beginning of
§2, 2.2.)

J. R. S. Blair & B. Peyton (1994).
On finding minimum-diameter clique trees. Nordic J. Comput. 1,
173-201. (Cited in §2.1.)

H. Bodlaender, M. Fellows, & T. Warnow (1992).
Two strikes against perfect phylogeny. In Proceedings of the 19th In-
ternational Colloquium on Automatae, Languages, and Programming
(W. Kuich, ed.), [Lecture Notes in Computer Science 623], Springer,
New York; pp. 273-283. (Cited in §2.4.1.)

H. L. Bodlaender & B. de Fluiter (1996).
On intervalizing k-colored graphs for DNA physical mapping. Discrete
Appl. Math. T1, 55-77. (Cited in §3.4.1.)

H. Bodlaender & T. Kloks (1993).
A simple linear time algorithm for triangulating three-colored graphs.
J. Algorithms 15, 160-172. (Cited in §2.4.1.)



BIBLIOGRAPHY 153

K. P. Bogart, P. C. Fishburn, G. Isaak, & L. J. Langley (1995).
Proper and unit tolerance graphs. Discrete Appl. Math. 60, 99-117.
(Cited in §6.3.)

K. S. Booth & G. S. Leuker (1976).
Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-trees. J. Comput. Systems. Sci. 13, 335-379.
(Cited in §3.1.)

C. F. Bornstein & J. L. Szwarcfiter (1995).
On clique convergent graphs. Graphs Combin. 11, 213-220. (Cited in
§7.5.)

J. Bosak (1964).
The graphs of semigroups. In Theory of Graphs and Its Applications
(M. Fiedler, ed.) Academic Press, New York; pp. 119-125. (Cited in
§7.8.)

J. Bosak (1975).
Graphs of algebras and algebraic graphs. In Recent Advances in Graph
Theory (M. Fiedler, ed.) Academia, Prague; pp. 93-98. (Cited in
§7.8.)

A. Bouchet (1994).
Circle graph obstructions. Discrete Math. 60, 107-144. (Cited in
§7.4.)

A. Brandstadt (1991).
Classes of bipartite graphs related to chordal graphs. Discrete Appl.
Math. 32, 51-60. (Cited in §7.2, 7.12.)

A. Brandstadt (1993).
Special graph classes—A survey. Schriften reihe des Fachbereichs Math-
ematikik SM-DU-1993, Universitat Duisburg, 1993. (Cited in Pref-
ace, beginning of §7, §7.3.)

A. Brandstadt, V. D. Chepoi, & F. F. Dragan (1995).
The algorithmic use of hypertree structure and maximum neighbour-
hood orderings. In Graph-Theoretic Concepts in Graph Theory (E. W.
Mayr, G. Schmidt, & G. Tinhofer, eds.) [Lecture Notes in Computer
Science 903] Springer, Berlin; pp. 65-80. (Cited in §7.5.)



154 BIBLIOGRAPHY

A. Brandstddt, V. D. Chepoi, & F. F. Dragan (1996).
Perfect elimination orderings of chordal powers of graphs. Discrete
Math. 158, 273-278. (Cited in §7.10.)

A. Brandstadt, F. F. Dragan, V. D. Chepoi, & V. 1. Voloshin
(1994). Dually chordal graphs. In Graph-Theoretic Concepts in
Graph Theory (J. van Leeuwen, ed.) [Lecture Notes in Computer Sci-
ence T90] Springer, Berlin; pp. 237-251. (Cited in §7.5, 7.10, 7.12.)

A. Brandstadt, V. B. Le & J. Spinrad (to appear).
Graph classes — A Survey. Society for Industrial and Applied Math-
ematics, Philadelphia. (Cited in Preface, beginning of §7)

E. O. Brauner, R. A. Brualdi, & E. S. N. Sneyd (1995).
Pseudo-interval graphs. J. Graph Theory 20, 309-318. (Cited in §7.2.)

R. C. Brigham, R. D. Dutton, & F. R. McMorris (1992).
On the relationship between p-edge and p-vertex clique covers. Vishwa
Internat. J. Graph Theory 1, 133-140. (Cited in §6.1.)

R. C. Brigham, R. D. Dutton, & F. R. McMorris (1993).
On p-edge clique covers of graphs. Congr. Numer. 93, 149-157.
(Cited in §6.1.)

R. C. Brigham, F. R. McMorris, & R. P. Vitray (1995).
Tolerance competition graphs. Linear Algebra Appl. 217, 41-52.
(Cited in §6.3.)

R. C. Brigham, F. R. McMorris, & R. P. Vitray (1996).
Two-¢-tolerance competition graphs. Discrete Appl. Math. 66, 101-
108. (Cited in §6.3.)

R. C. Brigham, F. R. McMorris, & R. P. Vitray (to appear).
Bipartite graphs and absolute difference tolerances. Ars Combin.,
(Cited in §6.3.)

A. E. Brouwer, P. Duchet, & A. Schrijver (1983).
Graphs whose neighborhoods have no special cycles. Discrete Math.
47, 177-182. (Cited in §7.3, 7.12.)

P. Buneman (1974).
A characterisation of rigid circuit graphs. Discrete Math. 9, 205-212.
(Cited in §2.1, 2.4.1.)



BIBLIOGRAPHY 155

S. Bylka & J. Komar (1997).
Intersection properties of line graphs. Discrete Math. 164, 33-45.
(Cited in §6.2.)

L. Cai, D. Corneil, & A. Proskurowski (1996).
A generalization of line graphs: (X, Y)-intersection graphs. J. Graph
Theory 21, 267-287. (Cited in §1.5.)

S. Chaiken, N. V. Murray, & E. Rosenthal (1989).
An application of Py-free graphs in theorem proving. In Combinatorial
Mathematics: Proceedings of the Third International Conference (G.
S. Bloom, R. Graham, & J. Malkevitch, eds.) [Ann. New York Acad.
Sci. 555] N. Y. Acad. Sci., New York; pp. 106-121. (Cited in §7.9.)

R. Chandrasekaran & A. Tamir (1982).
Polynomially bounded algorithms for locating p-centers on a tree.
Math. Programming 22, 304-315. (Cited in §2.4.)

G. J. Chang & G. L. Nemhauser (1984).
The k-domination and k-stability problems on sun-free chordal graphs.
SIAM J. Alg. Discrete Methods 3, 332-345. (Cited in §7.12.)

Y. W. Chang, M. S. Jacobson, C. L. Monma, & D. B. West (1993).
Subtree and substar intersection numbers. Discrete Appl. Math. 44,
205-220. (Cited in §7.1.)

G. Chartrand & L. Lesniak (1996).
Graphs € Digraphs, Third Edition. Chapman & Hall, London. (Cited
in Preface, §1.1.)

F. Cheah & D. G. Corneil (1996).
On the structure of trapezoid graphs. Discrete Appl. Math. 66, 109-
133. (Cited in §7.1.)

G. Chen, R. J. Gould, M. S. Jacobson, R. H. Schelp, & D. B.
West (1992). A characterization of influence graphs of a prescribed
girth. Vishwa Internat. J. Graph Theory 1, 77-81. (Cited in §7.11.)

B.-L. Chen & K.-W. Lih (1990).
Diameters of iterated clique graphs of chordal graphs. J. Graph Theory
14, 391-396. (Cited in §2.1.)



156 BIBLIOGRAPHY

G. A. Cheston, E. O. Hare, S. T. Hedetniemi, & R. C. Laskar
(1988). Simplicial graphs. Congr. Numer. 67, 105-113. (Cited in
§4.4.)

R. Christensen (1990).
Log-Linear Models. Springer, New York. (Cited in §2.4.4.)

F. R. K. Chung & D. Mumford (1994).
Chordal completions of planar graphs. J. Combin. Theory Ser. B 62,
96-106. (Cited in §2.4.2.)

M. S. Chung & D. B. West (1994).
The p-intersection number of a complete bipartite graph and orthog-
onal double coverings of a clique. Combinatorica 14, 453-461. (Cited

in §6.1.)

V. Chvatal & P. L. Hammer (1973).
Set-Packing and Threshold Graphs. Res. Report CORR 73-21, Uni-
versity of Waterloo. (Cited in beginning of §5, §5.1, 5.4, 7.9.)

V. Chvital & P. L. Hammer (1977).
Aggregations of inequalities. In Studies in Integer Programming (P.
L. Hammer, E. L. Johnson, B. H. Korte, & G. L. Nemhauser, eds.),
[Ann. Discrete Math. 1], North-Holland, Amsterdam, pp. 145-162.
(Cited in §5.4.)

B. N. Clark, C. J. Colbourn, & D. S. Johnson (1990).
Unit disk graphs. Discrete Math. 86, 165-177. (Cited in §7.1.)

O. Cogis (1984).
Ferrers digraphs and threshold graphs. Discrete Math. 38, 33-46.
(Cited in §5.3.)

J. E. Cohen (1978).
Food Webs and Niche Space. Princeton University Press, Princeton,

NJ. (Cited in §4.2, 4.3, 6.2.)

J. E. Cohen, F. Briand, & C. M. Newman (1990).
Community Food Webs: Data and Theory. Springer, Heidelberg.
(Cited in §4.3.)

J. E. Cohen & Z. J. Palka (1990).
A stochastic theory of community food webs. V. Intervality and



BIBLIOGRAPHY 157

triangulation in the trophic-niche overlap graph. Amer. Naturalist
135, 435-463. (Cited in §4.3.)

C. H. Coombs & J. E. K. Smith (1973).
On the detection of structures in attitudes and developmental pro-
cesses. Psych. Rev. 80, 337-351. (Cited in §3.4.2.)

D. G. Corneil & P. A. Kamula (1987).
Extensions of permutation and interval graphs. Congr. Numer. 58,
267-275. (Cited in §7.1, 7.6.)

D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, & A. Sprague
(1995). Simple linear time recognition of unit interval graphs. In-
form. Process. Lett. 55, 99-104. (Cited in §3.3.)

D. G. Corneil, H. Lerchs, & L. Stewart Burlingham (1981).
Complement reducible graphs. Discrete Appl. Math. 3, 163-174.
(Cited in §7.9.)

D. G. Corneil, S. Olariu, & L. Stewart (1997).
Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399-430.
(Cited in §7.6.)

D. G. Corneil, S. Olariu, & L. Stewart (1998).
The ultimate interval graph recognition algorithm? Extended abstract
in Proceedings of the Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA) (1998), pp. 175-180. (Cited in §3.1.)

D. G. Corneil, Y. Perl, & L. K. Stewart (1985).
A linear recognition algorithm for cographs. SIAM J. Comput. 14,
926-934. (Cited in §7.9.)

M. B. Cozzens & R. Leibowitz (1984).
Threshold dimensions of graphs. SIAM J. Alg. Discrete Methods 5,
579-595. (Cited in §5.4.)

M. B. Cozzens & R. Leibowitz (1987).
Multidimensional scaling and threshold graphs, J. Math. Psych. 31,
179-191. (Cited in §5.4.)

M. B. Cozzens & N. V. R. Mahadev (1989).
Consecutive one’s properties for matrices and graphs including variable
diagonal entries. In Applications of Combinatorics and Graph Theory



158 BIBLIOGRAPHY

to the Biological and Social Sciences (F. S. Roberts, ed.), Springer,
New York; pp. 75-94. (Cited in §7.1.)

M. B. Cozzens & F. S. Roberts (1989).
On dimensional properties of graphs. Graphs Combin. 5, 29-46.
(Cited in §7.1.)

W. L. Craine (1994).
Characterizations of fuzzy intersection graphs. Fuzzy Sets and Systems

68, 181-193. (Cited in §7.8.)

Y. Crama, P. Hansen, & B. Jaumard (1995).
Complexity of product positioning and ball intersection problems. Math.
Oper. Res. 20, 889-891. (Cited in §7.11.)

B. Csdkany & G. Polldk (1969).
The graph of subgroups of a finite group. [Russian; see Math. Rev.
40 #2573] Czechoslovak Math. J. 19(94), 242-247. (Cited in §7.8.)

E. Dahlhaus (1989).
Chordale Graphen im Desonderen Hinblick auf parallelle Algorithmen.

Habilitationsschrift, Universitdt Bonn. (Cited in §7.12.)

E. Dahlhaus & P. Duchet (1987).
On strongly chordal graphs. Ars Combin. 24B, 23-30. (Cited in

§7.10.)

E. Dahlhaus, P. D. Manuel, & M. Miller (1998).
A characterization of strongly chordal graphs. Discrete Math. 187,
269-271. (Cited in §7.12.)

J. N. Darroch, S. L. Lauritzen, & T. P. Speed (1980).
Markov fields and log-linear interaction models for contingency tables.
Ann. Statist. 8, 522-539. (Cited in §2.4.4.)

I. Degan, M. C. Golumbic, & R. Y. Pinter (1988).
Trapezoid graphs and their coloring. Discrete Appl. Math. 21, 35-46.
(Cited in §7.1.)

X. Deng, P. Hell, & J. Huang (1996).
Linear time representation algorithms for proper circular arc graphs
and proper interval graphs. SIAM J. Comput. 25, 390-403. (Cited in
§3.3, 7.1.)



BIBLIOGRAPHY 159

J. S. Deogun & K. Gopalakrishnan (to appear).
Consecutive retrieval property—Revisited. (Cited in §3.3, 3.4.3)

D. W. DeTemple, M. J. Dineen, J. M. Robertson, & K. McA-
vaney (1993). Recent examples in the theory of partition graphs.
Discrete Math. 113, 255-258. (Cited in §7.8.)

D. W. DeTemple, J. Robertson, & F. Harary (1984).
Existential partition graphs. J. Combin. Inform. System Sci. 9, 193-
196. (Cited in §7.8.)

R. Diestel (1988).
Tree-decompositions, tree-representability and chordal graphs. Dis-
crete Math. 71, 181-184. (Cited in §7.7.)

R. Diestel (1990).
Graph Decompositions. A Study in Infinite Graph Theory. Clarendon
Press, Oxford. (Cited in §7.7.)

G. A. Dirac (1961).
On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71-76.
(Cited in §2.2.)

F. Dragan (1993).
HT-graphs: Centers, connected r-domination and Steinertrees. Com-
put. Sci. J. Moldova 1, 64-83. (Cited in §7.5.)

P. Duchet (1978).
Propriété de Helly et probiémes de représentation. Colloques Internat.
CNRS 260, 117-118. (Cited in §2.3, 3.2, 7.1.)

P. Duchet (1984).
Classical perfect graphs. An introduction with emphasis on triangu-
lated and interval graphs. In Topics in Perfect Graphs (C. Berge &
V. Chvétal, eds.), [North-Holland Math. Stud. 88|, North-Holland,
Amsterdam. Ann. Discrete Math. 21, 67-96. (Cited in §3.2, 6.2, 7.1,
7.10.)

P. Duchet (1995).
Hypergraphs. In Handbook of Combinatorics (R. L. Graham, M.
Grotschel, & L. Lovész,, eds.), Elsevier, Amsterdam; Vol. 1, pp. 381-
432. (Cited in §1.6, 3.2.)



160 BIBLIOGRAPHY

P.

. Dushnik & E. W. Miller (1941).

Partially ordered sets. Amer. J. Math. 63, 600-610. (Cited in §7.6.)

. D. Dutton & R. C. Brigham (1983).

A characterization of competition graphs. Discrete Appl. Math. 6,
315-317. (Cited in §4.2.)

. Eaton (1997).

Intersection representations of complete unbalanced bipartite graphs.
J. Combin. Theory Ser. B 71, 123-129. (Cited in §6.1.)

. Eaton, R. J. Gould, & V. Radl (1996).

The representation of a graph by set intersections. J. Graph Theory
21, 377-392. (Cited in §6.1.)

. Eaton & D. A. Grable (1996).

Set intersection representations for almost all graphs. J. Graph Theory
23, 309-320. (Cited in §6.1.)

. Ehrlich, S. Even, & R. E. Tarjan (1976).

Intersection graphs of curves in the plane. J. Combin. Theory Ser. B
21, 8-20. (Cited in §7.1.)

. S. Elmallah & L. K. Stewart (1993).

Independence and domination in polygon graphs. Discrete Math. 44,
65-77. (Cited in §7.4.)

. Era & M. Tsuchiya (1991).

On intersection numbers of graphs. In Graph Theory, Combinatorics,
Algorithms and Applications (Y. Alavi, F. R. K. Chung, R. L. Graham,
& D. F. Hsu, eds.) Society for Industrial and Applied Mathematics,
Philadelphia; pp. 545-556. (Cited in §1.3.)

. Era & M. Tsuchiya (1997).

Remarks on relations between upper bound graphs and double bound
graphs. Proc. School Sci. Tokai Univ. 32, 1-6. (Cited in §4.4.)

. Era & M. Tsuchiya (1998).

On upper bound graphs whose complements are also upper bound
graphs. Discrete Math. 179, 103-109. (Cited in §4.4.)

Erdés, C. D. Godsil, S. G. Krantz, & T. Parsons (1988).
Intersection graphs for families of balls in R™. Furop. J. Math. 9,
501-505. (Cited in §7.1.)



BIBLIOGRAPHY 161

P. Erd6s, A. W. Goodman, & L. Pésa (1966).
The representation of a graph by set intersections. Canad. J. Math.
18, 106-112. (Cited in §1.3.)

F. Escalante (1973).

Uber iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg 39,
59-68. (Cited in §7.5.)

F. Escalante, L. Montejano, & T. Rojano (1974).
Characterization of n-path graphs and of graphs having nth root.
J. Combin. Theory Ser. B 16, 282-289. (Cited in §4.1.2.)

E. M. Eschen, R. B. Hayward, J. P. Spinrad, & R. Sritharan (to

appear). Weakly triangulated comparability graphs. (Cited in §7.3,
7.6.)

E. M. Eschen & J. P. Spinrad (1993).
An O(n?) algorithm for circular-arc graph recognition. In Proceedings
of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms.
Association for Computing Machinery, New York; pp. 128-137. (Cited
in §7.1, 7.3.)

K. P. Eswaran (1975).

Faithful representation of a family of sets by a set of intervals. STAM
J. Comput. 4, 56-68. (Cited in §3.4.3.)

S. Even & A. Itai (1971).

Queues, stacks and graphs. In Theory of Machines and Computations
(Z. Kohavi & A. Paz, eds.) Academic Press, New York; pp. 71-86.
(Cited in §7.4.)

M. Farber (1983).

Characterizations of strongly chordal graphs. Discrete Math. 43, 173—
189. (Cited in §7.12.)

M. R. Fellows, M. T. Hallett, & H. T. Wareham (1993).
DNA physical mapping: Three ways difficult. In Algorithms—ESA 93

(T. Lengauer, ed.), [ Lecture Notes in Computer Science 726], Springer,
Berlin; pp. 157-168. (Cited in §3.4.1.)

S. Felsner (1993).
Tolerance graphs and orders. In Graph-Theoretic Concepts in Com-
puter Science (E. W. Mayr, ed.), [Lecture Notes in Computer Science
657), Springer, Berlin; pp. 17-26. (Cited in §6.3, 7.1, 7.6.)



162 BIBLIOGRAPHY

S. Felsner, R. Miiller, & L. Wernisch (1997).
Trapezoid graphs and generalizations, geometry and algorithms. Dis-
crete Appl. Math. 74, 13-32. (Cited in §7.1.)

C. M. Fiduccia, E. R. Scheinerman, A. Trenk, & J. S. Zito (1998).
Dot product representations of graphs. Discrete Math. 181, 113-138.
(Cited in §7.8.)

C. M. H. de Figueiredo, J. Meidanis, & C. P. de Mello (1995).
A linear-time algorithm for proper interval graph recognition. Inform.
Process. Lett. 56, 179-184. (Cited in §3.3.)

P. C. Fishburn (1970a).
An interval graph is not a comparability graph. J. Combin. Theory 8,
442-443. (Cited in §3.4.2.)

P. C. Fishburn (1970b).
Intransitive indifference with unequal indifference intervals. J. Math.
Psych. 7, 144-149. (Cited in §3.4.2.)

P. C. Fishburn (1985).
Interval Orders and Interval Graphs. Wiley, New York. (Cited in
Preface and §3.4.2.)

W. Fitch (1977).
On the problem of discovering the most parsimonious trees. Amer.
Nat. 111, 223-257. (Cited in §2.4.1.)

C. Flament (1978).
Hypergraphes arborés. Discrete Math. 21, 223-226. (Cited in §2.3.)

C. Flotow (1995).
On powers of m-trapezoid graphs. Discrete Appl. Math. 63, 187-192.
(Cited in §7.1.)

C. Flotow (1996).
On powers of circular arc graphs and proper circular arc graphs. Dis-
crete Appl. Math. 69, 199-207. (Cited in §7.1, 7.10.)

C. Flotow (1997).
Graphs whose powers are chordal and graphs whose powers are inter-
val. J. Graph Theory 24, 323-330. (Cited in §7.10.)



BIBLIOGRAPHY 163

S. Foldes & P. L. Hammer (1977a).
Split graphs having Dilworth number two. Canad. J. Math 29, 666—
672. (Cited in §2.5.)

S. Foldes & P. L. Hammer (1977b).
Split graphs. Congr. Numer. 19, 311-315. (Cited in §2.5.)

J. C. Fournier (1978).
Une caractérisation des graphes de cordes. C. R. Acad. Sci. Paris
286 A, 811-813. (Cited in §7.4.)

K. F. Fraughnaugh, J. R. Lundgren, S. K. Merz, J. S. Maybee,
& N. J. Pullman (1995). Competition graphs of strongly con-
nected and hamiltonian digraphs. SIAM J. Discrete Math. 8, 179-
185. (Cited in §4.2.)

H. de Fraysseix (1984).
A characterization of circle graphs. Furop. J. Combin. 5, 223-238.
(Cited in §7.4.)

H. B. Frost, M. S. Jacobson, J. A. Kabell, & F. R. McMorris
(1990). Bipartite analogues of split graphs and related topics. Ars
Combin. 29, 283-288. (Cited in §7.2.)

D. R. Fulkerson & O. A. Gross (1965).
Incidence matrices and interval graphs. Pacific J. Math. 15, 835-855.
(Cited in §2.2, 3.1, 6.2.)

Z. Fiiredi (1997).
The p-intersection number of the complete bipartite graph. In The
Mathematics of Paul Erdés, Algorithms Combin. 14, 86-92. (Cited in
§6.1.)

P. Galinier, M. Habib, & C. Paul (1995).
Chordal graphs and their clique graphs. In Graph-Theoretic Concepts
in Computer Science (M. Nagl, ed.), [Lecture Notes in Computer Sci-
ence 1017], Springer, Berlin, pp. 358-371. (Cited in §2.2.)

B. Ganter, H.-D. O. F. Gronau, & R. C. Mullin (1994).
On orthogonal double covers of K,,. Ars Combin. 37, 209-221. (Cited
in §6.1.)



164 BIBLIOGRAPHY

E. Gasse (1997).
A proof of a circle graph characterization. Discrete Math. 173, 277-
283. (Cited in §7.4.)

F. Gavril (1974a).
The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory Ser. B 16, 47-56. (Cited in §2.1.)

F. Gavril (1974b).
Algorithms on circular-arc graphs. Networks 4, 357-369. (Cited in
§7.1.)

F. Gavril (1978).
A recognition algorithm for the intersection graphs of paths in trees.
Discrete Math. 23, 211-227. (Cited in §7.1.)

F. Gavril (1987).
Generating the maximum spanning trees of a weighted graph. J. Al-
gorithms 8, 592-597. (Cited in §2.1.)

F. Gavril (1994).
Intersection graphs of proper subtrees of unicyclic graphs. J. Graph
Theory 18, 615-627. (Cited in §7.1.)

F. Gavril (1996).
Intersection graphs of Helly families of subtrees. Discrete Appl. Math.
66, 45-56. (Cited in §7.1.)

F. Gavril & J. Urrutia (1994).
Intersection graphs of concatenable subtrees of graphs. Discrete Appl.
Math. 52, 195-209. (Cited in §7.1.)

A. George, J. R. Gilbert, & J. W. H. Liu, Eds. (1993).
Graph Theory and Sparse Matrix Computation. Springer, New York.
(Cited in §2.4.3.)

S. P. Ghosh (1972).
File organization: The consecutive retrieval property. Comm. Assoc.
Comput. Mach. 15, 802-808. (Cited in §3.4.3.)

S. P. Ghosh (1977).
Data Base Organization for Data Management. Academic Press, New
York. (Cited in §3.4.3.)



BIBLIOGRAPHY 165

S. P. Ghosh (1986).
Data Base Organization for Data Management, Second Edition. Aca-
demic Press, Orlando, FL. (Cited in §3.4.3.)

S. P. Ghosh, Y. Kambayashi, & W. Lipski (1983).
Data Base File Organization. Theory and Applications of the Con-
secutive Retrieval Property. Academic Press, New York. (Cited in
§3.4.3.)

P. C. Gilmore & A. J. Hoffman (1964).
A characterization of comparability graphs and of interval graphs.
Canad. J. Math. 16, 539-548. (Cited in §3.1.)

P. W. Goldberg, M. C. Golumbic, H. Kaplan, & R. Shamir (1995).
Four strikes against physical mapping of DNA. J. Comput. Bio. 2,
139-152. (Cited in §3.4.1.)

M. C. Golumbic (1978a).
Trivially perfect graphs. Discrete Math. 24, 105-107. (Cited in §7.9.)

M. C. Golumbic (1978b).
A generalization of Dirac’s Theorem on triangulated graphs [Second
International Conference on Combinatorial Mathematics, New York,
1978.] Ann. New York Acad. Sci. 319 (1979) 242-246. (Cited in §7.3.)

M. C. Golumbic (1978c).
Threshold graphs and synchronizing parallel processes. In Combina-
torics (A. Hajnal & V. T. Sés, eds.), Vol. 1, North-Holland, Amster-
dam. Collog. Math. Soc. Jinos Bolyai 18, 419-428. (Cited in §5.4.)

M. C. Golumbic (1980).
Algorithmic Graph Theory and Perfect Graphs. Academic Press, San
Diego. (Cited throughout.)

M. C. Golumbic (1984).
Algorithmic aspects of perfect graphs. In Topics in Perfect Graphs (C.
Berge & V. Chvatal, eds.), [North-Holland Math. Stud. 88), North-
Holland, Amsterdam. Ann. Discrete Math. 21, 301-323. Cited in
Preface, §2.2, 2.4.3, 3.4.3.)

M. C. Golumbic (1988).
Algorithmic aspects of intersection graphs and representation hyper-
graphs. Graphs Combin. 4, 307-321. (Cited in §2.4.2.)



166 BIBLIOGRAPHY

M. C. Golumbic & C. F. Goss (1978).
Perfect elimination and chordal bipartite graphs, J. Graph Theory 2,
155-163. (Cited in §7.2, 7.3.)

M. C. Golumbic & R. E. Jamison (1985a).
The edge intersection graphs of paths in a tree. J. Combin. Theory
Ser. B 38, 8-22. (Cited in §6.3, 7.1.)

M. C. Golumbic & R. E. Jamison (1985b).
Edge and vertex intersection of paths in a tree. Discrete Math. 55,
151-159. (Cited in §6.3, 7.1.)

M. C. Golumbic & C. L. Monma (1982).
A generalization of interval graphs with tolerances. Congr. Numer.
35, 321-331. (Cited in §6.3.)

M. C. Golumbic, C. L. Monma, & W. T. Trotter (1984).
Tolerance graphs. Discrete Appl. Math. 9, 157-170. (Cited in §6.3.)

M. C. Golumbic, D. Rotem, & J. Urrutia (1983).
Comparability graphs and intersection graphs. Discrete Math. 43,
37-46. (Cited in §7.1, 7.6.)

M. C. Golumbic & E. R. Scheinerman (1989).
Containment graphs, posets, and related classes of graphs. In Com-
binatorial Mathematics (G. S. Bloom et al., eds.), Ann. N. Y. Acad.
Sci. 555, 192-204. (Cited in §7.6.)

R. L. Graham & P. Hell (1985).
On the history of the minimum spanning tree problem. Ann. Hist.
Comput. 7, 43-57. (Cited in §2.2.)

M. J. Greenberg (1980).
Euclidean and Non-FEuclidean Geometries. Freeman, San Francisco.
(Cited in §7.4.)

J. R. Griggs (1979).
Extremal values of the interval number of a graph, II. Discrete Math.
28, 37-47. (Cited in §7.1.)

J. R. Griggs & D. B. West (1979).
Extremal values of the interval number of a graph, I. SIAM J. Alg.
Discrete Methods 1, 1-7. (Cited in §7.1.)



BIBLIOGRAPHY 167

R. Grone, C. R. Johnson, E. M. S4a, & H. Wolkowicz (1984).
Positive definite completions of partial Hermitian matrices. Linear
Algebra Appl. 58, 109-124. (Cited in §2.4.3, 7.8.)

L. Guibas, J. Pach, & M. Sharir (1994).
Sphere-of-influence graphs in higher dimensions. In Intuitive Geometry
(K. Boroczky & G. F. Téth, eds.), Collog. Math. Sci. Janos Bolyai 63,
North-Holland, Amsterdam; pp. 131-137. (Cited in §7.11.)

D. R. Guichard (1998).
Competition graphs of hamiltonian digraphs. SIAM J. Discrete Meth-
ods 11, 128-134. (Cited in §7.1.)

D. Gusfield (1991).
Efficient algorithms for inferring evolutionary trees. Networks 21, 19—
28. (Cited in §2.4.1.)

M. Gutierrez & L. Oubina (1995).
Minimum proper interval graphs. Discrete Math. 142, 77-85. (Cited
in §3.3.)

M. Gutierrez & L. Oubina (1996).
Metric characterizations of proper interval graphs and tree-clique graphs.
J. Graph Theory 21, 199-205. (Cited in §3.3, 7.5.)

A. Gyarfas & J. Lehel (1988).
On-line and first fit colorings of graphs. J. Graph Theory 12, 217-227.
(Cited in §3.4.)

A. Gyarfis & D. B. West (1995).
Multitrack interval graphs. Congr. Numer. 109, 109-116. (Cited in
§7.1.)

A. Hajnal & J. Surdnyi (1958).
Uber die Auflésung von Graphen in vollstandige Teilgraphen. Ann.
Univ. Sci. Budapest. Eétvés. Sect. Math. 1, 113-121. (Cited in begin-
ning of §2, §7.7.)

G. Hajés (1957).
Uber eine Art von Graphen. Internat. Math. Nachr. 11, Problem 65.
(Cited in beginning of §3.)



168 BIBLIOGRAPHY

R. Halin (1982).
Some remarks on interval graphs. Combinatorica 2, 297-304. (Cited
in §7.7.)

R. Halin (1984).
On the representation of triangulated graphs in trees. Furop. J. Com-
bin. 5, 23-28. (Cited in §7.7.)

R. Hamelink (1968).
A partial characterization of clique graphs. J. Combin. Theory 5,
192-107. (Cited in §7.5.)

P. L. Hammer, F. Maffray, & M. Preissmann (1989).
A characterization of chordal bipartite graphs. Rutcor Research Re-
port 16-89, Rutgers University, New Brunswick, NJ. (Cited in §7.3,
7.12.)

P. L. Hammer, U. N. Peled, & X. Sun (1990).
Difference graphs. Discrete Appl. Math. 28, 35-44. (Cited in §5.3.)

F. Harary (1963).
A characterization of block-graphs. Canad. Math. Bull. 6, 1-6. (Cited
in §7.10.)

F. Harary, M. S. Jacobson, M. J. Lipman, & F. R. McMorris
(1993). Abstract sphere-of-influence graphs. Math. Comput. Mod-
elling 17, 77-83. (Cited in §7.11.)

F. Harary, M. S. Jacobson, M. J. Lipman, & F. R. McMorris
(1994). Sphere of influence graphs defined on a prescribed graph.
J. Combin. Inform. System Sci. 19, 5-10. (Cited in §7.11.)

F. Harary, M. S. Jacobson, M. J. Lipman, & F. R. McMorris
(1995). Trees that are sphere of influence graphs. Appl. Math. Lett.
8, 89-93. (Cited in §7.11.)

F. Harary & J. A. Kabell (1984).
Infinite-interval graphs. In Calcutta Mathematical Society. Diamond-
cum-Platinum Jubilee Commemoration Volume (1908-1983), Part I,
Calcutta Math. Soc., Calcutta; pp. 27-31. (Cited in §3.1.)

F. Harary, J. A. Kabell, & F. R. McMorris (1982).
Bipartite intersection graphs. Comment. Math. Univ. Carolin. 23,
739-745. (Cited in §7.2.)



BIBLIOGRAPHY 169

F. Harary, J. A. Kabell, & F. R. McMorris (1990).
Interval acyclic digraphs. Ars Combin. 29A, 59-64. (Cited in §7.2.)

F. Harary, J. A. Kabell, & F. R. McMorris (1992).
Subtree acyclic digraphs. Ars Combin. 34, 93-95. (Cited in §7.2.)

F. Harary & T. A. McKee (1994).
The square of a chordal graph. Discrete Math. 128, 165-172. (Cited
in §6.2.)

F. Harary & I. C. Ross (1960).
The square of a tree. Bell System Tech. J. 39, 641-647. (Cited in
§4.1.1.)

D. R. Hare & W. McCuaig (1993).
The connectivity of the block-intersection graphs of designs. Des.
Codes Cryptogr. 3, 5-8. (Cited in §7.8.)

I. Hartman, I. Newman, & R. Ziv (1991).
On grid intersection graphs. Discrete Math. 87, 41-52. (Cited in
§7.1.)

R. B. Hayward (1985).
Weakly triangulated graphs. J. Combin. Theory Ser. B 39, 200-209.
(Cited in §7.3.)

R. B. Hayward (1996).
Generating weakly triangulated graphs. J. Graph Theory 21, 67-69.
(Cited in §7.3.)

R. B. Hayward, C. T. Hoang, & F. Maffray (1989).
Optimizing weakly triangulated graphs. Graphs Combin. 5, 339-349.
[Erratum, ibid., 6 (1990), 33-35.] (Cited in §7.3.)

B. Hedman (1984).
Clique graphs of time graphs. J. Combin. Theory Ser. B 37, 270-278.
(Cited in §3.3.)

K. A. S. Hefner, J. F. Jones, S.-R. Kim, J. R. Lundgren, & F. S.
Roberts (1991). (i,j) competition graphs. Discrete Appl. Math.
32, 241-262. (Cited in §4.2.)



170 BIBLIOGRAPHY

P. Hell & J. Huang (1995).
Lexicographic orientations and representation algorithms for compa-
rability graphs, proper circular arc graphs, and proper interval graphs.
J. Graph Theory 20, 361-374. (Cited in §3.3, 7.1, 7.6.)

P. Hell & J. Huang (1997).
Two remarks on circular arc graphs. Graphs Combin. 13, 65-T72.
(Cited in §7.1.)

R. L. Hemminger & L. W. Beineke (1978).
Line graphs and line digraphs. In Selected Topics in Graph Theory
(L. W. Beineke & R. J. Wilson, eds.), Academic Press, London; pp.
271-305. (Cited in §1.5.)

P. B. Henderson & Y. Zalcstein (1977).
A graph-theoretic characterization of the PV yunk class of synchroniz-
ing primitives. SIAM J. Comput. 6, 88-108. (Cited in §5.1, 5.4.)

P. Hlinény & A. Kubéna (1995).
A note on intersection dimensions of graph classes. Comment. Math.
Univ. Carolin. 36, 255-261. (Cited in §7.1.)

C.-W. Ho & R. C. T. Lee (1989).
Counting clique trees and computing perfect elimination schemes in
parallel. Inform. Process. Lett. 31, 61-68. (Cited in §2.1.)

A. J. Hoffman, A. W. J. Kolen, & M. Sakarovitch (1985).
Totally balanced and greedy matrices. SIAM J. Alg. Discrete Methods
6, 721-730. (Cited in §7.3, 7.12.)

T. S. Holm & K. P. Bogart (to appear).
Trees are tolerance sphere-of-influence graphs. (Cited in §6.3, 7.11.)

W.-L. Hsu (1993).
A simple test for interval graphs. In Graph-Theoretic Concepts for
Computer Science (E. W. Mayr, ed.), [Lecture Notes in Computer
Science 657], Springer, Berlin; pp. 11-16. (Cited in §3.1.)

W.-L. Hsu (1995).
O(mn) algorithms for the recognition and isomorphism problems on
circular-arc graphs. STAM J. Comput. 24, 411-439. (Cited in §7.1.)



BIBLIOGRAPHY 171

W.-L. Hsu & T. H. Ma (1991).
Substitution decomposition on chordal graphs and applications. In
ISA 91 Algorithms (W.-L. Hsu & R. C. T. Lee, eds.), [Lecture Notes
in Computer Science 557), Springer, Berlin; pp. 52-60. (Cited in §2.1,
3.1.)

L. Hubert (1974).
Some applications of graph theory and related non-metric techniques
to problems of approximate seriation: The case of symmetric proximity
measures. British J. Math. Statist. Psychology 27, 133-153. (Cited in
§3.4.2.)

R. M. Indury & A. A. Schaeffer (1993).
Triangulating three-colored graphs. SIAM J. Discrete Math. 6, 289—
293. (Cited in §2.4.1.)

G. Isaak, S.-K. Kim, T. A. McKee, F. R. McMorris, & F. S.
Roberts (1992). 2-competition graphs. SIAM J. Discrete Math.
5, 524-538. (Cited in §6.1.)

Z. Jackowski (1992).
A new characterization of proper interval graphs. Discrete Math. 105,
103-109. (Cited in §3.3.)

M. S. Jacobson (1992).
On the p-edge clique cover number of complete bipartite graphs. SIAM
J. Discrete Math. 5, 539-544. (Cited in §6.1.)

M. S. Jacobson, A. E. Kézdy, & D. B. West (1995).
The 2-intersection number of paths and bounded-degree trees. J. Graph
Theory 19, 461-469. (Cited in §6.1.)

M. S. Jacobson, J. Lehel, & L. M. Lesniak (1993).
¢-threshold and ¢-tolerance chain graphs. Discrete Appl. Math. 44,
191-203. (Cited in §6.3.)

M. 8. Jacobson, M. J. Lipman, & F. R. McMorris (1995).
Trees that are sphere-of-influence graphs. Appl. Math. Letters, 8,
89-93. (Cited in §7.11.)

M. S. Jacobson & F. R. McMorris (1991).
Sum-tolerance proper interval graphs are precisely sum-tolerance unit
interval graphs. J. Combin. Inform. System Sci., 16, 25-28. (Cited
in §6.3.)



172 BIBLIOGRAPHY

M. S. Jacobson, F. R. McMorris, & H. M. Mulder (1991).
An introduction to tolerance intersection graphs. In Greph Theory,
Combinatorics and Applications (Y. Alavi, G. Chartrand, O. R. Oeller-
mann, & A. J. Schwenk, eds.) Wiley Interscience, New York; Vol. 2,
pp. 705-723. (Cited in §6.3.)

M. S. Jacobson, F. R. McMorris, & E. R. Scheinerman (1991).
General results on tolerance intersection graphs. J. Graph Theory 15,
573-577. (Cited in §6.1, 6.3.)

R. Jamison (to appear).
Powers of block graphs are chordal. (Cited in §7.10.)

S. Janson & J. Kratochvil (1992).
Thresholds for classes of intersection graphs. Discrete Math. 108,
307-326. (Cited in §7.8.)

J. W. Jaromczyk & G. T. Toussaint (1992).
Relative neighborhood graphs and their relatives. IEEE Proc. 80,
1502-1517. (Cited in §7.11.)

C. R. Johnson (1990).
Matrix completion problems: A survey. In Matrix Theory and Ap-
plications (C. R. Johnson, ed.), [Proceedings of Symposia in Applied

Mathematics 40}, American Mathematical Society, Providence, RI; pp.
171-198. (Cited in §2.4.3.)

C. R. Johnson, C. A. Jones, & B. K. Kroschel (1995).
The Euclidean distance completion problem: Cycle completability.
Linear and Multilinear Algebra 39, 195-207. (Cited in §2.4.3.)

C. R. Johnson & J. Miller (1997).
Rank decomposition under combinatorial constraints. Linear Algebra
Appl. 251, 97-104. (Cited in §7.3.)

C. R. Johnson & G. T. Whitney (1991).
Minimum rank completions. Linear and Multilinear Algebra 28, 271-
273. (Cited in §7.3.)

D. Joseph, J. Meidanis, & P. Tiwari (1992).
Determining DNA sequence similarity using maximum independent
set algorithms for interval graphs. In Algorithm Theory — SWAT 92
(O. Nurmi & E. Ukkonen, eds.), [Lecture Notes in Computer Science
621], Springer, Berlin; pp. 326-337. (Cited in §7.1.)



BIBLIOGRAPHY 173

J. R. Jungck, G. Dick, & A. G. Dick (1982).
Computer-assisted sequencing, interval graphs, and molecular evolu-
tion. BioSystems 15, 259-273. (Cited in §3.4.1.)

S. K. Kannan & T. J. Warnow (1992).
Triangulating 3-colored graphs. SIAM J. Discrete Math. 5, 249-258.
(Cited in §2.4.1.)

S. Kannan & T. Warnow (1994).
Inferring evolutionary history from DNA sequences. SIAM J. Comput.
23, 713-737. (Cited in §2.4.1.)

L. L. Kelleher & M. B. Cozzens (1990).
Coloring interval graphs with First-Fit. Discrete Math. 86, 101-116.
(Cited in §7.9.)

D. G. Kendall (1969).
Incidence matrices, interval graphs, and seriation in archaeology. Pa-
ctfic J. Math. 28, 565-570. (Cited in §3.4.3.)

A. D. Kézdy & G. Kubicki (1997).
K5 is not a closed sphere-of-influence graph. Bolyai Soc. Math. Stud.
6, 383-397. (Cited in §7.11.)

H. J. Khamis (1996).
Application of the multigraph representation of hierarchical log-linear
models. In Categorical Variables in Developmental Research: Methods
of Analysis (A. von Eye & C. C. Clogg, eds.), Academic Press, New
York; pp. 215-229. (Cited in §2.4.4.)

H. J. Khamis & T. A. McKee (1997).
Chordal graph models of contingency tables. Comput. Math. Appl.
34, 89-97. (Cited in §2.4.4.)

H. A. Kierstead (1991).
A polynomial time approximation algorithm for dynamic storage allo-
cation. Discrete Math. 88, 231-237. (Cited in §3.4.)

H. A. Kierstead & J. Qin (1995).
Coloring interval graphs with First-Fit. Discrete Math. 144, 47-57.
(Cited in §3.4.)



174 BIBLIOGRAPHY

S.-R. Kim (1993).
The competition number and its variants. In Quo Vadis, Graph The-
ory? (J. Gimbel, J. W. Kennedy, & L. V. Quintas, eds.), [Ann. Dis-
crete Math. 55), North-Holland, Amsterdam; pp. 313-326. (Cited in
§4.2.)

S.-R. Kim, T. A. McKee, F. R. McMorris, & F. S. Roberts (1993).
p-competition numbers. Discrete Appl. Math. 46, 87-92. (Cited in
§6.1.)

S.-R. Kim, T. A. McKee, F. R. McMorris, & F. S. Roberts (1995).
p-competition graphs. Linear Algebra Appl. 217, 167-178. (Cited in

§6.1.)

S.-R. Kim & F. S. Roberts (1990).
On Opsut’s conjecture about the competition number. Congr. Numer.
71, 173-176. (Cited in §4.2.)

S.-R. Kim & F. S. Roberts (1997).
Competition numbers of graphs with a small number of triangles. Dis-
crete Appl. Math. 78, 153-162. (Cited in §4.2.)

D. J. Klein (1982).
Treediagonal matrices and their inverses. Linear Algebra Appl. 42,
109-117. (Cited in §2.4.3.)

P. N. Klein (1996).
Efficient parallel algorithms for chordal graphs. SIAM J. Comput. 25,
797-827. (Cited in §2.4.2.)

T. Kloks (1994).
Treewidth: Computations and Approzimations [Lecture Notes in Com-
puter Science 842]. Springer, Berlin. (Cited in Preface, §7.1)

T. Kloks, H. Bodlaender, H. Miiller, & D. Kratsch (1993).
Computing treewidth and minimum fill-in: All you need are the min-
imal separators. In Algorithms—ESA 93 (T. Lengauer, ed.) [Lecture
Notes in Computer Science 726], Springer, Berlin; pp. 260-271. (Cited
in §2.4.2.)

T. Kloks & D. Kratsch (1994).
Finding all minimal separators of a graph. In STACS 94 (P. Enjalbert,
E. W. Mayr, & K. W. Wagner, eds.) [Lecture Notes in Computer
Science 775], Springer, Berlin; pp. 759-768. (Cited in §2.4.2.)



BIBLIOGRAPHY 175

T. Kloks & D. Kratsch (1995).
Computing a perfect edge without vertex elimination ordering of a
chordal bipartite graph. Inform. Process. Lett. 55, 11-16. (Cited in
§7.3.)

T. Kloks, D. Kratsch, & C. K. Wong (1996).
Minimum fill-in on circle and circular-arc graphs. In Automata, Lan-
guages and Programming (F. Meyer auf der Heide & B. Monien, eds.)
[Lecture Notes in Computer Science 1099], Springer, Berlin; pp. 256—
267. (Cited in §7.1, 7.4.)

G. J. Koop (1986).
Cyclic scheduling of offweekends. Oper. Res. Lett. 4, 259-263. (Cited
in §5.4.)

L. T. Kou, L. J. Stockmeyer, & C. K. Wong (1978).
Covering graphs by cliques with regard to keyword conflicts and inter-
section graphs. Comm. ACM 21, 135-139. (Cited in §1.3.)

J. Kratochvil (1991a).
String graphs. I: The number of critical nonstring graphs is infinite.
J. Combin. Theory Ser. B 52, 53-66. (Cited in §7.1.)

J. Kratochvil (1991b).
String graphs. II. Recognizing string graphs is NP-hard. J. Combin.
Theory Ser. B 52, 67-78. (Cited in §7.1.)

J. Kratochvil & J. Matousek (1994).
Intersection graphs of segments. J. Combin. Theory Ser. B 62, 289—
315. (Cited in §7.1.)

J. Kratochvil & Z. Tuza (1994).
Intersection dimensions of graph classes. Graphs Combin. 10, 159-
168. (Cited in §7.1.)

T. M. Kratzke & D. B. West (1993).
The total interval number of a graph. I: Fundamental classes. Discrete
Math. 118, 145-156. (Cited in §7.1.)

T. M. Kratzke & D. B. West (1996).
The total interval number of a graph. II: Trees and complexity. SIAM
J. Discrete Math. 9, 339-348. (Cited in §7.1.)



176 BIBLIOGRAPHY

J. Krausz (1943).
Démonstration nouvelle d’une théoréme de Whitney sur les réseaux.
Mat. Fiz. Lapok 50, 75-85. (Cited in §1.5.)

N. Kumar & N. Deo (1994).
Multidimensional interval graphs. Congr. Numer. 102, 45-56. (Cited
in §7.1.)

P. S. Kumar & C. E. Veni Madhavan (1989).
A new class of separators and planarity of chordal graphs. In Foun-
dations of Software Technology and Theoretical Computer Science (G.
Goos & J. Hartmanis, eds.) [Lecture Notes in Computer Science 405],
Springer, Berlin; pp. 30-43. (Cited in §2.2.)

L. Langley (1994).
A note on bipartite interval tolerance graphs. Congr. Numer. 102,
191-192. (Cited in §7.6.)

L. Langley, J. R. Lundgren, & S. K. Merz (1995).
The competition graphs of interval digraphs. Congr. Numer. 107,
37-40. (Cited in §7.2.)

R. Laskar & D. Shier (1980).
On chordal graphs. Congr. Numer. 29, 579-588. (Cited in §7.10.)

R. Laskar & D. Shier (1983).
On powers and centers of chordal graphs. Discrete Appl. Math. 6,
139-147. (Cited in §7.10.)

S. L. Lauritzen (1996).
Graphical Models. [Ozford Statistical Sciences Series 17] Clarendon
Press, Oxford. (Cited in §2.4.4.)

S. L. Lauritzen & D. J. Spiegelhalter (1988).
Local computations with probabilities on graphical structures and
their applications to expert systems. J. R. Statist. Soc. Ser. B 50,
157-224. (Cited in §2.4.4.)

J. Lehel (1983).
Helly hypergraphs and abstract interval structures. Ars Combin. 16A,
239-253. (Cited in §2.3, 3.2.)



BIBLIOGRAPHY 177

J. Lehel (1985).
A characterization of totally balanced hypergraphs. Discrete Math.
57, 59-65. (Cited in §2.3.)

P. G. H. Lehot (1974).
An optimal algorithm to detect a line graph and output its root graph.
J. Assoc. Comput. Mach. 21, 569-575. (Cited in §1.5.)

R. Leibowitz (1978).
Interval Counts and Threshold Graphs. Ph.D. Thesis, Rutgers Uni-
versity, New Brunswick, NJ. (Cited in §5.2, 5.4.)

R. Leibowitz, S. F. Assman, & G. W. Peck (1982).
Interval counts of interval graphs. SIAM J. Alg. Discrete Methods 3,
485-494. (Cited in §3.3.)

C. G. Lekkerkerker & J. C. Boland (1962).
Representation of a finite graph by a set of intervals on the real line.
Fund. Math. 51, 45-64. (Cited in §3.1.)

M. Lewin (1983).
On intersection multigraphs of hypergraphs. J. Combin. Theory Ser.
B 34, 229-232. (Cited in §2.1.)

K.-W. Lih (1993).
Rank inequalities for chordal graphs. Discrete Math. 113, 125-130.
(Cited in §2.1.)

C. K. Lim (1978).

On supercompact graphs. J. Graph Theory 2, 349-355. (Cited in
§1.3.)

C. K. Lim & Y. H. Peng (1991).

Uniquely pseudointersectable graphs. Ars Combin. 32, 3-11. (Cited
in §1.3.)

I.-J. Lin, T. A. McKee, & D. B. West (to appear).
Leafage of chordal graphs. Discuss. Math. Graph Theory. (Cited in
§2.1.)

I.-J. Lin & D. B. West (1995).
Interval digraphs that are indifference digraphs. In Graph Theory,
Combinatorics, and Applications (Y. Alavi & A. Schwenk, eds.) Wiley-
Interscience, New York; Vol. 2, pp. 751-765. (Cited in §7.2.)



178 BIBLIOGRAPHY

M. J. Lipman (1992).
Integer realizations of sphere-of-influence graphs. Congr. Numer. 91,
63-70. (Cited in §7.11.)

M. J. Lipman (1996).
Maximum tolerance sphere-of-influence graphs. Congr. Numer. 121,
195-203. (Cited in §7.11.)

W. Lipski (1983).
The consecutive retrieval property, interval graphs and related topics—
A survey. In Data Base File Organization, Theory and Applications
of the Consecutive Retrieval Property (S. P. Ghosh, Y. Kambayashi,
& W. Lipski, eds.), Academic Press, New York; pp. 17-54. (Cited in
§3.4.3.)

A. Lubiw (1982).
I-Free Matrices. M.S. Thesis, University of Waterloo. (Cited in §7.3,
7.10.)

A. Lubiw (1987).
Doubly lexical orderings of matrices. SIAM J. Comput. 16, 854-879.
(Cited in §7.3, 7.12.)

R. D. Luce (1956).

Semiorders and a theory of utility discrimination. Econometrica 24,
178-191. (Cited in §3.4.2.)

J. K. Luedeman (1987).
Intersection graphs of semigroups II: Quasi-ideals and bi-ideals. Congr.
Numer. 59, 205-209. (Cited in §7.8.)

J. K. Luedeman & F. R. McMorris (1986).
Intersection graphs of semigroups. Congr. Numer. 55, 31-37. (Cited
in §7.8.)

J. R. Lundgren (1989).
Food webs, competition graphs, competition-common enemy graphs,
and niche graphs. In Applications of Combinatorics and Graph Theory
to the Biological and Social Sciences (F. S. Roberts, ed.), Springer,
New York; pp. 221-243. (Cited in §4.2, 4.3.)

J. R. Lundgren & J. S. Maybee (1983a).
A characterization of graphs of competition number m. Discrete Appl.
Math. 6, 319-322. (Cited in §4.2.)



BIBLIOGRAPHY 179

J. R. Lundgren & J. S. Maybee (1983b).
A characterization of upper bound graphs. Congr. Numer. 40, 189-
193. (Cited in §4.4.)

[

. R. Lundgren & J. S. Maybee (1984).
Food webs with interval competition graphs. In Graphs and Applica-
tions: Proceedings of the First Colorado Symposium on Graph Theory
(F. Harary & J. S. Maybee, eds.), Wiley, New York; pp. 245-256.
(Cited in §4.3.)

J. R. Lundgren, J. S. Maybee, & F. R. McMorris (1988).
Two-graph inversion of competition graphs and bound graphs. Congr.
Numer. 67, 136-144. (Cited in §4.4.)

J. R. Lundgren, P. A. McKenna, L. Langley, S. K. Merz, & C. W.
Rasmussen (1997). The p-competition graphs of strongly-connected
and hamiltonian digraphs. Ars Combin. 47, 161-172. (Cited in §6.1.)

J. R. Lundgren, P. A. McKenna, S. K. Merz, & C. W, Rasmussen
(1995). Interval p-neighborhood graphs. Congr. Numer. 108, 3-10.
(Cited in §6.1.)

[

. R. Lundgren, P. A. McKenna, S. K. Merz, & C. W. Rasmussen
(to appear). The p-competition graphs of symmetric digraphs and
p-neighborhood graphs. (Cited in §6.1.)

J. R. Lundgren & S. K. Merz (1994).
Elimination ordering characterizations of digraphs with interval and
chordal competition graphs. Congr. Numer. 103, 55-64. (Cited in
§4.3.)

J. R. Lundgren, S. Merz, J. S. Maybee, & C. W. Rasmussen (1995).
A characterization of graphs with interval two-step graphs. Linear Al-
gebra Appl. 217, 203-223. (Cited in §4.3.)

[

. R. Lundgren, S. K. Merz, & C. W. Rasmussen (1993).
A characterization of graphs with interval squares. Congr. Numer.
98, 132-142. (Cited in §4.3, 7.10.)

T. H. Ma & J. P. Spinrad (1991).
Cycle-free partial orders and chordal comparability graphs. Order 8,
49-61. (Cited in §7.6.)



180 BIBLIOGRAPHY

S. Ma, W. D. Wallis, & J. Wu (1989).
Optimization problems on quasi-threshold graphs. J. Combin. Inform.
System Sci. 14, 105-110. (Cited in §7.9.)

S. Ma & J. Wu (1990).
Characterizing strongly chordal graphs by using minimal relative sep-
arators. In Combinatorial Designs and Applications (W. D. Wallis, H.
Shen, W. Wei, & L. Zhu, eds.), [Lecture Notes in Pure and Applied
Mathematics 126] Marcel Dekker, New York; pp. 87-95. (Cited in
§7.12.)

H. Maehara (1984a).
A digraph represented by a family of boxes or spheres. J. Graph
Theory 8, 431-439. (Cited in §7.2.)

H. Maehara (1984b).
Space graphs and sphericity. Discrete Appl. Math. 7, 55-64. (Cited
in §7.1.)

H. Maehara (1990).
On the intersection graphs of random arcs on a circle. In Random
Graphs 87 (M. Karotiski, J. Jaworski, & A. Rucinski, eds.), Wiley,
Chichester; pp. 159-173. (Cited in §7.8.)

H. Maehara (1991).
The intersection graph of random sets. Discrete Math. 87, 97-104.
(Cited in §7.8.)

N. V. R. Mahadev & U. N. Peled (1995).
Threshold Graphs and Related Topics. [Ann. of Discrete Math. 56},
North-Holland, Amsterdam. (Cited in Preface and throughout Chap-
ter 5.)

N. V. R. Mahadev & T.-M. Wang (1997).
A characterization of hereditary UIM graphs. Congr. Numer. 126,
183-191. (Cited in §1.3.)

N. V. R. Mahadev & T.-M. Wang (to appear).
On uniquely intersectable graphs. (Cited in §1.3.)

F. Maire (1993).
A characterization of intersection graphs of the maximal rectangles of
a polyomino. Discrete Math. 120, 211-214. (Cited in §7.1.)



BIBLIOGRAPHY 181

G. Major & F. R. McMorris (1990).
p-edge clique coverings of graphs. Congr. Numer. 79, 143-145. (Cited
in §6.1.)

M. V. Marathe, H. Breu, H. B. Hunt, S. S. Ravi, & D. J. Rosen-
krantz (1995). Simple heuristics for unit disk graphs. Networks 25,
59-68. (Cited in §7.1.)

M. V. Marathe, H. B. Hunt, & S. S. Ravi (1996).
Efficient approximation algorithms for domatic partition and on-line
coloring of circular arc graphs. Discrete Appl. Math. 64, 135-149.
(Cited in §3.4.)

E. (Szpilrajn-) Marczewski (1945).
Sur deux propriétés des classes d’ensembles. Fund. Math. 33, 303-307.
(Cited in §1.1.)

M. L. N. McAllister (1988).
Fuzzy intersection graphs. Comput. Math. Appl. 15, 871-886. (Cited
in §7.8.)

K. McAvaney, J. Robertson, & D. DeTemple (1993).
A characterization and hereditary properties for partition graphs. Dis-
crete Math. 113, 131-142. (Cited in §7.8.)

R. M. McConnell & J. P. Spinrad (1994).
Linear-time modular decomposition and efficient transitive orientation
of comparability graphs. In Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, ACM, New York; pp. 536-
545. (Cited in §7.4.)

T. A. McKee (1978).
Forbidden subgraphs in terms of forbidden quantifiers. Notre Dame
J. Formal Logic 19, 186-188. (Cited in §1.2.)

T. A. McKee (1987).
Bipartite analogs of graph theory. Congr. Numer. 60, 261-268.
(Cited in §7.2.)

T. A. McKee (1989).
Upper bound multigraphs for posets. Order 6, 265-275. (Cited in
§6.2.)



182 BIBLIOGRAPHY

T. A. McKee (1990a).
Neighborhood and self-dual (multi)graphs. J. Combin. Math. Com-
bin. Comput. 8, 173-180. (Cited in §6.2.)

T. A. McKee (1990b).
Interval competition multigraphs of food webs. Congr. Numer. 71,
197-204. (Cited in §6.2.)

T. A. McKee (1990c).
Intersection graphs and cographs. Congr. Numer. 78, 223-230.
(Cited in §7.9.)

T. A. McKee (1991a).
Foundations of intersection graph theory. Utilitas Math. 40, 77-86.
(Cited in §1.5, 6.1.)

T. A. McKee (1991b).
Chordal and interval multigraphs. In Graph Theory, Combinatorics
and Applications (Y. Alavi, G. Chartrand, O. R. Ollermann, & A. J.
Schwenk, eds.) Wiley-Interscience, New York; Vol. 2, pp. 841-848.
(Cited in §6.2.)

T. A. McKee (1991c).
Clique multigraphs. In Graph Theory, Combinatorics, Algorithms and

Applications (Y. Alavi, F. R. K. Chung, R. L. Graham, & D. F. Hsu,
eds.) Society for Industrial and Applied Mathematics, Philadelphia;
pp. 371-379. (Cited in §6.2.)

T. A. McKee (1991d).
Intersection properties of graphs. Discrete Math. 89, 253-260. (Cited
in §1.5.)

T. A. McKee (1992).
Subtree catch graphs. Congr. Numer. 90, 231-238. (Cited in §7.2.)

T. A. McKee (1993).
How chordal graphs work. Bull. Inst. Combin. Appl. 9, 27-39.
(Cited in §2.1, 2.4.4.)

T. A. McKee (1994).
Clique pseudographs and pseudo duals. Ars Combin. 38, 161-173.
(Cited in §6.2, 7.5)



BIBLIOGRAPHY 183

T. A. McKee (1995a).
Niche space, multigraphs, and the Helly condition. Math. Comput.
Modelling 22, 1-8. (Cited in §4.3, 6.2.)

T. A. McKee (1995b).
A survey of connection graphs. In Graph Theory, Combinatorics, and
Applications (Y. Alavi & A. Schwenk, eds.), Wiley-Interscience, New
York; Vol. 2, pp. 767-776. (Cited in §7.6.)

T. A. McKee (1998).
F-Free interval graphs. Utilitas Math., 53, 147-158. (Cited in §7.9.)

T. A. McKee (to appear(a)).
An inequality characterizing chordal graphs. Ars Combin., (Cited in
§7.9.)

T. A. McKee (to appear(b)).
Strong clique trees and strongly chordal graphs. (Cited in §7.12.)

T. A. McKee & H. J. Khamis (1996).
Multigraph representations of hierarchical loglinear models. J. Statist.
Plann. Inference 53, 63-74. (Cited in §2.4.4)

T. A. McKee & F. R. McMorris (1992).
Comparability multigraphs. Congr. Numer. 89, 33-38. (Cited in
§7.6.)

T. A. McKee & E. R. Scheinerman (1993).
On the chordality of a graph. J. Graph Theory, 17, 221-232. (Cited
in §7.1.)

F. R. McMorris (1977).
On the compatibility of binary qualitative taxonomic characters. Bull.
Math. Biology 39, 133-138. (Cited in §2.4.1.)

F. R. McMorris & C. A. Meacham (1983).
Partition intersection graphs. Ars Combin. 16B, 135-138. (Cited in
§2.4.1.)

F. R. McMorris & H. M. Mulder (1996).
Subpath acyclic digraphs. Discrete Math. 154, 189-201. (Cited in
§7.2.)



184 BIBLIOGRAPHY

F. R. McMorris & G. T. Myers (1983).
Some uniqueness results for upper bound graphs. Discrete Math. 44,
321-323. (Cited in §4.4.)

F. R. McMorris & E. R. Scheinerman (1991).
Connectivity threshold for random chordal graphs. Graphs. Combin.
7, 177-181. (Cited in §7.8.)

F. R. McMorris & D. R. Shier (1983).
Representing chordal graphs on K ,. Comment. Math. Univ. Carolin.
24, 489-494. (Cited in §2.5.)

F. R. McMorris & C. Wang (1996).
Modular intersection graphs. Graphs Combin. 12, 267-281. (Cited in

§6.1.)

F. R. McMorris & C. Wang (to appear).
Sphere-of-attraction graphs. SIAM J. Discrete Math., (Cited in §7.11.)

F. R. McMorris, C. Wang, & P. Zhang (to appear).
On probe interval graphs. Discrete Appl. Math. (Cited in §3.4.1.)

F. R. McMorris, T. J. Warnow, & T. Wimer (1994).
Triangulating vertex-colored graphs. SIAM J. Discrete Math. 7, 296—
306. (Cited in §2.4.1.)

F. R. McMorris & T. Zaslavsky (1982).
Bound graphs of a partially ordered set. J. Combin. Inform. System
Sci. 7, 134-138. (Cited in §4.4.)

C. A. Meacham (1983).
Theoretical and computational considerations of the compatibility of
qualitative taxonomic characters. In Numerical Taxonomy: Proceed-
ings of a NATO Advanced Study Institute (J. Felsenstein, ed.), NATO
Advanced Study Institute Ser. G 1, pp. 304-314. (Cited in §2.4.1.)

T. S. Michael & T. Quint (1994).
Sphere of influence graphs: A survey. Congr. Numer. 105, 153-160.
(Cited in §7.11.)

T. S. Michael & T. Quint (to appear).
Sphere of influence graphs in the plane. (Cited in §7.11.)



BIBLIOGRAPHY 185

B. G. Mirkin & S. N. Rodin (1984).
Graphs and Genes. Springer, Berlin. (Cited in §3.4.1.)

R. H. Mohring (1996).
Triangulating graphs without asteroidal triples. Discrete Appl. Math.
64, 281-287. (Cited in §7.6.)

C. L. Monma, B. Reed, & W. T. Trotter (1988).
Threshold tolerance graphs. J. Graph Theory 12, 343-362. (Cited in
§6.3.)

C. L. Monma & V. K. Wei (1986).
Intersection graphs of paths in a tree. J. Combin. Theory Ser. B 41,
141-181. (Cited in §7.1, 7.2.)

T. B. Moorhouse (1994).
Characterizing Hereditary Graph Classes by Subgraph Intersections.
M.S. thesis, University of Toronto. [Technical Report 290/94, Dept.
Comput. Sci.] (Cited in §1.2.)

T. B. Moorhouse (to appear(a)).
Characterizing hereditary graph classes as the intersection graphs of
subgraphs of graphs. (Cited in §1.2.)

T. B. Moorhouse (to appear(b)).
Completeness for intersection classes. (Cited in §1.2.)

A. Mukhopadhyay (1967).
The square root of a graph. J. Combin. Theory 2, 290-295. (Cited in
§4.1.1.)

H. Miiller (1997).
Recognizing interval digraphs and interval bigraphs in polynomial time.
Discrete Appl. Math., 78, 189-205. (Cited in §7.2, 7.3.)

G. T. Myers (1982).
Upper Bound Graphs of Partially Ordered Sets. Ph.D. thesis, Bowling
Green State University, Bowling Green, OH. (Cited in §7.9.)

D. Q. Naiman & H. P. Wynn (1992).
Inclusion-exclusion-Bonferroni identities and inequalities for discrete
tube-like problems via Euler characteristics. Ann. Statist. 20, 43-76.
(Cited in §2.3.)



186 BIBLIOGRAPHY

W. Naji (1985).
Reconnaissance des graphes de cordes. Discrete Math. 54, 327-337.
(Cited in §7.4.)

G. Narasimhan & R. Manber (1992).
Stability number and chromatic number of tolerance graphs. Discrete
Appl. Math. 36, 47-56. (Cited in §6.3.)

W. M. Nawijn (1991).
On a random interval graph and the maximum throughput rate in
the system GI/G/1/0. Adv. in Appl. Probab. 23, 945-956. (Cited in
§7.8.)

R. E. Neapolitan (1990).
Probabilistic Reasoning in Ezpert Systems. Wiley, New York. (Cited
in §2.4.4.)

V. Nicholson (1995).
Applying interval graphs to computing a protein model. In Graph
Theory, Combinatorics, and Applications (Y. Alavi & A. Schwenk,
eds.), Wiley-Interscience, New York; Vol. 2, pp. 833-838. (Cited in
§3.4.1.)

R. M. Odom & C. W. Rasmussen (1995).
Conditional completion algorithms for classes of chordal graphs. Congr.

Numer. 109, 97-108. (Cited in §7.8.)

W. F. Ogden & F. S. Roberts (1970).
Intersection graphs of families of convex sets with distinguished points.
In Combinatorial Structures and Their Applications (R. Guy, H. Hanani,
N. Sauer, & J. Schonheim, eds.), Gordon and Breach, New York; pp.
311-313. (Cited in §7.2.)

S. Olariu, J. L. Schwing, & J. Zhang (1995).
Interval graph problems on reconfigurable meshes. ORSA J. Comput.
7, 333-348. (Cited in §3.4.3.)

R. J. Opsut (1982).
On the computation of the competition number of a graph. SIAM J.
Alg. Discrete Methods 3, 420-428. (Cited in §4.2.)

R. J. Opsut & F. S. Roberts (1981).
On the fleet maintenance, mobile radio frequency, task assignment,



BIBLIOGRAPHY 187

and traffic phasing problems. In The Theory and Applications of
Graphs (G. Chartrand, Y. Alavi, D. L. Goldsmith, L. Lesniak-Foster,
& D. R. Lick, eds.), Wiley, New York; pp. 479-492. (Cited in §3.1.)

E. T. Ordman (1989).
Minimal threshold separators and memory requirements for synchro-
nization. SIAM J. Comput. 18, 152-165. (Cited in §5.4.)

B. S. Panda (1996).
New linear time algorithms for generating perfect elimination orderings
of chordal graphs. Inform. Process. Lett. 58, 111-115. (Cited in §2.2.)

B. S. Panda & S. P. Mohanty (1995).
Intersection graphs of vertex disjoint paths in a tree. Discrete Math.
146, 179-209. (Cited in §7.1.)

A. Parra & P. Scheffier (1995).
How to use the minimal separators of a graph for its chordal trian-
gulation. In Automata, Languages and Programming (Z. Gilop &

F. Gécseg, eds.) [Lecture Notes in Computer Science 944], Springer,
Berlin; pp. 123-134. (Cited in §2.4.2.)

A. Parra & P. Scheffler (1997).
Characterizations and algorithmic applications of chordal graph em-
beddings. Discrete Appl. Math. 79, 171-188. (Cited in §2.4.2.)

J. Pearl (1988).
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA. (Cited in §2.4.4.)

I. Pe’er & R. Shamir (1995).
Interval graphs with side (and size) constraints. In Algorithms —
ESA 95 (P. Spirakis, ed.) [Lecture Notes in Computer Science 979,
Springer, Berlin; pp. 142-154. (Cited in §3.3.)

B. W. Peyton, A. Pothen, & X. Yuan (1995).
A clique tree algorithm for partitioning a chordal graph into transitive
subgraphs. Linear Algebra Appl. 223/224, 553-588. (Cited in §7.9.)

S. L. Pimm (1991).
The Balance of Nature. Univ. of Chicago Press. (Cited in §4.3.)



188 BIBLIOGRAPHY

A. Pnueli, A. Lempel, & S. Even (1971).
Transitive orientation of graphs and identification of permutation graphs.
Canad. J. Math. 23, 160-175. (Cited in §7.4.)

B. Pondéliéek (to appear).
Chordal intersection graphs of bands. Czechoslovak Math. J. (Cited
in §7.8.)

E. Prisner (1989).
A characterization of interval catch graphs. Discrete Math. 73, 285-
289. (Cited in §7.2.)

E. Prisner (1992).
Representing triangulated graphs in stars. Abh. Math. Sem. Univ.
Hamburg 62, 29-41. (Cited in §2.1.)

E. Prisner (1993).
Hereditary clique-Helly graphs. J. Combin. Math. Combin. Comput.
14, 216-220. (Cited in §7.5.)

E. Prisner (1994).
Intersection-representation by connected subgraphs of some n-cyclo-
matic graph. Ars Combin. 37, 241-256. (Cited in §7.1.)

E. Prisner (1995).
Graph Dynamics. [Pitman Research Notes in Mathematics 338], Long-
man, London. (Cited in the Preface, beginning of §4, §7.5, 7.10.)

E. Prisner (1996a).
Line graphs and generalizations—A survey. In Surveys in Graph The-
ory (G. Chartrand & M. Jacobson, eds.), [Special volume, 116, Congr.
Numer.], Utilitas Mathematica, Winnipeg; pp. 193-229. (Cited in
§1.5.)

E. Prisner (1996b).
A note on powers and proper circular-arc graphs. J. Combin. Math.
Combin. Comput. 22, 125-128. (Cited in §7.10.)

E. Prisner (to appear).
Intersection multigraphs of uniform hypergraphs. Graphs Combin.
(Cited in §6.2.)



BIBLIOGRAPHY 189

M. Quest & G. Wegner (1990).
Characterization of the graphs with boxicity < 2. Discrete Math. 81,
187-192. (Cited in §7.1.)

A. Quilliot (1988).
On the problem of how to represent a graph taking into account an
additional structure. J. Combin. Theory Ser. B 44, 1-21. (Cited in

§1.2.)

C. W. Rasmussen (1994).
Conditional graph completions. Congr. Numer. 103, 183-192. (Cited
in §7.8.)

A. Raychaudhuri (1987).
On powers of interval and unit interval graphs. Congr. Numer. 59,
235-242. (Cited in §7.10.)

A. Raychaudhuri (1988).
Intersection number and edge clique graphs of chordal and strongly
chordal graphs. Congr. Numer. 67, 197-204. (Cited in §2.1, 7.12.)

A. Raychaudhuri (1992a).
On powers of strongly chordal and circular arc graphs. Ars Combin.
34, 147-160. (Cited in §7.10.)

A. Raychaudhuri (1992b).
Optimal multiple interval assignments in frequency assignment and
traffic phasing. Discrete Appl. Math. 40, 319-332. (Cited in §7.1.)

A. Raychaudhuri & F. S. Roberts (1985).
Generalized competition graphs and their applications. Methods Oper.
Res. 49, pp. 295-311. (Cited in §4.2.)

L. Rédei (1934).
Ein kombinatorischer Satz. Acta Litt. Szeged 7, 39-43. (Cited in §3.1.)

P. L. Renz (1970).
Intersection representation of graphs by arcs. Pacific J. Math. 34,
501-510. (Cited in §7.1.)

J. Riguet (1951).
Les relations de Ferrers. C. R. Acad. Sci. Paris 232, 1729-1730.
(Cited in §5.3.)



190 BIBLIOGRAPHY

C. S. Rim & K. Nakajima (1995).
On rectangle intersection and overlap graphs. IEEE Trans. Circuits
Systems I Fund. Theory Appl. 42, 549-553. (Cited in §7.1.)

F. S. Roberts (1968).
Representations of Indifference Relations. Ph.D. thesis, Stanford Uni-
versity, Stanford, CA. (Cited in §3.3, 7.1.)

F. S. Roberts (1969a).
Indifference graphs. In Proof Techniques in Graph Theory (F. Harary,
ed.), Academic Press, New York; pp. 139-146. (Cited in §3.3, 3.4.2,
6.3, 7.2.)

F. S. Roberts (1969b).
On the boxicity and cubicity of a graph. In Recent Progress in Combi-
natorics (W. T. Tutte, ed.), Academic Press, New York; pp. 301-310.
(Cited in §7.1.)

F. S. Roberts (1971).
On the compatibility between a graph and a simple order. J. Combin.
Theory 11, 28-38. (Cited in §3.4.2, 7.2.)

F. S. Roberts (1976).
Discrete Mathematical Models, with Applications to Social, Biological
and Environmental Problems. Prentice-Hall, Englewood Cliffs, NJ.
(Cited in Preface, beginning of §3, §3.1, 3.4.2, 4.2.)

F. S. Roberts (1978a).
Food webs, competition graphs, and the boxicity of ecological phase
space. In Theory and Applications of Graphs (Y. Alavi & D. Lick,
eds.) [Lecture Notes in Mathematics 642], Springer, New York; pp.
477-490. (Cited in Preface, §3.1, 3.4.2, 4.2.)

F. S. Roberts (1978b).
Graph Theory and Its Applications to Problems of Society [CBMS-NSF
Regional Conference Series in Applied Mathematics 29]. Society for
Industrial and Applied Mathematics, Philadelphia. (Cited in Preface,
§3.4.2,4.2))

F. S. Roberts (1979).
Measurement Theory with Applications to Decisionmaking, Utility and

the Social Sciences. [Encyclopedia of Mathematics and its Applications
7.] Addison-Wesley, Reading, MA. (Cited in Preface, §3.4.2.)



BIBLIOGRAPHY 191

F. S. Roberts (1985).
Applications of edge coverings by cliques. Discrete Appl. Math. 10,
93-109. (Cited in beginning of §1.)

F. S. Roberts (1989).
Applications of combinatorics and graph theory to the biological and
social sciences: Seven fundamental ideas. In Applications of Combi-
natorics and Graph Theory to the Biological and Social Sciences. (F.
S. Roberts, ed.) [IMA Volumes in Mathematics and Its Applications
17.], Springer, New York; pp. 1-37. (Cited in §7.1.)

F. S. Roberts & J. H. Spencer (1971).
A characterization of clique graphs. J. Combin. Theory Ser. B 10,
102-108. (Cited in §1.4, 1.6, 6.2.)

F. S. Roberts & J. E. Steif (1983).
A characterization of competition graphs of arbitrary digraphs. Dis-
crete Appl. Math. 6, 323-326. (Cited in §4.2, 6.1.)

N. Robertson & P. D. Seymour (1985).
Graph minors—A survey. In Surveys in Combinatorics. (I. Anderson,
ed.) Cambridge University Press; pp. 153-171. (Cited in §7.1.)

D. J. Rose (1970).
Triangulated graphs and the elimination process. J. Math. Anal. Appl.
32, 597-609. (Cited in §2.2, 2.4.3, 7.2.)

D. J. Rose (1972).
A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In Graph Theory and Computing
(R. C. Read, ed.), Academic Press, New York; pp. 183-217. (Cited in
§2.4.3.)

D. J. Rose & R. E. Tarjan (1975).
Algorithmic aspects of vertex elimination. In Seventh Annual ACM

Symposium on Theory of Computing, Assoc. Comput. Mach., New
York; pp. 245-254. (Cited in §2.4.1.)

D. J. Rose, R. E. Tarjan, & G. S. Lueker (1976).
Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput.
5, 266-283. (Cited in §2.4.1.)



192 BIBLIOGRAPHY

N. D. Roussopoulos (1973).
A max{m,n} algorithm for determining the graph H from its line
graph G. Inform. Process. Lett. 2, 108-112. (Cited in §1.5.)

H. J. Ryser (1969).
Combinatorial configurations. SIAM J. Appl. Math. 17, 593-602.
(Cited in §2.3.)

H. Sachs (1994).
Coin graphs, polyhedra, and conformal mapping. Discrete Math. 134,
133-138. (Cited in §7.1.)

T. J. Santner & D. E. Duffy (1989).
The Statistical Analysis of Discrete Data. Springer, New York. (Cited
in §2.44.)

B. K. Sanyal & M. K. Sen (1996).
New characterizations of graphs represented by intervals. J. Graph
Theory 22, 297-303. (Cited in §7.2.)

E. R. Scheinerman (1984).
Intersection classes and multiple intersection parameters of a graph.
Ph.D. thesis, Princeton University, Princeton, NJ. (Cited in §7.1.)

E. R. Scheinerman (1985a).
Characterizing intersection classes of graphs. Discrete Math. 55, 185—
193. (Cited in §1.2.)

E. R. Scheinerman (1985b).
Irrepresentability by multiple intersection, or why the interval number
is unbounded. Discrete Math. 55, 195-211. (Cited in §7.1.)

E. R. Scheinerman (1985c).
Characterization and computational complexity questions for repre-
sentation classes of graphs. Congr. Numer. 49, 195-204. (Cited in
§1.2.)

E. R. Scheinerman (1986).
On the structure of hereditary classes of graphs. J. Graph Theory 10,
545-551. (Cited in §1.2.)

E. R. Scheinerman (1988a).
On the interval number of a chordal graph. J. Graph Theory 12,
311-316. (Cited in §7.1.)



BIBLIOGRAPHY 193

E. R. Scheinerman (1988b).
Random interval graphs. Combinatorica 8, 357-371. (Cited in §7.8.)

E. R. Scheinerman (1990a).
On the interval number of random graphs. Discrete Math. 82, 105~
109. (Cited in §7.8.)

E. R. Scheinerman (1990b).
An evolution of interval graphs. Discrete Math. 82, 287-302. (Cited
in §7.8.)

E. R. Scheinerman & D. B. West (1983).
The interval number of a planar graph: Three intervals suffice. J.
Combin. Theory Ser. B 35, 224-239. (Cited in §7.1.)

D. D. Scott (1986).
Posets with interval upper bound graphs. Order 3, 269-281. (Cited
in §4.4.)

M. Sen, S. Das, A. B. Roy, & D. B. West (1989).
Interval digraphs: An analogue of interval graphs. J. Graph Theory
13, 189-202. (Cited in §7.2.)

M. Sen, S. Das, & D. B. West (1989).
Circular-arc digraphs: A characterization. J. Graph Theory 13, 581-
592. (Cited in §7.2.)

M. Sen, S. Das, & D. B. West (1992).
Representing digraphs by arcs of a circle. Sankhya, Ser. A— “special
issue” 54, 421-427. (Cited in §7.2.)

M. Sen & B. K. Sanyal (1994).
Indifference digraphs: A generalization of indifference graphs and semi-
orders. SIAM J. Discrete Math. 7, 157-165. (Cited in §7.2.)

M. Sen, B. K. Sanyal, & D. B. West (1995).
Representing digraphs using intervals or circular arcs. Discrete Math.
147, 235-245. (Cited in §7.2, 7.6.)

L. Sheng, C. Wang, & P. Zhang (to appear).
Tagged probe interval graphs. (Cited in §3.4.1.)

L. N. Shevrin & A. J. Ovsyannikov (1983).
Semigroups and their subsemigroup lattices. Semigroup Forum 27,
1-154. (Cited in §7.8.)



194 BIBLIOGRAPHY

Y. Shibata (1988).
On the tree representation of chordal graphs. J. Graph Theory 12,
421-428. (Cited in §2.1.)

D. Shier (1984).
Some aspects of perfect elimination orderings in chordal graphs. Dis-
crete Appl. Math. 7, 325-331. (Cited in §2.2.)

R. Shull & A. N. Trenk (1997).
Unit and proper bitolerance digraphs. J. Graph Theory 24, 193-199.
(Cited in §6.3.)

K. Simon (1991).
A new simple linear algorithm to recognize interval graphs. In Com-
putational Geometry—Methods, Algorithms and Applications (H. Bieri
& H. Noltemeier, eds.), [Lecture Notes in Computer Science 553,
Springer, Berlin; pp. 289-308. (Cited in §3.1.)

K. Simon (1995).
A note on lexicographic breadth first search for chordal graphs. In-
form. Process. Lett. 54, 249-251. (Cited in §2.2.)

D. J. Skrien (1982).
A relationship between triangulated graphs, comparability graphs,
proper interval graphs, proper circular-arc graphs, and nested interval
graphs. J. Graph Theory 6, 309-316. (Cited in §7.1, 7.9.)

D. J. Skrien (1984).
Chronological orderings of interval graphs. Discrete Appl. Math. 8,
69-83. (Cited in §3.3, 5.2.)

P. J. Slater (1976).
A note on pseudointersection graphs. J. Res. Nat. Bur. Standards
Section B 80, 441-445. (Cited in §1.3.)

P. J. Slater (1978).
A characterization of SOFT hypergraphs. Canad. Math. Bull. 21,
335-337. (Cited in §2.3.)

M. Slusarek (1989).
A coloring algorithm for interval graphs. In Mathematical Foundations
of Computer Science 1989 (A. Kreczmar & G. Mirkowska, eds.), [Lec-
ture Notes in Computer Science 379, Springer, Berlin, pp. 471-480.
(Cited in §3.4.)



BIBLIOGRAPHY 195

M. Slusarek (1995).
Optimal on-line coloring of circular arc graphs. RAIRO Inform. Théor.
Appl. 29, 423-429. (Cited in §3.4.)

T. P. Speed & H. T. Kiiveri (1986).
Gaussian Markov distributions over finite fields. Ann. Stafist. 14,
138-150. (Cited in §2.4.4.)

[

. Spinrad (1993).
Doubly lexical orderings of dense 0-1 matrices. Inform. Process. Lett.
45, 229-235. (Cited in §7.3.)

]

. Spinrad (1994).
Recognition of circle graphs. J. Algorithms 16, 264-282. (Cited in
§7.4.)

[

. Spinrad (1995).
Nonredundant 1’s in I'-free matrices. SIAM J. Discrete Math. 8,
251-257. (Cited in §7.3.)

J. Spinrad & R. Sritharan (1995).
Algorithms for weakly triangulated graphs. Discrete Appl. Math. 59,
181-191. (Cited in §7.3, 7.8.)

[

. Spinrad, G. Vijayan, & D. B. West (1987).
An improved edge bound on the interval number of a graph. J. Graph
Theory 11, 447-449. (Cited in §7.1.)

G. Steiner (1996).
The recognition of indifference digraphs and generalized semiorders.
J. Graph Theory 21, 235-241. (Cited in §7.2.)

S. K. Stueckle, B. L. Piazza, & R. D. Ringeisen (1995).
A circular-arc characterization of certain rectilinear drawings. J. Graph
Theory 20, 71-76. (Cited in §7.1.)

G. Sugihara (1984).
Graph theory, homology, and food webs. In Population Biology (S. A.
Levin, ed.) [Proceedings of Symposia in Applied Mathematics 30),
American Mathematical Society, Providence, RI; pp. 83-101. (Cited
in §4.3.)



196 BIBLIOGRAPHY

D. P. Sumner (1973).
Point determination in graphs. Discrete Math. 5, 179-187. (Cited in
§1.3.)

M. M. Syslo (1985).
Triangulated edge intersection graphs of paths in a tree. Discrete
Math. 55, 217-220. (Cited in §7.1.)

J. L. Szwarcfiter (1997).
Recognizing clique-Helly graphs. Ars Combin. 45, 29-32. (Cited in
§7.5.)

J. L. Szwarcfiter & C. F. Bornstein (1994).
Clique graphs of chordal and path graphs. STAM J. Discrete Math. 7,
331-336. (Cited in §7.5.)

K. Tanaka (1983).
Tree-structured data organization with consecutive retrieval property.
In Data Base File Organization, Theory and Applications of the Con-
secutive Retrieval Property (S. P. Ghosh, Y. Kambayashi, & W. Lipski,
eds.), Academic Press, New York; pp. 271-276. (Cited in §3.4.3.)

R. E. Tarjan (1983).
Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia. (Cited in §2.2.)

R. E. Tarjan & M. Yannakakis (1984).
Simple linear-time algorithms to test chordality of graphs, test acyclic-
ity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
J. Comput. 13, 566-579. (Cited in §2.2.)

C. Thomassen (1986).
Interval representations of planar graphs. J. Combin. Theory, Series
B 40, 9-20. (Cited in §7.1.)

G. T. Toussaint (1988).
A graph-theoretic primal sketch. In Computer Morphology (G. T.
Toussain, ed.), Elsevier, Amsterdam; pp. 229-260. (Cited in §7.11.)

W. T. Trotter (1992).
Combinatorics and partially ordered sets. Dimension theory. Johns
Hopkins University Press, Baltimore, MD. (Cited in Preface.)



BIBLIOGRAPHY 197

W. T. Trotter & F. Harary (1978).
On double and multiple interval graphs. J. Graph Theory 2, 137-142.

(Cited in §7.1.)

W. T. Trotter & J. I. Moore (1976).
Characterization problems for graphs, partially ordered sets, lattices,
and families of sets. Discrete Math. 16, 361-381. (Cited in §3.2.)

W. T. Trotter & D. B. West (1987).
Point boxicity of graphs. Discrete Math. 64, 105-107. (Cited in §7.1.)

D. S. Troxell (1995).
On properties of unit interval graphs with a perceptual motivation.
Math. Social Sci. 30, 1-22. (Cited in §3.4.2.)

M. Tsuchiya (1994).
On antichain intersection numbers, total clique covers and regular
graphs. Discrete Math. 127, 305-318. (Cited in §1.3.)

A. C. Tucker (1971).
Matrix characterizations of circular-arc graphs. Pacific J. Math. 39,
535-545. (Cited in §7.1.)

A. C. Tucker (1972).
A structure theorem for the consecutive 1’s property. J. Combin.
Theory, Ser. B 12, 153-162. (Cited in §3.2.)

A. C. Tucker (1974).
Structure theorems for some circular-arc graphs. Discrete Math. 7,
167-195. (Cited in §7.1.)

A. C. Tucker (1978).
Circular arc graphs: New uses and a new algorithm. In Theory and
Applications of Graphs (Y. Alavi & D. Lick, eds.) [Lecture Notes in
Mathematics 642}, Springer, New York; pp. 580-589. (Cited in §7.1.)

R. I. Tyskevié & A. A. Cernjak (1978a).
Unigraphs. 1. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk no. 5,
5-11, 141. (Cited in §2.5.)

R. I. Tyskevic & A. A. Cernjak (1978b).
Unigraphs. II. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk no. 1,
5-12, 138. (Cited in §2.5.)



198 BIBLIOGRAPHY

R. I. Tyskevié & A. A. Cernjak (1979).
Unigraphs. II1. Vestst Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk no. 2,
5-11, 138. (Cited in §2.5.)

W. D. Wallis & J. Wu (1995).
Squares, clique graphs, and chordality. J. Graph Theory 20, 37-45.
(Cited in §7.10.)

W. D. Wallis & G.-H. Zhang (1990).
On maximal clique irreducible graphs. J. Combin. Math. Combin.
Comput. 8, 187-193. (Cited in §7.5.)

J. R. Walter (1978).
Representations of chordal graphs as subtrees of a tree. J. Graph
Theory 2, 265-267. (Cited in §2.1.)

H. Wan, E. Lee, C. Wang, & P. Zhang (to appear).
k-partite probe interval graphs: A computational model for physical
mapping of DNA. (Cited in §3.4.1.)

C. Wang (1992).
On critical graphs for Opsut’s conjecture. Ars Combin. 34, 183-203.
(Cited in §4.2.)

C. Wang (1994).
A subgraph problem from restriction maps of DNA. J. Comput. Biol-
ogy 3, 227-234. (Cited in §3.4.1.)

C. Wang (1995a).
Competition graphs and resource graphs of digraphs. Ars Combin.
40, 3-48. (Cited in §4.2.)

C. Wang (1995b).
Competitive inheritance and limitedness of graphs. J. Graph Theory
19, 353-366. (Cited in §4.2.)

M. S. Waterman (1995).
Introduction to Computational Biology. Chapman and Hall, London.
(Cited in §3.4.1.)

G. Wegner (1967).
Eigenschaften der Nerven Homologisch-einfacher Familien in R". Ph.D.
thesis, Gottingen. (Cited in §3.3, 7.1.)



BIBLIOGRAPHY 199

D. B. West (1996).
Introduction to Graph Theory. Prentice-Hall, Upper Saddle River,
NJ. (Cited in Preface, §1.1.)

D. B. West (1998).
Short proofs for interval digraphs. Discrete Math. 178, 287-292.
(Cited in §7.2.)

D. B. West & D. B. Shmoys (1984).
Recognizing graphs with fixed interval number is NP-complete. Dis-
crete Appl. Math. 8, 295-305. (Cited in §7.1.)

H. Whitney (1932).
Congruent graphs and the connectivity of graphs. Amer. J. Math. 54,
150-168. (Cited in §1.5.)

J. Whittaker (1990).
Graphical Models in Applied Multivariate Statistics. Wiley, New York.
(Cited in §2.4.4.)

T. D. Wickens (1989).
Multiway Contingency Tables Analysis for the Social Sciences. Erl-
baum, Hillsdale, NJ. (Cited in §2.4.4.)

E. S. Wolk (1962).
The comparability graph of a tree. Proc. Amer. Math. Soc. 13, 789-
795. (Cited in §7.7, 7.9.)

E. S. Wolk (1965).
A note on “The comparability graph of a tree.” Proc. Amer. Math.
Soc. 16, 17-20. (Cited in §7.9.)

J.-H. Yan, J.-J. Chen & G. J. Chang (1996).
Quasi-threshold graphs. Discrete Appl. Math. 69, 247-255. (Cited in
§7.9.)

T. Zamfirescu (1973/74).
A characterization of Hamiltonian graphs. Atti Acad. Sct. Istit. Bologna
Cl. Sci. Fis. Rend. 13, 39-40. (Cited in §1.2.)

B. Zelinka (1975a).
Intersection graphs of finite abelian groups. Czechoslovak Math. J. 25
(100), 171-174. (Cited in §7.8.)



200 BIBLIOGRAPHY

B. Zelinka (1975b).
Intersection graphs of graphs. Mat. Casopis Sloven. Akad. Vied 25,
129--133. (Cited in §7.8.)

P. Zhang (to appear).
Probe interval graphs and their application to physical mapping of
DNA. (Cited in §3.4.1.)

A. A. Zykov (1987).
Fundamentals of Graph Theory. (English translation, 1990.) BCS
Associates, Moscow, ID. (Cited in Preface.)



Index
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¢-threshold graph, 106

¢-tolerance chain graph, 103
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¢-tolerance proper interval graph,
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¢-tolerance unit interval graph, 102

d-box graph, 110

k-polygon graph, 125

k-sun, see trampoline

k-tree, 116

p-competition graph, 92

p-edge clique cover, 90

p-generator, 90

p-intersection graph, 89

p-intersection number, 91

p-intersection set representation, 89

¢-T-edge clique cover, 107

50% tolerance graph, 102

abdiff-tolerance intersection graph,
99

acyclic database scheme, 35

ancestor set, 74

antichain, 12

asteroidal triple, 47, 132

asteroidal triple-free graph, 125, 132

astral triple, 56

augmented adjacency matrix, 112

bipartite adjacency matrix, 123

bipartite intersection graph, 117
bipartite interval graph, 118
bipartite representation, 86, 147
bipartite subtree graph, 119
bisimplicial edge, 121
bitolerance digraph, 102

block graph, 142
block-intersection graph, 134
boxicity, 110, 115

catch digraph, 120
catch graph, 62, 120
chord
of a clique tree, 24
of a cycle, 19
chordal bipartite graph, 112, 119,
121, 147
chordal graph, 19, 120, 140
chordal multigraph, 94
chordality, 115
chromatic chordal completion prob-
lem, 33
chromatic interval completion prob-
lem, 60
circle graph, 113, 114, 124
circular ones property, 112
circular-arc digraph, 119
circular-arc graph, 111, 114, 119,
141
clique graph, 13, 126
of chordal graph, 126, 142, 146
clique graph operator, 13
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clique hypergraph, 30, 127
clique multigraph, 94
clique path, 45
clique path representation, 45
clique tree, 20, 28
clique tree representation, 20
clique-Helly graph, 128
closed
under induced subgraphs, 6,
142
under powers, 140
under vertex expansion, 6
under vertex multiplication, 130
closed neighborhood, 11
cocomparability graph, 114, 131
cograph, 138
common enemy graph, 72
common neighborhood, 137
comparability graph, 113, 126, 129,
136
comparability multigraph, 131
compatibility analysis, 32
compatibility graph, 33
competition cover, 73
competition graph, 69, 118
competition multigraph, 96
competition number, 71
competition pseudograph, 99
competition-common enemy graph,
72
complement, 49
complement reducible graph, 138
completion sequence, 133
composition series, 6
conformality, 14
connection class, 131
connection digraph, 118
connection graph, 131
consecutive ones property, 56, 112
consecutive ranking, 73
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consecutive retrieval property, 63

consumer graph, see competition
graph

containment class, 130

containment graph, 126, 129, 137

convex subsets, 109

cotree, 139

coTT graph, 107

cycle of a hypergraph, 30

database scheme, 35
decomposable model, 40
degree partition, 77
difference graph, 84, 87
digraph, 48

directed hamiltonian path, 49
dominates, 132, 137
domination number, 137
dot product dimension, 134
dot product graph, 134
dual hypergraph, 30

dually chordal graph, see clique graph

of chordal graph

edge clique cover, 2

edge clique partition of a multi-
graph, 93

edge of hypergraph, 17

expanded tree, see clique graph of
chordal graph

factor, 142

family, 1

Ferrers digraph, 85

fuzzy intersection graph, 134

Gilmore criterion, 18
graph
of subgroups of a group, 135
of subsemigroups, 135
graph representation, 4
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grid dimension, 111
guest graph, 4
Guttman scale, 86

hamiltonian graph, 9

Helly circular-arc graph, 112

Helly condition, 13, 112, 128

Helly hypergraph, 18

hereditary clique-Helly graph, 129

hereditary upper bound graph, 138

host graph, 4

HT-graph, see clique graph of chordal
graph

hypergraph, 17

in-neighborhood, 68

indifference digraph, 118

indifference graph, 54, 61

infinite chordal graph, 133

infinite interval graph, 133

infinite subtree graph, 133

influence graph, 143

interaction graph, 40

intersection acyclic digraph, 119

intersection bigraph, see bipartite
intersection graph

intersection class, 6

intersection digraph, 117

intersection graph of a graph, 135

intersection number, 9, 11, 94

intersection pseudograph, 96

interval acyclic digraph, 119

interval catch graphs, 120

interval count, 57

interval digraph, 118

interval graph, 45, 109, 111, 114,
131, 141

interval hypergraph, 51

interval multigraph, 94

interval number, 114
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interval order, 61, 85
interval overlap graph, 124
interval pseudograph, 98
interval representation, 45
irreducible, 129

join tree, 35

Krausz-type characterization, 15
Kruskal’s algorithm, 22, 138

line graph, 15
of hypergraph, 18
line graph operator, 15

max-tolerance intersection graph,
99

max-tolerance sphere-of-influence graph,
144

maxclique, 1

of a pseudograph, 96

maxclique-vertex matrix, 56, 112

maximum cardinality search, 27,
141

min-tolerance intersection graph,
99

min-tolerance interval graph, 100,
114, 131

min-tolerance sphere-of-influence graph,
144

minimal edge separator, 122

minimal vertex separator, 23, 28

minimal vertex weak separator, 24

minimum fill-in problem, 36, 112,
124, 132

multiple edge, 93

multiple loop, 96

multiplicity, 93, 96

multiset, 1

multitrack interval graph, 115, 116
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neighborhood tree, 147

nested interval graph, 136

niche graph, 72

niche overlap graph, see competi-
tion graph

null subgraph, 1

odd intersection graph, 139
on-line coloring, 58

open neighborhood, 65
Opsut’s Conjecture, 72
orientation, 48

oriented graph, 49
out-neighborhood, 68
outerplanar graph, 111
overlap graph, 124

partial k-tree, 116

partial hypergraph, 30

partially ordered set, 74, 129

partition graph, 135

partition intersection graph, 32

path graph, 116, 120

path in a hypergraph, 51

path representation, 45

perfect edge elimination ordering,
121

perfect elimination ordering, 26, 141

perfect graph, 137

perfect matching, 142

permutation graph, 100, 114, 125,
130, 131

physical mapping, 59

point determining graph, 11, 13

polygon graph, 125

poset, 74, 129

power of a graph, 140

Prim’s algorithm, 28

probe interval graph, 59
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product-tolerance intersection graph,
99

proper circular-arc graph, 113, 141

proper interval digraph, 118

proper interval graph, 53, 113, 120,
141, 144

proper path representation, 53

proximity graph, 142

pseudo dual, 97, 129

pseudo-interval graph, 121

pseudointersection number, 11

quasi-threshold graph, 138

random intersection graph, 136

reducible pseudograph, 97

residual clique, 97

residual clique pseudograph, 97

resource graph, see common en-
emy graph

rigid-circuit graph, see chordal graph

semiorder, 62

series-parallel graph, 116

set representation, 2

set-labeled intersection graph, 2
simple edge, 93

simple elimination ordering, 145
simple hypergraph, 18

simple vertex, 145

simplicial vertex, 25, 122

sink, 68

source, 68

Souslin Hypothesis, 132
sphere-of-attraction graph, 144
sphere-of-influence graph, 142
split graph, 42, 77, 84, 115, 147
square of a graph, 65, 140
squared graph, 65

star, 43

string graph, 113
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strong clique tree, 146 two-path graph, 67

strong Helly condition, 129 two-step graph, 67

strong Helly hypergraph, 31, 129

strong neighborhood tree, 147

strongly chordal graph, 127, 141,
144 13

strongly closed under powers, 140 uniquely pseudointersectable graph,

subhypergraph, 30 13

subpaths of a tree, 116 unit circular-arc graph, 113

unit disk graph, 111

unit interval graph, 55, 83

unit path representation, 55

upper bound graph, 74, 135

underlying graph, 93
uniquely intersectable graph, 12,

subtree acyclic digraph, 119
subtree digraph, 119

subtree graph, see chordal graph
sum-tolerance intersection graph,

99 .
sum-tolerance sphere-of-influence graph, vertex expansion, 6, 130
144 weakly chordal graph, 59, 123
supercompact graph, 11 weakly triangulated graph, see weakly
chordal graph
threshold, 77 Weight, 77

threshold graph, 77, 138

threshold interval representation,
82

threshold tolerance graph, 107

tolerance graph, see min-tolerance
interval graph

totally balanced hypergraph, 30,
123, 146

tournament, 49

trampoline, 144

transitive digraph, 48

transitive orientation, 49, 130

trapezoid graph, 114, 125, 131

tree hypergraph, 28, 127

tree representation, 19, 54

tree-clique graph, see clique graph
of chordal graph

treewidth, 116

triangle-free graph, 10

triangulated graph, see chordal graph

trivially perfect graph, 137

weighted clique graph, 22



