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PREFACE

In today’s world, analytical thinking is a critical part of any solid education. An im-
portant segment of this kind of reasoning—one that cuts across many disciplines—is
discrete mathematics. Discrete math concerns counting, probability, (sophisticated
forms of) addition, and limit processes over discrete sets. Combinatorics, graph
theory, the idea of function, recurrence relations, permutations, and set theory are
all part of discrete math. Sequences and series are among the most important ap-
plications of these ideas.

Discrete mathematics is an essential part of the foundations of (theoretical)
computer science, statistics, probability theory, and algebra. The ideas come up
repeatedly in different parts of calculus. Many would argue that discrete math is
the most important component of all modern mathematical thought.

Most basic math courses (at the freshman and sophomore level) are oriented
toward problem-solving. Students can rely heavily on the provided examples as a
crutch to learn the basic techniques and pass the exams. Discrete mathematics is, by
contrast, rather theoretical. It involves proofs and ideas and abstraction. Freshman
and sophomores in college these days have little experience with theory or with
abstract thinking. They simply are not intellectually prepared for such material.

Steven G. Krantz is an award-winning teacher, author of the book How to Teach
Mathematics. He knows how to present mathematical ideas in a concrete fashion
that students can absorb and master in a comfortable fashion. He can explain even
abstract concepts in a hands-on fashion, making the learning process natural and
fluid. Examples can be made tactile and real, thus helping students to finesse abstract
technicalities. This book will serve as an ideal supplement to any standard text. It
will help students over the traditional “hump” that the first theoretical math course
constitutes. It will make the course palatable. Krantz has already authored two
successful Demystified books.

The good news is that discrete math, particularly sequences and series, can
be illustrated with concrete examples from the real world. They can be made to
be realistic and approachable. Thus the rather difficult set of ideas can be made
accessible to a broad audience of students. For today’s audience—consisting not
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only of mathematics students but of engineers, physicists, premedical students,
social scientists, and others—this feature is especially important.

A typical audience for this book will be freshman and sophomore students in the
mathematical sciences, in engineering, in physics, and in any field where analytical
thinking will play a role. Today premedical students, nursing students, business
students, and many others take some version of calculus or discrete math or both.
They will definitely need help with these theoretical topics.

This text has several key features that make it unique and useful:

1. The book makes abstract ideas concrete. All concepts are presented succinctly
and clearly.

2. Real-world examples illustrate ideas and make them accessible.

3. Applications and examples come from real, believable contexts that are
familiar and meaningful.

4. Exercises develop both routine and analytical thinking skills.

5. The book relates discrete math ideas to other parts of mathematics and
science.

Discrete Mathematics Demystified explains this panorama of ideas in a step-by-
step and accessible manner. The author, a renowned teacher and expositor, has a
strong sense of the level of the students who will read this book, their backgrounds
and their strengths, and can present the material in accessible morsels that the student
can study on his or her own. Well-chosen examples and cognate exercises will
reinforce the ideas being presented. Frequent review, assessment, and application
of the ideas will help students to retain and to internalize all the important concepts
of calculus.

Discrete Mathematics Demystified will be a valuable addition to the self-help
literature. Written by an accomplished and experienced teacher, this book will also
aid the student who is working without a teacher. It will provide encouragement and
reinforcement as needed, and diagnostic exercises will help the student to measure
his or her progress.



CHAPTER 1

Logic

Strictly speaking, our approach to logic is “intuitive” or “naı̈ve.” Whereas in
ordinary conversation these emotion-charged words may be used to downgrade
the value of that which is being described, our use of these words is more technical.
What is meant is that we shall prescribe in this chapter certain rules of logic, which
are to be followed in the rest of the book. They will be presented to you in such a
way that their validity should be intuitively appealing and self-evident. We cannot
prove these rules. The rules of logic are the point where our learning begins. A
more advanced course in logic will explore other logical methods. The ones that
we present here are universally accepted in mathematics and in most of science and
analytical thought.

We shall begin with sentential logic and elementary connectives. This material is
called the propositional calculus (to distinguish it from the predicate calculus, which
will be treated later). In other words, we shall be discussing propositions—which
are built up from atomic statements and connectives. The elementary connectives
include “and,” “or,” “not,” “if-then,” and “if and only if.” Each of these will have a
precise meaning and will have exact relationships with the other connectives.

An elementary statement (or atomic statement) is a sentence with a subject and
a verb (and sometimes an object) but no connectives (and, or, not, if then, if, and
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only if). For example,

John is good

Mary has bread

Ethel reads books

are all atomic statements. We build up sentences, or propositions, from atomic
statements using connectives.

Next we shall consider the quantifiers “for all” and “there exists” and their
relationships with the connectives from the last paragraph. The quantifiers will
give rise to the so-called predicate calculus. Connectives and quantifiers will prove
to be the building blocks of all future statements in this book, indeed in all of
mathematics.

1.1 Sentential Logic
In everyday conversation, people sometimes argue about whether a statement is true
or not. In mathematics there is nothing to argue about. In practice a sensible state-
ment in mathematics is either true or false, and there is no room for opinion about
this attribute. How do we determine which statements are true and which are false?

The modern methodology in mathematics works as follows:

• We define certain terms.

• We assume that these terms, or statements about them, have certain properties
or truth attributes (these assumptions are called axioms).

• We specify certain rules of logic.

Any statement that can be derived from the axioms, using the rules of logic, is
understood to be true. It is not necessarily the case that every true statement can be
derived in this fashion. However, in practice this is our method for verifying that a
statement is true.

On the other hand, a statement is false if it is inconsistent with the axioms and
the rules of logic. That is to say, a statement is false if the assumption that it is true
leads to a contradiction. Alternatively, a statement P is false if the negation of P can
be established or proved. While it is possible for a statement to be false without our
being able to derive a contradiction in this fashion, in practice we establish falsity
by the method of contradiction or by giving a counterexample (which is another
aspect of the method of contradiction).
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The point of view being described here is special to mathematics. While it is
indeed true that mathematics is used to model the world around us—in physics,
engineering, and in other sciences—the subject of mathematics itself is a man-made
system. Its internal coherence is guaranteed by the axiomatic method that we have
just described.

It is worth mentioning that “truth” in everyday life is treated differently. When you
tell someone “I love you” and you are asked for proof, a mathematical verification
will not do the job. You will offer empirical evidence of your caring, your fealty,
your monogamy, and so forth. But you cannot give a mathematical proof. In a court
of law, when an attorney “proves” a case, he/she does so by offering evidence and
arguing from that evidence. The attorney cannot offer a mathematical argument.

The way that we reason in mathematics is special, but it is ideally suited to the
task that we must perform. It is a means of rigorously manipulating ideas to arrive
at new truths. It is a methodology that has stood the test of time for thousands of
years, and that guarantees that our ideas will travel well and apply to a great variety
of situations and applications.

It is reasonable to ask whether mathematical truth is a construct of the human
mind or an immutable part of nature. For instance, is the assertion that “the area of
a circle is π times the radius squared” actually a fact of nature just like Newton’s
inverse square law of gravitation? Our point of view is that mathematical truth is
relative. The formula for the area of a circle is a logical consequence of the axioms
of mathematics, nothing more. The fact that the formula seems to describe what
is going on in nature is convenient, and is part of what makes mathematics useful.
But that aspect is something over which we as mathematicians have no control. Our
concern is with the internal coherence of our logical system.

It can be asserted that a “proof” (a concept to be discussed later in the book) is a
psychological device for convincing the reader that an assertion is true. However, our
view in this book is more rigid: a proof of an assertion is a sequence of applications
of the rules of logic to derive the assertion from the axioms. There is no room for
opinion here. The axioms are plain. The rules are rigid. A proof is like a sequence
of moves in a game of chess. If the rules are followed then the proof is correct.
Otherwise not.

1.2 ‘‘And’’ and ‘‘Or’’
Let A be the statement “Arnold is old.” and B be the statement “Arnold is fat.” The
new statement

“A and B”
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means that both A is true and B is true. Thus

Arnold is old and Arnold is fat

means both that Arnold is old and Arnold is fat. If we meet Arnold and he turns out
to be young and fat, then the statement is false. If he is old and thin then the statement
is false. Finally, if Arnold is both young and thin then the statement is false. The
statement is true precisely when both properties—oldness and fatness—hold. We
may summarize these assertions with a truth table. We let

A = Arnold is old

and

B = Arnold is fat

The expression

A ∧ B

will denote the phrase “A and B.” We call this statement the conjunction of A and
B. The letters “T” and “F” denote “True” and “False” respectively. Then we have

A B A ∧ B

T T T
T F F
F T F
F F F

Notice that we have listed all possible truth values of A and B and the corresponding
values of the conjunction A ∧ B. The conjunction is true only when both A and B are
true. Otherwise it is false. This property is a special feature of conjunction, or “and.”

In a restaurant the menu often contains phrases such as

soup or salad

This means that we may select soup or select salad, but we may not select both.
This use of the word “or” is called the exclusive “or”; it is not the meaning of “or”
that we use in mathematics and logic. In mathematics we instead say that “A or
B” is true provided that A is true or B is true or both are true. This is the inclusive
“or.” If we let A ∨ B denote “A or B” then the truth table is
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A B A ∨ B

T T T
T F T
F T T
F F F

We call the statement A ∨ B the disjunction of A and B. Note that this disjunction
is true in three out of four cases: the only time the disjunction is false is if both
components are false.

The reason that we use the inclusive form of “or” in mathematics is that this
form of “or” has a nice relationship with “and,” as we shall see below. The other
form of “or” does not.

We see from the truth table that the only way that “A or B” can be false is if both
A is false and B is false. For instance, the statement

Hilary is beautiful or Hilary is poor

means that Hilary is either beautiful or poor or both. In particular, she will not
be both ugly and rich. Another way of saying this is that if she is ugly she will
compensate by being poor; if she is rich she will compensate by being beautiful.
But she could be both beautiful and poor.

EXAMPLE 1.1
The statement

x > 2 and x < 5

is true for the number x = 3 because this value of x is both greater than 2 and less
than 5. It is false for x = 6 because this x value is greater than 2 but not less than
5. It is false for x = 1 because this x is less than 5 but not greater than 2. �

EXAMPLE 1.2
The statement

x is odd and x is a perfect cube

is true for x = 27 because both assertions hold. It is false for x = 7 because this x,

while odd, is not a cube. It is false for x = 8 because this x, while a cube, is not
odd. It is false for x = 10 because this x is neither odd nor is it a cube. �
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EXAMPLE 1.3
The statement

x < 3 or x > 6

is true for x = 2 since this x is < 3 (even though it is not > 6). It holds (that is, it
is true) for x = 9 because this x is > 6 (even though it is not < 3). The statement
fails (that is, it is false) for x = 4 since this x is neither < 3 nor > 6. �

EXAMPLE 1.4
The statement

x > 1 or x < 4

is true for every real x . As an exercise, you should provide a detailed reason for
this answer. (Hint: Consider separately the cases x < 1, x = 1, 1 < x < 4, x = 4,
and x > 4.) �

EXAMPLE 1.5
The statement (A ∨ B) ∧ B has the following truth table:

A B A ∨ B (A ∨ B) ∧ B

T T T T
T F T F
F T T T
F F F F

�

You Try It: Construct a truth table for the statement

The number x is positive and is a perfect square

Notice in Example 1.5 that the statement (A ∨ B) ∧ B has the same truth values
as the simpler statement B. In what follows, we shall call such pairs of statements
(having the same truth values) logically equivalent.

The words “and” and “or” are called connectives; their role in sentential logic
is to enable us to build up (or to connect together) pairs of statements. The idea is
to use very simple statements, like “Jennifer is swift.” as building blocks; then we
compose more complex statements from these building blocks by using connectives.
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In the next two sections we will become acquainted with the other two basic
connectives “not” and “if-then.” We shall also say a little bit about the compound
connective “if and only if.”

1.3 ‘‘Not”
The statement “not A,” written ∼ A, is true whenever A is false. For example, the
statement

Charles is not happily married

is true provided the statement “Charles is happily married” is false. The truth table
for ∼ A is as follows:

A ∼ A

T F
F T

Greater understanding is obtained by combining the connectives:

EXAMPLE 1.6
We examine the truth table for ∼ (A ∧ B):

A B A ∧ B ∼ (A ∧ B)

T T T F
T F F T
F T F T
F F F T

�

EXAMPLE 1.7
Now we look at the truth table for (∼ A) ∨ (∼ B):

A B ∼ A ∼ B (∼ A) ∨ (∼ B)

T T F F F
T F F T T
F T T F T
F F T T T �
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Notice that the statements ∼ (A ∧ B) and (∼ A) ∨ (∼ B) have the same truth
table. As previously noted, such pairs of statements are called logically equivalent.

The logical equivalence of ∼ (A ∧ B) with (∼ A) ∨ (∼ B) makes good intuitive
sense: the statement A ∧ B fails [that is, ∼ (A ∧ B) is true] precisely when either A
is false or B is false. That is, (∼ A) ∨ (∼ B). Since in mathematics we cannot rely
on our intuition to establish facts, it is important to have the truth table technique
for establishing logical equivalence. The exercise set will give you further practice
with this notion.

One of the main reasons that we use the inclusive definition of “or” rather than the
exclusive one is so that the connectives “and” and “or” have the nice relationship just
discussed. It is also the case that ∼ (A ∨ B) and (∼ A) ∧ (∼ B) are logically equiv-
alent. These logical equivalences are sometimes referred to as de Morgan’s laws.

1.4 ‘‘If-Then’’
A statement of the form “If A then B” asserts that whenever A is true then B is
also true. This assertion (or “promise”) is tested when A is true, because it is then
claimed that something else (namely B) is true as well. However, when A is false
then the statement “If A then B” claims nothing. Using the symbols A ⇒ B to
denote “If A then B”, we obtain the following truth table:

A B A ⇒ B

T T T
T F F
F T T
F F T

Notice that we use here an important principle of aristotelian logic: every sen-
sible statement is either true or false. There is no “in between” status. When A is
false we can hardly assert that A ⇒ B is false. For A ⇒ B asserts that “whenever
A is true then B is true”, and A is not true!

Put in other words, when A is false then the statement A ⇒ B is not tested. It
therefore cannot be false. So it must be true. We refer to A as the hypothesis of
the implication and to B as the conclusion of the implication. When the if-then
statement is true, then the hypothsis implies the conclusion.

EXAMPLE 1.8
The statement “If 2 = 4 then Calvin Coolidge was our greatest president” is true.
This is the case no matter what you think of Calvin Coolidge. The point is that
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the hypothesis (2 = 4) is false; thus it doesn’t matter what the truth value of the
conclusion is. According to the truth table for implication, the sentence is true.

The statement “If fish have hair then chickens have lips” is true. Again, the
hypothesis is false so the sentence is true.

The statement “If 9 > 5 then dogs don’t fly” is true. In this case the hypothesis
is certainly true and so is the conclusion. Therefore the sentence is true.

(Notice that the “if” part of the sentence and the “then” part of the sentence need
not be related in any intuitive sense. The truth or falsity of an “if-then” statement
is simply a fact about the logical values of its hypothesis and of its conclusion.) �

EXAMPLE 1.9
The statement A ⇒ B is logically equivalent with (∼ A) ∨ B. For the truth table
for the latter is

A B ∼ A (∼ A) ∨ B

T T F T
T F F F
F T T T
F F T T

which is the same as the truth table for A ⇒ B. �
You should think for a bit to see that (∼ A) ∨ B says the same thing as A ⇒ B.
To wit, assume that the statement (∼ A) ∨ B is true. Now suppose that A is true. It
follows that ∼ A is false. Then, according to the disjunction, B must be true. But
that says that A ⇒ B. For the converse, assume that A ⇒ B is true. This means that
if A holds then B must follow. But that just says (∼ A) ∨ B. So the two statements
are equivalent, that is, they say the same thing.

Once you believe that assertion, then the truth table for (∼ A) ∨ B gives us
another way to understand the truth table for A ⇒ B.1

There are in fact infinitely many pairs of logically equivalent statements. But just
a few of these equivalences are really important in practice—most others are built
up from these few basic ones. Some of the other basic pairs of logically equivalent
statements are explored in the exercises.

EXAMPLE 1.10
The statement

If x is negative then − 5 · x is positive

1Once again, this logical equivalence illustrates the usefulness of the inclusive version of “or.”
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is true. For if x < 0 then −5 · x is indeed > 0; if x ≥ 0 then the statement is
unchallenged. �

EXAMPLE 1.11
The statement

If (x > 0 and x2 < 0) then x ≥ 10

is true since the hypothesis “x > 0 and x2 < 0” is never true. �

EXAMPLE 1.12
The statement

If x > 0 then (x2 < 0 or 2x < 0)

is false since the conclusion “x2 < 0 or 2x < 0” is false whenever the hypothesis
x > 0 is true. �

EXAMPLE 1.13
Let us construct a truth table for the statement [A ∨ (∼ B)] ⇒ [(∼ A) ∧ B].

A B ∼ A ∼ B [A ∨ (∼ B)] [(∼ A) ∧ B]

T T F F T F
T F F T T F
F T T F F T
F F T T T F

[A ∨ (∼ B)] ⇒ [(∼ A) ∧ B]

F
F
T
F �

Notice that the statement [A ∨ (∼ B)] ⇒ [(∼ A) ∧ B] has the same truth table as
∼ (B ⇒ A). Can you comment on the logical equivalence of these two statements?

Perhaps the most commonly used logical syllogism is the following. Suppose
that we know the truth of A and of A ⇒ B. We wish to conclude B. Examine the
truth table for A ⇒ B. The only line in which both A is true and A ⇒ B is true
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is the line in which B is true. That justifies our reasoning. In logic texts, the syl-
logism we are discussing is known as modus ponendo ponens or, more briefly,
modus ponens.

EXAMPLE 1.14
Consider the two statements

It is cloudy

and

If it is cloudy then it is raining

We think of the first of these as A and the second as A ⇒ B. From these two taken
together we may conclude B, or

It is raining �

EXAMPLE 1.15
The statement

Every yellow dog has fleas

together with the statement

Fido is a blue dog

allows no logical conclusion. The first statement has the form A ⇒ B but the second
statement is not A. So modus ponendo ponens does not apply. �

EXAMPLE 1.16
Consider the two statements

All Martians eat breakfast

and

My friend Jim eats breakfast

It is quite common, in casual conversation, for people to abuse logic and to conclude
that Jim must be a Martian. Of course this is an incorrect application of modus
ponendo ponens. In fact no conclusion is possible. �
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1.5 Contrapositive, Converse, and ‘‘Iff’’
The statement

If A then B

is the same as

A ⇒ B

or

A suffices for B

or as saying

A only if B

All these forms are encountered in practice, and you should think about them long
enough to realize that they say the same thing.

On the other hand,

If B then A

is the same as saying

B ⇒ A

or

A is necessary for B

or as saying

A if B

We call the statement B ⇒ A the converse of A ⇒ B. The converse of an implication
is logically distinct from the implication itself. Generally speaking, the converse
will not be logically equivalent to the original implication. The next two examples
illustrate the point.

EXAMPLE 1.17
The converse of the statement

If x is a healthy horse then x has four legs
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is the statement

If x has four legs then x is a healthy horse

Notice that these statements have very different meanings: the first statement is true
while the second (its converse) is false. For instance, a chair has four legs but it is
not a healthy horse. Likewise for a pig. �

EXAMPLE 1.18
The statement

If x > 5 then x > 3

is true. Any number that is greater than 5 is certainly greater than 3. But the converse

If x > 3 then x > 5

is certainly false. Take x = 4. Then the hypothesis is true but the conclusion is
false. �

The statement

A if and only if B

is a brief way of saying

If A then B and If B then A

We abbreviate A if and only if B as A ⇔ B or as A iff B. Now we look at a truth
table for A ⇔ B.

A B A ⇒ B B ⇒ A A ⇔ B

T T T T T
T F F T F
F T T F F
F F T T T

Notice that we can say that A ⇔ B is true only when both A ⇒ B and B ⇒ A are
true. An examination of the truth table reveals that A ⇔ B is true precisely when
A and B are either both true or both false. Thus A ⇔ B means precisely that A and
B are logically equivalent. One is true when and only when the other is true.
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EXAMPLE 1.19
The statement

x > 0 ⇔ 2x > 0

is true. For if x > 0 then 2x > 0; and if 2x > 0 then x > 0. �

EXAMPLE 1.20
The statement

x > 0 ⇔ x2 > 0

is false. For x > 0 ⇒ x2 > 0 is certainly true while x2 > 0 ⇒ x > 0 is false
[(−3)2 > 0 but −3 �> 0]. �

EXAMPLE 1.21
The statement

[∼ (A ∨ B)] ⇔ [(∼ A) ∧ (∼ B)] (1.1)

is true because the truth table for ∼(A ∨ B) and that for (∼ A) ∧ (∼ B) are the
same. Thus they are logically equivalent: one statement is true precisely when the
other is. Another way to see the truth of Eq. (1.1) is to examine the truth table:

A B ∼ (A ∨ B) (∼ A) ∧ (∼ B) [∼ (A ∨ B)] ⇔ [(∼ A) ∧ (∼ B)]

T T F F T
T F F F T
F T F F T
F F T T T

�

Given an implication

A ⇒ B

the contrapositive statement is defined to be the implication

∼ B ⇒∼ A

The contrapositive (unlike the converse) is logically equivalent to the original im-
plication, as we see by examining their truth tables:
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A B A ⇒ B

T T T
T F F
F T T
F F T

and

A B ∼ A ∼ B (∼ B) ⇒ (∼ A)

T T F F T
T F F T F
F T T F T
F F T T T

EXAMPLE 1.22
The statement

If it is raining, then it is cloudy

has, as its contrapositive, the statement

If there are no clouds, then it is not raining

A moment’s thought convinces us that these two statements say the same thing: if
there are no clouds, then it could not be raining; for the presence of rain implies the
presence of clouds. �

The main point to keep in mind is that, given an implication A ⇒ B, its converse
B ⇒ A and its contrapositive (∼ B) ⇒ (∼ A) are entirely different statements.
The converse is distinct from, and logically independent from, the original state-
ment. The contrapositive is distinct from, but logically equivalent to, the original
statement.

Some classical treatments augment the concept of modus ponens with the idea of
modus tollendo tollens or modus tollens. It is in fact logically equivalent to modus
ponens. Modus tollens says

If ∼ B and A ⇒ B then ∼ A
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Modus tollens actualizes the fact that ∼ B ⇒ ∼ A is logically equivalent to
A ⇒ B. The first of these implications is of course the contrapositive of the second.

1.6 Quantifiers
The mathematical statements that we will encounter in practice will use the con-
nectives “and,” “or,” “not,” “if-then,” and “iff.” They will also use quantifiers. The
two basic quantifiers are “for all” and “there exists”.

EXAMPLE 1.23
Consider the statement

All automobiles have wheels

This statement makes an assertion about all automobiles. It is true, because every
automobile does have wheels.

Compare this statement with the next one:

There exists a woman who is blonde

This statement is of a different nature. It does not claim that all women have blonde
hair—merely that there exists at least one woman who does. Since that is true, the
statement is true. �

EXAMPLE 1.24
Consider the statement

All positive real numbers are integers

This sentence asserts that something is true for all positive real numbers. It is indeed
true for some positive numbers, such as 1 and 2 and 193. However, it is false for at
least one positive number (such as 1/10 or π ), so the entire statement is false.

Here is a more extreme example:

The square of any real number is positive

This assertion is almost true—the only exception is the real number 0: 02 = 0 is
not positive. But it only takes one exception to falsify a “for all” statement. So the
assertion is false.

This last example illustrates the principle that the negation of a “for all” statement
is a “there exists” statement. �
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EXAMPLE 1.25
Look at the statement

There exists a real number which is greater than 5

In fact there are lots of numbers which are greater than 5; some examples are 7, 42,
2π , and 97/3. Other numbers, such as 1, 2, and π /6, are not greater than 5. Since
there is at least one number satisfying the assertion, the assertion is true. �

EXAMPLE 1.26
Consider the statement

There is a man who is at least 10 feet tall

This statement is false. To verify that it is false, we must demonstrate that there
does not exist a man who is at least 10 feet tall. In other words, we must show that
all men are shorter than 10 feet.

The negation of a “there exists” statement is a “for all” statement.
A somewhat different example is the sentence

There exists a real number which satisfies the equation

x3 − 2x2 + 3x − 6 = 0

There is in fact only one real number which satisfies the equation, and that is x = 2.
Yet that information is sufficient to show that the statement true. �

We often use the symbol ∀ to denote “for all” and the symbol ∃ to denote “there
exists.” The assertion

∀x, x + 1 < x

claims that for every x, the number x + 1 is less than x . If we take our universe to
be the standard real number system, then this statement is false. The assertion

∃x, x2 = x

claims that there is a number whose square equals itself. If we take our universe to
be the real numbers, then the assertion is satisfied by x = 0 and by x = 1. Therefore
the assertion is true.

In all the examples of quantifiers that we have discussed so far, we were careful
to specify our universe (or at least the universe was clear from context). That is,
“There is a woman such that . . . ” or “All positive real numbers are . . . ” or “All
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automobiles have . . . .” The quantified statement makes no sense unless we specify
the universe of objects from which we are making our specification. In the discussion
that follows, we will always interpret quantified statements in terms of a universe.
Sometimes the universe will be explicitly specified, while other times it will be
understood from context.

Quite often we will encounter ∀ and ∃ used together. The following examples
are typical:

EXAMPLE 1.27
The statement

∀x ∃y, y > x

claims that, for any real number x , there is a number y which is greater than it. In
the realm of the real numbers this is true. In fact y = x + 1 will always do the trick.

The statement

∃x ∀y, y > x

has quite a different meaning from the first one. It claims that there is an x which
is less than every y. This is absurd. For instance, x is not less than y = x − 1. �

EXAMPLE 1.28
The statement

∀x ∀y, x2 + y2 ≥ 0

is true in the realm of the real numbers: it claims that the sum of two squares is
always greater than or equal to zero. (This statement happens to be false in the realm
of the complex numbers. When we interpret a logical statement, it will always be
important to understand the context, or universe, in which we are working.)

The statement

∃x∃y, x + 2y = 7

is true in the realm of the real numbers: it claims that there exist x and y such that
x + 2y = 7. Certainly the numbers x = 3, y = 2 will do the job (although there
are many other choices that work as well). �

It is important to note that ∀ and ∃ do not commute. That is to say, ∀∃ and ∃∀
do not mean the same thing. Examine Example 1.27 with this thought in mind to
make sure that you understand the point.
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We conclude by noting that ∀ and ∃ are closely related. The statements

∀x, B(x) and ∼ ∃x, ∼ B(x)

are logically equivalent. The first asserts that the statement B(x) is true for all values
of x. The second asserts that there exists no value of x for which B(x) fails, which
is the same thing.

Likewise, the statements

∃x, B(x) and ∼ ∀x, ∼ B(x)

are logically equivalent. The first asserts that there is some x for which B(x) is true.
The second claims that it is not the case that B(x) fails for every x , which is the
same thing.

A “for all” statement is something like the conjunction of a very large number
of simpler statements. For example, the statement

For every nonzero integer n, n2 > 0

is actually an efficient way of saying that 12 > 0 and (−1)2 > 0 and 22 > 0, and
so on. It is not feasible to apply truth tables to “for all” statements, and we usually
do not do so.

A “there exists” statement is something like the disjunction of a very large
number of statements (the word “disjunction” in the present context means an “or”
statement). For example, the statement

There exists an integer n such that P (n) = 2n2 − 5n + 2 = 0

is actually an efficient way of saying that “P(1) = 0 or P(−1) = 0 or P(2) = 0,
and so on.” It is not feasible to apply truth tables to “there exist” statements, and
we usually do not do so.

It is common to say that first-order logic consists of the connectives ∧, ∨, ∼, ⇒,
⇐⇒ , the equality symbol =, and the quantifiers ∀ and ∃, together with an infinite
string of variables x, y, z, . . . , x ′, y′, z′, . . . and, finally, parentheses ( , , ) to keep
things readable. The word “first” here is used to distinguish the discussion from
second-order and higher-order logics. In first-order logic the quantifiers ∀ and ∃
always range over elements of the domain M of discourse. Second-order logic, by
contrast, allows us to quantify over subsets of M and functions F mapping M × M
into M . Third-order logic treats sets of function and more abstract constructs. The
distinction among these different orders is often moot.
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Exercises
1. Construct truth tables for each of the following sentences:

a. (S ∧ T)∨ ∼ (S ∨ T)

b. (S ∨ T) ⇒ (S ∧ T)

2. Let
S = All fish have eyelids.

T = There is no justice in the world.

U = I believe everything that I read.

V = The moon’s a balloon.

Express each of the following sentences using the letters S, T, U, V and the
connectives ∨,∧,∼,⇒,⇔ . Do not use quantifiers.

a. If fish have eyelids then there is at least some justice in the world.

b. If I believe everything that I read then either the moon’s a balloon or at
least some fish have no eyelids.

3. Let

S = All politicians are honest.

T = Some men are fools.

U = I don’t have two brain cells to rub together.

W = The pie is in the sky.

Translate each of the following into English sentences:

a. (S∧ ∼ T) ⇒∼ U

b. W ∨ (T∧ ∼ U)

4. State the converse and the contrapositive of each of the following sentences.
Be sure to label each.

a. In order for it to rain it is necessary that there be clouds.

b. In order for it to rain it is sufficient that there be clouds.

5. Assume that the universe is the ordinary system R of real numbers. Which
of the following sentences is true? Which is false? Give reasons for your
answers.

a. If π is rational then the area of a circle is E = mc2.

b. If 2 + 2 = 4 then 3/5 is a rational number.
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6. For each of the following statements, formulate a logically equivalent one
using only S, T, ∼, and ∨. (Of course you may use as many parentheses as
you need.) Use a truth table or other means to explain why the statements
are logically equivalent.

a. S ⇒∼ T

b. ∼ S∧ ∼ T

7. For each of the following statements, formulate an English sentence that is
its negation:

a. The set S contains at least two integers.

b. Mares eat oats and does eat oats.

8. Which of these pairs of statements is logically equivalent? Why?

(a) A∨ ∼ B ∼ A ⇒ B
(b) A∧ ∼ B ∼ A ⇒∼ B
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CHAPTER 2

Methods of
Mathematical Proof

2.1 What Is a Proof?
When a chemist asserts that a substance that is subjected to heat will tend to expand,
he/she verifies the assertion through experiment. It is a consequence of the definition
of heat that heat will excite the atomic particles in the substance; it is plausible that
this in turn will necessitate expansion of the substance. However, our knowledge of
nature is not such that we may turn these theoretical ingredients into a categorical
proof. Additional complications arise from the fact that the word “expand” requires
detailed definition. Apply heat to water that is at temperature 40 degree Fahrenheit
or above, and it expands—with enough heat it becomes a gas that surely fills more
volume than the original water. But apply heat to a diamond and there is no apparent
“expansion”—at least not to the naked eye.

Mathematics is a less ambitious subject. In particular, it is closed. It does not
reach outside itself for verification of its assertions. When we make an assertion in
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mathematics, we must verify it using the rules that we have laid down. That is, we
verify it by applying our rules of logic to our axioms and our definitions; in other
words, we construct a proof.

In modern mathematics we have discovered that there are perfectly sensible
mathematical statements that in fact cannot be verified in this fashion, nor can
they be proven false. This is a manifestation of Gödel’s incompleteness theorem:
that any sufficiently complex logical system will contain such unverifiable, indeed
untestable, statements. Fortunately, in practice, such statements are the exception
rather than the rule. In this book, and in almost all of university-level mathematics,
we concentrate on learning about statements whose truth or falsity is accessible by
way of proof.

This chapter considers the notion of mathematical proof. We shall concentrate
on the three principal types of proof: direct proof, proof by contradiction, and proof
by induction. In practice, a mathematical proof may contain elements of several or
all of these techniques. You will see all the basic elements here. You should be sure
to master each of these proof techniques, both so that you can recognize them in
your reading and so that they become tools that you can use in your own work.

2.2 Direct Proof
In this section we shall assume that you are familiar with the positive integers, or
natural numbers (a detailed treatment of the natural numbers appears in Sec. 5.2).
This number system {1, 2, 3, . . .} is denoted by the symbol N. For now we will take
the elementary arithmetic properties of N for granted. We shall formulate various
statements about natural numbers and we shall prove them. Our methodology will
emulate the discussions in earlier sections. We begin with a definition.

Definition 2.1 A natural number n is said to be even if, when it is divided by 2,
there is an integer quotient and no remainder.

Definition 2.2 A natural number n is said to be odd if, when it is divided by 2,
there is an integer quotient and remainder 1.

You may have never before considered, at this level of precision, what is the
meaning of the terms “odd” or “even.” But your intuition should confirm these
definitions. A good definition should be precise, but it should also appeal to your
heuristic idea about the concept that is being defined.

Notice that, according to these definitions, any natural number is either even or
odd. For if n is any natural number, and if we divide it by 2, then the remainder
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will be either 0 or 1—there is no other possibility (according to the Euclidean
algorithm). In the first instance, n is even; in the second, n is odd.

In what follows we will find it convenient to think of an even natural number
as one having the form 2m for some natural number m. We will think of an odd
natural number as one having the form 2k + 1 for some nonnegative integer k.
Check for yourself that, in the first instance, division by 2 will result in a quotient
of m and a remainder of 0; in the second instance it will result in a quotient of k
and a remainder of 1.

Now let us formulate a statement about the natural numbers and prove it. Fol-
lowing tradition, we refer to formal mathematical statements either as theorems
or propositions or sometimes as lemmas. A theorem is supposed to be an impor-
tant statement that is the culmination of some development of significant ideas. A
proposition is a statement of lesser intrinsic importance. Usually a lemma is of no
intrinsic interest, but is needed as a step along the way to verifying a theorem or
proposition.

Proposition 2.1 The square of an even natural number is even.

Proof: Let us begin by using what we learned in Chap. 1. We may reformulate
our statement as “If n is even then n · n is even.” This statement makes a promise.
Refer to the definition of “even” to see what that promise is:

If n can be written as twice a natural number then n · n can be written as twice
a natural number.

The hypothesis of the assertion is that n = 2 · m for some natural number m. But
then

n2 = n · n = (2m) · (2m) = 4m2 = 2(2m2)

Our calculation shows that n2 is twice the natural number 2m2. So n2 is also even.
We have shown that the hypothesis that n is twice a natural number entails the

conclusion that n2 is twice a natural number. In other words, if n is even then n2 is
even. That is the end of our proof. �

Remark 2.1 What is the role of truth tables at this point? Why did we not use a
truth table to verify our proposition? One could think of the statement that we are
proving as the conjunction of infinitely many specific statements about concrete
instances of the variable n; and then we could verify each one of those statements.
But such a procedure is inelegant and, more importantly, impractical.

For our purpose, the truth table tells us what we must do to construct a proof.
The truth table for A ⇒ B shows that if A is false then there is nothing to check
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whereas if A is true then we must show that B is true. That is just what we did in
the proof of Proposition 2.1.

Most of our theorems are “for all” statements or “there exists” statements. In
practice, it is not usually possible to verify them directly by use of a truth table.

Proposition 2.2 The square of an odd natural number is odd.

Proof: We follow the paradigm laid down in the proof of the previous proposition.
Assume that n is odd. Then n = 2k + 1 for some nonnegative integer k. But then

n2 = n · n = (2k + 1) · (2k + 1) = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

We see that n2 is 2k ′ + 1, where k ′ = 2k2 + 2k. In other words, according to our
definition, n2 is odd. �

Both of the proofs that we have presented are examples of “direct proof.” A
direct proof proceeds according to the statement being proved; for instance, if
we are proving a statement about a square then we calculate that square. If we
are proving a statement about a sum then we calculate that sum. Here are some
additional examples:

EXAMPLE 2.1
Prove that, if n is a positive integer, then the quantity n2 + 3n + 2 is even.

Solution: Denote the quantity n2 + 3n + 2 by K . Observe that

K = n2 + 3n + 2 = (n + 1)(n + 2)

Thus K is the product of two successive integers: n + 1 and n + 2. One of those
two integers must be even. So it is a multiple of 2. Therefore K itself is a multiple
of 2. Hence K must be even. �

You Try It: Prove that the cube of an odd number must be odd.

Proposition 2.3 The sum of two odd natural numbers is even.

Proof: Suppose that p and q are both odd natural numbers. According to the
definition, we may write p = 2r + 1 and q = 2s + 1 for some nonnegative integers
r and s. Then

p + q = (2r + 1) + (2s + 1) = 2r + 2s + 2 = 2(r + s + 1)

We have realized p + q as twice the natural number r + s + 1. Therefore p + q is
even. �
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Remark 2.2 If we did mathematics solely according to what sounds good, or what
appeals intuitively, then we might reason as follows: “if the sum of two odd natural
numbers is even then it must be that the sum of two even natural numbers is odd.”
This is incorrect. For instance 4 and 6 are each even but their sum 4 + 6 = 10 is
not odd.

Intuition definitely plays an important role in the development of mathematics,
but all assertions in mathematics must, in the end, be proved by rigorous methods.

EXAMPLE 2.2
Prove that the sum of an even integer and an odd integer is odd.

Solution: An even integer is divisible by 2, so may be written in the form e = 2m,
where m is an integer. An odd integer has remainder 1 when divided by 2, so may
be written in the form o = 2k + 1, where k is an integer. The sum of these is

e + o = 2m + (2k + 1) = 2(m + k) + 1

Thus we see that the sum of an even and an odd integer will have remainder 1 when
it is divided by 2. As a result, the sum is odd. �

Proposition 2.4 The sum of two even natural numbers is even.

Proof: Let p = 2r and q = 2s both be even natural numbers. Then

p + q = 2r + 2s = 2(r + s)

We have realized p + q as twice a natural number. Therefore we conclude that
p + q is even. �

Proposition 2.5 Let n be a natural number. Then either n > 6 or n < 9.

Proof: If you draw a picture of a number line then you will have no trouble
convincing yourself of the truth of the assertion. What we want to learn here is to
organize our thoughts so that we may write down a rigorous proof.

Our discussion of the connective “or” in Sec. 1.2 will now come to our aid. Fix
a natural number n. If n > 6 then the “or” statement is true and there is nothing to
prove. If n �> 6, then the truth table teaches us that we must check that n < 9. But
the statement n �> 6 means that n ≤ 6 so we have

n ≤ 6 < 9

That is what we wished to prove. �
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EXAMPLE 2.3
Prove that every even integer may be written as the sum of two odd integers.

Solution: Let the even integer be K = 2m, for m an integer. If m is odd then we
write

K = 2m = m + m

and we have written K as the sum of two odd integers. If, instead, m is even, then
we write

K = 2m = (m − 1) + (m + 1)

Since m is even then both m − 1 and m + 1 are odd. So again we have written K
as the sum of two odd integers. �

EXAMPLE 2.4
Prove the Pythagorean theorem.

Solution: The Pythagorean theorem states that c2 = a2 + b2, where a and b are
the legs of a right triangle and c is its hypotenuse. See Fig. 2.1.

Consider now the arrangement of four triangles and a square shown in Fig. 2.2.
Each of the four triangles is a copy of the original triangle in Fig. 2.1. We see that
each side of the all-encompassing square is equal to c. So the area of that square
is c2. Now each of the component triangles has base a and height b. So each such

bc

a

Figure 2.1 The pythagorean theorem.
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Figure 2.2 Proof of the pythagorean theorem.

triangle has area ab/2. And the little square in the middle has side b − a. So it has
area (b − a)2 = b2 − 2ab + a2. We write the total area as the sum of its component
areas:

c2 = 4 ·
[

ab

2

]
+ [b2 − 2ab + a2] = a2 + b2

That is the desired equality. �

In this section and the next two we are concerned with form rather than
substance. We are not interested in proving anything profound, but rather in show-
ing you what a proof looks like. Later in the book we shall consider some deeper
mathematical ideas and correspondingly more profound proofs.

2.3 Proof by Contradiction
Aristotelian logic dictates that every sensible statement has a truth value: TRUE
or FALSE. If we can demonstrate that a statement A could not possibly be false,
then it must be true. On the other hand, if we can demonstrate that A could not be
true, then it must be false. Here is a dramatic example of this principle. In order to
present it, we shall assume for the moment that you are familiar with the system
Q of rational numbers. These are numbers that may be written as the quotient of
two integers (without dividing by zero, of course). We shall discuss the rational
numbers in greater detail in Sec. 5.4.
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Theorem 2.1 (Pythagoras) There is no rational number x with the property that
x2 = 2.

Proof: In symbols (refer to Chap. 1), our assertion may be written

∼ [∃x, (x ∈ Q ∧ x2 = 2)]

Let us assume the statement to be false. Then what we are assuming is that

∃x, (x ∈ Q ∧ x2 = 2) (2.1)

Since x is rational we may write x = p/q, where p and q are integers.
We may as well suppose that both p and q are positive and nonzero. After

reducing the fraction, we may suppose that it is in lowest terms—so p and q have
no common factors.

Now our hypothesis asserts that

x2 = 2

or (
p

q

)2

= 2

We may write this out as

p2 = 2q2 (2.2)

Observe that this equation asserts that p2 is an even number. But then p must be an
even number (p cannot be odd, for that would imply that p2 is odd by Proposition
2.2). So p = 2r for some natural number r.

Substituting this assertion into Eq. (2.2) now yields that

(2r)2 = 2q2

Simplifying, we may rewrite our equation as

2r2 = q2

This new equation asserts that q2 is even. But then q itself must be even.
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We have proven that both p and q are even. But that means that they have a
common factor of 2. This contradicts our starting assumption that p and q have no
common factor. �

Let us pause to ascertain what we have established: the assumption that a rational
square root x of 2 exists, and that it has been written in lowest terms as x = p/q,
leads to the conclusion that p and q have a common factor and hence are not in
lowest terms. What does this entail for our logical system?

We cannot allow a statement of the form C = A∧ ∼ A (in the present context the
statement A is “x = p/q in lowest terms”). For such a statement C must be false.

But if x exists then the statement C is true. No statement (such as A) can have
two truth values. In other words, the statement C must be false. The only possible
conclusion is that x does not exist. That is what we wished to establish.

Remark 2.3 In practice, we do not include the last three paragraphs in a proof
by contradiction. We provide them now because this is our first exposure to such
a proof, and we want to make the reasoning absolutely clear. The point is that
the assertions A and ∼ A cannot both be true. An assumption that leads to this
eventuality cannot be valid. That is the essence of proof by contradiction.

Historically, Theorem 2.1 was extremely important. Prior to Pythagoras (∼ 300
B.C.E.), the ancient Greeks (following Eudoxus) believed that all numbers (at least
all numbers that arise in real life) are rational. However, by the Pythagorean theorem,
the length of the diagonal of a unit square is a number whose square is 2. And our
theorem asserts that such a number cannot be rational. We now know that there are
many nonrational, or irrational numbers.

Here is a second example of a proof by contradiction:

Theorem 2.2 (Dirichlet) Suppose that n + 1 pieces of mail are delivered to n
mailboxes. Then some mailbox contains at least two pieces of mail.

Proof: Suppose that the assertion is false. Then each mailbox contains either zero
or one piece of mail. But then the total amount of mail in all the mailboxes cannot
exceed

1 + 1 + · · · + 1︸ ︷︷ ︸
n times

In other words, there are at most n pieces of mail. That conclusion contradicts the
fact that there are n + 1 pieces of mail. We conclude that some mailbox contains
at least two pieces of mail. �
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Figure 2.3 Points at random in the unit interval.

The last theorem, due to Gustav Lejeune Dirichlet (1805–1859), was classically
known as the Dirichletscher Schubfachschluss. This German name translates to
“Dirichlet’s drawer shutting principle.” Today, at least in this country, it is more
commonly known as “the pigeonhole principle.” Since pigeonholes are no longer
a common artifact of everyday life, we have illustrated the idea using mailboxes.

EXAMPLE 2.5
Draw the unit interval I in the real line. Now pick 11 points at random from
that interval (imagine throwing darts at the interval, or dropping ink drops on the
interval). See Fig. 2.3. Then some pair of the points has distance not greater than
0.1 inch.

To see this, write

I = [0, 0.1] ∪ [0.1, 0.2] ∪ · · · [0.8, 0.9] ∪ [0.9, 1]

Here we have used standard interval notation. Think of each of these subintervals as
a mailbox. We are delivering 11 letters (that is, the randomly selected points) to these
10 mailboxes. By the pigeonhole principle, some mailbox must receive two letters.

We conclude that some subinterval of I , having length 0.1, contains two of the
randomly selected points. Thus their distance does not exceed 0.1 inch. �

2.4 Proof by Induction
The logical validity of the method of proof by induction is intimately bound up
with the construction of the natural numbers, with ordinal arithmetic, and with the
so-called well-ordering principle. We shall not treat those logical niceties here, but
shall instead concentrate on the technique. As with any good idea in mathematics,
we shall be able to make it intuitively clear that the method is a valid and useful
one. So no confusion should result.

Consider a statement P(n) about the natural numbers. For example, the statement
might be “The quantity n2 + 5n + 6 is always even.” If we wish to prove this
statement, we might proceed as follows:

1. Prove the statement P(1).

2. Prove that P(k) ⇒ P(k + 1) for every k ∈ {1, 2, . . .}.
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Let us apply the syllogism modus ponendo ponens from the end of Sec. 1.5 to
determine what we will have accomplished. We know P(1) and, from Step (2) with
k = 1, that P(1) ⇒ P(2). We may therefore conclude P(2). Now Step (2) with
k = 2 says that P(2) ⇒ P(3). We may then conclude P(3). Continuing in this
fashion, we may establish P(n) for every natural number n.

Notice that this reasoning applies to any statement P(n) for which we can es-
tablish Steps (1) and (2) above. Thus Steps (1) and (2) taken together constitute a
method of proof. It is a method of establishing a statement P(n) for every natural
number n. The method is known as proof by induction.

EXAMPLE 2.6
Let us use the method of induction to prove that, for every natural number n, the
number n2 + 5n + 6 is even.

Solution: Our statement P(n) is

The number n2 + 5n + 6 is even

[Note: Explicitly identifying P(n) is more than a formality. Always record carefully
what P(n) is before proceeding.]

We now proceed in two steps:
P(1) is true. When n = 1 then

n2 + 5n + 6 = 12 + 5 · 1 + 6 = 12

and this is certainly even. We have verified P(1).

P(n) ⇒ P(n + 1) is true. We are proving an implication in this step. We assume
P(n) and use it to establish P(n + 1). Thus we are assuming that

n2 + 5n + 6 = 2m

for some natural number m. Then, to check P(n + 1), we calculate

(n + 1)2 + 5(n + 1) + 6 = [n2 + 2n + 1] + [5n + 5] + 6

= [n2 + 5n + 6] + [2n + 6]

= 2m + [2n + 6]
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Notice that in the last step we have used our hypothesis that n2 + 5n + 6 is even,
that is that n2 + 5n + 6 = 2m. Now the last line may be rewritten as

2(m + n + 3)

Thus we see that (n + 1)2 + 5(n + 1) + 6 is twice the natural number m + n + 3.

In other words, (n + 1)2 + 5(n + 1) + 6 is even. But that is the assertion P(n + 1).

In summary, assuming the assertion P(n) we have established the assertion
P(n + 1). That completes Step (2) of the method of induction. We conclude that
P(n) is true for every n. �

Here is another example to illustrate the method of induction. This formula is
often attributed to Carl Friedrich Gauss (and alleged to have been discovered by
him when he was 11 years old).

Proposition 2.6 If n is any natural number then

1 + 2 + · · · + n = n(n + 1)

2

Proof: The statement P(n) is

1 + 2 + · · · + n = n(n + 1)

2

Now let us follow the method of induction closely.
P(1) is true. The statement P(1) is

1 = 1(1 + 1)

2

This is plainly true.
P(n) ⇒ P(n + 1) is true. We are proving an implication in this step. We assume
P(n) and use it to establish P(n + 1). Thus we are assuming that

1 + 2 + · · · + n = n(n + 1)

2
(2.3)

Let us add the quantity (n + 1) to both sides of Eq. (2.3). We obtain

1 + 2 + · · · + n + (n + 1) = n(n + 1)

2
+ (n + 1)
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The left side of this last equation is exactly the left side of P(n + 1) that we are
trying to establish. That is the motivation for our last step.

Now the right-hand side may be rewritten as

n(n + 1) + 2(n + 1)

2

This simplifies to

(n + 1)(n + 2)

2

In conclusion, we have established that

1 + 2 + · · · + n + (n + 1) = (n + 1)(n + 2)

2

This is the statement P(n + 1).
Assuming the validity of P(n), we have proved the validity of P(n + 1). That

completes the second step of the method of induction, and establishes P(n) for
all n. �

Some problems are formulated in such a way that it is convenient to begin the
induction with some value of n other than n = 1. The next example illustrates this
notion:

EXAMPLE 2.7
Let us prove that, for n ≥ 4, we have the inequality

3n > 2n2 + 3n

Solution: The statement P(n) is

3n > 2n2 + 3n

P(4) is true. Observe that the inequality is false for n = 1, 2, 3. However, for n = 4
it is certainly the case that

34 = 81 > 44 = 2 · 42 + 3 · 4
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P(n) ⇒ P(n + 1) is true. Now assume that P(n) has been established and let us
use it to prove P(n + 1). We are hypothesizing that

3n > 2n2 + 3n

Multiplying both sides by 3 gives

3 · 3n > 3(2n2 + 3n)

or

3n+1 > 6n2 + 9n

But now we have

3n+1 > 6n2 + 9n

= 2(n2 + 2n + n) + (4n2 + 3n)

> 2(n2 + 2n + 1) + (3n + 3)

= 2(n + 1)2 + 3(n + 1)

This inequality is just P(n + 1), as we wished to establish. That completes Step (2)
of the induction, and therefore completes the proof. �

We conclude this section by mentioning an alternative form of the induction
paradigm which is sometimes called complete mathematical induction or strong
mathematical induction.

2.4.1 COMPLETE MATHEMATICAL INDUCTION
Let P be a function on the natural numbers.

1. P(1);

2. [P( j) for all j ≤ n] ⇒ P(n + 1) for every natural number n;

then P(n) is true for every n.
It turns out that the complete induction principle is logically equivalent to the

ordinary induction principle enunciated at the outset of this section. But in some
instances strong induction is the more useful tool. An alternative terminology for
complete induction is “the set formulation of induction.”
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Complete induction is sometimes more convenient, or more natural, to use than
ordinary induction; it finds particular use in abstract algebra. Complete induction
also is a simple instance of transfinite induction, which you will encounter in a
more advanced course.

EXAMPLE 2.8
Every integer greater than 1 is either prime or the product of primes. (Here a prime
number is an integer whose only factors are 1 and itself.)

Solution: We will use strong induction, just to illustrate the idea. For convenience
we begin the induction process at the index 2 rather than at 1.

Let P(n) be the assertion “Either n is prime or n is the product of primes.” Then
P(2) is plainly true since 2 is the first prime. Now assume that P( j) is true for
2 ≤ j ≤ n and consider P(n + 1). If n + 1 is prime then we are done. If n + 1
is not prime then n + 1 factors as n + 1 = k · �, where k, � are integers less than
n + 1, but at least 2. By the strong inductive hypothesis, each of k and � factors as
a product of primes (or is itself a prime). Thus n + 1 factors as a product of primes.

The complete induction is done, and the proof is complete. �

2.5 Other Methods of Proof
We give here a number of examples that illustrate proof techniques other than direct
proof, proof by contradiction, and induction.

2.5.1 COUNTING ARGUMENTS
EXAMPLE 2.9
Show that if there are 23 people in a room then the odds are better than even that
two of them have the same birthday.

Solution: The best strategy is to calculate the odds that no two people have the
same birthday, and then to take complements.

Let us label the people p1, p2, . . . , p23. Then, assuming that none of the p j have
the same birthday, we see that p1 can have his birthday on any of the 365 days in
the year, p2 can then have his birthday on any of the remaining 364 days, p3 can
have his birthday on any of the remaining 363 days, and so forth. So the number of
different ways that these 23 people can all have different birthdays is

365 · 364 · 363 · · · 345 · 344 · 343
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On the other hand, the number of ways that birthdays could be distributed (with no
restrictions) among 23 people is

365 · 365 · 365 · · · 365︸ ︷︷ ︸
23 times

= 36523

Thus the probability that these 23 people all have different birthdays is

p = 365 · 364 · 363 · · · 343

36523

A quick calculation with a calculator shows that p ∼ 0.4927 < 0.5. That is the
desired result. �

EXAMPLE 2.10
Jill is dealt a poker hand of 5 cards from a standard deck of 52. What is the probabi-
lity that she holds four of a kind?

Solution: If the hand holds 4 aces, then the fifth card is any one of the other 48
cards. If the hand holds 4 kings, then the fifth card is any one of the other 48 cards.
And so forth. So there are a total of

13 × 48 = 624

possible hands with four of a kind. The total number of possible 5-card hands is(
52

5

)
= 2598960

Therefore the probability of holding 4 of a kind is

p = 624

2598960
= 0.00024 �

2.5.2 OTHER ARGUMENTS
EXAMPLE 2.11
Let us show that there exist irrational numbers a and b such that ab is rational.
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Solution: Let α = √
2 and β = √

2. If αβ is rational then we are done, using
a = α and b = β. If αβ is irrational, then observe that

αβ
√

2 = α[β·√2] = α2 = [
√

2]2 = 2

Thus, with a = αβ and b = √
2 we have found two irrational numbers a, b such

that ab = 2 is rational. �

EXAMPLE 2.12
Show that if there are six people in a room then either three of them know each
other or three of them do not know each other. (Here three people know each other
if each of the three pairs has met. Three people do not know each other if each of
the three pairs has not met.)

Solution: The tedious way to do this problem is to write out all possible “acquain-
tance assignments” for 6 people.

We now describe a more efficient, and more satisfying, strategy. Call one of the
people Bob. There are five others. Either Bob knows three of them, or he does not
know three of them.

Say that Bob knows three of the others. If any two of those three are acquainted,
then those two and Bob form a mutually acquainted threesome. If no two of those
three know each other, then those three are a mutually unacquainted threesome.

Now suppose that Bob does not know three of the others. If any two of those
three are unacquainted, then those two and Bob form an unacquainted threesome.
If all pairs among the three are instead acquainted, then those three form a mutually
acquainted threesome.

We have covered all possibilities, and in every instance come up either with a
mutually acquainted threesome or a mutually unacquainted threesome. That ends
the proof. �

It may be worth knowing that five people is insufficient to guarantee either a
mutually acquainted threesome or a mutually unacquainted threesome. We leave it
to the reader to provide a suitable counterexample. It is quite difficult to determine
the minimal number of people to solve the problem when “threesome” is replaced by
“foursome.” When “foursome” is replaced by five people, the problem is considered
to be grossly intractable. This problem is a simple example from the mathematical
subject known as Ramsey theory.
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Exercises
1. Prove that the product of two odd natural numbers must be odd.

2. Prove that if n is an even natural number and if m is any natural number then
n · m must be even.

3. Prove that the sum of the squares of the first n natural numbers is equal to

2n3 + 3n2 + n

6

4. Prove that if m is a power of 3 and n is a power of 3 then m + n is never a
power of 3.

5. Prove that if n is a natural number and if n has a rational square root then in
fact the square root of n is an integer.

6. Prove that if the natural number n is a perfect square then n + 1 will never
be a perfect square.

7. A popular recreational puzzle hypothesizes that you have nine pearls that
are identical in appearance. Eight of these pearls have the same weight, but
the ninth is either heavier or lighter—you do not know which. You have a
balance scale, and are allowed three weighings to find the odd pearl. How
do you proceed?

Now here is a bogus proof by induction that you can solve the problem
in the first paragraph in three weighings not just for nine pearls but for any
number of pearls. For convenience let us begin the induction with the case
n = 9 pearls. By the result of the first paragraph, we can handle that case.
Now, inductively, suppose that we have an algorithm for handling n pearls.
We use this hypothesis to treat (n + 1) pearls. From the (n + 1) pearls,
remove one and put it in your pocket. There remain n pearls. Apply the n-
pearl algorithm to these remaining pearls. If you find the odd pearl then you
are done. If you do not find the odd pearl, then it is the one in your pocket.
That completes the case (n + 1) and the proof.

What is the flaw in this reasoning? [Note: If you are fiendishly clever, then
you can actually handle 12 pearls in the original problem—with just three
weighings. However, this requires the consideration of 27 cases.]

8. Prove that if k is a natural number that is greater than 2 then 2k > 1 + 2k.

9. Prove the pigeonhole principle by induction.

10. You write 27 letters to 27 different people. Then you address the 27 envelopes.
You close your eyes and stuff one letter into each envelope. What is the
probability that just one letter is in the wrong envelope?



CHAPTER 3

Set Theory

3.1 Rudiments
Even the most elementary considerations in logic may lead to conundrums. Suppose
that we wish to define the notion of “line.” We might say that it is the shortest path
between two points. This is not completely satisfactory because we have not yet
defined “path” or “point.” And when we say “the shortest path” do we mean that
there is just one unique shortest path? And why does it exist? Every new definition
is, perforce, formulated in terms of other ideas. And those ideas in terms of other
ones. Where does the regression cease?

The accepted method for dealing with this problem is to begin with certain terms
(as few as possible) that are agreed to be “undefinable.” These terms should be
so simple that there can be little argument as to their meaning. But it is agreed in
advance that these undefinable terms simply cannot be defined in terms of ideas
that have been previously defined. Our undefined terms are our starting place.

In modern mathematics it is customary to use “set” and “element of” as unde-
finables. A set is declared to be a collection of objects. (Please do not ask what
an “object” is or what a “collection” is; when we say that the term “set” is an
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undefinable then we mean just that.) If S is a set then we say that x is an element of
S, and we write x ∈ S or S � x , precisely when x is one of the objects that compose
the set S. For example, we write 5 ∈ N to indicate that the number 5 is an element
of the set of natural numbers. We write −7 �∈ N to specify that −7 is not an element
of the set of natural numbers.

Definition 3.1 We say that two sets S and T are equal precisely when they have the
same elements. We write S = T . Alternatively, we say that S = T provided that
both x ∈ S ⇒ x ∈ T and x ∈ T ⇒ x ∈ S.

As an example of equality of sets, if S = {x ∈ N : x2 > 3} and T = {x ∈ N :
x ≥ 2} then S = T .

Incidentally, the method of specifying a set with the notation {x : P(x)}, where
P denotes a property, is the most common method in mathematics of defining a
set. This is sometimes called “setbuilder notation.”

We shall endeavor, in what follows, to formulate all of our set-theoretic notions
in a rigorous and logical fashion from the undefinables “set” and “element of.” If at
any point we were to arrive at an untenable position, or a logical contradiction, or a
fallacy,1 then we know that the fault lies with either our method of reasoning or with
our undefinables or with our axioms. One of the advantages of the way that we do
mathematics is that if there is ever trouble then we know where the trouble must lie.

3.2 Elements of Set Theory
Beginning in this section, we will be doing mathematics in the way that it is usually
done. That is, we shall define terms and we shall state and prove properties that
they satisfy. In earlier chapters we were careful, but we were less mathematical.
Sometimes we even had to say “This is the way we do it; don’t worry.” Many of
the topics in Chaps. 1 and 2 are really only best understood from the advanced
perspectives of mathematical logic. Now, and for the rest of this book, it is time to
show how mathematics is done in practice.

We use theorems, propositions, and lemmas to formulate our ideas. The device
of proofs is used to validate those ideas. Another formal ingredient of mathematical
exposition is the “definition.” A definition usually introduces a new piece of termi-
nology or a new idea and explains what it means in terms of ideas and terminology
that have already been presented. As you read this chapter, pause frequently to
check that we are following this paradigm.

1The reader should not worry. This is well-trodden ground, and there are no pitfalls lurking ahead.
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Definition 3.2 Let S and T be sets. We say that S is a subset of T , and we write
S ⊂ T or T ⊃ S, if

x ∈ S ⇒ x ∈ T

We do not prove our definitions. There is nothing to prove. A definition introduces
you to a new idea, or piece of terminology, or piece of notation.

EXAMPLE 3.1
Let S = {x ∈ N : x > 3} and T = {x ∈ N : x2 > 4}. Determine whether S ⊂ T or
T ⊂ S.

Solution: The key to success and clarity in handling subset questions is to use the
definition. To see whether S ⊂ T we must check whether x ∈ S implies x ∈ T . Now
if x ∈ S then x > 3 hence x2 > 9 so certainly x2 > 4. Our syllogism is proved,
and we conclude that S ⊂ T .

The reverse inclusion is false. For example, the number 3 is an element of T but
is certainly not an element of S. We write T �⊂ S. �

EXAMPLE 3.2
Let Z denote the set of integers. Let S = {−2, 3}. Let T = {x ∈ Z : x3 − x2−
6x = 0}. Determine whether S ⊂ T or T ⊂ S.

Solution: To see whether S ⊂ T we must check whether x ∈ S implies x ∈ T .

Let x ∈ S. Then either x = −2 or x = 3. If x = −2 then x3 − x2 − 6x = (−2)3 −
(−2)2 − 6(−2) = 0. Also, if x = 3 then x3 − x2 − 6x = (3)3 − (3)2 − 6(3) = 0.

This verifies the syllogism “x ∈ S implies x ∈ T .” Therefore S ⊂ T .

The reverse inclusion fails, for 0 ∈ T but 0 �∈ S. �

You Try It: How are S = {1, 2, 3, 5, 6, 8} and T = {1, 3, 6} related?

EXAMPLE 3.3
Let S = {x ∈ N : x ≥ 4} and T = {x ∈ N : x < 9}. Is it true that either S ⊂ T or
T ⊂ S?

Solution: Both inclusions are false. For 10 ∈ S but 10 �∈ T and 2 ∈ T but
2 �∈ S. �

Proposition 3.1 Let S and T be sets. Then S = T if and only if both S ⊂ T and
T ⊂ S.
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Proof: If S = T then, by definition, S and T have precisely the same elements.
In particular, this means that x ∈ S implies x ∈ T and also x ∈ T implies x ∈ S.

That is, S ⊂ T and T ⊂ S.

Now suppose that both S ⊂ T and T ⊂ S. Seeking a contradiction, suppose that
S �= T . Then either there is some element of S that is not an element of T or there
is some element of T that is not an element of S. The first eventuality contradicts
S ⊂ T and the second eventuality contradicts T ⊂ S. We conclude that S = T . �

Definition 3.3 We let ∅ denote the set that contains no elements. That is, ∀x, x �∈ ∅.

We call ∅ the empty set.

EXAMPLE 3.4
If S is any set then ∅ ⊂ S. To see this, notice that the statement “if x ∈ ∅ then
x ∈ S” must be true because the hypothesis x ∈ ∅ is false. (Check the truth table
for “if-then” statements.) This verifies that ∅ ⊂ S. �

EXAMPLE 3.5
Let S = {x ∈ N : x + 2 ≥ 19 and x < 3}. Then S is a sensible set. There are no
internal contradictions in its definition. But S = ∅. There are no elements in S. �

Definition 3.4 Let S and T be sets. We say that x is an element of S ∩ T if both
x ∈ S and x ∈ T . We say that x is an element of S ∪ T if either x ∈ S or x ∈ T .

We call S ∩ T the intersection of the sets S and T . We call S ∪ T the union of
the sets S and T .

EXAMPLE 3.6
Let S = {x ∈ N : 2 < x < 9} and T = {x ∈ N : 5 ≤ x < 14}. Then S ∩ T = {x ∈
N : 5 ≤ x < 9}, for these are the points common to both sets. And S ∪ T = {x ∈
N : 2 < x < 14}, for these are the points that are either in S or in T or in both. �

Remark 3.1 Observe that the use of “or” in the definition of set union justifies our
decision to use the “inclusive ‘or’ ” rather than the “exclusive ‘or’ ” in mathematics.
See also Proposition 3.2 below.

EXAMPLE 3.7
Let S = {x ∈ N : 1 ≤ x ≤ 5} and T = {x ∈ N : 8 < x ≤ 12}. Then S ∩ T = ∅,

for the sets S and T have no elements in common. On the other hand, S ∪ T =
{x ∈ N : 1 ≤ x ≤ 5 or 8 < x ≤ 12}. �

Definition 3.5 Let S and T be sets. We say that x ∈ S\T if both x ∈ S and x �∈ T .

We call S\T the set-theoretic difference of S and T .
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EXAMPLE 3.8
Let S = {x ∈ N : 2 < x < 7} and T = {x ∈ N : 5 ≤ x < 10}. Then we see that
S\T = {x ∈ N : 2 < x < 5} and T\S = {x ∈ N : 7 ≤ x < 10}. �

Definition 3.6 Suppose that we are studying subsets of a fixed set X. If S ⊂ X then
we use the symbol c S to denote X\S. In this context we sometimes refer to X as
the universal set. We call c S the complement of S (in X ).

EXAMPLE 3.9
Let N be the universal set. Let S = {x ∈ N : 3 < x ≤ 20}. Then

c S = {x ∈ N : 1 ≤ x ≤ 3} ∪ {x ∈ N : 20 < x}

�

The next proposition puts our use of the “inclusive or” into context.

Proposition 3.2 Let X be the universal set and S ⊂ X, T ⊂ X. Then

(1) c(S ∪ T ) = c S ∩ cT

(2) c(S ∩ T ) = c S ∪ cT

Proof: We shall present this proof in detail since it is a good exercise in under-
standing both our definitions and our method of proof.

We begin with the proof of Part (1). It is often best to treat the proof of the equality
of two sets as two separate proofs of containment. (This is why Proposition 3.1 is
important.) That is what we now do.

Let x ∈ c(S ∪ T ). Then, by definition, x �∈ (S ∪ T ). Thus x is neither an element
of S nor an element of T . So both x ∈ c S and x ∈ cT . Hence x ∈ c S ∩ cT . We
conclude that c(S ∪ T ) ⊂ c S ∩ cT . Conversely, if x ∈ c S ∩ cT then x �∈ S and x �∈
T . Therefore x �∈ (S ∪ T ). As a result, x ∈ c(S ∪ T ). Thus c S ∩ cT ⊂ c(S ∪ T ).

Summarizing, we have c(S ∪ T ) = c S ∩ cT .

The proof of Part (2) is similar, but we include it for practice. Let x ∈ c(S ∩ T ).

Then, by definition, x �∈ (S ∩ T ). Thus x is not both an element of S and an
element of T . So either x ∈ c S or x ∈ cT . Hence x ∈ c S ∪ cT . We conclude that
c(S ∩ T ) ⊂ c S ∪ cT . Conversely, if x ∈ c S ∪ cT then either x �∈ S or x �∈ T . There-
fore x �∈ (S ∩ T ). As a result, x ∈ c(S ∩ T ). Thus c S ∪ cT ⊂ c(S ∩ T ). Summa-
rizing, we have c(S ∩ T ) = c S ∪ cT . �
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A

B

Figure 3.1 Venn diagram showing A ∩ B.

The two formulas in the last proposition are often referred to as de Morgan’s
laws. Compare them with de Morgan’s laws for ∨ and ∧ at the end of Sec. 1.3.

3.3 Venn Diagrams
We sometimes use a Venn diagram to aid our understanding of set-theoretic re-
lationships. In a Venn diagram, a set is represented as a region in the plane (for
convenience, we use rectangles). The intersection A ∩ B of two sets A and B is
the region common to the two domains (we have shaded that region with dots in
Fig. 3.1):

The reader may wish to think about how to represent a union as a Venn diagram.
Now let A, B, and C be three sets. The Venn diagram in Fig. 3.2 makes it easy

to see that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

The Venn diagram in Fig. 3.3 illustrates the fact that

A\(B ∪ C) = (A\B) ∩ (A\C)

A

B

C

Figure 3.2 Venn diagram showing A ∩ (B ∪ C).
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A

B

C

Figure 3.3 Venn diagram showing A\(B ∪ C).

A Venn diagram is not a proper substitute for a rigorous mathematical proof.
However, it can go a long way toward guiding our intuition.

3.4 Further Ideas in Elementary Set Theory
Now we learn some new ways to combine sets.

Definition 3.7 Let S and T be sets. We define S × T to be the set of all ordered
pairs (s, t) such that s ∈ S and t ∈ T . The set S × T is called the set-theoretic
product of S and T .

EXAMPLE 3.10
Let S = {1, 2, 3} and T = {a, b}. Then

S × T = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

�

It is no coincidence that, in the last example, the set S has 3 elements, the set T has
2 elements, and the set S × T has 3 × 2 = 6 elements. In fact one can prove that
if S has k elements and T has � elements then S × T has k · � elements. Exercise
3.12 asks you to prove this assertion by induction on k.

Notice that S × T is a different set from T × S. With S and T as in the last
example,

T × S = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}
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The phrase “ordered pair” means that the pair (a, 1), for example, is distinct from
the pair (1, a).

If S is a set then the power set of S is the set of all subsets of S. We denote the
power set by P(S).

EXAMPLE 3.11
Let S = {1, 2, 3}. Then

P(S) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}, ∅}
�

If the concept of power set is new to you, then you might have been surprised
to see {1, 2, 3} and ∅ as elements of the power set. But they are both subsets of S,
and they must be listed.

Proposition 3.3 Let S = {s1, . . . , sk} be a set. Then P(S) has 2k elements.

Proof: We prove the assertion by induction on k.
The inductive statement is

A set with k elements has power set with 2k elements

P(1) is true. In this case, S = {s1} and P(S) = {{s1}, ∅}. Notice that S has k = 1
element and P(S) has 2k = 2 elements.

P(k) ⇒ P(k + 1) is true. Assume that any set of the form S = {s1, . . . , sk} has
power set with 2k elements. Now let T = {t1, . . . , tk, tk+1}. Consider the subset
T ′ = {t1, . . . , tk} of T . By the inductive hypothesis, the power set of T ′ has 2k

elements.
Now P(T ) certainly contains P(T ′) (that is, every subset of T ′ is also a subset

of T ). But it also contains each of the sets that is obtained by adjoining the element
tk+1 to each subset of T ′. There are 2k instances of each type of set. Thus the total
number of subsets of T is

2k + 2k = 2k+1

Notice that we have indeed counted all subsets of T , since any subset either
contains tk+1 or it does not.

Thus, assuming the validity of our assertion for k, we have proved its validity
for k + 1. That completes our induction and the proof of the proposition. �

We have seen that the operation of set-theoretic product corresponds to the
arithmetic product of natural numbers. And now we have seen that the operation
of taking the power set corresponds to exponentiation.
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Exercises
1. Let S = {1, 2, 3, 4, 5}, T = {3, 4, 5, 7, 8, 9}, U = {1, 2, 3, 4, 9}, V = {2, 4,

6, 8}. Calculate each of the following:

a. (S ∪ V ) ∩ U

b. (S ∩ T ) ∪ U

2. Let S be any set and let T = ∅. What can you say about S × T ?

3. Prove the following formulas for arbitrary sets S, T , and U. [Hint: You may
find Venn diagrams useful to guide your thinking, but a Venn diagram is not
a proof.]

a. S ∩ (T ∪ U ) = (S ∩ T ) ∪ (S ∩ U )

b. S ∪ (T ∩ U ) = (S ∪ T ) ∩ (S ∪ U )

4. Draw Venn diagrams to illustrate parts (a) and (b) of Exercise 3.3.

5. Suppose that A ⊂ B ⊂ C. What is A\B? What is A\C? What is A ∪ B?

6. Describe the set Q\Z in words. Describe R\Q.

7. Describe Q × R in words. Describe Q × Z.

8. Describe (Q × R)\(Z × Q) in words.

9. Give an explicit description of the power set of S = {a, b, 1, 2}.
10. Let S = {a, b, c, d}, T = {1, 2, 3}, and U = {b, 2}. Which of the following

statements is true?

a. {a} ∈ S

b. 1 ∈ T

c. {b, 2} ∈ U

11. Write out the power set of each set:

a. {1, ∅, {a, b}}
b. { • ,�, ∂}

12. Prove using induction on k that if the set S has k elements and the set T has
l elements then the set S × T has k · l elements.
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CHAPTER 4

Functions and Relations

4.1 A Word About Number Systems
For the record, we make a note here of some of the number systems that will be used
throughout this book. A more detailed and rigorous treatment of these mathematical
constructs may be found in Chap. 5.

The most basic and rudimentary number system is the natural numbers. These
are the counting numbers 1, 2, 3, . . .. There are infinitely many natural numbers. Of
course the natural numbers are the number system that is most familiar to everyone.
Everyone must count things—his/her possessions, or change from a purchase, or
sports scores. Natural numbers are the key to all these processes. We denote the set
of natural numbers with the symbol N.

The next level of sophistication is represented by the integers. These are the
whole numbers which are positive or negative or 0. Symbolically, the integers are
given by

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .
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From a mathematical point of view, the integers are more attractive than the natu-
ral numbers because they are closed under certain arithmetic operations—notably
substraction. The expression 3 − 7 makes good sense in the integers; it does not in
the natural numbers. We denote the set of integers by Z (because “Z” is the first
letter of the German word Zahlen, meaning numbers).

While the integers are closed under addition, subtraction, and multiplication, they
are not closed under division. As an example, 5/7 makes no sense in the integers.
For this reason we create the number system known as the rational numbers. These
are all fractions p/q, where p and q are integers and q is not equal to zero (because of
course we are never allowed to divide by 0). The rational numbers form an attractive
number system because they are closed under all four arithmetic operations. We
denote the rational numbers by Q (standing for “quotient”).

The most subtle and sophisticated number system, from our point of view, is
the real number system. The real numbers consist of all decimal expansions, both
terminating and nonterminating. All the rational numbers are also real numbers
(and a rational number has a decimal expansion that is either terminating or re-
peating). But there are also decimal expansions that are both nonterminating and
nonrepeating. These represent the irrational numbers—which are real numbers
that are not rational. Most of modern science and engineering is done with the
real number system. The real numbers are not only closed under the four basic
arithmetic operations, but they are also closed under various limiting processes
that are important for mathematical analysis. We denote the real number system
by R.

In closing, we shall briefly mention the complex number system. These are num-
bers of the form x + iy where x and y are both real (and i denotes the square root of
−1). The complex numbers have an addition operation and a multiplication/division
operation—and the number system is closed under both of these. The complex num-
bers were invented to be a number system in which every polynomial equation has a
root. But complex numbers have proved to be important in physics and engineering
and partial differential equations. They are fundamental to modern mathematics
and science. However, we shall see little of the complex numbers in the present
book. The complex number system is denoted by C.

It is worth noting that we have presented the number systems in order of sophisti-
cation. Each new number system was created because of some lack in the preceding
number system. For instance, the integers were created because the natural numbers
were not closed under subtraction. The rational numbers were created because the
integers are not closed under division. And so forth.

Chapter 5 provides some detailed discussion of the number systems. In the
remainder of the book we shall frequently use various number systems to illustrate
important ideas from set theory or discrete mathematics.



CHAPTER 4 Functions and Relations 53

4.2 Relations and Functions
Let S and T be sets. A relation on S and T is a subset of S × T . If R is a relation
then we write either (s, t) ∈ R or sometimes sR t to indicate that (s, t) is an
element of the relation. We will also write s ∼ t when the relation being discussed
is understood.

EXAMPLE 4.1
Let S = N, the natural numbers (or positive, whole numbers); and let T = R, the
real numbers. Define a relation R by (s, t) ∈ R if s <

√
t < s + 1. For instance,

(2, 5) ∈ R because
√

5 lies between 2 and 3. Also (4, 17) ∈ R because
√

17 lies
between 4 and 5. However, (5, 10) does not lie in R because

√
10 is not between

5 and 5 + 1 = 6. �

The domain of a relation R is the set of s ∈ S such that there exists a t ∈ T
with (s, t) ∈ R. The image of the relation is the set of t ∈ T such that there exists
an s ∈ S with (s, t) ∈ R. It is sometimes convenient to refer to the entire set T as
the range of the relation R. Some sources use the word “codomain” rather than
“range”. Clearly the range of a relation contains its image.

EXAMPLE 4.2
Let S = N and T = N. Define a relation R on S and T by the condition (s, t) ∈ R
if s2 < t . Observe that, for any element s ∈ N = S, the number t = s2 + 1 satisfies
s2 < t. Therefore every s ∈ S = N is in the domain of the relation.

Now let us think about the image. The number 1 ∈ N = T cannot be in the
image since there is no element s ∈ S = N such that s2 < 1. However, any element
t ∈ T that exceeds 1 satisfies 12 < t. So (1, t) ∈ R. Thus the image of R is the set
{t ∈ N : t ≥ 2}. �

EXAMPLE 4.3
Let S = N and T = N. Define a relation R on S and T by the condition (s, t) ∈ R
if s2 + t2 is itself a perfect square. Then, for instance, (3, 4) ∈ R, (4, 3) ∈ R,

(12, 5) ∈ R, and (5, 12) ∈ R. The number 1 is not in the domain of R since there
is no natural number t such that 12 + t2 is a perfect square (if there were, this would
mean that there are two perfect squares that differ by 1, and that is not the case).
The number 2 is not in the domain of R for a similar reason. Likewise, 1 and 2 are
not in the image of R.

In fact both the domain and image of R have infinitely many elements. This
assertion will be explored in the exercises. �
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You Try It: Let S be the real numbers and T be the integers. Let us say that s ∈ S
is related to t ∈ T if s < t3. What are the domain, range, and image of this relation?

Many interesting relations arise for which S and T are the same set. Say that
S = T = A. Then a relation on S and T is called simply a relation on A.

EXAMPLE 4.4
Let Z be the integers. Let us define a relation R on Z by the condition (s, t) ∈ R if
s − t is divisible by 2. It is easy to see that both the domain and the image of this
relation is Z itself. It is also worth noting that if n is any integer then the set of all
elements related to n is either (a) the set of all even integers (if n is even) or (b) the
set of all odd integers (if n is odd). �

Notice that the last relation created a division of the domain (=image) into two
disjoint sets: the even integers and the odd integers. This was a special instance of
an important type of relation that we now define.

Definition 4.1 Let R be a relation on a set A. We say that R is an equivalence
relation if the following properties hold:

R is reflexive: If x ∈ A then (x, x) ∈ R;
R is symmetric: If (x, y) ∈ R then (y, x) ∈ R;
R is transitive: If (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

Check for yourself that the relation described in Example 4.4 is in fact an
equivalence relation. The most important property of equivalence relations is that
which we indicated just before the definition and which we now enunciate formally:

Proposition 4.1 Let R be an equivalence relation on a set A. If x ∈ A then define

Ex ≡ {y ∈ A : (x, y) ∈ R}
We call the sets Ex the equivalence classes induced by the relation R. If now s
and t are any two elements of A then either Es ∩ Et = ∅ or Es = Et .

In summary, the set A is the pairwise disjoint union of the equivalence classes
induced by the equivalence relation R.

Before we illustrate this proposition, let us discuss for a moment what it means.
Clearly every element a ∈ A is contained in some equivalence class, for a is con-
tained in Ea itself. The proposition tells us that the set A is in fact the pairwise
disjoint union of these equivalence classes. We say that the equivalence classes
partition the set A.

For instance, in Example 4.4, the equivalence relation gives rise to two equiv-
alence classes: the even integers E and the odd integers O. Of course Z = E ∪O
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and E ∩O = ∅. We say that the equivalence relation partitions the universal set Z

into two equivalence classes.
Notice that, in this example, if we pick any element n ∈ E then En = E . Likewise,

if we pick any element m ∈ O, then Em = O.

The reason that an equivalence relation partitions its domain into pairwise disjoint
equivalence classes is quite simple. For if Es1 and Es2 are two distinct equivalence
classes that have nontrivial intersection, suppose that x lies in each of these sets.
Then every element of Es1 is related to x , and every element of Es2 is related to x . By
transitivity, it then follows that every element of Es1 is related to every element of
Es2 (and vice versa!). So in fact Es1 and Es2 are one and the same equivalence class.

EXAMPLE 4.5
Let A be the set of all people in the United States. If x, y ∈ A then let us say that
(x, y) ∈ R if x and y have the same surname (that is, last name). Then R is an
equivalence relation:

1. R is reflexive since any person x has the same surname as his/her self.

2. R is symmetric since if x has the same surname as y then y has the same
surname as x .

3. R is transitive since if x has the same surname as y and y has the same
surname as z then x has the same surname as z.

ThusR is an equivalence relation. The equivalence classes are all those people with
surname Smith, all those people with surname Herkimer, and so forth. �

EXAMPLE 4.6
Let S be the set of all residents of the United States. If x, y ∈ S then let us say
that x is related to y (that is, x ∼ y) if x and y have at least one biological parent
in common. It is easy to see that this relation is reflexive and symmetric. It is not
transitive, as children of divorced parents know too well.

To be more explicit, John and Sally could have Bill as a child. Then John and
Sally could get divorced, John could marry Bettie, and John and Bettie could have
a child Bobby. Thus Bill and Bobby are “related” (under the relation described in
the last paragraph). But John and Bettie could get divorced and then Bettie could
marry Joe and have a child Rufus with Joe. So Bobby and Rufus are related.

We see that Bill and Bobby are related. And Bobby and Rufus are related. But
certainly Bill and Rufus are not related, because they have no parent in common.
So the relation is not transitive.

What this tells us (mathematically) is that the proliferation of divorce in our
society does not lead to well-defined families. �
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4.3 Functions
In more elementary mathematics courses we define a function as follows: Let S
and T be sets. A function f from S to T is a rule that assigns to each element of S
a unique element of T .

This definition is problematic. The main difficulty is the use of the words “rule”
and “assign.” For instance, let S = T = Z. Consider

f (x) =
{

x2 if there is life as we know it on Mars

3x − 5 if there is not life as we know it on Mars

Is this a function? Can what we see on the right be considered a rule? Do we have
to wait until we have found life on Mars (or not!) before we can consider this a
function?

More significantly in practice, thinking of a function as a rule is extremely
limiting. The functions

f (x) = x3 − 3x + 1

g(x) = sin x

h(x) = ln x

x2 + 4

are inarguably given by rules. But open up your newspaper and look on the financial
page at the graph of the Gross National Product. This is certainly the graph of a
function, but what “rule” describes it?

Consider now the function

h(x) =

⎧⎪⎨⎪⎩
x2 if −∞ < x < −3

2x if −3 ≤ x < 2

x + 5 if 2 ≤ x < ∞

For many years, until well into the twentieth century, mathematicians disagreed on
whether this is a bona fide function. But it can certainly happen in practice that
a physical process or a feedback mechanism can give data that is specified in a
piecewise fashion. We need a more rigorous, and simultaneously a more flexible,
means of understanding the concept of function.

It is best in advanced mathematics to have a way to think about functions that
avoids subjective words like “rule” and “assign.” This is the motivation for our next
definition.
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Definition 4.2 Let S and T be sets. A function f from S to T is a relation on S and
T such that

(1) Every s ∈ S is in the domain of f ;
(2) If (s, t) ∈ f and (s, u) ∈ f then t = u.

Of course we refer to S and T as the domain and the range, respectively, of f.1

Condition (1) mandates that each element s of S is associated to some element of T .
Condition (2) mandates, in a formal manner, that each element s of S is associated
to only one member of T . Notice, however, that the definition neatly sidesteps the
notions of “assign” or “rule.”

We shall frequently speak of the image of a given function f from S to T . This
just means the set that is the image of f when it is thought of as a relation. It is just
the set of elements t ∈ T such that there is an s ∈ S with (s, t) ∈ f.

EXAMPLE 4.7
Let S = {1, 2, 3} and T = {a, b, c}. Set

f = {(1, a), (2, a), (3, b)}

This is a function, for it satisfies the properties set down in Definition 4.2. Given
the way that you are accustomed to writing functions in earlier courses, you might
find it helpful to view this function as

f (1) = a

f (2) = a

f (3) = b

Notice that each element 1, 2, 3 of the domain is “assigned” to one and only
one element of the range. However, the definition of function allows the possibility
that two different elements of the domain be assigned to the same range element.
Observe that, for this function, the image is {a, b} while the range is {a, b, c}. �

EXAMPLE 4.8
Let S = {1, 2, 3} and T = {a, b, c, d, e}. Set

f = {(1, b), (2, a), (3, c), (4, a), (5, b)}

1We note, once again, that some sources use the word “codomain” instead of “range.”
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This is a function, for it satisfies the properties set down in Definition 4.2. Notice that
each element of the domain S is used once and only once. However, not all elements
of the range are used. According to the definition of function, this is allowed. Note
that the range of f is {a, b, c, d, e} while the image of f is {a, b, c}. �

Definition 4.3 Let f be a function with domain S and range T . We often write
such a function as f : S → T . We say that f is one-to-one or injective if whenever
(s, t) ∈ f and (s′, t) ∈ f then s = s ′. We sometimes refer to such a mapping as an
injection. We also refer to such a map as univalent.

Compare this new definition with Definition 4.2 of function. The new condition is
similar to condition (2) for functions. But it is not the same. We are now mandating
that no two domain elements be associated with the same range element.

EXAMPLE 4.9
Let S = T = R and let f be the set of all ordered pairs {(x, x2) : x ∈ R}. We may
also write this function as

f : R → R

x �→ x2

or as f (x) = x2.

It is easy to verify that f satisfies the definition of function. However, both of
the ordered pairs (−2, 4) and (2, 4) are in f [in other words f (−2) = 4 = f (2)]
so that f is not one-to-one. �

EXAMPLE 4.10
Let S = T = R and let f be the function f (x) = x3. Then f is strictly increasing
as x moves from left to right. In other words, if s < t then f (s) < f (t). Hence
f (s) �= f (t). It follows that the function f is one-to-one. �

Definition 4.4 Let f be a function with domain S and range T . If for each t ∈ T
there is an s ∈ S such that f (s) = t then we say that f is onto or surjective. We
sometimes refer to such a mapping as a surjection. Notice that a function is onto
precisely when its image equals its range.

EXAMPLE 4.11
Let f (x) = x2 be the function from Example 4.9. Recall from that example that
S = T = R. The point t = −1 ∈ T has the property that there is no s ∈ S such that
f (s) = t. As a result, this function f is not onto. �
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EXAMPLE 4.12
Let S = R, T = {x ∈ R : 1 ≤ x < ∞}. Let g : S → T be given by g(x) = x2 + 1.

Then for each t ∈ T the number s = +√
t − 1 makes sense and lies in S. Moreover,

g(s) = t. It follows that this function g is surjective. However, g is not injective
[since, for example, g(−1) = g(1) = 2]. �

4.4 Combining Functions
There are several elementary operations that allow us to combine functions in
useful ways. In this section, and from now on, we shall (whenever possible) write
our functions in the form

f (x) = 〈formula〉

for the sake of clarity. However we must keep in mind, and we shall frequently see,
that many functions cannot be expressed with an elegant formula.

Definition 4.5 Let f and g be functions with the same domain S and the same
range T . Assume that T is a set in which the indicated arithmetic operation (below)
makes sense. Then we define

(1) ( f + g)(x) = f (x) + g(x);
(2) ( f − g)(x) = f (x) − g(x);
(3) ( f · g)(x) = f (x) · g(x);
(4) ( f/g)(x) = f (x)/g(x) provided that g(x) �= 0.

Notice that in each of (1)–(4) we are defining a new function—either f + g or
f − g or f · g or f/g—in terms of the component functions f and g. For practice,
we shall now express (1) in the language of ordered pairs. We ask you to do likewise
with (2), (3), (4) in Exercise 4.7.

Let us consider part (1) in detail. Now f is a collection of ordered pairs in S × T
that satisfy the conditions for a function, and so is g. The function f + g is given
by

f + g = {(s, t + t ′) : (s, t) ∈ f, (s, t ′) ∈ g}

Expressing the other combinations of f and g is quite similar, and you should
be sure to do the corresponding exercise.
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EXAMPLE 4.13
Let S = T = R. Define

f (x) = x3 − x and g(x) = sin(x2)

Let us calculate f + g, f − g, f · g, f/g.

Now

( f + g)(x) = (x3 − x) + sin(x2)

( f − g)(x) = (x3 − x) − sin(x2)

( f · g)(x) = (x3 − x) · [sin(x2)]

( f/g)(x) = x3 − x

sin(x2)
provided x �= ±

√
kπ k ∈ {0, 1, 2, . . .} �

A more interesting, and more powerful, way to combine functions is through
functional composition. Incidentally, in this discussion we will see the value of
good mathematical notation.

Definition 4.6 Let f : S → T be a function and let g : T → U be a function. Then
we define, for s ∈ S, the composite function

(g ◦ f )(s) = g( f (s)) (4.1)

We call g ◦ f the composition of the functions g and f .

Notice in this definition that the right-hand side of Eq. (4.1) always makes sense
because of the way that we have specified the domain and range of the component
functions f and g. In particular, we must have image f ⊂ domain g in order for
the composition to make sense—just because we are applying g to f (s).

EXAMPLE 4.14
Let f : R → {x ∈ R : x ≥ 0} be given by f (x) = x4 + x2 + 6 and g : {x ∈ R :
x ≥ 0} → R be given by g(x) = √

x − 4. Notice that f and g fit the paradigm
specified in the definition of composition of functions. Then

(g ◦ f )(x) = g( f (x))

= g(x4 + x2 + 6)

=
√

x4 + x2 + 6 − 4
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Notice that f ◦ g also makes sense and is given by

( f ◦ g)(x) = f (g(x))

= f (
√

x − 4)

= [
√

x − 4]4 + [
√

x − 4]2 + 6

It is important to understand that f ◦ g and g ◦ f , when both make sense, will
generally be different. �

It is a good exercise in the ideas of this chapter to express the notion of functional
composition in the language of ordered pairs. Thus let f : S → T be a function
and g : T → U be a function. Then f is a subset of S × T and g is a subset of
T × U, both satisfying the two standard conditions for functions. Now g ◦ f is a
set of ordered pairs specified by

g ◦ f =
{(s, u) : s ∈ S, u ∈ U, and ∃t ∈ T such that (s, t) ∈ f and (t, u) ∈ g}

Take a moment to verify that this equation is consistent with the definition of
functional composition that we gave earlier.

EXAMPLE 4.15
Let f : R → [−1, 1] be given by f (x) = sin x5 and let g : {x ∈ R : x ≥ 1} → R

be given by 4
√

x − 1. We cannot consider g ◦ f because the range of f (namely,
the set [−1, 1]) does not lie in the domain of g. However, f ◦ g does make sense
because the range of g lies in the domain of f. And

( f ◦ g)(x) = sin[(x − 1)5/4] for x ≥ 1 �

Definition 4.7 Let S and T be sets. Let f : S → T and g : T → S. We say that
f and g are mutually inverse provided that both ( f ◦ g)(t) = t for all t ∈ T and
(g ◦ f )(s) = s for all s ∈ S. We write g = f −1 or f = g−1. We refer to the func-
tions f and g as invertible; we call g the inverse of f and f the inverse of g.
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EXAMPLE 4.16
Let f : R → R be given by f (s) = s3 − 1 and g : R → R be given by g(t) =
3
√

t + 1. Then

( f ◦ g)(t) = [
3
√

t + 1
]3 − 1

= (t + 1) − 1

= t

for all t and

(g ◦ f )(s) = 3
√

(s3 − 1) + 1

= 3
√

s3

= s

for all s. Thus g = f −1 (or f = g−1). �

EXAMPLE 4.17
Let g : [1,+∞) → [8,+∞) be given by g(x) = x2 + 3x + 4. Then g(1) = 8, and
g is strictly increasing without bound. So g is one-to-one and onto. We conclude
that g has an inverse. One may use the quadratic formula to solve for that inverse,
and find that g−1(x) = (−3 +√−7 + 4x)/2. �

The idea of inverse function lends itself particularly well to the notation of ordered
pairs. For f : S → T is inverse to g : T → S (and vice versa) provided that for
every ordered pair (s, t) ∈ f there is an ordered pair (t, s) ∈ g and conversely.

Not every function has an inverse. For instance, let f : S → T . Suppose that
f (s) = t and also that f (s′) = t with s �= s ′ (in other words, suppose that f is
not one-to-one). If g : T → S then g( f (s)) = g(t) = g( f (s ′)) so it cannot be that
both g( f (s)) = s and g( f (s ′)) = s ′. In other words, f cannot have an inverse. We
conclude that a function that does have an inverse must be one-to-one.

On the other hand, suppose that t ∈ T has the property that there is no s ∈ S with
f (s) = t (in other words, suppose that f is not onto). Then, in particular, it could
not be that f (g(t)) = t for any function g : T → S. So f could not be invertible.
We conclude that a function that does have an inverse must be onto.

EXAMPLE 4.18
Let f : R → {x ∈ R : x ≥ 0} be given by f (x) = x2. Then f is onto, but f is not
one-to-one. It follows that f cannot have an inverse. And indeed it does not, for any
attempt to produce an inverse function runs into the ambiguity that every positive
number has two square roots.
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Let f : {x ∈ R : x ≥ 0} → R be given by f (x) = x3. Then f is one-to-one but
f is not onto. There certainly is a function g : R → {x ∈ R : x ≥ 0} such that
(g ◦ f )(x) = x for all x ∈ {x ∈ R : x ≥ 0} [namely g(x) = 3

√|x |]. But there is no
function h : R → {x ∈ R : x ≥ 0} such that ( f ◦ h)(x) = x for all x . �

We have established that if f : S → T has an inverse then f must be one-to-
one and onto. The converse is true too, and we leave the details for you to verify.
A function f : S → T that is one-to-one and onto (and therefore invertible) is
sometimes called a set-theoretic isomorphism or a bijection. It is also common to
use the terminology one-to-one correspondence.

EXAMPLE 4.19
The function f : R → R that is given by f (x) = x3 is a bijection. You should
check the details of this assertion for yourself. The inverse of this function f is the
function g : R → R given by g(x) = x1/3. �

We leave it as an exercise for you to verify that the composition of two bijections
(when the composition makes sense) is a bijection.

4.5 Types of Functions
The most elementary and easiest understood type of function is the polynomial
function. A polynomial has the form

p(x) = a0 + a1x + a2x2 + a3x3 + · · · + ak xk

We call a0 the constant coefficient, a1 the linear coefficient, a2 the quadratic coef-
ficient, a j the jth-degree coefficient, and ak the top-order coefficient.

A polynomial is easy to understand because we can calculate its value at any
point x by simply plugging in x and then multiplying and adding. A computer can
calculate values of a polynomial very rapidly and easily.

Another important type of function is the exponential function. For example,
g(x) = 2x is an exponential function. This function is easy to calculate when x
is an integer; for example, f (4) = 24 = 2 · 2 · 2 · 2 = 16. It is more difficult to
calculate when x is a noninteger; some approximation procedure would probably
be needed (this is how your calculator effects the computation).

You probably know that, when you put money in the bank, and it earns interest,
then it grows according to a rule given by an exponential function. For example,
suppose that you put $1000 in the bank and it earns interest annually at the rate of
5%. Then we have
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Year Amount

After the first year $1000 · 1.05
After the second year $1000 · (1.05)2

After the third year $1000 · (1.05)3

· · ·
After the k th year $1000 · (1.05)k

The most important fact about an exponential function is that it will grow faster
than a polynomial function. We can illustrate this fact simply by doing some cal-
culations with a calculator:

Variable x f (x) = x2 g(x) = 2x

1 1 2
2 4 4
3 9 8
4 16 16

10 100 1024
50 2500 1.125 × 1015

100 10000 1.26 × 1030

It can be proved in general that if p is any polynomial and f is any expo-
nential function with positive exponent then, for x large enough (and positive),
f (x) > p(x). In fact we can say more: For x large enough, f (x) > 100 · p(x). Or,
for x even larger, f (x) > 1000 · p(x). As we see from the last table, the growth of
exponential functions is dramatic.

The flip side of this last information is that logarithmic functions—a third im-
portant type of function—grow very slowly (in fact slower than any polynomial). A
logarithmic function is simply the inverse of an exponential function. For example,
h(x) = log2 x is the inverse of g(x) = 2x . We illustrate the idea with another table:

Variable x f (x) = x2 g(x) = log2 x

1 1 0
2 4 1
4 16 2

16 256 4
32 1024 5

128 16384 7
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It can be proved in general that if p is any polynomial with positive coefficients and
g is any logarithmic function then, for x large enough (and positive), g(x) < p(x).
In fact we can say more: For x large enough, g(x) < (1/100) · p(x). Or, for x
even larger, g(x) < (1/1000) · p(x). As we see from the last table, the growth of
logarithmic functions is dramatically slow.

Many physical phenomena—such as entropy—are best described using loga-
rithmic functions. The intensity of an earthquake is measured using a logarithmic
(the Richter) scale.

Exercises
1. Consider the relation on Z defined by (m, n) ∈ R if m + n is even. Prove

that this is an equivalence relation. What are the equivalence classes?

2. Consider the relation on Z × (Z\{0}) defined by (m, n)R(m ′, n′) provided
that m · n′ = m ′ · n. Prove that this is an equivalence relation. Can you de-
scribe the equivalence classes?

3. Consider the relation defined on the cartesian plane by (x, y)R(x ′, y′) if
y = y′. Prove that this is an equivalence relation. Can you describe the
equivalence classes? Can you pick a representative (that is, an element)
of each equivalence class that will help to exhibit what the equivalence
relation is?

4. Let S be the set of all living people. Let x, y ∈ S. Say that x is related to y
if x and y are siblings or the same person, that is, x and y have both parents
the same. Prove that this is an equivalence relation. What are the equivalence
classes?

5. Let S = {a, b, c, d} and T = {1, 2, 3, 4, 5, 6, 7}. Which of the following
relations on S × T is a function? Why?

a. {(a, 4), (d, 3), (c, 3), (b, 2)}
b. {(a, 5), (c, 4), (d, 3)}

6. Which of the following functions is one-to-one? Which is onto?

a. f : N → N f (m) = m + 2

b. g : Z → Z g(m) = 2m2 − 7

7. Express parts (2), (3), (4) of Definition 4.5 using the language of ordered
pairs. Imitate our discussion of part (1) in the text.
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8. Find the domain and image of each of these relations:
a. {(x, y) ∈ R × R : x = √

y + 3}
b. {(α, β) : α is a person, β is a person, and α is the father of β}

9. Use your calculator (or computer) to help you determine at what value
of x the function f (x) = 3x2+5x+7 passes the function g(x) = 1000
x10 + 100x5 + 10x + 100000 in size.

10. Discuss why there are infinitely many triples of natural number k, l, m such
that k2 + l2 = m2.



CHAPTER 5

Number Systems

5.1 Preliminary Remarks
The purpose of this chapter is to illustrate the general principle of modeling. An
axiomatic theory has no meaning, indeed no essential validity, unless there exists
a model consisting of a collection of (mathematical) objects that actually satisfy
the properties specified in the axioms. And constructing a model of an axiomatic
system is insurance that the system will never lead to a contradiction (subject to the
usual cautions about relative consistency).

Thus our purpose is to actually construct the natural numbers, the integers, the
rational numbers, the real numbers, the complex numbers, and so on. Again, the
point is that there is no logical validity in saying “it seems to me that there ought
to be some negative numbers floating around somewhere” or “it seems to me that
the number −1 should have a square root.” One must construct number systems in
which this is so.

One misleading feature of the presentation in this chapter, or in any book con-
structing the number systems from first principles, is that the more sophisticated
number systems appear to be easier to construct than the simpler ones. This is
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partly because of experience: after we’ve constructed four number systems then the
fifth one follows familiar patterns. But more to the point is that any construction
of the natural numbers, for instance, must confront fundamental issues of logic
(such as well-ordering and induction). As a result, some nasty issues will come
up in Sec. 5.2. The later number systems are founded on the earlier ones, so their
presentation will be more fluid and more natural.

These nasty issues must be considered a part of the firmament. There is no simple
way to deal with the basic problems connected with the natural number system.
Every student of mathematics should be exposed to these issues at least once; then
he/she can get on with the rest of the chapter, and with issues that are more directly
related to the everyday use of mathematics.

5.2 The Natural Number System
Giuseppe Peano’s axioms for the natural numbers are as follows. In this discussion,
we will follow tradition and use the notation ′ to denote the “successor” of a natural
number. For instance, the successor of 2 is 2′. Intuitively, the successor of n is the
number n + 1. However, addition is something that comes later; so we formulate
the basic properties of the natural numbers in terms of the successor function.

5.2.1 PEANO’S AXIOMS FOR THE NATURAL NUMBERS
P1 1 ∈ N.

P2 If n ∈ N then n′ ∈ N.

P3 There is no natural number n such that n′ = 1.

P4 If m and n are natural numbers and if m ′ = n′ then m = n.

P5 Let P be a property. If
1. P(1) is true;
2. P(k) ⇒ P(k ′) for every k ∈ N

then P(n) is true for every n ∈ N.

As Suppes says in [SUP, pp. 121 ff.], these axioms for the natural numbers are
almost universally accepted (although E. Nelson [NEL], among others, has found it
useful to explore how to develop arithmetic without Axiom P5). They have evolved
into their present form so that the natural numbers will satisfy those properties
that are generally recognized as desirable. Let us briefly mention what each of the
axioms signifies:

P1 asserts that N contains a distinguished element that we denote by 1.

P2 asserts that each element of N has a successor.
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P3 asserts that 1 is not the successor of any natural number; in other words,
1 is in a sense the “first” element of N.

P4 asserts that if two natural numbers have the same successor then they are
in fact the same natural number.

P5 asserts that the method of induction is valid.

Some obvious, and heuristically appealing, properties of the natural numbers
can be derived rather directly from Peano’s axioms. Here is an example:

Proposition 5.1 Let n be a natural number other than 1. Then n = m ′ for some
natural number m ′ for some natural number m.

Remark 5.1 This proposition makes the intuitively evident assertion that every
natural number, except 1, is a successor. Another way of saying this is that every
natural number except 1 has a predecessor. This claim is clearly not an explicit part
of any of the five axioms. In fact the only axiom that has a hope of implying the
proposition is the inductive axiom, as we shall now see.

Proof of Proposition 5.1: Let P(n) be the statement “either n = 1 or n = m ′ for
some natural number m.

Clearly P(n) is true when n = 1.

Now suppose that the statement P(n) has been established for some natural
number n. We wish to establish it for n′. But n′ is, by definition, a successor. So
the statement is true.

This completes our induction.

This proof is misleading in its simplicity. The proof consists of little more than
interpreting Axiom P5. Some other desirable properties of the natural numbers are
much more difficult to achieve directly from the axioms. As an instance, to prove that
there is no natural number lying between k and k ′ is complicated. Indeed, the entire
concept of ordering is extremely tricky. And the single most important property of
the natural numbers (one that is essentially equivalent to the induction axiom, as we
shall later see) is that the natural numbers are well ordered in a canonical fashion.
So we must find an efficient method for establishing the properties of the natural
numbers that are connected with order.

It is generally agreed (see [SUP, p. 121 ff.]) that the best way to develop further
properties of the natural numbers is to treat a specific model. Even that approach is
nontrivial; so we shall only briefly sketch the construction of a model and further
sketch its order properties so that we may discuss well ordering. The approach that
we take is by way of the so-called finite ordinal arithmetic.
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Let us define a model for the natural numbers as follows:

1 = {∅}
2 = 1 ∪ {1} = {∅, {∅}}
3 = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}}

and, in general,

k′ = k ∪ {k}
It is straightforward to verify Peano’s axioms for this model of the natu-

ral numbers. Let us first notice that, in this model, the successor n′ of a natural
number n is given by n′ = n ∪ {n}. Now let us sketch the verification of the axioms.

P1 is clear by construction, and so is P2.
P3 is an amusing exercise in logic: if m ′ = 1 then there is a set A such that

A ∪ {A} = 1 or A ∪ {A} = {∅}. In particular, x ∈ A ∪ {A} implies x ∈ {∅}. Since
A ∈ A ∪ {A}, it follows that A = ∅. But ∅ is not a natural number. So 1 is not the
successor of a natural number.

For P4, it is convenient to invoke the concept of ordering in our model of the
natural numbers. Say that m < n if m ∈ n. Clearly, if m, n ∈ N and m �= n then
either m ∈ n or n ∈ m but not both. Thus we have the usual trichotomy of a strict,
simple order. Now suppose that m, n are natural numbers and that m ′ = n′. If m < n
then m ∈ n so m ′ ∈ n′ and m ′ < n′. That is false. Likewise we cannot have n < m.

Thus it must be that m = n.

We shall discuss P5 a bit later.
Next we turn to well-ordering. We assert that our model of the natural numbers,

with the ordering defined in our discussion of P4, has the property that if ∅ �= S ⊂ N

then there is an element s ∈ S such that s < t for every s �= t ∈ S. It is clear from
the trichotomy that the least element s, if it exists, is unique. We proceed in several
steps:

Fix a natural number m > 1 and restrict attention to Q(m), which is the set of
natural numbers that are less than m.

Proposition 5.2 The set Q(m) has finitely many elements.

Proof: A natural number k is less than m if and only if k ∈ m. But, by construction,
m has only finitely many elements. �

Remark 5.2 As an exercise, you may wish to attempt to prove this last proposition
directly from the Peano axioms.
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Proposition 5.3 For each m, the set Q(m) is well ordered.

Proof: The proof is by induction on m.
When m = 1 there is nothing to prove.
Assume that the assertion has been proved for m = k. Now let U be a subset of

Q(k ′). There are now three possibilities:

1. If in fact U ⊂ Q(k) then U has a least element by the inductive hypothesis.

2. If U = {k} then U has but one element and that element, namely k, is the
least element that we seek.

3. The last possibility is that U contains k and some other natural numbers as
well. But then U \{k} ⊂ Q(k). Hence U \{k} has a least element s by the
inductive hypothesis. Since s is automatically less than k, it follows that s is
a least element for the entire set U . �

Now we have all our tools in place and we can prove the full result:

Theorem 5.1 The natural numbers N are well ordered.

Proof: Let ∅ �= S ⊂ N. Select an element m ∈ S. There are now two possibilities:

1. If Q(m) ∩ S = ∅ then m is the least element of S that we seek.

2. If T = Q(m) ∩ S �= ∅ then notice that if x ∈ T and y ∈ S\T then x < y.

So it suffices for us to find a least element of T . But such an element exists
by applying the preceding proposition to U = Q(m) ∩ S.

The proof is complete. �
We next observe that, in a certain sense, the well-ordering property implies the

induction property (Axiom P5). By this we mean the following: Do not consider
any model of the natural numbers, but just consider any number system X satisfying
P1–P4. Assume that every element of X except 1 has a predecessor, and in addition
assume that this number system is well ordered.

Now let P be a property. Assume that P(1) is true and assume the syllogism
P(k) ⇒ P(k ′). We claim that P(n) is true for every n. Suppose not. Then the set

S = {m ∈ X : P(m) is false}
is nonempty. Let q be the least element of S; this number is guaranteed to exist by
the well-ordering property. The number q cannot be 1, for we assumed that P(1)

is true. But if q > 1 then q has a predecessor r . Since q is the least element of S
then it cannot be that r ∈ S. Thus P(r) must be true. But then, by our hypothesis,
P(r ′) must be true. However, r ′ = q. So P(q) is true. That is a contradiction.

The only possible conclusion is that S is empty. So P(k) is true for every k.
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These remarks about well ordering implying P5 are not satisfactory from our
point of view, because we used the inductive property to establish that every natural
number other than 1 has a predecessor. But it is important for you to understand that
any development of the natural numbers will result in induction and well ordering
being closely linked.

If you review your calculus book or other elementary texts, you will find that
both induction and well ordering are occasionally used. But in every instance the
author will say “These properties of the natural numbers are intuitively clear; trust
me.” Now you can begin to understand why an elementary textbook author must
make that choice. The truth about these topics is inexorably linked to the very
foundations of mathematics, and is therefore both subtle and complicated.

The remaining big idea connected with the natural numbers is addition. It can
be proven that a satisfactory theory of addition cannot be developed from P1–P5.
Instead, it is customary to adjoin two new axioms to our theory:

P6 If x is a natural number then x + 1 = x ′;
P7 For any natural numbers x, y we have

x + y′ = (x + y)′

To illustrate these ideas, let us close the section by proving that 2 + 2 = 4. (Judge
for yourself whether the proof is as obvious as 2 + 2 = 4!) In this argument we use
the definitions 2 = 1′, 3 = 2′, 4 = 3′.

2 + 2 = 2 + 1′ by definition of 2

= (2 + 1)′ by P7

= (2′)′ by P6

= 3′ by definition of 3

= 4 by definition of 4

In fact it is even trickier to get multiplication to work in the natural number
system. Almost the only viable method is to add even more axioms that control this
binary operation. We can say no more about the matter here, but refer to [SUP].

It is not difficult to see that, with enough patience (or with induction) one could
establish all the basic laws of arithmetic. Of course this would not be a fruitful use
of our time. The celebrated work [WHB] treats this matter in complete detail.

In the succeeding sections of the present book, we shall take the basic laws of
arithmetic on the natural numbers as given. We understand that our treatment of the
natural numbers is incomplete. We have touched on some topics, and indicated some
constructions. But, when it comes right down to it, we are taking the natural numbers
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on faith. All of our future number systems (the integers, the rational numbers, the
reals, the complexes, the quaternions) will be constructed rigorously. The somewhat
bewildering situation before us is that the more complicated numbers systems are
easier to construct.

5.3 The Integers
Now we will apply the notion of an equivalence class to construct the integers (both
positive and negative). There is an important point of knowledge to be noted here.
In view of Sec. 5.2, we may take the natural numbers as given. The natural numbers
are universally accepted, and we have indicated how they may be constructed in a
formal manner. However, the number zero and the negative numbers are a different
matter. It was not until the fifteenth century that the concepts of zero and negative
numbers started to take hold—for they do not correspond to explicit collections
of objects (five fingers or ten shoes) but rather to concepts (zero books is the lack
of books; minus four pens means that we owe someone four pens). After some
practice we get used to negative numbers, but explaining in words what they mean
is always a bit clumsy.

In fact it is sobering to realize that the Italian mathematicians of the fifteenth
and sixteenth centuries referred to negative numbers—in their formal writings—as
“fictitious” or “absurd.” Mathematics is, in part, a subject that we must get used to.
It took several hundred years for mankind to get used to negative numbers.

It is much more satisfying, from the point of view of logic, to construct the
integers from what we already have, that is, from the natural numbers. We proceed
as follows. Let A = N × N, the set of ordered pairs of natural numbers. We define
a relation R on A as follows:

(a, b) is related to (a∗, b∗) if a + b∗ = a∗ + b

Theorem 5.2 The relation R is an equivalence relation.

Proof: That (a, b) is related to (a, b) follows from the trivial identity a + b =
a + b. Hence R is reflexive. Second, if (a, b) is related to (a∗, b∗) then a + b∗ =
a∗ + b hence a∗ + b = a + b∗ (just reverse the equality) hence (a∗, b∗) is related
to (a, b). So R is symmetric.

Finally, if (a, b) is related to (a∗, b∗) and (a∗, b∗) is related to (a∗∗, b∗∗) then we
have

a + b∗ = a∗ + b and a∗ + b∗∗ = a∗∗ + b∗

Adding these equations gives

(a + b∗) + (a∗ + b∗∗) = (a∗ + b) + (a∗∗ + b∗)
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Cancelling a∗ and b∗ from each side finally yields

a + b∗∗ = a∗∗ + b

Thus (a, b) is related to (a∗∗, b∗∗). Therefore R is transitive. We conclude that R
is an equivalence relation. �

Remark 5.3 We cheated a bit in the proof of Theorem 5.2. Since we do not yet
have negative numbers, we therefore have not justified the process of “cancelling”
that we used. The most rudimentary form of cancellation is Axiom P4 of the natural
numbers. Suggest a way to use induction, together with Axiom P4, to prove that if
a, b, c are natural numbers and if a + b = c + b then a = c.

Now our job is to understand the equivalence classes which are induced by R.

Let (a, b) ∈ A = N × N and let [(a, b)] be the corresponding equivalence class. If
b > a then we will denote this equivalence class by the integer b − a. For instance,
the equivalence class [(2, 7)] will be denoted by 5. Notice that if (a∗, b∗) ∈ [(a, b)]
then a + b∗ = a∗ + b hence b∗ − a∗ = b − a as long as b > a. Therefore the nu-
meral that we choose to represent our equivalence class is independent of which
element of the equivalence class is used to compute it.

If (a, b) ∈ A and b = a then we let the symbol 0 denote the equivalence class
[(a, b)]. Notice that if (a∗, b∗) is any other element of this particular [(a, b)] then
it must be that a + b∗ = a∗ + b hence b∗ = a∗; therefore this definition is unam-
biguous.

If (a, b) ∈ A and a > b then we will denote the equivalence class [(a, b)] by the
symbol −(a − b). For instance, we will denote the equivalence class [(7, 5)] by the
symbol −2. Once again, if (a∗, b∗) is related to (a, b) then the equation a + b∗ =
a∗ + b guarantees that our choice of symbol to represent [(a, b)] is unambiguous.

Thus we have given our equivalence classes names, and these names look just
like the names that we give to integers: there are positive integers, and negative
ones, and zero. But we want to see that these objects behave like integers. (As you
read on, use the informal mnemonic that the equivalence class [(a, b)] stands for
the integer b − a.)

First, do these new objects that we have constructed add correctly? Well, let
A = [(a, b)] and C = [(c, d)] be two equivalence classes. Define their sum to be
A + C = [(a + c, b + d)]. We must check that this is unambiguous. If (̃a, b̃) is
related to (a, b) and (̃c, d̃) is related to (c, d) then of course we know that

a + b̃ = ã + b

and

c + d̃ = c̃ + d
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Adding these two equations gives

(a + c) + (̃b + d̃) = (̃a + c̃) + (b + d)

hence (a + c, b + d) is related to (̃a + c̃, b̃ + d̃). Thus adding two of our equiva-
lence classes gives another equivalence class, as it should. We say that addition of
integers is well defined.

This point is so significant that it bears repeating. Each integer is an equivalence
class—that is, a set. If we are going to add two integers m and n by choosing an
element from the set m and another element from the set n, then the operation that
we define had better be independent of the choice of elements. This is another way
of saying that we want the sum of two equivalence classes to be another equivalence
class. We call this the concept of “well definedness.”

EXAMPLE 5.1
To add 5 and 3 we first note that 5 is the equivalence class [(2, 7)] and 3 is the
equivalence class [(2, 5)]. We add them componentwise and find that the sum is
[(2 + 2, 7 + 5)] = [(4, 12)]. Which equivalence class is this answer? Looking back
at our prescription for giving names to the equivalence classes, we see that this is
the equivalence class that we called 12 − 4 or 8. So we have rediscovered the fact
that 5 + 3 = 8.

Now let us add 4 and −9. The first of these is the equivalence class [(3, 7)] and
the second is the equivalence class [(13, 4]). The sum is therefore [(16, 11)], and
this is the equivalence class that we call −(16 − 11) or −5. That is the answer that
we would expect when we add 4 to −9.

Next, we add −12 and −5. Previous experience causes us to expect the answer
to be −17. Now −12 is the equivalence class [(19, 7)] and −5 is the equivalence
class [(7, 2)]. The sum is [(26, 9)], which is the equivalence class that we call −17.

Finally, we can see in practice that our method of addition is unambiguous. Let
us redo the second example using [(6, 10)] as the equivalence class denoted by 4
and [(15, 6)] as the equivalence class denoted by −9. Then the sum is [(21, 16)],
and this is still the equivalence class −5, as it should be. �

Remark 5.4 What is the point of this section? Everyone knows about negative
numbers, so why go through this abstract construction? The reason is that until one
sees this construction, negative numbers are just imaginary objects—placeholders
if you will—which are a useful notation but which do not exist. Now they do
exist. They are a collection of equivalence classes of pairs of natural numbers.
This collection is equipped with certain arithmetic operations, such as addition,
subtraction, and multiplication. We now discuss these last two.

If A = [(a, b)] and C = [(c, d)] are integers, then we define their difference
to be the equivalence class [(a + d, b + c)]; we denote this difference by A − C.
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(Note that we may not use subtraction of natural numbers in our definition of
subtraction of integers; subtraction of natural numbers is not, in general, defined.)
The unambiguity (or well definedness) of this definition is treated in the exercises.

EXAMPLE 5.2
We calculate 8 − 14. Now 8 = [(1, 9)] and 14 = [(3, 17)]. Therefore

8 − 14 = [(1 + 17, 9 + 3)] = [(18, 12)] = −6

as expected.
As a second example, we compute (−4) − (−8). Now

−4 − (−8) = [(6, 2)] − [(13, 5)] = [(6 + 5, 2 + 13)] = [(11, 15)] = 4 �

Remark 5.5 When we first learn that (−4) − (−8) = (−4) + 8 = 4, the expla-
nation is a bit mysterious: why is “minus a minus equal to a plus”? Now there is
no longer any mystery: this property follows from our construction of the number
system Z and its arithmetic operation.

Remark 5.6 It is interesting to sort out the last example from the justification for
the arithmetic of negative numbers that we learn in high school. Here is an example
of that reasoning.

It is postulated that negative numbers exist (they certainly are not constructed).
Then it is noted that

18 + (8 − 14) = (18 − 14) + 8 = 4 + 8 = 12 = 18 − 6 = 18 + (−6)

Identifying the far left and far right sides of the equation, we are forced to the
conclusion that 8 − 14 = −6.

This reasoning is perfectly correct. But it presupposes the existence of a number
system that (a) contains negative integers and (b) obeys all the familiar laws of
arithmetic.

The advantage of the presentation in this section of the present book is that we
actually construct such a number system. We do not presuppose it. The additive
properties of negative numbers follow automatically from our construction. They
are not derived by algebraic tricks from some numbers that we do not actually
know exist.

Finally we turn to multiplication. If A = [(a, b)] and C = [(c, d)] are integers
then we define their product by the formula

A · C = [(a · d + b · c, a · c + b · d)]

This definition may be a surprise. Why did we not define A · C to be [(a · c, b · d)]?
There are several reasons: first of all, the latter definition would give the wrong
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answer; moreover, it is not unambiguous (different representatives of A and C
would give a different answer). If you recall that we think of [(a, b)] as representing
b − a and [(c, d)] as representing d − c then the product should be the equivalence
class that represents (b − a) · (d − c). That is the motivation behind our definition.

The unambiguity (or well definedness) of the given definition of multiplication
of integers is treated in the exercises. We proceed now to an example.

EXAMPLE 5.3
We compute the product of −3 and −6. Now

(−3) · (−6) = [(5, 2)] · [(9, 3)] = [(5 · 3 + 2 · 9, 5 · 9 + 2 · 3)]

= [(33, 51)] = 18

which is the expected answer.
As a second example, we multiply −5 and 12. We have

−5 · 12 = [(7, 2)] · [(1, 13)] = [(7 · 13 + 2 · 1, 7 · 1 + 2 · 13)]

= [(93, 33)] = −60

Finally, we show that 0 times any integer A equals zero. Let A = [(a, b)]. Then

0 · A = [(1, 1)] · [(a, b)] = [(1 · b + 1 · a, 1 · a + 1 · b)]

= [(a + b, a + b)] = 0 �

Remark 5.7 Notice that one of the pleasant by-products of our construction of
the integers is that we no longer have to give artificial explanations for why the
product of two negative numbers is a positive number or why the product of a
negative number and a positive number is negative. These properties instead follow
automatically from our construction.

Remark 5.8 It is interesting to sort out the last example from the justification for
the arithmetic of negative numbers that we learn in high school. Here is an example
of that reasoning.

It is postulated that negative numbers exist (they certainly are not constructed).
Then it is noted that

3 · 8 = (6 − 3) · 8 = 6 · 8 − 3 · 8

hence

24 = 48 − 3 · 8

or, using reasoning as in our last remark but one,

−24 = −3 · 8
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Similarly, one can show that

−48 = −6 · 8

Taking these two facts for granted, we then compute that

(8 − 3) · (8 − 6) = 8 · 8 + 8 · (−6) + (−3) · 8 + (−3) · (−6)

As a result,

10 = 64 − 48 − 24 + (−3) · (−6)

or

10 + 72 − 64 = (−3) · (−6)

hence

18 = (−3) · (−6)

Again, this reasoning is perfectly correct. But it presupposes the existence of
a number system that (a) contains negative integers and (b) obeys all the familiar
laws of arithmetic.

The advantage of the presentation in this section of the present book is that we
actually construct such a number system. We do not presuppose it. The multiplica-
tive properties of negative numbers follow automatically from our construction.
They are not derived by algebraic tricks from some numbers that we do not actually
know exist.

Notice that the integers Z, as we have constructed them, contain the element
0 ≡ [(1, 1)]. This element is the additive identity in the sense that x + 0 = 0+
x = x for any integer x . Also, if y = [(a, b)] is any integer then it has an additive
inverse −y = [(b, a)]. This means that y + (−y) = 0. As a result of these two
facts, the integers Z form a group. We shall say more about groups in Sec. 9.4.

Of course we will not discuss division for integers; in general division of one
integer by another makes no sense in the universe of the integers. More will be said
about this fact in the Exercises.

In the rest of this book we will follow the standard mathematical custom of
denoting the set of all integers by the symbol Z. We will write the integers not as
equivalence classes, but in the usual way as the sequence of digits . . . − 3,−2,

−1, 0, 1, 2, 3, . . . . The equivalence classes are a device that we used to construct
the integers. Now that we have them, we may as well write them in the simple,
familiar fashion and manipulate them as usual.
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In an exhaustive treatment of the construction of Z, we would prove that addition
and multiplication are commutative and associative, prove the distributive law, and
so forth. But the purpose of this section is to demonstrate modes of logical thought
rather than to be exhaustive. We shall say more about some of the elementary
properties of the integers in the Exercises.

5.4 The Rational Numbers
In this section we use the integers, together with a construction using equivalence
classes, to build the rational numbers. Let A be the set Z × (Z\{0}). In other
words, A is the set of ordered pairs (a, b) of integers subject to the condition that
b �= 0. (Think of this ordered pair as ultimately “representing” the fraction a/b.)

We definitely want it to be the case that certain ordered pairs represent the same
number. For instance,

1

2
should be the same number as

3

6

This motivates our equivalence relation. Declare (a, b) to be related to (a∗, b∗) if
a · b∗ = a∗ · b. (Here we are thinking that the fraction a/b should equal the fraction
a∗/b∗ precisely when a · b∗ = a∗ · b.)

Is this an equivalence relation? Obviously the pair (a, b) is related to itself,
since a · b = a · b. Also the relation is symmetric: if (a, b) and (a∗, b∗) are pairs
and a · b∗ = a∗ · b then a∗ · b = a · b∗. Finally, if (a, b) is related to (a∗, b∗) and
(a∗, b∗) is related to (a∗∗, b∗∗) then we have both

a · b∗ = a∗ · b and a∗ · b∗∗ = a∗∗ · b∗ (5.1)

Multiplying the left sides of these two equations together and the right sides together
gives

(a · b∗) · (a∗ · b∗∗) = (a∗ · b) · (a∗∗ · b∗)

If a∗ = 0 then it follows immediately from Eq. 5.1 that both a and a∗∗ must be
zero. So the three pairs (a, b), (a∗, b∗), and (a∗∗, b∗∗) are equivalent and there is
nothing to prove. So we may assume that a∗ �= 0. We know a priori that b∗ �= 0;
therefore we may cancel common terms in the last equation to obtain

a · b∗∗ = b · a∗∗

Thus (a, b) is related to (a∗∗, b∗∗), and our relation is transitive. (Exercise: Explain
why it is correct to “cancel common terms” in the last step.)

The resulting collection of equivalence classes will be called the set of rational
numbers, and we shall denote this set with the symbol Q.
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EXAMPLE 5.4
The equivalence class [(4, 12)] contains all of the pairs (4, 12), (1, 3), (−2,−6).

(Of course it contains infinitely many other pairs as well.) This equivalence
class represents the fraction 4/12 which we sometimes also write as 1/3 or
(−2)/(−6). �

If [(a, b)] and [(c, d)] are rational numbers then we define their product to be
the rational number

[(a · c, b · d)]

This is well defined (unambiguous), for the following reason. Suppose that (a, b) is
related to (̃a, b̃) and (c, d) is related to (̃c, d̃). We would like to know that [(a, b)] ·
[(c, d)] = [(a · c, b · b)] is the same equivalence class as [(̃a, b̃)] · [(̃c, d̃)] =
[(̃a · c̃, b̃ · d̃)]. In other words we need to know that

(a · c) · (̃b · d̃) = (̃a · c̃) · (b · d). (5.2)

But our hypothesis is that

a · b̃ = ã · b and c · d̃ = c̃ · d

Multiplying together the left sides and the right sides we obtain

(a · b̃) · (c · d̃) = (̃a · b) · (̃c · d)

Rearranging, we have

(a · c) · (̃b · d̃) = (̃a · c̃) · (b · d)

But this is just Eq. 5.2. So multiplication is unambiguous.

EXAMPLE 5.5
The product of the two rational numbers [(3, 8)] and [(−2, 5)] is

[(3 · (−2), 8 · 5)] = [(−6, 40)] = [(−3, 20)]

This is what we expect: the product of 3/8 and −2/5 is −3/20. �

If q = [(a, b)] and r = [(c, d)] are rational numbers and if r is not zero (that is,
[(c, d)] is not the equivalence class zero—in other words, c �= 0) then we define
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the quotient q/r to be the equivalence class

[(ad, bc)]

We leave it to you to check that this operation is well defined.

EXAMPLE 5.6
The quotient of the rational number [(4, 7)] by the rational number [(3,−2)] is, by
definition, the rational number

[(4 · (−2), 7 · 3)] = [(−8, 21)]

This is what we expect: the quotient of 4/7 by −3/2 is −8/21. �

How should we add two rational numbers? We could try declaring [(a, b)] +
[(c, d)] to be [(a + c, b + d)], but this will not work (think about the way that we
usually add fractions). Instead we define

[(a, b)] + [(c, d)] = [(a · d + b · c, b · d)]

That this definition is well defined (unambiguous) is left for the exercises. We turn
instead to an example.

EXAMPLE 5.7
The sum of the rational numbers [(3,−14)] and [(9, 4)] is given by

[(3 · 4 + (−14) · 9, (−14) · 4)] = [(−114,−56)] = [(57, 28)]

This coincides with the usual way that we add fractions:

− 3

14
+ 9

4
= 57

28 �

Notice that the equivalence class [(0, 1)] is the rational number that we usually
denote by 0. It is the additive identity, for if [(a, b)] is another rational number then

[(0, 1)] + [(a, b)] = [(0 · b + 1 · a, 1 · b)] = [(a, b)]

A similar argument shows that [(0, 1)] times any rational number gives [(0, 1)] or
0. By the same token the rational number [(1, 1)] is the multiplicative identity. We
leave the details for you.

Of course the concept of subtraction is really just a special case of addition [that
is, a − b is the same as a + (−b)]. So we shall say nothing further about subtraction.



82 Discrete Mathematics Demystified

In practice we will write rational numbers in the traditional fashion:

2

5
,
−19

3
,

22

2
,

24

4
, . . .

In mathematics it is generally not wise to write rational numbers in mixed form,
such as 2 3

5 , because the juxtaposition of two numbers could easily be mistaken for
multiplication. Instead we would write this quantity as the improper fraction 13/5.

Definition 5.1 A set S is called a field if it is equipped with a binary operation
(usually called addition and denoted “+”) and a second binary operation (usually
called multiplication and denoted “·”) such that the following axioms are satisfied:

A1. S is closed under addition: if x, y ∈ S then x + y ∈ S.

A2. Addition is commutative: if x, y ∈ S then x + y = y + x .

A3. Addition is associative: if x, y, z ∈ S then

x + (y + z) = (x + y) + z.

A4. There exists an element, called 0, in S which is an additive identity: if
x ∈ S then 0 + x = x .

A5. Each element of S has an additive inverse: if x ∈ S then there is an
element −x ∈ S such that x + (−x) = 0.

M1. S is closed under multiplication: if x, y ∈ S then x · y ∈ S.

M2. Multiplication is commutative: if x, y ∈ S then x · y = y · x .

M3. Multiplication is associative: if x, y, z ∈ S then x · (y · z) = (x · y) · z.

M4. There exists an element, called 1, which is a multiplicative identity: if
x ∈ S then 1 · x = x .

M5. Each nonzero element of S has a multiplicative inverse: if 0 �= x ∈ S
then there is an element x−1 ∈ S such that x · (x−1) = 1. The element x−1 is
sometimes denoted by 1/x .

D1. Multiplication distributes over addition: if x, y, z ∈ S then x · (y + z) =
x · y + x · z.

Eleven axioms is a lot to digest all at once, but in fact these are all familiar
properties of addition and multiplication of rational numbers that we use every
day: the set Q, with the usual notions of addition and multiplication (and with the
usual additive identity 0 and multiplicative identity 1), forms a field. The integers, by
contrast, do not: nonzero elements of Z (except 1 and−1) do not have multiplicative
inverses in the integers.

Let us now consider some consequences of the field axioms.
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Theorem 5.3 Any field has the following properties:

(1) If z + x = z + y then x = y.

(2) If x + z = 0 then z = −x (the additive inverse is unique).

(3) −(−y) = y.

(4) If y �= 0 and y · x = y · z then x = z.

(5) If y �= 0 and y · z = 1 then z = y−1 (the multiplicative inverse is unique).

(6) (x−1)−1 = x .

(7) 0 · x = 0.

(8) If x · y = 0 then either x = 0 or y = 0.

(9) (−x) · y = −(x · y) = x · (−y).

(10) (−x) · (−y) = x · y.

Proof: These are all familiar properties of the rationals, but now we are consid-
ering them for an arbitrary field. We prove just a few to illustrate the logic. The
proofs of the others are assigned as exercises.

To prove (1) we write

z + x = z + y ⇒ (−z) + (z + x) = (−z) + (z + y)

and now Axiom A3 yields that this implies

[(−z) + z] + x = [(−z) + z] + y

Next, Axiom A5 yields that

0 + x = 0 + y

and hence, by Axiom A4,

x = y

To prove (7), we observe that

0 · x = (0 + 0) · x

which by Axiom M2 equals

x · (0 + 0)

By Axiom D1 the last expression equals

x · 0 + x · 0
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which by Axiom M2 equals 0 · x + 0 · x . Thus we have derived the equation

0 · x = 0 · x + 0 · x

Axioms A4 and A2 let us rewrite the left side as

0 · x + 0 = 0 · x + 0 · x

Finally, part (1) of the present theorem (which we have already proved) yields that

0 = 0 · x

which is the desired result.
To prove (8), we suppose that x �= 0. In this case x has a multiplicative inverse

x−1 and we multiply both sides of our equation by this element:

x−1 · (x · y) = x−1 · 0

By Axiom M3, the left side can be rewritten and we have

(x · x−1) · y = x−1 · 0

Next, we rewrite the right side using Axiom M2:

(x · x−1) · y = 0 · x−1

Now Axiom M5 allows us to simplify the left side:

1 · y = 0 · x−1

We further simplify the left side using Axiom M4 and the right side using (7) of
the present theorem (which we just proved) to obtain:

y = 0

Thus we see that if x �= 0 then y = 0. But this is logically equivalent with x = 0
or y = 0, as we wished to prove. (If you have forgotten why these statements are
logically equivalent, write out a truth table.) �

EXAMPLE 5.8
The integers Z form a strictly, simply ordered set when equipped with the usual
ordering. We can make this ordering precise by saying that x < y if y − x is a
positive integer. For instance,

6 < 8 because 8 − 6 = 2 > 0
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Likewise,

−5 < −1 because − 1 − (−5) = 4 > 0

Observe that the same ordering works on the rational numbers. �

If A is a strictly ordered set and a, b are elements then we often write a ≤ b to
mean that either a = b or a < b.

When a field has an ordering which is compatible with the field operations then
a richer structure results.

Definition 5.2 A field F is called an ordered field if F has a strict, simple ordering <

that satisfies the following addition properties:

1. If x, y, z ∈ F and if y < z then x + y < x + z.

2. If x, y ∈ F, x > 0, and y > 0 then x · y > 0.

Again, these are familiar properties of the rational numbers: Q forms an ordered
field. Some further properties of ordered fields may be proved from the axioms.

Theorem 5.4 Any ordered field has the following properties:

(1) If x > 0 and z < y then x · z < x · y.

(2) If x < 0 and z < y then x · z > x · y.

(3) If x > 0 then −x < 0. If x < 0 then −x > 0.

(4) If 0 < y < x then 0 < 1/x < 1/y.

(5) If x �= 0 then x2 > 0.

(6) If 0 < x < y then x2 < y2.

Proof: Again we prove just a few of these statements and leave the rest as exer-
cises.

To prove (1), observe that the property (1) of ordered fields together with our
hypothesis implies that

(−z) + z < (−z) + y

Thus, using Axiom A2, we see that y − z > 0. Since x > 0, property (2) of ordered
fields gives

x · (y − z) > 0

Finally,

x · y = x · [(y − z) + z] = x · (y − z) + x · z > 0 + x · z
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[by property (1) of ordered fields again]. In conclusion,

x · y > x · z

To prove (3), begin with the equation

0 = −x + x

Since x > 0, the right side is greater than −x . Thus 0 > −x as claimed. The proof
of the other statement of (3) is similar.

To prove (5), we consider two cases. If x > 0 then x2 ≡ x · x is positive by
property (2) of ordered fields. If x < 0 then −x > 0 [by part (3) of the present
theorem, which we just proved] hence (−x) · (−x) > 0. But part (10) of the last
theorem guarantees that (−x) · (−x) = x · x hence x · x > 0. �

5.5 The Real Number System
Now that we are accustomed to the notion of equivalence classes, the construction
of the integers and of the rational numbers seems fairly natural. In fact equivalence
classes provide a precise language for declaring certain objects to be equal (or for
identifying certain objects). We can now use the integers and the rationals as we
always have done, with the added confidence that they are not simply a useful
notation but that they have been constructed.

We turn next to the real numbers. We saw in Sec. 5.4 that the rational number
system is not closed under the operation of taking square roots, for example. We
know from calculus that for many other purposes the rational numbers are inade-
quate. It is important to work in a number system which is closed with respect to
all the operations we shall perform. While the rationals are closed under the usual
arithmetic operations, they are not closed under the operation of taking limits. For
instance, the sequence of rational numbers 3, 3.1, 3.14, 3.141, . . . consists of terms
that seem to be getting closer and closer together, seem to tend to some limit, and
yet there is no rational number which will serve as a limit (of course it turns out
that the limit is π—an “irrational” number).

We will now deal with the real number system, a system which contains all
limits of sequences of rational numbers (as well as all limits of sequences of real
numbers!). In fact our plan will be as follows: in this section we shall discuss all the
requisite properties of the reals. The actual construction of the reals is rather com-
plicated, and we shall put that in an appendix (Sec. 5.5.1) at the end of the section.

Definition 5.3 Let A be an ordered set and X a subset of A. The set X is called
bounded above if there is an element b ∈ A such that x ≤ b for all x ∈ X. We call
the element b an upper bound for the set X.
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EXAMPLE 5.9
Let A = Q with the usual ordering. The set X = {x ∈ Q : 2 < x < 4} is bounded
above. For example, the number 15 is an upper bound for X. So are the numbers 12
and 4. It is interesting to observe that no element of this particular X can actually
be an upper bound for X. The number 4 is a good candidate, but 4 is not an element
of X. In fact if b ∈ X then (b + 4)/2 ∈ X and b < (b + 4)/2, so b could not be an
upper bound for X. �

It turns out that the most convenient way to formulate the notion that the real
numbers have “no gaps” (that is, that all sequences which seem to be converging
actually have something to converge to) is in terms of upper bounds.

Definition 5.4 Let A be an ordered set and X a subset of A. An element b ∈ A is
called a least upper bound (or supremum) for X if b is an upper bound for X and
there is no upper bound b∗ for X which is less than b.

By its very definition, if a least upper bound exists then it is unique.

EXAMPLE 5.10
In the last example, we considered the set X of rational numbers strictly between 2
and 4. We observed there that 4 is the least upper bound for X. Note that this least
upper bound is not an element of the set X.

The set Y = {y ∈ Z : −9 ≤ y ≤ 7} has least upper bound 7. In this case, the
least upper bound is an element of the set Y. �

Notice that we may define a lower bound for a subset of an ordered set in a
fashion similar to that for an upper bound: l ∈ A is a lower bound for X ⊂ A if
x ≥ l for all x ∈ X. A greatest lower bound (or infimum) for X is then defined to
be a lower bound � such that there is no lower bound �∗ with �∗ > �.

EXAMPLE 5.11
The set X in the last two examples has lower bounds −20, 0, 1, 2, for instance.
The greatest lower bound is 2, which is not an element of the set.

The set Y in the last example has lower bounds −53,−22,−10,−9, to name
just a few. The number −9 is the greatest lower bound. It is an element of Y. �

EXAMPLE 5.12
Let S = Z ⊂ R. Then S does not have an upper bound. �

The purpose that the real numbers will serve for us is as follows: they will contain
the rationals, they will still be an ordered field, and every subset which has an upper
bound will have a least upper bound. We formulate this property as a theorem.
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Theorem 5.5 There exists an ordered field R which (a) contains Q and (b) has the
property that any nonempty subset of R which has an upper bound has a least upper
bound.

The last property described in this theorem is called the least upper bound
property of the real numbers. As mentioned previously, this theorem will be proved
in Sec. 5.5.1. Now we begin to realize why it is so important to construct the number
systems that we will use. We are endowing R with a great many properties. Why
do we have any right to suppose that there exists a number system with all these
properties? We must produce one!

Let us begin to explore the richness of the real numbers. The next theorem
states a property which is certainly not shared by the rationals (see Sec. 5.4). It is
fundamental in its importance.

Theorem 5.6 Let x be a real number such that x > 0. Then there is a positive real
number y such that y2 = y · y = x .

Proof: We will use throughout this proof the fact (see part (6) of Theorem 5.4)
that if 0 < a < b then a2 < b2.

Let

S = {s ∈ R : s > 0 and s2 < x}
Then S is not empty since x /2 ∈ S if x < 2 and 1 ∈ S otherwise. Also S is bounded
above since x + 1 is an upper bound for S. By Theorem 5.5, the set S has a least
upper bound. Call it y. Obviously 0 < min{x /2, 1} ≤ y hence y is positive. We
claim that y2 = x . To see this, we eliminate the other two possibilities.

If y2 < x then set ε = (x − y2)/[4(x + 1)]. Then ε > 0 and

(y + ε)2 = y2 + 2 · y · ε + ε2

= y2 + 2 · y · x − y2

4(x + 1)
+ x − y2

4(x + 1)
· x − y2

4(x + 1)

< y2 + 2 · y

x + 1
· x − y2

4
+ x − y2

4
· x

4x

< y2 + x − y2

2
+ x − y2

16

< y2 + (x − y2)

= x

Thus y + ε ∈ S, and y cannot be an upper bound for S. This contradiction tells us
that y2 �< x .
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Similarly, if it were the case that y2 > x then we set ε = (y2 − x)/[4(x + 1)].
A calculation like the one we just did then shows that (y − ε)2 ≥ x . Hence y − ε

is also an upper bound for S, and y is therefore not the least upper bound. This
contradiction shows that y2 �> x .

The only remaining possibility is that y2 = x . �

A similar proof shows that if n is a positive integer and x a positive real number
then there is a positive real number y such that yn = x .

We next use the least upper bound property of the real numbers to establish two
important qualitative properties of the real numbers:

Theorem 5.7 The set R of real numbers satisfies the archimedean property:

“Let a and b be positive real numbers. Then there is a natural number n such that
na > b.”

Theorem 5.8 The set Q of rational numbers satisfies the following density property:

“Let c < d be real numbers. Then there is a rational number q with c < q < d.”

Proof of Theorem 5.7: Suppose the archimedean property to be false. Then
S = {na : n ∈ N} has b as an upper bound. Therefore S has a finite supremum β.

Since a > 0, β − a < β. So β − a is not an upper bound for S, and there must
be a natural number n∗ such that n∗ · a > β − a. But then (n∗ + 1)a > β, and β

cannot be the supremum for S. This contradiction proves the theorem.

Proof of Theorem 5.8: Let λ = d − c > 0. By the archimedean property, choose
a positive integer N such that N · λ > 1. Again the archimedean property gives a
natural number P such that P > N · c and another Q such that Q > | − N · c|.
Then Q > −N · c and we see that Nc falls between the integers −Q and P;
therefore there must be an integer M between −Q and P (inclusive) such that

M − 1 ≤ Nc < M

Thus c < M /N . Also

M ≤ Nc + 1

hence

M

N
≤ c + 1

N
< c + λ = d

So M /N is a rational number lying strictly between c and d.
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One of the most profound and useful properties of the real numbers, and one that
is equivalent to the least upper bound property, is the intermediate value property:

Theorem 5.9 Let f be a continuous, real-valued function with domain the interval
[a, b]. If f (a) = α, f (b) = β, and if α < γ < β then there is a value t0 ∈ (a, b)

such that f (t0) = γ .

Proof: Let

S = {x ∈ [a, b] : f (x) < γ }
Then S �= ∅ since a ∈ S. Moreover S is bounded above by b. So t0 = sup S exists
as a finite real number. We claim that f (t0) = γ .

Clearly f (t0) ≤ γ since t0 is the limit of numbers at which f takes values less
than γ (we use the continuity of f here). Suppose, seeking a contradiction, that
f (t0) < γ . Let ε = γ − f (t0). By the continuity of f , we may select δ > 0 such that
|t − t0| < δ implies that | f (t) − f (t0)| < ε/2. But then, for t ∈ (t0 − δ, t0 + δ),
f (t) < f (t0) + ε/2 < γ . It follows that (t0 − δ, t0 + δ) ⊂ S, so t0 cannot be the
supremum of S. That is a contradiction. Therefore f (t0) = γ . �

As an application, we prove the following special case of a theorem of Brouwer:

Theorem 5.10 Let f : [0, 1] → [0, 1] be a continuous function. Then f has a fixed
point, in the sense that there is a point c ∈ [0, 1] such that f (c) = c.

Proof: Seeking a contradiction, we suppose not. Then, in particular, f (0) > 0 and
f (1) < 1. Now set g(x) = x − f (x). We see that g(0) = 0 − f (0) < 0 and g(1) =
1 − f (1) > 0. By the intermediate value property, there must therefore be a point
c between 0 and 1 such that g(c) = 0. But this says that f (c) = c, as required. �

We conclude by recalling the “absolute value” notation.

Definition 5.5 Let x be a real number. We define

|x | =

⎧⎪⎨⎪⎩
x if x > 0

0 if x = 0

−x if x < 0

The absolute value of a real number x measures the distance of x to 0. It is left as
an exercise for you to verify the important triangle inequality:

|x + y| ≤ |x | + |y|
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5.5.1 CONSTRUCTION OF THE REAL NUMBERS
There are several techniques for constructing the real number system R from the
rational number system Q. We use the method of Dedekind (Julius W. R. Dedekind,
1831–1916) cuts because it uses a minimum of new ideas and is fairly brief.

Keep in mind that, throughout this appendix, our universe is the system of rational
numbers Q. We are constructing the new number system R.

Definition 5.6 A cut is a subset C of Q with the following properties:

1. C �= ∅
2. If s ∈ C and t < s then t ∈ C
3. If s ∈ C then there is a u ∈ C such that u > s

4. There is a rational number x such that c < x for all c ∈ C

You should think of a cut C as the set of all rational numbers to the left of some point
in the real line (that is, it is an open half-line of rational numbers). For example,
the set {x ∈ Q : x2 < 2} ∪ {x ∈ Q : x < 0} is a cut. Roughly speaking, it is the set
of rational numbers to the left of

√
2. (Take care to note that

√
2 does not exist as

a rational number; so we are using a circuitous method to specify this set.) Since
we have not constructed the real line yet, we cannot define this cut in that simple
way; we have to make the construction more indirect. But if you consider the four
properties of a cut, they describe a set that looks like a “rational left half-line.”

Notice that if C is a cut and s �∈ C then any rational t > s is also not in C. Also,
if r ∈ C and s �∈ C then it must be that r < s.

Definition 5.7 If C and D are cuts then we say that C < D provided that C is a
subset of D but C �= D.

Check for yourself that “<” is a strict, simple ordering on the set of all cuts. We
note that C = D if and only if C ⊂ D and D ⊂ C.

Now we introduce operations of addition and multiplication which will turn the
set of all cuts into a field.

Definition 5.8 If C and D are cuts then we define

C +D = {c + d : c ∈ C, d ∈ D}

We define the cut 0̂ to be the set of all negative rationals.

The cut 0̂ will play the role of the additive identity. We are now required to check
that field Axioms A1–A5 hold.
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For A1, we need to see that C +D is a cut. Obviously C +D is not empty. If
s is an element of C +D and t is a rational number less than s, write s = c + d,

where c ∈ C and d ∈ D. Then t − c < s − c = d ∈ D so t − c ∈ D; and c ∈ C.

Hence t = c + (t − c) ∈ C +D . A similar argument shows that there is an r > s
such that r ∈ C +D . Finally, if x is a rational upper bound for C and y is a rational
upper bound for D, then x + y is a rational upper bound for C +D. We conclude
that C +D is a cut.

Since addition of rational numbers is commutative, it follows immediately that
addition of cuts is commutative. Associativity follows in a similar fashion. That
takes care of A2 and A3.

Now we show that if C is a cut then C + 0̂ = C. For if c ∈ C and z ∈ 0̂ then
c + z < c + 0 = c hence C + 0̂ ⊂ C. Also, if c∗ ∈ C then choose a d∗ ∈ C such
that c∗ < d∗. Then c∗ − d∗ < 0 so c∗ − d∗ ∈ 0̂. And c∗ = d∗ + (c∗ − d∗). Hence
C ⊂ C + 0̂. We conclude that C + 0̂ = C. This is A4.

Finally, for Axiom A5, we let C be a cut and set −C to be equal to {d ∈ Q :
∃d∗ > d such that c + d∗ < 0 for all c ∈ C}. If x is a rational upper bound for C
then −x ∈ −C so −C is not empty. It is also routine to check that −C is a cut. By
its very definition, C + (−C) ⊂ 0̂.

Further, if z ∈ 0̂ then there is a z∗ ∈ 0̂ such that z < z∗. Choose an element
c ∈ C such that c + (z∗ − z) �∈ C (why is this possible?). Let c∗ ∈ C be such that
c < c∗. Set c∗∗ = z − c∗. Then d∗ = z − c > c∗∗. We claim that c̃ + d∗ < 0 for all
c̃ ∈ C. Suppose for the moment that this claim has been proved. Then this shows that
c∗∗ ∈ −C. Then z = c∗ + c∗∗ ∈ C + (−C) so that 0̂ ⊂ C + (−C). We then conclude
that C + (−C) = 0̂, and Axiom A5 is established.

It remains to prove the claim. So let d∗ be defined as above and select c̃ ∈ C.

Then

d∗ + c̃ = z + (−c + c̃) < z + (z∗ − z) = z∗ < 0

Here we have used the choice of c. This establishes the claim and completes the
proof of A5.

Having verified the axioms for addition, we turn now to multiplication.

Definition 5.9 If C and D are cuts then we define the product C ·D as follows:

• If C,D > 0̂ then C ·D = {q ∈ Q : q < c · d for some c ∈ C, d ∈ D with c >

0, d > 0 }
• If C > 0̂,D < 0̂ then C ·D = −[C · (−D)]

• If C < 0̂,D > 0̂ then C ·D = −[(−C) ·D]

• If C,D < 0̂ then C ·D = (−C) · (−D)

• If either C = 0̂ or D = 0̂ then C ·D = 0̂
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Notice that, for convenience, we have defined multiplication of negative numbers
just as we did in high school. The reason is that the definition that we use for
the product of two positive numbers cannot work when one of the two factors is
negative (check this as an exercise).

We have said what the additive identity is in this realization of the real numbers.
Of course the multiplicative identity is the cut corresponding to 1, or

1̂ ≡ {t ∈ Q : t < 1}

We leave it to the reader to verify that if C is any cut then 1̂ · C = C · 1̂ = C.
It is now routine to verify that the set of all cuts, with this definition of multipli-

cation, satisfies field Axioms M1–M5. The proofs follow those for A1–A5 rather
closely.

For the distributive property, one first checks the case when all the cuts are
positive, reducing it to the distributive property for the rationals. Then one handles
negative cuts on a case-by-case basis.

The two properties of an ordered field are also easily checked for the set of all
cuts.

We now know that the collection of all cuts forms an ordered field. Denote this
field by the symbol R and call it the real number system. We next verify the crucial
property of R that sets it apart from Q.

Theorem 5.11 The ordered field R satisfies the least upper bound property.

Proof: Let S be a subset of R which is bounded above. That is, there is a cut α

such that s < α for all s ∈ S. Define

S∗ =
⋃
C∈S

C

Then S∗ is clearly nonempty, and it is therefore a cut since it is a union of cuts. It
is also clearly an upper bound for S since it contains each element of S. It remains
to check that S∗ is the least upper bound for S.

In fact if T < S∗ then T ⊂ S∗ and there is a rational number q in S∗\T . But,
by the definition of S∗, it must be that q ∈ C for some C ∈ S. So C > T , and T
cannot be an upper bound for S. Therefore S∗ is the least upper bound for S, as
desired. �

We have shown that R is an ordered field which satisfies the least upper bound
property. It remains to show that R contains (a copy of) Q in a natural way. In fact,
if q ∈ Q we associate to it the element ϕ(q) = Cq ≡ {x ∈ Q : x < q}. Then Cq is
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obviously a cut. It is also routine to check that

ϕ(q + q∗) = ϕ(q) + ϕ(q∗) and ϕ(q · q∗) = ϕ(q) · ϕ(q∗)

Therefore we see that φ is a ring homomorphism (see [LAN]) and hence represents
Q as a “subfield” of R.

5.6 The Nonstandard Real Number System
5.6.1 THE NEED FOR NONSTANDARD NUMBERS
Isaac Newton’s calculus was premised on the existence of certain “infinitesimal
numbers”—numbers that are positive, smaller than any standard real number, but
not zero. Since limits were not understood in Newton’s time, infinitesimals served
in their stead. But in fact it was just these infinitesimals that called the theory of
calculus into doubt. More than a century was expended developing the theory of
limits in order to dispel those doubts.

Nonstandard analysis, due to Abraham Robinson (1918–1974), is a model for
the real numbers (that is, it is a number system that satisfies the axioms for the real
numbers that we enunciated in Sec. 5.5) that also contains infinitesimals. In a sense,
then, Robinson’s nonstandard reals are a perfectly rigorous theory that vindicates
Newton’s original ideas about infinitesimally small numbers.

5.6.2 FILTERS AND ULTRAFILTERS
One of the most standard constructions of the nonstandard real numbers involves
putting an equivalence relation on the set of all sequences {a j } of real numbers. A
natural algebraic construction for doing so is the ultrafilter. In fact ultrafilters are
widely used in model theory (see the article by P. C. Eklof in [BAR]). So we will
briefly say now what an ultrafilter is.

Let I be a nonempty set. A filter over I is a set D ⊆ P(I ) such that

1. ∅ �∈ D, I ∈ D;

2. If X, Y ∈ D then X ∩ Y ∈ D;

3. If X ∈ D and X ⊆ Y ⊆ I then Y ∈ D.

In particular, a filter D over I has the finite intersection property: the intersection
of any finite set of elements of D is nonempty.

A filter D over I is called an ultrafilter if, for every X ⊆ I , either X ∈ D or
I \X ∈ D. It turns out that a filter over I is an ultrafilter if and only if it is a
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maximal filter over I (that is, there is no larger filter containing it). One can show,
using Zorn’s lemma, that if S is a collection of subsets of I which has the finite
intersection property then S is contained in an ultrafilter over I .

5.6.3 A USEFUL MEASURE
We will follow the exposition that may be found at

http://members.tripod.com/PhilipApps/howto.html

See also [LIN], [CUT]. At the end, we will point out the ultrafilter that is lurking
in the background.

Let m be a finitely additive measure on the set N of natural numbers such that

1. For any subset A ⊆ N, m(A) is either 0 or 1.

2. It holds that m(N) = 1 and m(B) = 0 for any finite set B.

That such a measure m exists is an easy exercise with the Axiom of Choice.1 We
leave the details to the interested reader.

5.6.4 AN EQUIVALENCE RELATION
Let

S =
{
{an}∞n=1 : an ∈ R for all n = 1, 2, . . .

}
Define a relation ∼ on S by

{an} ∼ {bn} if and only if m{n : an = bn} = 1

Then ∼ is clearly an equivalence relation. We let R∗ = S/ ∼ be the nonstandard
real number system.2 In other words R∗ is the collection of equivalence classes
induced by this equivalence relation.

1The rather innocent-sounding Axiom of Choice says that, given any collection of sets, there is a function
that assigns to each set one of its elements. This axiom was first formulated by Ernst Zermelo (1871–1953) in
1904. It turns out to harbor many mysteries, and has had a profound influence on the development of modern
mathematics.

2In fact this is the point where we use an ultrafilter. The set M = {A ⊆ N : m(A) = 1} is an ultrafilter. We are
moding out by this ultrafilter.
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We let [{an}] denote the equivalence class containing the sequence {an}. Then
we define some of the elementary operations on R∗ by

[{an}] + [{bn}] = [{an + bn}]
[{an}] · [{bn}] = [{an · bn}]

[{an}] < [{bn}] iff m({n : an < bn}) = 1

Further, we identify a standard real number b with the equivalence class
[{b, b, b, . . .}].

5.6.5 AN EXTENSION OF THE REAL NUMBER SYSTEM
We have seen that R∗ clearly contains R in a natural way. And it contains other
elements too. We call x ∈ R∗ an infinitesimal if and only if a �= 0 and −a < x < a
for every positive real number a. For example, [{1, 2/3, 1/3, . . .}] is an infinitesimal.
We call y ∈ R∗ an infinitary number if y > b for every real number b or y < d for
every real number d. As an instance, [{1, 2, 3, . . .}] is an infinitary number.

It would be inappropriate in a book of this type to delve very far into the theory of
the nonstandard reals. But at least now the reader has an idea of what the nonstandard
real numbers are, and of how a number system could contain both the standard reals
and also infinitesimals and infinitaries.

5.7 The Complex Numbers
When we first learn about the complex numbers, the most troublesome point is the
very beginning: “Let’s pretend that the number −1 has a square root. Call it i.”
What gives us the right to “pretend” in this fashion? The answer is that we have no
such right. If −1 has a square root, we should be able to construct a number system
in which that is the case. That is what we shall do in this section.

Definition 5.10 The system of complex numbers, denoted by the symbol C, consists
of all ordered pairs (a, b) of real numbers (in other words, C = R × R). We add
two complex numbers (a, b) and (a∗, b∗) by the formula

(a, b) + (a∗, b∗) = (a + a∗, b + b∗)

We multiply two complex numbers by the formula

(a, b) · (a∗, b∗) = (a · a∗ − b · b∗, a · b∗ + a∗ · b)
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Remark 5.9 If you are puzzled by this definition of multiplication, then do not
worry. In a few moments you will see that it gives rise to the notion of multiplication
of complex numbers that you have seen before.

It is interesting to note that, unlike the integers and the rational numbers, the
new number system C is not a collection of equivalence classes. Instead, C is the
Euclidean plane equipped with some new algebraic operations.

EXAMPLE 5.13
Let z = (3,−2) and w = (4, 7) be two complex numbers. Then

z + w = (3,−2) + (4, 7) = (3 + 4,−2 + 7) = (7, 5).

Also

z · w = (3,−2) · (4, 7) = [3 · 4 − (−2) · 7, 3 · 7 + 4 · (−2)] = (26, 13) �

As usual, we ought to check that addition and multiplication are commutative,
associative, that multiplication distributes over addition, and so forth. We shall leave
these tasks as an exercise for the reader. Instead we develop some of the crucial
properties of our new number system.

Theorem 5.12 The following properties hold for the number system C.

(1) The number 1 ≡ (1, 0) is the multiplicative identity: 1 · z = z for any z ∈ C.

(2) The number 0 ≡ (0, 0) is the additive identity: 0 + z = z for any z ∈ C.

(3) Each complex number z = (x, y) has an additive inverse −z = (−x,−y):
it holds that z + (−z) = 0.

(4) The number i ≡ (0, 1) satisfies i · i = (−1, 0) ≡ −1; in other words, i is a
square root of −1.

Proof: These are direct calculations, but it is important for us to work out these
facts.

First, let z = (x, y) be any complex number. Then

1 · z = (1, 0) · (x, y) = (1 · x − 0 · y, 1 · y + x · 0) = (x, y) = z

This proves the first assertion.
For the second, we have

0 + z = (0, 0) + (x, y) = (0 + x, 0 + y) = (x, y) = z
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With z as above, set −z = (−x,−y). Then

z + (−z) = (x, y) + (−x,−y) = [x + (−x), y + (−y)] = (0, 0) = 0

Finally, we calculate

i · i = (0, 1) · (0, 1) = (0 · 0 − 1 · 1, 0 · 1 + 0 · 1) = (−1, 0) = −1

Thus, as asserted, i is a square root of −1. �

Proposition 5.4 If z ∈ C, z �= 0, then there is a complex number w such that
z · w = 1.

Proof: Write z = (x, y) and set

w =
(

x

x2 + y2
,

−y

x2 + y2

)
Since z �= 0, this definition makes sense. Then it is straightforward to verify that
z · w = 1. �

Thus every nonzero complex number has a multiplicative inverse. The other field
axioms for C are easy to check. We conclude that the number system C forms a
field. You will prove in the exercises that it is not possible to order this field. If
α is a real number then we associate α with the complex number (α, 0). In this
way, we can think of the real numbers as a subset of the complex numbers. In fact,
the real field R is a subfield of the complex field C. This means that if α, β ∈ R

and (α, 0), (β, 0) are the corresponding elements in C then α + β corresponds to
(α + β, 0) and α · β corresponds to (α, 0) · (β, 0). These assertions are explored
more thoroughly in the exercises.

With the remarks in the preceding paragraph we can sometimes ignore the dis-
tinction between the real numbers and the complex numbers. For example, we can
write

5 · i

and understand that it means (5, 0) · (0, 1) = (0, 5). Likewise, the expression

5 · 1

can be interpreted as 5 · 1 = 5 or as (5, 0) · (1, 0) = (5, 0) without any danger of
ambiguity or misunderstanding.
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Theorem 5.13 Every complex number can be written in the form a + b · i, where
a and b are real numbers. In fact, if z = (x, y) ∈ C then

z = x + y · i

Proof: With the identification of real numbers as a subfield of the complex num-
bers, we have that

x + y · i = (x, 0) + (y, 0) · (0, 1) = (x, 0) + (0, y) = (x, y) = z

as claimed. �

Now that we have constructed the complex number field, we will adhere to the
usual custom of writing complex numbers as z = a + b · i or, more simply, a + bi.
We call a the real part of z, denoted by Re z, and b the imaginary part of z, denoted
Im z. In this notation, our algebraic operations become

(a + bi) + (a∗ + b∗i) = (a + a∗) + (b + b∗)i

and

(a + bi) · (a∗ + b∗i) = (a · a∗ − b · b∗) + (a · b∗ + a∗ · b)i

If z = a + bi is a complex number then we define its complex conjugate to be the
number z̄ = a − bi. We record some elementary facts about the complex conjugate:

Proposition 5.5 If z, w are complex numbers then

(1) z + w = z̄ + w̄;
(2) z · w = z̄ · w̄;
(3) z + z̄ = 2 · Re z;
(4) z − z̄ = 2 · i · Im z;
(5) z · z̄ ≥ 0, with equality holding if and only if z = 0.

Proof: Write z = a + bi, w = c + di. Then

z + w = (a + c) + (b + d)i

= (a + c) − (b + d)i

= (a − bi) + (c − di)

= z̄ + w̄
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This proves (1). Assertions (2), (3), (4) are proved similarly. For (5), notice that

z · z̄ = (a + bi) · (a − bi) = a2 + b2 ≥ 0

Clearly equality holds if and only if a = b = 0. �

The expression |z| is defined to be the nonnegative square root of z · z̄. In other
words

|z| = √
z · z̄ =

√
(x + iy) · (x − iy) =

√
x2 + y2

It is called the modulus of z and plays the same role for the complex field that
absolute value plays for the real field: the modulus of z measures the distance of z
to the origin.

The modulus has the following properties.

Proposition 5.6 If z, w ∈ C then

1. |z| = |z̄|;
2. |z · w | = |z| · |w |;
3. |Re z| ≤ |z|, |Im z| ≤ |z|;
4. |z + w | ≤ |z| + |w |.

Proof: Write z = a + bi, w = c + di. Then (1), (2), and (3) are immediate. For
(4) we calculate that

|z + w |2 = (z + w) · (z + w)

= z · z̄ + z · w̄ + w · z̄ + w · w̄

= |z|2 + 2Re (z · w̄) + |w |2
≤ |z|2 + 2|z · w̄ | + |w |2
= |z|2 + 2|z| · |w | + |w |2
= (|z| + |w |)2

Taking square roots proves (4). �

Observe that if z is real then z = a + 0i and the modulus of z equals the absolute
value of a. Likewise, if z = 0 + bi is pure imaginary then the modulus of z equals
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the absolute value of b. In particular, the fourth part of the Proposition 5.6 reduces,
in the real case, to the triangle inequality

|x + y| ≤ |x | + |y|

5.8 The Quaternions, the Cayley Numbers,
and Beyond

Now we shall discuss a number system that you may have never encountered before.
It is called the system of quaternions. Our description will be an informal one.

Imagine R4 ≡ R × R × R × R equipped with the following operations: set i =
(0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1). Denote the 4-tuple (1, 0, 0, 0) by 1.
Define the multiplication laws

i · i = −1 j · j = −1 k · k = −1

and

i · j = k j · k = i k · i = j

and

j · i = −k k · j = −i i · k = −j

Of course the element 1 multiplied times any 4-tuple z is declared to be equal to z.
In particular, 1 · 1 = 1.

Finally, if z = (z1, z2, z3, z4) and w = (w1, w2, w3, w4) are 4-tuples then we
write

z = z1 · 1 + z2i + z3j + z4k

and

w = w1 · 1 + w2i + w3j + w4k

Then z · w is defined by using the (obvious) distributive law and the rules already
specified. For example,

(2, 0, 1, 3) · (−4, 1, 0, 1) = [2 · 1 + j + 3k] · [−4 · 1 + i + k]

= (2 · (−4)) · 1 + (2i) + (2k)

+ (j · (−4)) + (j · i) + (j · k)

+ (3k · (−4)) + (3k · i) + (3k · k)
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= − 8 · 1 + 2i + 2k − 4j − k + i − 12k + 3j − 3 · 1

= − 11 · 1 + 3i − j − 11k

= (−11, 3,−1,−11)

Addition of two quaternions is simply performed componentwise: if z =
(z1, z2, z3, z4) and w = (w1, w2, w3, w4) then

z + w = (z1 + w1, z2 + w2, z3 + w3, z4 + w4)

Verify for yourself that the additive identity in the quaternions is (0, 0, 0, 0). The
multiplicative identity is 1 = (1, 0, 0, 0).

In fact it can be checked that each nonzero element of the quaternions has
a unique two-sided multiplicative inverse. However, since multiplication is not
commutative, the quaternions do not form a field; instead the algebraic structure
is called a division ring.

It is also possible to give R8 an additive and a multiplicative structure. The multi-
plication operation is both noncommutative and nonassociative. The resulting eight-
dimensional algebraic object is called the Cayley numbers. We shall not present the
details here. It is one of the great theorems of twentieth century mathematics (see
[ADA], [BOM]) that R1, R2, R4, and R8 are the only Euclidean spaces that can be
equipped with compatible addition and multiplication operations in a natural way
(so that the algebraic operations are smooth functions of the coordinates).

The quaternions and Cayley numbers are used in mathematical physics, in the
representation theory of groups, and in algebraic topology. The cayley numbers
are included in the ROM of every cell phone as part of the system of encoding
messages.

Exercises
1. Let S be a set and let p : S × S → S be a binary operation. If T ⊂ S then

we say that T is closed under p if p : T × T → T . (As an example, let
S = Z and T be the even integers and p be ordinary addition.) Under which
arithmetic operations +,−, ·,÷ is the set Q closed? Under which arithmetic
operations +,−, ·,÷ is the set R\Q closed?

2. Let q be a rational number. Construct a sequence {x j } of irrational numbers
such that x j → q. This means that, for each ε > 0, there is a positive integer
K such that if j > K then |x j − q| < ε.

3. Let S be a set of real numbers with the property that whenever x, y ∈ S and
x < t < y then t ∈ S. Can you give a simple description of the set S?
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4. Explain why every nonzero complex number β ∈ C has two distinct square
roots in C.

5. An Argand diagram is a device for sketching a complex number in the plane.
If x + iy is a complex number then we depict it in the cartesian plane as the
point (x, y). Sketch the complex numbers 3 − 2i , 4i + 7, π i + e, −6 − i.

6. The complex number 1 = 1 + 0i has three cube roots. Use any means to find
them, and sketch them on an Argand diagram.

7. Let p be a polynomial and assume that α ∈ C is a root of p. Prove that (z − α)

evenly divides p(z) with no remainder.

8. Determine whether
√

2 +√
3 is rational or irrational.

9. Find all square roots in the quaternions of the number 1 + i + j.

10. Explain why subtraction in the integers is well defined.

11. Explain why multiplication in the integers is well defined.

12. Explain why division makes no sense in the integers.

13. Prove that addition in the integers is commutative.

14. Show that addition of rational numbers is well defined.

15. Show that the complex numbers cannot be ordered as a field.

16. Follow the outline in the text to show that the real numbers form a subfield
of the complex numbers.
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CHAPTER 6

Counting Arguments

Although everybody knows how to count in the sense of

1 2 3 4 5 . . .

the fact is that counting is one of the most important techniques of modern mathe-
matics. And counting can be quite sophisticated. Imagine counting the number of
ways that one can get a straight flush in a hand of seven-card-stud poker. This is by
no means a trivial counting problem.

In the present chapter we shall learn some important counting techniques that
can be used to attack a variety of problems.

6.1 The Pigeonhole Principle
Also known as the Dirichletscher Schubfachschluss (“Dirichlet’s drawer-shutting
principle”), this is one of the key ideas in all of counting theory. And the idea is
simplicity itself:

Pigeonhole principle: Let k be a positive integer. Imagine that you are de-
livering k + 1 letters to k mailboxes. Then it must be that some mailbox will
receive two letters.
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Obvious? Well, if each mailbox only received 0 or 1 letter then the total number
of letters could not be more than

1 + 1 + · · · + 1︸ ︷︷ ︸
k times

So there could not be more than k letters, and that is a contradiction (since we as-
sumed that we had k + 1 letters). There are many other ways to verify this significant
principle of counting.

Let us now illustrate the pigeonhole principle with some incisive examples.

EXAMPLE 6.1
Joe needs to get up at 4:00 a.m. each morning to go to work. He needs to get a pair
of matching socks from his drawer without turning on the light and disturbing his
wife. He knows that there are socks of three different colors, unpaired and randomly
distributed, in the drawer. How many socks should he grab so that he can be sure
to have a pair of the same color?

Solution: Call the sock colors red, green, and yellow. If Joe grabs three socks
then one could be red, one could be green, and one could be yellow. So that will
not do.

If he grabs four socks, then imagine that each sock is a “letter” and that there
are three mailboxes labeled red, green, and yellow. He sticks each sock into the
mailbox corresponding to its color. Well, there are three mailboxes and four letters,
so some mailbox must end up with two letters. That means that two of the socks
have the same color.

The answer is that Joe should grab four socks. �

EXAMPLE 6.2
There are 50 people in a room. Let us verify that there are two people in the room
who have the same number of acquaintances in the room.

Solution: We consider two cases:

Case 1: There is one and only one person named Mary who has no acquaintances.
Thus everyone else has 1 or 2 or . . . or 48 acquaintances (nobody could have 49
acquaintances because then he/she would be acquainted with Mary—impossible!).
Thus we have 49 people (these are the “letters”), each with somewhere between
1 and 48 acquaintances (these are the “mailboxes”). Thus some mailbox has two
letters, meaning that two different people have the same number of acquaintances.
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Figure 6.1 The dartboard divided into six regions.

Case 2: In this case we assume that there is no Mary. So every one of the 50 people
has 1 or more acquaintances. Thus everyone has either 1 or 2 or . . . or 49 acquain-
tances. That gives 50 letters going into 49 mailboxes. Some mailbox must contain
two letters, meaning that two people have the same number of acquaintances. �

EXAMPLE 6.3
Suppose that a standard dartboard has radius 10 inches. We throw seven darts at
the dartboard. Why is it true that two of the darts will be distance at most 10 inches
apart?

Solution: Examine Fig. 6.1. It shows the dartboard divided into six regions. But
there are seven darts. By the pigeonhole principle, two of the darts must land in the
same region. Refer to Fig. 6.2. Since the dartboard has radius 10 inches, no two
points of the region are more distant than 10 inches. So these two darts satisfy our
criterion. �

EXAMPLE 6.4
Verify that, at any given moment in New York City, there are two people with the
same number of hairs on their heads.

Solution: Any person has at most 900 hairs per square inch on his/her dome. No
head has diameter greater than 20 inches. It is easy to estimate that the cranium
has surface area at most 4πr2 (that is, the surface area of a sphere of radius r )
hence at most 5000 square inches. So nobody has more that 5 million hairs on his/
her head.
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10

10

Figure 6.2 Two darts in the same region.

But New York City has about 9 million people. Thus we have 9 million letters
with at most 5 million mailboxes. It follows that some mailbox will contain two
letters, so that two people will have the same number of hairs. �

You Try It: Select 55 integers at random between 1 and 100 inclusive. Demon-
strate that two of these selected numbers will differ by exactly 9.

You Try It: There are 9 people seated in a row of 12 chairs. Show that three
consecutive chairs must be occupied.

6.2 Orders and Permutations
Suppose that we have n objects, as in Fig. 6.3. In how many different orders can
they be presented? The technical language for this question is, “How many different
permutations are there of n objects?” Here a permutation is simply a reordering of
the objects.

a1 a2 a3 an

Figure 6.3 An array of n objects.
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A B C

Figure 6.4 An array of three objects.

As a simple example, take n to be 3. Refer to Fig. 6.4. In how many different
orders can we present these objects? Fig. 6.5 shows the different ways.

We see that there are a total of six different ways to permute three objects. Contrast
this situation with two objects—there are only two different ways to permute two
objects ({A, B} or {B, A}). In fact the number of permutations of n objects grows
rather rapidly with n.

Now let us return to n objects. In how many different ways can we order them?
Look at the first position. We can put any of the n objects in that first position,
so there are n possibilities for the first position. Next go to the second position.

A B C

A C B

B C A

B A C

C A B

C B A

Figure 6.5 All the different orders for three objects.
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One object is used up, so there are n − 1 objects remaining. Any one of those n − 1
objects can go into the second position.

Now examine the third position. There are n − 2 objects remaining (since two of
them are used up). So any of those n − 2 can go in the third position. And so forth.
We see that there are three possibilities for the (n − 2)th position, two possibilities
for the (n − 1)th position, and one possibility for the nth position.

To count the total number of possible orderings, we multiply together all these
counts:

number of permutations of n objects = n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1

This last expression is so important, and so pervasive, in mathematics that we give
it a name. It is called n factorial, and is written n!.

EXAMPLE 6.5
In how many different ways can we order five objects?

Solution: The number of permutations of five objects is

5! = 5 · 4 · 3 · 2 · 1 = 120

There are 120 different permutations of 5 objects. �

6.3 Choosing and the Binomial Coefficients
Suppose that you have n objects and you are going to choose k of them (where
0 ≤ k ≤ n). In how many different ways can you do this?

Just to illustrate the idea, take n = 3 and k = 2—see Fig. 6.6. For convenience
we have labeled the objects A, B, C . The different ways that we can choose two
from among the three are

{A, B} {A, C} {B, C}

There are no other possibilities.
It is of interest to try to analyze this problem in general. So imagine now that

we have n objects as shown in Fig. 6.7. We are going to select k of them, with
0 ≤ k ≤ n. We may note in advance that there is only 1 way to select 0 objects
from among n—you just do not select any! So we may assume that k is at least 1.
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A B C

Figure 6.6 Three objects from which to choose two.

We select the first object. There are n different ways to do this—either you select
the first one a1, or the second one a2, or . . . or the last one an .

Now let us think about selecting the second object. One object has already been
selected, so there are n − 1 objects left. And we may select any one of them with
no restriction. So there are n − 1 ways to select the second object. See Fig. 6.8.

Now the pattern emerges. When we go to select the third object, there are n − 2
choices remaining. So there are n − 2 ways to select the third object.

And on it goes. There are n − 3 ways to select the fourth object, n − 4 ways to
select the fifth object, . . . , n − k + 1 ways to select the kth object.

Altogether then we have

n · (n − 1) · (n − 2) · · · · (n − k + 1)

ways to select k objects from among n total. But we have overlooked an important
fact—refer to the last section. We could have selected those k objects in any of k!
different orders. So in fact the number of ways to select k objects from among n is

n · (n − 1) · (n − 2) · · · · (n − k + 1)

k!

This is a very common expression in mathematics, and we give it the name n
choose k. We denote this quantity by

(n
k

)
. In fact it is customary to write it as(

n

k

)
= n!

(n − k)!k!

EXAMPLE 6.6
In how many different ways can we choose two objects from among five?

a1 a2 a3 an

Figure 6.7 Selecting k objects from among n.
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a1 a2 a3 an

Figure 6.8 One object selected and n − 1 remaining.

Solution: The answer is immediate:(
5

2

)
= 5!

(5 − 2)!2!
= 120

6 · 2
= 10

In fact if the five objects are a, b, c, d, and e then the five possible choices of two
are:

{a, b} {a, c} {a, d} {a, e} {b, c}
{b, d} {b, e} {c, d} {c, e} {d, e} �

EXAMPLE 6.7
How many different 5-card poker hands are there in a standard 52-card deck of
cards?

Solution: The answer is(
52

5

)
= 52!

(52 − 5)!5!
= 2, 598, 960

�

EXAMPLE 6.8
In a five-card poker hand, what are the chances of having three-of-a-kind?

Solution: For the three matching cards, the first card that we select can be any-
thing. So there are 52 possibilities. But the next one must match it. So there are only
three choices for the second card (remember that there are four of each kind of card
in the deck). And for the third card there are then just two possibilities. The other
two cards can be completely random, so there are 49 and 48 possibilities for those
two cards. Thus the total number of ways to have a hand with three-of-a-kind is

52 · 3 · 2 · 49 · 48

6
= 122, 304
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Note the little surprise: we have divided by 6 since we must divide out all the
different possible orders of the same set of three matching cards; the number of
permutations of three objects is 3! = 6.

Now the odds of getting three-of-a-kind is the ratio

122304

2598960
= 0.047058824

(using the count of all possible hands from the previous example) or slightly less
than 1 in 20. �

You Try It: What are the odds of getting two pair in a standard five-card poker
hand?

You Try It: What are the odds of getting four-of-a-kind in a standard five-card
poker hand?

You Try It: You have a pot of beads. The beads are all identical in size and shape,
but come in 2 different colors. You wish to make a beaded necklace consisting of
10 beads. How many different necklaces could you make? Of course the order of
the beads will be important: beads in the order black-white-black-white does not
give the same necklace as black-black-white-white. Note also that two necklaces
are equivalent, and count as just one necklace, if a rotation of one gives the other.
[After you have solved this problem, try replacing “10” with n and “2” with k and
solve it again.]

6.4 Other Counting Arguments
It will be useful for this section and the material that follows to have standard
mathematical summation notation at our disposal. The expression

N∑
j=1

a j (6.1)

is used to denote

a1 + a2 + · · · + aN

Observe that the symbol
∑

is the Greek letter sigma, which is a cognate of our
roman S. We read the Eq. (6.1) as meaning that we sum a j as the index j ranges
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from 1 to N . We will also write
N∑

j=5

b j

to indicate that b j should be summed from 5 to N . In fact we allow any integral
lower index M and any upper index N ; the custom is that M should be less than or
equal to N .

Sometimes we also write
∞∑
j=1

c j

to indicate that we are summing infinitely many terms. This idea will be explored
in Chap. 13.

EXAMPLE 6.9
Draw a planar grid that is 31 squares wide and 17 squares high. How many different
nontrivial rectangles can be drawn, using the lines of the grid to determine the
boundaries? See Fig. 6.9. (Here “nontrivial” means that the rectangle has positive
width and positive height.)

Solution: We need a cogent method for counting the rectangles. Note that any
rectangle is uniquely specified by the location of its lower left-hand corner, its
length, and its width.

Figure 6.9 A 31 × 17 grid.
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We think of the lower left point of the grid in Fig. 6.9 as the origin and locate
points in the usual cartesian fashion (with the side of a square in the grid being
a unit).

How many rectangles can have their lower left corner at the origin? Well, there
are 31 possible widths, from 1 to 31, and 17 possible heights, from 1 to 17. That is
a total of 31 × 17 = 527 possible rectangles with lower left corner at 0.

This is a good start, but extrapolation from this beginning will constitute an
awfully tedious manner of enumerating all the possible rectangles. We will now be
a bit more analytical. Suppose that we consider rectangles with lower left corner
at ( j, k), with 0 ≤ j ≤ 30 and 0 ≤ k ≤ 16. There are (31 − j) possible widths for
such rectangles and (17 − k) possible heights. Thus, altogether, there are (31 −
j) × (17 − k) rectangles with lower left corner at ( j, k). Given the range of j and
k, the total number of all possible nontrivial rectangles is

S =
30∑
j=0

16∑
k=0

(31 − j) × (17 − k)

It is useful to expand the summands using the distributive law and then to regroup.
We have

S =
30∑
j=0

16∑
k=0

[
527 − 17 j − 31k + jk

]
This, in turn, equals

30∑
j=0

16∑
k=0

527 −
30∑
j=0

16∑
k=0

17 j −
30∑
j=0

16∑
k=0

31k +
30∑
j=0

16∑
k=0

jk = [527 · 31 · 17]

− 17 · 17 ·
30∑
j=0

j − 31 · 31 ·
16∑

k=0

k +
[

30∑
j=0

j

]
·
[

16∑
k=0

k

]

Now we may use Gauss’s formula from Sec. 2.4 to evaluate each of the sums in the
last formula. We obtain

S = 277729 − 289 · 465 − 961 · 136 + 465 · 136

= 277729 − 134385 − 130696 + 63240

= 75888 �
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In Chap. 1 we saw how to use the method of induction to calculate certain finite
sums, such as 1 + 2 + 3 + · · · k, in closed form. Now we look at another type of
sum, known as a geometric sum.

A geometric sum is a sum of powers of a fixed number. For example,

1 + 3 + 32 + 33 + · · · + 310

is a finite geometric sum. Also

1 + 1

2
+
(

1

2

)2

+
(

1

2

)3

+ · · ·

is an infinite geometric sum. Notice in each case that the first term of the sum is 1,
and that is the zeroeth power of the fixed number λ (in the first instance 3 and in
the second instance 1/2).

EXAMPLE 6.10
Let λ be a real number and k a positive integer. Calculate the sum of the geometric
series

S = 1 + λ + λ2 + · · · + λk

Solution: The key is to note that multiplying S by λ does not change it very much.
Indeed

λS = λ + λ2 + λ3 + · · · + λk+1

The sums S and λS differ only in the presence of 1 in the first of these and the
presence of λk+1 in the second. In other words

S − 1 = λS − λk+1

That is,

(λ − 1)S = λk+1 − 1

We finally write this as

S = λk+1 − 1

λ − 1 �

An example of what the solution of the last problem tells us is as follows: Sup-
pose that we want to know explicitly the value of the sum S = 1 + (1/3) + (1/3)2

+ · · · + (1/3)100. It would be quite tedious to add all these numbers up by hand
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(or even using a calculator). But this question fits the paradigm of the geometric
series, with λ = 1/3 and k = 100. Thus

S = (1/3)101 − 1

(1/3) − 1
= 3

2
·
(

1 −
[

1

3

]101
)

Now a calculator may be used to see that the value of this last expression is about
1.5 − 9.702 · 10−49.

Sometimes it is convenient, when −1 < λ < 1, to reason as follows: for k ∈
{1, 2, 3, . . .} we set

Sk = 1 + λ + λ2 + · · · λk

We know, from the last example, that

Sk = 1 − λk+1

1 − λ
(6.2)

Now we could ask what happens if, instead of adding just finitely many powers of
λ, we add all powers of λ. This would correspond (in a sense that you will learn
about more precisely when we get to Chaps. 12 and 13) to letting k tend to infinity
in Eq. (6.2).

The result is that the sum S = 1 + λ + λ2 + · · · of all nonnegative powers of
λ is obtained by asking what happens to the right-hand side of Eq. (6.2) when
k becomes large without bound. Since |λ| < 1, it is plausible that λk+1 becomes
smaller and smaller, in fact tends to 0, as k increases without bound. In other words,
Sk → 1/(1 − λ). We write

∞∑
j=0

λ j = 1

1 − λ
(6.3)

This is a variant of the standard mathematical notation for summation. The symbol∑
denotes the summation process. The lower limit means that we begin our sum-

ming with the exponent j equaling 0 and the upper limit having no bound (in other
words, we sum all powers of λ).

Here is an illustrative example: what is the sum

1 + 1

2
+
(

1

2

)2

+
(

1

2

)3

+ · · ·

equal to? Draw a picture of the interval [0, 2] on your scratch pad. The sum of the
first two terms is 3/2. Add one additional term and you cover half the remaining
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distance to 2. Add the fourth term and you again cover half the remaining distance
to 2. In fact each additional term repeats this key property. It is plausible to suppose
that the entire sum equals 2.

In fact our new formula makes this supposition concrete:

∞∑
j=0

(
1

2

) j

= 1

1 − (1/2)
= 2

6.5 Generating Functions
Now we shall learn the powerful technique of generating functions. In fact we shall
build on what has gone before. We will use our new ideas about geometric series,
in a very simple form, in the next problem.

EXAMPLE 6.11
The Fibonacci sequence is famous in mathematics, indeed in all of science. The
Fibonacci sequence describes the spacing of leaves on a vine, the turns of a conch
shell, and many other natural phenomena.

The sequence is formed in the following way: the first two terms are each equal
to 1. The next term is obtained by adding the preceding two: thus the third term
equals 2. The next term (the fourth) is obtained by adding the preceding two:
1 + 2 = 3. The next term is obtained by adding the preceding two: 2 + 3 = 5. In
fact the first 10 terms of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

We denote the j th term of the Fibonacci sequence by a j . Thus

a0 = 1 a1 = 1 a2 = 2 a3 = 3 a4 = 5

and so forth.
Show that the following formula for the Fibonacci sequence is valid:

a j =
(

1+√
5

2

) j
−
(

1−√
5

2

) j

√
5

Solution: We shall use the method of generating functions, a powerful technique
that is used throughout the mathematical sciences.

We write F(x) = a0 + a1x + a2x2 + · · · . Here the a j ’s are the terms of the
Fibonacci sequence and the letter x denotes an unspecified variable. What is curious
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here is that we do not care about what x is. It is simply an unspecified variable. We
shall not solve for x . We intend to manipulate the function F in such a fashion that
we will be able to solve for the coefficients a j . Just think of F(x) as a polynomial
with a lot of coefficients.

Notice that

x F(x) = a0x + a1x2 + a2x3 + a3x4 + · · ·

and

x2 F(x) = a0x2 + a1x3 + a2x4 + a3x5 + · · ·

Thus, grouping like powers of x , we see that

F(x) − x F(x) − x2 F(x)

= a0 + (a1 − a0)x + (a2 − a1 − a0)x2

+ (a3 − a2 − a1)x3 + (a4 − a3 − a2)x4 + · · ·

But the basic property that defines the Fibonacci sequence is that a2 − a1 − a0 =
0, a3 − a2 − a1 = 0, and so on. Thus our equation simplifies drastically to

F(x) − x F(x) − x2 F(x) = a0 + (a1 − a0)x

We also know that a0 = a1 = 1. Thus the equation becomes

(1 − x − x2)F(x) = 1

or

F(x) = 1

1 − x − x2
(6.4)

It is convenient to factor the denominator as follows:

F(x) = 1[
1 − −2

1−√
5
x
]
·
[
1 − −2

1+√
5
x
]

[just simplify the right-hand side to see that it equals Eq. (6.4)].
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A little more algebraic manipulation yields that

F(x) = 5 +√
5

10

[
1

1 + 2
1−√

5
x

]
+ 5 −√

5

10

[
1

1 + 2
1+√

5
x

]

Now we want to apply the formula in Eq. (6.2) from Sec. 6.4 to each of the
fractions in brackets ([ ]). For the first fraction, we think of − 2

1−√
5
x as λ. Thus the

first expression in brackets equals

∞∑
j=0

(
− 2

1 −√
5

x

) j

Likewise the second sum equals

∞∑
j=0

(
− 2

1 +√
5

x

) j

All told, we find that

F(x) = 5 +√
5

10

∞∑
j=0

(
− 2

1 −√
5

x

) j

+ 5 −√
5

10

∞∑
j=0

(
− 2

1 +√
5

x

) j

Grouping terms with like powers of x , we finally conclude that

F(x) =
∞∑
j=0

[
5 +√

5

10

(
− 2

1 −√
5

) j

+ 5 −√
5

10

(
− 2

1 +√
5

) j
]

x j

But we began our solution of this problem with the formula

F(x) = a0 + a1x + a2x2 + · · ·

The two different formulas for F(x) must agree. In particular, the coefficients of
the different powers of x must match up. We conclude that

a j = 5 +√
5

10

(
− 2

1 −√
5

) j

+ 5 −√
5

10

(
− 2

1 +√
5

) j
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We rewrite

5 +√
5

10
= 1√

5
· 1 +√

5

2

5 −√
5

10
= − 1√

5
· 1 −√

5

2

and

− 2

1 −√
5
= 1 +√

5

2
− 2

1 +√
5
= 1 −√

5

2

Making these four substitutions into our formula for a j , and doing a few algebraic
simplifications, yields

a j =
(

1+√
5

2

) j
−
(

1−√
5

2

) j

√
5

as desired. �

Notice how, in this last example, we combined F , x F , and x2 F so that important
cancellations would take place. That is how we used the special properties of the
Fibonacci sequence. In other problems, such as those in the next section, you will
need to use different combinations, with possibly different coefficients, that are
tailored to each specific problem.

6.6 A Few Words About Recursion Relations
Let {a j } be a sequence, or a list of numbers. More explicitly, the sequence is

a0, a1, a2, . . .

where the list never stops. It is frequently the case that we will have a rule that
tells us the value of the j th element of the list in terms of some of the previous
elements. This situation is called a recursion. The method of generating functions
can sometimes be used to good effect to solve recursions. We shall illustrate the
idea here with some examples.

EXAMPLE 6.12
A sequence is defined by the rule a0 = 4, a1 = −1, and a j = −a j−1 + 2a j−2. Use
the method of generating functions to find a formula for a j .
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Remark 6.1 Notice that the recursion rule says in particular that

a2 = −a1 + 2a0

As a result, a2 = 9. Similarly,

a3 = −a2 + 2a1

It follows that a3 = −11.
This is how recursions work.

Solution: We write F(x) = a0 + a1x + a2x2 + · · · . Here the a j s are the terms
of the unknown sequence and the letter x denotes an unspecified variable.

Notice that

x F(x) = a0x + a1x2 + a2x3 + a3x4 + · · ·

and

x2 F(x) = a0x2 + a1x3 + a2x4 + a3x5 + · · ·

Thus, grouping like powers of x , we see that

F(x) + x F(x) − 2x2 F(x)

= a0 + (a1 + a0)x + (a2 + a1 − 2a0)x2

+ (a3 + a2 − 2a1)x3 + · · ·

But the basic property that defines our sequence is that a2 = −a1 + 2a0, a3 =
−a2 + 2a1, and so on. Thus our equation simplifies drastically to

F(x) + x F(x) − 2x2 F(x) = a0 + (a1 + a0)x

We also know that a0 = 4 and a1 = −1. Thus the equation becomes

(1 + x − 2x2)F(x) = 4 + 3x

or

F(x) = 4 + 3x

1 + x − 2x2
(6.5)
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It is convenient to factor the denominator as follows:

F(x) = 4 + 3x

(−2x − 1) · (x − 1)

[just simplify the right-hand side to see that it equals Eq. (6.5)].
A little more algebraic manipulation yields that

F(x) =
(
−5

3

)
· 1

−2x − 1
+
(
−7

3

)
· 1

x − 1

=
(

5

3

)
· 1

1 − (−2x)
+
(

7

3

)
· 1

1 − x

Now we want to apply the formula in Eq. (6.2) from Sec. 6.4 to each of the fractions
here. For the first fraction, we think of −2x as λ. Thus the first fractional expression
equals

∞∑
j=0

(−2x) j

Likewise the second fractional expression equals

∞∑
j=0

x j

All told, we find that

F(x) = 5

3

∞∑
j=0

(−2x) j + 7

3

∞∑
j=0

x j

Grouping terms with like powers of x , we finally conclude that

F(x) =
∞∑
j=0

[
5

3
(−2) j + 7

3

]
x j

But we began our solution of this problem with the formula

F(x) =
∞∑
j=0

a j x
j



124 Discrete Mathematics Demystified

The two different formulas for F(x) must agree. In particular, the coefficients of
the different powers of x must match up. We conclude that

a j = 5

3
(−2) j + 7

3

That is the solution to our recursion problem. �

You Try It: A sequence is defined by the rule a0 = 2, a1 = 1, and a j = 3a j−1 −
a j−2. Use the method of generating functions to find a formula for a j .

You Try It: A sequence is defined by the rule a0 = 0, a1 = −1, and a j = 3a j−1 −
2a j−2. Use the method of generating functions to find a formula for a j .

6.7 Probability
In Sec. 6.3 we have alluded to certain questions of probability theory. Now we take
a moment to treat the subject a bit more formally and precisely.

If an event E has finitely many possible outcomes o1, o2, . . . , ok , then we assign
a positive number p j to each outcome o j to indicate the likelihood that outcome
will actually occur. We mandate in advance that

k∑
j=1

p j = 1

indicating that 1 describes the totality of all outcomes.
If we are flipping a coin (that is the event E), then there are two possible outcomes:

heads and tails. Observation of many flips (or just common sense) teaches us that
the two outcomes are equally likely. Therefore we assign the number ph = 1/2 to
the outcome “heads” and the number pt = 1/2 to the outcome “tails.” Notice that
1/2 + 1/2 = 1, as we have mandated. We call ph the probability that heads will
occur and pt the probability that tails will occur.

It is common to express probabilities in terms of percentage. We might also say
(referring to the last paragraph) that there is a 50% probability that heads will occur
and a 50% probability that tails will occur.

Now let us look at a different situation. I hold a red ball and a blue ball. So do
you. Each of us will randomly put one of the balls into a box on the table. What are
the probabilities of the different outcomes? The different possibilities are BB, RR,
and RB (here R stands for “red” and B stands for “blue”). A naive analysis might
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cause one to guess that each of these three outcomes has the same probability.1 But
the naive analysis is wrong. Here is why:

• The outcome BB can only occur if each of us contributes a blue ball. So it can
only happen one way.

• The outcome RR can only occur if each of us contributes a red ball. So it can
only happen one way.

• The outcome RB can occur if I contribute a red ball and you contribute a blue,
or if I contribute a blue ball and you contribute a red. So it can happen in two
different ways.

Thus we see that the correct assignment of probabilities is pBB = 1/4, pRR = 1/4,
pRB = 1/2. We have chosen these numbers to meet the following criteria:

• The sum of all the probabilities should be 1.

• The probability of BB and RR should be equal.

• The probability of RB should be double that of BB or RR.

EXAMPLE 6.13
A girl flips a fair coin five times. What is the probability that precisely three of the
flips will come up heads?

Solution: Each flip has two possible outcomes. So the total number of possible
outcomes for five flips is

2 · 2 · 2 · 2 · 2 = 32

Now the number of ways that three head flips can occur is the number of ways
that three objects can be chosen from five. This is(

5

3

)
= 5!

3! · 2!
= 10

We conclude that the answer to the question is

p = 10

32
= 0.3125 �

1In fact this is what genetecists in the early twentieth century thought—where for them B is a dominant gene
and R is a recessive gene. It was eminent mathematician G. H. Hardy who noted the error of their ways. The
resulting published paper led to what is now called the Hardy-Weinberg law in genetics.
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You Try It: Calculate the probability that the girl in the last example will get zero
heads, one head, two heads, four heads, and five heads. Add up all these results
(including the result for three heads from the last example). The answer should of
course be 1, since these are all the possible outcomes.

EXAMPLE 6.14
Eight slips of paper with the letters A, B, C, D, E F, G, and H written on them
are placed into a bin. The eight slips are drawn one by one from the bin. What is
the probability that the first four to come out are A,C,E, and H (in some order)?

Solution: This problem is much less exciting than it sounds. After we choose the
first four slips, it does not matter what we do. We could burn the others, or go drink
coffee, or enroll in truck driving school. And the statement of the problem rules out
the order in which the slips are drawn. Stripping away the language, we see that we
are randomly selecting four objects from among eight. We want to know whether
a particular four, in any order, will be the ones that we select.

The number of different ways to choose four objects from among eight is(
8

4

)
= 8!

4! · 4!
= 8 · 7 · 6 · 5

4 · 3 · 2 · 1
= 70

Of these different subsets of four, only one will be the set {A, C, E, H}. Thus the
probability of the first four slips being the ones that we want will be 1/70. �

EXAMPLE 6.15
Suppose that you write 37 letters and then you address 37 envelopes to go with
them. Closing your eyes, you randomly stuff one letter into each envelope. What is
the probability that just one envelope contains the wrong letter?

Solution: Say that the envelopes are numbered 1–37 and the letters are numbered
1–37. If letters 1 through 36 go into envelopes 1–36 then what remains are letter
37 and envelope 37. So that last letter is forced to go into the correct envelope.

Of course there is nothing special about the numbering used in the last paragraph.
It just helped us to make a simple point: it is impossible to have just one letter in
the wrong envelope. If one letter is in the wrong envelope then at least two letters
are in the wrong envelope.

Thus the answer to our problem is that the probability is zero. �

You Try It: You have an urn with 100 black marbles and 100 white marbles. You
close your eyes and grab five marbles at random. What is the probability that at
least three of them are black?
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EXAMPLE 6.16
Suppose that you have 37 envelopes and you address 37 letters to go with them.
Closing your eyes, you randomly stuff one letter into each envelope. What is the
probability that precisely two letters are in the wrong envelopes and all others in
the correct envelope?

Solution: If just two letters are to be in the wrong envelope then they will have
to be switched; for instance, letter 5 could go into envelope 19 and letter 19 into
envelope 5. Thus the number of different ways that we can get just two letters in
the wrong envelopes is just the same as the number of different ways that we can
choose two letters from among 37. (All of the other 35 letters must go into their
correct envelopes, so there is no choice involved for those 35.) This number is

N =
(

37

2

)
= 37!

2!35!
= 37 · 36

2 · 1
= 666

Now if we imagine the envelopes, in their correct order (numbers 1–37), lying
in a row on the table, then a random distribution of letters among the envelopes
just corresponds to a random ordering of the letters. Thus the number of different
possible ways to distribute 37 letters among 37 envelopes is 37! (a very large
number). In conclusion, the probability that all letters but two will be in the correct
envelopes is

P = 666

37!
≈ 4.86 · 10−41

�

6.8 Pascal’s Triangle
The idea of what we now call Pascal’s triangle actually goes back to Yanghui
in about the twelfth century in China (and the Chinese call the object Yanghui’s
triangle). But it was Blaise Pascal (1623–1662) who really developed the concept
and showed its importance and context in modern mathematics.

Pascal’s triangle is a triangle formed according to the following precept (see
Fig. 6.10).

The rule for forming Pascal’s triangle is this:

• A 1 goes at the top vertex.

• Each term in each subsequent row is formed by adding together the two
numbers that are to the upper left and upper right of the given term.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

…

Figure 6.10 Pascal’s triangle.

It is convenient in our discussion to refer to the very top row of Pascal’s triangle
(with a single digit 1 in it) as the zeroth row. The next row is the first row. And so
forth. So the zeroth row has one element, the first row has two elements, the second
row has three elements, and so forth.

Thus, in the first row, the leftmost term has nothing to its upper left and a 1 to
its upper right. The sum of these is 1. So the leftmost term in the first row is 1.
Likewise the rightmost term in the first row is 1.

For the second row, the leftmost term has nothing to its upper left and a 1 to its
upper right. So this new term is 1. Likewise the rightmost term in the second row
is 1. But the middle term in the second row has a 1 to its upper left and a 1 to its
upper right. Therefore this middle term equals 1 + 1 = 2. That is what we see in
Pascal’s triangle.

For the third row, we see as usual that the leftmost term and the rightmost terms
are both 1 (in fact this property holds in all rows). But the second term in the third
row has a 1 to its upper left and a 2 to its upper right. Therefore this second terms
is equal to 3. Likewise the third term is equal to 3.

The rest of Pascal’s triangle is calculated similarly. The triangle is obviously
symmetric from left to right, about a vertical axis through the upper vertex. The kth
row has k + 1 terms. What is the significance of these numbers?

One obvious significance is the relation of the triangle to the celebrated binomial
theorem. Consider the quantity

(a + b)k = ak + k

1
ak−1b + k

2
ak−2b2 + k

3
ak−3b3 + · · ·

+ k

k − 3
a3bk−3 + k

k − 2
a2bk−2 + k

k − 1
abk−1 + k

k
bk

Now we will examine this important formula in the first several specific instances:

k = 0: (a + b)0 = 1

k = 1: (a + b)1 = a + b

k = 2: (a + b)2 = a2 + 2ab + b2
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k = 3: (a + b)3 = a3 + 3a2b + 3ab2 + b3

k = 4: (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

k = 5: (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

We see that the coefficients that occur for k = 0 are just the same as the zeroeth
row of Pascal’s triangle: namely, a single digit 1. The coefficients that occur for
k = 1 are just the same as the first row of Pascal’s triangle: namely, 1 and 1. The
coefficients that occur for k = 2 are just the same as the second row of Pascal’s
triangle: namely 1, 2, 1. And so forth. Of course if we think about how the binomial
expression (a + b)k is multiplied out, then we see that the coefficients are formed
by the very same rule that forms Pascal’s triangle. And that explains why the rows
of Pascal’s triangle give the binomial coefficients.

Another remarkable fact is that the sum of the numbers in the kth row of
Pascal’s triange is 2k . For example, in the third row, 1 + 3 + 3 + 1 = 8 = 23. This
is again a fundamental property of the binomial coefficients that can be verified
with mathematical induction.

A pleasing interpretation of the rows of Pascal’s triangle can be given in terms
of coin tosses:

• If we toss a coin once, then there are two possible outcomes: one heads and
one tails. This is information tabulated in the first row one of Pascal’s triangle.

• If we toss a coin twice, then there are three possible outcomes: two heads
(which can occur just one way), a head and a tail (which can occur two
ways—heads-tails or tails-heads), and two tails (which can occur just one
way). This information is tabulated by 1 − −2 − −1 in the second row of
Pascal’s triangle.

• If we toss a coin three times, then there are four possible outcomes: three heads
(which can occur just one way), two heads and a tail (which can occur three
ways—heads-heads-tails, heads-tails-heads, or tails-heads-heads), two tails
and a head (which can occur three ways—tails-tails-heads, tails-heads-tails,
or heads-tails-tails), and three tails (which can occur just one way). This infor-
mation is tabulated by 1 − −3 − −3 − −1 in the third row of Pascal’s triangle.

• And so forth.

Pascal’s triangle is also a useful mnemonic for carrying information about the
choose function. For this purpose we number the rows 0, 1, 2, and so on as usual.
We also number the terms in each row 0 ,1, 2, and so on. Now suppose we wish to
know how many different ways we can choose three objects from among five (in
fact this came up in an example in the last section—the answer was 10). Simply
go to row five of the triangle, term three, and we see the answer to be 10. Or if we
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want to know how many different ways to choose five items from among five (the
answer is obviously 1), we go to row five and look at the fifth term (remembering
to count from 0).

Of course Pascal’s triangle is not magic—it is mathematics. And the mathemat-
ical explanation behind everything we have said here is the fundamental formula(

n

k

)
=
(

n − 1

k − 1

)
+
(

n − 1

k

)
You may test this formula by hand, or on your calculator. It is easy to confirm
rigorously using mathematical induction. And it simply says (if we think of the kth
element in the nth row of Pascal’s triangle as ank) that ank = a(n−1)(k−1) + a(n−1)k .
This just says that the element ank is formed by adding the two elements in the row
above it.

6.9 Ramsey Theory
Frank Plumpton Ramsey (1903–1930) was a Professor at Cambridge University
in England. In his tragically short life he established himself as an important and
influential mathematician. He studied Whitehead and Russell’s Principia Mathe-
matica and offered a number of improvements, including ways to address Russell’s
paradox. He wrote just one paper, entitled “On a Problem of Formal Logic” (written
in the year of his death) on the topic discussed here. The topic that we now call
Ramsey theory is today a keystone of combinatorial theory, and is important for
many parts of mathematics.

The general idea of Ramsey theory is to endeavor to find order in a set that is
highly disordered. We will first illustrate the key idea with a popular example, and
then we can discuss some of the more general principles. Let us consider an ordered
sequence of questions:

• How many people need to be present at a party in order to guarantee that there
will be two people who are acquainted or two people who are not? This is
a very simple question, and the answer is two. If there are two people at the
party, then they either know each other or they do not. End of discussion.

• How many people need to be present at a party in order to guarantee that
there will be three people who are acquainted or two people who are not?
This question is not quite so obvious. In fact five people will not do the trick
(nor will four, three, or two people). To see this, it is useful and instructive to
translate the question into one of graph theory.
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Figure 6.11 A graph on five vertices with no solid triangle and no dashed triangle.

Imagine that each person is represented by a point in the plane (which
we think of as a vertex of a graph—see Chap. 8). Connect two points by a
solid line if those two people are acquainted. Connect two points by a dashed
line if those two people are not acquainted. Note that any two points will be
connected by either a solid line or a dotted line, because every pair of people
is either acquainted or not. So the question is: Can we always be sure that,
no matter how the solid lines and the dashed lines are configured, there will
always be a solid triangle or a dashed triangle? (Note here that a solid triangle
corresponds to three people who are mutually acquainted. A dashed triangle
corresponds to three people who are mutually unacquainted.) As we have
said, for five vertices the answer is no. This fact is illustrated in Fig. 6.11.

It turns out that six is the magic number in order to guarantee three mutual
acquaintances or three mutual unacquaintances. (Or, in other words, in a
complete graph on six vertices consisting of solid lines and dashed lines,
there will always be either a solid triangle or a dashed triangle.) To see this,
imagine that one person in the party of six is named Astrid. There are five
other people besides Astrid. Either she is acquainted with three of those or
she is unacquainted with three of those. If she is acquainted with three, then
examine those three. Either two of them know each other, or not. If two of
them know each other, then those two plus Astrid form a mutually acquainted
trio, just as we seek. If none of the three knows each other then that is a
mutually unacquainted trio, just as we seek. If instead Astrid is unacquainted
with three members of the party, then examine those three. If two of them
are unacquainted, then Astrid and those two form a mutually unacquainted
trio. If instead the three are all acquainted, then those three form a mutually
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acquainted trio. We see that, no matter what, there will be either a mutually
acquainted trio or a mutually unacquainted trio.

• Now how many people will it take at a party for there to be a mutually
acquainted quartet or a mutually unacquainted quartet? This is a much harder
problem. It can be shown that the right number is 18.

• In order to form a party so that there will be either five mutually acquainted
people or five mutually unacquainted people it is known that the right size for
the party is between 43 and 49 inclusive. But the correct value is not known.
This problem is currently considered to be beyond our computing power.

We list in a table now the known information about how many people r will be
needed at a party in order to guarantee either k acquaintances or k unacquaintances.
Note that, in our discussion above, we determined that when k = 2 then r = 2,
when k = 3 then r = 6, when k = 4 then r = 18, and so forth. After k = 4, we
indicate ranges of values for r because that is all that is known.

k r

2 2
3 6
4 18
5 [43, 49]
6 [102, 165]
7 [205, 540]
8 [282, 1870]
9 [565, 6588]

10 [798, 23556]
11 [1597, 184755]
12 [1637, 705431]

Here is a simple interpretation of the third line of our table in terms of Internet
sites. Suppose we look at 18 randomly chosen Websites or URLs. Then either four of
them are about the same topic or four of them are about four mutually distinct topics.
Another way to look at the matter is this: among 18 randomly chosen Websites,
either four of them are all linked to each other, or four of them have no mutual links.

Exercises
1. There are 300 adult people in a room, none of them obese. Explain why two

of them must have the same weight (in whole numbers of pounds).
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2. There are 50 people in a room, none of them obese. Explain why two of them
must have the same waist measurement (in whole numbers of inches).

3. Explain why the answer to Exercise 2 changes if the waist measurement is
changed to whole numbers of millimeters.

4. There are 20 people sitting in a waiting room. The functionary in charge must
choose five of these people to go to the green sanctuary and three of these
people to go to the red sanctuary. In how many different ways can she do
this?

5. In a standard deck of 52 playing cards, in how many different ways can you
form two-of-a-kind?

6. In a standard deck of 52 playing cards, in how many different ways can you
form four-of-a-kind?

7. A standard die used for gambling is a six-sided cube, with the sides numbered
1 through 6. You usually roll two dice at a time, and the two face-up values
are added together to give your score. What is the likelihood that you will
roll a seven?

8. Refer to the last exercise for terminology. What is the chance that you will
roll two dice and get a two? How about a 12? Are there any other values that
give this same answer? Why or why not?

9. Again refer to Exercise 7 for terminology. Now suppose that you are rolling
three dice. Your score is obtained by adding together the three face values.
What is your probability of getting a 10?

10. Solve the recursion a0 = 3, a1 = −5, and a j = a j−1 + 2a j−2 for j ≥ 2.

11. Suppose we take a finite collection of points in the plane and connect every
pair with an edge. We color each edge either red or blue or green. Will there
be a triangle of just one color? With 16 points the answer is “no” but with 17
points the answer is “yes.” Discuss.
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CHAPTER 7

Matrices

7.1 What Is a Matrix?
A matrix is a rectangular array of numbers or variables or other algebraic objects.
An example of a matrix is ⎛⎜⎜⎜⎝

a b c d e

f g h i j

k l m n o

p q r s t

⎞⎟⎟⎟⎠
We call this a 4 × 5 matrix because it has four rows and five columns. In general,
an m × n matrix has m rows and n columns.

When Arthur Cayley (1821–1895) invented matrices in the late nineteenth cen-
tury, he bragged that he invented something that was of no earthly use. Rarely has
a person’s assessment of his own work been more inaccurate. Today matrices are
used in all parts of mathematics, in engineering and physics, in the social sciences,
in statistics, and in any part of analytical thought where it is necessary to keep track
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of (and to manipulate) information. What is important about matrices is that they
can be combined in a number of useful ways—addition, multiplication, inversion,
composition, and others—and each of these operations has significance for the in-
formation that the matrix contains. We shall learn a bit about these ideas in the
present chapter.

7.2 Fundamental Operations on Matrices
We typically denote a matrix by a capital roman letter like A or M . The elements of
the matrix A are designated by aij, where i is the row in which the element is located
and j is the column in which the element is located. To take a specific example,
consider the matrix

A =
⎛⎝ 3 −1 4 2
−6 5 4 0

1 9 14 −8

⎞⎠
For this matrix, a23 = 4 because the element of the matrix that is in the second
row and third column is 4. Likewise, a32 = 9 and a33 = 14. Notice that, for this
particular matrix, there are elements aij for 1 ≤ i ≤ 3 (because there are three rows)
and for 1 ≤ j ≤ 4 (because there are four columns).

We can add two matrices only when they have the same size. If A = (aij) is an
m × n matrix and B = (bij) is another m × n matrix, then their sum is A + B =
(aij + bij) or

A + B = (aij) + (bij) = (aij + bij)

EXAMPLE 7.1
As a concrete illustration of matrix addition, let

A =
⎛⎝ 3 −6
−2 4

1 0

⎞⎠ and B =

⎛⎜⎝−5 3

1 −6

0 11

⎞⎟⎠
Then

A + B =

⎛⎜⎝ 3 −6

−2 4

1 0

⎞⎟⎠+

⎛⎜⎝−5 3

1 −6

0 11

⎞⎟⎠ =

⎛⎜⎝−2 −3

−1 −2

1 11

⎞⎟⎠ �
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EXAMPLE 7.2
Matrices of the same size can also be subtracted. With the same A and B as in the
previous example, we have

A − B =
⎛⎝ 3 −6
−2 4

1 0

⎞⎠−
⎛⎝−5 3

1 −6
0 11

⎞⎠ =
⎛⎝ 8 −9
−3 10

1 −11

⎞⎠ �

Next we turn to multiplication of matrices. This is a bit more subtle than addition,
and the form it takes may be something of a surprise. A first guess might be that
the product of matrices A = (aij) and B = (bij) will be A · B = (aij · bij). In other
words, we guess that we would multiply matrices componentwise. This turns out
not to be a satisfactory way to define matrix multiplication, for it would result in
equations like

(
0 1
1 0

)
·
(

1 0
0 1

)
=
(

0 0
0 0

)

In other words, the product of two nonzero matrices would be zero. This is not an
attractive turn of events. We need a definition of matrix multiplication that avoids
such problems, and also one that will preserve the essential information that is
carried by the component matrices. These considerations motivate the definition
that we are about to present.

The key fact about matrix multiplication is that we can multiply a matrix A times
a matrix B (in that order) provide that A is an m × n matrix and B is an n × k
matrix. In other words, the number of columns in A must match the number of rows
in B. As an instance, if

A =
⎛⎝ 2 −1
−5 4

6 2

⎞⎠ and B =
(−5 2 6 9

4 −3 8 12

)

then we may calculate A · B (because the number of columns in A matches the
number of rows in B) but we may not calculate B · A (because the number of
columns in B is four while the number of rows in A is three and these do not
match).

Now how do we actually calculate a matrix product? If A = (aij) 1≤i≤m
1≤ j≤n

and B =
(brs) 1≤ r ≤ n

1≤ s ≤ p
(so that the number of columns in A matches the number of rows in B)
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then we set C = (ctu) = A · B and we define

ctu =
n∑

k=1

atkbku

This is a all a bit abstract, so let us look at a concrete example.

EXAMPLE 7.3
Let

A =
(−3 2 10

6 −4 9

)
and B =

⎛⎝1 1 −3 6
2 −2 1 4
6 −5 −2 9

⎞⎠
Let C = (ctu) = A · B. According to the rule,

c11 =
3∑

k=1

a1kbk1 = (−3) · 1 + 2 · 2 + 10 · 6 = 61

Likewise

c12 =
3∑

k=1

a1kbk2 = (−3) · 1 + 2 · (−2) + 10 · (−5) = −57

We calculate the other entries of C = A · B in a similar fashion. The final answer
is

C = A · B =
(

61 −57 −9 80
52 −31 −40 101

)
Notice here that A is a 2 × 3 matrix and B is a 3 × 4 matrix. Thus we mentally

cancel the matching 3s and see that the product must be a 2 × 4 matrix. �

EXAMPLE 7.4
Let

A =
⎛⎝ 1 2 3

6 5 4
−2 0 −8

⎞⎠
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and

B =
⎛⎝ 3 2 1

4 5 6
−8 0 −2

⎞⎠
Calculate both A · B and B · A.

Solution: Now

A · B =
⎛⎝−13 12 7

6 37 28
58 −4 14

⎞⎠
Also

B · A =
⎛⎝ 13 16 9

22 33 −16
−4 −16 −8

⎞⎠
One immediate lesson here is that A · B �= B · A. Multiplication of matrices is not
commutative. A second lesson is that the only time we can calculate both A · B and
B · A is when both matrics are square and both are of the same size. �

7.3 Gaussian Elimination
In high school algebra everyone learns how to solve a system of two linear equations
in two unknowns:

ax + by = α

cx + dy = β

You simply multiply the first equation by a constant so that its x-coefficient matches
the x-coefficient of the second equation. Then subtraction eliminates the x-variable
and one can solve directly for y. Reverse substitution then yields the value of the
x-variable, and the system is solved.
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Figure 7.1 Typical (empty) intersection of three lines in the plane.

Matters are more complicated for systems of three equations in three unknowns,
or more generally k equations in k unknowns. It becomes difficult to keep track of
the information, and the attendant calculations can be daunting. In this section we
introduce the method of Gaussian elimination, which gives a straightforward and
virtually mechanical method for solving systems of linear equations. In fact it is
straightforward to implement the method of Gaussian elimination on a computer;
for a system of k equations in k unknowns it takes about k3 calculations to find the
solution. So this is a robust and efficient technique.

We concentrate our efforts on systems of k equations in k unknowns because
such a system will generically have a unique solution (that is, a single value for
each of the variables that solves the system). When there are fewer unknowns than
equations then the system will typically have no solutions.1 When there are more
unknowns than equations then the system will typically have an entire space of
solutions. For example, the solution of the system

x + z = 4

z = 3

1Think of intersecting lines in the plane. Two lines in the plane will usually have a point of intersection—as
long as they are not parallel. Three lines in the plane will usually not have a mutual point of intersection—see
Fig. 7.1.
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are all points of the form (1, y, 3). In other words, the set of solutions forms an
entire line.

It requires ideas from linear algebra to handle these matters properly, and we
cannot treat them here. So we will focus our attention on k equations in k unknowns.

In the method of Gaussian elimination we will typically have a system of equa-
tions

a1
1 x1 + a1

2 x2 + a1
3 x3 + · · · + ak1 xk = α2

a2
1 x1 + a2

2 x2 + a2
3 x3 + · · · + ak2 xk = α2

· · ·
ak

1 x1 + ak
2 x2 + ak

3 x3 + · · · + akk xk = αk

We will study this system by creating the associated augmented matrix⎡⎢⎢⎣
a1

1 a1
2 a1

3 · · · a1
k α1

a2
1 a2

2 a2
3 · · · a2

k α2

· · ·
ak

1 ak
2 ak

3 · · · ak
k αk

⎤⎥⎥⎦
Now there are certain allowable operations on the augmented matrix that we use

to reduce it to a normalized form. The main diagonal of this matrix is the line of
terms given by a1

1 , a2
2 , . . . , ak

k . We want all the terms below this main diagonal to
be equal to 0. And we want the terms on the main diagonal to all be 1s. The three
allowable operations are:

1. Switch the position of two rows.

2. Multiply any row by a nonzero constant.

3. Add a multiple of one row to another.

It turns out that these three simple moves are always adequate to do the job. The
ideas are best illustrated with some examples.

EXAMPLE 7.5
Let us solve the system

x − 2y + 3z = 4

x + y + z = −2

−x + 2y + z = 1
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using Gaussian elimination. We begin by writing the augmented matrix:⎡⎢⎣ 1 −2 3 4

1 1 1 −2

−1 2 1 1

⎤⎥⎦
Keeping in mind that our aim is to produce all zeros below the main diagonal,

we subtract the first row from the second. This yields⎡⎣ 1 −2 3 4
0 3 −2 −6

−1 2 1 1

⎤⎦
This produces a zero below the main diagonal.

Next we add the first row to the last. The result is⎡⎣1 −2 3 4
0 3 −2 −6
0 0 4 5

⎤⎦
Finally let us multiply the second row by 1/3 and the third row by 1/4. The end

result is ⎡⎣1 −2 3 4
0 1 −2/3 −2
0 0 1 5/4

⎤⎦
This is the normalized form that we seek.

Writing our information again as a linear system, we have

x − 2y + 3z = 4

0x + 1y − 2/3z = −2

0x + 0y + z = 5/4

We may immediately read off from the last equation that z = 5/4. Substituting this
information into the second equation gives y = −7/6. Lastly, putting both these
values into the first equation yields x = −25/12. Thus the solution of our system
is x = −25/12, y = −7/6, z = 5/4 or (−25/12,−7/6, 5/4).
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We encourage you to check this solution by plugging the values into the three
equations of the original system. �

This was so easy that we are granted the courage now to attack a system of four
equations in four unknowns. It is gratifying how straightforward the procedure is:

EXAMPLE 7.6
Let us use Gaussian elimination to solve the system of four equations in four
unknowns given by

2x − y + 3z + w = 2

x + y − z − w = −1

x + z + w = 4

−x − y + 2w = 1

As before, our first step is to write the associated augmented matrix:⎡⎢⎢⎣
2 −1 3 1 2
1 1 −1 −1 −1
1 0 1 1 4

−1 −1 0 2 1

⎤⎥⎥⎦
Notice that we were careful in the third row to put a 0 in the second position because
the third equation has no y. Likewise we put a 0 in the third position of the fourth
row because the fourth equation has no z.

Let us begin by multiplying the first row by 1/2. Thus we have⎡⎢⎢⎣
1 −1/2 3/2 1/2 1
1 1 −1 −1 −1
1 0 1 1 4

−1 −1 0 2 1

⎤⎥⎥⎦
Now we substract the first row from the second row and the third row (we are

performing two operations at once). Thus⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 3/2 −5/2 −3/2 −2
0 1/2 −1/2 1/2 3

−1 −1 0 2 1

⎤⎥⎥⎥⎦
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Next we add the first row to the last. So⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 3/2 −5/2 −3/2 −2
0 1/2 −1/2 1/2 3
0 −3/2 3/2 5/2 2

⎤⎥⎥⎥⎦
We see now the advantage of working systematically (that is, normalizing the

first column first). For now we can add the second row to the fourth row. Therefore

⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 3/2 −5/2 −3/2 −2
0 1/2 −1/2 1/2 3
0 0 −1 1 0

⎤⎥⎥⎥⎦
Now we subtract 1/3 the second row from the third. The result is

⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 3/2 −5/2 −3/2 −2
0 0 1/3 1 11/3
0 0 −1 1 0

⎤⎥⎥⎥⎦
The last step is to add three times the third row to the fourth. Hence

⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 3/2 −5/2 −3/2 −2
0 0 1/3 1 11/3
0 0 0 4 11

⎤⎥⎥⎥⎦
We conclude by multiplying each row by a suitable constant so that the lead term

is 1. We finally have the augmented matrix

⎡⎢⎢⎢⎣
1 −1/2 3/2 1/2 1
0 1 −5/3 −1 −4/3
0 0 1 3 11
0 0 0 1 11/4

⎤⎥⎥⎥⎦
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Translating back to a linear system, we have

1x − 1/2y + 3/2z + 1/2w = 1

0x + 1y − 5/3z − 1w = −4/3

0x + 0y + 1z + 3w = 11

0x + 0y + 0z + w = 11/4

We see immediately that w = 11/4. Back substituting, we find that z = 11/4.
Again back substituting, we find that y = 6. Finally, the first equation tells us
that x = −3/2. So the solution set is x = −3/2, y = 6, z = 11/4, w = 11/4 or
(−3/2, 6, 11/4, 11/4). �

7.4 The Inverse of a Matrix
The matrix

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0

· · ·
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is called the identity matrix. It has this name because if we multiply it with any
square matrix A of the same size we obtain I · A = A · I = A. For example, if

A =
⎛⎝a b c

d e f
g h i

⎞⎠
then

I · A =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ ·
⎛⎝a b c

d e f
g h i

⎞⎠ =
⎛⎝a b c

d e f
g h i

⎞⎠
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Likewise,

A · I =
⎛⎝a b c

d e f
g h i

⎞⎠ ·
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ =
⎛⎝a b c

d e f
g h i

⎞⎠
So I plays the role of the multiplicative identity.

Let A be a given square matrix. So A has size n × n for some positive integer n.
We seek a matrix A′ so that A · A′ = I and A′ · A = I . The matrix A′ will play the
role of the multiplicative inverse of A. We call it the inverse matrix to A.

Now it is a fact that not every matrix has a multiplicative inverse. Consider the
example of

A =
(

1 0
0 0

)

If A′ is any matrix,

A′ =
(

a b
c d

)

then

A′ · A =
(

a 0
c 0

)

Thus A′ · A cannot possibly be the identity matrix. A similar calculation shows that
A · A′ cannot possibly be the identity matrix. So the matrix A definitely does not
have an inverse.

It is useful to have a simple and direct calculation that will tell us when a given
matrix has an inverse and when it does not. And in fact there is such a calculation
which we shall now learn. It is based on the Gaussian elimination technique that
was presented in the last section.

The idea is best understood in the context of 2 × 2 matrices. Such a matrix which
does not have an inverse is one in which the second row is a multiple of the first:

A =
(

a b
λa λb

)
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If we guess that some matrix

A′ =
(

a′ b′

c′ d ′

)
is an inverse for A, then we would have

I = A · A′ =
(

aa′ + bc′ ab′ + bd ′

λaa′ + λbc′ λab′ + λbd ′

)
We see in the product that the second row is a constant multiple λ times the first
row. So the product matrix certainly cannot be the identity I , and we see that A
cannot be invertible.

Thus, in the context of 2 × 2 matrices, the situation to rule out is that one row
be a multiple of the other. It turns out that a convenient way to do this is by way of
the determinant. If

A =
(

a b
c d

)
is a given matrix then its determinant is given by

det A = ad − bc

The two rows are not multiples of each other precisely when det A �= 0. This will
be precisely the circumstance in which we will be able to find an inverse for the
matrix A.

EXAMPLE 7.7
Let

M =
(−5 4

2 −6

)
Calculate det M . �

Solution: We see that

det M = (−5) · (−6) − 2 · 4 = 22 �= 0
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The situation for a 3 × 3 matrix is analogous. Let

A =
⎛⎝a b c

d e f
g h i

⎞⎠
be a 3 × 3 matrix. The determinant is defined to be

det A = a · det

(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
This is a natural sort of generalization of the determinant for 2 × 2 matrices. We
call (

e f
h i

)
the minor associated to the entry a. Likewise we call(

d f
g i

)
the minor associated to the entry b and(

d e
g h

)
the minor associated to the entry c.

What we have done here is to expand the determinant by the first row. It is also
possible to expand the determinant by any row or column, just so long as we assign
the right plus or minus signs to each of the components. For the purposes of the
present book, expansion by the first row will suffice.

EXAMPLE 7.8
Let

B =
⎛⎝−7 4 −3

2 −5 3
1 −3 −2

⎞⎠
Calculate det B. �
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Solution: We calculate that

det B = (−7) · det

(−5 3
−3 −2

)

− 4 · det

(
2 3
1 −2

)

+ (−3) · det

(
2 −5
1 −3

)
= (−7) · 19 − 4 · (−7) + (−3) · (−1)

= −102

�= 0.

It is worth summarizing the main rule for inverses for which we have given an
indication of the justification:

Rule for inverses: A square matrix has an inverse if and only if the matrix
has nonzero determinant.

This still does not tell us how to find the inverse, but we shall get to that momentarily.
There are in fact a number of ways to calculate the inverse of a matrix, and we

shall indicate two of them here. The first is the method of Gaussian elimination,
which is a powerful technique that can be used for many purposes. The idea is to
take the given square matrix

A =
(

a b
c d

)
and to augment it by adjoining the identity matrix as in the display below:(

a b
c d

1 0
0 1

)

Now the method of gaussian elimination allows us to perform certain operations
on the rows of this augmented matrix, the goal being to reduce the square matrix
on the left to the identity matrix. Whatever matrix results on the right will be the
inverse.
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The three allowable operations are:

(1) We can switch the position of any two rows.

(2) We can multiply any given row by a constant.

(3) We can add any multiple of one row to another row.

Let us illustrate the method with a concrete example.

EXAMPLE 7.9
Let

M =
(

2 4
−3 5

)
Then det M = 2 · 5 − (−3) · 4 = 22 �= 0. Hence this matrix passes the test, and it
has an inverse.

We now examine the augmented matrix(
2 4

−3 5
1 0
0 1

)

Our job is to perform Gaussian elimination and to thereby transform the left-hand
square matrix into the identity matrix.

We begin by multiplying the first row through by 1/2. The result is(
1 2

−3 5
1/2 0
0 1

)

Now we add three times the first row to the second. We obtain the augmented matrix(
1 2
0 11

1/2 0
3/2 1

)

What we have achieved thus far is that the first column of the left-hand square
matrix looks like the first column of the identity.

Now we subtract 2/11 of the second row from the first. The result is(
1 0
0 11

5/22 −2/11
3/2 1

)
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Finally we multiply the second row by 1/11. In the end, then, we obtain(
1 0
0 1

5/22 −2/11
3/22 1/11

)

What we read off from this last augmented matrix is that the inverse of the
original matrix M is

M−1 =
(

5/22 −2/11
3/22 1/22

)
We invite you to test the result by multiplying M × M−1. �

EXAMPLE 7.10
Let us calculate the inverse of the matrix

C =
⎛⎝3 0 1

0 1 2
1 0 1

⎞⎠
We begin by calculating the determinant to make sure that the matrix C is invertible:

det C = 3 det

(
1 2
0 1

)
− 0 det

(
0 2
1 1

)
+ 1 det

(
0 1
1 0

)
= 3 · 1 − 0 · (−2) + 1 · (−1) = 2 �= 0

Thus C passes the test and we may compute the inverse matrix.
We write the augmented matrix as⎛⎜⎝3 0 1

0 1 2
1 0 1

1 0 0
0 1 0
0 0 1

⎞⎟⎠
As a first step, we multiply the first row by 1/3:⎛⎜⎝1 0 1/3

0 1 2
1 0 1

1/3 0 0
0 1 0
0 0 1

⎞⎟⎠
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Next we subtract the first row from the third row:⎛⎜⎝1 0 1/3

0 1 2

0 0 2/3

1/3 0 0

0 1 0

−1/3 0 1

⎞⎟⎠
Now we subtract three times the third row from the second row:⎛⎜⎝1 0 1/3

0 1 0

0 0 2/3

1/3 0 0

1 1 −3

−1/3 0 1

⎞⎟⎠
As a penultimate step, we multiply the last row by 3/2. The result is:⎛⎜⎝1 0 1/3

0 1 0

0 0 1

1/3 0 0

1 1 −3

−1/2 0 3/2

⎞⎟⎠
Finally, we subtract one-third the last row from the first row. We obtain:⎛⎜⎝1 0 0

0 1 0

0 0 1

1/2 0 −1/2

1 1 −3

−1/2 0 3/2

⎞⎟⎠
Thus the inverse matrix to the original matrix C is

C−1 =

⎛⎜⎝ 1/2 0 −1/2

1 1 −3

−1/2 0 3/2

⎞⎟⎠
As usual, we may check our work:

C · C−1 =

⎛⎜⎜⎝
3 0 1

0 1 2

1 0 1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1/2 0 −1/2

1 1 −3

−1/2 0 3/2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠ �
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7.5 Markov Chains
A Markov chain—named after Andrei Andreyevich Markov (1856–1922)—is a
random process in which future states of the process may depend on the present
state but not on previous states. An example is the flip of a coin. You can flip a coin
100 times and get heads every time (it’s not very likely, but it could happen). This
tells you nothing about what the next flip will be: the chances are 50% heads and
50% tails and that is all there is to it. Many gambling fallacies and “systems” are
based on a misunderstanding of this simple principle.

Another example of a Markov chain is the weather. The weather tomorrow may
depend in part on the weather today, but it does not depend on the weather in the past.

Let us begin to understand how to analyze a Markov chain by examining a
concrete example.

EXAMPLE 7.11
Suppose that we live in a climate in which a sunny day is 80% likely to be followed
by another sunny day. And a rainy day is 40% likely to be followed by another
rainy day. We represent the state of the weather on any given day by a vector (s, r)

where s stands for the likelihood of sun and r stands for the likelihood of rain.
We may represent the stated probabilities (which are garnered from 5 years’

observation of the weather in this region) with the matrix

P =
(

0.8 0.4
0.2 0.6

)

What does this mean? Suppose that we begin our analysis on the first day—call
it day 1—on which it is sunny. Thus the vector representing the status today is
x(1) = (1, 0). Because it is definitely sunny and it is not raining. Now we calculate
the next state—the weather tomorrow, which will be represented by a vector x(2)—
by applying the given probabilities to x(1). This is done simply by multiplying the
vector x(1) by the matrix P . Thus

x(2) = P · x(1) =
(

0.8 0.4
0.2 0.6

)
·
(

1
0

)
=
(

0.8
0.2

)

Notice that when we are in text we write our vectors (horizontally) as (s, r), but
when we calculate with matrices we write the vectors vertically. This is customary
in mathematics.
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We have learned that, on the second day, there is 0.8 probability (or 80% prob-
ability) that it will be sunny and 0.2 probability (or 20% probability) that it will
rain.

It is worth noting that the columns of the matrix P are nonnegative numbers
that sum to 1. And the entries of our vectors are nonnegative numbers that sum to
1. This is because they are probabilities (which always lie between 0 and 1), and
they represent all possible outcomes. The sum of the probabilities of all possible
outcomes will of course be 1.

In the same fashion we can determine the likely weather on day 3. We see that

x(3) = P · x(2) = P ·
(

0.8
0.2

)
=
(

0.8 0.4
0.2 0.6

)
·
(

0.8
0.2

)
=
(

0.72
0.28

)

We find that, on the third day, there is 0.72 probability that it will be sunny and 0.28
probability that it will rain. Again, the two probabilities add up to 1. �

As time goes on, the weather predictions become less and less accurate. We all
know from experience that we cannot predict the weather on May 15 by examining
the weather on April 15. Yet that is what we are doing in the last example: we
predict the weather on day 2 by doing a calculation based on the weather values
on day 1; we predict the weather on day 3 by doing a calculation with the weather
values on day 2 (which were in turn determined from the weather values on day 1);
and so forth. It is natural to wonder what “steady state” the weather may be tending
to as time marches on to infinity.

Formulated mathematically, we want to calculate the limit

q = lim
j→∞

x( j) (7.1)

This can be rewritten as

q = lim
j→∞

P j−1x(1)

where the power of P indicates that the matrix P is applied (or multiplied in) that
many times. Applying P to both sides of the equation, we find that

Pq = P

[
lim
j→∞

P j−1x(1)

]
= lim

j→∞
P · P j−1x(1) = lim

j→∞
P j x(1) = q|

In the last equality we use the fact—recorded in (7.1)—that q is the limit of iterates
of P applied to x(1).
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Thus we discover that the limiting, or steady state vector for our weather system
is a vector q that is fixed by the matrix P . The operative equation is

Pq = q

EXAMPLE 7.12
Let us find the steady state vector q for the weather system described in the last
example.

We seek a vector q = (q1, q2) such that the q j ’s are nonnegative and sum to 1,
and so that

Pq = q

This may be written out as

(
0.8 0.4
0.2 0.6

)
·
(

q1

q2

)
=
(

q1

q2

)

This translates to (
0.8q1 + 0.4q2

0.2q1 + 0.6q2

)
=
(

q1

q2

)
or

0.8q1 + 0.4q2 = q1

0.2q1 + 0.6q2 = q2

Notice that these simplify to

−0.2q1 + 0.4q2 = 0

0.2q1 − 0.4q2 = 0

These two equations are redundant, as they are multiples of each other.
Thus we are reduced to solving

−0.2q1 + 0.4q2 = 0
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alongside the condition

q1 + q2 = 1

This is easy to do, and the solution is q1 = 2/3 ≈ 0.6666 and q2 = 1/3 ≈ 0.3333.
We conclude that the steady state weather system is (0.6666, 0.3333). In the

long run, it is twice as likely that we will have sun as that it will rain. �

You Try It: A rain forest has three types of trees: young (15–25 years), middle-
aged (26–45 years), and old (46 years or older). Let y( j), m( j), and o( j) denote
the number of each type of tree, respectively. Let dy , dm , and do denote the loss
rates (expressed in percent) of each type of tree. Let b( j) denote the number of
baby trees (less than 15 years old) in the forest and db the loss rate for baby trees.

Express b( j + 1) in terms of b( j), y( j), m( j), and o( j) (and the percentages
indicated above). Write down a matrix that represents that Markov process that is
present in this system.

7.6 Linear Programming
Linear programming is a fundamental mathematical tool that has existed—at least
in its modern form—since M. K. Wood and G. B. Dantzig’s fundamental papers
[WOD] and [DAN] in 1949. The basic idea is that one wants to reduce an im-
possibly complex—or computationally expensive—problem to a more tractable
problem using some kind of analysis. Dantzig’s method of linear programming is
extraordinarily effective at this job. Today the major airlines use a version of the
simplex method to schedule flights and many industries use linear programming
to schedule job runs and other tasks. There are many standard computer packages
that are dedicated to linear programming methods.

In the most basic linear programming setting, one is given an objective function
f that is linear:

f (x1, x2, . . . , xN ) = a1x1 + a2x2 + · · · + aN xN

and one wishes to maximize (or minimize) this function as the variable point
(x1, x2, . . . , xN ) varies over a region R in space that is defined by some linear
inequalities (called constraints):

b1
1x1 + b1

2x2 + · · · + b1
N xN ≤ β1

b2
1x1 + b2

2x2 + · · · + b2
N xN ≤ β2

· · ·
bk

1x1 + bk
2x2 + · · · + bk

N xN ≤ βk
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Figure 7.2 A feasible region in space.

See Fig. 7.2. We call this region in space the feasible region. A linear inequality such
as we see in the last display describes a halfspace. So the points that simultaneously
satisfy all the linear inequalities will typically describe a convex polytope in space.
That is what the figure suggests.

Now the graph of a linear function such as f above is just a plane or (in higher
dimensions) a hyperplane. So picture such a graph lying over the feasible region
R. See Fig. 7.3. It is not difficult to picture that, in some directions, the graph of
the linear function goes up hill. And there will be a particular direction in which

Figure 7.3 The graph of a linear function over a feasible region.
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it goes uphill as steeply as possible. The function will reach its maximum value at
that point on the graph which is as high as possible, and that will occur at a corner
of the feasible region. This is the basic idea behind linear programming.

A detailed course in the theory of linear programming would teach you matrix
techniques for finding the corner or vertex at which the maximum is achieved. This
is actually quite an interesting process. In a typical application—such as scheduling
flights for an airline—the feasible region will have thousands of vertices, and the
objective function f will have hundreds or thousands of variables. So one certainly
would not want to check every possibility by hand.

Of course a computer can help, but these problems are so large that even a
computer gets bogged down with the calculations. The simplex method of Dantzig
gives a very efficient way of zeroing in on the vertices where the extrema lie.

In this very brief treatment we cannot get into all the particulars of the linear
programming method. But we can work some simple examples that illustrate the
idea behind the solution of a linear programming problem.

EXAMPLE 7.13
Find the maximum value of the objective function

f (x, y) = 2x + 7y

over the feasible region

y − 2x ≤ 3

y + 3x ≥ −4

y − 10x ≥ −2 �

Solution: Figure 7.4 illustrates the feasible region.
The three points of intersection of the edges (that is, the vertices or corners) are

easy to solve for using elementary techniques. These are (−7/5, 1/5), (5/8, 17/4),
and (−2/13,−46/13). Now we know from Dantzig’s theory of linear programming
(that is, the simplex method) that the extrema of the function f will occur at one
of these three vertices. This problem is small enough so that it is tractable to just
plug in the points and examine the values:

(
−7

5

)
,

(
1

5

)
= 7

5
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Figure 7.4 The feasible region for Example 7.13.

(
5

8

)
,

(
17

4

)
= 31

(
− 2

13

)
,

(
46

13

)
= −

(
326

13

)

Plainly the greatest value is 31, and it is assumed at the point (5/8, 17/4).
We may also note that the least value is −326/13, and it is assumed at the point
(−2/13,−46/13).

EXAMPLE 7.14
Find the extrema of the objective function

f (x, y, z) = 3x − 4y + 7z
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Figure 7.5 The feasible region for Example 7.14.

on the feasible region

x ≤ 1

x ≥ 0

y ≤ 1

y ≥ 0

z ≤ 1

z ≥ 0 �

Solution: Figure 7.5 illustrates the feasible region. It is of course a cube.
It is no trouble at all to observe that the vertices (corners) are the points (1, 0, 0),

(0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0), and (1, 1, 1). We may cal-
culate the values of f at those points directly:

f (1, 0, 0) = 3

f (0, 1, 0) = −4

f (0, 0, 1) = 7
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f (0, 1, 1) = 3

f (1, 0, 1) = 10

f (1, 1, 0) = −1

f (0, 0, 0) = 0

f (1, 1, 1) = 6

We see that the greatest value of f is 10, and it is assumed at the point (1, 0, 1).
The least value of f is −4, and it is assumed at the point (0, 1, 0).

Exercises
In Exercises 1 and 2, say what the dimensions of the matrix are.

1.

⎛⎜⎜⎜⎝
3 2 7
4 −9 −2
2 1 6
5 0 0

⎞⎟⎟⎟⎠
2.

⎛⎝3 5 −4 2 0
1 1 9 4 −2
6 4 3 2 −1

⎞⎠
In Exercises 3, 4, 5, and 6, calculate the indicated matrix operation.

3.

(
3 −2 5
2 9 6

)
+
(−6 2 8

7 −4 9

)

4.

(
6 −5 4
3 4 4

)
·
⎛⎝ 6 −5

3 4
−2 2

⎞⎠
5.

(
5 −2 3
1 4 9

)
−
(

6 8 −1
0 2 0

)

6.

(
2 −3
4 −7

)
·
(
−5 1
−9 6

)
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7. Calculate the inverse of the matrix⎛⎝1 0 1
0 1 1
2 1 0

⎞⎠
8. Without actually calculating the inverse, say whether this matrix has an in-

verse: ⎛⎝ 3 2 1
−1 −3 −2

0 1 6

⎞⎠
9. An unfair coin has twice the likelihood of landing heads as tails. Describe

the coin flips as a Markov process.



CHAPTER 8

Graph Theory

8.1 Introduction
We learn even in high school about graphs of functions. The graph of a function
is usually a curve drawn in the x-y plane. See Fig. 8.1. But the word “graph” has
other meanings. In finite or discrete mathematics, a graph is a collection of points
and edges or arcs in the plane. Fig. 8.2 illustrates a graph as we are now discussing
the concept.

Leonhard Euler (1707–1783) is considered to have been the father of graph
theory. His paper in 1736 on the seven bridges of Königsberg is considered to have
been the foundational paper in the subject. It is worthwhile now to review that topic.

Königsberg is a town, founded in 1256, that was originally in Prussia. After
a stormy history, the town became part of the Soviet Union and was renamed
Kaliningrad in 1946. In any event, during Euler’s time the town had seven bridges
(named Krämer, Schmiede, Holz, Hohe, Honig, Köttel, and Grünespanning) span-
ning the Pregel River. Fig. 8.3 gives a simplified picture of how the bridges were
originally configured (two of the bridges were later destroyed during World War II,
and two others demolished by the Russians). The question that fascinated people
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Figure 8.1 A graph of a function in the plane.

Figure 8.2 A graph as a combinatorial object.

Figure 8.3 The seven bridges at Königsberg.
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in the eighteenth century was whether it was possible to walk a route that never
repeats any part of the path and that crosses each bridge exactly once.

Euler in effect invented graph theory and used his ideas to show that it is impos-
sible to devise such a route. We shall, in the subsequent sections, devise a broader
version of Euler’s ideas and explain his solution of the Königsberg bridge problem.

8.2 Fundamental Ideas of Graph Theory
A graph consists of vertices and edges. A graph may be connected, that is, consist of
one continuous piece or disconnected, that is, consist of more than one contiguous
piece. See Fig. 8.4. Notice in the figure that the edges of the graph determine certain
two-dimensional regions, or faces, in the graph. The graph on the left defines 3 faces,
and the graph on the right defines 2 faces. It is customary in this subject to think of
the graph as living on a sphere rather than in the plane, so that the exterior region
(see Fig. 8.5) counts as a face.

Euler’s first fundamental insight about graphs is the following theorem:

Theorem 8.1 Let G be any connected graph on the sphere. Let V be the number
of vertices, E the number of edges, and F the number of two-dimensional regions
(or faces) defined by the edges. Then

V − E + F = 2

We should like to spend some time explaining why this important theorem is
true. Begin with the simplest possible graph—see Fig. 8.6. It has just one vertex.
There are no edges. And there is one face—which is the entire region of the sphere

a connected graph a disconnected graph

Figure 8.4 Connected and disconnected graphs.
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Figure 8.5 A graph on the sphere.

complementary to the single vertex. Thus V = 1, E = 0, and F = 1. Thus we see
that

V − E + F = 1 − 0 + 1 = 2

So Euler’s theorem is true in this very simple case.
Now imagine making the graph more complex. We add a single edge, as shown

in Fig. 8.7. How have the numbers changed? Well, now E = 1. But there is an
additional vertex (that is, there is a vertex at each end of the edge), so V = 2. And
there is still a single face, so F = 1. Now

V − E + F = 2 − 1 + 1 = 2

Thus Euler’s theorem remains true.
Now the fundamental insight is that we can build up any graph by adding one

edge at a time. And there are only three ways that we may add an edge. Let us
discuss them one at a time:

• We can add a new edge so that it has one vertex on the existing graph and
one vertex free—see Fig. 8.8. In doing so, we add one vertices, add one edge,
and do not change the number of faces. Thus, in the formula V − E + F , we

Figure 8.6 Beginning of the proof of Euler’s formula.
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Figure 8.7 Euler’s formula for a more complicated graph.

have increased E by 1 and increased V by 1. These two increments cancel
out, so the sum of 2 remains unchanged.

• We can add the new edge so that both ends (the vertices) are at the same point
on the existing graph—see Fig. 8.9. Thus we have added one edge, no vertices,
and one face. As a result, in the formula V − E + F , we have increased E
by 1 and increased F by 1. These two increments cancel out, so the sum of 2
remains unchanged.

• We can add the new edge so that the two ends are at two different vertices of
the existing graph—see Fig. 8.10. so we have added one edge and one face, but
no vertices. As a consequence, in the formula V − E + F , we have increased
E by 1 and increased F by 1. But there are no new vertices. Therefore the
two increments cancel out, and the sum of 2 remains unchanged.

This exhausts all the cases, and shows that, as we build up any graph, the Euler sum
V − E + F will always be 2.

We call 2 the Euler characteristic of the sphere. It is a fundamental geometric
invariant of this surface. It turns out that the Euler characteristic of a torus—see
Fig. 8.11—is not 2. It is in fact 0, as the figure indicates.

Figure 8.8 The inductive step in the proof of Euler’s formula.
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Figure 8.9 The inductive step in the proof of Euler’s formula.

Figure 8.10 The inductive step in the proof of Euler’s formula.

Figure 8.11 The Euler characteristic of a torus.
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8.3 Application to the Königsberg
Bridge Problem

Before returning to Euler’s original problem, let us look at an even more funda-
mental question. Let {v1, v2, . . . , vk} be a collection of vertices in the plane (or on
the sphere). The complete graph on these vertices is the graph that has an edge
connecting any two of the vertices. As an instance, the complete graph on three
vertices is shown in Fig. 8.12. The complete graph on four vertices is shown in
Fig. 8.13. We may ask whether the complete graph on five vertices can be drawn
in the plane—or on the sphere—without any edges crossing any others. If that
were possible, then the resulting graph would have five vertices (so V = 5) and(5

2

) = 10 edges (so E = 10) and
(5

3

) = 10 faces (because every face would have
to be a triangle). But then V − E + F = 5 − 10 + 10 = 5, and that is impossible.
The answer is supposed to be 2! We say that the complete graph on five vertices
cannot be imbedded in the plane (or in the sphere). This simple example already
illustrates the power of Euler’s formula.

Now let us examine the seven bridges of Königsberg. In Fig. 8.14 we convert the
original Königsberg bridge configuration into a planar graph. We do so by planting
a flag in each land mass defined by the river (there are four land masses in Fig. 8.3)
and connecting two flags if there is a bridge between the two corresponding land
masses. If the order of a vertex in a graph is the number of edges that meets at that
vertex, then we see that the graph in Fig. 8.14 has three vertices of order three. This
fact has the following significance.

Imagine a traveler endeavoring to satisfy the stipulations of the Königsberg
bridge problem. If this traveler enters a vertex of order three, then that traveler will
leave that vertex on a different edge (since the traveler is not allowed to traverse
the same edge twice in this journey). But then, if the traveler ever enters that vertex
again, he/she cannot leave. There is no edge left on which the traveler can leave
(since there are only three edges total at that vertex). So the journey would have

Figure 8.12 The complete graph on three vertices.
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Figure 8.13 The complete graph on four vertices.

to end at that vertex. That is OK, but there are three vertices of order three. The
journey cannot end at all three of those vertices—just at one of them. This is a
contradiction.

We see therefore, by Euler’s original analysis, that it is impossible to find a
journey that traverses all seven bridges while not repeating any part of the path.

You Try It: Remove one of the seven bridges from the Pregel River. How does
this affect the Königsberg bridge problem? Is it now possible to chart a path, never
repeating any part of the route and crossing each bridge precisely once? Does it
matter which one of the seven bridges you remove?

Let us say that a graph has an Euler path if it traces each edge once and only
once. We have shown that the graph corresponding to the original seven Königsberg
bridges does not have an Euler path.

Figure 8.14 The graph corresponding to the Königsberg bridge configuration.



CHAPTER 8 Graph Theory 171

Figure 8.15 Two graphs for Euler analysis.

In a given graph, call a vertex odd if an odd number of edges meet at that vertex.
Call the vertex even if an even number of edges meet at that vertex.

You Try It: Explain why, if a graph has more than two odd vertices, then it does
not have an Euler path.

You Try It: Examine each of the graphs in Fig. 8.15. Which of these has an Euler
path? If it does, then find this path.

You Try It: Examine each of the graphs in Fig. 8.16. Which of these has an Euler
path? If it does, then find this path.

You Try It: Examine each of the graphs in Fig. 8.17. Which of these has an Euler
path? If it does, then find this path.

Figure 8.16 Two more graphs for Euler analysis.
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Figure 8.17 Yet two more graphs for Euler analysis.

8.4 Coloring Problems
Many mathematic problems originate among professional mathematicians at uni-
versities. After all, they are the folks who spend all day every day thinking about
mathematics. They are well qualified to identify and develop interesting directions
to investigate. But it also happens that some fascinating and long-standing mathe-
matics problems will originate with laymen. The celebrated four-color problem is
an example of such.

In 1852 Francis W. Guthrie, a graduate of University College London, posed the
following question to his brother Frederick:

Imagine a geographic map on the earth (that is, a sphere) consisting of coun-
tries only—no oceans, lakes, rivers, or other bodies of water. The only rule is
that a country must be a single contiguous mass—in one piece, and with no
holes—see Fig. 8.18. As cartographers, we wish to color the map so that no
two adjacent countries will be of the same color (Fig. 8.19—note that R, G,
B, and Y stand for red, green, blue, and yellow). How many colors should
the map-maker keep in stock so that he can be sure he can color any map?

Frederick Guthrie was a student of Augustus De Morgan (1806–1871), and
ultimately communicated the problem to his mentor. The problem was passed
around among academic mathematicians for a number of years [in fact De Morgan
communicated the problem to William Rowan Hamilton (1805–1865)]. The first
allusion in print to the problem was by Arthur Cayley (1821–1895) in 1878.

The eminent mathematician Felix Klein (1849–1925) in Göttingen heard of the
problem and declared that the only reason the problem had never been solved is
that no capable mathematician had ever worked on it. He, Felix Klein, would offer
a class, the culmination of which would be a solution of the problem. He failed.
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Not a country Not a country

This is a country

Figure 8.18 Map coloring.

In 1879, A. Kempe (1845–1922) published a solution of the four-color problem.
That is to say, he showed that any map whatever could be colored with four colors.
Kempe’s proof stood for 11 years. Then a mistake was discovered by P. Heawood
(1861–1955). Heawood studied the problem further and came to a number of fas-
cinating conclusions:

R
G

Y
B

G

Y

Figure 8.19 The four-color problem.
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• Kempe’s proof, particularly his device of “Kempe chains,” does suffice to
show that any map whatever can be colored with five colors.

• Heawood showed that if the number of edges around each region in the map
is divisible by three, then the map is four-colorable.

• Heawood found a formula that gives an estimate for the “chromatic number”
of any surface. Here the chromatic number χ(g) of a surface is the least
number of colors it will take to color any map on that surface. We write the
chromatic number as χ(g). In fact the formula is

χ(g) ≤
⌊

1

2

(
7 +

√
48g + 1

)⌋

so long as g ≥ 1.
Here is how to read this formula. It is known, thanks to work of Camille

Jordan (1838–1922) and August Möbius (1790–1868), that any surface in
space is a sphere with handles attached (see Fig. 8.20). The number of handles
is called the genus, and we denote it by g. The Greek letter chi (χ ) is the
chromatic number of the surface—the least number of colors that it will take
to color any map on the surface. Thus χ(g) is the number of colors that it will
take to color any map on a surface that consists of the sphere with g handles.
Next, the symbols  ! stand for the “greatest integer function.” For example
 9

2! = 4 just because the greatest integer in the number “four and a half” is 4.
Also  π! = 3 because π = 3.14159 . . . and the greatest integer in the number
pi is 3.

Figure 8.20 The structure of a closed surface in space.
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Figure 8.21 The torus is a sphere with one handle.

Now a sphere is a sphere with no handles, so g = 0. We may calculate that

χ(g) ≤
⌊

1

2

(
7 +√

48 · 0 + 1
)⌋

=
⌊

1

2
(8)

⌋
= 4

This is the four-color theorem! Unfortunately, Heawood’s proof was only
valid when the genus is at least 1. It gives no information about the sphere.

The torus (see Fig. 8.21) is topologically equivalent to a sphere with one
handle. Thus the torus has genus g = 1. Then Heawood’s formula gives the
estimate 7 for the chromatic number. And in fact we can give an example of
a map on the torus that requires seven colors. Here is what Fig. 8.22 shows.
It is convenient to take a pair of scissors and cut the torus apart. With one
cut, the torus becomes a cylinder; with the second cut it becomes a rectangle.

Figure 8.22 The torus as a rectangle with identifications.
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2

3

5

6

7

1

2

1

4

3

Figure 8.23 A map on the torus that requires seven colors.

The arrows on the edges indicate that the left and right edges are to be
identified (with the same orientation), and the upper and lower edges are to
be identified (with the same orientation). We call our colors “1,” “2,” “3,” “4,”
“5,” “6,” “7.” The reader may verify that there are seven countries shown in our
Fig. 8.23, and every country is adjacent to (that is, touches) every other. Thus
they all must have different colors! This is a map on the torus that requires
seven colors; it shows that Heawood’s estimate is sharp for this surface.

Heawood was unable to decide whether the chromatic number of the sphere
is 4 or 5. He was also unable to determine whether any of his estimates for the
chromatic numbers of various surfaces of genus g ≥ 1 were sharp or accurate. That
is to say, for the torus (the closed surface of genus 1), Heawood’s formula says
that the chromatic number does not exceed 7. Is that in fact the best number? Is
there a map on the torus that really requires seven colors? And for the torus with
two handles (genus 2), Heawood’s estimate gives an estimate of 8. Is that the best
number? Is there a map on the double torus that actually requires eight colors? And
so forth: we can ask the same question for every surface of every genus. Heawood
could not answer these questions.

8.4.1 MODERN DEVELOPMENTS
The late nineteenth century saw more alleged solutions of the four-color problems,
many of which stood for as long as 11 years. Eventually errors were found, and the
problem remained open on into the twentieth century.

What is particularly striking is that Gerhard Ringel (1919– 2008) and J. W. T.
Youngs (1910–1970) were able to prove in 1968 that all of Heawood’s estimates, for
the chromatic number of any surface of genus at least 1, are sharp. So the chromatic
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number of a torus is indeed 7. The chromatic number of a “double-torus” with
two holes is 8. And so forth. But the Ringel/Youngs proof, just like the Heawood
formula, does not apply to the sphere. They could not improve on Heawood’s result
that five colors will always suffice. The four-color problem remained unsolved.

Then in 1974 there was blockbuster news. Using 1200 hours of computer time
on the University of Illinois supercomputer, Kenneth Appel and Wolfgang Haken
showed that in fact four colors will always work to color any map on the sphere.
Their technique is to identify 633 fundamental configurations of maps (to which
all others can be reduced) and to prove that each of them is reducible to a simpler
configuration. But the number of “fundamental configurations” was very large, and
the number of reductions required was beyond the ability of any human to count.
And the reasoning is extremely intricate and complicated. Enter the computer.

In those days computing time was expensive and not readily available, and Appel
and Haken certainly could not get a 1200-hour contiguous time slice for their work.
So the calculations were done late at night, “off the record,” during various down
times. In fact, Appel and Haken did not know for certain whether the calculation
would ever cease. Their point of view was this:

1. If the computer finally stopped then it will have checked all the cases and the
four-color problem was solved.

2. If the computer never stopped then they could draw no conclusion.

Well, the computer stopped. But the level of discussion and gossip and disagree-
ment in the mathematical community did not. Was this really a proof? The computer
had performed tens of millions of calculations. Nobody could ever check them all.

But now the plot thickens. Because in 1975 a mistake was found in the proof.
Specifically, there was something amiss with the algorithm that Appel and Haken
fed into the computer. It was later repaired. The paper was published in 1976. The
four-color problem was declared to be solved.

In a 1986 article, Appel and Haken point out that the reader of their seminal
1976 article must face

1. 50 pages containing text and diagrams;

2. 85 pages filled with almost 2500 additional diagrams;

3. 400 microfiche pages that contain further diagrams and thousands of indi-
vidual verifications of claims made in the 24 statements in the main section
of the text.

But it seems as though there is always trouble in paradise. Errors continued to
be discovered in the Appel/Haken proof. Invariably the errors were fixed. But the
stream of errors never seemed to cease. So is the Appel/Haken work really a proof?
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Well, there is hardly anything more reassuring than another, independent proof.
Paul Seymour and his group at Princeton University found another way to attack
the problem. In fact they found a new algorithm that seems to be more stable. They
also needed to rely on computer assistance. But by the time they did their work
computers were much, much faster. So they required much less computer time. In
any event, this paper appeared in 1994.

8.4.2 DENOUEMENT
It is still the case that mathematicians are most familiar with, and most comfortable
with, a traditional, self-contained proof that consists of a sequence of logical steps
recorded on a piece of paper. We still hope that some day there will be such a
proof of the four-color theorem. After all, it is only a traditional, Euclidean-style
proof that offers the understanding, the insight, and the sense of completion that all
scholars seek.

And there are new societal needs: theoretical computer science and engineering
and even modern applied mathematics require certain pieces of information and
certain techniques. The need for a workable device often far exceeds the need to be
certain that the technique can stand up to the rigorous rules of logic. The result may
be that we shall reevaluate the foundations of our subject. The way that mathematics
is practiced in the year 2100 may be quite different from the way that it is practiced
today.

8.5 The Traveling Salesman Problem
It is a charming fact of life that some of the most fascinating mathematical problems
have utterly simple statements that can be understood by most anyone. Fermat’s
last theorem is such a problem. The four-color problem (see Sec. 8.4) is another. A
problem that is fairly old, and is still of preeminent importance both for mathematics
and logic and also for theoretical computer science, is the celebrated “traveling
salesman problem” (TSP). We shall discuss this problem in the present section.

First studied in the mid-nineteenth century by William Rowan Hamilton (1805–
1865) and Thomas Kirkman (1806–1895), the question concerns traveling a circuit
in the most efficient fashion. The question is often formulated in terms of a traveling
salesman who must visit cities C1, C2, . . . , Ck . There is a path connecting any city
to any other, and a cost assigned to each path. The goal of the salesman is to begin
at some city—say C1—and to visit every city precisely once. The trip is to end
again at C1. And obviously the salesman wants to minimize his cost. See Fig. 8.24.

We may use our knowledge of counting techniques to quickly get an estimate
of the number of possible paths that the salesman can take. For the first leg of the
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A
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$65
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$95

$75
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Figure 8.24 The traveling salesman problem.

trip, the salesman (beginning at C1) may choose to go to C2 or C3 or . . . Ck . Thus
there are (k − 1) choices. For the next leg, the salesman may choose any of the
remaining (k − 2) cities. So there are (k − 2) choices. And so forth. In summary,
there are

(k − 1) · (k − 2) · · · 3 · 2 · 1 = (k − 1)!

possible paths that the traveling salesman might take. According to a formula of
Stirling,

(k − 1)! ≈
√

2π(k − 1) · (k − 1)k−1

ek−1
(8.1)

In particular, the number is exponential in k. This means that the problem is difficult,
and takes a great many steps.

A variety of techniques are known for estimating the correct solution to the
traveling salesman problem. In particular, if one is willing to settle for a path that
cost not more than twice the optimal path, then one may find a solution rather
efficiently. But the truly optimal solution can be quite complex to find. As an
instance, in 2001 the optimal tour of 15,112 German cities was found—and it was
shown that the given solution was indeed optimal. The calculation was performed
on a 110-CPU parallel-processing computer and required 22.6 years of computer
time on a single 500 MHz Alpha processor. In 2006 the optimal circuit for 85,900
cities was found. It took over 136 computing years on a CONCORDE chip.
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A current and timely instance of the traveling salesman problem occurs in the
manufacture of electronic circuits. These days such circuits are solid state, and all
the components are mounted on a board. There are often thousands of units, and
much of the manufacture is automated. Certainly part of the process is that a drill
head must travel around the circuit board making holes for the various electronic
components. Since many tens of thousands of circuit boards will be manufactured,
one wants the tour of the drill head to be as efficient as possible.

It has been argued that the single most important problem today in the mathe-
matical sciences is the P vs. NP problem. Roughly speaking, this is a problem of
considering when a problem can be solved in polynomial time and when it will
take exponential time. As a simple instance, the problem of taking N randomly
shuffled cards and putting them in order is of polynomial time because one first
goes through all N cards to find the first card, then one looks through the remaining
(N − 1) cards to find the second card, and so forth. In short, it takes at most

N + (N − 1) + (N − 2) + · · · 3 + 2 + 1 = N (N + 1)

2
< N 2

steps to sort the cards. This is a polynomial estimate on the number of steps. By
contrast, the traveling salesman problem with N cities takes about (N − 1)! ≈
(N/e)N−1 steps, and hence is of exponential complexity. It is known that a complete
solution to the traveling salesman problem is logically equivalent to a solution of
the P/NP problem. This is one of the Clay Mathematics Institute’s 1 million dollar
Millenium Prize Problems!

We conclude with a few words about how one might find an efficient (though
not necessarily optimal) circuit for the traveling salesman problem. There is a
commonly used algorithm, both in tree theory and in graph theory, for finding
optimal paths and circuits. It is called the greedy algorithm. The idea is simple and
intuitive. Suppose we are given a layout of cities and paths connecting them, with
a cost connected with each path—see Fig. 8.24. Notice in the figure that every city
(node) is connected to every other city. We begin our circuit at the node C with the
cheapest path between two cities. In the figure that is path from C to D that costs
$55. So, for our first step, we pass from C to D. The next arc must begin at D. We
choose the cheapest remaining arc emanating from D (but of course not the one we
have already traversed). In the figure, that takes us to F over the arc that costs $45.
And we continue in this fashion, at every step choosing the cheapest arc possible.
This is the greedy algorithm.

There is no guarantee that the greedy algorithm produces the truly optimal circuit
for the traveling salesman. But it is a theorem that it produces a circuit that costs
no more than twice as much as the optimal amount. For many applications this is
adequate.
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Exercises
1. Give an example of a graph on five vertices without an Euler path.

2. Give an example of a graph on five vertices with two distinct Euler paths.

3. Imagine a torus with two handles. What would be the correct Euler formula
for this surface? It should have the form

V − E + F = (some number)

What is that number? The number χ on the right hand side is called the Euler
characteristic of the surface.

4. Consider the complete graph on six vertices. How many edges does it have?
How many faces?

5. How many edges does the complete graph on k vertices have?

6. Consider a graph built on two rows of three vertices for a total of six vertices.
Construct a graph by connecting every vertex in the first row to every vertex
of the second row and vice versa. How many edges does this graph have?

7. Consider the standard picture of a five-pointed star. This can be thought of
as a graph. How many vertices does it have? How many edges?

8. Give an example of a graph with more vertices than edges. Give an example
of a graph with more edges than vertices.

9. If a surface can be described as a “sphere with g handles,” then we say it has
genus g. Thus a lone sphere has genus 0, a torus has genus 1, and so forth.
Based on your experience with Exercise 3 above, posit a formula that relates
the Euler characteristic χ with the genus g.
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CHAPTER 9

Number Theory

9.1 Divisibility
Let N denote the collection of all positive integers. We call these the natural num-
bers. Number theorists study the properties of N.

Let n and k be two positive integers. We say that k divides n if there is another
positive integer m such that n = m · k. For example, let n = 12 and k = 3. Certainly
3 divides 12 because

12 = 4 · 3

On the other hand, 5 does not divide 13 because there is no positive integer m with

13 = m · 5

In fact if we divide 5 into 13 we find that it goes twice with a remainder of 3. We
may write

13 = 2 · 5 + 3

Whenever the remainder is nonzero then the division is not even.
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Turning this reasoning around, we may enunciate the Euclidean algorithm. Let
n be a positive integer and d another positive integer. Then there are two other
positive integers (the quotient q and the remainder r ) such that

n = q · d + r (9.1)

This simple formula—which dates back more than 2000 years and is commonly
called the Eucliean algorithm—is the basis for our understanding of division. It
says that we may divide any integer n by any other integer d. We get an answer,
or quotient, q and a remainder r . When the remainder r is equal to 0 then the
Eq. (9.1) becomes

n = q · d

and we see that d divides n.
The Euclidean algorithm has many uses. For example, it is a matter of some

interest to find the greatest common divisor of two given positive integers. This can
be done by educated guessing. For example, the greatest common divisor of 84 and
18 is 6. But the Euclidean algorithm gives a step-by-step method (that one could
program onto a computer) for finding this number.

How does the method work? We divide 18 into 84 with remainder 12:

84 = 4 · 18 + 12 (9.2)

Now we divide the remainder 12 into the divisor 18:

18 = 1 · 12 + 6 (9.3)

Next we repeat the algorithm by dividing the remainder 6 into the divisor 12:

12 = 2 · 6 (9.4)

We see that there is no remainder, so the process must stop. The greatest common
divisor is 6 (which is the last divisor that has occurred).

We can also see, by examining this last example, why the method of the Euclidean
algorithm must work to find the greatest common divisor. For Eq. (9.4) shows that
6 must divide 12. Then Eq. (9.3) shows that 6 must divide 18. And, finally, Eq. (9.2)
shows that 6 must divide 84. So certainly we see that 6 is a common divisor of 18
and 84. Reversing the reasoning, we see that 6 is the greatest number that could
have this property.

We say that two positive integers m and n are relatively prime if they have no
common divisors (except of course 1). If m and n do have a common divisor—say
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k—then any prime factor of k will also be a common divisor of m and n. So another
way to express the concept is that m and n are relatively prime if they have no
common prime divisors.

This suggests an ad hoc way of telling when two given integers are relatively
prime. Just write out their prime factorizations and see whether there are any com-
mon factors. As an example,

90 = 2 · 32 · 5

and

77 = 7 · 11

We see explicitly that the numbers 90 and 77 have no common prime factors. So
they are relatively prime.

By contrast, consider

360 = 23 · 32 · 5

and

108 = 22 · 33

We see that these two integers have two factors of 2 in common and two factors
of 3 in common. Altogether then, the greatest common divisor of 360 and 108 is
4 · 9 = 22 · 32 = 36.

We also know from the discussion above that the Euclidean algorithm may be
used to determine the greatest common divisor of two given integers. If that greatest
common divisor is 1, then the two integers are relatively prime.

9.2 Primes
The building blocks of the natural numbers are the prime numbers. A positive
integer is called prime if it is not divisible by any integer except for 1 and itself. The
first several primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . . It is customary not
to refer to 1 as a prime. The first prime number is 2, and 2 is the only even prime
number. It is an old theorem of Euclid that there are in fact infinitely many primes.

The fundamental theorem of arithmetic says that every natural number can be
written as a product of primes (or powers of primes) in a unique way. For example,

2520 = 23 · 32 · 5 · 7
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And there is no other way to factor 2520 into primes. Notice that the factors 2 and
3 are repeated—the factor 2 occurs three times and the factor 3 occurs twice. The
factors 5 and 7 occur once only.

9.3 Modular Arithmetic
One of the most useful devices for studying the integers is modular arithmetic.
We say that two integers m and n are equivalent modulo k if the number m − n is
divisible by k. This concept is best illustrated with some examples.

EXAMPLE 9.1
Let k = 2. The numbers 3 and 5 are equivalent modulo 2 just because 5 − 3 = 2
is divisible by 2. In the same way, 5 and 11 are equivalent modulo 2 because
11 − 5 = 6 is divisible by 2. We write

5 = 3 mod 2

and

11 = 5 mod 2

In fact it turns out that any two odd integers are equivalent modulo 2 because the
difference of two odd integers will be an even number.

We also note that 4 and 12 are equivalent modulo 2 because 12 − 4 = 8 is
divisible by 2. In the same way, 24 and 48 are equivalent modulo 2 because 48 −
24 = 24 is divisible by 2. In point of fact, any two even numbers are equivalent
modulo 2. �

EXAMPLE 9.2
Let k = 12. The numbers 4 and 18 are not equivalent modulo 12 because 18 − 4 =
14 is not divisible by 12. However, the numbers 13 and 37 are equivalent modulo
12 because 37 − 13 = 24 is divisible by 12.

The numbers 125 and 185 are equivalent modulo 12 because 185 − 125 = 60 is
divisible by 12. The numbers 5 and 132 are not equivalent modulo 12. �

Modularity respects the arithmetic operations. For example, if

n = m + �
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then

n mod k = m mod k + � mod k

Also, if

n = m · �
then

n mod k = (m mod k) · (� mod k)

As an application of these last ideas, we can see quickly that 1347 does not divide
25168. For if

25168 = m · 1347

then

25168 mod 3 = (m mod 3) · (1347 mod 3)

or

1 mod 3 = (m mod 3) · 0 = 0 mod 3

This is impossible.

9.4 The Concept of a Group
A group is a set G, or a collection of objects, together with a binary operation for
combining them. We usually denote the binary operation by “·”. We assume that
this binary operation satisfies certain basic and plausible properties:

1. Associativity If g, h, k ∈ G then g · (h · k) = (g · h) · k.

2. Identity element There is a distinguished element e ∈ G such that, for all
g ∈ G, e · g = g · e = g.

3. Multiplicative inverse For each g ∈ G there is an element h ∈ G such that
g · h = h · g = e.

Notice that we do not assume that a group is commutative; that is, we do not
assume that g · h = h · g for all g, h ∈ G. The property of associativity that we
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postulate in Axiom 1 is a different property: it says that when we are combining
three elements we may group them, two by two, in either of the two obvious ways;
the same answer results. A group that is commutative is called abelian in honor of
Niels Henrik Abel (1802–1829).

EXAMPLE 9.3
Let G be the positive real numbers and let the group operation be multiplication:
P(x, y) = x · y, where · is ordinary multiplication of reals. Then (G, P) is a group.

Axiom 1: Of course multiplication of real numbers is associative.

Axiom 2: The number 1 is the identity element for multiplication: 1 · x =
x · 1 = x for any real number x .

Axiom 3: The multiplicative inverse of a group element is its ordinary recip-
rocal. That is, if x ∈ R satisfies x > 0 then 1/x is its multiplicative inverse.

�

EXAMPLE 9.4
Let G be the integers and let P(x, y) = x + y (ordinary addition). Then (G, P) is
a group.

Axiom 1: Certainly addition of integers is associative.

Axiom 2: The number 0 is the additive identity.

Axiom 3: The additive inverse of a group element is its negative: if m ∈ Z

then −m is its group inverse. �

EXAMPLE 9.5
Let G be the k × k matrices with real entries and nonzero determinant. This is
sometimes called the general linear group on k letters and is denoted by GL(k, R).

Let P be ordinary matrix multiplication. Then (G, P) is a group.

Axiom 1: Matrix multiplication is associative.

Axiom 2: The group identity is the matrix

Ik ≡

⎛⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

k

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ k

Thus, if m ∈ G, then Ik · m = m · Ik = m.



CHAPTER 9 Number Theory 189

Axiom 3: The multiplicative inverse of a group element is its matrix inverse.
Thus if m ∈ G then the inverse matrix m−1 is the group inverse.

Notice in this example that it is important to restrict attention to square matrices,
so that multiplication of any two elements in any order will make sense. We also
require that each matrix have nonzero determinant, so that each matrix will have an
inverse. To see that G is closed under the group operation of matrix multiplication,
we must note that if M, N ∈ G then det(M · N ) = (det M)(det N ) �= 0. �

Unlike the previous two examples, this last one is a noncommutative group.
The advantage of the axiomatic method, in the present context, is that when we

prove a proposition or theorem about “a group G,” it applies simultaneously to all
groups. Thus the axiomatic method gives us both a way of being concise and a way
of cutting to the heart of the matter.

Proposition 9.1 The multiplicative identity for a group is unique.

Proof: Let G be a group. Let e and e′ both be elements of G that satisfy Axiom 2.
Then

e = e · e′ = e′

Thus e and e′ must be the same group element.

Proposition 9.2 Let G be a group and g ∈ G. Then there is only one multiplicative
inverse for g.

Proof: Suppose that h and k both satisfy the properties of the multiplicative
inverse (Axiom 3) relative to g. Then

h = h · e = h · (g · k) = (h · g) · k = e · k = k

Thus h and k must be the same group element, establishing that the multiplicative
inverse is unique.

Proposition 9.3 Let g be an element of the group G. Then

(g−1)−1 = g

Proof: Observe that

g · g−1 = e

and

g−1 · g = e
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Thus g satisfies the properties of the inverse element (Axiom 3) relative to g−1.

Since the last proposition establishes that the inverse element for g is unique,
it follows that g must be the multiplicative inverse for g−1. In other words,
(g−1)−1 = g.

Proposition 9.4 Let g, h be elements of a group G. Then (g · h)−1 = h−1 · g−1.

Proof: We calculate that

[h−1 · g−1] · [g · h] = h−1 · [g−1 · [g · h]]

= h−1 · [(g−1 · g) · h]

= h−1 · [e · h]

= h−1 · h

= e

A similar calculation shows that

[g · h] · [h−1 · g−1
] = e

The assertion follows.

Definition 9.1 Let G be a group and H ⊂ G. We call H a subgroup of G if the
following properties hold

Closure: The group operation P associated with G satisfies P : H × H →
H. In other words, H is closed under the group operation of G (see the
Exercises at the end of Chap. 5 for the concept of “closed”);

Identity element: The group identity e is an element of H ;

Multiplicative inverse: If h ∈ H then its group inverse element h−1 lies in H .

Notice that the point of the last definition is that H is itself a group, using
operations (and the group identity) inherited from the larger group G.

EXAMPLE 9.6
The pair (Q,+) of the rational numbers under the ordinary operation of addi-
tion forms a group. Then the integers Z ⊂ Q form a subgroup. That is, the inte-
gers are a group under the same operation of addition. They are closed under this
operation. �
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EXAMPLE 9.7
Let G be the 3 × 3 matrices with real entries and nonvanishing determinant⎛⎝a b c

d e f
g h i

⎞⎠
Let the group law be matrix multiplication. As we noted in Example 9.4, this is a
group. Let H be the subset of G consisting of those matrices with nonzero entries
on the main diagonal and zero entries off the diagonal.⎛⎝a 0 0

0 e 0
0 0 i

⎞⎠
Then H is a subgroup. �

Let G be a group and H a subgroup. Let us define a relation R on G as follows:
(x, y) ∈ R provided that x−1 · y ∈ H. If x is any element of G then of course
x−1 · x = e ∈ H so the relation is reflexive. Notice that x−1 y ∈ H if and only if
y−1x ∈ H , for these elements are multiplicative inverses of each other, and H is
a group. Thus the relation is symmetric. Finally, suppose that x, y, z ∈ G, that x
is related to y, and that y is related to z. Then x−1 · y ∈ H and y−1 · z ∈ H . As a
result, [x−1 · y] · [y−1 · z] = x−1 · z ∈ H . So we may conclude that x is related to
z, and the relation is transitive.

Therefore we have an equivalence relation. The equivalence relation partitions
the group G into pairwise disjoint subsets. What do these subsets look like?

If x ∈ G then define x H = {x · h : h ∈ H}. The set x H is called a coset of H .
Notice the following properties:

(1) Elements of xH are distinct: If h, k ∈ H then xh = xk implies x−1(xh) =
x−1(xk) hence h = k. So the elements of x H are distinct.

(2) If a, b ∈ xH then aRb: If a, b ∈ x H then a = xh and b = xk for some
h, k ∈ H. But then

a−1b = (xh)−1(xk) = h−1x−1xk = h−1k ∈ H

Thus a and b are related under R.

(3) If a ∈ xH and aRb then b ∈ xH: Now let a ∈ x H and assume that (a, b) ∈
R. Thus a−1b ∈ H. So there is an element h ∈ H such that a = xh and there
is another element k ∈ H such that a−1b = k. But then b = ak = (xh)k =
x(hk) ∈ x H.
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It follows from (2) and (3) that the equivalence classes induced by R are prec-
isely the cosets of H . It follows from (1) that, if H has finitely many elements, then
each coset has the same number of elements.

We let G/H denote the collection of cosets of H in G. With an additional condition
on H (that H be a normal subgroup), G/H can actually be made into a group. We
shall not explore that idea here.

Theorem 9.1 Let G = {g1, . . . , gk} be a group with finitely many elements. Let
H ⊂ G be a subgroup with m elements. Then the integer m evenly divides the
integer k.

Proof: The group G partitions into the cosets of H . Each coset has m elements,
and the cosets are of course pairwise disjoint. That means that m divides k.

EXAMPLE 9.8
Let a relation on the integers Z be defined by xRy if y − x is evenly divisible by
6. This is an equivalence relation. There are six equivalence classes, namely

E0, E1, E2, E3, E4, E5

Indeed,

E0 = {. . . ,−12,−6, 0, 6, 12, . . .}
E1 = {. . . ,−11,−5, 1, 7, 13, . . .}
E2 = {. . . ,−10,−4, 2, 8, 14, . . .}
E3 = {. . . ,−9,−3, 3, 9, 15, . . .}
E1 = {. . . ,−8,−2, 4, 10, 16, . . .}
E2 = {. . . ,−7,−1, 5, 11, 17, . . .}

and so forth.
We add two equivalence classes as follows:

E j + Ek = E j+k

For instance

E3 + E4 = E7 = E1

You should check that this notion of addition is well defined (unambiguous). Also,
the identity element is E0 and each Em has E−m as its additive inverse. In sum, the
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collection of equivalence classes forms a group. This group is usually denoted by
Z/6Z or Z6 or Z/6. It is a group having six elements; we call this a group of order
6. In general, the order of a group with finitely many elements is just the number
of elements in the group.

Let H be the subset of Z6 consisting of E0, E2, E4. Verify that this is a subgroup
of order 3. Notice that 3 divides 6. The only other nontrivial subgroup is that
consisting of E0 and E3. Notice that it has order 2.

The number 6 has no nontrivial divisors besides 2 and 3 and the group Z/6Z has
no other nontrivial subgroups. �

Of course there is nothing special about the number 6 in the last example. If k is
any positive integer then we may declare that xRy if y − x is evenly divisible by k.

The result is a group of order k denoted by Z/kZ or Zk or Z/k. If the positive integer
m evenly divides k (k = m · p) then there will be one subgroup of order m and that
group will consist of the elements E0, E p, E2p, . . . , E(m−1)p. When the context is
understood we write the elements of Zk as 0, 1, 2, . . . , k − 1. We say that we are
doing arithmetic modulo k or arithmetic mod k.

EXAMPLE 9.9
Consider the set Z4 × Z4. This set may be conveniently thought of as the set of
ordered pairs (x, y) where x, y ∈ Z4. Define

(x, y) + (x ′, y′) = (x + x ′, y + y′)

where the addition is performed according to the group law of Z4. Then G =
Z4 × Z4 so equipped is a group of order 16.

The number 4 divides the order of G, but now there is more than one sub-
group having order (that is, number of elements) 4. One such subgroup is
H = {(0, 0), (1, 0), (2, 0), (3, 0)}. Another is K = {(0, 0), (0, 1), (0, 2), (0, 3)}.
Yet another is L = {(0, 0), (2, 0), (0, 2), (2, 2)}. �

Now let G be a group of finite order. Let g be a fixed element of G. Consider
the set H of all “powers” of g: g1 = g, g2 = g · g, g3 = g · g · g, . . . as well as
g−1, g−2 ≡ (g−1)2, g−3 ≡ (g−1)3, . . . . Of course g0 = e. It is easy to see that H
is a subgroup of G. We say that H is a cyclic group (subgroup) because it consists
of powers of the single element g.

Let k be the order of H . Then k will be the least positive integer such that gk = e.
Since H is a subgroup of G, we see that k = order H must evenly divide m =
order G. It follows (provide the details as an exercise) that gm = e. This conclusion
is so important that we display it in a theorem.
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Theorem 9.2 Let G be a group of finite order m. If g ∈ G then gm = e.

The examples we have presented raise a natural question. If G is a group of
order m and if k evenly divides m then does it follow that G has a subgroup of
order k? In general the answer is “no.” You are requested in the exercises to provide
a counterexample. However, the following theorem of Sylow provides a positive
answer in a large number of important instances.

Theorem 9.3 (Sylow) Let G be a group of finite order and let p be a prime. Suppose
that j is a positive integer and that p j evenly divides the order of G. Then G has
a subgroup of order p j . Indeed, it has subgroups of all orders p�, 0 ≤ � ≤ j.

Proof of a Special Case of the Sylow Theorems: Let G be a finite group and
suppose that the prime integer p divides the order n of G. We shall show that G
has a subgroup of order p.

First suppose that the integer m has the property that gm = e for every g ∈ G
(we call m an exponent for G). Let b ∈ G, b �= e, and let H be the cyclic group
generated by b (that is, the collection of all powers of b). It can be checked that
G/H forms a group. Then of course bm = 1 hence m is an exponent for G/H . Thus
the order of G/H divides a power of m. Because

[G : e] = [G : H ] · [H : e]

we may conclude therefore that the order of G divides a power of m.
Since p divides n, there an element x ∈ G such that the period of x (that is, the

minimal power of x that equals e) is divisible by p. Let the period be ps for some
integer s. Then xs �= e and xs has period p. Thus xs generates a subgroup of order
p. That is what was to be shown.

We refer the interested reader to [LAN] or [HER] for a complete consideration
of the Sylow theorems and their proofs.

We close with a few remarks about the concept of isomorphism of groups.
Consider first an example. You are familiar with the group Z2. It is a group of
order 2. Now suppose we consider a group G with two elements: G = {e, m}. The
element e will be the group identity and the rules of multiplication are

e · m = m m · e = m e · e = e m · m = e

You can check for yourself that, with this binary operation, G is indeed a group—
that is, it satisfies the axioms for a group.

On a formal level, the group Z2 and the group G are different. One has elements
0 mod 2 , 1 mod 2 and the other has elements e, m. But in fact it turns out that they
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are the same group; they differ only in the sense that different names have been
given to the elements. To see this, write out the group law for Z2:

0 + 1 = 1 1 + 0 = 1 0 + 0 = 0 1 + 1 = 0

Actually do this on a piece of paper. Now erase each occurrence of + and replace
it with · . Also erase each occurrence of 0 and replace it by e and erase each
occurrence of 1 and replace it by m. What results is the group law that we specified
for the group G. This shows that Z2 and G are precisely the same group, with just
different names for the elements and for the binary operation.

We have just seen an example of group isomorphism. Now we can give a formal
definition.

Definition 9.2 Let G and H be groups. A function φ : G → H is said to be a group
isomorphism if it has the following properties

1. The function φ is one-to-one and onto.

2. If g1, g2 ∈ G then φ(g1 · g2) = φ(g1) · φ(g2).

We say that G and H are isomorphic and we call the function φ an isomorphism.

It is the second condition of the definition that says, in effect, that both G
and H have the same group law. Let us derive a few simple properties of group
isomorphisms.

Proposition 9.5 Let φ : G → H be an isomorphism of groups. If eG is the group
identity in G and eH is the group identity in H then φ(eG) = eH .

Proof: We calculate that

φ(eG) = φ(eG · eG) = φ(eG) · φ(eG)

The expressions that appear on the left and on the far right of this equation are
elements of H . Multiplying both sides of this equation on the right by [φ(eG)]−1

we find that

eH = φ(eG)

That is what we wished to prove.
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Proposition 9.6 Let φ : G → H be a group isomorphism. If g ∈ G then the group
inverse, in the group H, of φ(g) is φ(g−1).

Proof: We may check that

φ(g) · φ(g−1) = φ(g · g−1) = φ(eG) = eH (by Proposition 9.5)

Also

φ(g−1) · φ(g) = φ(g−1 · g) = φ(eG) = eH (by Proposition 9.5)

Thus φ(g−1) possesses the defining properties of the group inverse of φ(g). Since
the group inverse of any group element is unique, our result follows.

The theory of groups has become a large and essential part of modern
mathematics. It is also used in physics (in quantum mechanics, for instance), in
engineering, and in theoretical computer science (for example, data compression
theory uses group theory).

It is a classical result of basic group theory that all finite abelian groups have been
classified. Indeed, it can be shown that any such group is a product (in the sense of
set theory) of cyclic groups. One of the triumphs of twentieth century mathematics
is that all groups of finite order have been classified. This result is the product of the
work of hundreds of mathematicians and will ultimately produce a book of several
thousand pages.

9.5 Some Theorems of Fermat
Pierre de Fermat (1601–1665) was one of the most remarkable mathematicians
in history. A judge in Toulouse by profession, Fermat studied mathematics as an
amateur on his own time. Yet he became one of the most prominent mathematicians
of his day, corresponding with many of the great professors throughout Europe. And
he is remembered for seminal contributions to mathematics.

One of Fermat’s basic results—which is widely used today in cryptography and
theoretical computer science, is known as Fermat’s little theorem:

Theorem 9.4 Let p be a prime and let a be any positive integer. Then p divides
a p − a.
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We may state Fermat’s little theorem more succinctly, using the language of
modular arithmetic, as

a p mod p = a mod p

Yet another variant is that if a is an integer that is relatively prime to p then

a p−1 = a mod p

This last formulation is quickly checked using group theory. For the set of numbers
relatively prime to p forms a group under multiplication, and there are p − 1 of
them. So any number relatively prime to p raised to the power which is the order
of the group will give the identity element, or 1. That is the result.

One can verify Fermat’s result by using proof by induction on a. We omit the
details, but refer the reader to [HER].

Exercises
1. Calculate each of the following modular quantities:

(a) 3 + 9 mod 5

(b) 4 · 6 mod 3

(c) 9 − 4 mod 2

(d) 2 · 5 mod 4

(e) 2 + 6 mod 3

(f) 4 − 9 mod 2

2. If m and n are positive integers then explain why

(m mod 2) · (n mod 2) = (m · n) mod 2

3. If m and n are positive integers then explain why

(m mod 2) + (n mod 2) = (m + n) mod 2

4. Show that 111 and 211 are relatively prime.

5. Find the greatest common divisor of 1024 and 100.
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6. Verify that the set of all 2 × 2 matrices, equipped with the binary operation
of addition, forms a group.

7. Verify that the set of all 2 × 2 matrices, equipped with the binary operation
of multiplication, does not form a group. What restriction must we make in
order for this to be a group?

8. Verify that, in any group,

a2 · b−1 = b−1 · a−2

9. Verify that the set of all polynomials, equipped with the binary operation of
multiplication, does not form a group.

10. Use the Euclidean algorithm to find the greatest common divisor of each of
the following pairs of positive integers.

(a) 15 80

(b) 24 92

11. Given an example of integers n and k, with k dividing n, and a finite group
of order n that has no subgroup of order k. [Hint: The integer k should not
be prime.]



CHAPTER 10

Cryptography

10.1 Background on Alan Turing
Alan Mathison Turing was born in 1912 in London, England. He died tragically
in 1954 in Wilmslow, Cheshire, England. Today Turing is considered to have been
one of the great mathematical minds of the twentieth century. He did not invent
cryptography (as we shall see, even Julius Caesar engaged in cryptography). But
he ushered cryptography into the modern age. The current vigorous interaction
of cryptography with computer science owes its genesis in significant part to the
work of Turing. Turing also played a decisive role in many of the key ideas of
modern logic. It is arguable that Turing had the decisive ideas for inventing the
stored program computer [although it was John von Neumann (1903–1957), an-
other twentieth-century mathematical genius, who together with Herman Goldstine
(1913–2004), actually carried out the ideas].

Turing had difficulty fitting in at the British “public schools” which he attended.
(Note that a “public school” in Britain is what we in America would call a private
school and vice versa.) Young Turing was more interested in pursuing his own
thoughts than in applying himself to the dreary school tasks that were designed for
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average students. At the Sherborne School, Turing had little patience for the tedious
math techniques that the teachers taught. Yet he won almost every mathematics
prize at the school. He was given poor marks in penmanship, and he struggled with
English.

Turing had a passion for science beginning at a very young age. He later said that
the book Natural Wonders Every Child Should Know had had a seminal influence
on him. When he was still quite young, he read Einstein’s papers on relativity and
he read Arthur Eddington’s account of quantum mechanics in the book The Nature
of the Physical World.

In 1928, at the Sherborne School, Alan Turing became friends with Christopher
Morcom. Now he had someone in whom he could confide, and with whom he
could share scientific ideas and inquiries. Turing had never derived such intellectual
companionship from either his classmates or his rather diffident school teachers.
Sadly, Morcom died suddenly in 1930. This event had a shattering effect on the
young Alan Turing. The loss of his companion led Turing to consider spiritual
matters, and over time this led him to an interest in physics.

It may be mentioned that Turing developed early on an interest in sports. He was
a very talented athlete—almost at the Olympic level—and he particularly excelled
in running. He maintained an interest in sports throughout his life.

In 1931 Alan Turing entered King’s College at Cambridge University. Turing
earned a distinguished degree at King’s in 1934, followed by a fellowship at King’s.
In 1936 he won the Smith Prize for his work in probability theory. In particular,
Turing was one of the independent discoverers of the Central Limit Theorem.

In 1935 Turing took a course from Max Newman on the foundations of mathe-
matics. Thus his scientific interests took an abrupt shift. The hot ideas of the time
were Gödel’s incompleteness theorem—which says that virtually any mathematical
theory will have true statements in it that cannot be proved—and (what is closely
related) David Hilbert’s questions about decidability.

In 1936 Alan Turing published his seminal paper “On computable numbers, with
an application to the Entscheidungsproblem.” Here the Entscheidungsproblem is
the fundamental question of how to decide—in a manner that can be executed by
a machine—when a given mathematical question is provable. In this paper Turing
first described his idea for what has now become known as the Turing machine. We
now take a mathematical detour to talk about Turing machines.

10.2 The Turing Machine
A Turing machine is a device for performing effectively computable operations.
It consists of a machine through which a bi-infinite paper tape is fed. The tape is
divided into an infinite sequence of congruent boxes (Fig. 10.1). Each box has either
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1 0 1 11 0

Figure 10.1 A Turing machine.

a numeral 0 or a numeral 1 in it. The Turing machine has finitely many “states”
S1, S2, . . . , Sn . In any given state of the Turing machine, one of the boxes is being
scanned.

After scanning the designated box, the Turing machine does one of three things:

1. Either it erases the numeral 1 that appears in the scanned box and replaces
it with a 0, or it erases the numeral 0 that appears in the scanned box and
replaces it with a 1, or it leaves the box unchanged.

2. It moves the tape one box (or one unit) to the left or to the right.

3. It goes from its current state Sj into a new state Sk .

It turns out that every logical procedure, every algorithm, every mathematical
proof, every computer program can be realized as a Turing machine. The Turing
machine is a “universal logical device.” The next section contains a simple instance
of a Turing machine. In effect, Turing had designed a computer before technology
had made it possible to actually build one.

10.2.1 AN EXAMPLE OF A TURING MACHINE
Here is an example of a Turing machine for calculating x + y:

Old New Move New
State value value (L or R) state Explanation

0 1 1 R 0 Pass over x
0 0 1 R 1 Fill gap
1 1 1 R 1 Pass over y
1 0 0 L 2 End of y
2 1 0 L 3 Erase a 1
3 1 0 L 4 Erase another 1
4 1 1 L 4 Back up
4 0 0 R 5 Halt

If you look hard at the logic of this Turing machine, you will see that it thinks of x
as a certain number of 1s, and it thinks of y as a certain number of 1s. It scans the x
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units, and writes a 1 to the right of these; then it scans y units, and writes a 1 to the
right of these. The two blocks of 1s are joined into a single block (by erasing the
space in between) and then the two extra 1s are erased. The result is x + y. Provide
the details of this argument as an exercise.

10.3 More on the Life of Alan Turing
The celebrated logician Alonzo Church (1903–1995) published a paper closely
related to Turing’s at about the same time. As a result, Church and Turing ended up
communicating and sharing ideas. Subsequently, in 1936, Turing went to Princeton
for graduate study under Church’s direction.

When Turing returned to Cambridge in 1938, he commenced work on actually
building a computer. It was designed to be a rather crude, mechanical device, with
a great many gears and wheels. In fact Turing had a very specific purpose in mind
for his machine.

One of the great mathematical problems of the day (and it is still a hot open
problem as of this writing) was to prove the Riemann hypothesis. The Riemann
hypothesis, posed by Bernhard Riemann in 1859, concerns the location of the zeros
of a certain complex function (the celebrated Riemann zeta function). An affirmative
answer to the Riemann hypothesis would tell us a great deal about the distribution
of prime numbers and have profound consequences for number theory and for
cryptography.

According to Andrew Hodges (1949– ), the Turing biographer,

Apparently [Turing] had decided that the Riemann Hypothesis was probably
false, if only because such great efforts have failed to prove it. Its falsity would
mean that the zeta function did take the value zero at some point which was
off the special line, in which case this point could be located by brute force,
just by calculating enough values of the zeta function.

Turing did his own engineering work, hence he got involved in all the fine details
of constructing this machine. He planned on 80 meshing gearwheels with weights
attached at specific distances from their centers. The different moments of inertia
would contribute different factors to the calculation, and the result would be the
location of and an enumeration of the zeros of ζ .

Visits to Turing’s apartment would find the guest greeted by heaps of gear wheels
and axles and other junk strewn about the place. Although Turing got a good start
cutting the gears and getting ready to assemble the machine, more pressing events
(such as World War II) interrupted his efforts. His untimely death prevented the
completion of the project.
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When war broke out in 1939, Turing went to work for the Government Code
and Cypher School at Bletchley Park. Turing played a seminal role in breaking
German secret codes, and it has been said that his work saved more lives during
the war than that of any other person. One of his great achievements during this
time was the construction of the Bombe machine, a device for cracking all the
encoded messages generated by the dreaded German Enigma machine. In fact
Turing used ideas from abstract logic, together with some earlier contributions of
Polish mathematicians, to design the Bombe. Turing’s important contributions to
the war effort were recognized with the award of an O.B.E. (Order of the British
Empire) in 1945.

After the war Turing was invited by the National Physical Laboratory in London
specifically to design a computer. He wrote a detailed proposal for the Automatic
Computing Machine in 1946, and that document is in fact a discursive prospectus
for a stored-program computer. The project that Turing proposed turned out to be
too grandiose for practical implementation, and it was shelved.

Turing’s interests turned to topics outside of mathematics, including neurology
and physiology. But he maintained his passion for computers. In 1948 he accepted
a position at the University of Manchester. There he became involved in a project,
along with F. C. Williams and T. Kilburn, to construct a computing machine.

In 1951 Alan Turing was elected a Fellow of the Royal Society—the highest
honor that can be bestowed upon a British scientist. This accolade was largely in
recognition of his work on Turing machines.

Turing had a turbulent personal life. In 1952 he was arrested for violation of the
British homosexuality statutes. He was convicted, and sentenced to take the drug
oestrogen for one year. Turing subsequently rededicated himself to his scientific
work, concentrating particularly on spinors and relatively theory. Unfortunately,
because of his legal difficulties, Turing lost his security clearance and was labeled
something of a “security risk.” He had continued working with the cypher school
at Bletchley, but his loss of clearance forced that collaboration to end. These events
had a profound and saddening effect on Alan Turing.

Turing died in 1954 of potassium cyanide poisoning while conducting elec-
trolysis experiments. The cyanide was found on a half-eaten apple. The police
concluded that the death was a suicide, though people close to Turing argue that it
was an accident.

10.4 What Is Cryptography?
We use Alan Turing’s contributions as a touchstone for our study of cryptography.
Cryptography is currently a very hot field, due in part to the availability of high
speed digital computers to carry out decryption algorithms, in part to new and
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exciting connections between cryptography and number theory and logic, and in
part to the need for practical coding methods both in industry and in government.

The discussion of cryptography that appears below is inspired by the lovely
book [KOB]. We refer the reader to that source for additional ideas and further
reading.

As we always do in mathematics, let us begin by introducing some terminology.
Cryptography is the study of methods for sending text messages in disguised form
in such a manner that only the intended recipient can remove the disguise and read
the message. The original message that we wish to send is called the plaintext and
the disguised message is called the ciphertext. We shall always assume that both
our plaintext and our ciphertext are written in the standard roman alphabet (that is,
the letters A through Z ) together perhaps with some additional symbols like “blank
space (denoted "),” “question mark (?),” and so forth. The process of translating
a plaintext message into a ciphertext message is called encoding or enciphering
or encrypting. The process of translating an encoded message back to a plaintext
message is called deciphering or sometimes de-encryting.

For convenience, we usually break up both the plaintext message and the cipher-
text message into blocks or units of characters. We call these pieces the message
units, but we may think of them as “words” (but they are not necessarily English
words). Sometimes we will declare in advance that all units are just single letters,
or perhaps pairs of letters (these are called digraphs) or sometimes triples of letters
(called trigraphs). Other times we will let the units be of varying sizes—just as the
words in any body of text have varying sizes. An enciphering transformation is a
function that assigns to each plaintext unit a ciphertext unit. The deciphering trans-
formation is the inverse mapping that recovers the plaintext unit from the ciphertext
unit. Any setup as we have just described is called a cryptosystem.

In general it is awkward to mathematically manipulate the letters of the alphabet.
We have no notions of addition or multiplication on these letters. So it is convenient
to associate to each letter a number. Then we can manipulate the numbers. For
instance, it will be convenient to make the assignment

A ↔ 0

B ↔ 1

C ↔ 2

· · ·
X ↔ 23

Y ↔ 24

Z ↔ 25
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Thus if we see the message

22 7 0 19 12 4 22 14 17 17 24

then we can immediately translate this to

WHATMEWORRY

or

WHAT ME WORRY

Notice that, in cryptography, we generally do not worry about capital and lowercase
letters. Everything is uppercase. Second, if we do not have a symbol for “blank
space”, then messages are awkward to read.

One device of which we will make frequent and consistent use is modular arith-
metic. Recall that if n and k are an integers then n mod k is that unique integer n′

between 0 and k − 1 inclusive such that n − n′ is divisible by k. For example,

13 mod 5 = 3

−23 mod 7 = 5

82 mod 14 = 12

10 mod 3 = 1

How do we calculate these values? Look at the first of these. To determine
13 mod 5, we divide 5 into 13: Of course 5 goes into 13 with quotient 2 and
remainder 3. It is the remainder that we seek. Thus

13 mod 5 = 3

It is similar with the other examples. To determine 82 mod 14, divide 14 into 82. It
goes 5 times with remainder 12. Hence

82 mod 14 = 12

It is convenient that modular arithmetic respects the arithmetic operations. For
example,

8 × 7 = 56 and 56 mod 6 = 2
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But

8 mod 6 = 2 and 7 mod 6 = 1 and 2 × 1 = 2

So it does not matter whether we pass to mod 6 before multiplying or after multi-
plying. Either way we obtain the same result 2. Similar properties hold for addition
and subtraction. One must be a bit more cautious with division, as we shall see
below.

We supply some further examples:

[3 mod 5] × [8 mod 5] = 24 mod 5 = 4

[7 mod 9] + [5 mod 9] = 12 mod 9 = 3

[4 mod 11] − [9 mod 11] = −5 mod 11 = 6

Now we begin to learn some cryptography by way of examples.

EXAMPLE 10.1
We use the ordinary 26-letter roman alphabet A–Z, with the numbers 0–25 assigned
to the letters as indicated above. Let S = {0, 1, 2, . . . , 25}. We will consider units
consisting of single letters. Thus our cryptosystem will consist of a function f :
S → S which assigns to each unit of plaintext a new unit of ciphertext. In particular,
let us consider the specific example

f (P) =
{

P + 5 if P < 21

P − 21 if P ≥ 21

Put in other words,

f (P) = P + 5 mod 26 (10.1)

Next let us use this cryptosystem to encode the message

GOAWAY

or

GO AWAY
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The first step is that we transliterate the letters into numbers (because, as noted
earlier, numbers are easier to manipulate). Thus GOAWAY becomes 6 14 0 22 0 24.

Now we apply the “shift encryption” [(Eq. 10.1)] to this sequence of numbers.
Notice that

f (6) = 6 + 5 mod 26 = 11 mod 26 = 11

f (14) = 14 + 5 mod 26 = 19

f (0) = 0 + 5 mod 26 = 5

f (22) = 22 + 5 mod 26 = 1

f (0) = 0 + 5 mod 26 = 5

f (24) = 24 + 5 mod 26 = 3

Thus our ciphertext is 11 19 5 1 5 3. In practice, we may convert this ciphertext
back to roman letters using our standard correspondence (A ↔ 0, B ↔ 1, and so
on). The result is LTFBFD. Thus the encryption of “GO AWAY” is “LTFBFD.”
Notice that we have no coding for a blank space, so we ignore it.

This is a very simple example of a cryptosystem. It is said that Julius Caesar
used this system with 26 letters and a shift of 3. We call this encryption system a
“shift transformation.” �

Now let us use this same cryptosystem to encode the word “BRAVO.” First, we
translate our plaintext word to numbers:

1 17 0 21 14

Now we add 5 mod 26 to each numerical entry. The result is

6 22 5 0 19

Notice that the fourth entry is 0 because

21 + 5 mod 26 = 26 mod 26 = 0 mod 26

Thus if we wanted to send the message “BRAVO” in encrypted form, we would send
6 22 5 0 19. We can translate the encrypted message to roman letters as “GWFAT.”
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Conversely, we decrypt a message by subtracting 5 mod 26. Suppose, for in-
stance, that you receive the encrypted message

24 12 5 18 15 3 19 25

We decrypt applying the function f −1(Q) = Q − 5 mod 26. The result is

19 7 0 13 10 24 14 20

This easily translates to

THANKYOU

or

THANK YOU

In a typical, real-life circumstance, you receive an encrypted message and you
do not know the method of encryption. It is your job to figure out how to decode the
message. We call this process breaking the code, and the science of codebreaking
is called cryptoanalysis.

EXAMPLE 10.2
If the codebreaker happens to know that the message he/she has received is en-
crypted using a shift transformation, then there is a reasonable method to proceed.
Imagine that you receive the message

CQNKNJCUNBOXANENA

Looks like nonsense. But the cryptographer has reason to believe that this message
has been encoded using a shift transformation on single letters of the 26-letter
alphabet. It remains to find the numerical value of the shift.

We use a method called frequency analysis. The idea of this technique is that it
is known that “E” is the most frequently occurring letter in the English language.
Thus we may suppose that the most frequently occuring character in the ciphertext
is the encryption of “E” (not “E” itself). In fact we see that the character “N” occurs
five times in the ciphertext, and that is certainly the most frequently occurring
letter. If we hypothesize that “N” is the encryption of “E”, then we see that “4”
has been translated to “13” in the encryption. Thus the encryption key is P �→
P + 9 mod 26. And therefore the decryption scheme is P �→ P − 9 mod 26. If this
putative decryption scheme gives a sensible message, then it is likely the correct
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choice (as any other decryption scheme will likely give nonsense). Let us try this
scheme and see what result it gives. We have

CQNKNJCUNBOXANENA

has numerical realization

2 16 13 10 13 9 2 20 13 1 14 23 0 13 4 13 0

Under our decryption scheme, this translates to

19 7 4 1 4 0 19 11 4 18 5 14 17 4 21 4 17

which has textual realization

THEBEATLESFOREVER

In other words, the secret message is

THE BEATLES FOREVER

The trouble with the shift transformation is that it is just too simpleminded.
It is too easy to break. There are variants that make it slightly more sophisti-
cated. For example, suppose that the East Coast and the West Coast branches of
National Widget Corporation cook up a system for sending secret messages back
and forth. They will use a shift transformation, but in each week of the year they
will use a different shift. This adds a level of complexity to the process. But the
fact remains that, using a frequency analysis, the code can likely be broken in any
given week. �

10.5 Encryption by Way of
Affine Transformations

We can add a genuine level of sophistication to the encryption process by adding
some new mathematics. Instead of considering a simple shift of the form P �→
P + b for some fixed integer b, we instead consider an affine transformation of the
form P �→ a P + b. Now we are both multiplying (or dilating) the element P by
an integer a and then translating it by b.

10.5.1 DIVISION IN MODULAR ARITHMETIC
There is a subtlety in the application of the affine transformation method that we
must consider before we can look at an example. If the encryption scheme is
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P �→ Q ≡ a P + b, then the decryption scheme must be the inverse function. In
other words, we solve for P in terms of Q. This just involves elementary algebra,
and we find that

P = [1/a](Q − b) mod 26

We see that decryption, in the context of an affine transformation, involves division
in arithmetic modulo 26. This is a new idea, and we should look at a couple of
simple examples before we proceed with our cryptographic considerations.

We want to consider division modulo 26. Thus if a and b are whole numbers,
then we want to calculate b/a and we want the answer to be another whole number
modulo 26. This is possible only because we are cancelling multiples of 26, and
it will only work when a has no common prime factors with 26. Let us consider
some examples.

First let us calculate 4/7 mod 26. What does this mean? We are dividing the
whole number 4 by the whole number 7, and this looks like a fraction. But things
are a bit different in modular arithmetic. We seek a number k such that

4

7
mod 26 = k

or

4 = 7 · k mod 26

or

4 − 7 · k is divisible by 26

We simply try different values for k, and we find with k = 8 that

4 − 7 · 8 = 4 − 56 = −52

is indeed divisible by 26. In conclusion,

4

7
mod 26 = 8

We see the somewhat surprising conclusion that the fraction 4/7 can be realized
as a whole number in arithmetic modulo 26.
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Next let us try to calculate 1/4 mod 26. This is doomed to fail, because 4 and 26
have the prime factor 2 in common. We seek an integer k such that

1 = 4 · k mod 26

or in other words

1 − 4k is a multiple of 26

But of course 4k will always be even so 1 − 4k will always be odd—it cannot be
a multiple of the even number 26. This division problem cannot be solved.

We conclude this brief discussion with the example 2/9 mod 26. We invite the
reader to discover that the answer is 6 mod 26.

There is in fact a mathematical device for performing division in modular arith-
metic. It is the classical Euclidean algorithm. This simple idea is one of the most
powerful in all of number theory. It says this: if n and d are integers then d divides
into n some whole number q times with some remainder r , and 0 ≤ r < d. In other
words,

n = d · q + r

You have been using this idea all your life when you calculate a long division
problem (not using a calculator, of course). We shall see in the next example that
the Euclidean algorithm is a device for organizing information so that we can
directly perform long division in modular arithmetic.

EXAMPLE 10.3
Let us calculate 1/20 in arithmetic mod 57. We apply the Euclidean algorithm to
57 and 20. Thus we begin with

57 = 2 · 20 + 17

We continue by repeatedly applying the Euclidean algorithm to divide the divisor
by the remainder:

20 = 1 · 17 + 3

17 = 5 · 3 + 2

3 = 1 · 2 + 1
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Now, as previously indicated, we utilize this Euclidean algorithm information to
organize our calculations. Begin with the last line to write

1 = 3 − 1 · 2

= 3 − 1 · (17 − 5 · 3)

= [20 − 17] − 1 · ([57 − 2 · 20] − 5 · [20 − 17]
)

= 20 · 8 + 17 · (−6) − 57

= 20 · 8 + (57 − 2 · 20) · (−6) − 57

= 20 · 20 − 7 · 57

This calculation tells us that 1 = 20 · 20 mod 57. In other words, 1/20 =
20 mod 57. �

We offer the reader the exercise of calculating 1/25 mod 64 using the Euclidean
algorithm.

10.5.2 INSTANCES OF THE AFFINE
TRANSFORMATION ENCRYPTION

EXAMPLE 10.4
Let us encrypt the message “GO AWAY” using the affine transformation P �→
5P + 6 mod 26. As usual,

GO AWAY has numerical realization 6 14 0 22 0 24

Under the affine transformation, we obtain the new numerical realization

10 24 6 12 6 22

In roman letters, the message has become the ciphertext

KYGMGW

In order to decrypt the message, we must use the inverse affine transformation.
If R = 5P + 6 mod 26, then P = [1/5](R − 6) mod 26. Using modular arithmetic,
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we see that 10 corresponds to

[1/5](10 − 6) = [1/5] · 4 = 6 mod 26

(because 5 · 6 mod 26 = 30 mod 26 = 4 mod 26). Likewise 24 corresponds to

[1/5](24 − 6) = [1/5] · 18 = 14 mod 26

(because 5 · 14 mod 26 = 70 mod 26 = 18 mod 26). We calculate the rest of the
correspondences:

[1/5](6 − 6) = [1/5] · 0 = 0 mod 26

(because 5 · 0 mod 26 = 0 mod 26). Next,

[1/5](12 − 6) = [1/5] · 6 = 22 mod 26

(because 5 · 22 mod 26 = 110 mod 26 = 6 mod 26). Again,

[1/5](6 − 6) = [1/5] · 0 = 0 mod 26

And, finally,

[1/5](22 − 6) = [1/5] · 16 = 24 mod 26

(because 5 · 24 mod 26 = 16 mod 26).
In sum, we have applied our decryption algorithm to recover the message

6 14 0 22 0 24

This transliterates to

GOAWAY

or

GO AWAY �

In a real-life situation—if we were endeavoring to decrypt a message—we would
not know in advance which affine transformation was used for the encoding. We
now give an example to illustrate how to deal with such a situation.
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EXAMPLE 10.5
We continue to work with the 26-letter roman alphabet. We receive a block of
ciphertext and wish to decode it. We notice that the most frequently occurring char-
acter in the ciphertext is “M” and the second most frequently occurring character in
the ciphertext is “R.” It is well known that, in ordinary English, the most commonly
occurring letter is “E” and the second most commonly occurring letter is “T.” So
it is natural to hypothesize that we are dealing with an affine transformation that
assigns “E” to “M” and “T” to “R.”

This means that we seek an affine transformation f (P) = a P + b such that
f (4) = 12 mod 26 and f (19) = 17 mod 26. All arithmetic is, as usual, modulo 26.
We are led then to the equations

12 = a · 4 + b mod 26

17 = a · 19 + b mod 26

We subtract these two equations to eliminate b and obtain

−5 = a · (−15) mod 26

or

a = [−5/(−15)] mod 26

The solution is a = 9. Substituting this value into the first equation gives b =
−24 = 2 mod 26.

Thus our affine encoding transformation is (we hope) f (P) = 9P + 2. It is
also easy to determine that the inverse (or decoding) transformation is f −1(Q) =
[Q − 2]/9. �

You Try It: Use the affine decryption scheme in the last example to decode the
message “ZMDEMRILMRRMZ.”

Next we present an example in which an expanded alphabet is used.

EXAMPLE 10.6
Consider the standard roman alphabet of 26 characters along with the addi-
tional characters “blank space” (denoted "), “question mark” (?), “period” (.),
and “exclamation point” (!). So now we have 30 characters, and arithmetic will
be module 30. As usual, we assign a positive integer to each of our characters.
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Thus we have

A ↔ 0

B ↔ 1

C ↔ 2

· · ·
X ↔ 23

Y ↔ 24

Z ↔ 25

" ↔ 26

? ↔ 27

. ↔ 28

! ↔ 29

Because there are now 30 different characters, we also use 30 different numerical
codes—the numbers from 0 to 29.

Imagine that we receive a block of ciphertext, and that we wish to decode it. We
notice that the most commonly used characters in the ciphertext are “D” and “!”.
It is known that the most commonly used characters in ordinary English are “xyz”
and “E”.1 If we assume that the ciphertext was encrypted with an affine transfor-
mation, then we seek an affine mapping f (P) = a P + B such that f (") = D and
f (E) =!. Thus we are led to f (26) = 3 and f (4) = 29 and then to the system of
equations

3 = a · 26 + b mod 30

29 = a · 4 + b mod 30

As before, we subtract the equations to eliminate b. The result is

−26 = 22a mod 30

1We formerly said that “E” was the most commonly used letter. But that was before we added the blank space
“"” to our alphabet.
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This equation is equivalent (dividing by 2) to

−13 = 11a mod 30

Since 11 and 30 have no factors in common, we may easily find the unique
solution a = 7. Substituting this value in the second equation gives b = 1. We
conclude that our affine transformation is f (P) = 7P + 1.

If the ciphertext we have received is

21 7 29 3 14 29 12 14 7 14 19 18 29 24

then we can apply f −1(Q) = [Q − 1]/7 to obtain the plaintext message

20 18 4 26 19 4 23 19 26 18 19 24 11 4 29

This transliterates to

USE TEXT STYLE!

A nice feature of this example is that the spaces and the punctuation are built into
our system of characters. Hence the translated message is quite clear, and requires
no further massaging. �

10.6 Digraph Transformations
Just to give an indication of how cryptographers think, we shall now consider
digraphs. Instead of thinking of our message units as single characters, we will now
have units that are pairs of characters. Put in other words, the plaintext message is
broken up into two-character segments or words. (It should be stressed that these
will not, in general, correspond to English words. Certainly words from the English
language are generally longer than two letters. Here, when we say “word,” we
simply mean a unit of information.)

In case the plaintext message has an odd number of characters, then of course
we cannot break it up evenly into units of two characters. In this instance we add
a “dummy” character like “X” to the end of the message so that an even number
of characters will result. Any English message will still be readable if an “X” is
tacked on the end.

Let K be the number of elements in our alphabet (in earlier examples, we have
seen alphabets with 26 characters and also alphabets with 30 characters). Suppose
now that M N is a digraph (that is, an ordered pair of characters from our alphabet).
Let x be the numerical equivalent of M and let y be the numerical equivalent of N .
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Then we assign to the digraph M N the number x · K + y. Roughly speaking, we
are now working in base-K arithmetic.

EXAMPLE 10.7
Let us work in the familiar roman alphabet of 26 characters. A common digraph in
English is “TH.” Notice that the numerical equivalent of “T” is 19 and the numerical
equivalent of “H” is 7. According to our scheme, we assign to this digraph the single
number 19 · 26 + 7 = 501.

It is not difficult to see that each positive integer corresponds to a unique digraph.
Consider the number 358. Then 26 divides into 358 a total of 13 times with a
remainder of 20. We conclude that 358 corresponds to the digraph with numerical
equivalents 13 20. This is the digraph “NU.” �

It is straightforward to see that the greatest integer that can arise in this labeling
scheme for digraphs is for the digraph ��, where � is the last character in our
alphabet. If the first character is assigned to 0 (as we have done in the past) then
the last character is assigned to K − 1 (where K is the number of characters in the
alphabet). The numerical label is then (K − 1) · K + (K − 1) = K · K − 1. So it is
safe to say that K 2 − 1 is an upper bound for numerical labels in our digraph system.

We conclude, then, that an enciphering transformation is a function that consists
of a rearrangement of the integers {0, 1, 2, . . . , K 2 − 1}. One of the simplest such
transformations is an affine transformation on {0, 1, 2, . . . , K 2 − 1}. We think of
this set of integers as Z modulo K 2. So the encryption has the form f (P) =
a P + b mod K 2. As usual, the integer a must have no prime factors in common
with K 2 (and hence no prime factors in common with K ).

EXAMPLE 10.8
We work as usual with the 26-letter roman alphabet. There are then 26 × 26
digraphs, and these are enumerated by means of the integers 0, 1, 2, . . . , 262 − 1.
In other words, we work in arithmetic modulo 676, where of course 676 = 262.
The digraph “ME” has letters “M” corresponding to 12 and “E” corresponding to
4. Thus we assign the digraph number 12 · 26 + 4 = 316 mod 676.

If our affine enciphering transformation is f (P) = 97 · P + 230 then the digraph
“ME” is encrypted as 97 · 316 + 230 = 462 mod 676.

If instead we consider the digraph “EM” then we assign the integer 4 · 26 + 12 =
116. And now the encryption is 97 · 116 + 230 = 666 mod 676. �

EXAMPLE 10.9
Suppose that we want to break a digraphic encryption system that uses an affine
transformation. So we need to determine a and b. This will require two pieces of
information.
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Let us attempt a frequency analysis. From statistical studies, it is known that the
some of the most common digraphs are “TH,” “HE,” and “EA.” The most common
ones that include the “blank space” character are “E",” “S",” and “"T.” If we
examine a good-sized block of ciphertext and notice the most commonly occurring
digraphs, then we might suppose that those are the encryptions of “TH” or “HE”
or “EA.” Consider for example the ciphertext (based on the 27-character alphabet
consisting of the usual 26 letters of the roman alphabet plus the blank space, and
numbered 0 through 26)

XIHZYIQHRCZJSDXIDCYIQHPS

We notice that the digraphs “XI,” “YI,” and “QH” each occur twice in the mes-
sage. We might suppose that one of these is the encryption of “TH,” one is the
encryption of “HE,” and one is the encryption of “EA” (although, as indicated
above, there are other possibilities). Let us attempt to directly solve for the affine
transformation that will decript our ciphertext. The affine transformation will have
the form f −1(Q) = a′Q + b′ and our job is to find a′ and b′.

To be specific, let us guess that

TH encrypts as YI

HE encrypts as XI

This means that we have the numerical correspondences

520 ↔ 656

and

193 ↔ 629

So we have the algebraic equations

520 = a′ · 656 + b′ mod 729

193 = a′ · 629 + b′ mod 729

Subracting the equations as usual (to eliminate b′), we see that

327 = a′ · 27 mod 729
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Unfortunately this equation does not have a unique solution, because 27 and 729
have prime factors in common (such as 3).

We make another guess. Let us suppose that

TH encrypts as QH

HE encrypts as YI

This means that we have the numerical correspondences

520 ↔ 439

and

193 ↔ 656

So we have the algebraic equations

520 = a′ · 439 + b′ mod 729

193 = a′ · 656 + b′ mod 729

Subracting the equations as usual (to eliminate b′), we see that

327 = a′ · 217 mod 729

Now 217 and 729 have no prime factors in common, so we may solve for a′ uniquely.
The answer is a′ = 408. Substituting into our first equation gives b′ = 13. So our
decryption algorithm is

f −1(Q) = 408Q + 13 (10.2)

We apply this rule to the ciphertext

XIHZYIQHRCZJSDXIDCYIQHPS

For example, the digraph “XI” has numerical equivalent 629. It translates, with
decryption rule in Eq. (10.2), to 37. This in turn corresponds to the plaintext digraph
“BK.” We can already tell we are in trouble, because there is no word in the English
language that contains the two letters “BK” in sequence.

It is our job then to try all the other possible correspondences of encrypted
digraphs“XI,” “YI,” and “QH” to the plaintext digraphs. We shall not work them
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all out here. It turns out that the one that does the trick is

XI is the encryption of TH

and

QH is the encryption of EA

Let us try it and see that it succesfully decrypts our secret message.
The proposed correspondences have numerical interpretation

629 ↔ 520

and

439 ↔ 108

This leads to the equations

520 = a′ · 629 + b′ mod 729

108 = a′ · 439 + b′ mod 729

Subtracting as usual, we obtain

412 = a′ · 190 mod 729

Since 190 and 729 have no prime factors in common, we can certainly divide by
190 and solve for a′. We find that a′ = 547. Substituting into the second equation
gives b′ = 545. In conclusion, the decrypting transformation is f −1(Q) = 547Q +
545 mod 729.

Now we can systematically apply this affine transformation to the digraphs in
the ciphertext and recover the original message. Let us begin:

XI → 629
f −1

−→ 520 →TH

HZ → 214
f −1

−→ 234 →IS

The calculations continue, and the end result is the original plaintext message

THIS HEART OR THAT HEADX
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As you can see, an “X” is affixed to the end to force the message to have an
even number of characters (counting blank spaces) so that the digraph method will
work. �

One important point that the last example illustrates is that cryptography will
always entail a certain amount of (organized) guesswork.

10.7 RSA Encryption
10.7.1 BASICS AND BACKGROUND
Modern security considerations make it desirable for us to have new types of encryp-
tion schemes. It is no longer enough to render a message so that only the intended
recipient can read it (and outsiders cannot). In today’s complex world, and with the
advent of high-speed digital computers, there are new demands on the technology
of cryptography. The present section will discuss some of these considerations.

In the old days (beginning even with Julius Caesar), it was enough to have a
method for disguising the message that we were sending. For example, imagine
that the alphabet is turned into numeric symbols by way of the scheme

A �−→ 0

B �−→ 1

C �−→ 2

and so forth.
Then use an encryption like

n �−→ n + 3 mod 26 (10.3)

And now convert these numbers back to roman letters. We have discussed such
encryption schemes in the preceding sections.

Today life is more complex. One can imagine that there would be scenarios in
which

1. You wish to have a means that a minimum-wage security guard (whom you
don’t necessarily trust) can check that people entering a facility know a
password—but you don’t want him to know the password.
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2. You wish to have a technology that allows anyone to encrypt a message—
using a standard, published methodology—but only someone with special
additional information can decrypt it.

3. You wish to have a method to be able to convince someone else that you
can perform a procedure, or solve a problem, or prove a theorem, without
actually revealing the details of the process.

This may all sound rather dreamy, but in fact—thanks to the efforts and ideas
of R. Rivest, A. Shamir, and L. Adleman—it is now possible. The so-called RSA
encryption scheme is now widely used. For example, the e-mail messages that I
receive on my cell phone are encrypted using RSA. Banks, secure industrial sites,
high-tech government agences (for example, the National Security Agency), and
many other parts of our society routinely use RSA to send messages securely.

In this discussion, we shall describe how RSA encryption works, and we shall
encrypt a message using the methodology. We shall describe all the mathematics
behind RSA encryption, and shall proved the results necessary to flesh out the
theory behind RSA. We shall also describe how to convince someone that you can
prove the Riemann hypothesis—without revealing any details of the proof. This is
a fascinating idea—something like convincing your mother that you have cleaned
your room without letting her have a look at the room. But in fact the idea has
profound and far-reaching applications.

10.7.2 PREPARATION FOR RSA
Background Ideas
We now sketch the background ideas for RSA. These are all elementary ideas from
basic mathematics. It is remarkable that these are all that are needed to make this
profound new idea work.

Computational Complexity
Suppose that you have a deck of N playing cards and you toss them in the air.
Now you want to put them back into their standard order. How many “steps” will
this take? (We want to answer this question in such a manner that a machine could
follow the instructions.)

First we look through all N cards and find the first card in the ordering. Then we
look through the remaining N − 1 cards and find the second card in the ordering.
And so forth.
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A typical planar graph An admissible coloring for
the planar graph

Figure 10.2 Coloring of a graph.

So the reordering of the cards takes

N + (N − 1) + (N − 2) + · · · 3 + 2 + 1 = N (N + 1)

2

steps. Notice that this answer is a quadratic polynomial in N . Thus we say that the
problem can be solved in polynomial time.

We have heard a rumor that the four-color theorem is true. So we have a graph
with N vertices and we wish to color each vertex, using either red, yellow, blue, or
green. See Fig. 10.2, where we have used shading to suggest the coloring. The only
rule is that two adjacent vertices (that is, vertices that are connected by a segment)
cannot be the same color.

Of course the number of possible colorings is the number of functions from the
set with N objects to the set with 4 objects. That is 4N . The machine, being as dumb
as it is, will simply try all the possible colorings until it finds one that works. Thus
we see that the number of steps is now an exponential function of N .

We call this an exponential time problem.
Another interesting exponential time problem is that of scheduling planes for

an airline. If you have n cities and k planes and you take into account different
populations, different demands, crew availability, fuel availability, and other
factors, then it is easy to convince yourself that this is a problem of exponential
complexity. The theory of linear programming can be used to reduce many
problems of this kind to polynomial complexity. Linear programming is routinely
used by the airlines for this purpose.
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Certainly one of the most famous exponential time problems is the “traveling
salesman problem.” The issue here is that a certain salesman wants to visit each of
n cities precisely once. What is his most efficient path? It is not difficult to discern
that there are exponentially many possible paths, and no evident strategy for picking
one in any efficient manner.

Modular Arithmetic
This is a familiar idea, and we have already alluded to it earlier. The “right” way
to define the idea is with cosets, but we shall content ourselves here with a more
informal definition.

When we write n mod k we mean simply the remainder when n is divided by k.
Thus

25 = 1 mod 3

15 = 3 mod 4

−13 = −3 mod 5 = 2 mod 5

It is an important fact—which again is most clearly seen using the theory of
cosets—that modular arithmetic respects sums and products. That is,

a + b mod n = a mod n + b mod n and a · b mod n = (a mod n) · (b mod n)

We shall use these facts in a decisive manner below.

Fermat’s Theorem
Let a and b be two (positive) integers. We say that a and b are relatively prime if
they have no common prime factors. For example,

72 = 23 · 32

175 = 52 · 7

hence 72 and 175 are relatively prime.
If n is an integer, let P(n) be the set of integers less than n that are relatively

prime to it. Let ϕ(n) be the number of elements in P(n).

Theorem 10.1 If n is a positive integer and k is relatively prime to n then

kϕ(n) = 1 mod n



CHAPTER 10 Cryptography 225

Proof: The proof of this result is easy. For the collection P(n) of numbers
relatively prime to n forms a group under multiplication. That is, if a is relatively
prime to n and b is relatively prime to n then logic dictates that a · b is relatively
prime to n. Now it is a fundamental fact—we cannot prove it here, but see
[BMS]—that if a group has m elements and g is an element of the group then gm

is the group identity. Thus any element of the group, raised to the power ϕ(n) (the
number of elements in the group) will equal 1 modulo n.

For later use, it is worth noting that if p, q are prime numbers and n = p · q then
ϕ(n) = (p − 1) · (q − 1).

The reason is that the only numbers less than or equal to n that are not relatively
prime to n are p, 2p, 3p, . . . q · p and q, 2q, 3q, · · · (p − 1)q.

There are q numbers in the first list and p − 1 numbers in the second list. The
set P(n) of numbers relatively prime to n is the complement of these two lists, and
it therefore has

pq − q − (p − 1) = pq − q − p + 1 = (p − 1) · (q − 1) ≡ ϕ(n)

elements.

Relatively Prime Integers
Two integers a and b are relatively prime if they have no prime factors in common.
As noted above, for example, 72 and 175 are relatively prime.

It is a fundamental fact of elementary number theory that if a, b are relatively
prime then we can find other integers x and y such that

xa + yb = 1 (10.4)

For example, we have noted that a = 72 and b = 175 are relatively prime. The
corresponding integers x, y are x = −17 and y = 7. Thus

(−17) · 72 + 7 · 175 = 1

One can prove this result using Fermat’s theorem above. For, since b is relatively
prime to a, thus

bϕ(a) = 1 mod a
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But this just says that

bϕ(a) − 1 = k · a

for some integer k. Unraveling this gives Eq. (10.4).
In practice, one finds x and y using the Euclidean algorithm (otherwise known

as long division).
In the example of 72, 175, one calculates:

175 = 2 · 72 + 31

72 = 2 · 31 + 10

31 = 3 · 10 + 1

You know you are finished when the remainder is 1.
For now we have

1 = 31 − 3 · 10

= 31 − 3 · (72 − 2 · 31)

= 7 · 31 − 3 · 72

= 7 · (175 − 2 · 72) − 3 · 72

= 7 · 175 − 17 · 72

That is the decomposition we seek.

10.7.3 THE RSA SYSTEM ENUNCIATED
Description of RSA
Now we can quickly and efficiently describe how to implement the RSA encryption
system, and we can explain how it works.

Imagine that George W. Bush has an important message that he wishes to send
to Donald Rumsfeld. Of course Rumsfeld is a highly placed man of many respon-
sibilities, and you can imagine that Bush’s message is quite secret. So he wants to
encode the message:

Your time is up. Hasta la vista, baby.

So Bush goes to the library and finds the RSA encryption book. This is a readily
available book that anyone can access. It is not secret. A typical page in the book
reads like this:
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Name Value of n Value of e

Puck, Wolfgang 4431 . . . 7765 8894 . . . 4453
Rehnquist, William 6668 . . . 2345 1234 . . . 9876
Riddle, Nelson 7586 . . . 2390 4637 . . . 4389
Rin Tin-Tin 5355 . . . 5353 5465 . . . 7648
Rogers, Roy 7859 . . . 4359 3058 . . . 2934
Roosevelt, Theodore 7835 . . . 2523 7893 . . . 4232
Rotten, Johnny 3955 . . . 4343 4488 . . . 9922
Roy, Rob 3796 . . . 5441 2219 . . . 3319
Rumsfeld, Donald 1117 . . . 8854 9266 . . . 2388
Russert, Tim 6464 . . . 4646 3223 . . . 3232
Schwarzenegger, Arnold 6894 . . . 3242 7525 . . . 2314
Simpson, Orenthal James 6678 . . . 2234 4856 . . . 2223

What does this information mean? Of course we know, thanks to Euclid, that
there are infinitely many primes. So we can find prime numbers with as many digits
as we wish. Each number n in the RSA encryption book is the product of two 75-
digit primes p and q: Thus n = p · q. Each number e is chosen to be a number with
at least 100 digits that is relatively prime to ϕ(n) = (p − 1) · (q − 1). Of course
we do not publish the prime factorization of the number n; we also do not publish
ϕ(n). All that we publish is n and e for each individual.

Now an important point to understand is that Bush does not need to understand
any mathematics or any of the theory of RSA encryption in order to encode his
message. (Well, it would be nice if he understood modular arithmetic. But he is,
after all, the President of the United States.) All he does is this:

1. First he breaks the message into units of five letters. We call these “words”,
even though they may not be English language words.

For the message from Bush to Rumsefeld, the “words” would be

YOURT IMEIS UPHAS TALAV ISTAB ABY

2. He transliterates each “word” into a sequence of numerical digits, using our
usual scheme of translation.

3. Then he encodes each transliterated word w with the rule

w �−→ we mod n
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Bush will send to Rumsfeld this sequence of encrypted words. That is all there
is to it.

The real question now is:

What does it take to decrypt the encoded message?
How can Rumsfeld read the message?

This is where some mathematics comes into the picture. We must use Fermat’s
theorem, and we must use our ideas about relatively prime integers. But the short
answer to the question is this. If w̃ is a word encrypted according to the simple
scheme described above, then we decrypt it with this algorithm:

We find integers x and y so that xe + yϕ(n) = 1 and then we calculate

w̃ x mod n

That will give the decrypted word w with which we began. [We shall provide
the mathematical details of this assertion in the next section.] Since w has only five
characters, and n has 150 characters, we know that w mod n = w—so there is no
ambiguity arising from modular arithmetic. We can translate w back into roman
characters, and we recover our message.

Now here is the most important point in our development thus far:

In order to encrypt a message, we need only look up n and e in the pub-
lic record RSA encryption book. But, in order to decrypt the message, we
must know x . Calculating x necessitates knowing ϕ(n), and that necessitates
knowing the prime factorization of n.

It is a theorem that calculating the prime factorization of an integer with k digits
is a problem of exponential complexity in k. For an integer with 150 digits, using a
reasonably fast computer, it would take several years to find the prime factorization.2

10.7.4 THE RSA ENCRYPTION SYSTEM EXPLICATED
Explanation of RSA
In fact, with all the preliminary setup that we have in place, it is a simple matter to
explain the RSA encryption system.

2One might note that—if your message is just five letters long—then there are only 265 possible encryptions.
You could decrypt the message by trial and error. Because of considerations like this, we often find it convenient
to append a 50-digit random integer to the message. This technique is discussed in detail near the end of this
discussion.
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For suppose that we selected an n = p · q and an e relatively prime to ϕ(n) =
(p − 1) · (q − 1) corresponding to a particular person listed in the RSA encryption
book. If we are the certified decrypter, then we know the prime factorization of
n—that is, we know that n = p · q for p and q prime.

We therefore know ϕ(n) = p · q − p − q + 1 = (p − 1) · (q − 1) and so we
can calculate the x and the y in the identity xe + yϕ(n) = 1. Once we know x , then
we know everything. For

w̃ x mod n = [we]x mod n

= wex mod n

= w1−yϕ(n) mod n

= w · [wϕ(n)]−y mod n

= w · 1−y mod n

= w mod n

= w

since w is certainly relatively prime to n.
This shows how we recover the original word w from the encrypted word w̃ =

we mod n.

10.7.5 ZERO KNOWLEDGE PROOFS
How to Keep a Secret
We shall now give a quick and dirty description of how to convince someone that
you can prove Proposition A without revealing any details of the proof of
Proposition A. The idea comes across most clearly if we deal again with colorings
of graphs.

So suppose once again that we are given a graph. See Fig. 10.3. We are the
prover, and there is a remotely located verifier.

It is our job to convince the verifier that we know how to four-color this graph.
But we do not want the verifier to actually know how to color the graph. We only
want him to be convinced that we know how to do it.

We begin by transmitting the adjacency matrix to the verifier. This data is exhib-
ited in Table 10.1.

This transmission is straightforward, and need not be encoded. We simply tell
the verifier: “In position (1, 1) of the matrix there is an x ;” “In position (1, 2) of the
matrix there is an x ;” In position (1, 5) of the matrix there is no x .” And so forth.
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Figure 10.3 Zero knowledge coloring of a graph.

Now we number the colors 1, 2, 3, and 4. Here

1 ↔ blue

2 ↔ red

3 ↔ yellow

4 ↔ green

Finally, imagine that our coloring of the graph is as in Fig. 10.4. Of course we
have used shading to suggest the coloring. We wish to communicate to the verifier
that we have a valid coloring—in such a manner that he can check it, but he cannot
learn any of the details of the coloring.

As we see from Figure 10.4, the coloring is encoded as

12 23 34 41 51 64 73

Table 10.1

1 2 3 4 5 6 7

1 x x x x x
2 x x x
3 x x x
4 x x x
5 x x x x
6 x x x
7 x x x x
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Figure 10.4 Coding of the coloring.

This is read as “node 1 is colored with color 2 (red),” “node 2 is colored with color
3 (yellow),” and so on. We will transmit these pairs of digits, suitably encoded, to
the verifier.

The trouble is that the verifier already knows that there are only seven nodes in
the graph, and only four colors, so he could (with a little effort) figure out what
color has been assigned to what node just with a little trial and error—even though
the information has been encoded. So this will not do.

Thus, instead of encoding and sending 12 and 23 and 34 and so forth, instead
the prover encodes and sends

12 r1

23 r2

34 r3

and so on

where r1, r2, r3 are 50-digit random integers.
More precisely, the step-by-step scenario is this:

1. The prover sends the entire coloring to the verifier, in encoded form as indi-
cated above.

2. The verifier stares at his adjacency matrix. He notices that, for example,
vertices 4 and 6 are adjacent. And he inquires specifically about those two
vertices.
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3. The prover sends the verifier the colorings for those two particular vertices
(with a 50-digit random integer attached to each, just as before).

4. The verifier encrypts the information for those two vertices—using the
pre-agreed-upon public key encryption system. He then checks that those
two vertex colorings match colorings in the full coloring of the graph that
was sent in Step 1.

Now the verifier has checked that one pair of adjacent vertices is suitably
colored (that is, with different colors). If he wants to perform further verifications,
then the preceding steps are repeated. Except that first the prover assigns numbers
to the four colors red, yellow, blue, and green in some new random fashion. And
he chooses an entirely new set of random 50-digit integers. Then he sends the
entire colored graph, gets a query from the verifier, and so forth.

If there are n nodes to be colored then there are n(n − 1)/2 possible pairs of
nodes. The probability that the prover lied about the coloring and that the verifier—
in asking for the coloring of a particular pair of nodes—failed to catch the lie is
1/[n(n − 1)]. If the entire process is iterated again, then the probability that the
verifier failed to catch the lie is 1/[n2(n − 1)2]. And so forth. Thus each succes-
sive verification increases the likelihood that the verifier may be certain of his
check.

The point of this procedure is that the verifier can check that any pair of adjacent
vertices is colored correctly, that no two adjacent vertices are colored the same,
but he cannot amalgamate the information and produce the entire coloring of the
graph.

Of course the example we have presented is for graph coloring, just because that
is simple to describe. But any proof whatsoever can be translated into binary code
and then rendered as a statement about the coloring of some graph. So in fact the
example we have given is perfectly general.

Concluding Remarks
The RSA encryption scheme is one of the great ideas of modern coding theory. It
is being developed and enhanced even as we speak. There are versions for multiple
verifiers, for dishonest provers, and many other variants. The history of RSA is
a remarkable one. There was a talk at the 1986 International Congress of Math-
ematicians in Berkeley about the method. After that, the government attempted
to co-opt the method, retract all the preprints, and suppress the information. In-
terestingly, it was the National Security Agency (the branch of the government
in Washington that specializes in cryptography) that stepped in and prevented the
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government intervention. Now RSA is in the public domain, and anyone can use it.
It is a powerful tool.

Exercises
1. Use the shift encryption system given by P �→ P − 3 to encrypt the message

BYE BYE, BIRDIE

2. Use the shift decription scheme P �→ P − 12 to decrypt the code
EAXAZSNMNK.

3. Use a frequency analysis on the ciphertext ZRRGZRURER to determine the
shift encryption scheme. Then decrypt the message.

4. Use the affine encryption system given by P �→ 3P + 11 to encrypt the
message

HELLO MY HONEY

5. Use the affine decryption scheme P �→ [P − 3]/7 to decrypt the code
RDQYPHZYDQYP.

6. Break the message

THIS WAS NOT THE END

up into two-character digraphs. Now tranlate each digraph into a pair of
numbers, and then encrypt each digraph according to the rule P �→ 3P + 7.
Now translate back to a new encrypted word expressed with roman characters.

7. Consider the message

NOW IS THE TIME

Transliterate this to a list of numerals, one character at a time, in the usual
way. Now apply the encryption algorithm

P �→ 5P2 + P mod 26

What ciphertext results?
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CHAPTER 11

Boolean Algebra

11.1 Description of Boolean Algebra
11.1.1 A SYSTEM OF ENCODING INFORMATION
Boolean algebra, named after George Boole (1815–1864), is a formal system for
encoding certain relationships that occur in many different logical systems. As an
example, consider the algebra of sets, equipped with the operations ∩, ∪, and c( ).
These are “intersection,” “union,” and “complementation.” Propositional logic has
three analogous operations: ∧, ∨, and ∼. If we think of these as corresponding,

∩ ←→ ∧
∪ ←→ ∨

c( ) ←→ ∼
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then we find that the two logical systems have very similar formulas:

(i) [c(S ∪ T ) = c S ∩ cT ] ←→
[∼ (A ∨ B) ⇐⇒ ∼ A∧ ∼ B]

(ii) [c(S ∩ T ) = c S ∪ cT ] ←→
[∼ (A ∧ B) ⇐⇒ ∼ A∨ ∼ B]

(iii) [S ∪ (T ∩ U ) = (S ∪ T ) ∩ (S ∪ U )] ←→
[A ∨ (B ∧ C) ⇐⇒ (A ∨ B) ∧ (A ∨ C)]

(iv) [S ∩ (T ∪ U ) = (S ∩ T ) ∪ (S ∩ U )] ←→
[A ∧ (B ∨ C) ⇐⇒ (A ∧ B) ∨ (A ∧ C)]

Other logical systems, such as the theory of gates in computer logic, or the theory
of digital circuits in the basic theory of electricity, satisfy analogous properties.
Boolean algebra abstracts and unifies all of these ideas into a single algebraic system.

The Stone’s representation theorem [JOH] states that every boolean algebra can
be realized as the algebra of closed-and-open sets on a compact, zero-dimensional
topological space. This unifies several different areas of mathematics and has proved
to be a powerful point of view.

11.2 Axioms of Boolean Algebra
11.2.1 BOOLEAN ALGEBRA PRIMITIVES
Boolean algebra contains these primitive elements: a collection, or set, S of objects.
At a minimum, S will contain the particular elements 0 and 1. Boolean algebra also
contains three operations (two binary and one unary):+, ×, and . Boolean algebra
uses the equal sign = and parentheses ( , ) in the customary manner. In boolean
algebra, just as in fuzzy set theory, we think of the overbar as denoting set comple-
mentation (although it could have other specific meanings in particular contexts).

11.2.2 AXIOMATIC THEORY OF BOOLEAN ALGEBRA
The axioms for boolean algebra, using elements a, b, c ∈ S, are these:

1. a × 1 = a

2. a + 0 = a
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3. a × b = b × a

4. a + b = b + a

5. a × (b + c) = (a × b) + (a × c)

6. a + (b × c) = (a + b) × (a + c)

7. a × a = 1

8. a × a = 0

9. a + a = 1

Some of these axioms (1, 2, 3, 4, 5) have a familiar form that we have seen
in ordinary arithmetic. The other four (6, 7, 8, 9) are not familiar, and may be
counterintuitive. In fact Axioms (6, 7, 8, 9) are false in ordinary arithmetic. So
Peano’s arithmetic is not a model for boolean algebra. But the algebra of sets is a
model for boolean algebra. If we let S be the collection of all sets of real numbers,
and if we interpret + as union (∪), × as intersection (∩), as set-theoretic
complementation ( c( ) ), 0 as the empty set (∅), and 1 as the universal set (in this
model, the real numbers R), then in fact all nine axioms now hold. As an example,

S ∩ c S = ∅

is the correct interpretation of Axiom (8), and it is now true. Also

S ∪ (T ∩ U ) = (S ∪ T ) ∩ (S ∪ U )

is the correct interpretation of Axiom (6), and it is now true. Similar statements
may be made about the interpretation of the axioms of boolean algebra in the
propositional calculus.

11.2.3 BOOLEAN ALGEBRA INTERPRETATIONS
Obversely, we can also give the boolean algebra interpretations of the four sets of
equivalent statements that we gave in Sec. 11.1.1. These are

(i) (a + b) = a × b

(ii) (a × b) = a + b

(iii) a + (b × c) = (a × b) + (a × c)

(iv) a × (b + c) = (a × b) + (a × c)
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11.3 Theorems in Boolean Algebra
11.3.1 PROPERTIES OF BOOLEAN ALGEBRA
One of the remarkable features of boolean algebra is that it has a very small set of
axioms, yet many additional desirable properties are readily derived. Some of these
properties are:

1. a × a = a

2. a + a = a

3. a × 0 = 0

4. a + 1 = 1

5. 0 �= 1

6. 0 is unique and 1 is unique

7. a = a

8. a + (b + c) = (a + b) + c

9. a × (b × c) = (a × b) × c

10. (a × b) = a + b

11. (a + b) = a × b

12. 0 = 1

13. 1 = 0

14. a × (a + b) = a

15. a + (a × b) = a

16. a × (a × b) = 0

17. a + (a + b) = 1

18. a × (a × b) = 0

19. a + (a + b) = 1

20. If a × c = b × c and a + c = b + c, then a = b

11.3.2 A SAMPLE PROOF
As an illustration of the ideas, we now provide a proof of formula 2. The proof con-
sists of a sequence of statements, each justified by one of the nine axioms of boolean
algebra or by the rules of logic. At each step, we cite the relevant axiom or rule.

1. [Axiom (2)] a + 0 = a

2. [Axiom (4)] a = a + 0
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3. [Axiom (7)] a × a = 0

4. [Axiom (3)] 0 = a × a

5. [Steps 2 and 4] a = a + (a × a)

6. [Axiom (6)] a = (a + a) × (a + a)

7. [Axiom (8)] a = (a + a) × 1

8. [Axiom (1) + Step 4 + Step 6] a = a + a

9. [Symmetry of equality] a + a = a

Some of the elementary theorems of boolean algebra that we have cited require
rather elaborate justifications. For instance, it is rather difficult to prove the
associativity of addition. We refer the reader to [NIS] for the details.

11.4 Illustration of the Use of Boolean Logic
We now present an example adapted from one that is presented in [NIS, p. 41].
Imagine an alarm system for the monitoring of hospital patients. There are four
factors (inputs/outputs) that contribute to the triggering of the alarm:

Inputs/Outputs Meaning
a Patient’s temperature is in the

range 36–40◦C.
b Patient’s systolic blood pressure is

outside the range 80–160 mm
c Patient’s pulse rate is outside the

range 60–120 beats per minute
o Raising the alarm is necessary

Good sense dictates that we would want the alarm to sound if any of the following
situations obtains:

• The patient’s temperature is outside the acceptable range, the blood pressure
is outside the acceptable range, and the pulse rate is outside the acceptable
range.

• The patient’s temperature is in the acceptable range, but the pulse rate is
outside the acceptable range.

• The patient’s temperature is in the acceptable range, but the systolic pressure
is outside the acceptable range.

• The patient’s temperature is in the acceptable range, but both the systolic
pressure and the pulse rate are outside the acceptable range.
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11.4.1 BOOLEAN ALGEBRA ANALYSIS
Using boolean algebra, these four conditions can be encoded as

• a × b × c

• a × b × c

• a × b × c

• a × b × c

Notice that, since we know that multiplication is associative, we have omitted using
parentheses to group these binary operations. No ambiguity results.

The aggregate of all the situations in which we want the alarm to sound can be
represented by the equation

o = [a × b × c] + [a × b × c] + [a × b × c] + [a × b × c] (11.1)

Now we can use the laws of boolean algebra to simplify the right-hand side:

[a × b × c] + [a × b × c] + [a × b × c] + [a × b × c]

= [a × b × c] + [a × b × c] + [a × b × c]

+([a × b × c] + [a × b × c] + [a × b × c])

= ([a × b × c] + [a × b × c])

+([a × b × c] + [a × b × c])

+([a × b × c] + [a × b × c])

= ([a + a] × [b × c])

+([b + b] × [a × c])

+([c + c] × [a × b])

= (1 × [b × c]) + (1 × [a × c]) + (1 × [a × b])

= [b × c] + [a × c] + [a × b]



CHAPTER 11 Boolean Algebra 241

In summary, we have reduced our protocol for the sounding of the medical
alarm to:

o = [b × c] + [a × c] + [a × b] (11.2)

The circuit that we put in place can be designed after Eq. (11.2) rather than after
the much more complicated Eq. (11.1).

Exercises
1. As much as possible, simplify the boolean expression

[a × b × c] + [a × b × c] + [a × b × c] + [a × b × c]

2. Prove the boolean identity

a × (a + b) = a

3. Prove the boolean identity

a × (a × b) = 0

4. Prove the boolean identity

(a + b) = a × b

5. Prove the boolean identity

(a × b) = a + b

6. Prove the boolean identity

a + (a × b) = a

7. Prove that if a × c = b × c and a + c = b + c, then a = b.
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CHAPTER 12

Sequences

12.1 Introductory Remarks
Many physical and mathematical quantities are best understood by using approxi-
mations. Sometimes approximating values are given as limits. For instance, suppose
that we want to paint the (infinitely many) squares shown in Fig. 12.1. Suppose
also that 1 gallon of paint covers 500 square feet. How much paint will we need?

We see that the first square has interior area 900 square feet. The first two squares
have area 900 + 90 = 990 square feet. The first three squares have area 900 + 90 +
9 = 999 square feet. The first four squares have area 900 + 90 + 9 + 0.9 = 999.9
square feet. The pattern is clear. We have a list of approximations, each given by a
sum of finitely many numbers. The approximations seem to tend to 1000 . Therefore
it seems that we will need enough paint to cover 1000 square feet, or 2 gallons of
paint ([we are of course conveniently ignoring the fact that the (100100)th square
will be too small to hold even one molecule of paint)].

The purpose of this chapter is to turn the above intuitive discussion into careful
mathematics. A list of approximating values will be called a “sequence.” We want
especially to study the situation when the sequence consists of “partial sums” (as in
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900

90

9

Figure 12.1 Calculating the area of a floor.

the paint example)—this is called a “series.” Thus the process we will be performing
corresponds, as in the example of the squares, to summing infinitely many numbers.

12.2 Infinite Sequences of Real Numbers
A sequence is an ordered list of numbers. It is most common to write a sequence as

a1, a2, a3, . . .

or sometimes as

{a j }∞j=1

EXAMPLE 12.1
Discuss the sequence 2, 1, 4, 3, 6, 5, . . . .

Solution: We see that

a1 = 2, a2 = 1, a3 = 4, a4 = 3, a5 = 6, a6 = 5, . . .

In fact the rule that generates the sequence assigns to each positive odd integer
the next integer and to each positive even integer the preceding integer. Check
this assertion: f (1) = 2, f (2) = 1, f (3) = 4, f (4) = 3, f (5) = 6, f (6) = 5, and
so on. �
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Remark 12.1 It would be a mistake to think that every sequence is given by a “rule.”
Far from it. But many sequences do come from rules, and it is always interesting
to determine what that rule is.

EXAMPLE 12.2
How does the sequence

1, 2, 3, 4, . . .

differ from the sequence in Example 12.1?

Solution: This new sequence has the same values as the sequence in Example
12.1. But they occur in a different order. Since a sequence is by definition an ordered
list, we conclude that this is a different sequence from that in Example 12.1. �

Insight: Occasionally it will prove useful to begin a sequence with an index different
from 1. An example is

{3 j − 5}∞j=4

This denotes the sequence 7, 10, 13, 16, . . . .

Generally, the main reason for studying a sequence is to understand whether or
not it “tends to some limit.” Before giving a precise definition of limit, let us apply
our intuition to some examples.

EXAMPLE 12.3
Discuss whether the sequence

a j = 2− j

which can also be written as

{2− j }∞j=1

tends to a limiting value.

Solution: If we write the sequence out as

1

2
,

1

4
,

1

8
, . . .
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0

Figure 12.2 The limit of a sequence.

then we see that the terms become (and remain) arbitrarily close to zero. It seems
plausible to say that the sequence tends to zero. This intuitive notion is displayed
in Fig. 12.2. �

EXAMPLE 12.4
Does the sequence a j = (−1) j tend to a limit?

Solution: We may write this sequence out as

−1, 1,−1, 1, . . .

The sequence does not seem to tend to any limit: half of the time the value is
1 and the other half of the time the value is −1. The sequence does not become
and remain close to a single value. Therefore we say that it has no limit. Refer to
Fig. 12.3. �

EXAMPLE 12.5
Does the sequence a j = j3 tend to a limit?

Solution: This sequence may be written out as

1, 8, 27, 64, . . .

The sequence takes values which are larger and larger, without any bound. The
sequence tends to no limit. Refer to Fig. 12.4. �

0–1 1

Figure 12.3 A sequence with no limit.
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Figure 12.4 A sequence that grows without bound and hence has no limit.

EXAMPLE 12.6
A quantity of radioactive material decays. At the beginning of each week there is
half as much as there was the previous week. The initial quantity is 5 grams. Use
sequence notation to express the amount of material at the beginning of the jth week.

Solution: The amount of radioactive material at the beginning of the second week
is 5/2 (half as much as the initial amount at the beginning of the first week). The
amount at the beginning of the third week is 5/4. The amount at the beginning of
the fourth week is 5/8. And so forth.

As a result, according to the description, the amount of material at the start of
the jth week is

a j = 5 ·
(

1

2

) j−1

The sequence exhibits in an elegant way the process of radioactive decay: the first
several values are

5,
5

2
,

5

4
,

5

8

It is easy to see intuitively, or with a calculator, that the amount of radioactive
material tends to 0 as time tends to ∞. �

EXAMPLE 12.7
Discuss convergence for the sequence 1 , 1/2 , 1/3 , 1/4 , . . . .

Solution: Each term is smaller than the last. All the terms are positive. Most
importantly, the terms are getting arbitrarily close to zero: the hundredth term is
within 1/100 of 0, the thousandth term is within 1/1000 of 0, the millionth term
is within 1/1000000 of 0. We conclude that the sequence converges, and its limit
is 0. �

EXAMPLE 12.8
Let a j = c for every j. What is the limit of this constant sequence?
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Solution: The terms of this sequence are all the same. They do not deviate. They
stay at c—never above c and never below c. They are arbitrarily close to c because
in fact they all equal c. We conclude that the sequence converges, and its limit
is c. �

EXAMPLE 12.9
Find the limit of the sequence

a j = 2 j

j + 1

Solution: It is helpful to use long division and write

a j = 2 + −2

j + 1

Now the numerator in the fraction on the far right is plainly the constant value
−2, while the denominator increases without bound. We conclude that the quotient
gets arbitarily small as j → +∞. Thus the sequence converges, and the limit is
2 + 0 = 0. �

Insight: Another way to analyze the limit of a j in Example 12.9 is to divide the
numerator and denominator of the expression for a j by j. This yields

a j = 2

1 + 2/j

Then it is apparent that a j → 2/[1 + 0] = 2.

EXAMPLE 12.10
Find the limit of the sequence

a j = 10 j + 8 j

10 j

Solution: If we rewrite a j as

a j = 1 +
(

8

10

) j
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then we notice that the expression in parentheses is positive and less than 1. Higher
and higher power of this number get smaller and smaller. In fact this entire expres-
sion (a number less than one raised to the jth power) tends to 0. Thus the limit of
the sequence a j exists and equals 1. �

12.2.1 SEQUENCES WITH AND WITHOUT PATTERNS
Recall that in Example 12.7 we considered the sequence a j = 1/j. The pattern (or
rule) for this sequence is a simple one. The rule for the sequence in Example 12.4
is less obvious: f ( j) = (−1) j . Sometimes a sequence will come from an obvious
pattern or rule, and sometimes not.

EXAMPLE 12.11
What is the next element of the sequence

6, 6, 1, 7, 10, 2, 5, 3, 2, 5, 3

Solution: There is no single answer to this question. Given any finite sequence
of real numbers, there are infinitely many “patterns”or “rules”which will generate
them. The rule which we used was to look at the sentence immediately preceding
Example 12.3 in this section of the book. The first word has six letters, the second
six letters, the third one letter, and so on. The twelfth element of the sequence (the
one requested above) is 9 since the twelfth word of the sentence has nine letters. The
fifteenth element of the sequence is 8. Since the sentence only has fifteen words,
we declare all subsequent elements of the sequence to be 0. �

Most of the sequences which we encounter in practice come from some mathe-
matical pattern, although the pattern may be subtle.

EXAMPLE 12.12
Find the pattern in the sequence

2,
1

2
,

4

3
,

3

4
,

6

5
,

5

6
, . . .

and find the limit.

Solution: If the sequence is rewritten as

1 + 1

1
, 1 − 1

2
, 1 + 1

3
, 1 − 1

4
, 1 + 1

5
, . . .
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or

1 + (−1)1+1 · 1

1
, 1 + (−1)2+1 · 1

2
, 1 + (−1)3+1 · 1

3
, 1 + (−1)4+1 · 1

4
, . . .

then we see that the jth term is given by

a j = 1 + (−1) j+1 · 1

j

Of course 1/j tends to 0. Therefore lim j→∞ a j = 1. �

12.3 The Tail of a Sequence
Intuitively, we say that {a j }∞j=1 converges to � if a j is as close as we please to �

when j is large enough. A crucial feature of this idea is that convergence depends
only on what {a j }∞j=1 does when j is large. The values of the first 10,000 or so a j s
are irrelevant.

EXAMPLE 12.13
Find the limit of the sequence defined by

a j =
{

0 if 1 ≤ j ≤ 10, 000

10 if j ≥ 10, 001

Solution: The sequence {a j }∞j=1 converges to 10. Because when j is large ( j >

10, 000), then a j = 10. Far enough out, the sequence is simply constant. It has
constant value and limit equal to 10. �

12.4 A Basic Theorem
Now we want to consider some arithmetic properties of sequences.

Theorem 12.1 Suppose that {a j }∞j=1 and {b j }∞j=1 are convergent sequences. Then

1. lim j→∞(a j ± b j ) = lim j→∞ a j ± lim j→∞ b j

2. lim j→∞
(
a j · b j

) = (
lim j→∞ a j

) · (lim j→∞ b j
)
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3. lim j→∞
a j

b j
= lim j→∞ a j

lim j→∞ b j
provided that lim j→∞ b j �= 0

4. lim j→∞ α · a j = α · lim j→∞ a j for any real number α

5. lim j→∞ a j is unique

Insight: In what follows we will generally not mention Part 5 explicitly, but we
use it frequently. It means that if we calculate a limit by any particular method, the
answer will be the same as if some other method were used instead: there is no
ambiguity in the theory of limits.

EXAMPLE 12.14
Compute

lim
j→∞

(
3

j
+ 1

)
Solution: We apply the theorem several times as follows:

(Part 1) lim j→∞
(

3
j + 1

)
= lim j→∞ 3

j + lim j→∞ 1

(Part 4) = 3 · lim j→∞ 1
j + lim j→∞ 1

(Example 12.7) = 3 · 0 + lim j→∞ 1
(Example 12.8) = 1 �

Insight: In the beginning, you should work through problems step-by-step, carefully
noting each time you apply one of the parts of Theorem 12.1. After a while, this
meticulousness will be unnecessary and you will be able to do many problems in
your head.

EXAMPLE 12.15
Compute

lim
j→∞

1/j + 1

3/j2 − 5

Solution: We systematically apply Theorem 1 to find that the limit equals

(Part 3)
lim j→∞(1/j + 1)

lim j→∞(3/j2 − 5)

(Part 1) = lim j→∞ 1/j + lim j→∞ 1

lim j→∞ 3/j2 − lim j→∞ 5
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(Parts 2, 4) = lim j→∞ 1/j + lim j→∞ 1

3 · lim j→∞ 1/j · lim j→∞ 1/j − lim j→∞ 5

(Examples 12.7, 12.8) = 0 + 1

3 · 0 · 0 − 5

= −1

5 �

EXAMPLE 12.16
Use Theorem 12.1 to analyze the limit

lim
j→∞

j3 − 4 j + 6

3 j3 + 2 j

Solution: Notice that the limit cannot be handled directly using Theorem 12.1
since both the numerator and the denominator become ever larger with j (they tend
to no limit). It is not entirely clear that the limit exists! The approach we take is to
use some algebra before we attempt to apply Theorem 12.1.

Dividing numerator and denominator by the largest power of j that appears
(namely, j3), we find that our limit equals

lim
j→∞

1 − 4 j−2 + 6 j−3

3 + 2 j−2

(Part 3) = lim j→∞(1 − 4 j−2 + 6 j−3)

lim j→∞(3 + 2 j−2)

(Parts 1,4) = lim j→∞ 1 − 4 · lim j→∞ j−2 + 6 · lim j→∞ j−3

lim j→∞ 3 + 2 lim j→∞ j−2

However, using Part 1 of Theorem 12.1 and Example 12.7, we see that

lim
j→∞

j−2 = lim
j→∞

j−1 · lim
j→∞

j−1 = 0 · 0 = 0

A similar calculation shows that

lim
j→∞

j−3 = 0
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We conclude that our limit equals

1 − 4 · 0 + 6 · 0

3 + 2 · 0
= 1

3
�

From now on, in order to facilitate the flow of ideas, we will not continue to cite
each use of Theorem 1. But as you read the examples you should check for yourself
why each step is correct.

You Try It: Analyze the sequence a j =
√

j /[
√

j + 5].

12.5 The Pinching Theorem
We turn now to a “pinching theorem” for sequences. This tool gives us a means
for comparing a new, perhaps difficult and mysterious, sequence with other more
familiar sequences.

Theorem 12.2 (The Pinching Theorem) Suppose that {a j }∞j=1, {b j }∞j=1, {c j }∞j=1
are sequences. If

a j ≤ b j ≤ c j for every j

and if

lim
j→∞

a j = lim
j→∞

c j = �

then

lim
j→∞

b j = �

EXAMPLE 12.17
Evaluate

lim
j→∞

(sin j)2

j
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Solution: Let b j = (sin j)2

j Then

0 ≤ b j ≤ 1

j

To apply the pinching theorem, let

a j = 0 and c j = 1

j
for every j

We observe that

lim
j→∞

a j = lim
j→∞

c j = 0

The hypotheses of the pinching theorem are satisfied and we may conclude that

lim
j→∞

(sin j)2

j
= lim

j→∞
b j = 0 �

12.6 Some Special Sequences
A number of special sequences occur repeatedly in our work. We now collect several
of them for easy reference.

Theorem 12.3 Let s be a real number.

1. If s < 0 then the sequence { j s}∞j=1 converges to 0.

2. If s > 0 then the sequence { j s}∞j=1 diverges.

3. If s = 0 then the sequence { j s}∞j=1 is just the constant sequence 1, 1, 1, . . .

and converges to 1.

Theorem 12.4 is a companion to Theorem 12.3. In Theorem 12.3 the j’s are the
base of the exponential, while in Theorem 12.4 we have j playing the role of the
exponent.

Theorem 12.4 Let t be a real number.

1. If |t | < 1 then {t j }∞j=1 converges to 0.

2. If |t | > 1 then {t j }∞j=1 diverges.
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3. If t = 1 then {t j }∞j=1 is the constant sequence 1, 1, 1, . . . which converges
to 1.

4. If t = −1 then {t j }∞j=1 diverges.

EXAMPLE 12.18
Calculate

lim
j→∞

j3/2 + 2 j2

4 j2

Solution: We use some algebraic manipulations to rewrite our limit as

lim
j→∞

j3/2

4 j2
+ lim

j→∞
2 j2

4 j2

= 1

4
· lim

j→∞
1

j1/2
+ lim

j→∞
1

2

By Theorem 12.3 this last line equals

1

4
· 0 + 1

2
= 1

2
�

EXAMPLE 12.19
Calculate

lim
j→∞

2 j + 3 j

4 j

Solution: We multiply the numerator and denominator by 4− j and simplify to
obtain that our limit equals

lim
j→∞

2 j · 4− j + 3 j · 4− j

4 j · 4− j
= lim

j→∞
(1/2) j + (3/4) j

1

= lim
j→∞

(
1

2

) j

+ lim
j→∞

(
3

4

) j

Now by Theorem 12.4(1) this equals

0 + 0 = 0 �
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Exercises
In Exercises 1 and 2, use your intuition to determine whether the given sequence
converges. If it does, say what the limit is. Do not attempt to supply proofs. Use
your calculator if you wish to gather data.

1. a j = 1
j2+1

2. a j = j
j2+1

In Exercises 3 and 4, determine intuitively whether the limit exists and what the
limit is. Then verify your answer rigorously using the precise definition of limit.

3. lim j→∞ 1
j+7

4. lim j→∞ 10− j

It is important for you to realize that there are many sequences whose convergence
properties are not at all obvious. Each of the sequences in Exercises 5 and 6 con-
verges, but it is quite tricky to determine what the limit is and to prove the answer.
Use a calculator to help you guess what the limit is in each problem, but do not
worry for now about proving your answer rigorously.

5. lim j→∞ j · sin(1/j)

6. lim j→∞ j2 · (1 − cos(1/j))

In Exercises 7 and 8, compute the limit using the rules which you learned in
Theorems 12.1, 12.3, and 12.4. Note explicitly each time that you use a rule.

7. lim j→∞
(

1 + 1
j

)
8. lim j→∞

(
1
j − 1

j2

)
Use the pinching theorem to evaluate the limits in Exercises 9 and 10.

9. lim j→∞ sin(1/j)
j

10. lim j→∞
√

j4+1
j2

In Exercises 11, compute the limit using the rules which you learned in this chapter.
Note explicitly each time that you use a rule.

11. lim j→∞(2− j + 3)
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Series

13.1 Fundamental Ideas
The idea of adding together finitely many numbers is a simple and familiar one.
We are so used to the associative and commutative properties of finite sums that
we tend not to think about them. Now we shall learn to add together infinitely many
numbers, and we will have to be a bit more careful. As Example 13.1 suggests,
contradictions can arise if we do not establish certain ground rules.

EXAMPLE 13.1
Give an example of an infinite summation process in which the ordinary rules of
arithmetic appear to fail.

Solution: Consider the infinite sum

1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · ·
If we group the terms as

(1 − 1) + (1 − 1) + (1 − 1) + (1 − 1) + · · ·
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then the sum seems to be

0 + 0 + 0 + 0 + · · ·

which ought to be 0. On the other hand, if we group the terms as

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

then the sum seems to be

1 + 0 + 0 + 0 + · · ·

which ought to be 1.

Apparently the associative law of addition fails for this infinite sum. �

It turns out that, while the associative law is valid for finite sums, it is not valid
in general for infinite sums. In order to make sense of this and other addition
operations, we must first consider precisely what it means to “add” infinitely many
numbers.

We begin by recalling the following notation from Sec. 6.4:

Definition 13.1 The symbol

N∑
j=M

c j

denotes the sum of the numbers cM , cM+1, . . . , cN−1, cN . In other words

N∑
j=M

c j = cM + cM+1 + · · · + cN−1 + cN

EXAMPLE 13.2
If c j = 2− j then calculate

∑4
j=1 c j and

∑7
j=3 c j .

Solution: We have

4∑
j=1

c j = 2−1 + 2−2 + 2−3 + 2−4 = 15

16
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and

7∑
j=3

c j = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 31

128 �

Definition 13.2 If c1, c2, c3, . . . are real numbers and
∑∞

j=1 c j the corresponding
series, then we write SN to denote the sum of the first N of them:

SN =
N∑

j=1

c j

We call SN the N th partial sum of the series
∑∞

j=1 c j .
If

lim
N→∞

SN = �

then we say that the infinite sum (or series)
∑∞

j=1 c j converges to �. If the sequence
{SN }∞N=1 does not converge then we say that the series diverges.

Insight: The idea in this definition is as follows: to add up infinitely many numbers
c1 + c2 + c3 + · · ·we add up a large finite number of the terms. That is, we consider
the partial sums

SN = c1 + c2 + c3 + · · · + cN

In the case that the series converges, this partial sum should give us a good approx-
imation to the full sum

∑∞
j=1 c j .

In practice, when we write

∞∑
j=1

c j

we mean

lim
N→∞

SN

provided that this limit exists.
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13.2 Some Examples
EXAMPLE 13.3
Does the series

∑∞
j=1 2− j converge? If so, to what limit?

Solution: We have

SN =
N∑

j=1

2− j = 2−1 + 2−2 + 2−3 + · · · + 2−N

= 2−1 + (2−1 − 2−2) + (2−2 − 2−3) + (2−3 − 2−4)

+ · · · + (2−(N−1) − 2−N ) (13.1)

Notice that SN is a finite sum so that it is correct to use the associative law of
addition. We conclude that

SN = 2−1 + 2−1 + (−2−2 + 2−2) + (−2−3 + 2−3)

+ · · · + (−2−(N−1) + 2−(N−1)) − 2−N

= 1 − 2−N

We may now pass to the limit:

lim
N→∞

SN = lim
N→∞

(1 − 2−N ) = 1 − lim
N→∞

2−N = 1 − 0 = 1

By definition, we say that the series

∞∑
j=1

2− j

converges to 1. Refer to Fig. 13.1. �

0 1

Figure 13.1 Convergence of the series
∑

j 2− j .



CHAPTER 13 Series 261

Insight: Do not worry about how one thinks of the trick that was used in
Example 13.3. The purpose of this chapter is to teach you all the techniques that
you will need in order to study series. We will learn them gradually, beginning in
the next section. For now, just concentrate on learning what it means for a series to
converge or diverge.

EXAMPLE 13.4
Discuss convergence for the series

∞∑
j=1

(−1) j+1 = 1 − 1 + 1 − 1 + 1 − · · ·

Solution: If N is odd then

SN = 1 − 1 + 1 − 1 + − · · · + 1

= (1 − 1) + (1 − 1) + · · · + (1 − 1) + 1

= 1

However, if N is even then

SN = 1 − 1 + 1 − 1 + − · · · − 1

= (1 − 1) + (1 − 1) + · · · + (1 − 1)

= 0

Therefore the sequence {SN }∞N=1 of partial sums is just the sequence

1, 0, 1, 0, 1, 0, . . .

which does not converge.
We conclude that the series itself does not converge. �

Insight: Example 13.4 explains away the apparent contradiction that we en-
countered in Example 13.1. The lesson is that we should not attempt to perform
arithmetic operations on series that do not converge.

WARNING: It is easy to become confused at this point about the difference between
a sequence and a series. Remember that a sequence is a list of numbers while a
series is a sum of numbers. However, we study a series by looking at its sequence
of partial sums.
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Sometimes there are tricks involved in seeing that a series converges:

EXAMPLE 13.5
Discuss convergence for the series

∞∑
j=1

1

j · ( j + 1)

Solution: If you use a calculator to compute some partial sums (up to S20, for
instance) then you will probably be convinced that the series converges. Here is a
way to get this conclusion mathematically: We write

SN = 1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

N · (N + 1)

=
(

1

1
− 1

2

)
+
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+ · · · +

(
1

N
− 1

N + 1

)
Almost everything cancels out and we have

SN = 1 − 1

N + 1

Clearly limN→∞ SN = 1. Therefore the series

∞∑
j=1

1

j · ( j + 1)

converges to 1. �

Insight: Sometimes it is convenient to begin a series at an index other than j = 1.

An example is

∞∑
j=3

j

ln( j − 1)

Obviously it would not do to begin this series at j = 1 because ln 0 is undefined.
We cannot begin at j = 2 because ln 1 = 0. So we begin at j = 3. Of course this
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series is equal to

3

ln 2
+ 4

ln 3
+ · · ·

But notice this: the partial sum S1 is understood to be 0 because summing from
3 to 1 makes no sense. The partial sum S2 is zero for a similar reason. The first
nontrivial partial sum is

S3 = 3

ln 2

Indeed, for N ≥ 3 we have

SN = 3

ln 2
+ 4

ln 3
+ · · · + N

ln(N − 1)

EXAMPLE 13.6
What are S5, S10, and S4 for the series

∞∑
j=5

3 j

Solution: The interest of this example is that the series does not begin at j = 1.
We have

S5 = 35

S10 = 35 + 36 + 37 + 38 + 39 + 310

S4 = 0 �

13.3 The Harmonic Series
Example 13.5 was devious, but it introduced a useful technique. In the next example
we consider a series that diverges in a subtle way. This is the important harmonic
series.
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EXAMPLE 13.7
Discuss convergence or divergence for the series

∞∑
j=1

1

j

Solution: If you calculate a large number of (for instance several hundred) partial
sums using a computer then you might never suspect that this series diverges. It
turns out that the sum of the first one million terms of this series is just under 14.
The divergence is taking place so slowly that it is difficult to be certain what is
actually happening. We need a mathematical proof:

Notice that

S1 = 1 = 2

2

S2 = 1 + 1

2
= 3

2

S4 = 1 + 1

2
+
(

1

3
+ 1

4

)
≥ 1 + 1

2
+
(

1

4
+ 1

4

)
≥ 1 + 1

2
+ 1

2
= 4

2

S8 = 1 + 1

2
+
(

1

3
+ 1

4

)
+
(

1

5
+ 1

6
+ 1

7
+ 1

8

)
≥ 1 + 1

2
+
(

1

4
+ 1

4

)
+
(

1

8
+ 1

8
+ 1

8
+ 1

8

)
= 5

2

In general this argument shows that

S2k ≥ k + 2

2

The sequence of SN ’s is increasing since the series contains only positive terms.
The fact that the partial sums S1, S2, S4, S8, . . . increase without bound shows that
the entire sequence of partial sums must increase without bound. We conclude that
the series diverges. �
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Insight: The series
∑∞

j=1
1
j comes up often in mathematics and physics. It is called

the “harmonic series” because of its role in the theory of acoustics: if the natural
frequencies at which a given body vibrates are ρ1, ρ2, . . . and if

ρ j

ρ j+1
= 1

j + 1

for all j then the frequencies are said to form a sequence of harmonics.

13.4 Series of Powers
We now consider series of powers of a fixed number. These are called geometric
series.

EXAMPLE 13.8
Discuss convergence for the series

∑∞
j=1 10− j .

Solution: Notice that

S1 = 0.1

S2 = 0.11

S3 = 0.111

and so on

We see that the partial sums form an increasing sequence that is bounded above by
1. It is plausible—and there is a mathematical theorem that makes this assertion
rigorous—that such a sequence must accumulate at some point less than or equal
to 1. Thus the series converges. (We shall treat repeating decimals in more detail in
the next section.) To what number does the series converge?

Referring back to the material in Sec. 5.4 on the real number system, we see that
the sequence of partial sums {SN }∞N=1 converges to the real number given by the
infinite decimal expansion

0.11111 . . . = 1

9

Therefore the series
∑∞

j=1 10− j converges to 1/9 . �
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EXAMPLE 13.9
Discuss convergence for the series

∑∞
j=1 17− j .

Solution: Notice that

S1 < S2 < S3 < · · ·

since all of the summands are positive. Also

SN = 17−1 + 17−2 + 17−3 + · · · + 17−N

< 2−1 + 2−2 + 2−3 + · · · + 2−N

= 1 − 2−N

< 2

(We know this from the calculation that we did in Example 13.3). Therefore the
sequence of partial sums S1, S2, S3, . . . is increasing and bounded above by 2. As
noted before, when a sequence increases and is bounded above, it must accumulate
at some point. Therefore our partial sums have a limit �. We conclude that the series
converges. �

Insight: Notice in the last example that we demonstrated that the series converges
without actually finding the sum. This is the way matters will often turn out in our
study of series.

13.5 Repeating Decimals
In this section we begin to understand infinitely repeating decimals. The way we
do this is that we learn to convert them to rational fractions.

EXAMPLE 13.10
Consider the real number given by the repeating decimal expansion

x = 2.713131313 . . .

We often find it convenient to write a number like this as

x = 2.713
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where the overbar indicates that the decimal digits under it are repeated indefinitely.
This number x is a legitimate real number, but we would like to write it in a more
compact (or perhaps more understandable) form.

The device that we use is to compare 100x with x . Thus we have

100x = 271.3131313 . . .

x = 2.7131313 . . .

Clearly the multiple of 100 was chosen so that the infinite repetions of 13 line up
nicely in our array. Subtracting, we find that

99x = 268.6

or

x = 268.6

99
= 2686

990

As a result of our calculation, we have expressed the infinitely repeating decimal
x as a rational fraction. �

You Try It: Use the technique just presented to convert the repeating decimal

0.11111 . . .

to a rational fraction. Of course you should obtain the answer 1/9.

EXAMPLE 13.11
Let us convert the repeating decimal

y = 37.12712712 . . . = 37.12712

to a rational fraction.
We write

1000y = 37127.127127127 . . .

y = 37.127127127 . . .

Subtracting, we find that

999y = 37090
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or

y = 37090

999 �

It is an interesting fact that decimal expansions that repeat—such as the ones
we considered in the last two examples—always give rise to rational numbers (that
is, quotients of integers). Decimal expansions that do not repeat always give rise
to irrational numbers (that is, numbers that cannot be expressed as quotients of
integers).

13.6 An Application
In this section we illustrate some of our ideas about series with an example from
the physical world.

EXAMPLE 13.12
A rocket uses a great deal of fuel during liftoff. Once the rocket leaves the earth’s
gravitational field, relatively little fuel is required to keep the rocket in motion.
Scientists estimate that, for a certain class of rocket, the vehicle uses 1/4 of its total
fuel supply during its first hour of flight, 1/8 of its fuel supply during the second
hour, 1/12 of its fuel supply during the third hour, and so on. A newspaper reporter
hears this information and reports that the rocket’s fuel supply will “last forever.”
Why is the reporter in error?

Solution: The portion of the total fuel supply that the rocket has consumed after
N hours is

1

4
+ 1

8
+ 1

12
+ · · · + 1

4N

This is a partial sum SN for the series

∞∑
j=1

1

4 j

Thus

SN = 1

4

(
1

1
+ 1

2
+ 1

3
+ · · · + 1

N

)
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But we learned in Example 13.7 that the expression in parentheses becomes large
without bound as N increases. In particular, SN > 1 when N is large enough, so
the rocket will eventually exhaust its fuel supply (in fact a calculation shows that
the fuel will be exhausted during the thirty-first hour of flight). �

13.7 A Basic Test for Convergence
Theorem 13.1 (The zero test) If the series

∑∞
j=1 c j converges then the summands

c j tend to 0.

Proof: Since
∑∞

j=1 c j converges, the partial sums SN tend to some limit �. Let
ε > 0. Choose N0 such that if N ≥ N0 then |SN − �| < ε/2. Then also |SN+1 − �| <

ε/2. Therefore

|cN+1 − 0| = |cN+1| = |SN+1 − SN |
= |(SN+1 − �) + (� − SN )|
≤ |SN+1 − �| + |� − SN |
<

ε

2
+ ε

2
= ε

This says that cN → 0.

EXAMPLE 13.13
Apply the zero test to the series

∑∞
j=1(−1) j .

Solution: The summands c j = (−1) j do not tend to zero therefore the series
diverges. �

EXAMPLE 13.14
Apply the zero test to the series

∑∞
j=1

1
j .

Solution: The terms c j = 1/ j certainly tend to 0. But we cannot conclude that
the series converges (that is not what Theorem 13.1 says). In fact we proved in the
last section that the series diverges. �

EXAMPLE 13.15
Apply the zero test to the series

∑∞
j=1 17− j .
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Solution: The terms c j = 17− j certainly tend to zero. So the series might con-
verge, but the zero test will not tell us. In Example 13.9, we in fact learned that the
series does converge. �

13.8 Basic Properties of Series
We now present some elementary properties of series that are similar to the prop-
erties of sequences given in Theorem 12.1.

Theorem 13.2 Suppose that
∑∞

j=1 c j converges to C and
∑∞

j=1 d j converges to
D. Then

1.
∑∞

j=1(c j ± d j ) converges to C ± D.

2.
∑∞

j=1 αc j converges to α · C, where α is any real constant.

Corollary 13.1 If
∑∞

j=1 b j diverges andα is any nonzero constant then
∑∞

j=1 α · b j

diverges.

Proof of Corollary 13.1: Seeking a contradiction, we suppose that
∑∞

j=1 α · b j

converges. By Part (2) of the theorem,

∞∑
j=1

1

α
· α · b j =

∞∑
j=1

b j

also converges. That is a contradiction.

Here are some examples which indicate how Theorem 13.2 and its corollary can
be applied.

EXAMPLE 13.16
Discuss convergence for the series

∞∑
j=1

4

2 j
(13.2)

Solution: We know by Example 13.3 that

∞∑
j=1

1

2 j
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converges. But then Part (2) of Theorem 13.2 applies to tell us that the series in
Eq. (13.2) converges. �

EXAMPLE 13.17
Does the series

∞∑
j=1

2 j + 10 j

20 j

converge?

Solution: We rewrite the j th summand as

2 j + 10 j

20 j
= 1

10 j
+ 1

2 j

Because

∞∑
j=1

1

2 j

converges (Example 13.3) and

∞∑
j=1

1

10 j

converges (Example 13.8), we may apply Part (1) of Theorem 13.2 to conclude that

∞∑
j=1

(
1

10 j
+ 1

2 j

)
converges. Therefore the original series converges. �

EXAMPLE 13.18
Does the series

∞∑
j=1

j + 2 j

j · 2 j
(13.3)

converge?
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Solution: Suppose that the series does converge. We also know that

∞∑
j=1

1

2 j

converges (by Example 13.3). Therefore Part (1) of Theorem 13.2 tells us that

∞∑
j=1

(
j + 2 j

j · 2 j
− 1

2 j

)
converges.

Performing the subtraction, we may conclude that

∞∑
j=1

1

j

converges. But that is false (Example 13.7). Therefore our assumption is contra-
dicted and the original series [Eq. (13.3)] diverges. �

EXAMPLE 13.19
Discuss convergence of the series

∞∑
j=1

(2− j+7 − 10− j+3)

Solution: Rewrite the series as

∞∑
j=1

(128 · 2− j − 1000 · 10− j )

Now

∞∑
j=1

2− j

is convergent therefore Part (2) of Theorem 13.2 tells us that

∞∑
j=1

128 · 2− j (13.4)
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converges. Similarly,

∞∑
j=1

10− j

converges hence we may conclude that

∞∑
j=1

1000 · 10− j (13.5)

converges.
Finally, Eqs. (13.4) and (13.5), together with Part (1) of Theorem 13.2, tell us

that the original series converges. �

13.9 Geometric Series
We will next discuss how to sum explicitly a special kind of series called the
geometric series. (We already began exploring these in the last section.)

Let λ be a fixed real number and consider the series
∑∞

j=0 λ j . We find it conve-
nient here to begin the sum with the index j = 0 rather than j = 1. By convention,
λ0 = 1. Then

SN = 1 + λ + λ2 + · · · + λN

Therefore

λ · SN = λ + λ2 + λ3 + · · · + λN+1

= (1 + λ + λ2 + · · · + λN ) + (λN+1 − 1)

= SN + λN+1 − 1

We reorganize the equation so that the terms involving SN are together:

SN (λ − 1) = λN+1 − 1

As long as λ �= 1, we may divide by (λ − 1) to obtain

SN = 1 − λN+1

1 − λ
(13.6)
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This formula for SN tells us everything that we could want to know about the
geometric series

∑∞
j=0 λ j .

Theorem 13.3 If |λ| < 1 then the geometric series
∑

j=0 λ j converges to the sum
1/(1 − λ). If |λ| ≥ 1 then the geometric series

∑
j=0 λ j does not converge.

Proof: Remember what it means for a series to converge: the sequence of partial
sums SN converges to some limit. If |λ| < 1 then by (13.6) we see that

SN → 1 − 0

1 − λ
= 1

1 − λ

That is the first statement of the theorem.
If |λ| ≥ 1 then the terms of the series do not tend to zero so that, by the zero test,

the series cannot converge.

EXAMPLE 13.20
Discuss convergence for the series

∞∑
j=0

3− j

Solution: We rewrite the series as

∞∑
j=0

(
1

3

) j

which converges to

1

1 − (1/3)
= 3

2

(because |1/3| < 1). �

EXAMPLE 13.21
Discuss convergence for the series

∞∑
j=0

(−2) j

Solution: Since | − 2| > 1, the series must diverge. �
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EXAMPLE 13.22
Sum the series

∞∑
k=4

6−k (13.7)

explicitly.

Solution: We begin by rewriting the series as

∞∑
k=0

6−k−4 (13.8)

Why can we do this? Write out the first several terms of both Eqs. (13.7) and (13.8)
to see that they are simply two different way of writing

6−4 + 6−5 + 6−6 + · · ·

Now we may use Theorem 13.2(1) of the last section to rewrite (13.8) as

6−4 ·
∞∑

k=0

6−k = 6−4 ·
∞∑

k=0

(
1

6

)k

Finally,

∞∑
k=0

(
1

6

)k

= 1

1 − (1/6)
= 6

5

We conclude that

∞∑
k=4

6−k = 6−4 · 6

5
= 1

1080 �

EXAMPLE 13.23
Sum the series

∞∑
j=6

2 j+4

7 j−3

explicitly.
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Solution: We rewrite the series as

∞∑
j=0

2 j+10

7 j+3
= 210

73
·

∞∑
j=0

2 j

7 j

= 1024

343
·

∞∑
j=0

(
2

7

) j

By Theorem 13.3,

∞∑
j=0

(
2

7

) j

= 1

1 − (2/7)

= 7

5

Therefore

∞∑
j=6

2 j+4

7 j−3
= 1024

343
· 7

5
= 1024

245 �

Insight: Whether or not a given series converges does not depend on the first million
or so terms. For suppose that we are given the series

∑∞
j=1 a j and that we are able

to ascertain that

∞∑
j=106

a j

converges. If N ≥ 106 then this means that the partial sums

SN =
N∑

j=106

a j

converge (as a sequence) to a limit �. But then the expressions

TN =
N∑

j=1

a j =
106−1∑

j=1

a j +
N∑

j=106

a j =
106−1∑

j=1

a j + SN
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converge as N → ∞ to

106−1∑
j=1

a j + �

(Notice that the first sum does not depend on N.) What is TN ? It is the partial sum
for the full series

∞∑
j=1

a j

In other words, we have concluded that the full series converges. To summarize:

If
∑∞

j=106 a j converges then
∑∞

j=1 a j converges.

Conversely,

If
∑∞

j=1 a j converges then
∑∞

j=106 a j converges.

The reason is that the two sums differ only by the finite number

106−1∑
j=1

a j

EXAMPLE 13.24
Does the series

∞∑
j=75

(1.1) j

converge?

Solution: The series must diverge. For if it converged, then it would follow that∑∞
j=0(1.1) j converges. That, of course, is false since |1.1| > 1 �

You Try It: Discuss convergence for the series
∑

j (0.9)2 j .
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EXAMPLE 13.25
Does the series

∞∑
j=20

(0.9) j

converge?

Solution: Yes. For

∞∑
j=0

(0.9) j

converges (because |0.9| < 1) and the two series differ by just the finite sum

0.90 + 0.91 + 0.92 + · · · + 0.919 �

EXAMPLE 13.26
Calculate the sum

20∑
j=7

5 · 4 j

explicitly.

Solution: Notice that the limits of summation are not what we are used to; in
particular, the lower limit is not 0 . We rewrite our sum as

5 ·
(

20∑
j=0

4 j −
6∑

j=0

4 j

)

Now we may use the formula for partial sums of geometric series which appears
in line (13.6). We find that the sum equals

5 ·
(

1 − 421

1 − 4
− 1 − 47

1 − 4

)
Of course this solution can be simplified, if necessary, with a little further
calculation. �
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13.9.1 AN APPLICATION
EXAMPLE 13.27
At a certain aluminum-recycling plant, the recycling process turns n pounds of
used aluminum into 9n/10 pounds of new, virgin aluminum. How much usable
aluminum will 100 pounds of virgin aluminum ultimately create, if we assume that
it is continually returned to the same recycling plant?

Solution: We begin with 100 pounds of aluminum. When it is returned to the plant
as scrap and recycled, 0.9 · 100 = 90 pounds of new aluminum results. When that
aluminum is returned to the plant as scrap and recycled, 0.9 · 90 = 81 pounds of new
aluminum results. This process continues forever. The total amount of aluminum
created is therefore equal to

100 + 90 + 81 + · · ·
= 100 · 1 + 100 · 0.9 + 100 · 0.9 · 0.9 + · · ·
= 100(1 + 0.9 + 0.92 + · · ·)

= 100 ·
∞∑
j=0

(0.9) j

= 100 · 1

1 − 0.9

= 1000

Therefore 1000 pounds of usable aluminum is ultimately generated by an initial
100 pounds of virgin aluminum. �

13.10 Convergence of p-Series
We frequently encounter series of the form

∞∑
j=1

1

j p

for some fixed exponent p. Examples are

∞∑
j=1

1

j2
and

∞∑
j=1

1

j
and

∞∑
j=1

1

j1/2
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The second of these series is the harmonic series, and is known to diverge (see Sec.
13.3). We shall learn that the first series converges and the third diverges.

A useful tool for studying series of this kind is the Cauchy condensation test,
which we formulate as follows:

Theorem 13.4 Let a1 ≥ a2 ≥ a3 ≥ · · · be positive numbers that tend to 0. The
series

∞∑
j=1

a j (13.9)

converges if and only if the series

∞∑
j=1

2 j a2 j (13.10)

converges.

This result is best understood by examining two pictures.
In Fig. 13.2, we see that each box corresponds to (half of) a term of the condensed

series (13.10). For instance, the first box has height a1 and width 1 = 20; the second
box has height a2 and width 2 = 21; the third box has height a4 and width 4 = 22;
and so forth. Thus any partial sum for the original series (13.9) is dominated by

a1

a2

a4

Figure 13.2 The condensed series dominates the original series.
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a1

a2

a4

a8

Figure 13.3 The original series dominates the condensed series.

the corresponding partial sum for the condensed series (13.10). We conclude that
if the condensed series converges then the original series converges.

Now look at Fig. 13.3. Now the boxes lie below the graph of the {a j } instead of
above. The first box has height a2 and width 1 = 20; the second box has height a4

and width 2 = 21; the third box has height a8 and width 4 = 22; and so forth. Now
we see that half any partial sum for the condensed series (13.10) is dominated by
twice the corresponding partial sum for the original series (13.9). We conclude that
if the original series converges then the condensed series converges.

Thus we now have a new tool for determining the convergence of series. Let us
learn from some examples.

EXAMPLE 13.28
Determine convergence for the series

∞∑
j=1

1

j2

Solution: The summands form a decreasing sequence of positive numbers that
tends to zero. So we may apply the Cauchy condensation test. We examine

∞∑
j=1

2 j a2 j =
∞∑
j=1

2 j · 1

22 j
=

∞∑
j=1

1

2 j
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Of course this is a geometric series that we have studied before. It converges, hence
the original series converges. �

EXAMPLE 13.29
Determine convergence for the series

∞∑
j=1

1

2 j/2

Solution: We of course apply the Cauchy condensation test. Thus we examine
the series

∞∑
j=1

2 j 1

(2 j )1/2
=

∞∑
j=1

2 j · 1

2 j/2
=

∞∑
j=1

2 j/2

This is a geometric series. But the terms do not tend to zero, so the series cannot
converge. We conclude that the original series also does not converge. �

EXAMPLE 13.30
Examine the harmonic series using the Cauchy condensation test.

Solution: The harmonic series is

∞∑
j=1

1

j

Therefore we must examine the series

∞∑
j=1

2 j · 1

2 j
=

∞∑
j=1

1

Of course this series diverges, so the harmonic series diverges (as we already know)
as well. �

In our ensuing discussions, we shall refer to a series of the form

∞∑
j=1

1

j p

as a p-series.
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13.11 The Comparison Test
13.11.1 A NEW CONVERGENCE TEST
Suppose that

∞∑
j=1

a j

is a convergent series of nonnegative terms:

∞∑
j=1

a j = �

Because the partial sums form an increasing sequence, these partial sums must
increase to �. Therefore for each partial sum SN we may say that

N∑
j=1

a j = SN ≤ �

If

∞∑
j=1

c j

is another series satisfying 0 ≤ c j ≤ a j for every j, then the partial sums TN for
this series satisfy

TN =
N∑

j=1

c j ≤
N∑

j=1

a j ≤ �

Thus the partial sums TN of the series
∑∞

j=1 c j are increasing (since the c j ’s are non-
negative) and bounded above by �. By a property of bounded increasing sequences
that we have discussed before, we conclude that the sequence of TN ’s converges.

We summarize:

Theorem 13.5 (The comparison test for convergence) Let 0 ≤ c j ≤ a j for every
j. If the series

∑∞
j=1 a j converges then the series

∑∞
j=1 c j also converges.
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EXAMPLE 13.31
Show that the series

∞∑
j=1

1

j · ( j2 + 1)

converges.

Solution: Observe that

j2 + 1 ≥ j2

hence

j · ( j2 + 1) ≥ j3

We conclude that

1

j · ( j2 + 1)
≤ 1

j3

for every j. Also

∞∑
j=1

1

j3

is a convergent p-series. By the comparison test for convergence, the original series

∞∑
j=1

1

j · ( j2 + 1)

converges. �

EXAMPLE 13.32
Discuss convergence for the series

∞∑
j=1

1

(3 j − 2)2



CHAPTER 13 Series 285

Solution: Notice that

3j − 2 = j + (2j − 2) ≥ j

for all j ≥ 1. Therefore

(3j − 2)2 ≥ j2

so that

1

(3j − 2)2
≤ 1

j2

Finally,

∞∑
j=1

1

j2

converges by Example 13.28. By the comparison test for convergence,

∞∑
j=1

1

(3j − 2)2

converges. �

EXAMPLE 13.33
Discuss convergence for the series

∞∑
j=1

sin2(2j + 5)

j4 + 8j + 6
(13.11)

Solution: Observe that

0 ≤ sin2(2j + 5)

j4 + 8j + 6
≤ 1

j4 + 8j + 6
≤ 1

j4

Also

∞∑
j=1

1

j4
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is a convergent p-series. By the comparison test for convergence, the original series
(13.11) converges. �

You Try It: Discuss convergence for the series
∑

j j /( j3 + j).

EXAMPLE 13.34
Does the series

∞∑
j=1

1

( j + 2) · ln( j + 2)

converge?

Solution: This series has nonnegative summands and is termwise smaller than
the series

∞∑
j=1

1

j

However, this last series diverges. So the comparison test for convergence does not
tell us anything about the series

∞∑
j=1

1

( j + 2) · ln( j + 2)

Note that we are not saying that the series diverges. Rather, we can draw no con-
clusion. �

Insight: In fact the Cauchy condensation test may be applied directly to the series
in the last example. First rewrite the series as

∞∑
j=3

1

j · ln j

Now apply Cauchy to obtain

∞∑
j=3

2 j · 1

2 j ln(2 j )
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This simplifies to

1

ln 2

∞∑
j=3

1

j

Of course this is a constant multiple of the harmonic series, and it diverges. We
conclude that the original series diverges as well.

Insight: Because the convergence or divergence properties of a series do not
depend on the first several terms, we could have stated the comparison test for
convergence by requiring that 0 ≤ c j ≤ a j for all sufficiently large j. Let us look
at an example to see how this might work in practice.

EXAMPLE 13.35
Determine whether the series

∞∑
j=1

1

j3 − 4 j2 − 6 j − 5

converges.

Solution: We notice that for j ≥ 20 we have

j3 − 4 j2 − 6 j − 5 = j · j2 − 4 j2 − 6 j − 5

≥ 20 j2 − 4 j2 − 6 j − 5

= 4 j2 + (5 j2 − 4 j2) + (6 j2 − 6 j) + (5 j2 − 5)

Now each of the terms in parentheses is positive for j ≥ 20. Therefore the last line
exceeds 4 j2 when j ≥ 20. We conclude that, for large j,

0 ≤ 1

j3 − 4 j2 − 6 j − 5
≤ 1

4 j2

Because

∞∑
j=1

1

4 j2
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converges, it follows from the comparison test for convergence that the series

∞∑
j=1

1

j3 − 4 j2 − 6 j − 5

converges. �

13.12 A Test for Divergence
We can now reverse our reasoning to obtain a comparison test for divergence.
Namely, suppose that 0 ≤ c j ≤ a j and that the series

∞∑
j=1

c j

diverges. Then the series

∞∑
j=1

a j

would have to diverge also. For if the latter series converged then the comparison
test for convergence would imply that

∞∑
j=1

a j

converges, and that would be a contradiction. We summarize:

Theorem 13.6 (The comparison test for divergence) Let 0 ≤ c j ≤ a j for every j.
If the series

∑∞
j=1 c j diverges then the series

∑∞
j=1 a j also diverges.

We note that Theorem 13.6 is, in effect, a restatement of Theorem 13.5 (in fact
it is the contrapositive). But we display it as a separate theorem because of its
importance.
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EXAMPLE 13.36
Show that the series

∞∑
j=1

ln( j + 4)

j
(13.12)

diverges.

Solution: Observe that

ln( j + 4)

j
≥ 1

j

for every j ≥ 1 and the series

∞∑
j=1

1

j

diverges. By the comparison test for divergence, we conclude that the series in
Eq. (13.12) diverges as well. �

EXAMPLE 13.37
Analyze the series

∞∑
j=1

1√
j + 2 · √ln( j + 2)

(13.13)

Solution: We notice that

1√
j + 2 · √ln( j + 2)

≥ 1

( j + 2) · ln( j + 2)

for each j. In Example 13.34 above we already noted that the series

∞∑
j=1

1

( j + 2) · ln( j + 2)

diverges. By the comparison theorem for divergence, the series in Eq. (13.13)
diverges. �

You Try It: Discuss convergence or divergence for the series
∑

j j /( j2 + j).
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EXAMPLE 13.38
Use the comparison theorem for divergence to study the series

∞∑
j=1

1

[ j1/2 + 3]1/2

Solution: Observe that

1

[ j1/2 + 3]1/2
≥ 1

[4 j1/2]1/2

The series

∞∑
j=1

1

[4 j1/2]1/2
= 1

2

∞∑
j=1

1

j1/4

is a divergent p-series hence the series

∞∑
j=1

1

[ j1/2 + 3]1/2

also diverges. �

EXAMPLE 13.39
Does the series

∞∑
j=2

ln2( j + 2)

( j + 2)2
(13.14)

converge?

Solution: This series of nonnegative summands termwise exceeds the series

∞∑
j=1

1

( j + 2)2

But the series

∞∑
j=1

1

( j + 2)2



CHAPTER 13 Series 291

converges because it is a p-series. Thus the comparison test for divergence does
not tell us anything about the convergence or divergence of the series

∞∑
j=2

ln2( j + 2)

( j + 2)2 �

Insight: Examples 13.38 and 13.39 remind us that the comparison tests are not
“if and only if” statements. If the comparison test for convergence works, then
the series in question converges. If the test fails, we know nothing. Likewise, if
the comparison test for divergence works, then the series in question diverges.
Otherwise we know nothing.

Also bear in mind that the comparison tests are valid only for series with
nonnegative terms.

13.13 The Ratio Test
Theorem 13.7 (The Ratio Test) Let

∞∑
j=1

c j

be a series. Suppose that

lim
j→∞

∣∣∣∣c j+1

c j

∣∣∣∣ = L

Then

1. If L < 1 then the series converges absolutely.

2. If L > 1 then the series diverges.

3. If L = 1 then the test gives no information.

Insight: Take particular notice that the theorem says that when L = 1 then the
test yields no information. This point will be made clearer in the examples. Also
remember that the limit of the expression |c j+1/c j | might not even exist. In this case
the test also yields no information.

Finally notice that the test only depends on the limit of the ratio |c j+1/c j |. The
outcome does not depend on the first million or so terms of the series, and that is
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the way it should be: the convergence or divergence of a series depends only on its
“tail.”

Now we look at some examples that illustrate when the ratio test gives conver-
gence, when it gives divergence, and when it gives no information.

EXAMPLE 13.40
Apply the ratio test to the series

∞∑
j=1

2 j

j!

Solution: Recall that j! = j · ( j − 1) · ( j − 2) · · · 3 · 2 · 1. Observe that c j =
2 j / j! Then ∣∣∣∣c j+1

c j

∣∣∣∣ = 2 j+1/( j + 1)!

2 j / j!

= 2

j + 1

As j → ∞, the limit of this expression is 0. Therefore in this example the limit L
exists and equals 0. By Part (1) of the ratio test, we may conclude that the series
converges absolutely. �

EXAMPLE 13.41
Discuss the convergence or divergence of the series

∞∑
j=1

j10

2 j

Solution: In this example we have c j = j10/2 j . Therefore

∣∣∣∣c j+1

c j

∣∣∣∣ = ( j + 1)10/2 j+1

j10/2 j

=
(

j + 1

j

)10

· 1

2
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The limit of this last expression exists and equals 1/2. Therefore in this exam-
ple L = 1/2 < 1. Part (1) of the ratio test then tells us that the series converges
absolutely. �

You Try It: Discuss convergence or divergence for the series
∑

j ( j2 + 1)/2 j .

EXAMPLE 13.42
Analyze the series

∞∑
j=1

(3/2) j

j3/2

Solution: We have

c j = (3/2) j

j3/2

Therefore ∣∣∣∣c j+1

c j

∣∣∣∣ = (3/2) j+1/( j + 1)3/2

(3/2) j / j3/2

=
(

j

j + 1

)3/2
· 3

2

Now, as j → ∞, the last expression tends to the limit L = 3/2. Because L > 1,

the ratio test says that the series diverges. �

EXAMPLE 13.43
Apply the ratio test to the series

∞∑
j=1

1

j

Solution: We have c j = 1/j hence∣∣∣∣c j+1

c j

∣∣∣∣ = 1/( j + 1)

1/ j

= j

j + 1
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As j → ∞, the last expression tends to 1. Therefore the ratio test gives no in-
formation whatever. Of course this is the harmonic series, and we know that it
diverges. �

EXAMPLE 13.44
Apply the ratio test to the series

∞∑
j=1

1

j3
.

Solution: Observe that c j = 1/j3. Therefore∣∣∣∣c j+1

c j

∣∣∣∣ = 1/( j + 1)3

1/ j3
= j3

( j + 1)3
→ 1

as j → ∞. Therefore the ratio test gives no information. Of course this is a p-series,
and we know that it converges. �

You Try It: Discuss convergence or divergence for the series
∑

j 3 j /(2 j + j).

Insight: Examples 13.43 and 13.44 together explain what we mean when we
say that the ratio test gives no information when the limit L is equal to 1. Under
these circumstances, the series could diverge (Example 13.43) or the series
could converge (Example 13.44). There is no way to tell: you must use another
convergence test to find out.

13.14 The Root Test
The root test has a similar flavor to the ratio test. Sometimes it is easier to apply the
ratio test than it is to apply the root test or vice versa. Thus, even though the tests
look rather similar, you should be well-versed at using both of them.

Theorem 13.8 (The root test] Let

∞∑
j=1

c j
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be a series. Suppose that

lim
j→∞

|c j |1/ j = L

Then

(1) If L < 1 then the series converges absolutely.

(2) If L > 1 then the series diverges.

(3) If L = 1 then the test gives no information.

Insight: Once again take particular note that when L = 1 then the root test gives
no information whatever. Also, the limit L might not even exist. In this case, the
test also gives no information. Finally, the root test does not depend on the first
million or so terms of the series—only on the “tail.”

Now we look at some examples that will illustrate when the root test gives
convergence, when it gives divergence, and when it gives no information.

EXAMPLE 13.45
Analyze the series

∞∑
j=1

j

( j2 + 6) j

Solution: We apply the root test. Notice that c j = j /( j2 + 6) j so that

|c j |1/ j = j1/ j

j2 + 6
(13.15)

Certainly for any j ≥ 1 we have that

j1/ j

j2 + 6
≤ j

j2
= 1

j
→ 0

It follows that the expression (13.15) tends to 0 as j → ∞. Therefore L = 0 < 1
and the root test tells us that the series converges. �

Insight: Notice that

j

( j2 + 6) j
≤ j

j2 j
≤ j

j4
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provided that j ≥ 2. Thus the series from Example 13.45 is termwise dominated
by the series

∞∑
j=1

1

j3

Thus convergence can also be obtained from the comparison test. The root test,
however, proves to be more straightforward to apply in this example.

EXAMPLE 13.46
Apply the root test to the series

∞∑
j=1

1

[ln( j + 2)] j

Solution: Observe that c j = 1/[ln( j + 2)] j . Thus

|c j |1/ j = 1

ln( j + 2)

This expression tends to 0 as j → ∞. Therefore L = 0 < 1 and the Root test says
that the series converges absolutely. (Try using the ratio test on this one! How about
the Comparison Test?) �

You Try It: Discuss convergence or divergence for the series
∑

j 2 j /(4 j + 3 j ).

EXAMPLE 13.47
Apply the root test to the series

∞∑
j=1

2 j

j10

Solution: We have c j = 2 j / j10. Therefore

|c j |1/ j = 2

( j1/ j )10
(13.16)

Since j1/ j → 1 as j → ∞, the expression (13.16) tends to 2 = L > 1. We con-
clude, using the root test, that the series diverges. �
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EXAMPLE 13.48
Test the series

∞∑
j=1

(7 j2 + 1) j

(2 j + 2)2 j

for convergence or divergence.

Solution: We see that

c j = (7 j2 + 1) j

(2 j + 2)2 j

As a result,

|c j |1/ j = 7 j2 + 1

(2 j + 2)2

= 7 j2 + 1

4 j2 + 8 j + 4
→ 7

4
> 1

By the root test, the series diverges. �

EXAMPLE 13.49
Analyze the series

∞∑
j=1

j2

using the root test.

Solution: We have c j = j2. Thus

|c j |1/ j = ( j1/ j )2

This last expression tends to L = 1 as j → ∞. Therefore the root test gives no
conclusion. On the other hand, the terms of the series do not tend to zero hence the
series fails the zero test. Thus the series diverges. �
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EXAMPLE 13.50
Does the series

∞∑
j=1

1

j · (ln j)2

converge?

Solution: We see that c j = 1/[ j · (ln j)2]. Therefore

|c j |1/ j = 1

j1/ j · [(ln j)1/ j ]2

As j → ∞, we know that

j1/ j → 1

Also

1 ≤ (ln j)1/ j ≤ j1/ j

for j ≥ 3 hence we may conclude that our sequence is trapped between two se-
quences that we have already studied. In particular, (ln j)1/ j → 1.

In conclusion,

|c j |1/ j → 1 = L

Therefore the root test gives absolutely no information. Check for yourself that the
Cauchy condensation test gives convergence. �

Insight: Examples 13.49 and 13.50 explain what we mean when we say that the
root test gives no information when L = 1. Under these circumstances the series
could diverge (Example 13.49) or the series could converge (Example 13.50). The
only way to find out is to use another test.

Exercises
In Exercises 1 and 2, write out the first ten partial sums of the series.

1.
∑∞

k=0
5
2 j

2.
∑∞

j=1 3− j
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In each of Exercises 3 and 4, use a calculator to determine some partial sums and
guess whether the series converges. If you can (for the cases of convergence), state
what the sum should be.

3.
∑∞

j=1
j

j+1

4.
∑∞

j=1(
1
j − 1

j+1)

Each of the series in Exercises 5 and 6 converges. Explain why. Can you find the
sum?

5.
∑∞

j=4
2

( j−2)( j−3)

6.
∑∞

j=1 2− j cos( jπ)

In Exercises 7 and 8, find the explicit sum of the series.

7.
∑∞

j=0 8− j

8.
∑∞

j=0(3/7) j

In Exercises 9 and 10, calculate each of the sums by using the formula for the partial
sum of a geometric series which appears in the text.

9.
∑6

j=0 3− j

10.
∑12

j=3 11 j+1

In Exercises 11 and 12, use the comparison tests to determine whether the series
converges or diverges.

11.
∑∞

j=1
sin2 j

j2

12.
∑∞

j=1
j2

j3+1

In Exercise 13 , test the given series for convergence or divergence by using the
Ratio Test. If the test gives no information, then say so explicitly.

13.
∑∞

j=1
1
j!

In Exercise 14, test the given series for convergence or divergence by using the
Root Test. If the test gives no information, then say so explicitly.

14.
∑∞

j=1

(
3 j
j+1

) j
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Final Exam

1. What is the contrapositive of the statement “If books are good then jobs are
scarce”?

(a) If jobs are scarce then books are good.

(b) If jobs are not scarce then books are bad.

(c) If jobs are bad then books are scarce.

(d) If jobs are good then books are bad.

(e) If jobs are books then scarce is bad.

2. Give an example of a statement involving the variable x that is true for all
values of x (in some universe that you will specify).

(a) If x is a real number then x2 + 1 > 0.

(b) If x is a real number then 3 < x < 5.

(c) If x is a rational number then x3 > 0.

(d) If x is a real number then x is a rational number.

(e) If x is an integer then x > 0.
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3. Give an example of a statement involving the variable x that is false for all
values of x (in some universe that you will specify).

(a) If x is a real number then x4 ≥ 0.

(b) If x is a real number then x + 3 = 7.

(c) If x is an integer then x2 = 2.

(d) If x is a natural number then x2 < 0.

(e) If x is a complex number then x2 = x .

4. What is the negation of the statement “All fish have fins”?

(a) No fish have fins.

(b) A few fish have fins.

(c) Fins have fish.

(d) There is a fish with no fins.

(e) Lots of fish have no fins.

5. What is the negation of the statement “Either the woman is blonde or the
man is short”?

(a) The woman is blonde and the man is short.

(b) The woman is not blonde and the man is tall.

(c) The woman is tall and the man is blonde.

(d) Everyone is blonde.

(e) Nobody is short.

6. Give a statement that is logically equivalent to ∼ B ⇒∼ A and which uses
only ∨ and ∼.

(a) B∨ ∼ A

(b) ∼ B∨ ∼ A

(c) B ∨ A

(d) B∨ ∼ B

(e) A∨ ∼ A

7. Give a statement that is logically equivalent to ∼ A ⇒∼ B and which uses
only ∧ and ∼.

(a) B∧ ∼ A

(b) ∼ B∧ ∼ A

(c) ∼ (∼ A ∧ B)
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(d) B∧ ∼ B

(e) A∧ ∼ A

8. The denial of the statement “All red boats sail on blue water” is

(a) Some red boats sail on blue water.

(b) There is some red boat that sails on water that is not blue.

(c) All red boats do not sail.

(d) Some red boats do sail.

(e) This red boat is for sale.

9. The method of proof by contradiction is useful for

(a) Proving that something is false.

(b) Proving that something is undecidable.

(c) Proving that something is true.

(d) Proving that something cannot be proved.

(e) Disproving something.

10. The method of mathematical induction involves

(a) Infinitely many steps.

(b) A contradictory step.

(c) A bootstrap step.

(d) An important inductive step.

(e) An indeterminate step.

11. The method of direct proof is important because

(a) It is indirect.

(b) It is valid.

(c) It is invalid.

(d) It applies to most proofs.

(e) It is logically simple.

12. If A = {1, 2, 3} and B = {2, 3, 4} then

(a) A ⊂ B

(b) B ⊂ A

(c) A ∩ B = ∅
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(d) A ∩ B has two elements

(e) A ∪ B has three elements

13. If A ⊂ B and B ⊂ C then

(a) A ⊃ C

(b) A ⊃ B

(c) A ∩ B = C

(d) A ∩ C = B

(e) A ⊂ C

14. If A has 2 elements and B has 3 elements and C has 4 elements, then
A × B × C has

(a) 4 element

(b) 9 elements

(c) 15 elements

(d) 24 elements

(e) 6 elements

15. If x ∈ A and A ∈ B then

(a) x may not be an element of B

(b) x ∈ B

(c) x ∩ B = ∅
(d) x ∪ B = A

(e) x ∩ A = B

16. The set c(A ∩ B) is the same as

(a) A ∩ B

(b) A ∪ B

(c) c A ∪ c B

(d) A ⊂ B

(e) B ⊂ A

17. If A has 5 elements and B has 4 elements then

(a) A ∩ B has 3 elements.

(b) A ∪ B has 6 elements.

(c) A × B has 10 elements.

(d) A ∩ B has at most 4 elements.

(e) A\B has at most 2 elements.
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18. Let S be the collection of all sets with at most 5 elements. Then

(a) An element of A is a set with 1, 2, 3, 4, or 5 elements.

(b) An element of S is a number.

(c) An element of S is a set with 25 elements.

(d) An element of S is a set with an arbitrary number of elements.

(e) An element of S is a superset of S.

19. If f is a function with domain S and values in R and g is a function with
domain S and values in R then

(a) f − g is a function with domain S and values in C.

(b) f · g is undefined.

(c) All the arithmetic operations make sense on f and g (provided we do
not divide by 0).

(d) There are no functions between f and g.

(e) f is smaller than g.

20. Say that two real numbers a and b are related if the sum of their squares is
100. Then this relation is

(a) A function.

(b) One with finitely many elements.

(c) An equivalence relation.

(d) Symmetric in its entries.

(e) Increasing.

21. Say that two functions f and g, with domain R, are related if f (x) ≤ g(x)

for every x ∈ R. Then

(a) This is an equivalence relation.

(b) This is an order relation.

(c) This is a function.

(d) This is a total ordering.

(e) This does not allow us to compare any two functions.

22. If f is a natural-number-valued function with domain Q and g is a natural-
number-valued function with domain Q then h(x) = f (x)g(x) is

(a) A function with domain Q and image C.

(b) A function with values in N.

(c) A function with upper and lower bounds.
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(d) A function with limited values.

(e) A function with bounded socles.

23. A function f (x) with domain and range R is said to be the square root of the
function g with domain and range R if f 2(x) = g(x) for every x . If f and g
have this relationship then

(a) The function f is greater than the function g.

(b) The function g takes nonnegative values.

(c) The function f is increasing.

(d) The function g is differentiable.

(e) The function f is exceptional.

24. If f (x) = x2 and g(x) = sin x then

(a) f ◦ g is unbounded.

(b) g ◦ f is unbounded.

(c) f ◦ g and g ◦ f are both well defined.

(d) f · g is increasing.

(e) f − g is monotone.

25. Say that two universities are related if they sponsor NCAA sports and if they
play against each other regularly. Then

(a) This is a symmetric relation.

(b) This is a doomed relation.

(c) This is a function.

(d) This is an equivalence relation.

(e) This is a perfect relation.

26. The union of two functions is

(a) Always an equivalence relation.

(b) Never an equivalence relation.

(c) Another function.

(d) A one-to-one function.

(e) An onto function.

27. Between every two distinct rational numbers there is

(a) A whole number or integer.

(b) A multiple of five.
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(c) An irrational number.

(d) A quintessential number.

(e) A complex number.

28. Addition of integers is

(a) Commutative and associative.

(b) Distributive.

(c) Disruptive.

(d) Meaningful.

(e) Anticommutative.

29. The familiar number systems which form a field are

(a) The integers and the natural numbers.

(b) Only the rational numbers.

(c) Only the real numbers.

(d) The rational numbers, the real numbers, and the complex numbers.

(e) Only the integers.

30. Every nonzero complex number has

(a) A square root.

(b) A cube root.

(c) Three square roots.

(d) No real roots.

(e) Two distinct square roots.

31. Both square roots of a nonzero, positive real number will be

(a) Real.

(b) Positive.

(c) Negative.

(d) Complex.

(e) Incommensurable.

32. Unlike the rational numbers, the real number system is

(a) Unbounded.

(b) Complete.

(c) Monotone.
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(d) Decreasing.

(e) Decentralized.

33. The process of mathematical induction is closely related to

(a) The rational number system.

(b) The integers.

(c) The natural numbers.

(d) The real numbers.

(e) The quaternions.

34. The complex numbers improve or augment the reals in that

(a) They are more complex.

(b) Every polynomial has a root.

(c) They are two-dimensional rather than one-dimensional.

(d) They have Argand diagrams.

(e) They are commutative under addition.

35. The quaternions do not form a field because

(a) They are four-dimensional.

(b) They have i, j, and k as elements.

(c) They are commutative under addition.

(d) They are not commutative under multiplication.

(e) They are more complex than the complex numbers.

36. The modulus of a complex number measures

(a) Its distance from the origin.

(b) Its distance from the real axis.

(c) Its distance from the imaginary axis.

(d) Its size and shape.

(e) Its magnitude.

37. The triangle inequality is

(a) A special property of the real number system.

(b) A special property of the complex number system.

(c) A special property of the rational number system.
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(d) A useful device for measuring distance in a number system.

(e) A fact about triangles.

38. The rational number system is

(a) Closed under limits.

(b) A very small number system.

(c) Not closed under square roots.

(d) Almost as big as the real number system.

(e) Much smaller than the complex number system.

39. The existence of negative integers is

(a) An artifice that we concoct to make life interesting.

(b) A property that we hope is true.

(c) A special feature of that number system.

(d) A byproduct of the way that we construct the integers.

(e) Very confusing.

40. In everyday commerce and in most practical activities the number systems
that are most commonly used are

(a) The quaternions.

(b) The integers and the rational numbers.

(c) The natural numbers.

(d) The complex numbers.

(e) The algebraic integers.

41. The number of different ways to select 3 cards from a pack of 10 is

(a) 120

(b) 100

(c) 50

(d) 96

(e) 84

42. The number of distinct permuations of 6 objects is

(a) 500

(b) 720

(c) 650
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(d) 401

(e) 405

43. Fifty black balls and 50 white balls are dropped at random into 60 cups. We
can be sure that

(a) Some cup contains both a black ball and a white ball.

(b) Some cup contains 2 black balls.

(c) Some cup contains 2 white balls.

(d) Some cup contains 2 balls.

(e) Some cup contains 3 balls.

44. The expression [x + a]4 can be expanded to

(a) x2 + 2ax + a2

(b) x3 + 3a2x + 3ax2 + a3

(c) x4 + 4x3a + 6x2a2 + 4xa3 + a4

(d) x4 + a4

(e) x4 · a4

45. The recursion relation a0 = 1, a1 = 2, a j = 2a j−1 − a j−2 has the solution

(a) a j = j2 + 4

(b) a j = 3 j − 5

(c) a j = j2 − j

(d) a j = j

(e) a j = 1

46. The probability of getting a straight (5 cards in sequence) from an ordinary
52-card deck of playing cards is

(a) 0.000189

(b) 0.00111

(c) 0.0123

(d) 0.5432

(e) 0.0000765

47. The probability of picking 2 cards at random from a standard 52-card deck
and having them both be of the same denomination (in other words, the
probability of having a pair) is

(a) 0.0588

(b) 0.0033
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(c) 0.00004

(d) 0.0294

(e) 0.1111

48. You have a deck of five distinct cards, numbered 1, 2, 3, 4, and 5. You close
your eyes and pick them one by one—in some random order. What is the
probability that you chose them in the order 1–2–3–4–5?

(a) 0.1234

(b) 0.0044

(c) 0.00833

(d) 0.001101

(e) 0.11223

49. The sum of the matrices(
3 5
4 −6

)
and

(
1 9
3 −2

)
is

(a)

(
3 3
2 2

)

(b)

(
4 5
6 7

)

(c)

(
4 14
7 −8

)

(d)

(
1 1
1 1

)

(e)

(−2 −5
−8 −1

)
50. The matrix product (

3 3
2 2

)
·
(

1 −2
5 0

)
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equals

(a)

(
3 1
1 2

)
(b)

(
18 −6
12 −4

)
(c)

(
10 −3

2 6

)
(d)

(
1 1
0 0

)
(e)

(
11 12
13 14

)
51. The inverse of the matrix

(
0 1
1 1

)
is

(a)

(
1 1
1 1

)
(b)

(−1 0
−1 1

)
(c)

(
2 1
1 2

)
(d)

(
1 0
0 1

)
(e)

(−1 1
1 0

)
52. The solution of the system

x − 2y + z = 4

2x + y − z = 1

−x + y + z = 3

is

(a) x = 2, y = 4, z = 3

(b) x = 2, y = 1, z = 4
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(c) x = 5, y = 3, z = 1

(d) x = 1, y = 1, z = 0

(e) x = −3, y = −1, z = 1

53. When we solve four equations in three unknowns we generically expect

(a) No solutions.

(b) One solution.

(c) Three solutions.

(d) Infinitely many solutions.

(e) One solution for each variable.

54. Find the extrema of the linear function f (x, y) = 3x − 4y on the planar
region {(x, y) : 4 ≤ x + y ≤ 7, 1 ≤ x ≤ 3}.
(a) The minimum value is −8 and the maximum value is 5.

(b) The minimum value is −2 and the maximum value is 6.

(c) The minimum value is −21 and the maximum value is 5.

(d) The minimum value is −2 and the maximum value is 7.

(e) The minimum value is −1 and the maximum value is 1.

55. The reason that the kth row of Pascal’s triangle sums to 2k is that

(a) The number 2k is even.

(b) There are 2k rows in Pascal’s triangle.

(c) Power of 2 are powerful.

(d) The entries are the binomial coefficients.

(e) There is hidden symmetry.

56. A graph without an Euler path is

(a) Very simple.

(b) Very complicated.

(c) Very reducible.

(d) Redundant.

(e) Superfluous.

57. A complete graph on 6 vertices has

(a) 12 edges.

(b) 10 edges.
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(c) 15 edges.

(d) 8 edges.

(e) 4 edges.

58. The number of different graphs on 3 vertices is

(a) 4

(b) 10

(c) Infinite

(d) Few

(e) Many

59. A graph with four vertices and two edges

(a) Might be connected or might not.

(b) Must be connected.

(c) Cannot have any Euler paths.

(d) Must have Euler paths.

(e) Must be reducible.

60. The Euler characteristic of a sphere with g handles is

(a) 3g

(b) 2 − 2g

(c) 2 + 2g

(d) g

(e) 4 + g

61. A traveling salesman must visit three cities—each just once. There are paths
connecting every city to every other city. He/she will begin at a particular
city A. How many different routes could he/she take?

(a) 5

(b) 3

(c) 2

(d) 4

(e) 1

62. Answer the question in Prob. 61 for four cities.

(a) 2

(b) 4
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(c) 3

(d) 5

(e) 1

63. Simplify the expression 3 + 4 mod 5.

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

64. The expression 8/5 mod 11 simplifies to

(a) 6

(b) 5

(c) 4

(d) 3

(e) 2

65. Simplify the expression 6 · 7 mod 9.

(a) 1

(b) 2

(c) 4

(d) 5

(e) 6

66. The identity element in a group is

(a) One of a finite set.

(b) Part of the reproducing set.

(c) Unique.

(d) Self-reproducing.

(e) Permanent.

67. If g is an element of the group G then its multiplicative inverse element is

(a) Unique.

(b) Self-replicating.

(c) Permanent.
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(d) Multiplicative.

(e) Subjunctive.

68. The group Z/4Z has how many subgroups?

(a) 5

(b) 3

(c) 4

(d) 1

(e) 2

69. How many Sylow subgroups does Z/4Z have?

(a) 1

(b) 3

(c) 4

(d) 2

(e) 5

70. Can Z/3Z be realized as a subgroup of Z/9Z (that is, is there a subgroup that
is equivalent or isomorphic to it?)?

(a) Yes.

(b) No.

(c) Sometimes.

(d) Usually.

(e) It is forbidden.

71. Let G be a group and g, h ∈ G. Then (g2h)−1 equals

(a) h2g

(b) h−1g−1

(c) h−1g−2

(d) h−1h−2

(e) g−2h−1

72. Let G be a group and H a subgroup. Define G/H to be the set of equivalence
classes of G under the relation g ∼ h if g−1h ∈ H . Describe G/H in case
G = Z and H = 3Z.

(a) Z/2Z

(b) Z/3Z
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(c) Z/4Z

(d) R

(e) Q

73. Call H a normal subgroup of the group G if g−1hg ∈ H whenever g ∈ G
and h ∈ H . Is the set of even integers a normal subgroup of Z?

(a) No.

(b) Not usually.

(c) Sometimes.

(d) Yes.

(e) Disallowed.

74. Refer to Prob. 73 for the definition of normal subgroup. Is The set of di-
agonal matrices a subgroup of the set of all 2 × 2 invertible matrices under
multiplication?

(a) Sometimes.

(b) Most times.

(c) Seldom times.

(d) No.

(e) Yes.

75. The encryption of the message COUNT TO FOUR under the affine encryp-
tion P �→ 4P − 2 is

(a) HPQRSUTMNOM

(b) GEAAYYESEAQ

(c) ORMKBOESPKS

(d) VFUODBNEUKD

(e) XBGKDUNGEUM

76. The encryption of the message USE YOUR HEAD under the encryption
P �→ P2 + P is

(a) ZMFNETHELSEL

(b) FLEJBIPALBME

(c) VDEUBGOIKSUE

(d) DDUECEUEUAUQ

(e) FELDJBOIWJBE
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77. The encrypted message KFLMUDU can be decrypted with the mapping
P �→ 3P + 5. The message reads

(a) JUMP NOW

(b) GET HOME

(c) STAY PUT

(d) BACK OFF

(e) GET GOOD

78. The digraph method breaks a message up into

(a) Units of 3 characters.

(b) Units of 10 characters.

(c) Units of 2 characters.

(d) Units of 4 characters.

(e) Units of 7 characters.

79. When using the digraph method, we do arithmetic modulo

(a) 676

(b) 625

(c) 601

(d) 699

(e) 666

80. Encryption and decryption are

(a) Complementary processes.

(b) Evil processes.

(c) Secret processes.

(d) Inverse processes.

(e) Subtle processes.

81. Cryptography is an old idea, going back even to

(a) Hannibal

(b) Attila the Hun

(c) William the Conqueror

(d) Julius Caesar

(e) Abraham Lincoln



Final Exam 319

82. The boolean expression [a × b] + [a × b] + [a × b] simplifies to

(a) a × b

(b) a × b

(c) a + b

(d) a + b

(e) a × b

83. Boolean algebra is useful in

(a) Square dancing.

(b) Circuit design.

(c) Mosaic tiling.

(d) Fly fishing.

(e) Acrobatics.

84. How many axioms does boolean algebra have?

(a) Two

(b) Three

(c) Five

(d) Seven

(e) Nine

85. The sequence
j2

j4 + 1

(a) Converges.

(b) Diverges.

(c) Oscillates.

(d) Fiddles around.

(e) Dies.

86. The sequence j · sin j

(a) Converges.

(b) Diverges.

(c) Perpetrates.

(d) Disintegrates.

(e) Propagates.
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87. The sequence j

(a) Subverges.

(b) Converges.

(c) Diverges to ∞.

(d) Disverges.

(e) Postverges.

88. The sum of two sequences is

(a) A series.

(b) A product.

(c) A panoply.

(d) Another sequence.

(e) A group.

89. If {a j } is a sequence of nonvanishing terms that converges to some nonzero

number �, then the sequence
1

a j

(a) Converges to
1

�
.

(b) Diverges.

(c) Disbands.

(d) Converges to �2.

(e) Converges to 3�.

90. The sequence a j = (−2) j

(a) Converges.

(b) Diverges.

(c) Mutates.

(d) Obfuscates.

(e) Rotates.

91. The sequence
j2

2 j

(a) Increases.

(b) Diverges.

(c) Converges.



Final Exam 321

(d) Displays.

(e) Radiates.

92. The pinching theorem is a device for

(a) Proving the convergence of a sequence.

(b) Proving the divergence of a sequence.

(c) Recognizing a sequence.

(d) Discarding a sequence.

(e) Hiding a sequence.

93. The series
∑

j

j2

2 j

(a) Diverges.

(b) Disbands.

(c) Refutes.

(d) Converges.

(e) Dissipates.

94. The series
∑

j

(
1

3 j

) j

(a) Converges.

(b) Diverges.

(c) Subverts.

(d) Reverts.

(e) Exerts.

95. The series
∑

j

j · sin j

(a) Converges.

(b) Diverges.

(c) Implodes.

(d) Divests.

(e) Soars.

96. The series
∑

j

(
1 + 1

j

) j
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(a) Redounds.

(b) Exerts.

(c) Restarts.

(d) Converges.

(e) Diverges.

97. The series
∑

j

(
1

j

) j

(a) Projects.

(b) Converges.

(c) Rejects.

(d) Diverges.

(e) Subjects.

98. The sum of two series

(a) Is one spicy meatball.

(b) Is opinionated.

(c) Is another series.

(d) Is eternal.

(e) Is ephemeral.

99. The purpose of series is to provide

(a) A generalization of ordinary addition.

(b) A good use of time.

(c) A good use of money.

(d) A diversion.

(e) An engagement.

100. TRUE OR FALSE: If a j > 0 and
∑

j a j converges then
∑

j a2
j converges.

(a) True

(b) False
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Solutions
1. (b) 21. (e) 41. (a) 61. (c) 81. (d)
2. (a) 22. (b) 42. (b) 62. (b) 82. (c)
3. (d) 23. (b) 43. (d) 63. (b) 83. (b)
4. (d) 24. (c) 44. (c) 64. (a) 84. (e)
5. (e) 25. (d) 45. (d) 65. (e) 85. (a)
6. (a) 26. (c) 46. (a) 66. (c) 86. (b)
7. (c) 27. (c) 47. (a) 67. (a) 87. (c)
8. (b) 28. (a) 48. (d) 68. (b) 88. (d)
9. (c) 29. (d) 49. (c) 69. (d) 89. (a)

10. (d) 30. (e) 50. (b) 70. (a) 90. (b)
11. (e) 31. (a) 51. (e) 71. (c) 91. (c)
12. (d) 32. (b) 52. (b) 72. (b) 92. (a)
13. (e) 33. (c) 53. (a) 73. (d) 93. (d)
14. (d) 34. (b) 54. (c) 74. (e) 94. (a)
15. (a) 35. (d) 55. (d) 75. (b) 95. (b)
16. (c) 36. (a) 56. (d) 76. (d) 96. (e)
17. (d) 37. (d) 57. (c) 77. (a) 97. (b)
18. (a) 38. (c) 58. (c) 78. (c) 98. (c)
19. (c) 39. (x) 59. (a) 79. (a) 99. (a)
20. (d) 40. (b) 60. (b) 80. (d) 100. (a)
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Solutions to Exercises

This book has a great many exercises. For some we provide sketches of solutions
and for others we provide just the answers. For some, where there is repetition, we
provide no answer. For the sake of mastery, we encourage the reader to write out
complete solutions to all problems.

Chapter 1

1. (a)

S T S ∧ T S ∨ T ∼ (S ∨ T) (S ∧ T)∨ ∼ (S ∨ T)

T T T T F T
T F F T F F
F T F T F F
F F F F T T
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(b)

S T S ∨ T S ∧ T (S ∨ T) ⇒ (S ∧ T)

T T T T T
T F T F F
F T T F F
F F F F T

2. (a) S ⇒∼ T

(b) U ⇒ (V∨ ∼ S)

3. (a) If either all politicians are honest or no men are fools then I do not have
two brain cells to rub together.

(b) Either the pie is in the sky or both some men are fools and I do have two
brain cells to rub together.

4. (a) Converse: If there are clouds, then it will rain.
Contrapositive: If there are no clouds, then it will not rain.

(b) Converse: If it is raining, then there are clouds.
Contrapositive: If it is not raining, then there are no clouds.

5. (a) False. The area inside a circle is πr2.

(b) True. We note that 2 + 2 = 4 is true and 2/5 is also a rational number.

6. (a) ∼ S∨ ∼ T

(b) ∼ (S ∨ T)

7. (a) The set S contains at most one integer.

(b) Either some mare does not eat oats or some doe does not eat oats.

8. (a)

A B ∼ A ∼ B A∨ ∼ B ∼ A ⇒ B
T T F F T T
T F F T T T
F T T F F T
F F T T T F

The two statements are logically inequivalent.

(b)

A B ∼ A ∼ B A∧ ∼ B ∼ A ⇒ ∼ B
T T F F F T
T F F T T T
F T T F F F
F F T T F T

The two statements are logically inequivalent.
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Chapter 2
1. If m = 2r + 1 and n = 2s + 1 then m · n = (2r + 1) · (2n + 1) = 4rs +

2r + 2s + 1 = 2(2rs + r + s) + 1, which is odd.

2. If n = 2r then m · n = m · (2r) = 2(m · n), which is even.

3. By induction:
The case n = 1 is true because

2 · 13 + 3 · 12 + 1

6
= 1 = 12

Now assume that the case n has been established, so

12 + 22 + · · · + n2 = 2n3 + 3n2 + n

6

Add (n + 1)2 to both sides to obtain

12 + 22 + · · · + n2 + (n + 1)2 = 2n3 + 3n2 + n

6
+ (n + 1)2

We may write the right-hand side as

2n3 + 3n2 + n

6
+ (n2 + 2n + 1) = 2n3 + 9n2 + 13n + 6

6

= 2(n + 1)3 + 3(n + 1)2 + (n + 1)

6

That completes the inductive step.

4. If m = 3k and n = 3� and k < � then

m + n = 3k + 3� = 3k(1 + 3�−k)

Clearly 1 + 3�−k is not a power of 3.

5. Say that n = (a/b)2, where a and b have no common divisors. Then

nb2 = a2

Now each prime divisor of a must divide the left-hand side. But it cannot
divide b, so it must divide n. And in fact it must do so twice (since a is
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squared on the right). So n = a2r for some integer r . Thus

(a2r)b2 = a2

Dividing out a2 gives

rb2 = 1

We conclude that r = 1 and b = 1 (since all numbers here are integers). But
then a/b is a whole number, not a fraction.

6. If n + 1 = b2 and n = a2 then

1 = (n + 1) − n = b2 − a2 = (b − a)(b + a)

Since all numbers are integers we must conclude that

b + a = 1

b − a = 1

Thus a = 0 and b = 1. That is a contradiction because 0 is not a natural
number.

7. The inductive step is not well defined. It is not possible to write down an
inductive statement that is valid for the entire argument.

8. The case k = 3 is trivial since 23 > 1 + 2 · 3. Assuming that we have estab-
lished the case k, we have

2k > 1 + 2k

Muliplying both sides by 2 we find that

2k+1 > 2 + 4k

= 2(k + 1) + 2k

> 2(k + 1) + 1

That is the inductive step.

9. The pigeonhole principle is clear for 1 mailbox and 2 letters.

Suppose it has been established for k mailboxes. We now have k + 1 mail-
boxes and k + 2 letters. If all the letters are placed in just k mailboxes then
the result is clear by the inductive step. So suppose instead that every box
contains at least one letter. If the first k boxes each have precisely one letter,
then the last box has two and we are done. If instead one of the first k boxes
has two letters then we are done. That completes the inductive step.
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10. If one letter is in the wrong envelope then two letters are in the wrong
envelope. So the probability is 0.

Chapter 3
1. (a) S ∩ U = {1, 2, 3, 4}

(b) (S ∩ T ) ∪ U = {1, 2, 3, 4, 5, 9}
2. S × T = ∅
3. (a) If x ∈ S ∩ (T ∪ U ) then x ∈ S and x ∈ T ∪ U . Thus x ∈ S and either x ∈

T or x ∈ U . So x ∈ S ∩ T or x ∈ S ∩ U . Thus x ∈ (S ∩ T ) ∪ (S ∩ U ).
So S ∩ (T ∪ U ) ⊂ (S ∩ T ) ∪ (S ∩ U ).

If now x ∈ (S ∩ T ) ∪ (S ∩ U ) then x ∈ S ∩ T and x ∈ X ∩ U . So ei-
ther x is in both S and T or x is in both S and U . Thus x ∈ S and either
x ∈ T or x ∈ U . In conclusion, x ∈ S and x ∈ T ∪ U . We see then that
x ∈ S ∩ (T ∪ U ). So (S ∩ T ) ∪ (S ∩ U ) ⊂ S ∩ (T ∪ U ).

(b) Similar.

U

TS

Figure 3.1s S ∩ (T ∪ U ) = (S ∩ T ) ∪ (S ∩ U ).

4. (a)

U

TS

Figure 3.2s S ∪ (T ∩ U ) = (S ∪ T ) ∩ (S ∪ U ).

(b)
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5. We see that A\B = ∅, A\C = ∅, and A ∪ B = B.

6. We see that Q\Z equals all rational numbers, expressed in lowest terms, with
denominator unequal to 1.

7. The set Q × R is the set of ordered pairs such that the first entry is a rational
number and the second entry is a real number. The set Q × Z is the set of
ordered pairs such that the first entry is a rational number and the second
entry is an integer.

8. The set (Q × R)\(Z × Q) is the set of ordered pairs such that the first entry
is a rational number and the second entry is a real number, and further so that
not both the first entry is an integer and the second entry is rational.

9. The power set is

{∅, {a}, {b}, {1}, {2}, {a, b}, {a, 1}, {a, 2}, {b, 1}, {b, 2}, {1, 2},
{a, b, 1}, {a, b, 2}, {a, 1, 2}, {b, 1, 2}, {a, b, 1, 2}}

10. (a) False

(b) True

(c) False

11. (a) The power set is

{∅, {1}, {∅}, {{a, b}}, {1, ∅}, {1, {a, b}}, {∅, {a, b}}, {1, ∅, {a, b}}}
(b) The power set is

{∅, {•}, {�}, {∂}, {•,�}, {•, ∂}, {�, ∂}, {•,�, ∂}}

Chapter 4
1. Reflexive: If n ∈ Z, then n + n = 2n is even so (n, n) ∈ R.

Symmetric: If (m, n) ∈ R, then m + n is even so n + m is even hence
(n, m) ∈ R.
Transitive: If (m, n) ∈ R and (n, p) ∈ R, then m + n = 2r is even and
n + p = 2s is even. Thus

m + n + n + p = 2r + 2s
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and therefore

m + p = 2r + 2s − 2n = 2(r + s − n)

We conclude that m + p is even so that (m, p) ∈ R.
The equivalence classes are the set of even integers and the set of odd integers.

2. Reflexive: If (m, n) ∈ Z × (Z\{0}), then m · n = m · n so that (m, n)

R(m, n).
Symmetric: If (m, n)R(m ′, n′) then m · n′ = m ′ · n so that m ′ · n = m · n′.
Hence (m ′, n′)R(m, n).
Transitive: If (m, n)R(m ′, n′) and (m ′, n′)R(m ′′, n′′), then

m · n′ = m ′ · n and m ′ · n′′ = m ′′ · n′

Hence

m · n′ · m ′ · n′′ = m ′ · n · m ′′ · n′

Cancelling m ′ · n′ from both sides, we find that

m · n′′ = m ′′ · n

Hence (m, n)R(m ′′, n′′).
The equivalence classes are ordered pairs (m, n) such that the ratio of m

to n represent the same fraction. For instance, (1, 2), (3, 6), and (10, 20) are
in the same equivalence class.

3. Reflexive: If (x, y) ∈ R2, then y = y so (x, y)R(x, y).
Symmetric: If (x, y)R(x ′, y′) then y = y′ so that y′ = y hence
(x ′, y′)R(x, y).
Transitive: If (x, y)R(x ′, y′) and (x ′, y′)R(x ′′, y′′) then y = y′ and y′ = y′′

so that y = y′′. Hence (x, y)R(x ′′, y′′).
The equivalence classes are horizontal lines. A useful representative for

each equivalence class is the point where the horizontal line crosses the y-
axis.

4. Reflexive: If a is a person then a is the same as a so aRa.
Symmetric: If aRb then a and b are siblings (or the same person) with the
same parents. Hence b and a are siblings (or the same person) with the same
parents. We conclude that bRa.
Transitive: If aRb and bRc then a and b are siblings (or the same person)
with the same parents and b and c are siblings (or the same person) with the
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same parents. Thus a and c are siblings (or the same person) with the same
parents.

The equivalence classes are sets of siblings in the same family with the
same parents.

5. (a) Function

(b) Not a function

6. (a) One-to-one

(b) Not one-to-one

7. (c)

f · g = {(x, t · t ′) : (s, t) ∈ f, (s, t ′) ∈ g}

Parts (b) and (d) are similar.

8. (a) Domain = {x ∈ R : x ≥ 0}
Image = {y ∈ R : y ≥ −3}

(b) Domain = all people
Image = all male parents

9. Solution omitted.

10. First show that c < a + b. Write c = a + b − γ . Then examine a2 + b2 =
(a + b − γ )2.

Chapter 5
1. The number system Q is closed under all four arithmetic operations provided

that we do not divide by 0. The set R\Q is not closed under any arithmetic
operation:

√
2 −

√
2 = 0

(2 −
√

2) + (2 +
√

2) = 4
√

2 ·
√

2 = 2
√

2/
√

2 = 1

2. Let x j = q +√
2/j .

3. These sets are intervals.

4. If b is a square root of β then −b is also. Equivalently, the polynomial
equations z2 − β must have two roots.
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5.

3 – 2i

πi + e
4i + 7

–6 – i

Figure 5.1s An Argand diagram.

6. First note that 1 is a cube root of this number. So z − 1 must divide the
polynomial p(z) = z3 − 1 (of which all the cube roots must be a solution).
Dividing this polynomial p by z − 1 we find the quotient q(z) = z2 + z + 1.
Using the quadratic formula, we find the roots of q to be [−1 ±√

3i]/2.
These are the other two cube roots of 1.

7. Divide p by (z − α) to obtain

p(z) = q(z) · (z − α) + r

Here r is the remainder, and it must be of lower degree than the divisor
(z − α). Hence r is a constant. Now set z = α in this last equation. The
result is

0 = q(0) · 0 + r

We conclude that r = 0. Hence (z − α) evenly divides p.

8. Seeking a contradiction, we suppose that

√
2 +

√
3 = a

b
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where a, b are integers. Squaring both sides gives

2 + 3 + 2
√

6 = a2

b2

Simplifying yields

√
6 = 1

2
·
(

a2

b2
− 5

)
We conclude that

√
6 is a rational number, and that is patently false (by the

same proof that
√

2 is irrational).

9. Simply solve the equation

(x i + yj + zk + w)2 = 1 + i + j

Chapter 6
1. Assuming that everyone is healthy, we may suppose that the weights of

people in the room range from 75 pounds to 200 pounds. That is a range of
126 possible value. And each of 300 people will have one such value. So
there are 300 letters and 126 mailboxes. It follows that two people will have
the same weight.

2. The waist measurements will be in the range 15 inches to 45 inches. That is
a span of 31 values. But there are 50 people. Just as in the last problem, to
people will have the same measurement.

3. If instead we measure waist size by millimeters, then the range will be from
15 × 25.4 = 381 to 45 × 25.4 = 1143. That is a span of 763 possible values.
Since there are just 50 people, each person could have a different waist
measurement in millimeters.

4. For the choice of the first 5, there are
(20

5

) = 15504 possibilities. The other
three will be chosen from the remaining 15 people, and then there are

(15
3

) =
455 possibilities. The total number of ways to assign 5 and then three people
to the two rooms is then 15504 × 455 = 7054320.

5. Given any particular denomination of card (from two through ace), there are
four cards of that kind. There are four different ways to choose three from
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among those. And 13 different denominations. Hence there are 4 × 13 = 52
different ways to form three-of-a-kind.

6. The analysis here is similar to the last problem. Given any particular denom-
ination, there is just one way to form four of that kind. And there are 13
different denominations. Thus there are 13 different ways to from four-of-a-
kind.

7. The only way to roll a 7 are 1 − 6, 6 − 1, 2 − 5, 5 − 2, 4 − 3, and 3 − 4
(where we are taking into account that there are two dice, so two ways to
realize any particular score). And there are 6 × 6 = 36 possible outcomes
altogether. So the likelihood is 6/36 = 1/6.

8. The only way to get a 2 is 1 − 1. Thus the chances of getting a 2 are 1/36.
Also there is only one way to get a 12. So the chances of getting a 12 are
1/36. Every other value can be achieved in more than one way, so these are
the only two values for which the odds are 1/36.

9. The only ways to get a 10 are

1 − 3 − 6 1 − 4 − 5 2 − 2 − 6 2 − 3 − 5

2 − 4 − 4 3 − 3 − 4 6 − 1 − 3

and the six permutations of each of these. So there are 6 × 7 = 42 rolls
that give 10. There are 6 × 6 × 6 = 216 possible rolls. Thus the odds are
42/216 = 7/36.

10. F(x) = a0 + a1x + a2x2 + · · ·. Then x F(x) = a0x + a1x2 + a2x3 + · · ·
and x2 F(x) = a0x2 + a1x3 + a2x4 + · · ·. Then

F(x) − x F(x) − 2x2 F(x) = (a0 + a1x + a2x2 + a3x3 + · · ·)

− (a0x + a1x2 + a2x3 + · · ·)

− 2(a0x2 + a1x3 + a2x4 + · · ·)

= a0 + (a1 − a0)x + (a2 − a1 − 2a0)x2

+ (a3 − a2 − 2a1)x3 + · · ·

= a0 + (a1 − a0)

= 3 − 8x
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We conclude that

F(x) = 3 − 8x

1 − x − 2x2
= 3 − 8x

−2(x + 1)(x − 1/2)

We apply the method of partial fractions to this last expression to obtain

F(x) = 11/3

1 + x
− 2/3

1 − 2x

Now expanding these expressions in geometric series as usual, we have

F(x) = 11

3

∞∑
j=0

(−x) j − 2

3

∞∑
j=0

(2x) j

Identifying power series coefficients, we find that

a j = 11

3
· (−1) j − 2

3
· 2 j

That is the solution of our recurrence relation.

11. Draw some pictures.

Chapter 7
1. 4 × 3

2. 3 × 5

3. (−3 0 13
9 5 15

)
4. (

13 −42
22 9

)
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5. (−1 −10 4
1 2 9

)
6. We write the steps of gaussian elimination in order:⎛⎝1 0 1 1 0 0

0 1 1 0 1 0
2 1 0 0 0 1

⎞⎠
⎛⎝1 0 1 1 0 0

0 1 1 0 1 0
0 1 −2 −2 0 1

⎞⎠
⎛⎝1 0 1 1 0 0

0 1 1 0 1 0
0 0 −3 −2 −1 1

⎞⎠
⎛⎝1 0 1 1 0 0

0 1 0 −2/3 2/3 1/3
0 0 −3 −2 −1 1

⎞⎠
⎛⎝1 0 1 1 0 0

0 1 0 −2/3 2/3 1/3
0 0 1 2/3 1/3 −1/3

⎞⎠
⎛⎝1 0 0 1/3 −1/3 1/3

0 1 0 −2/3 2/3 1/3
0 0 1 2/3 1/3 −1/3

⎞⎠
7. The rows are linearly independent so the matrix induces a mapping of R3

that is one-to-one and onto. So it must be invertible.

8. The probability of heads on any given flip is 0.666 . . . and the probability of
tails is 0.333 . . .. This is true regardless of the history of previous flips. Thus
the likelihood of two heads in a row is 0.444 . . . and the likelihood of two
tails in a row is 0.111 . . ..



338 Discrete Mathematics Demystified

Chapter 8
1. This graph (Fig. 8.1s) does not have an Euler path because, once you go to

the end of a (vertical) leg, you cannot get back.

Figure 8.1s A graph on five vertices without an Euler path.

2. This graph (Fig. 8.2s) has two distinct Euler paths because the triangle can
be traversed clockwise or counterclockwise.

Figure 8.2s A graph on five vertices with two distinct Euler paths.

3. We know that the Euler number for a sphere with one handle is 0. See
Fig. 8.3s, in which V = 1, E = 2, and F = 1. If we add a second handle that
changes the Euler number to −2. This point can be seen by examining Fig.
8.4s in which V = 4, E = 10, and F = 4.

4. Such a graph will have
(5

2

) = 10 edges. It will have
(5

3

) = 10 faces (because
each face will be a triangle).

5. The complete graph on k vertices has
(k

2

)
edges.
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Figure 8.3s The Euler number of the sphere with one handle.

Figure 8.4s The Euler number of the sphere with two handles.

6. This graph has nine edges since each of three vertices in the first row must
be connected to each of three vertices in the second row (or vice versa).

7. Of course there are five vertices. There are also five edges.

8. In Fig. 8.5s, the left-hand graph illustrates the first desideratum and the right-
hand graph illustrates the second.

Figure 8.5s Two particular graphs.

9. The formula is χ = 2 − 2g.
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Chapter 9
1. (a) 2

(b) 0

(c) 1

(d) 2

(e) 2

(f) 1

2. Let m = m ′ + 2k and n = n′ + 2�, where m ′ and n′ are each either 0 or 1.
Then

m · n = m ′ · n′ + 2(kn′ + �m ′ + 2k�)

Thus

(m · n) mod 2 = m ′ · n′ = (m mod 2) · (n mod 2)

3. Let m = m ′ + 2k and n = n′ + 2�, where m ′ and n′ are each either 0 or 1.
Then

m + n = m ′ + n′ + 2(k + �)

Thus

(m + n) mod 2 = m ′ + n′ = (m mod 2) + (n mod 2)

4. The prime factorization is 111 = 3 · 37 and 211 is prime. The numbers
clearly have no prime factors in common.

5. We write 1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 and 100 = 2 · 2 · 5 · 5.
Clearly the greatest common divisor is 2 · 2 = 4.

6. Plainly the sum of two 2 × 2 matrices is another 2 × 2 matrix. Matrix addi-
tion is associative just because ordinary addition of numbers is. The additive
identity will be

(
0 0
0 0

)
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Given a 2 × 2 matrix

A =
(

a b
c d

)
its additive inverse will be

−A =
(−a −b
−c −d

)
7. The 2 × 2 matrix

A =
(

1 0
0 0

)
does not have a multiplicative inverse. Hence these matrices do not form a
group under multiplication.

8. We check that

(a · b) · (b−1 · a−1) = ((a · b) · b−1) · a−1

= (a · (b · b−1)) · a−1

= (a · e) · a−1

= a · a−1

= e

A similar calculation shows that

(b−1 · a−1) · (a · b) = e

It follows then that b−1 · a−1 is the multiplicative inverse of ab.

9. The polynomial p(x) = x2 + 1 does not have a multiplicative inverse in the
polynomials. So the polynomials do not form a group under multiplication.

10. (a)

80 = 5 · 15 + 5

15 = 3 · 5 + 0

So 5 is the greatest common divisor.
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(b)

92 = 3 · 24 + 20

24 = 1 · 20 + 4

20 = 5 · 4

Therefore 4 is the greatest common divisor.

Chapter 10
1. We use the standard transliteration A → 0, B → 1, and so on to transform

the given message to the list of numbers

1 24 4 1 24 4 1 8 17 3 8 4

Now we perform the linear transformation P �→ P − 3, applied modulo 26.
We obtain

24 21 1 24 21 1 24 6 14 0 5 1

Again the transliteration now yield the encrypted message

Y V B Y V B Y G O A F B

2. The coded message transliterates to the sequence of numbers

4 0 23 0 25 18 13 12 13 10

The decryption algorithm, applied modulo 26, yields now the sequence

18 14 11 14 13 6 1 0 1 24

The usual transliteration converts this to

SOLONGBABY

Remembering that we need to insert spaces and punctuation, we finally re-
trieve the message

SO LONG BABY
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3. We notice that R occurs five times in the encrypted message. Since E is the
most commonly occurring letter in the English language, we guess that E
has been encoded as R. Thus we guess that the shift encryption being used
here is P �→ P + 13. Thus the decryption algorithm is P �→ P − 13. We
transliterate the encrypted message as usual to

25 17 17 6 25 17 20 17 4 17

Now we perform the decryption to obtain

12 4 4 −7 12 4 7 4 −9 4

Finally, this string of numbers transliterates to

MEETMEHERE

Adding spacing as usual gives the message

MEET ME HERE

4. We transliterate the message to

7 4 11 11 14 12 24 7 14 13 4 24

Applying the affine encryption scheme (modulo 26 as usual) gives the result

6 23 18 18 1 21 5 6 1 24 23 5

This finally becomes the encrypted message

GXSSBVFGBYXF

5. Under the usual transliteration, the message becomes

17 3 16 24 15 7 25 24 3 16 24 15

The affine decryption scheme transforms this to

2 0 13 3 24 8 18 3 0 13 3 24

(Notice that we have had to do some division modulo 26.) Finally, this translit-
erates to

CANDYISDANDY
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Inserting spaces as usual gives the message

CANDY IS DANDY

6. The digraphs are

TH IS WA SN OT TH EN DX

Notice how we have added an X on the end so that the digraphs come out
even. These digraphs correspond to the pairs of numbers

(19,7) (8,18) (22,0) (18,13) (14,19) (19,7) (4,13) (4,23)

Now, according to the algorith in the text, these pairs correspond to

501 226 572 481 383 501 117 127

Now we encrypt this list of numbers as

158 9 371 98 480 158 358 478

This tranlates into the roman alphabet as

GC AJ OH DU SM GC NU SK

In other words, our encrypted message is

GCAJOHDUSMGCNUSK

7. The standard transliteration of the given message is

13 14 22 8 18 19 7 4 19 8 12 4

Application of the encryption algorithm then yields

0 6 24 16 0 4 18 6 4 16 4 6
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Chapter 11
1. Imitating the example in the text, this reduces to

[a × b] + [b × c] + [a × c]

2. We write

a × (a + b) = (a × a) + (a × b)

= a + (a × b)

But if we remember that a × b is the intersection of a and b, then a × b is
a subset of a. So this last line must be (remembering that + is union) just a
itself.

4. This is just a boolean rendition of the familiar fact

c(A ∪ B) = c A ∩ c B

6. Similar to Sol. 2.

7. Interpret in the language of intersection and union, and then the assertion is
clear.

Chapter 12
1. 0

2. 0

3. For ε > 0, let j > 1/ε − 7.

4. For ε > 0, let j > log10(1/ε).

5. 1

6. 1/2

7. 1

8. 0

9. 0

10. 1

11. 3
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Chapter 13
1. 5, 5 + 5/2, 5 + 5/2 + 5/4, 5 + 5/2 + 5/4 + 5/8

2. 1/3, 1/3 + 1/9, 1/3 + 1/9 + 1/27, 1/3 + 1/9 + 1/27 + 1/81

3. Diverges

4. Converges to 1

5. The terms, for j > 10, are smaller than 2/ j2. So the series converges.

6. The terms are smaller in absolute value than 2− j . So the series converges.

7. The sum is 8/7.

8. The sum is 7/4.

9. The sum is
37 − 1

37 − 36
.

10. The sum is 114 · 1110 − 1

11 − 1
.

11. Converges

12. Diverges

13. The ratio is 1/( j + 1), which tends to 0. So the series converges.

14. The root is 3 j /( j + 1), which tends to 3. So the series diverges.
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