
201 West 103rd Street,

Indianapolis, Indiana 46290

Tricks of the

Windows
Game Programming Gurus

fundamentals of 2D and 3D Game Programming

André Lamothe

0072313618 FM 10/26/99 9:32 AM Page i

Errata
All known errata has been marked with the highlight text tool, and an annotation has been created with the corrected text. Click on the note icon to view the errata.

Tricks of the Windows Game
Programming Gurus
Fundamentals of 2D and 3D Game Programming

Copyright 1999 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the pub-

lisher. No patent liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in the preparation

of this book, the publisher and author assume no responsibility for errors or

omissions. Neither is any liability assumed for damages resulting from the use

of the information contained herein.

International Standard Book Number: 0-672-31361-8

Library of Congress Catalog Card Number: 98-85491

Printed in the United States of America

First Printing: October 1999

01 00 99 4 3 2

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Sams cannot attest to the accuracy

of this information. Use of a term in this book should not be regarded as

affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this book or from the use of the CD or

programs accompanying it.

Executive Editor
Don Roche

Acquisitions Editor
Angela Kozlowski

Development Editors
Erik Dafforn
Kezia Endsley

Managing Editor
Charlotte Clapp

Project Editor
Carol Bowers

Copy Editors
Sean Medlock
Aaron Black
Howard Jones

Indexer
Erika Millen

Proofreader
Betsy Smith

Technical Editor
Steve Haines

Software Development
Specialists
John Warriner
Dan Scherf

Interior Design
Gary Adair

Cover Design
Alan Clements

Layout Technicians
Brandon Allen
Tim Osborn
Staci Somers

0072313618 FM 10/26/99 9:32 AM Page ii

Contents at a Glance
Introduction 1

Part I Windows Programming Foundations 7

1 Journey into the Abyss 9

2 The Windows Programming Model 47

3 Advanced Windows Programming 95

4 Windows GDI, Controls, and Last-Minute Gift Ideas 165

Part II DirectX and 2D Fundamentals 211

5 DirectX Fundamentals and the Dreaded COM 213

6 First Contact: DirectDraw 241

7 Advanced DirectDraw and Bitmapped Graphics 287

8 Vector Rasterization and 2D Transformations 401

9 Uplinking with DirectInput and Force Feedback 537

10 Sounding Off with DirectSound and DirectMusic 589

Part III Hardcore Game Programming 645

11 Algorithms, Data Structures, Memory Management, and Multithreading 647

12 Making Silicon Think with Artificial Intelligence 713

13 Playing God: Basic Physics Modeling 797

14 Putting It All Together: You Got Game! 875

0072313618 FM 10/26/99 9:32 AM Page iii

Part IV Appendixes 901

A What’s on the CD 903

B Installing DirectX and Using the C/C++ Compiler 907

C Math and Trigonometry Review 911

D C++ Primer 925

E Game Programming Resources 949

F ASCII Tables 955

Index 961

0072313618 FM 10/26/99 9:32 AM Page iv

Table of Contents
Introduction 1

PART I Windows Programming Foundations 7

1 Journey into the Abyss 9
A Little History..9
Designing Games ..13
Types of Games ..13
Brainstorming ..14
The Design Document and Storyboards..15
Making the Game Fun ..16
The Components of a Game ..16

Section 1: Initialization ..17
Section 2: Enter Game Loop ..17
Section 3: Retrieve Player Input ..17
Section 4: Perform AI and Game Logic ..17
Section 5: Render Next Frame ..18
Section 6: Synchronize Display ..18
Section 7: Loop ..18
Section 8: Shutdown ..18

General Game Programming Guidelines ..21
Using Tools ..26

C/C++ Compilers ..26
2D Art Software..26
Sound Processing Software ..26
3D Modelers ..26
Music and MIDI Sequencing Programs ..27

Setting Up to Get Down—Using the Compiler27
An Example: FreakOut ..29
Summary ..46

2 The Windows Programming Model 47
The Genesis of Windows ..48

Early Windows Versions ..48
Windows 3.x ..48
Windows 95 ..49
Windows 98 ..50
Windows NT ..50
Basic Windows Architecture: Win9X/NT ..50

Multitasking and Multithreading ..51
Getting Info on the Threads ..52
The Event Model ..53

0072313618 FM 10/26/99 9:32 AM Page v

vi TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Programming the Microsoft Way: Hungarian Notation55
Variable Naming ..56
Function Naming ..56
Type and Constant Naming ..57
Class Naming..57
Parameter Naming ..58

The World’s Simplest Windows Program..58
It All Begins with WinMain() ..59
Dissecting the Program ..60
Choosing a Message Box ..63

Real-World Windows Applications (Without Puck)..............................66
The Windows Class ..66
Registering the Windows Class ..74
Creating the Window ..75
The Event Handler ..77
The Main Event Loop..84
Making a Real-Time Event Loop ..89
Opening More Windows..90
Summary ..93

3 Advanced Windows Programming 95
Using Resources ..96

Putting Your Resources Together ..98
Using Icon Resources ..99
Using Cursor Resources ..102
Creating String Table Resources ..106
Using Sound .WAV Resources ..108
Last, But Not Least—Using the Compiler to Create .RC Files114

Working with Menus ..116
Creating a Menu ..116
Loading a Menu..119
Responding to Menu Event Messages ..122

Introduction to GDI ..128
The WM_PAINT Message Once Again ..128
Video Display Basics and Color ..133
RGB and Palletized Modes ..135
Basic Text Printing ..137

Handling Important Events..143
Window Manipulation ..143
Banging on the Keyboard ..150
Squeezing the Mouse..158

Sending Messages Yourself ..161
Summary ..163

0072313618 FM 10/26/99 9:32 AM Page vi

CONTENTS vii

4 Windows GDI, Controls, and Last-Minute Gift Ideas 165
Advanced GDI Graphics..166

Under the Hood with the Graphics Device Context166
Color, Pens, and Brushes..167
Working with Pens ..168
Painting with Brushes ..172

Points, Lines, Polygons, and Circles ..173
Straight to the Point..173
Getting a Line on Things..175
Getting Rectangular..177
Round and Round She Goes—Circles ..180
Polygon, Polygon, Wherefore Art Thou, Polygon?181

More on Text and Fonts ..182
Timing Is Everything ..184

The WM_TIMER Message ..184
Low-Level Timing ..187

Playing with Controls ..190
Buttons..191
Sending Messages to Child Controls ..195

Getting Information ..197
The T3D Game Console ..205
Summary ..210

PART II DirectX and 2D Fundamentals 211

5 DirectX Fundamentals and the Dreaded COM 213
DirectX Primer ..214

The HEL and HAL ..216
The DirectX Foundation Classes in Depth216

COM: Is It the Work of Microsoft… or Demons?218
What Exactly Is a COM Object?..219
More on Interface IDs and GUIDs ..223
Building a Quasi-COM Object ..224
A Quick Recap of COM ..226
A Working COM Program ..226

Working with DirectX COM Objects ..231
COM and Function Pointers ..232
Creating and Using DirectX Interfaces ..236
Querying for Interfaces ..237

The Future of COM ..238
Summary ..239

0072313618 FM 10/26/99 9:32 AM Page vii

viii TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

6 First Contact: DirectDraw 241
The Interfaces of DirectDraw ..242

Interface Characteristics ..242
Using the Interfaces Together ..244

Creating a DirectDraw Object ..245
Error Handling with DirectDraw..246
Getting an Interface Lift ..247

Cooperating with Windows ..250
Getting into the Mode of Things ..255
The Subtleties of Color..259
Building a Display Surface..263

Creating a Primary Surface ..264
Attaching the Palette ..272
Plotting Pixels ..272
Cleaning Up..284

Summary ..285

7 Advanced DirectDraw and Bitmapped Graphics 287
Working with High-Color Modes..288

16-Bit High-Color Mode ..289
Getting the Pixel Format ..290
24/32-Bit High-Color Mode ..299

Double Buffering ..301
Surface Dynamics ..307
Page Flipping ..311
Using the Blitter ..317

Using the Blitter for Memory Filling ..320
Copying Bitmaps from Surface to Surface328

Clipper Fundamentals ..332
Clipping Pixels to a Viewport ..332
Clipping Bitmaps the Hard Way ..334
Making a DirectDraw Clip with IDirectDrawClipper339

Working with Bitmaps ..345
Loading .BMP files ..345
Working with Bitmaps..352
Loading an 8-Bit Bitmap..353
Loading a 16-Bit Bitmap..354
Loading a 24-Bit Bitmap..355
Last Word on Bitmaps ..356

Offscreen Surfaces ..356
Creating Offscreen Surfaces ..356
Blitting Offscreen Surfaces ..358
Setting Up the Blitter..359
Color Keys..360
Source Color Keying ..361

0072313618 FM 10/26/99 9:32 AM Page viii

CONTENTS ix

Destination Color Keying ..364
Using the Blitter (Finally!) ..365

Bitmap Rotation and Scaling ..366
Discrete Sampling Theory ..368
Color Effects ..373

Color Animation in 256-Color Modes ..373
Color Rotation in 256-Color Modes ..379
Tricks with RGB Modes ..381

Manual Color Transforms and Lookup Tables381
The New DirectX Color and Gamma Controls Interface....................382
Mixing GDI and DirectX ..383
Getting the Lowdown on DirectDraw ..386

The Main DirectDraw Object ..386
Surfing on Surfaces ..388
Playing with Palettes ..389

Using DirectDraw in Windowed Modes..390
Drawing Pixels in a Window..392
Finding the Real Client Area (51) ..395
Clipping a DirectX Window ..397
Working with 8-Bit Windowed Modes ..398

Summary ..400

8 Vector Rasterization and 2D Transformations 401
Drawing Lines..402

Bresenham’s Algorithm..403
Speeding Up the Algorithm..409

Basic 2D Clipping..411
Computing the Intersection of Two Lines Using the Point

Slope Form ..413
Computing the Intersection of Two Lines Using

the General Form ..416
Computing the Intersection of Two Lines Using

the Matrix Form ..416
Clipping the Line..419
The Cohen-Sutherland Algorithm ..420

Wireframe Polygons ..427
Polygon Data Structures ..428
Drawing and Clipping Polygons ..430

Transformations in the 2D Plane ..432
Translation ..433
Rotation ..435
Scaling ..445

Introduction to Matrices ..446
The Identity Matrix ..448
Matrix Addition ..449

0072313618 FM 10/26/99 9:32 AM Page ix

x TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Matrix Multiplication ..449
Transformations Using Matrices ..452

Translation ..454
Scaling..455
Rotation..455
Solid Filled Polygons ..458

Types of Triangles and Quadrilaterals..459
Drawing Triangles and Quadrilaterals..461
Triangular Deconstruction Details ..464
The General Case of Rasterizing a Quadrilateral472
Triangulating Quads ..473

Collision Detection with Polygons ..478
Proximity AKA Bounding Sphere/Circle478
Bounding Box ..481
Point Containment ..484

More on Timing and Synchronization ..486
Scrolling and Panning..488

Page Scrolling Engines ..488
Homogeneous Tile Engines..489
Sparse Bitmap Tile Engines ..494

Fake 3D Isometric Engines..496
Method 1: Cell-Based, Totally 2D ..496
Method 2: Full-Screen-Based, with 2D or 3D

Collision Networks ..498
Method 3: Using Full 3D Math, with a Fixed Camera View500

The T3DLIB1 Library ..500
The Engine Architecture ..500
Basic Definitions ..501
Working Macros ..502
Data Types and Structures ..503
Global Domination ..506
The DirectDraw Interface ..507
2D Polygon Functions ..511
2D Graphic Primitives ..513
Math and Error Functions ..517
Bitmap Functions..519
Palette Functions ..522
Utility Functions ..525

The BOB (Blitter Object) Engine..527
Summary ..535

9 Uplinking with DirectInput and Force Feedback 537
The Input Loop Revisited ..538
DirectInput Overture..539

The Components of DirectInput ..541
The General Steps for Setting Up DirectInput542

0072313618 FM 10/26/99 9:32 AM Page x

CONTENTS xi

Data Acquisition Modes ..544
Creating the Main DirectInput Object..544
The 101-Key Control Pad ..546
Problem During Reading: Reacquisition..554
Trapping the Mouse..556
Working the Joystick ..561
Massaging Your Input ..576

Going Deeper with Force Feedback ..579
The Physics of Force Feedback..580
Setting Up Force Feedback ..580
A Force Feedback Demo..581

Writing a Generalized Input System: T3DLIB2.CPP582
The T3D Library at a Glance ..588

Summary ..588

10 Sounding Off with DirectSound and DirectMusic 589
Sound Programming on the PC ..589
And Then There Was Sound…..590
Digital versus MIDI—Sounds Great, Less Filling594

Digital Sound—Let the Bits Begin ..594
Synthesized Sound and MIDI ..596
It’s MIDI Time! ..597

Sound Hardware ..598
Wave Table Synthesis ..598
Wave Guide Synthesis ..598

Digital Recording: Tools and Techniques..599
Recording Sounds ..600
Processing Your Sounds ..600

DirectSound on the Mic ..601
Starting Up DirectSound..602

Understanding the Cooperation Level..604
Setting the Cooperation Level ..605

Primary and Secondary Sound Buffers ..606
Working with Secondary Buffers ..606
Creating Secondary Sound Buffers ..607
Writing Data to Secondary Buffers ..610

Rendering Sounds ..612
Playing a Sound..612
Stopping a Sound..612
Controlling the Volume ..612
Freaking with the Frequency..613
Panning in 3D ..614

Making DirectSound Talk Back ..614
Reading Sounds from Disk..616

The .WAV Format ..616
Reading .WAV Files ..617

0072313618 FM 10/26/99 9:32 AM Page xi

xii TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

DirectMusic: The Great Experiment ..622
DirectMusic Architecture ..622
Starting Up DirectMusic..624

Initializing COM ..624
Creating the Performance ..625
Adding a Port to the Performance..626

Loading a MIDI Segment ..626
Creating the Loader ..627
Loading the MIDI File ..627

Manipulating MIDI Segments ..630
Playing a MIDI Segment..630
Stopping a MIDI Segment..631
Checking the Status of a MIDI Segment631
Releasing a MIDI Segment ..631
Shutting Down DirectMusic ..631
A Little DirectMusic Example ..632

The T3DLIB3 Sound and Music Library ..632
The Header ..633
The Types ..633
Global Domination ..634
The DirectSound API Wrapper ..635
The DirectMusic API Rapper—Get It?..640

Summary ..643

PART III Hard Core Game Programming 645

11 Algorithms, Data Structures, Memory Management,
and Multithreading 647

Data Structures ..648
Static Structures and Arrays ..648
Linked Lists ..649

Algorithmic Analysis ..657
Recursion ..659
Trees ..662

Building BSTs ..666
Searching BSTs ..668

Optimization Theory..671
Using Your Head ..671
Mathematical Tricks ..672
Fixed-Point Math..673
Unrolling the Loop ..677
Look-Up Tables ..678
Assembly Language ..679

Making Demos ..680
Prerecorded Demos ..680
AI-Controlled Demos ..682

0072313618 FM 10/26/99 9:32 AM Page xii

CONTENTS xiii

Strategies for Saving the Game ..682
Implementing Multiple Players ..683

Taking Turns ..683
Split-Screen Setups ..684

Multithreaded Programming Techniques ..685
Multithreaded Programming Terminology686
Why Use Threads in a Game?..687
Conjuring a Thread from the Plasma Pool689
Sending Messages from Thread to Thread697
Waiting for the Right Moment ..702
Multithreading and DirectX ..709
Advanced Multithreading ..711

Summary ..711

12 Making Silicon Think with Artificial Intelligence 713
Artificial Intelligence Primer ..714
Deterministic AI Algorithms..715

Random Motion..716
Tracking Algorithms ..717
Anti-Tracking: Evasion Algorithms ..722

Patterns and Basic Control Scripting ..722
Basic Patterns ..723
Patterns with Conditional Logic Processing727

Modeling Behavioral State Systems..729
Elementary State Machines ..730
Adding More Robust Behaviors with Personality..........................734

Modeling Memory and Learning with Software736
Planning and Decision Trees ..740

Coding Plans ..742
Implementing a Real Planner ..745

Pathfinding ..747
Trial and Error ..748
Contour Tracing..749
Collision Avoidance Tracks..749
Waypoint Pathfinding ..750
A Racing Example..753
Robust Pathfinding ..754

Advanced AI Scripting ..759
Designing the Scripting Language ..759
Using the C/C++ Compiler ..762

Artificial Neural Networks ..767
Genetic Algorithms ..770
Fuzzy Logic ..772

Normal Set Theory ..773
Fuzzy Set Theory..774

0072313618 FM 10/26/99 9:32 AM Page xiii

xiv TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Fuzzy Linguistic Variables and Rules ..776
Fuzzy Manifolds and Membership ..779
Fuzzy Associative Matrices ..783
Processing the FAM with the Fuzzified Inputs787
Warm and Fuzzy ..794

Building Real AI for Games ..794
Summary ..795

13 Playing God: Basic Physics Modeling 797
Fundamental Laws of Physics ..798

Mass (m) ..799
Time (t) ..799
Position (s)..800
Velocity (v) ..802
Acceleration (a) ..804
Force (F) ..807
Forces in Higher Dimensions ..808
Momentum (P)..809

The Physics of Linear Momentum: Conservation and Transfer810
Modeling Gravity Effects ..813

Modeling a Gravity Well ..815
Modeling Projectile Trajectories ..818

The Evil Head of Friction..821
Basic Friction Concepts..821
Friction on an Inclined Plane (Advanced)823

Basic Ad Hoc Collision Response ..828
Simple x,y Bounce Physics ..828
Computing the Collision Response with Planes of

Any Orientation ..830
An Example of Vector Reflection ..834
Intersection of Line Segments..835

Real 2D Object-to-Object Collision Response (Advanced)841
Resolving the n-t Coordinate System..846
Simple Kinematics ..853

Solving the Forward Kinematic Problem854
Solving the Inverse Kinematic Problem ..858

Particle Systems ..859
What Every Particle Needs ..859
Designing a Particle Engine ..860
The Particle Engine Software ..861
Generating the Initial Conditions ..866
Putting the Particle System Together ..869

Playing God: Constructing Physics Models for Games870
Data Structures for Physics Modeling..870
Frame-Based Versus Time-Based Modeling871

Summary ..873

0072313618 FM 10/26/99 9:32 AM Page xiv

CONTENTS xv

14 Putting It All Together: You Got Game! 875
The Initial Design of Outpost ..876

The Story ..876
Designing the Gameplay ..877

The Tools Used to Write the Game ..877
The Game Universe: Scrolling in Space..878
The Player’s Ship: “The Wraith” ..880
The Asteroid Field ..882
The Enemies ..884

The Outposts ..885
The Predator Mines ..886
The Gunships..888

The Power-Ups ..891
The HUDS ..892
The Particle System ..896
Playing the Game ..896
Compiling Outpost ..897

Compilation Files ..897
Runtime Files..898

Epilogue ..898

PART IV Appendixes 901

A What’s on the CD 903

B Installing DirectX and Using the C/C++ Compiler 907
Using the C/C++ Compiler..908

C Math and Trigonometry Review 911
Trigonometry ..911
Vectors..915

Vector Length ..916
Normalization ..917
Scalar Multiplication ..917
Vector Addition ..918
Vector Subtraction ..919
The Inner Product, or the “Dot” Product919
The Cross Product ..921
The Zero Vector ..923
Position Vectors ..923
Vectors as Linear Combinations ..924

0072313618 FM 10/26/99 9:32 AM Page xv

xvi TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

D C++ Primer 925
What Is C++? ..925
The Minimum You Need to Know About C++928
New Types, Keywords, and Conventions ..929

Comments ..929
Constants ..929
Referential Variables ..929
Creating Variables On-the-Fly..930

Memory Management..931
Stream I/O..932
Classes..934

The New Struct in Town ..934
Just a Simple Class ..935
Public Versus Private ..936
Class Member Functions (A.K.A. Methods)937
Constructors and Destructors ..938
Writing a Constructor ..939
Writing a Destructor ..941

The Scope Resolution Operator ..943
Function and Operator Overloading ..945
Summary ..947

E Game Programming Resources 949
Game Programming Sites ..949
Download Points..950
2D/3D Engines ..950
Game Programming Books..951
Microsoft DirectX Multimedia Exposition..951
Usenet Newsgroups ..951
Keeping Up with the Industry: Blues News ..952
Game Development Magazines ..952
Game Web Site Developers ..953
Xtreme Games LLC ..953

F ASCII Tables 955

Index 961

0072313618 FM 10/26/99 9:32 AM Page xvi

Foreword
I remember first falling in love with computers back in 1983 while programming
Logo on an Apple IIe (thanks, Woz!). The sense of power I got from that experience
was very addicting and mind-shaping. The computer would do whatever I told it. It
didn’t get tired after countless repetitions or question my reasoning behind having it
perform any particular task. The machine just did it. I owe much of my career to that
experience, the movie War Games, and an author by the name of André LaMothe.

I bought my first book by André LaMothe, Sams Teach Yourself Game Programming
in 21 Days, back in 1994. It had never occurred to me that people could make a career
out of programming video games. It was then that I saw the connection between my
love for programming and my addiction to video games. Who would have ever
thought that all those hours of playing Galaga could now be considered research?
André’s writing and teaching style inspired me and gave me the confidence to believe
that I could program video games. I remember calling him up on the phone (I still
can’t believe he actually talks to people and gives out his phone number) and asking
for his help with a simple program I was making for my physics class based on his
gas model demo. I couldn’t get the program to work. Well, he instantly reviewed my
program and in seconds said something like, “Rich, you’re killing me, you need to put
a semicolon at the end of each line!” Well, that was it, and my first game program
was up and running.

A few years later, I had the pleasure of working with André on a video game called
Rex Blade as the tools programmer and a level designer. It was a tremendous learning
experience for me. We worked amazingly hard (André is a slave driver), had a lot of
fun (going to movies, gun shooting, skiing, and a lot more—can anyone say, “Desert
Eagle 51 caliber”? <GRIN>), and ended up with a 3D interactive video game trilogy.
We took Rex Blade from the concept to the shelves in an unbelievable six months
(Rex would make an interesting postmortem to be sure). Working on Rex taught me
what really went into making a real video game, and working with André showed me
what it really meant to work around the clock—and I do mean around the clock. I
thought he was kidding when he said he worked 100+ hours a week!

There are few areas of software engineering that push the limits of the hardware, the
software, and the programmer himself as much as game programming does. There are
so many intricate pieces that have to work together perfectly: math, physics, AI,
graphics, sound, music, GUI, data structures, and so forth. This is where Tricks of the
Windows Game Programming Gurus proves itself to be an essential tool in the art of
programming the video games of today and tomorrow.

This book takes you to the next level in game programming technology. The artificial
intelligence coverage alone is enough to make your mouth water—the demos are
killer. Where else can you get detailed coverage of fuzzy logic, neural nets, and
genetic algorithms and how to apply them to video games? The book also takes you

0072313618 FM 10/26/99 9:32 AM Page xvii

through all the major components of DirectX, including DirectDraw, DirectInput
(with force feedback coverage—Yes!), DirectSound, and the latest and greatest tech-
nology of DirectMusic.

Then there’s the physics modeling coverage. Finally, someone who knows what he’s
talking about has taken the time to delve into full collision response, momentum
transfer, and forward kinematics, and how to simulate them in real-time. Imagine
creatures that learn, objects that collide like in the real world, and enemies who
remember how you defeated them in your last encounter. These are the basics that
will make the great games of tomorrow.

I really have to hand it to André for writing this book. He always says that if he
didn’t, who would? It’s true: For someone to give away 20+ years of hard work,
secrets, and tricks to help others is really cool.

With technology advancing by leaps and bounds, I think it’s a great time to be alive,
especially if you’re a game programmer. It seems like every few months there’s a new
CPU, video card, or other piece of hardware that pushes the boundaries of what we
believe to be technologically possible. (I mean, it’s crazy to think that Voodoo III does
70 billion operations a second.) This great gift of technology comes with a price,
though. With it comes the expectation that the games we create will use this technol-
ogy, which raises the bar on what’s expected of tomorrow’s video games. It seems as
though in the very near future, the only limiting factors will be our knowledge and our
imagination.

It excites me to know that the next generation of game programmers will have this
book to inspire and educate them. And I think André hopes that somewhere, someone
will take his place in the 21st century and continue this work of disseminating the
black magic, because he needs a vacation!

Richard Benson

3D Game Programmer

DreamWorks Interactive

0072313618 FM 10/26/99 9:32 AM Page xviii

About the Author
André LaMothe (a.k.a. Lord Necron) has been programming for over 22 years and
holds degrees in mathematics, computer science, and electrical engineering. He has
written numerous articles on the subjects of graphics, game programming, and artifi-
cial intelligence. He is the author of Tricks of the Game Programming Gurus, Sams
Teach Yourself Game Programming in 21 Days, The Game Programming Starter Kit,
The Black Art of 3D Game Programming, and Windows Game Programming for
Dummies, all bestsellers. In addition, he coauthored Ciarcia’s Circuit Cellar I and II.
Mr. LaMothe has also taught at the University of Santa Cruz Extension Multimedia
Department.

Last, but not least, André is the founder and CEO of Xtreme Games LLC, a think tank
and the world’s largest virtual game company, composed of over 250+ independent
developer studios.

He can be reached at ceo@xgames3d.com.

Contributing Authors of Online Books in Digital
Form

Location on CD: T3DGAME\ONLINEBOOKS

Matthew Ellis, author of Direct3D Primer

Matthew is a teenage 3D game programmer and author. He lives in Las Vegas, NV,
and is interested in all aspects of 3D game programming and graphics. He is currently
creating a new 3D engine, as well as publishing articles and working on a book of his
own.

He can be reached at matt@magmagames.com.

Sergei Savchenko, author of General 3D Graphics

Sergei is a graduate student of computer science at McGill University in Montreal.
Sergei hails from the city of Kharkov (XAPbKOB), Ukraine, in the former Soviet
Union.

In addition to his computer science studies, Sergei also studied aircraft design at the
Kharkov Aviation Institute. He also teaches computer science classes and performs
active research in automated reasoning.

He can be reached at savs@cs.mcgill.ca or at his Web page,
http://www.cs.mcgill.ca/~savs/3dgpl/.

0072313618 FM 10/26/99 9:32 AM Page xix

David Dougher, author of Genesis 3D Engine Reference, Tool, and API Function
Manuals

David has been programming and gaming for over 25 years, creating his first com-
puter games on paper tape for use on the PDP-8 systems at Syracuse University in
1974. His collection of gaming magazines goes back to Strategic Review, Issue
Number 1 (the precursor to Dragon magazine). He is currently employed full-time as
a release engineer by Parlance Corp. and loves Babylon 5, Myst, Riven, Obsidian,
game design, teaching ballroom dancing, and his wife, although not in that order.

He can be reached at ddougher@ids.net.

Contributing Authors of Articles and Papers
Location on CD: T3DGAME\ARTICLES

Bernt Habermeier, author of Internet Based Client/Server Network Traffic
Reduction. Email: bert@bolt.com. Web page: http://www.bolt.com.

Ivan Pocina, author of KD Trees. Email: ipocina@aol.com.

Nathan Papke, author of Artificial Intelligence Voice Recognition and Beyond. Email:
nathan.papke@juno.com.

Semion S.Bezrukov, author of Linking Up with DirectPlay. Email: deltree@rocket-
mail.com.

Michael Tanczos, author of The Art of Modeling Lens Flares. Email:
webmaster@logic-gate.com.

David Filip, author of Multimedia Musical Content Fundamentals. Email:
grimlock@u.washington.edu.

Terje Mathisen, author of Pentium Secrets. Email: terjem@hda.hydro.com.

Greg Pisanich and Michelle Prevost, authors of Representing Artificial Personalities
and Representing Human Characters in Interactive Games. Email: gp@garlic.com,
prevost@sgi.com.

Zach Mortensen, author of Polygon Sorting Algorithms. Email:
mortens1@nersc.gov.

James P. Abbott, author of Web Games on a Shoestring. Email:
jabbott@longshot.com. Web page: http://www.longshot.com.

Mike Schmit, author of Optimizing Code with MMX Technology. Email:
mschmit@zoran.com, mschmit@ix.netcom.com.

0072313618 FM 10/26/99 9:32 AM Page xx

Alisa J. Baker, author of Into the Grey Zone and Beyond. Email:
abaker@gcounsel.com.

Dan Royer, author of 3D Technical Article Series. Email: aggravated@bigfoot.com.
Web page: http://members.home.com/droyer/index.html.

Tom Hammersley, author of Viewing Systems for 3D Engines. Email:
tomh@globalnet.co.uk.

Bruce Wilcox, author of Applied AI: Chess is Easy. Go is Hard. Email:
brucewilcox@bigfoot.com.

Nathan Davies, author of Transparency in D3D Immediate Mode. Email:
alamar@cgocable.net.

Bob Bates, author of Designing the Puzzle. Email: bbates@legendent.com.

Marcus Fisher, author of Dynamic 3D Animation Though Traditional Animation
Techniques. Email: mfisher@avalanchesoftware.com.

Lorenzo Phillips, author of Game Development Methodology for Small Development
Teams. Email: pain19@ix.netcom.com.

Jason McIntosh, author of Tile Graphics Techniques 1.0..

In addition, the CD contains a number of selected articles from the Game
Programming MegaSite at http://www.perplexed.com/. The articles are authored by

*Matt Reiferson, *Geoff Howland, Mark Baldwin, John De Goes, *Jeff Weeks, Mirek,
*Tom Hammersley, Jesse Aronson, Matthias Holitzer, Chris Palmer, Dominic Filion,
JiiQ, Dhonn Lushine, David Brebner, Travis “Razorblade” Bemann, Jonathan Mak,
Justin Hust, Steve King, Michael Bacarella II, Seumas McNally, Robin Ward,
Dominic Filion, Dragun, Lynch Hung, Martin Weiner, Jon Wise, and Francois
Dominic Larame.

*Contributed more than one article.

0072313618 FM 10/26/99 9:32 AM Page xxi

Acknowledgments
I always hate writing acknowledgements because there are simply too many people
involved in a book to mention everybody and give them proper thanks. However, here
goes once again, in no particular order.

I would first like to thank my parents for having me late in life, causing me to have so
many genetic mutations that I don’t need to sleep and I can work continuously with-
out a break. Thanks, Mom and Dad!

Next, I want to thank all the people at Macmillan Computer Publishing (MCP) for let-
ting me have my way with the book. Making corporate America do anything different
is surely a strain, and I am Mr. Nonconformist, but that’s what it takes if you want to
break new ground. Particularly, I want to thank the acquisitions editor, Angela
Kozlowski, for listening to my artistic/marketing concepts and making them happen;
Carol Bowers, the project editor, for making sure that my policy of “less editing is
more” was taken seriously; Dan Scherf, the media and permissions manager, for mak-
ing sure that all the programs made it to the CD; and Erik Dafforn, the development
editor, for making sure that the hundreds of figures and thousand-plus pages of manu-
script didn’t get mangled.

And of course, thanks to all the other editors and formatters that worked on the book,
including Steven Haines, Sean Medlock, Carol Ackerman, Kezia Endsley, and Howard
Jones. It seemed like all of you were playing musical chairs during editing, but you all
did a fantastic job. Steve and Sean especially caught me making stupid mistakes!

Next I want to thank the DirectX group at Microsoft, especially Kevin Bachus, for
helping with the acquisition of the latest DirectX SDK stuff, along with making sure
that I was sent to all the major DirectX parties. Very important to send me to parties;
that’s a good thing.

The next group I want to thank are all the companies that had something to do with
this book in one way or another, whether it was a piece of software or whatever. The
major players are Caligari Corporation for the use of TrueSpace, JASC for the use of
Paint Shop Pro, and Sonic Foundry for the use of Sound Forge. I would also like to
thank Matrox and Diamond Multimedia for demo 3D accelerators, Creative Labs for
sound cards, Intel Corporation for VTune, Kinetics for 3D Studio Max, and Microsoft
and Borland for their compiler products.

0072313618 FM 10/26/99 9:32 AM Page xxii

I’d like to thank all of my friends that I made contact with during this hellish produc-
tion. To all the guys at Gold’s Gym: Armand, Andrew, Paul, and Dave. To Mike
Perone, for always getting me that hard-to-find piece of software at a moment’s
notice. Oh yes, to my friend Mark Bell—or as I like to think of him, Mr. Happy—you
still owe me $180 from that ski trip eight years ago! (And I can’t stand always being
right anymore; please try harder, Mark. I can’t keep taking your money.)

Next I want to thank all the contributing editors who allowed me to put their articles
on the CD. If it weren’t for you guys, these poor readers would have nothing more
then my eccentric prose to read. A special thanks goes to Matthew Ellis, the author of
the Direct3D book on the CD, and to Richard Benson (Keebler) for doing the fore-
word to the book.

And finally, I have to thank the one person who was with me every day and always
supported me—my girlfriend Jennifer. I think I have finally met my match.

Thanks to everyone!

0072313618 FM 10/26/99 9:32 AM Page xxiii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

As the Publisher for Sams, I welcome your comments. You can fax, email, or write
me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: (317) 581-4770

Email: mstephens@mcp.com

Mail: Michael Stephens
Publisher
Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

0072313618 FM 10/26/99 9:32 AM Page xxiv

Introduction
“Dead or alive, you’re coming with me.”

—Robocop

A long time ago, in a galaxy far, far, away, I wrote a book about game programming
called Tricks of the Game Programming Gurus. For me, it was an opportunity to cre-
ate something that I had always wanted—a book that taught the reader how to make
games. Anyway, it’s been a few years and I’m a little older and wiser, and I have defi-
nitely learned a lot of tricks <BG>. This book is going to continue where the old book
left off. I’m going to cover every major topic in game programming that I can fit
within the binding of this bad boy!

However, as usual, I’m not going to assume that you are already a master programmer
or that you even know how to make games. This book is for beginners as well as
advanced game programmers. Nonetheless, the tempo is going to be fierce, so don’t
blink!

Today is probably the coolest time in history to be in the game business. I mean, we
now have the technology to create games that do look real! Imagine what will come
next? But all this technology isn’t easy to understand or trivial—it takes hard work.
These days the bar has definitely been raised on the skill set needed to make games.
But if you’re reading this, you are probably one of those people who like a challenge,
right? Well, you came to right place, because when you’re done with this book you
will be able to create a full 3D, texture-mapped, professionally lit video game for the
PC. Moreover, you will understand the underlying principles of artificial intelligence,
physics modeling, game algorithms, 2D/3D graphics, and be able to use 3D hardware
today and in the future.

What You’re Going to Learn
In this book you’re going to learn about 100 teraquads of information! I’m going to
fill your neural net so full of information that you might have synaptic leakage!
Seriously, though, this volume covers all the elements necessary to create a Windows
9X/NT-based game for the PC:

• Win32 programming

• DirectX Foundation

• 2D graphics and algorithms

0172313618 Intro 8/27/99 9:12 AM Page 1

2 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

• Game programming techniques and data structures

• Multithreaded programming

• Artificial intelligence

• Physics modeling

• Using 3D acceleration hardware (on the CD)

And more…

This book is primarily about game programming. There are two cyber-books on the
CD that cover Direct3D Immediate mode and General 3D.

What You Need to Know
This book assumes that you can program. You are going to be fairly lost if you can’t
write C code. However, the book uses some C++—enough to make a C coder just a
little uneasy. But I will warn you if I’m doing anything weird. Also, there’s a decent
C++ primer in Appendix D, so check it out if you need a crash course. Basically, C++
is only needed here and there for examples when using DirectX.

Nevertheless, I’ve decided that I’m going to use C++ a little more on this book
because there are so many things in game programming that are object-oriented, and
it’s sacrilege to force them to be C-like structures. Bottom line—if you can program
in C, you should be fine. If you program in C/C++, you shouldn’t trip out at all.

Everyone knows that a computer program is nothing more than logic and math. Well,
3D video games put the emphasis on the math part! 3D graphics is all math. Luckily
for us, it’s cool math! (Yes, math can be cool.) About the only thing you need to know
is basic algebra and geometry. The vector and matrix stuff I will teach you along the
way. Heck, if you can add, subtract, multiply, and divide, you will be able to under-
stand 90 percent of what’s going even though you may not be able to rederive it. As
long as you can use the code, that’s all the matters. (Well, that and if 7 of 9 is on
Voyager tonight.)

That’s really all you need to know. Of course, you’d better call all your friends and
tell them that they won’t see you for about two years, because you’re going to be a
little busy. But just think of all the movies you’ll get to rent when you’re done with
your training!

0172313618 Intro 8/27/99 9:12 AM Page 2

INTRODUCTION 3

How This Book Is Organized
Tricks of the Windows Game Programming Gurus is divided into four parts, covering
14 chapters and six appendixes.

Part I: Windows Programming Foundations
Chapter 1 Journey into the Abyss

Chapter 2 The Windows Programming Model

Chapter 3 Advanced Windows Programming

Chapter 4 Windows GDI, Controls, and Last-Minute Gift Ideas

Part II: DirectX and 2D Fundamentals
Chapter 5 DirectX Fundamentals and the Dreaded COM

Chapter 6 First Contact: DirectDraw

Chapter 7 Advanced DirectDraw and Bitmapped Graphics

Chapter 8 Vector Rasterization and 2D Transformations

Chapter 9 Uplinking with DirectInput and Force Feedback

Chapter 10 Sounding Off with DirectSound and DirectMusic

Part III: Hardcore Game Programming
Chapter 11 Algorithms, Data Structures, Memory Management, and

Multithreading

Chapter 12 Making Silicon Think with Artificial Intelligence

Chapter 13 Playing God: Basic Physics Modeling

Chapter 14 Putting It All Together: You Got Game!

Part IV: Appendixes
Appendix A What’s on the CD

Appendix B Installing DirectX and Using the C/C++ Compiler

Appendix C Math and Trigonometry Review

Appendix D C++ Primer

Appendix E Game Programming Resources

Appendix F ASCII Tables

0172313618 Intro 8/27/99 9:12 AM Page 3

4 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Installing the CD-ROM
The CD-ROM contains all the source, executables, sample programs, stock art, 3D
modelers, sound effects, and bonus technical articles that make up the book. Here’s
the directory structure:

CD-DRIVE:\

T3DGAME\

SOURCE\
T3DCHAP01\
T3DCHAP02\

.

.
T3DCHAP14\

APPLICATIONS\

ARTWORK\
BITMAPS\
MODELS\

SOUND\
WAVES\
MIDI\

DIRECTX\

GAMES\

GOODIES\

ARTICLES\

ONLINEBOOKS\

ENGINES\

Each main directory contains specific data that you’ll need. Here’s a more detailed
breakdown:

T3DGAME—The root directory that contains all other directories. Be sure to read the
README.TXT within it for any last-minute changes.

SOURCE—Contains all the source directories for the book, in chapter order. Simply
drag the entire SOURCE\ directory to your hard drive and work from there.

DEMOS—Contains demo programs that various companies have so graciously
allowed me to place on the CD.

ARTWORK—Contains stock artwork that you may use royalty-free in your games.

0172313618 Intro 8/27/99 9:12 AM Page 4

INTRODUCTION 5

SOUND—Contains stock sound effects and music that you may use royalty-free in
your games.

DIRECTX—Contains the latest version of the DirectX SDK.

GAMES—Contains a number of 2D and 3D shareware games that I think are cool!

ARTICLES—Contains articles written by various experts in the field of game pro-
gramming for your edification.

ONLINEBOOKS—Contains online digital books covering Direct3D Immediate mode
and general 3D graphics.

ENGINES—Contains evaluation copies of various 3D engines.

There isn’t any general installation program for the CD because there are so many dif-
ferent types of programs and data. I’ll leave the installation to you. However, in most
cases, you’ll simply copy the SOURCE\ directory to your hard drive and work within it.
As for the other programs and data, you’ll probably install them as you need them.

Installing DirectX
About the only important part of the CD that you must install is the DirectX SDK and
Run-Time files. The installation program is located within the DIRECTX\ directory,
along with a README.TXT file explaining any last-minute changes.

You must install DirectX 6.0 SDK or better to work with this CD. If
you’re not sure that you have the latest files on your system, run the
installation and it will tell you.

Note

Compiling the Programs
I wrote the code for this book with Microsoft Visual C++ 5.0/6.0. However, in most
cases the programs will work with any Win32-compliant compiler. Nevertheless, I
suggest Microsoft VC++ because it works the best for this type of work.

If you are unfamiliar with your compiler’s IDE, you are going to be wildly lost com-
piling Windows programs. Please take the time to learn your way around the com-
piler, and at least know how to compile a “Hello World” console program or
something similar before you dive into compiling the programs.

To compile Windows Win32 .EXE programs, all you need to do is set the target of
your program project to Win32 .EXE and compile. However, to create DirectX
programs, you must include the DirectX import libraries in your project. You may
think that you can simply add the DirectX libraries to your include path, but that

0172313618 Intro 8/27/99 9:12 AM Page 5

6 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

won’t work! Save yourself a headache and include the DirectX .LIB files in your
project or workspace manually. You can find the .LIB files in the LIB\ directory, right
under the main DirectX SDK directory that you installed under. That way there won’t
be any linker confusion. In most cases, you’ll need the following:

DDRAW.LIB DirectDraw import library

DINPUT.LIB DirectInput import library

DSOUND.LIB DirectSound import library

DMUSIC.LIB DirectMusic import library

DSOUND3D.LIB DirectSound3D import library

D3DIM.LIB Direct3D Immediate Mode import library

DXGUID.LIB DirectX GUID library

WINMM.LIB Windows Multimedia Extensions

I’ll go into more detail on these files when you actually start working with them, but
at least keep them in mind when you start getting “unresolved symbol” errors from
your linker. I don’t want any emails on this subject from rookies!

In addition to the DirectX .LIB files, you must include the DirectX .H header files in
your header search path, so keep that in mind. Also, be sure to make the DirectX SDK
directories first in the search path list, because many C++ compilers contain old ver-
sions of DirectX and the old headers might be found in the compiler’s own INCLUDE\,
which is wrong. The proper place is the DirectX SDK include directory, which is
located in the main installation directory of the DirectX SDK in INCLUDE\.

Finally, if you use Borland products, make sure that you use the Borland versions of
the DirectX .LIB files. They can be found in the BORLAND\ directory of the DirectX
SDK installation.

0172313618 Intro 8/27/99 9:12 AM Page 6

Windows Programming
Foundations

Chapter 1
Journey into the Abyss 9

Chapter 2
The Windows Programming Model 47

Chapter 3
Advanced Windows Programming 95

Chapter 4
Windows GDI, Controls, and Last-Minute Gift Ideas 165

PART I

0272313618 Part 1 8/27/99 9:12 AM Page 7

0272313618 Part 1 8/27/99 9:12 AM Page 8

Journey into the Abyss
“Oh, you want some too?!?”

—Hudson, Aliens

Windows programming has been an ongoing war with a long
history. Game programmers have resisted the Windows platform
since the beginning of time, but like the Borg say, “Resistance is
futile…” I tend to agree. In this chapter you’re going to take a
whirlwind tour of Windows:

• History of games

• Types of games

• The elements of game programming

• Using tools

• An example game: FreakOut

A Little History
It all began sometime in the ’60s, when the first mainframe
computers came to be. Now, don’t quote me on this, but one of
the first computer games ever played was Core Wars on Unix
machines. When the ’70s rolled around, there were quite a
number of text-based and crude graphic adventures running on
mainframe computers and minicomputers all around the world.

CHAPTER 1

0372313618 CH01 10/26/99 9:33 AM Page 9

Windows Programming Foundations

10 PART I

The funny thing is, back then most games were networked! I mean, 90 percent of the
game programs were MUDs (Multi-User Dungeons) or similar simulations, like Star
Trek and war simulations. However, the masses never got a taste of computer games
until the quintessential Pong came out. Designed by Nolan Busnell, this single game
really started the whole video game arcade business overnight, and Atari was born.

Then, around 1976–1978, the TRS-80, Apple, and Atari 800 all hit the market. These
were the first computers that a consumer could buy. Of course, before then you could
buy kits like the Altair 8000, but who wanted to put them together? In any case, these
computers all had their pros and cons. The Atari 800 was by far the most powerful
(I’m convinced I could write a version of Wolfenstein that would work on it), the
TRS-80 was the most businesslike, and the Apple had the best marketing.

Slowly, games started to hit the market for these systems, and many teenage
millionaires were made overnight. A good lunar lander or Pong-type game was all
you needed to strike it rich! In those days, computer games looked like computer
games, and only a handful of people knew how to make them. There were absolutely
no books on the topic. Every now and then someone would publish a 50–100-page,
semi-underground booklet that had some pieces of the puzzle, and maybe there’d be a
magazine article in Byte, but for the most part you were on your own.

The ’80s are when things started to heat up. The first 16-bit computers were available,
like the IBM PC (and compatibles), Mac, Atari ST, AMIGA 500, and so on. This was
the time when games started to look good. There were even some 3D games on the
market such as Wing Commander and Flight Simulator, but the PC was definitely at
the back of the line of game machines. By 1985, the Amiga 500 and Atari ST reigned
supreme as the ultimate game-playing computers. However, the PC slowly gained
popularity due to its low price and usefulness in the business sector. And the bottom
line is that the computer with the largest market base, regardless of its technology or
quality, will rule the world in the end.

By the early 1990s, the IBM PC-compatible was the leader. With the release of
Microsoft Windows 3.0, it was all over for the Apple Macintosh. The PC was the
“working person’s computer.” You could actually play with it, write programs for it,
and open it up and connect stuff to it. I think that those are the reasons why so many
hobbyists stuck to PCs rather than the sexier Mac stuff. Bottom line—you couldn’t
have fun with Macs!

But the PC was still lagging behind in the graphics and audio department. The PC
seemed like it just didn’t have enough horsepower to make a game that looked as
good as something on an Amiga or a game console.

And then there was light…

0372313618 CH01 10/26/99 9:33 AM Page 10

CHAPTER 1
Journey into the Abyss

11

In late 1993, Id Software released DOOM as a follow up to Wolfenstein 3D (one of
the first shareware 3D games, also by Id). The PC became the game-playing and
programming platform of choice for the home computer market, and it has remained
that way ever since. DOOM proved that if you’re clever enough, you can make a PC
do anything. This is a very important point. Remember it. There is no substitute for
imagination and determination. If you believe it’s possible—it is!

After the DOOM craze hit, Microsoft really started to reevaluate its position on
gaming and game programming. It realized that the entertainment industry is huge
and only getting bigger. It also realized that it wanted to be part of that industry, so
big plans were drawn up to get Microsoft into the game.

The problem was that even Windows 95 had terrible real-time video and audio
capabilities. So Microsoft created a piece of software called Win-G to address the
video aspect of the problem. Win-G was heralded as the ultimate game programming
and graphics subsystem. It turned out to be nothing more than a couple of graphics
calls to draw bitmaps, and Microsoft literally denied its existence after about a
year—no joke!

However, work had already begun on a new set of graphics, sound, input, networking,
and 3D systems (a la the Rendermorphics acquisition). And DirectX was born. As
usual, the marketing people at Microsoft got carried away, claiming that DirectX
would solve all the world’s game programming problems on the PC platform and
Windows games would be as fast as or faster than DOS32 games. That didn’t quite
happen.

The first couple of iterations of DirectX were horrible failures as actual products, but
not in technological terms. Microsoft simply underestimated the complexity of video
game programming. (And of video game programmers!) But by DirectX 3.0, DirectX
worked better than DOS! However, most game companies at this time (1996–1997)
still were working with DOS32, and they didn’t make the transition to DirectX for
actual product releases until version 5.0.

Today, DirectX is coming up on version 8.0 (this book covers 7.0), and it’s a killer
API. True, you have to think a little differently—using COM (the Component Object
Model), programming in Win32, and not having total control over the whole computer
anymore—but that’s life. I don’t think that Geordi can take over the whole computer
system on the Enterprise either, so if resource-sharing works on a Galaxy Class star-
ship, it’s good enough for me.

With DirectX technology, you can create a virtual, DOS-like machine with a 4GB
address space (or more) and linear memory, and you can program as if you’re in DOS
(if that’s what you like). More importantly, now you can leverage every new piece of

0372313618 CH01 10/26/99 9:33 AM Page 11

Windows Programming Foundations

12 PART I

graphics and sound technology instantly. This is due to DirectX’s forward-looking
design and technology. Anyway, that’s enough about DirectX; you’ll get the full
treatment soon enough. Let’s get back to history…

First there was DOOM, which used software rasterization only. Take a look at Figure
1.1 to see a screen shot of Rex Blade, a DOOM-clone. The next generation of 3D
games, like Quake I, Quake II, and Unreal, really were a quantum leap. Take a look
at Figure 1.2 to see a screen shot of Unreal. This game and others like it are simply
unbelievable. All of them contain software rasterizers along with hardware accelera-
tion code to get the best of both worlds. And let me tell you, Unreal or Quake II
running on a Pentium II 400MHz with Voodoo II acceleration is as sweet as it gets.

Figure 1.1
Rex Blade: The first
generation in Doom

technology.

Figure 1.2
It’s so good, it’s

Unreal!

0372313618 CH01 10/26/99 9:34 AM Page 12

CHAPTER 1
Journey into the Abyss

13

So where does this leave us? In a world were technology is so advanced that the sky
is the limit. However, there’s always the next “big thing.” Even though games like
Quake and Unreal can take years to make, I’m hoping that you’ll come up with
something just as engaging!

The history lesson’s over. Let’s get to the core of the matter with design.

Designing Games
One of the hardest things about writing video games is designing them. Sure, 3D
mathematics is hard, but thinking of a fun game and a design to go along with it is
just as difficult, in a manner of speaking, and definitely as important. Who cares if
you have the latest volumetric photon traces if the game sucks?

Now, thinking up a game idea isn’t that hard. It’s the details, final implementation,
and visual look that make the difference between the bargain bin and the cover of PC
Gamer. So let’s outline some basic concepts and rules of thumb that have worked for
me and paid for a Dodge Viper or two.

Types of Games
These days, there are as many game types as political promises (those that are made,
not kept), but you can bunch them into a handful of genres:

DOOM-like first-person games—These games are full 3D, for the most part, and
you view them from the character’s perspective. DOOM, Hexen, Quake, Unreal, Duke
Nukem 3D, and Dark Forces are all good examples of this type of game.
Technologically, they’re probably the most difficult to develop, and they require
cutting-edge technology to be noticed.

Sports games—Sports games can be either 2D or 3D, but these days more and more
are 3D. In any case, the sport can be one-man or team play. The graphics in sports
games have come a long way. Maybe they’re not as impressive as first-person games,
but they’re catching up. However, the artificial intelligence in sports games is some of
the most advanced of all the game genres.

Fighting games—Fighting games are typically played by one or two players, and the
action is viewed from the side or by a floating 3D camera. The game imagery can be
2D, 2.5D (multiple 2D bitmap images of 3D objects), or full 3D. Tekken for the Sony
Playstation is the game that really made the genre for the home console market.
Fighting games aren’t as popular on the PC, probably due to the interface problems
with controllers and the two-player fun factor.

0372313618 CH01 10/26/99 9:34 AM Page 13

Windows Programming Foundations

14 PART I

Arcade/shoot’em-up/platform—These games are your typical Asteroids, Pac Man,
and Jazz Jackrabbit type stuff. They’re basically old-school games that are primarily
2D, but they’re being redefined and remade into 3D worlds. However, the gameplay is
relatively the same as it was in 2D.

Mechanical simulations—These games encompass any kind of driving, flying,
boating, racing, and tank-battle simulation, and any other kind that you can think of.
For the most part, these are 3D and have always been (even though they didn’t look
good until recently).

Ecosystem simulations—This is really a new kind of game that has no real-world
analog—other than the real world itself. Here I’m talking about Populous, SimCity,
SimAnt, and so on. These games allow you, the player, to be a god of sorts and
control an artificial system of some kind, whether it’s a city, a colony of ants, or a
financial simulation like Gazzillonaire (very cool game, BTW).

Strategy or war games—These games have splintered into a number of subgenres.
But I’m not religious about it, so suffice it to say we’re talking about strategy, turn-
based (sometimes), thinking types of games such as Warcraft, Diablo, Final Fantasy
VII, and so on. Again, I’m being a little cavalier here since Diablo is real-time, but it
still involves a great deal of strategy and thinking. On the other hand, Final Fantasy is
turn-based and not real-time.

Interactive stories—This category includes Myst-like games. Basically, these are
games that are prerendered or on “tracks,” and you move through the game by
figuring out puzzles. Usually, these games don’t allow free roaming and are like
playing interactive books, for lack of a better definition. Moreover, these aren’t really
“to-the-metal” game programs because 99 percent of them are written using Director
or a Director-like tool. Boring, Jules.

Retro games—This area of gaming has sprung up overnight. In a nutshell, there
are people who want to play old games, but with more bells and whistles than the
originals. For example, Atari has made about 1,000 versions of Tempest. Granted,
they never sell, but you get the point. However, I have had a lot of luck remaking
some of the old games like Dig Dug, Centipede, Frogger, and so on.

Pure puzzle and board games—There’s not much to say here. These games can be
2D, 3D, prerendered, or whatever. Tetris, Monopoly, and Mahjong are a few games
that fall into this category.

Brainstorming
Once you have decided what kind of game you want to make—which is usually easy
since we all know what we like—it’s time to think up the game. This is where you’re
totally on your own. There’s no way to come up with good game ideas consistently.

0372313618 CH01 10/26/99 9:34 AM Page 14

CHAPTER 1
Journey into the Abyss

15

Basically, you have to think of a game that you would like to make and develop it into
something that sounds cool, is doable, and that other people will like as well.

Of course, you can get help by using other games as models or starting points. Don’t
copy another product exactly, but loosely following successful products is fine. Also,
read a lot of science fiction books and game magazines, see what is selling, and watch
a lot of movies for cool story ideas, games ideas, or just visual motivation.

What I usually do is sit with a friend (or by myself) and just throw out ideas until
something sounds cool. Then I develop the idea until it sounds plausible or it falls
apart. This can be very frustrating. You may overthink all your ideas and throw your
hands up after two or three hours. Don’t despair—this is a good thing. If a game idea
survives the night and into the next day and you still like it, chances are that you
might have something.

I want to say something that’s very important, so listen carefully—don’t
bite off more than you can chew! I’ve received thousands of emails from
newbie game programmers who want to create something at the level
of DOOM or Quake for their first game. It’s simply not going to happen.
You’ll be lucky if you can finish an Asteroids clone in 3–6 months, so
don’t get crazy. Set a reasonable goal. Try to think up something you
can do by yourself, because in the end you’ll be working by yourself—
people flake out. Again, try to keep your first game ideas simple.

Now let’s move on to some details.

The Design Document and Storyboards
Once you have a game idea, you need to get it on paper. Now, when I do a big game
product, I require myself to make a real design document, but for little games, a few
pages of details will do. Basically, a design document is a roadmap or outline of a
game. It should have as many details about the game, the levels, and the gameplay as
you can think of. This way you know what you’re making and can follow some kind
of plan. Otherwise, you will keep changing things and your game will end up being
incoherent.

Usually, I like to write down a simple story to begin with, maybe a page or two that
describes what the game is about. Who is the main character? What is the idea of the
game? And lastly, how do you win the game? Then I decide on the hardcore details of
the game—the levels and the gameplay—and outline them as much as possible. When
I’m done, I can always add or delete things, but at least I have a working plan. If I
think of 100 cool new ideas, I can always add them and not forget them.

Warning

0372313618 CH01 10/26/99 9:34 AM Page 15

Windows Programming Foundations

16 PART I

Obviously, the amount of detail is up to you, but write something down. At least some
sketches! For example, maybe you don’t even want a full design document and are
more comfortable with some crude sketches of the levels and gameplay. Figure 1.3 is
an example storyboard that you might make for a game. Nothing complicated, just
something to look at and work from.

Figure 1.3
A basic storyboard.

Scene 3: Level 1
Asteroid Field

. .
 .

.

Scene 2: Main menu
• Player selects ship

Scene 1: Intro
• Fade into city
• Begin monologue

Raptor

Talon
Strife

Select Ship

Each
rotating

Glowing

Glowing

Wire
frame

Binary star system

“Blade
Runner”
look

Making the Game Fun
The last part of designing a game is the reality check. Do you really think that the
game will be fun and people will like it? Or are you lying to yourself? This is a
serious question. There are about 10,000 games on the shelves and about 9,900
companies going out of business, so think about this. If you’re totally excited about
the game and can imagine wanting to play it more than anything, you’re in the
ballpark. But if you, as the designer, just get lukewarm about the idea, imagine
how other people are going to feel about it!

The key here is to do a lot of thinking and beta testing of the game and add all kinds
of cool features, because in the end it’s the details that make a game fun. It’s like fine
workmanship on a piece of handcrafted oak furniture (I personally hate wood, but
work with me). People appreciate the details.

The Components of a Game
Now it’s time to look at what makes a video game program different from any other
kind of program. Video games are extremely complex pieces of software. In fact, they
are without a doubt the hardest programs to write. Sure, writing MS Word is harder
than writing Asteroids, but writing Unreal is harder than writing any other program I
can think of!

This means that you have to learn a new way of programming that’s more conducive
to real-time applications and simulation, rather than the single-line, event-driven, or
sequential logic programs that you may be used to. A video game is basically a
continuous loop that performs logic and draws an image on the screen, usually at a
rate of 30 frames per second (fps) or more. This is similar to how a movie is dis-
played, except that you are creating the movie as you go.

0372313618 CH01 10/26/99 9:34 AM Page 16

CHAPTER 1
Journey into the Abyss

17

Therefore, let’s begin by taking a look at a simplified game loop, as shown in Figure
1.4. The following list describes each section.

Section 1: Initialization
In this section, you perform the standard operations you would for any program, such
as memory allocation, resource acquisition, loading data from disk, and so forth.

Section 2: Enter Game Loop
In this section, the code execution enters into the main game loop. This is where the
action begins and continues until the user exits out of the main loop.

Section 3: Retrieve Player Input
In this section, the player’s input is processed and/or buffered for later use in the AI
and logic section.

Section 4: Perform AI and Game Logic
This section contains the majority of the game code. The artificial intelligence,
physics systems, and general game logic are executed, and the results are used to
draw the next frame on the screen.

Figure 1.4
General game loop

architecture.

Initialization
• Allocate memory
• Load files
• Build tables
•

Main event loop
call windows stuff
Init timing

Render next frame
to off-screen
buffer

Main logic
• Game AI
• Collision protection
• Physics

Retrieve player
input

Cleanup
• Reallocate
• Close files

Exit to O/S

Handle windows
events

Copy image to
display

Off-screen
memory

Wait

Time sync
lock to
30 FPS

Loop

Keyboard

Joystick

Exit?

Mouse

0372313618 CH01 10/26/99 9:34 AM Page 17

John H Warriner

errata
"Collision Protection" should be "Collision Detection"

Windows Programming Foundations

18 PART I

Section 5: Render Next Frame
In this section, the results of the player’s input and the execution of game AI and
logic are used to generate the next frame of animation for the game. This image is
usually drawn on an off-screen buffer area, so you can’t see it being rendered. Then it
is copied very quickly to the visible display.

Section 6: Synchronize Display
Many computers will speed up or slow down due to the game’s level of complexity.
For example, if there are 1,000 objects running on the screen, the CPU is going to
have a higher load than if there were only 10 objects. The frame rate of the game will
vary, which isn’t acceptable. Hence, you must synchronize the game to some maxi-
mum frame rate and try to hold it there using timing and/or wait functions. Usually,
30fps is considered to be optimal.

Section 7: Loop
This section is fairly simple—just go back to the beginning of the game loop and do it
all again.

Section 8: Shutdown
This is the end of the game, meaning that the user has exited the main body or game
loop and wants to return to the operating system. However, before the user does this,
you must release all resources and clean up the system, just as you would for any
other piece of software.

You might be wondering about all the details of a real game loop. Granted, the pre-
ceding explanation is a little oversimplified, but it captures the essence of what’s
going on. In most cases, the game loop will be an FSM (Finite State Machine) that
contains a number of states. Listing 1.1 is a more detailed version of what a C/C++
game loop might look like in real code.

LISTING 1.1 A Simple Game Event Loop

// defines for game loop states
#define GAME_INIT // the game is initializing
#define GAME_MENU // the game is in the menu mode
#define GAME_STARTING // the game is about to run
#define GAME_RUN // the game is now running
#define GAME_RESTART // the game is going to restart
#define GAME_EXIT // the game is exiting

// game globals
int game_state = GAME_INIT; // start off in this state
int error = 0; // used to send errors back to OS

0372313618 CH01 10/26/99 9:34 AM Page 18

CHAPTER 1
Journey into the Abyss

19

// main begins here

void main()
{
// implementation of main game loop

while (game_state!=GAME_EXIT)
{
// what state is game loop in

switch(game_state)
{

case GAME_INIT: // the game is initializing
{
// allocate all memory and resources
Init();

// move to menu state
game_state = GAME_MENU;
} break;

case GAME_MENU: // the game is in the menu mode
{
// call the main menu function and let it switch states
game_state = Menu();

// note: we could force a RUN state here
} break;

case GAME_STARTING: // the game is about to run
{
// this state is optional, but usually used to
// set things up right before the game is run
// you might do a little more housekeeping here
Setup_For_Run();

// switch to run state
game_state = GAME_RUN;
} break;

case GAME_RUN: // the game is now running
{
// this section contains the entire game logic loop

// clear the display
Clear();

// get the input
Get_Input();

// perform logic and ai
Do_Logic();

continues

0372313618 CH01 10/26/99 9:34 AM Page 19

Windows Programming Foundations

20 PART I

LISTING 1.1 Continued
// display the next frame of animation
Render_Frame();

// synchronize the display
Wait();

// the only way that state can be changed is
// thru user interaction in the
// input section or by maybe losing the game.
} break;

case GAME_RESTART: // the game is restarting
{
// this section is a cleanup state used to
// fix up any loose ends before
// running again
Fixup();
// switch states back to the menu
game_state = GAME_MENU;
} break;

case GAME_EXIT: // the game is exiting
{
// if the game is in this state then
// it’s time to bail, kill everything
// and cross your fingers
Release_And_Cleanup();

// set the error word to whatever
error = 0;

// note: we don’t have to switch states
// since we are already in this state
// on the next loop iteration the code
// will fall out of the main while and
// exit back to the OS
} break;

default: break;
} // end switch

} // end while

// return error code to operating system
return(error);

} // end main

0372313618 CH01 10/26/99 9:34 AM Page 20

CHAPTER 1
Journey into the Abyss

21

Although Listing 1.1 is non-functional, I think that you can get a good idea of the
structure of a real game loop by studying it. All game loops pretty much follow this
structure in one way or another. Take a look at Figure 1.5, the state transition diagram
for the game loop logic. As you can see, the state transitions are fairly sequential.

Figure 1.5
State transition dia-

gram for a game loop.

Game
Restart

Game
Starting

Game
Init

Game
Run

Game
Exit

Game
Menu

We’ll talk more about game loops and finite state machines later in the chapter when
we cover the FreakOut demo game.

General Game Programming Guidelines
Next I want to talk about some general game programming techniques and
philosophies that you should think about and try to adopt (if you can) to make
game programming much easier.

To begin with, video games are ultra-high-performance computer programs. No
longer can you use high-level APIs for time-critical or memory-critical code sections.
For the most part, you must write everything yourself that is related to the inner loop
of your game code, or else your game will suffer terrible speed and performance
problems. Obviously, this doesn’t mean that you can’t trust APIs like DirectX, since
DirectX was written to be as high-performance and “thin” as possible. But in general,
avoid high-level function calls.

With that in mind, take a look at a list of tricks to keep in mind as you’re
programming.

0372313618 CH01 10/26/99 9:34 AM Page 21

Windows Programming Foundations

22 PART I

Don’t be afraid to use global variables. Many video games don’t use
parameters for a lot of time-critical functions, instead using a global
parameter passing area. For example, if a function looks like this:

void Plot(int x, int y, int color)
{
// plots a pixel on the screen
video_buffer[x + y*MEMORY_PITCH] = color;
} // end Plot

The body of the function takes less time than the function call. This is
due to the parameter pushing and popping on the stack. In this case a
better method might be to create a global parameter passing area and
then make assignments before a call, like this:

int gx,gy,gz,gcolor; // define some globals

void Plot_G(void)
{
// plot a pixel using globals
video_buffer[gx + gy*MEMORY_PITCH] = gcolor;

} // end Plot_G

Use inline functions. You can improve the previous trick even more by
using the inline directive to get rid of the function call completely. The
inline directive instructs the compiler to make its best attempt to put
the code for the function right where it’s called, rather than making the
actual function call. Of course, this makes bigger programs, but speed is
more important. Here’s an example:

inline void Plot_I(int x, int y, int color)
{
// plots a pixel on the screen
video_buffer[x + y*MEMORY_PITCH] = color;
} // end Plot_I

Notice that I didn’t use globals because the compiler will in effect per-
form the same type of data aliasing. However, globals would come in
handy if only one or two of the parameters were changing between
calls because the old values could be used without reloading.

Always use 32-bit variables rather than 8- or 16-bit. The Pentium and
later processors are totally 32-bit. This means that they don’t like 8- or
16-bit data words, and in fact, smaller data can slow them down
due to caching and other related memory addressing anomalies. For
example, you might create a structure that looks something like this:

TrickTrick

Trick

Trick

0372313618 CH01 10/26/99 9:34 AM Page 22

CHAPTER 1
Journey into the Abyss

23

This new structure is much better. For one thing, all the elements are the same size—
that is, sizeof(int) = 4 bytes. Therefore, a single pointer can be incremented on a
DWORD boundary to access any member. Of course, the new structure is now
(3*sizeof(int)) = 12 bytes, but at least it’s a multiple of 4 or on a DWORD bound-
ary. This is definitely going to improve performance.

In fact, if you really want to make things rock, you can pad all structures to make
them multiples of 32 bytes. This is the optimal length due to standard on-chip cache
line sizes in the Pentium class processors. You can pad manually by adding dummy
variables, or you can use a compiler directive (the easy way). Of course, this may
waste a lot of memory, but it may be worth it for the increase in speed.

struct CPOINT
{
short x,y;
unsigned char c;
} // end CPOINT

Although this may seem like a good idea, it’s not! First, the structure
itself is now five bytes long—(2*sizeof(short) + sizeof(char))
=5. This is really bad, and it’s going to wreak havoc on the memory
addressing. A better approach is the following structure:

struct CPOINT
{
int x,y;
int c;
} // end CPOINT

Comment the heck out of your code. Game programmers are notorious
for not commenting their code. Don’t make the same mistake. Clean,
well-commented code is always worth the extra typing.

Tip STRUCTs in C++ are just like CLASSes, except that they have default
PUBLIC visibility.

Trick

0372313618 CH01 10/26/99 9:34 AM Page 23

Windows Programming Foundations

24 PART I

Program in a RISC-like (Reduced Instruction Set Computer) manner. In
other words, make your code simple rather than complex. Pentium and
Pentium II processors in particular like simple instructions rather than
complex ones. And making your code longer, with simpler instructions,
makes it easier for the compiler. For example, don’t do this:

if ((x+=(2*buffer[index++])>10)
{
// do work
} // end if

Do this:

x+=(2*buffer[index]);
index++;

if (x > 10)
{
// do work
} // end if

There are two reasons for coding like this. First, it allows a debugger to
put break points between code sections. Second, it makes it easier for
the compiler to send simplified code to the Pentium, which allows it to
process more code in parallel using multiple execution units. Complex
code is bad!

Use binary shifts for simple multiplication of integers by powers of 2.
Since all data in a computer is stored in binary form, shifting the bit pat-
tern to the left or right is equivalent to multiplication or division,
respectively. For example:

int y_pos = 10;

// multiply y_pos by 64
y_pos = (y_pos << 6); // 2^6 = 64

Similarly,

// to divide y_pos by 8
y_pos = (y_pos >> 3); // 1/2^3 = 1/8

You’ll see more tricks like this when you get to the optimization
chapters. Cool, huh?

Write efficient algorithms. All the assembly language in the world isn’t
going to make an n^2 algorithm go faster. It’s better to use clean,
efficient algorithms rather than brute force.

Trick

Trick

Trick

0372313618 CH01 10/26/99 9:34 AM Page 24

CHAPTER 1
Journey into the Abyss

25

Don’t optimize your code as you program. This is usually a waste of
time. Before you start heavy optimization, wait until you’re done with a
major code block or until you’re done with the whole game. This will
save you time in the end because you won’t have to deal with cryptic
code or optimizations that aren’t necessary. When the game is done,
that’s when you should start profiling and finding problem areas to
optimize. On the other hand, don’t program sloppily.

Don’t write a lot of complex data structures for simple objects. Just
because linked lists are cool doesn’t mean you should use them
for a fixed array that you know will always be around 256 items. Just
allocate it statically and be done with it. Video game programming is
90 percent data manipulation. Keep your data as simple and visible as
possible so you can access it quickly, do what you need to, and move on.
Make sure the data structure fits the problem.

Use C++ sparingly. If you’re a seasoned professional, go ahead and do as
you please, but don’t go class crazy or overload everything to death. In
the end, simple, straightforward code is the best and easiest to debug.
And I never want to see multiple inheritance!

If you see that you’re going down a rocky road, stop, back up, and take
a detour. I have seen many game programmers start down a bad pro-
gramming line and bury themselves. It’s better to realize you made a
mistake and redo 500 lines of code than to have a generally undesirable
code structure. So, if you see a problem with what you’re doing, reeval-
uate it and make sure that the time you’re saving is
worth it.

Back up your work regularly. When you’re writing game code, you’re
going to lock up the system fairly frequently. Redoing a sorting algo-
rithm is one thing, but redoing the AI for a character and the collision
detection is another.

Before you start on your game projects, be organized. Use reasonable
filenames and directory names, come up with a consistent variable nam-
ing convention, and try to use separate directories for graphics and
sound data rather than dumping everything in one directory.

Trick

Trick

Trick

Trick

Trick

Trick

0372313618 CH01 10/26/99 9:34 AM Page 25

Windows Programming Foundations

26 PART I

Using Tools
Writing video games used to require nothing more than a text editor and maybe a
homemade paint program. However, today things are a little more complicated. At a
minimum, you need a C/C++ compiler, a 2D paint program, and a sound processing
program. In addition, you might need a 3D modeler if you’re going to do a 3D game,
along with a music sequencing program if you’re going to use any MIDI.

Let’s take a look at some of the more popular products and what they do.

C/C++ Compilers
For Windows 9X/NT development, there’s simply no better compiler than MS VC++
5.0+. It does everything you need it to, and more. The .EXEs generated are the fastest
code available. The Borland compiler will also work fine (and is a lot cheaper), but it
has a much smaller feature set. In either case, you don’t need the full-blown version
of either one. A student version that makes Win32 .EXEs is more than enough.

2D Art Software
Here you have paint programs, drawing programs, and image processing. Paint
programs primarily allow you to draw images pixel by pixel with primitives and
manipulate them. As far as I’m concerned, Paint Shop Pro 5.0+ by JASC is the leader
of the pack for price vs. performance. Fractal Design Painter is also great, but it’s
more for traditional artists, not to mention that it’s very expensive. My favorite is
Corel Photo-Paint, but that’s definitely more firepower than most newbies need.

On the other hand, drawing programs allow you to create images that are mostly
constructed from curves, lines, and 2D geometrical primitives. These types of
programs aren’t as useful, but if you need one, Adobe Illustrator is the way to go.

The final class of 2D art programs is the image processing type. These programs are
more for post-production work than for art creation. Adobe Photoshop is the favorite
in most circles, but I think Corel Photo-Paint is better. Decide for yourself.

Sound Processing Software
Ninety percent of all sound effects (SFX) used in games today are digitized samples.
To work with sound data of this type, you’re going to need a digital sound processing
program. The best program in this genre is Sound Forge Xp. It has by far the most
complex sound processing capabilities I have ever seen, and yet it’s the simplest
to use.

3D Modelers
This is where things get financially challenging. 3D modelers can cost tens of
thousands of dollars, but recently a number of low-cost modelers have shown up that
have enough power to literally make a movie. The modeler that I primarily use for

0372313618 CH01 10/26/99 9:34 AM Page 26

CHAPTER 1
Journey into the Abyss

27

simple-to-medium-scale 3D models and animation is Caligari trueSpace III+. This is
the best 3D modeler for the price. It’s a few hundred dollars and has the best interface
there is.

If you want a little more firepower and absolute photorealism, 3D Studio Max II+ is
the way to go. It’s around $2,500, though, so that might be something to think about.
However, for the most part we’re going to use these modelers just to create 3D
meshes, not for rendering, so all the bells and whistles aren’t really needed. trueSpace
is the way to go.

Music and MIDI Sequencing Programs
There are two kinds of music in today’s games: pure digital (like a CD) and MIDI
(Musical Instruments Digital Interface), which is a synthesized performance based on
note data. If you want to manipulate MIDI information and songs, you’ll need a
sequencing package. One of the best and most reasonably priced is called Cakewalk,
so I suggest that you look into this program if you plan on recording and manipulat-
ing MIDI music. I’ll talk about MIDI data when covering DirectMusic in Chapter 10,
“Sounding Off With DirectSound and DirectMusic.”

And now for the cool part… A number of the software manufacturers
listed here have allowed me to put shareware or evaluation
versions on the CD, so make sure to check them out!

Setting Up to Get Down—Using the Compiler
One of the most frustrating parts of learning Windows game programming is learning
how to use the compiler. In most cases, you’re so excited to get started that you dive
into the IDE and try to compile, and a million compiler and linker errors pop up! To
help with this problem, let’s cover a few basic compiler concepts here.

0. Read the entire compiler instructions—please, please, I beg you!

1. You must install the DirectX SDK on your system. All you need to do is
navigate to the <DirectX SDK> directory on the CD, read README.TXT, and do
what it says (which should be nothing more than “Click on the DirectX SDK
INSTALL.EXE program”).

2. We are going to make Win32 .EXE programs, not .DLLs, ActiveX components,
etc. So if you want to compile, the first thing you need to do with your compiler
is create a new project or workspace and set the target output file to Win32
.EXE. This step is shown for the VC++ 5.0 compiler in Figure 1.6.

Trick

0372313618 CH01 10/26/99 9:34 AM Page 27

Windows Programming Foundations

28 PART I

3. Add the source files to the project using the ADD Files command from the main
menu or from the project node itself. This is shown for the VC++ 5.0 compiler
in Figure 1.7.

Figure 1.6
Creating a Win32
.EXE with Visual

C++ 5.0.

Figure 1.7
Adding files to a pro-

ject with VC++ 5.0.

4. When you get to the DirectX chapters, and from there on, you’re going to
have to include the DirectX COM interface libraries listed here and shown in
Figure 1.8.

• DDRAW.LIB

• DSOUND.LIB

• DSOUND3D.LIB

• DINPUT.LIB

• DMUSIC.LIB

• DSETUP.LIB

0372313618 CH01 10/26/99 9:34 AM Page 28

CHAPTER 1
Journey into the Abyss

29

These DirectX .LIB files are located in the <LIB> directory wherever you
installed the DirectX SDK. You must add these .LIB files to your project or
workspace. You can’t just add the search path, because the search engine will
probably find old DirectX 3.0 .LIB files along with installation libraries of the
compiler itself. While you’re at it, you may have to add the Windows
Multimedia Extensions library, WINMM.LIB, to your project. This file is located
in the <LIB> directory of your compiler installation.

5. You’re ready to compile your program.

Figure 1.8
The resources needed

to create a Win32
DirectX application.

DDraw.Lib

Linker

Compiler

Resource files

.h Headers

Game files

.cpp C++ files

Game.EXE

Runtime

DSound.Lib

DInput.Lib

DSound3D.Lib

DSetup.Lib

DMusic.Lib

Standard Win32
Libraries

DirectX
.DLLs

•••

DirectX
Import Libraries
needed for
Reference
Resolution
to Link

If you’re a Borland user, there is a separate Borland library directory
within the DirectX SDK. So make sure to add those .LIB files—not the
MS-compatible files higher up in the directory tree.

If you still have questions about this, don’t worry. I will revisit these steps a number
of times throughout the book when discussing Windows programming and your first
contact with DirectX.

An Example: FreakOut
Before we both lose our minds with all this talk about Windows, DirectX, and 3D
graphics, I would like to take a pause and show you a complete game—albeit a
simple one, but a game nonetheless. This way you can see a real game loop and some
graphics calls, and take a shot at compilation. Sound good? Alrighty, then!

Warning

0372313618 CH01 10/26/99 9:35 AM Page 29

Windows Programming Foundations

30 PART I

The problem is, we’re only on Chapter 1. It’s not like I can use stuff from later
chapters… that would be cheating, right? So what I’ve decided to do is get you used
to using black box APIs for game programming. Based on that requirement, I asked,
“What are the absolute minimum requirements for creating a 2D Breakout-like
game?” All we really need is the following functionality:

• Change into any graphics mode.

• Draw colored rectangles on the screen.

• Get the keyboard input.

• Synchronize the game loop using some timing functions.

• Draw a string of colored text on the screen.

So I created a library called BLACKBOX.CPP|H. Within it is a DirectX (DirectDraw
only) set of functions, along with support code that implements the required
functionality. The beauty is, you don’t need to look at the code; you just have to
use the functions, based on their prototypes, and make sure to link with
BLACKBOX.CPP|H to make an .EXE.

Based on the BLACKBOX library, I wrote a game called FreakOut that demonstrates a
number of the concepts that we have discussed in this chapter. FreakOut contains all
the major components of a real game, including a game loop, scoring, levels, and even
a little baby physics model for the ball. And I do mean baby! Figure 1.9 is a screen-
shot of the game in action. Granted, it’s not Arkanoid, but it’s not bad for four hours
of work!

Figure 1.9
A screen shot of

FreakOut.

Before I show you the source code to the game, I want you to take a look at how the
project and its various components fit together. Refer to Figure 1.10.

0372313618 CH01 10/26/99 9:35 AM Page 30

CHAPTER 1
Journey into the Abyss

31

As you can see from the figure, the game is composed of the following files:

FREAKOUT.CPP—The main game logic that uses BLACKBOX.CPP and creates a mini-
mum Win32 application.

BLACKBOX.CPP—The game library (don’t peek).

BLACKBOX.H—The header file for the game library.

DDRAW.LIB—The DirectDraw import library needed to build the application. This
doesn’t contain the real DirectX code. It’s more of an intermediary library that you
make calls to, which in turn loads the DDRAW.DLL dynamic link library that does the
real work. You can find this in the DirectX SDK installation under <LIB>.

DDRAW.DLL—The run-time DirectDraw library that actually contains the COM
implementation of the DirectDraw interface functions that are called through the
DDRAW.LIB import library. You don’t need to worry about this per se; you just need
to make sure that the DirectX run-time files are installed.

Now that we have that all straight, let’s take a look at the BLACKOUT.H header file and
see what the functions are within it.

LISTING 1.2 BLACKOUT.H Header File

// BLACKBOX.H - Header file for demo game engine library

// watch for multiple inclusions
#ifndef BLACKBOX
#define BLACKBOX

// DEFINES //

// default screen size

Figure 1.10
The structure of

FreakOut.

Linker

RuntimeDDraw.DLL

Loaded at runtime

Freakout.EXE

Compiler

Main Source File
Freakout.CPP

DirectX Libs
DDraw.Lib

Black Box Graphics
Engine
Blackbox.CPP
Blackbox.H

FREAKOUT.CPP

continues

0372313618 CH01 10/26/99 9:35 AM Page 31

Windows Programming Foundations

32 PART I

LISTING 1.2 Continued

#define SCREEN_WIDTH 640 // size of screen
#define SCREEN_HEIGHT 480
#define SCREEN_BPP 8 // bits per pixel
#define MAX_COLORS 256 // maximum colors

// MACROS ///

// these read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

// initializes a direct draw struct
#define DD_INIT_STRUCT(ddstruct) { memset(&ddstruct,0,sizeof(ddstruct));
ddstruct.dwSize=sizeof(ddstruct); }

// TYPES //

// basic unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;

// EXTERNALS //

extern LPDIRECTDRAW4 lpdd; // dd object
extern LPDIRECTDRAWSURFACE4 lpddsprimary; // dd primary surface
extern LPDIRECTDRAWSURFACE4 lpddsback; // dd back surface
extern LPDIRECTDRAWPALETTE lpddpal; // a pointer to palette
extern LPDIRECTDRAWCLIPPER lpddclipper; // dd clipper
extern PALETTEENTRY palette[256]; // color palette
extern PALETTEENTRY save_palette[256]; // used to save palettes
extern DDSURFACEDESC2 ddsd; // dd surface description struct
extern DDBLTFX ddbltfx; // used to fill
extern DDSCAPS2 ddscaps; // dd surface capabilities struct
extern HRESULT ddrval; // result back from dd calls
extern DWORD start_clock_count; // used for timing

// these defined the general clipping rectangle
extern int min_clip_x, // clipping rectangle

max_clip_x,
min_clip_y,
max_clip_y;

// these are overwritten globally by DD_Init()
extern int screen_width, // width of screen

screen_height, // height of screen
screen_bpp; // bits per pixel

// PROTOTYPES ///

0372313618 CH01 10/26/99 9:35 AM Page 32

CHAPTER 1
Journey into the Abyss

33

// DirectDraw functions
int DD_Init(int width, int height, int bpp);
int DD_Shutdown(void);
LPDIRECTDRAWCLIPPER DD_Attach_Clipper(LPDIRECTDRAWSURFACE4 lpdds,

int num_rects, LPRECT clip_list);
int DD_Flip(void);
int DD_Fill_Surface(LPDIRECTDRAWSURFACE4 lpdds,int color);

// general utility functions
DWORD Start_Clock(void);
DWORD Get_Clock(void);
DWORD Wait_Clock(DWORD count);

// graphics functions
int Draw_Rectangle(int x1, int y1,

int x2, int y2,
int color,
LPDIRECTDRAWSURFACE4 lpdds=lpddsback);

// gdi functions
int Draw_Text_GDI(char *text, int x,int y,COLORREF color,

LPDIRECTDRAWSURFACE4 lpdds=lpddsback);
int Draw_Text_GDI(char *text, int x,int y,int color,

LPDIRECTDRAWSURFACE4 lpdds=lpddsback);

#endif

Now, don’t waste too much time straining your brain on the code and what all those
weird global variables are. Rather, just look at the functions themselves. As you can
see, there are functions to do everything that we needed for our little graphics inter-
face. Based on that and a minimum Win32 application (the less Windows program-
ming I have to do, the better), I have created the game FREAKOUT.CPP, which is shown
in Listing 1.3. Take a good look at it, especially the main game loop and the calls to
the game processing functions.

LISTING 1.3 The Source File FREAKOUT.CPP

// INCLUDES ///

#define WIN32_LEAN_AND_MEAN // include all macros
#define INITGUID // include all GUIDs

#include <windows.h> // include important windows stuff
#include <windowsx.h>
#include <mmsystem.h>

#include <iostream.h> // include important C/C++ stuff
#include <conio.h>

continues

0372313618 CH01 10/26/99 9:35 AM Page 33

Windows Programming Foundations

34 PART I

LISTING 1.3 Continued

#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

#include <ddraw.h> // directX includes
#include “blackbox.h” // game library includes

// DEFINES //

// defines for windows
#define WINDOW_CLASS_NAME “WIN3DCLASS” // class name

#define WINDOW_WIDTH 640 // size of window
#define WINDOW_HEIGHT 480

// states for game loop
#define GAME_STATE_INIT 0
#define GAME_STATE_START_LEVEL 1
#define GAME_STATE_RUN 2
#define GAME_STATE_SHUTDOWN 3
#define GAME_STATE_EXIT 4

// block defines
#define NUM_BLOCK_ROWS 6
#define NUM_BLOCK_COLUMNS 8

#define BLOCK_WIDTH 64
#define BLOCK_HEIGHT 16
#define BLOCK_ORIGIN_X 8
#define BLOCK_ORIGIN_Y 8
#define BLOCK_X_GAP 80
#define BLOCK_Y_GAP 32

// paddle defines
#define PADDLE_START_X (SCREEN_WIDTH/2 - 16)
#define PADDLE_START_Y (SCREEN_HEIGHT - 32);
#define PADDLE_WIDTH 32
#define PADDLE_HEIGHT 8
#define PADDLE_COLOR 191

// ball defines
#define BALL_START_Y (SCREEN_HEIGHT/2)
#define BALL_SIZE 4

// PROTOTYPES ///

0372313618 CH01 10/26/99 9:35 AM Page 34

CHAPTER 1
Journey into the Abyss

35

// game console
int Game_Init(void *parms=NULL);
int Game_Shutdown(void *parms=NULL);
int Game_Main(void *parms=NULL);

// GLOBALS //

HWND main_window_handle = NULL; // save the window handle
HINSTANCE main_instance = NULL; // save the instance
int game_state = GAME_STATE_INIT; // starting state

int paddle_x = 0, paddle_y = 0; // tracks position of paddle
int ball_x = 0, ball_y = 0; // tracks position of ball
int ball_dx = 0, ball_dy = 0; // velocity of ball
int score = 0; // the score
int level = 1; // the current level
int blocks_hit = 0; // tracks number of blocks hit

// this contains the game grid data

UCHAR blocks[NUM_BLOCK_ROWS][NUM_BLOCK_COLUMNS];

// FUNCTIONS //

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT msg,

WPARAM wparam,
LPARAM lparam)

{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message
switch(msg)

{
case WM_CREATE:

{
// do initialization stuff here
return(0);
} break;

case WM_PAINT:
{
// start painting
hdc = BeginPaint(hwnd,&ps);

// the window is now validated

// end painting
EndPaint(hwnd,&ps);

continues

0372313618 CH01 10/26/99 9:35 AM Page 35

Windows Programming Foundations

36 PART I

LISTING 1.3 Continued

return(0);
} break;

case WM_DESTROY:
{
// kill the application

PostQuitMessage(0);
return(0);
} break;

default:break;

} // end switch

// process any messages that we didn’t take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

// WINMAIN //

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

{
// this is the winmain function

WNDCLASS winclass; // this will hold the class we create
HWND hwnd; // generic window handle
MSG msg; // generic message
HDC hdc; // generic dc
PAINTSTRUCT ps; // generic paintstruct

// first fill in the window class stucture
winclass.style = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW_CLASS_NAME;

// register the window class
if (!RegisterClass(&winclass))

return(0);

0372313618 CH01 10/26/99 9:35 AM Page 36

CHAPTER 1
Journey into the Abyss

37

// create the window, note the use of WS_POPUP
if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class

“WIN3D Game Console”, // title
WS_POPUP | WS_VISIBLE,
0,0, // initial x,y
GetSystemMetrics(SM_CXSCREEN), // intial width
GetSystemMetrics(SM_CYSCREEN), // initial height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance
NULL))) // creation parms

return(0);

// hide mouse
ShowCursor(FALSE);

// save the window handle and instance in a global
main_window_handle = hwnd;
main_instance = hinstance;

// perform all game console specific initialization
Game_Init();

// enter main event loop
while(1)

{
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
// test if this is a quit

if (msg.message == WM_QUIT)
break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here
Game_Main();

} // end while

// shutdown game and release all resources
Game_Shutdown();

// show mouse
ShowCursor(TRUE);

// return to Windows like this

continues

0372313618 CH01 10/26/99 9:35 AM Page 37

Windows Programming Foundations

38 PART I

LISTING 1.3 Continued

return(msg.wParam);

} // end WinMain

// T3DX GAME PROGRAMMING CONSOLE FUNCTIONS ////////////////////

int Game_Init(void *parms)
{
// this function is where you do all the initialization
// for your game

// return success
return(1);

} // end Game_Init

///

int Game_Shutdown(void *parms)
{
// this function is where you shutdown your game and
// release all resources that you allocated

// return success
return(1);

} // end Game_Shutdown

///

void Init_Blocks(void)
{
// initialize the block field
for (int row=0; row < NUM_BLOCK_ROWS; row++)

for (int col=0; col < NUM_BLOCK_COLUMNS; col++)
blocks[row][col] = row*16+col*3+16;

} // end Init_Blocks

///

void Draw_Blocks(void)
{
// this function draws all the blocks in row major form
int x1 = BLOCK_ORIGIN_X, // used to track current position

y1 = BLOCK_ORIGIN_Y;

// draw all the blocks
for (int row=0; row < NUM_BLOCK_ROWS; row++)

{

0372313618 CH01 10/26/99 9:35 AM Page 38

CHAPTER 1
Journey into the Abyss

39

// reset column position
x1 = BLOCK_ORIGIN_X;

// draw this row of blocks
for (int col=0; col < NUM_BLOCK_COLUMNS; col++)

{
// draw next block (if there is one)
if (blocks[row][col]!=0)

{
// draw block
Draw_Rectangle(x1-4,y1+4,

x1+BLOCK_WIDTH-4,y1+BLOCK_HEIGHT+4,0);

Draw_Rectangle(x1,y1,x1+BLOCK_WIDTH,
y1+BLOCK_HEIGHT,blocks[row][col]);

} // end if

// advance column position
x1+=BLOCK_X_GAP;
} // end for col

// advance to next row position
y1+=BLOCK_Y_GAP;

} // end for row

} // end Draw_Blocks

///

void Process_Ball(void)
{
// this function tests if the ball has hit a block or the paddle
// if so, the ball is bounced and the block is removed from
// the playfield note: very cheesy collision algorithm :)

// first test for ball block collisions

// the algorithm basically tests the ball against each
// block’s bounding box this is inefficient, but easy to
// implement, later we’ll see a better way

int x1 = BLOCK_ORIGIN_X, // current rendering position
y1 = BLOCK_ORIGIN_Y;

int ball_cx = ball_x+(BALL_SIZE/2), // computer center of ball
ball_cy = ball_y+(BALL_SIZE/2);

// test of the ball has hit the paddle
if (ball_y > (SCREEN_HEIGHT/2) && ball_dy > 0)

{
// extract leading edge of ball

continues

0372313618 CH01 10/26/99 9:35 AM Page 39

Windows Programming Foundations

40 PART I

LISTING 1.3 Continued

int x = ball_x+(BALL_SIZE/2);
int y = ball_y+(BALL_SIZE/2);

// test for collision with paddle
if ((x >= paddle_x && x <= paddle_x+PADDLE_WIDTH) &&

(y >= paddle_y && y <= paddle_y+PADDLE_HEIGHT))
{
// reflect ball
ball_dy=-ball_dy;

// push ball out of paddle since it made contact
ball_y+=ball_dy;

// add a little english to ball based on motion of paddle
if (KEY_DOWN(VK_RIGHT))

ball_dx-=(rand()%3);
else
if (KEY_DOWN(VK_LEFT))

ball_dx+=(rand()%3);
else

ball_dx+=(-1+rand()%3);

// test if there are no blocks, if so send a message
// to game loop to start another level
if (blocks_hit >= (NUM_BLOCK_ROWS*NUM_BLOCK_COLUMNS))

{
game_state = GAME_STATE_START_LEVEL;
level++;
} // end if

// make a little noise
MessageBeep(MB_OK);

// return
return;

} // end if

} // end if

// now scan thru all the blocks and see if ball hit blocks
for (int row=0; row < NUM_BLOCK_ROWS; row++)

{
// reset column position
x1 = BLOCK_ORIGIN_X;

// scan this row of blocks
for (int col=0; col < NUM_BLOCK_COLUMNS; col++)

{
// if there is a block here then test it against ball

0372313618 CH01 10/26/99 9:35 AM Page 40

CHAPTER 1
Journey into the Abyss

41

if (blocks[row][col]!=0)
{
// test ball against bounding box of block
if ((ball_cx > x1) && (ball_cx < x1+BLOCK_WIDTH) &&

(ball_cy > y1) && (ball_cy < y1+BLOCK_HEIGHT))
{
// remove the block
blocks[row][col] = 0;

// increment global block counter, so we know
// when to start another level up
blocks_hit++;

// bounce the ball
ball_dy=-ball_dy;

// add a little english
ball_dx+=(-1+rand()%3);

// make a little noise
MessageBeep(MB_OK);

// add some points
score+=5*(level+(abs(ball_dx)));

// that’s it -- no more block
return;

} // end if

} // end if

// advance column position
x1+=BLOCK_X_GAP;
} // end for col

// advance to next row position
y1+=BLOCK_Y_GAP;

} // end for row

} // end Process_Ball

///

int Game_Main(void *parms)
{
// this is the workhorse of your game it will be called
// continuously in real-time this is like main() in C
// all the calls for you game go here!

char buffer[80]; // used to print text

continues

0372313618 CH01 10/26/99 9:35 AM Page 41

Windows Programming Foundations

42 PART I

LISTING 1.3 Continued

// what state is the game in?
if (game_state == GAME_STATE_INIT)

{
// initialize everything here graphics
DD_Init(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_BPP);

// seed the random number generator
// so game is different each play
srand(Start_Clock());

// set the paddle position here to the middle bottom
paddle_x = PADDLE_START_X;
paddle_y = PADDLE_START_Y;

// set ball position and velocity
ball_x = 8+rand()%(SCREEN_WIDTH-16);
ball_y = BALL_START_Y;
ball_dx = -4 + rand()%(8+1);
ball_dy = 6 + rand()%2;

// transition to start level state
game_state = GAME_STATE_START_LEVEL;

} // end if
//
else
if (game_state == GAME_STATE_START_LEVEL)

{
// get a new level ready to run

// initialize the blocks
Init_Blocks();

// reset block counter
blocks_hit = 0;

// transition to run state
game_state = GAME_STATE_RUN;

} // end if
///
else
if (game_state == GAME_STATE_RUN)

{
// start the timing clock
Start_Clock();

// clear drawing surface for the next frame of animation
Draw_Rectangle(0,0,SCREEN_WIDTH-1, SCREEN_HEIGHT-1,200);

0372313618 CH01 10/26/99 9:35 AM Page 42

CHAPTER 1
Journey into the Abyss

43

// move the paddle
if (KEY_DOWN(VK_RIGHT))

{
// move paddle to right
paddle_x+=8;

// make sure paddle doesn’t go off screen
if (paddle_x > (SCREEN_WIDTH-PADDLE_WIDTH))

paddle_x = SCREEN_WIDTH-PADDLE_WIDTH;

} // end if
else
if (KEY_DOWN(VK_LEFT))

{
// move paddle to right
paddle_x-=8;

// make sure paddle doesn’t go off screen
if (paddle_x < 0)

paddle_x = 0;

} // end if

// draw blocks
Draw_Blocks();

// move the ball
ball_x+=ball_dx;
ball_y+=ball_dy;

// keep ball on screen, if the ball hits the edge of
// screen then bounce it by reflecting its velocity
if (ball_x > (SCREEN_WIDTH - BALL_SIZE) || ball_x < 0)

{
// reflect x-axis velocity
ball_dx=-ball_dx;

// update position
ball_x+=ball_dx;
} // end if

// now y-axis
if (ball_y < 0)

{
// reflect y-axis velocity
ball_dy=-ball_dy;

// update position
ball_y+=ball_dy;
} // end if

else

continues

0372313618 CH01 10/26/99 9:35 AM Page 43

Windows Programming Foundations

44 PART I

LISTING 1.3 Continued

// penalize player for missing the ball
if (ball_y > (SCREEN_HEIGHT - BALL_SIZE))

{
// reflect y-axis velocity
ball_dy=-ball_dy;

// update position
ball_y+=ball_dy;

// minus the score
score-=100;

} // end if

// next watch out for ball velocity getting out of hand
if (ball_dx > 8) ball_dx = 8;
else
if (ball_dx < -8) ball_dx = -8;

// test if ball hit any blocks or the paddle
Process_Ball();

// draw the paddle and shadow
Draw_Rectangle(paddle_x-8, paddle_y+8,

paddle_x+PADDLE_WIDTH-8,
paddle_y+PADDLE_HEIGHT+8,0);

Draw_Rectangle(paddle_x, paddle_y,
paddle_x+PADDLE_WIDTH,
paddle_y+PADDLE_HEIGHT,PADDLE_COLOR);

// draw the ball
Draw_Rectangle(ball_x-4, ball_y+4, ball_x+BALL_SIZE-4,

ball_y+BALL_SIZE+4, 0);
Draw_Rectangle(ball_x, ball_y, ball_x+BALL_SIZE,

ball_y+BALL_SIZE, 255);

// draw the info
sprintf(buffer,”F R E A K O U T Score %d //

Level %d”,score,level);
Draw_Text_GDI(buffer, 8,SCREEN_HEIGHT-16, 127);

// flip the surfaces
DD_Flip();

// sync to 33ish fps
Wait_Clock(30);

// check of user is trying to exit
if (KEY_DOWN(VK_ESCAPE))

0372313618 CH01 10/26/99 9:35 AM Page 44

CHAPTER 1
Journey into the Abyss

45

{
// send message to windows to exit
PostMessage(main_window_handle, WM_DESTROY,0,0);

// set exit state
game_state = GAME_STATE_SHUTDOWN;

} // end if

} // end if
///
else
if (game_state == GAME_STATE_SHUTDOWN)

{
// in this state shut everything down and release resources
DD_Shutdown();

// switch to exit state
game_state = GAME_STATE_EXIT;

} // end if

// return success
return(1);

} // end Game_Main

//

Cool, huh? That’s the entire Win32/DirectX game. Well, almost. There are a few
hundred lines of code in the BLACKBOX.CPP source file, but we’ll just pretend that it’s
like DirectX and someone else wrote it (me!). Anyway, let’s take a quick look at the
contents of Listing 1.3.

Basically, Windows needs to have what’s called an event loop. This is standard for all
Windows programs since Windows is, for the most part, event-driven. However,
games aren’t event-driven; they run at all times, whether the user does something or
not. So we need to at least support a minimum event loop to make Windows happy.
The code that implements this is in WinMain()—jeez, that’s a surprise, huh?

WinMain() is the main entry point for all Windows programs, just like main() is the
entry point for all DOS/UNIX programs (please wash your mouth out if you said
“UNIX” out loud). In any case, the WinMain() for FreakOut creates a window and
then enters right into the event loop. If Windows needs to do something, it does so.
When all the basic event handling is over, Game_Main() is called. This is where the
real action occurs for our game.

0372313618 CH01 10/26/99 9:35 AM Page 45

Windows Programming Foundations

46 PART I

If you wanted to, you could loop in Game_Main() forever, never releasing it back to
the main event loop in WinMain(). But this would be bad because Windows would
never receive any messages and you would starve the system. Alas, what we need to
do is perform one frame of animation and logic and then return back to WinMain().
This way, Windows will continue to function and process messages. If this all sounds
a little hocus-pocus, don’t worry—it gets worse in the next chapter <BG>.

Once in Game_Main(), the logic for FreakOut is executed. The game image is ren-
dered into an offscreen workspace and then finally shown on the display at the end of
the loop via the DD_FLIP() call. So what I want you to do is take a look at all the
game states and try to follow each section of the game loop and what it does. To play
the game, simply click on FREAKOUT.EXE. The program will launch immediately. The
controls are

Right arrow—Move paddle right.

Left arrow—Move paddle left.

Esc—Exit back to Windows.

Also, there’s a 100-point penalty if you miss the ball, so watch it!

When you feel comfortable with the game code and gameplay, try modifying the
game and making changes to it. You could add different background colors (0–255 are
valid colors), more balls, a paddle that changes size, and more sound effects (which
I’m making right now with the Win32 API function MessageBeep() function).

Summary
Well, I think that’s about the quickest crash course in game programming I have ever
given! We covered a lot of ground, but think of it as the “back of the box” version of
the book. I just wanted to give you a feel for all the things that we are going to talk
about and learn in this book. In addition, it’s always good to take a look at a complete
game because it generates a lot of questions for you to think about.

Now, before moving on to Chapter 2, which covers Windows programming, make
sure that you feel comfortable with compiling the FreakOut game. If you aren’t, open
up the compiler book and RTFM. I’ll be waiting.

0372313618 CH01 10/26/99 9:35 AM Page 46

The Windows
Programming Model

“Lilu Dallas Multipass!”

—Lilu, The 5th Element

Windows programming is like going to the dentist: You know
it’s good for you, but no one likes doing it. Am I right? In this
chapter, I’m going to show you the basics of Windows program-
ming using my “Zen” methodology—or, in other words, the easy
way. I can’t promise that you’ll like going to the dentist after
reading this chapter, but I can promise you that you’ll like
Windows programming a lot more than you ever did! Here’s
what you’ll learn:

• The history of Windows

• Basic Windows architecture

• Windows’ classes

• Creating Windows

• Windows event handlers

• Event-driven programming and event loops

• Opening multiple windows

CHAPTER 2

0472313618 CH02 10/26/99 9:37 AM Page 47

Windows Programming Foundations

48 PART I

The Genesis of Windows
To put you in the mood for the onslaught of horror that I’m about to unleash upon
your mind (especially you DOS diehards), let’s take a quick look at how Windows
has shaped up over the past years and its relationship to the game development
world—shall we?

Early Windows Versions
It all began with the release of Windows 1.0. This was Microsoft’s first attempt at a
commercial windowed operating system, and it was pretty much a failure. Windows
1.0 was based completely on DOS (big mistake), wasn’t multitasking, ran really
slow, and looked really bad. Its looks were probably the most important reason for
its failure <BG>. Sarcasm aside, the problem was that Windows 1.0 needed much
more hardware, graphics, and sound capabilities than the 80286 (or worst yet, 8086)
machines of the time had to offer.

Nevertheless, Microsoft forged ahead, and shortly thereafter it released Windows 2.0.
I actually remember working at Software Publishing Corporation when we got the
beta of Windows 2.0. There was a boardroom filled with executives and the president
of the company (as usual, he had a cocktail in his hand). We ran the Windows 2.0 beta
demo and loaded multiple applications, and it seemed to work. However, at this time
IBM Presentation Manager (PM) was out. PM simply looked a lot better, and it was
based on OS/2, a vastly more advanced OS than Windows 2.0 (which was still a win-
dow manager simply overlaid on top of DOS). The verdict of the board that day: “Not
bad, but not a viable OS for development. Let’s stick to DOS, and can I have another
cocktail?”

Windows 3.x
In 1990, the planets must have been in alignment, because Windows 3.0 was released
and it was pretty damn good! It wasn’t up to par with Mac OS yet, but who cared?
(Real programmers hate Macs.) Finally, software developers could create sexy
applications on the PC and start migrating away from DOS for business applications.
This was the turning point for the PC and the thing that eventually put the Mac out of
the running for business applications and later for desktop publishing. (That, along
with Apple releasing new hardware every five minutes.)

Although Windows 3.0 worked well, it had a lot of problems, bugs, and so forth.
Heck, it was a quantum leap ahead of Windows 2.0 in technology, so problems were
to be expected. To fix these problems, Microsoft came out with Windows 3.1. The PR
and marketing departments originally wanted to call it Windows 4.0, but Microsoft
decided to simply call Windows 3.1 because it just didn’t have enough features to
qualify as a major revision upgrade. Nor did it live up to all the hype the marketing
department had built up.

0472313618 CH02 10/26/99 9:37 AM Page 48

CHAPTER 2
The Windows Programming Model

49

Windows 3.1 was very solid. It had multimedia extensions like sound and video
support, and it was a good all-around OS that got work done for the user in a uniform
manner. In addition, there was another version called Windows 3.11 (Windows for
Workgroups) with network support. The only problem was that Windows 3.1 was still
a DOS application, for the most part, and ran under a DOS Extender.

Windows 95
On the other side of the planet, the game programming community was still chanting
“DOS TILL HELL FREEZES OVER!”, and I was out in front burning a Windows 3.1
box myself! However, in 1995 hell did start to freeze over… Windows 95 was
released, and it was a true 32-bit, multitasking, multithreaded operating system.
Granted, it had some 16-bit code left in it, but for the most part, Windows 95 was the
ultimate development and release platform for the PC.

(Of course, Windows NT 3.0 was also available. But NT just wasn’t feasible for the
average user, so I’m not even acknowledging it yet in my story.)

When Windows 95 was released, it was the first time ever that I actually liked
programming for Windows. I always hated Windows 1.0, 2.0, 3.0, and 3.1 for
programming, although I hated it less and less with each release. But when
Windows 95 came out, there was one thing that changed my mind, as well as a lot
of other people’s—it looked cool! That’s all I needed.

The most important thing in the game programming business is how the
box looks and how the screen shots you send to magazines look.
Sending the reviewers free stuff works too.

So almost overnight, Windows 95 changed the computing business. Sure, many com-
panies today are still using Windows 3.1 (can you believe that?), but Windows 95
made the Intel-based PC the computer of choice for all applications—except games.
Yes, DOS still had the hearts of game programmers, even though they knew it was
only a matter of time.

In 1996, Microsoft released the Game SDK, which was basically the first version of
DirectX. This technology worked on Windows 95 only, but it was simply too slow to
compete with DOS games such as DOOM and Duke Nukem. Developers continued to
develop for DOS32, but they knew it was only a matter of time before the DirectX
technology would be fast enough to make games on the PC.

By version 3.0, DirectX was as fast as DOS32 on the same machines. By version 5.0,
DirectX was very clean and the promises of the technology were coming true. But

Tip

0472313618 CH02 10/26/99 9:37 AM Page 49

Windows Programming Foundations

50 PART I

we’ll talk more about that later when we cover DirectX in Chapter 5, “DirectX
Fundamentals and the Dreaded COM.” For now, just realize that Win32/DirectX is the
only way to go on the PC for games. Back to the history lesson.

Windows 98
In mid-1998, Windows 98 was released. It’s more of an evolutionary step than a
revolutionary one, like Windows 95, but it’s important nonetheless. Windows 98 is
like a hot rod—it’s sleek, fast, and kicks ass! It’s totally 32-bit, has support for
everything you can think of, and is open-ended for expansion. And it has DirectX,
multimedia, 3D graphics, networking, and the Internet all integrated into it very
nicely.

Windows 98 is also very robust compared to Windows 95. Sure, Windows 98 still
crashes and tweaks out, but believe me, there is a lot less of that. Furthermore,
plug-and-play actually works, and works well—it’s about time!

Windows NT
Now we can talk about Windows NT. At the time of this writing, Windows NT is
currently on release 5.0. And as far as I can tell, ultimately it’s going to replace
Windows 9X as the OS of choice for everyone. NT is simply a lot tighter than
Windows 9X; furthermore, most game programmers develop on NT and then release
on Windows 9X. The cool thing about NT 5.0 is that it has full plug-and-play support,
along with Win32/DirectX, so applications written for Windows 9X with DirectX will
work on NT 5.0+. This is great news, since now game developers who write PC
games have the largest market potential in history.

So what’s the bottom line? If you write a Win32 application with DirectX (or not), it
will work on Windows 95, 98, and NT 5.0+. This is a good thing. Hence, everything
you learn in this book is applicable to at least three operating systems, and maybe
more when NT along with DirectX is on other machines, like DEC Alphas. And don’t
forget Windows CE—DirectX and a subset of Win32 work on that system, too!

Basic Windows Architecture: Win9X/NT
Windows, unlike DOS, is a multitasking operating system designed to allow a number
of applications and/or smaller processes to run at the same time, using the hardware to
its fullest. This means that Windows is a shared environment—one application can’t
take over the entire system. Although Windows 95, 98, and NT are similar, there are a
number of technical differences. However, as far as we are concerned here, we can
generalize without too much drama. I will refer to the Windows machine as a Win
9X/NT or Windows box most of the time. So let’s get started!

0472313618 CH02 10/26/99 9:37 AM Page 50

CHAPTER 2
The Windows Programming Model

51

Multitasking and Multithreading
As I said, Windows allows a number of different applications to be executed simulta-
neously in a round-robin fashion, where each application gets a small time slice to run
in and then the next application takes its turn. As you can see in Figure 2.1, the CPU
is shared among a number of different applications in a circular manner. Figuring out
the exact methodology that selects the next application, and the amount of time allot-
ted to each application, is the job of the scheduler.

Figure 2.1
Multiprocessing in

action with a single
processor.

Word Processor

Process 2

Game Program

Process 0

Print Spooler

Process 1

Paint Program

Process 3

CPU
Intel Inside

Execution Sequence: 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, …

The scheduler may be very simple, running each application for a fixed number of
milliseconds, or it may be very complex, giving applications various levels of priority
and preempting applications or events with lower priority. In the case of Win 9X/NT,
the scheduler is priority-based with preemption. This means that some applications
can have more processor time than others, but if an application needs the CPU, the
current task can be blocked or preempted while another task runs.

However, you don’t need to worry much about this unless you’re writing OS or real-
time code, where exact details matter. In most cases, Windows will run and schedule
your application, and you will have nothing to do with it.

Taking a closer look at Windows, we see that not only is it multitasking, but it’s multi-
threaded. This means that programs are really composed of a number of simpler
threads of execution. These threads are scheduled just like heavier-weight processes,
such as programs. In fact, right now there are probably 30 to 50 threads running on
your machine, performing various tasks. So in reality, you may have a single program
running that consists of one or more threads of execution.

0472313618 CH02 10/26/99 9:37 AM Page 51

Windows Programming Foundations

52 PART I

Take a look at Figure 2.2 to see a more realistic multithreaded view of Windows. As
you can see, each program actually consists of a number of worker threads in addition
to the main thread.

Figure 2.2
A more realistic mul-

tithreaded view of
Windows.

Process 0 Process 1 Process n

CPU

Thread 0 Thread 1 Thread 0 Thread 1

Thread 2

Thread 3

Thread 0 Thread 1 Thread 2

• • •

Each thread is
executed a small
amount of time.

Getting Info on the Threads
For some fun, let’s see how many threads are running on your machine right now. On
your Windows machine, press Ctrl+Alt+Delete to pop up the Active Program Task
Manager, which displays all of the running tasks (or processes). This isn’t exactly
what we want, but it’s close. What we really want is a tool or applet that displays the
actual threads that are executing. A number of shareware and commercial utilities do
this, but Windows comes with a couple of them built in.

Within the directory that Windows was installed in (WINDOWS\, in most cases), you
will find an executable named SYSMON.EXE (Windows 95/98) or PERFMON.EXE
(Windows NT). Figure 2.3 depicts SYSMON.EXE running on my Windows 98 machine.
As you can see, there is a wealth of information in addition to the number of threads
running, such as memory use and processor load. In fact, I like to keep SYSMON.EXE
running as I develop so I can see what’s going on and how the system is loaded.

Figure 2.3
Running SYSMON.EXE.

0472313618 CH02 10/26/99 9:37 AM Page 52

CHAPTER 2
The Windows Programming Model

53

You might be wondering if you have any control over the creation of threads. The
answer is yes!!! In fact, this is one of the most exciting things about Windows game
programming—we can create as many threads as we want to perform other tasks in
addition to our main game process.

In Windows 98/NT, there is actually a new type of execution object
called a fiber, which is even simpler than a thread.
(Get it? Threads are made of fibers.)

Note

This is much different than how a DOS game is written. DOS is a single-threaded OS,
meaning that once your program runs, it’s the only thing running (except for an inter-
rupt handler from time to time). Therefore, if you want any kind of multitasking or
multithreading, you must simulate it yourself (check out Sams Teach Yourself Game
Programming in 21 Days for a complete DOS-based multitasking kernel). And this is
exactly what game programmers have been doing over the years. Granted, simulating
multitasking and multithreading is nowhere near as robust as having a complete OS
that supports them, but for a single game, it works well enough.

Before we move into real Windows programming and the code that makes things hap-
pen, there is one detail that I want to mention. You might be thinking that Windows is
a magical OS because it allows multiple tasks or programs to run at once. Remember,
this is not true. If there is a single processor, only one execution stream, thread, pro-
gram, or whatever you want to call it can run at a time. Windows just switches
between them so quickly that it seems as if more than one program is running. On the
other hand, if you have more than one processor, multiple programs can run. For
example, I have a dual Pentium II computer, with two 400MHz Pentium II processors
running Windows NT 5.0. With this configuration, two instruction streams can be exe-
cuted at the same time.

In the near future, I would expect that new microprocessor architectures for personal
computers will allow multiple threads or fibers to be executed as part of the proces-
sors’ design. For example, the Pentium has two execution units—the U pipe and V
pipe. Hence, it can execute two instructions at once. However, these two instructions
are always from the same thread. Similarly, the Pentium II can execute up to five sim-
ple instructions at once, but again from the same thread.

The Event Model
Windows is a multitasking/multithreaded OS, but it’s also an event-driven OS. Unlike
DOS programs, most Windows programs sit and wait for the user to do something,
which fires an event, and then Windows responds to the event and takes action. Take a
look at Figure 2.4 to see this graphically. It depicts a number of application windows,

0472313618 CH02 10/26/99 9:37 AM Page 53

Windows Programming Foundations

54 PART I

each sending their events or messages to Windows to be processed. Windows does
some of the processing, but most of the messages or events are passed through to your
application program for processing.

Figure 2.4
Windows event

handling.
– x

Window 3

WinMain()
{
}

WinProc()

Local
event
Queue– x

Window 2

WinMain()
{
}

WinProc()

Local
event
Queue

– x

Window 1

WinMain()
{
}

WinProc()

Local
event
Queue

msg 1
msg 2

•
•
•
•
•
•

msg n

System Event Queue

Messages are
routed to each
window app.

The good news is that you don’t need to concern yourself with the other applications
that are running. Windows will handle them for you. All you have to worry about is
your own application and the processing of messages for your window(s). This wasn’t
the entire truth in Windows 3.0/3.1. Those versions of Windows weren’t true multi-
tasking operating systems, and each application had to yield to the next. This meant
that applications running under these versions had a rather rough or sluggish feel. If
other applications were hogging the system, there wasn’t anything that the compliant
applications could do. However, this isn’t the case with Windows 9X/NT. The OS will
pull the rug out from under your application whenever it feels like it—of course, it
pulls it so quickly that you’ll never notice!

At this point, you know all you need to know about OS concepts. Luckily, Windows
is such a nice OS to write games for these days that you won’t have to worry about
scheduling—all you need to worry about is the game code and pushing the machine
to its limits.

Later in this chapter, we’ll get into some actual programming so you can see just how
easy Windows programming is. But (there’s always a but) before we do that, we need
to cover some conventions that Microsoft programmers like to use. This way, you
won’t be bewildered by all the weird function and variable naming.

0472313618 CH02 10/26/99 9:37 AM Page 54

CHAPTER 2
The Windows Programming Model

55

Programming the Microsoft Way:
Hungarian Notation

If you’re running a company like Microsoft, with thousands of programmers working
on various projects, at some point you have to come up with a standard way of writ-
ing code. Otherwise, chaos ensues. Therefore, a man named Charles Simonyi was put
in charge of creating a specification for writing Microsoft code. This spec has been
used ever since as a basic guideline for writing code. All Microsoft APIs, interfaces,
technical articles, and so on use these conventions.

The specification is generally referred to as Hungarian notation, probably because
creating it and working those late hours made him hungry. Or maybe it was because
he was from Hungary. We’ll never know. The point is, you have to learn it so you can
read Microsoft code.

Hungarian notation consists of a number of conventions relating to naming:

• Variables

• Functions

• Types and constants

• Classes

• Parameters

Table 2.1 contains all the prefix codes used in Hungarian notation. These codes are
used to prefix variable names in most cases, along with other conventions depending
on what is being named. Refer to the table for the remaining explanations.

TABLE 2.1 The Hungarian Notation Prefix Codes Specification

Prefix Data Type (Base Type)

c char

by BYTE (unsigned char)

n short or int (refers to a number)

i int

x, y short (used as x-coordinate or y-coordinate, generally)

cx, cy short (used to denote x or y lengths; c stands for count)

b BOOL (int)

w UINT (unsigned int) or WORD (unsigned WORD)

l LONG (long)

dw DWORD (unsigned long)

fn Function pointer
continues

0472313618 CH02 10/26/99 9:37 AM Page 55

Windows Programming Foundations

56 PART I

TABLE 2.1 Continued

Prefix Data Type (Base Type)

s String

sz, str String terminated by 0 byte

lp 32-bit long pointer

h Handle (used to refer to Windows objects)

msg Message

Variable Naming
With Hungarian notation, variables are prefixed by the codes in Table 2.1. In addition,
if a variable name is made up of one or more subnames, each subname is capitalized.
Here are some examples:

char *szFileName; // a null terminated string

int *lpiData; // a 32-bit pointer to an int

BOOL bSemaphore; // a boolean value

WORD dwMaxCount; // a 32-bit unsigned WORD

Although I know of no specification for local variables of a function, there is a loose
one for globals:

int g_iXPos; // a global x-position

int g_iTimer; // a global y-position

char *g_szString; // a global NULL terminated string

Basically, you begin the variable with g_, or sometimes just plain g. “When I grew up,
I was a big G, lots of money…” Sorry, I had a rap attack <BG>.

Function Naming
Functions are named in the same way variables are, but without the prefixes. In other
words, just capitalize all the first letters of subnames. Here are some examples:

int PlotPixel(int ix, int iy, int ic);

void *MemScan(char *szString);

Also, underscores are illegal. For example, the following wouldn’t be a valid
Hungarian-compliant function name:

int Get_Pixel(int ix, int iy);

0472313618 CH02 10/26/99 9:38 AM Page 56

John H Warriner

Errata
" // a global y-position" should be "// a global timer"

CHAPTER 2
The Windows Programming Model

57

Type and Constant Naming
All types and constants are in uppercase, but you’re allowed to use underscores in the
names. For example:

const LONG NUM_SECTORS = 100; // a C++ style constant

#define MAX_CELLS 64 // a C style constant

#define POWERUNIT 100 // a C style constant

typedef unsigned char UCHAR; // a user defined type

Nothing too unusual here—fairly standard definitions. Although most Microsoft
programmers don’t use underscores, I prefer to use them because it makes the names
more readable.

Tip In C++, the const keyword has more than one meaning, but in the
preceding code lines, it’s used to create a constant variable. This is simi-
lar to #define, but it has the added property of retaining the type
information. const is more like a variable than a simple preprocessed
text replacement like #define. It allows compiler type-checking and
casting to occur.

Class Naming
The naming conventions used for classes might bother you a bit. However, I have seen
many people who use this convention and just made it up on their own. Anyway, all
C++ classes must be prefixed by a capital C, and the first letter of each subname of the
class name must be capitalized. Here is an example:

class CVector
{
public:

CVector(); {ix=iy=iz=imagnitude = 0;}
CVector(int x, int y, int z) {ix=x; iy=y; iz=z;}
.
.

private:

int ix,iy,iz; // the position of the vector
int imagnitude; // the magnitude of the vector

};

0472313618 CH02 10/26/99 9:38 AM Page 57

Windows Programming Foundations

58 PART I

Parameter Naming
Parameters to functions follow the same naming conventions that normal variables do.
However, this is not a necessity. For example, you might see a function definition that
looks like this:

UCHAR GetPixel(int x, int y);

In this case, the more Hungarian prototype would be

UCHAR GetPixel(int ix, int iy);

But I have seen it both ways.

And finally, you might not even see the variable names, but just the types, as in this
example:

UCHAR GetPixel(int, int);

Of course, this would only be used for the prototype, and the real function declaration
must have variable names to bind to, but you get the point.

Just because you know how to read Hungarian notation doesn’t mean
that you have to use it! In fact, I have been programming for over 20
years, and I’m not going to change my programming style for anyone
(well, maybe Pamela Anderson). Hence, the code in this book will use a
Hungarian-like coding style where Win32 API functions are concerned,
but it’ll use my own style in other places. One thing is for certain—I’m
not capitalizing each word of my variable names! And I’m using under-
scores, too!

Note

The World’s Simplest Windows Program
Now that you have a general overview of the Windows OS and some of its properties
and underlying design issues, let’s begin our journey into real Windows programming
with our first Windows program.

It’s customary to write a “Hello World” program in any new language or OS that
you’re learning, so let’s try that. Listing 2.1 is the standard DOS-based “Hello World.”

LISTING 2.1 A DOS-Based “Hello World” Program

// DEMO2_1.CPP - standard version
#include <stdio.h>

// main entry point for all standard DOS/console programs
void main(void)

0472313618 CH02 10/26/99 9:38 AM Page 58

CHAPTER 2
The Windows Programming Model

59

{
printf(“\nTHERE CAN BE ONLY ONE!!!\n”);
} // end main

Now let’s see how it’s done with Windows.

By the way, if you want to compile DEMO2_1.CPP, you can actually
create what’s called a console application with the VC++ or Borland
compilers. These are like DOS applications, but 32-bit. They run only in
text mode, but they’re great for testing out ideas and algorithms.

It All Begins with WinMain()
As I mentioned before, all Windows programs begin execution at the function named
WinMain(). This is equivalent to main() in a straight DOS program. What you do in
WinMain() is up to you. If you want, you can create a window, start processing
events, and draw things on the screen. On the other hand, you can just make a call to
one of the hundreds (or are there thousands?) of Win32 API functions. This is what
we’re going to do.

I just want to print something on the screen in a little message box. There just so hap-
pens to be a Win32 API function that does this—MessageBox(). Listing 2.2 is a com-
plete, compilable Windows program that creates and displays a message box that you
can move around and close.

LISTING 2.2 Your First Windows Program

// DEMO2_2.CPP - a simple message box
#define WIN32_LEAN_AND_MEAN

#include <windows.h> // the main windows headers
#include <windowsx.h> // a lot of cool macros

// main entry point for all windows programs
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

{
// call message box api with NULL for parent window handle
MessageBox(NULL, “THERE CAN BE ONLY ONE!!!”,

“MY FIRST WINDOWS PROGRAM”,
MB_OK | MB_ICONEXCLAMATION);

// exit program

continues

Trick

0472313618 CH02 10/26/99 9:38 AM Page 59

Windows Programming Foundations

60 PART I

LISTING 2.2 Continued

return(0);

} // end WinMain

To compile the program, follow these steps:

1. Create a new Win32 .EXE project and include DEMO2_2.CPP from T3DCHAP02\
on the CD-ROM.

2. Compile and link the program.

3. Run it! (Or run the precompiled version, DEMO2_2.EXE, on the CD-ROM.)

And you thought that a basic Windows program had hundreds of lines of code!
Anyway, when you compile and run the program, you should see something like
what’s depicted in Figure 2.5.

Figure 2.5
Running

DEMO2_2.EXE.

Dissecting the Program
Now that you have a complete Windows program, let’s take it apart line by line and
see what’s going on. The very first line of code is

#define WIN32_LEAN_AND_MEAN

This deserves a bit of explanation. There are two ways to create Windows programs—
with the Microsoft Foundation Classes (MFC), or with the Software Development Kit
(SDK). MFC is much more complex, totally based on C++ and classes, and 10 times
more powerful and complicated than you will ever need for games. On the other
hand, the SDK is manageable, can be learned in a week or two (at least the rudiments
of it), and uses straight C. Hence, the SDK is what I’m going to use in this book.

So, WIN32_LEAN_AND_MEAN instructs the compiler (header file logic, actually) not to
include extraneous MFC overhead. Now that we have that out of the way, let’s
move on.

Next, the following header files are included:
#include “windows.h”

#include “windowsx.h”

The first include of “windows.h” really includes all the Windows header files. There
are a lot of them, so this is something like an inclusion macro to save you from
manually including dozens of explicit header files.

0472313618 CH02 10/26/99 9:38 AM Page 60

CHAPTER 2
The Windows Programming Model

61

The second include, “windowsx.h”, is a header that contains a number of important
macros and constants that make Windows programming easier.

And now, for the important part—the main entry point of all Windows applications,
WinMain():

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,

LPSTR lpcmdline,
int ncmdshow);

First off, you should notice that weird WINAPI declarator. This is equivalent to the
PASCAL function declarator, which forces the parameters to be passed from left to
right, rather than the normal right-to-left order with the default CDECL. However, the
PASCAL calling convention declarator is now obsolete, and WINAPI has taken its place.
You must use WINAPI for the WinMain () function; otherwise, the startup code will
end up passing the parameters incorrectly to the function!

Examining Parameters

Next, let’s look at each of the parameters in detail:

• hinstance—This parameter is the instance handle that Windows generates for
your application. Instances are pointers or numbers used to track resources. In
this case, hinstance is used to track your application, like a name or address.
When your application is executed, Windows will supply this parameter.

• hprevinstance—This parameter is no longer used, but in past versions of
Windows, it tracked the previous instance of the application (in other words, the
instance of the application that launched the current one). No wonder Microsoft
got rid of it! It’s like time travel—it gives me a headache thinking about it.

• lpcmdline—This is a null-terminated string, similar to the command-line para-
meters of the standard C/C++ main(int argc, char **argv) function, except
that there isn’t a separate parameter analogous to argc indicating the number of
command-line parameters. For example, if you create a Windows application
called TEST.EXE and launch it with the following parameters:

TEST.EXE one

lpcmdline will contain the following data:

lpcmdline = “one two three”

Notice that the name of the .EXE itself is not part of the command line.

• ncmdshow—This final parameter is simply an integer that is passed to the appli-
cation during launch, indicating how the main application window is to be
opened. Thus, the user has a little control over how the application starts up. Of
course, as the programmer, you can disregard this if you want, but it’s there if
you want to use it. (You pass it to ShowWindow(), but we’re getting ahead of our-
selves.) Table 2.2 lists the most common values that ncmdshow can take on.

0472313618 CH02 10/26/99 9:38 AM Page 61

Errata

Errata
"TEST.EXE one" should be "TEST.EXE one two three"

Windows Programming Foundations

62 PART I

Table 2.2 Windows Codes for ncmdshow

Value Function

SW_SHOWNORMAL Activates and displays a window. If the window is minimized or
maximized, Windows restores it to its original size and position.
An application should specify this flag when displaying the
window for the first time.

SW_SHOW Activates the window and displays it in its current size and
position.

SW_HIDE Hides the window and activates another window.

SW_MAXIMIZE Maximizes the specified window.

SW_MINIMIZE Minimizes the specified window and activates the next top-level
window in the Z order.

SW_RESTORE Activates and displays the window. If the window is minimized
or maximized, Windows restores it to its original size and
position. An application should specify this flag when restoring
a minimized window.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized window.

SW_SHOWMINNOACTIVE Displays the window as a minimized window. The active window
remains active.

SW_SHOWNA Displays the window in its current state. The active window
remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The
active window remains active.

As you can see from Table 2.2, there are a lot of settings for ncmdshow (many of
which make no sense at this point). In reality, the majority of these settings will never
be sent in ncmdshow. You will use them with another function, ShowWindow(), which
actually displays a window once it’s created. However, we will get to this a little later
in the chapter.

The point I want to make is that Windows has a lot of options, flags, and so on that
you will never use, but they’re still there. It’s like VCR programming options—more
is always better, as long as you don’t need to use them if you don’t want to. Windows
is designed this way. It has to make everybody happy, so that means including a lot of
options. In fact, we will use SW_SHOW, SW_SHOWNORMAL, and SW_HIDE 99 percent of the
time, but you need to know the other for that one percent!

0472313618 CH02 10/26/99 9:38 AM Page 62

CHAPTER 2
The Windows Programming Model

63

Choosing a Message Box
Finally, let’s talk about the actual function call to MessageBox() within WinMain().
MessageBox() is a Win32 API function that does something useful for us, so we don’t
have to do it. It is used to display messages with various icons, along with a button or
two. You see, simply displaying messages is so common in Windows applications that
a function was written just to save application programmers the half hour or so it
would take to write one every time.

MessageBox() doesn’t do much, but it does enough to get a window up on the screen,
ask a question, and wait for the user’s input. Here is the prototype for MessageBox():

int MessageBox(HWND hwnd, // handle of owner window
LPCTSTR lptext, // address of text in message box
LPCTSTR lpcaption,// address of title of message box
UINT utype); // style of message box

The parameters are defined as follows:

• hwnd—This is the handle of the window you want the message box to be
attached to. At this point I haven’t covered window handles yet, so just think of
it as the parent of the message box. In the case of DEMO2_2.CPP, we are setting it
to NULL, so use the Windows desktop as the parent window.

• lptext—This is a null-terminated string containing the text you want to display.

• lpcaption—This is a null-terminated string containing the caption for the mes-
sage dialog box.

• utype—This is about the only exciting parameter of the bunch. It controls what
kind of message box is displayed.

Take a look at Table 2.3 to see a (somewhat abridged) list of the various
MessageBox() options.

TABLE 2.3 MessageBox() Options

Flag Description

The following settings control the general style of the message box

MB_OK The message box contains one pushbutton: OK. This is the
default.

MB_OKCANCEL The message box contains two pushbuttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two pushbuttons: Retry and Cancel.

MB_YESNO The message box contains two pushbuttons: Yes and No.

MB_YESNOCANCEL The message box contains three pushbuttons: Yes, No, and
Cancel.

continues

0472313618 CH02 10/26/99 9:38 AM Page 63

Windows Programming Foundations

64 PART I

TABLE 2.3 Continued

MB_ABORTRETRYIGNORE The message box contains three pushbuttons: Abort, Retry,
and Ignore.

This group controls the addition of an icon to add a little “poor man’s
multimedia”

MB_ICONEXCLAMATION An exclamation-point icon appears in the message box.

MB_ICONINFORMATION An icon consisting of a lowercase letter i in a circle appears
in the message box.

MB_ICONQUESTION A question-mark icon appears in the message box.

MB_ICONSTOP A stop-sign icon appears in the message box.

This flag group controls which button is highlighted by default

MB_DEFBUTTONn Where n is a number (1…4) indicating which button is the
default, numbered from left to right.

Note: There are additional advanced OS level flags, but we aren’t concerned with them. You can
always look them up in the online compiler Win32 SDK Help if you want to know more.

You can logically OR the values together in Table 2.3 to create the desired message
box. Usually, you will OR only one flag from each group.

And of course, like all good Win32 API functions, MessageBox() returns a value to let
you know what happened. In our case, who cares? But in general, you might want to
know the return value if the message box was a yes/no question and so forth. Table
2.4 lists the possible return values.

TABLE 2.4 Return Values for MessageBox()

Value Button Selected

IDABORT Abort

IDCANCEL Cancel

IDIGNORE Ignore

IDNO No

IDOK OK

IDRETRY Retry

IDYES Yes

Finally, a table that can list all the values without defoliating an entire forest! Anyway,
this completes the line-by-line analysis of our first Windows program—click!

0472313618 CH02 10/26/99 9:38 AM Page 64

CHAPTER 2
The Windows Programming Model

65

If you want to hear a sound, a cheap trick is to use the MessageBeep() function. You
can look it up in the Win32 SDK. It’s similar to the MessageBox() function as far as
simplicity of use. Here it is:

BOOL MessageBeep(UINT utype); // the sound to play

The different sounds can be from among the constants shown in Table 2.5.

TABLE 2.5 Sound Identifiers for MessageBeep()

Value Sound

MB_ICONASTERISK System asterisk

MB_ICONEXCLAMATION System exclamation

MB_ICONHAND System hand

MB_ICONQUESTION System question

MB_OK System default

0xFFFFFFFF Standard beep using the computer speaker—yuck!

Note: If you have an MS-Plus theme installed, you’re sure to get some interesting results.

See how cool the Win32 API is? There are literally hundreds of functions to play
with. Granted, they aren’t the fastest things in the world, but for general housekeep-
ing, I/O, and GUI stuff, they’re grrrreat! (I felt like Tony the Tiger for a second
<BG>.)

Let’s take a moment to summarize what we know at this point about Windows pro-
gramming. The first thing is that Windows is multitasking/multithreaded, so multiple
applications can run simultaneously. However, we don’t have to do anything to make
this happen. What does concern us is that Windows is event-driven. This means that
we have to process events (which we have no idea how to do at this point) and
respond to them. Okay, sounds good. And finally, all Windows programs start with the
function WinMain(), which has a few more parameters than the normal DOS main()
but is within the realm of logic and reason.

With all that in mind, it’s time to write a real Windows application. (But before we
start, you might want to grab something to drink. Normally I would say Mountain

Now I want you to get comfortable making changes to the program and
compiling it in different ways. Try mucking with various compiler
options, like optimization. Then try running the program through the
debugger and see if you can figure that out. When you’re done, come
back.

Tip

0472313618 CH02 10/26/99 9:38 AM Page 65

Windows Programming Foundations

66 PART I

Dew, but these days I’m a Red Bull man. Tastes like crap, but it keeps the synapses
going and the can looks cool.)

Real-World Windows Applications
(Without Puck)

Even though the goal of this book is to write 3D games that run on Windows, you
don’t need to know much about Windows programming. Actually, all you need is a
basic Windows program that opens a window, processes messages, calls the main
game loop, and that’s it. With that in mind, my goal in this section is to first show you
how to create simple Windows programs, but at the same time to lay the groundwork
for a game programming shell application that looks like a 32-bit DOS machine.

The main point of any Windows program is to open a window. A window is nothing
more than a workspace that displays information, such as text and graphics, that the
user can interact with. To create a fully functional Windows program, you only have
to do a few things:

1. Create a Windows class.

2. Create an event handler or WinProc.

3. Register the Windows class with Windows.

4. Create a window with the previously created Windows class.

5. Create a main event loop that retrieves and dispatches Windows messages to the
event handler.

Let’s take a look at each step in detail.

The Windows Class
Windows is really an object-oriented OS, so a lot of concepts and procedures in
Windows have their roots in C++. One of these concepts is Windows classes. Each
window, control, list box, dialog box, gadget, and so forth in Windows is actually a
window. What makes them all different is the class that defines them. A Windows
class is a description of a window type that Windows can handle.

There are a number of predefined Window classes, such as buttons, list boxes, file
selectors, and so on. However, you’re free to create your own Windows classes. In
fact, you will create at least one Windows class for each application you write.
Otherwise, your program would be rather boring. So you can think of a Windows
class as a template for Windows to follow when drawing your window, as well as
processing messages for it.

0472313618 CH02 10/26/99 9:38 AM Page 66

CHAPTER 2
The Windows Programming Model

67

Two data structures are available to hold Windows class information: WNDCLASS and
WNDCLASSEX. WNDCLASS is the older of the two and will probably be obsolete soon, so
we will use the new “extended” version, WNDCLASSEX. The structures are very similar,
and if you are interested, you can look up the old WNDCLASS in the Win32 Help.
Anyway, let’s take a look at WNDCLASSEX as defined in the Windows header files:

typedef struct _WNDCLASSEX
{
UINT cbSize; // size of this structure
UINT style; // style flags
WNDPROC lpfnWndProc; // function pointer to handler
int cbClsExtra; // extra class info
int cbWndExtra; // extra window info
HANDLE hInstance; // the instance of the application
HICON hIcon; // the main icon
HCURSOR hCursor; // the cursor for the window
HBRUSH hbrBackground; // the background brush to paint the window
LPCTSTR lpszMenuName; // the name of the menu to attach
LPCTSTR lpszClassName; // the name of the class itself
HICON hIconSm; // the handle of the small icon
} WNDCLASSEX;

So what you would do is create one of these structures and then fill in all the fields:

WNDCLASSEX winclass; // a blank windows class

The first field, cbSize, is very important (even Petzold forgot this in Programming
Windows 95). It is the size of the WNDCLASSEX structure itself. You might be wondering
why the structure needs to know how big it is. That’s a good question. The reason is
that if this structure is passed as a pointer, the receiver can always check the first field
to decide how long the data chunk is at the very least. It’s like a precaution and a little
helper info so other functions don’t have to compute the class size during runtime.
Therefore, all you have to do is set it like this:

winclass.cbSize = sizeof(WNDCLASSEX);

The next field contains the style information flags that describe the general properties
of the window. There are a lot of these flags, so I’m not going to show them all.
Suffice it to say that you can create any type of window with them. Table 2.6 shows a
good working subset of the possible flags. You can logically OR these values together
to derive the type of window you want.

TABLE 2.6 Style Flags for Window Classes

Flag Description

CS_HREDRAW Redraws the entire window if a movement or size adjustment
changes the width of the window.

continues

0472313618 CH02 10/26/99 9:38 AM Page 67

Windows Programming Foundations

68 PART I

TABLE 2.6 Continued

Flag Description

CS_VREDRAW Redraws the entire window if a movement or size adjustment
changes the height of the window.

CS_OWNDC Allocates a unique device context for each window in the class
(more on this later in the chapter).

CS_DBLCLKS Sends a double-click message to the window procedure when the
user double-clicks the mouse while the cursor is in a window
belonging to the class.

CS_PARENTDC Sets the clipping region of the child window to that of the parent
window so that the child can draw on the parent.

CS_SAVEBITS Saves the client image in a window so you don’t have to redraw it
every time the window is obscured, moved, etc. However, this
takes up more memory and is slower that doing it yourself.

CS_NOCLOSE Disables the Close command on the system menu.

Note: The most commonly used flags are highlighted.

Table 2.6 contains a lot of flags, and I can’t blame you if you’re confused. For now,
though, just set the style flags to indicate that you want the window to be redrawn if it
is moved or resized, and you want a static device context along with the ability to han-
dle double-click events.

I’m going to talk about device contexts in detail in Chapter 3, “Advanced Windows
Programming,” but basically they are used as data structures for graphics rendering
into a window. Hence, if you want to do graphics, you need to request a device con-
text for the particular window you are interested in. Alas, if you set the Windows class
so that it has its own device context via CS_OWNDC, you can save some time since you
don’t have to request one each time you want to do graphics. Did that help at all, or
did I make it worse? Windows is like that—the more you know, the more you don’t.
Anyway, here’s how to set the style field:

winclass.style = CS_VREDRAW | CS_HREDRAW | CS_OWNDC | CS_DBLCLICKS;

The next field of the WNDCLASSEX structure, lpfnWndProc, is a function pointer to the
event handler. Basically, what you are setting here is a callback function for the class.
Callback functions are fairly common in Windows programming and work like this:
When something happens, instead of you randomly polling for it, Windows notifies
you by calling a callback function you’ve supplied. Then, within the callback func-
tion, you take whatever action needs to be taken.

0472313618 CH02 10/26/99 9:38 AM Page 68

CHAPTER 2
The Windows Programming Model

69

This process is how the basic Window event loop and event handler work. You supply
a callback function to the Windows class (with a specific prototype, of course). When
an event occurs, Windows calls it for you, as Figure 2.6 shows. Again, we will cover
this more in later sections. But for now, just set it to the event function that you’ll
write in a moment:

winclass.lpfnWndProc = WinProc; // this is our function

Figure 2.6
The Windows event
handler callback in

action.

WinProc()

Windows

Winmain()

Windows
Application

Event Handler
supplied by you.

Call it for youLoop

Do work

Tip If you’re not familiar with function pointers, they are like virtual
functions in C++. If you’re not familiar with virtual functions, I guess I
have to explain them <BG>. Let’s say you have two functions that oper-
ate on two numbers:

int Add(int op1, int op2) {return(op1+op2);}
int Sub(int op1, int op2) {return(op1-op2);}

You want to be able to call either function with the same call. You can
do so with a function pointer, like this:

// define a function pointer that takes two int and returns
an int
int (Math*)(int, int);

Then you can assign the function pointer like this:

Math = Add;
int result = Math(1,2); // this really calls Add(1,2)
// result will be 3

Math = Sub;
int result = Math(1,2); // this really calls Sub(1,2)
// result will be –1

Cool, huh?

0472313618 CH02 10/26/99 9:38 AM Page 69

Windows Programming Foundations

70 PART I

The next two fields, cbClsExtra and cbWndExtra, were originally designed to instruct
Windows to save some extra space in the Windows class to hold extra runtime
information. However, most people don’t use these fields and simply set them to 0,
like this:

winclass.cbClsExtra = 0; // extra class info space
winclass.cbWndExtra = 0; // extra window info space

Moving on, next is the hInstance field. This is simply the hinstance that is passed to
the WinMain() function on startup, so just copy it in from WinMain():

winclass.hInstance = hinstance; // assign the application instance

The remaining fields relate to graphical aspects of the Windows class, but before I
discuss them, I want to take a quick moment to review handles.

Again and again you’re going to see handles in Windows programs and types: handles
to bitmaps, handles to cursors, handles to everything. Remember, handles are just
identifiers based on an internal Windows type. In fact, they are really integers. But
Microsoft might change this, so it’s a good idea to be safe and use the Microsoft
types. In any case, you’re going to see more and more “handles to [fill in the blank],”
so don’t trip out on me! And remember, any type prefixed by h is usually a handle.
Okay, back to the chalkboard.

The next field sets the type of icon that will represent your application. You have the
power to load your own custom icon, but for now you’re going to use a system icon,
which—you guessed it—you need a handle for. To retrieve a handle to a common
system icon, you can use the LoadIcon() function, like this:

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

This code loads the standard application icon—boring, but simple. If you’re interested
in the LoadIcon() function, take a look at its prototype below, and see Table 2.7 for
various icon options:

HICON LoadIcon(HINSTANCE hInstance, // handle of application instance
LPCTSTR lpIconName); // icon-name string or icon resource identifier

Here, hInstance is the instance of the application to load the icon resource from
(more on this later), but for now just set it to NULL to load one of the standard icons.
And lpIconName is a null-terminated string containing the name of the icon resource
to be loaded. However, when hInstance is NULL, lpIconName can be one of the values
in Table 2.7.

0472313618 CH02 10/26/99 9:38 AM Page 70

CHAPTER 2
The Windows Programming Model

71

TABLE 2.7 Icon Identifiers for LoadIcon()

Value Description

IDI_APPLICATION Default application icon

IDI_ASTERISK Asterisk

IDI_EXCLAMATION Exclamation point

IDI_HAND Hand-shaped icon

IDI_QUESTION Question mark

IDI_WINLOGO Windows logo

All right, we’re about halfway through all the fields. Take another breath, and let’s
forge on to the next field: hCursor. This is similar to hIcon in that it’s a handle to a
graphics object. However, hCursor differs in that it’s the handle to the cursor that will
be displayed when the pointer enters the client region of the window. LoadCursor() is
used to obtain a handle to a cursor that’s a resource or a predefined system cursor. We
will cover resources a bit later, but they are simply pieces of data, like bitmaps, cur-
sors, icons, sounds, etc., that are compiled into your application and can be accessed
at runtime. Anyway, here’s how to set the cursor for the Windows class:

winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

And here is the prototype for LoadCursor() (along with Table 2.8, which contains the
various system cursor identifiers):

HCURSOR LoadCursor(HINSTANCE hInstance,// handle of application instance
LPCTSTR lpCursorName); // name string or cursor resource identifier

Again, hInstance is the application instance of your .EXE that contains the resource
data to extract a custom cursor by name with. However, you aren’t using this func-
tionality yet and will set hInstance to NULL to allow default system cursors only.

lpCursorName identifies the resource name string or handle to the resource (which we
aren’t using at this point), or is a constant that identifies one of the system defaults
shown in Table 2.8.

TABLE 2.8 Values for LoadCursor()

Value Description

IDC_ARROW Standard arrow

IDC_APPSTARTING Standard arrow and small hourglass

IDC_CROSS Crosshair

IDC_IBEAM Text I-beam

IDC_NO Slashed circle

continues

0472313618 CH02 10/26/99 9:38 AM Page 71

Windows Programming Foundations

72 PART I

TABLE 2.8 Continued

Value Description

IDC_SIZEALL Four-pointed arrow

IDC_SIZENESW Double-pointed arrow pointing northeast and southwest

IDC_SIZENS Double-pointed arrow pointing north and south

IDC_SIZENWSE Double-pointed arrow pointing northwest and southeast

IDC_SIZEWE Double-pointed arrow pointing west and east

IDC_UPARROW Vertical arrow

IDC_WAIT Hourglass

Now we’re cooking! We’re almost done—the remaining fields are a little more
interesting. Let’s move on to hbrBackground.

Whenever a window is drawn or refreshed, at the very least, Windows will repaint the
background of the window’s client area for you with a predefined color, or brush in
Windows-speak. Hence, hbrbackground is a handle to the brush that you want the
window to be refreshed with. Brushes, pens, colors, and graphics are all part of
GDI—the Graphics Device Interface—and we will discuss them in detail in the next
chapter. For now, I’m going to show you how to request a basic system brush to paint
the window with. This is accomplished with the GetStockObject() function, as
shown in the following line of code:

winclass.hbrBackground = GetStockObject(WHITE_BRUSH);

GetStockObject() is a general function that retrieves a handle to one of the Windows
stock brushes, pens, palettes, or fonts. GetStockObject() takes a single parameter
indicating which one of these resources to load. Table 2.9 contains a list of possible
stock objects for brushes and pens only.

TABLE 2.9 Stock Object Identifiers for GetStockObject()

Value Description

BLACK_BRUSH Black brush

WHITE_BRUSH White brush

GRAY_BRUSH Gray brush

LTGRAY_BRUSH Light gray brush

DKGRAY_BRUSH Dark gray brush

HOLLOW_BRUSH Hollow brush

NULL_BRUSH Null brush

BLACK_PEN Black pen

0472313618 CH02 10/26/99 9:38 AM Page 72

CHAPTER 2
The Windows Programming Model

73

Value Description

WHITE_PEN White pen

NULL_PEN Null pen

The next field in the WNDCLASS structure is the lpszMenuName. This is a null-
terminated ASCII string of the menu resource’s name to load and attach to the
window. We will see how this works later in Chapter 3, “Advanced Windows
Programming.” For now, we’ll just set it to NULL:

winclass.lpszMenuName = NULL; // the name of the menu to attach

As I mentioned a while ago, each Windows class represents a different type of
window that your application can create. Classes are like templates, in a manner of
speaking, but Windows needs some way to track and identify them. Therefore, the
next field, lpszClassName, is for just that. This field is filled with a null-terminated
string that contains a text identifier for your class. I personally like using identifiers
like “WINCLASS1”, “WINCLASS2”, and so forth. It’s up to you, but it’s better to keep it
simple, like this:

winclass.lpszClassName = “WINCLASS1”; // the name of the class itself

After this assignment, you will refer to the new Windows class by its class name,
“WINCLASS1”—kinda cool, huh?

Last but not least is the small application icon. This is a new addition to the Windows
class WNDCLASSEX structure and wasn’t available in the older WNDCLASS. Basically, this
handle points to the icon you want to display on your window’s title bar and on the
Windows desktop taskbar. Usually you would load a custom resource, but for now
let’s just use one of the standard Windows icons via LoadIcon():

winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION); // the handle of the small

icon

That’s it. Now let’s take a look at the whole class definition at once:

WNDCLASSEX winclass; // this will hold the class we create

// first fill in the window class structure
winclass.cbSize = sizeof(WNDCLASSEX);
winclass.style = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);

0472313618 CH02 10/26/99 9:38 AM Page 73

Windows Programming Foundations

74 PART I

winclass.lpszMenuName = NULL;
winclass.lpszClassName = “WINCLASS1”;
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

And of course, if you want to save some typing, you could initialize the structure
on-the-fly like this:

WNDCLASSEX winclass = {
winclass.cbSize = sizeof(WNDCLASSEX),
CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW,
WindowProc,
0,
0,
hinstance,
LoadIcon(NULL, IDI_APPLICATION),
LoadCursor(NULL, IDC_ARROW),
GetStockObject(BLACK_BRUSH),
NULL,
“WINCLASS1”,
LoadIcon(NULL, IDI_APPLICATION)};

It saves typing!

Registering the Windows Class
Now that the Windows class is defined and stored in winclass, you must tell
Windows about the new class. This is accomplished via the function
RegisterClassEx(), which simply takes a pointer to the new class definition, like
this:

RegisterClassEx(&winclass);

Notice that I’m not using the class name, which is “WINCLASS1” in the
case of our example. For RegisterClassEx(), you must use the actual
structure holding the class because at the point before the call to the
function, Windows does not yet know of the existence of the new class.
Get it?

Warning

Also, to be complete, there is the old RegisterClass() function, which is used to
register a class based on the older structure WNDCLASS.

Once the class is registered, we are free to create the window with it. Let’s see how to
do that, and then revisit the details of the event handler and main event loop to see
what kind of processing needs to be done for a Windows application to work.

0472313618 CH02 10/26/99 9:38 AM Page 74

CHAPTER 2
The Windows Programming Model

75

Creating the Window
To create a window (or any window-like object), you use the CreateWindow() or
CreateWindowEx() function. The latter is a little newer and supports an additional
style parameter, so let’s use it. This is where the Windows class comes in, which we
took so long to dissect piece by piece. When you create a window, you must supply
the text name of the window class—which in this case is “WINCLASS1”. This is what
identifies your Windows class and differentiates it from other classes, along with the
built-in types like buttons, text boxes, etc.

Here’s the function prototype for CreateWindowEx():

HWND CreateWindowEx(
DWORD dwExStyle, // extended window style
LPCTSTR lpClassName, // pointer to registered class name
LPCTSTR lpWindowName, // pointer to window name
DWORD dwStyle, // window style
int x, // horizontal position of window
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner window
HMENU hMenu, // handle to menu, or child-window identifier
HINSTANCE hInstance, // handle to application instance
LPVOID lpParam); // pointer to window-creation data

If the function is successful, it returns a handle to the newly created window; other-
wise, it returns NULL.

Most of the parameters are self-explanatory, but let’s cover them anyway:

• dwExStyle—The extended styles flag is an advanced feature, and for most
cases, you’ll set it to NULL. However, if you’re interested in all the possible val-
ues, take a look at the Win32 SDK Help—there are a lot of them. About the
only one I ever use is WS_EX_TOPMOST, which makes the window stay on top.

• lpClassName—This is the name of the class you want to create a window based
on—for example, “WINCLASS1”.

• lpWindowName—This is a null-terminated text string containing the title of the
window—for example, “My First Window”.

• dwStyle—This is the general window flag that describes what the window
looks like and how it behaves—very important! See Table 2.10 for a list of
some of the more popular values. Of course, you can logically OR these values
together to get the various features you want.

• x,y—This is the position of the upper left-hand corner of the window in pixel
coordinates. If you don’t care, use CW_USEDEFAULT and Windows will decide.

0472313618 CH02 10/26/99 9:38 AM Page 75

Windows Programming Foundations

76 PART I

• nWidth, nHeight—This is the width and height of the window in pixels. If you
don’t care, use CW_USEDEFAULT and Windows will decide.

• hWndParent—This is the handle to the parent window, if there is one. Use NULL
if there isn’t a parent, and then the desktop will be the parent.

• hMenu—This is the handle to the menu to attach to the window. You’ll learn
more on this in the next chapter. Use NULL for now.

• hInstance—This is the instance of the application. Use hinstance from
WinMain() here.

• lpParam—Advanced. Set to NULL.

Table 2.10 lists the various window flags settings.

TABLE 2.10 General Style Values for dwStyle

Style Creates

WS_POPUP A pop-up window.

WS_OVERLAPPED An overlapped window, which has a title bar and a border.
Same as the WS_TILED style.

WS_OVERLAPPEDWINDOW An overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_
MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_VISIBLE A window that is initially visible.

WS_SYSMENU A window that has a window menu on its title bar. The
WS_CAPTION style must also be specified.

WS_BORDER A window that has a thin-line border.

WS_CAPTION A window that has a title bar (includes the WS_BORDER style).

WS_ICONIC A window that is initially minimized. Same as the
WS_MINIMIZE style.

WS_MAXIMIZE A window that is initially maximized.

WS_MAXIMIZEBOX A window that has a Maximize button. Cannot be combined
with the WS_EX_CONTEXTHELP style. The WS_SYSMENU style
must also be specified.

WS_MINIMIZE A window that is initially minimized. Same as the WS_ICONIC
style.

WS_MINIMIZEBOX A window that has a Minimize button. Cannot be combined
with the WS_EX_CONTEXTHELP style. The WS_SYSMENU style
must also be specified.

WS_POPUPWINDOW A pop-up window with WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The WS_CAPTION and WS_POPUPWINDOW
styles must be combined to make the window menu visible.

0472313618 CH02 10/26/99 9:38 AM Page 76

CHAPTER 2
The Windows Programming Model

77

Style Creates

WS_SIZEBOX A window that has a sizing border. Same as the
WS_THICKFRAME style.

WS_HSCROLL A window that has a horizontal scrollbar.

WS_VSCROLL A window that has a vertical scrollbar.

Note: I have highlighted commonly used values.

And here’s how you would create a basic overlapped window with the standard con-
trols at position 0,0 with a size of 400,400 pixels:

HWND hwnd; // window handle

// create the window, bail if problem
if (!(hwnd = CreateWindowEx(NULL, // extended style

“WINCLASS1”, // class
“Your Basic Window”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

Once the window has been created, it may or may not be visible. However, in this
case, we added the style flag WS_VISIBLE, which does this automatically. If this flag
isn’t added, use the following function call to manually display the window:

// this shows the window
ShowWindow(hwnd, ncmdshow);

Remember the ncmdshow parameter of WinMain()? This is where it comes in handy.
Although here you’ve overridden it by adding WS_VISIBLE, you would normally send
it as the parameter to ShowWindow(). The next thing that you might want to do is force
Windows to update your window’s contents and generate a WM_PAINT message. This is
accomplished with a call to UpdateWindow():

// this sends a WM_PAINT message to window and makes
// sure the contents are refreshed
UpdateWindow();

The Event Handler
I don’t know about you, but I’m starting to get the hang of this Windows stuff! It’s not
that bad. It’s like a mystery novel—except the mystery is figuring out what language
the novel is written in! With that in mind, let’s tackle the main event handler, or at

0472313618 CH02 10/26/99 9:38 AM Page 77

Windows Programming Foundations

78 PART I

least take a first look at it. Remember, I mentioned that the event handler is a callback
function called by Windows from the main event loop whenever an event occurs that
your window must handle. Take a look at Figure 2.6 again to refresh your memory
about the general data flow.

This event handler is written by you, and it handles as many (or as few) events as you
want to take care of. The rest you can pass on to Windows and let it deal with them.
Of course, keep that in mind that the more events and messages your application
handles, the more functionality it will have.

Before we get into some code, though, let’s talk about some of the details of the event
handler, exactly what it does, and how it works. First, for each Windows class that
you create, you can have a separate event handler that I will refer to as Windows’
Procedure or simply WinProc from now on. The WinProc is sent messages from the
main event loop as messages are received from the user or Windows and placed in the
main event queue. That’s a mental tongue twister, so I’ll say it in another way…

As the user and Windows perform tasks, events and messages are generated that are
for your window and/or other applications’ windows. All of these messages go into a
queue, but the ones for your window are sent to your window’s own private queue.
Then the main event loop retrieves these messages and sends them to your window’s
WinProc to be processed.

There are literally hundreds of possible messages and variations, so we aren’t going to
cover them all. Luckily, you only have to handle very few of them to get a Windows
application up and running.

So in a nutshell, the main event loop feeds the WinProc with messages and events,
and the WinProc does something with them. Hence, not only do you have to worry
about the WinProc, but also the main event loop. We will get to this shortly; for now,
assume that the WinProc is simply going to be fed messages.

Now that you know what the WinProc does, let’s take a look at the prototype for it:

LRESULT CALLBACK WindowProc(
HWND hwnd, // window handle of sender
UINT msg, // the message id
WPARAM wparam, // further defines message
LPARAM lparam); // further defines message

Of course, this is just a prototype for the callback. You can call the function anything
you want because you are only going to assign the function’s address as a function
pointer to winclass.lpfnWndProc, like this:

winclass.lpfnWndProc = WindowProc;

0472313618 CH02 10/26/99 9:38 AM Page 78

CHAPTER 2
The Windows Programming Model

79

Remember? Anyway, the parameters are fairly self-explanatory:

• hwnd—This is the window handle and is only important if you have multiple
windows open with the same Windows class. In that case, hwnd is the only way
you can tell which messages are coming from which window. Figure 2.7 shows
this possibility.

Figure 2.7
Multiple windows
based on the same

class.
– x

Window 1

hwnd 1

“Winclass1”

messages

– x

Window 2

hwnd 2

Same Application

“Winclass1”

messages

– x

Window 3

hwnd 2

“Winclass1”

messages

WinProc()
Event Handler
for “Winclass1”

All messages are
processed by same
event handler if
window class is same.

• msg—This is the actual message ID that the WinProc should handle. This ID
may be one of dozens of main messages.

• wparam and Lparam—These further qualify or subclass the message sent in the
msg parameter.

And finally, the return type, LRESULT, and declaration specifier, CALLBCK, are of
interest. These keywords are a must, so don’t forget them!

continues

So what most people do is switch() on the msg and then write code for each case. And
based on msg, you will know if you need to further evaluate wparam and/or lparam.
Cool? So let’s take a look at some of the possible messages that might come through
the WinProc, and then we’ll see a bare-bones WinProc. Take a look at Table 2.11 to
see a short list of some basic message IDs.

TABLE 2.11 A Short List of Message IDs

Value Description

WM_ACTIVATE Sent when a window is activated or becomes the focus.

WM_CLOSE Sent when a window is closed.

WM_CREATE Sent when a window is first created.

WM_DESTROY Sent when a window is about to be destroyed.

WM_MOVE Sent when a window has been moved.

WM_MOUSEMOVE Sent when the mouse has been moved.

0472313618 CH02 10/26/99 9:39 AM Page 79

Errata

Errata
"hwnd 2" should be "hwnd 3"

Errata

Errata
"CALLBCK" should be "CALLBACK"

Windows Programming Foundations

80 PART I

TABLE 2.11 Continued

Value Description

WM_KEYUP Sent when a key is released.

WM_KEYDOWN Sent when a key is pressed.

WM_TIMER Sent when a timer event occurs.

WM_USER Allows you to send messages.

WM_PAINT Sent when a window needs repainting.

WM_QUIT Sent when a Windows application is finally terminating.

WM_SIZE Sent when a window has changed size.

Take a good look at Table 2.11 and read what all those messages are for. Basically,
the WinProc will be sent one or more of these messages as the application runs. The
message ID itself will be in msg, and any remaining info is stored in wparam and
lparam. Thus, it’s always a good idea to reference the online Win32 SDK Help to see
what all the parameters of a particular message do.

Fortunately, we are only interested in three messages right now:

• WM_CREATE—This message is sent when the window is first created and gives
you a chance to do any setup, initialization, or resource allocation.

• WM_PAINT—This message is sent whenever your window’s contents need
repainting. This can occur for a number of reasons: the window was moved or
resized by the user, another application popped up and obscured yours, and
so on.

• WM_DESTROY—This message is sent to your window when the window is about
to be destroyed. Usually, this is a direct result of the user clicking the window’s
close icon or closing from the window’s system menu. Either way, this is where
you should deallocate all the resources and tell Windows to terminate the appli-
cation completely by sending a WM_QUIT message yourself—more on this later.

So without further ado, let’s see a complete WinProc that handles all these messages:

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT msg,
WPARAM wparam,
LPARAM lparam)

{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message
switch(msg)

{

0472313618 CH02 10/26/99 9:39 AM Page 80

CHAPTER 2
The Windows Programming Model

81

case WM_CREATE:
{

// do initialization stuff here

// return success
return(0);
} break;

case WM_PAINT:
{
// simply validate the window
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);

// return success
return(0);
} break;

case WM_DESTROY:
{
// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

default:break;

} // end switch

// process any messages that we didn’t take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

As you can see, the function is composed of empty space for the most part—which is
a good thing! Let’s begin with the processing of WM_CREATE. Here, all the function
does is return(0). This simply tells Windows that you handled it, so don’t take any
more actions. Of course, you could have done all kinds of initialization in the
WM_CREATE message, but that’s up to you.

The next message, WM_PAINT, is very important. This message is sent whenever your
window needs repainting. This usually means that you have to do the repainting. For
DirectX games, this isn’t going to matter because you are going to redraw the screen
30 to 60 fps (frames per second). But for a normal Windows application, it does mat-
ter. I’m going to cover WM_PAINT in much more detail in the next chapter, but for now
just tell Windows that you did repaint the window, so it can stop sending WM_PAINT
messages.

0472313618 CH02 10/26/99 9:39 AM Page 81

Windows Programming Foundations

82 PART I

To accomplish this feat, you must validate the client rectangle of the window. There
are a number of ways to do this, but the simplest is to put a call to BeginPaint()—
EndPaint(). This calling pair validates the window and fills the background with the
background brush previously stored in the Windows class variable hbrBackground.
Once again, here’s the code for the validation:

// begin painting
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);

There are a couple of things going on here that I want to address. First, notice that the
first parameter to each call is the window handle hwnd. This is necessary because the
BeginPaint()—EndPaint() functions can potentially paint in any window of your
application, so the window handle indicates which one you’re interested in messing
with. The second parameter is the address of a PAINTSTRUCT structure that contains
the rectangle that you must redraw. Here’s what a PAINTSTRUCT looks like:

typedef struct tagPAINTSTRUCT
{
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];
} PAINTSTRUCT;

You don’t really need to worry about this until later, when we talk about the Graphics
Device Interface or GDI. But the most important field is rcPaint, which is a RECT
structure that contains the minimum rectangle that needs to be repainted. Take a look
at Figure 2.8 to see this. Notice that Windows tries to do the least amount of work
possible, so when the contents of a window are mangled, Windows at least tries to tell
you the smallest rectangle that you can repaint to restore the contents. And if you’re
interested in the RECT structure, it’s nothing more than the four corners of a rectangle,
as shown here:

typedef struct tagRECT
{
LONG left; // left x-edge of rect
LONG top; // top y-edge of rect
LONG right; // right x-edge of rect
LONG bottom; // bottom y-edge of rect
} RECT;

And the last thing that you’ll notice about the call to BeginPaint() is that it returns a
handle to a graphics context or hdc:

HDC hdc; // handle to graphics context
hdc = BeginPaint(hwnd,&ps);

0472313618 CH02 10/26/99 9:39 AM Page 82

CHAPTER 2
The Windows Programming Model

83

A graphics context is a data structure that describes the video system and drawing
surface. It’s magic, as far as we are concerned; you just have to retrieve one if you
want to do any graphics. That’s about it for the WM_PAINT message—for now.

The WM_DESTROY message is actually quite interesting. WM_DESTROY is sent when the
user closes the window. However, this only closes the window, not the application.
The application will continue to run, but without a window. You need to do something
about this. In most cases, when the user kills the main window, he intends for the
application to terminate. Thus, you must facilitate this by sending a message yourself!
The message is called WM_QUIT. And since this message is so common, there’s a
function to send it for you, called PostQuitMessage().

All you need to do in the WM_DESTROY handler is clean up everything and then tell
Windows to terminate your application with a call to PostQuitMessage(0). This, in
turn, puts a WM_QUIT into the message queue, which at some point causes the main
event loop to bail.

There are a couple of details you should know about in the WinProc handler we have
been analyzing. First, I’m sure you have noticed the return(0) after each handler
body. This serves two purposes: to exit the WinProc and to tell Windows that you
handled the message. The second important detail is the default message handler,
DefaultWindowProc(). This function is a passthrough that passes messages that you
don’t process onto Windows for default processing. Therefore, if you don’t handle
the message, make sure to always end all your event handler functions with a call
like this:

Figure 2.8
Repainting the invalid

region only.

– x
This area was invalidated,
possibly by another window

Only repaint
this region

PaintStruct
{
•
•
•
RECT rcPaint

}

BeginPaint(hwnd, &ps);

• Processed by WM_PAINT

Title bar

Window

Client area

0472313618 CH02 10/26/99 9:39 AM Page 83

Windows Programming Foundations

84 PART I

// process any messages that we didn’t take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

I know this may all seem like overkill and more trouble than it’s worth. Nevertheless,
once you have a basic Windows application skeleton, you just copy it and add your
own code. My main goal, as I said, is to help you create a DOS32-looking game con-
sole that you can use and almost forget that any Windows stuff is going on. Anyway,
let’s move on to the last part—the main event loop.

The Main Event Loop
The hard part is over! The main event loop is so simple, I’m just going to blurt it out
and then talk about it:

// enter main event loop
while(GetMessage(&msg,NULL,0,0))

{
// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end while

That’s it? Yup! Let’s see what’s going on here, shall we? The main while() is exe-
cuted as long as GetMessage() returns a nonzero value. GetMessage() is the work-
horse of the main event loop, and its sole purpose is to get the next message from the
event queue and process it. You’ll notice that there are four parameters to
GetMessage(). The first one is important to us; however, the remaining parameters are
set to NULL and 0. Here’s the prototype, for reference:

BOOL GetMessage(
LPMSG lpMsg, // address of structure with message
HWND hWnd, // handle of window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax); // last message

The msg parameter is (yes, you guessed it) the storage for Windows to place the next
message in. However, unlike the msg parameter for WinProc(), this msg is a complex
data structure rather than just an integer. Remember, by the time a message gets to the
WinProc, it has been “cooked” and split apart into its constituent parts. Anyway, here
is the MSG structure:

typedef struct tagMSG
{
HWND hwnd; // window where message occurred
UINT message; // message id itself
WPARAM wParam; // sub qualifies message
LPARAM lParam; // sub qualifies message

0472313618 CH02 10/26/99 9:39 AM Page 84

CHAPTER 2
The Windows Programming Model

85

DWORD time; // time of message event
POINT pt; // position of mouse
} MSG;

Starting to make sense, Jules? Notice that the parameters to WinProc() are all con-
tained within this structure, along with some others, like the time and position of the
mouse when the event occurred.

So GetMessage() retrieves the next message from the event queue, but then what?
Well, TranslateMessage() is called next. TranslateMessage() is a virtual accelera-
tor key translator—in other words, an input cooker. Just call it and don’t worry about
what it does. The final function, DispatchMessage(), is where all the action occurs.
After the message is retrieved with GetMessage() and potentially processed and trans-
lated a bit with TranslateMessage(), the actual WinProc() is called by the call to
DispatchMessage().

DispatchMessage() makes the call to the WinProc, sending the appropriate
parameters from the original MSG structure. Figure 2.9 shows the whole process
in its final glory.

Figure 2.9
The mechanics of

event loop message
processing.

– x

Window

User Input

WinProc()
{
wm-Create:
wm-Paint:
•
•
•
wm-Destroy:
}

msg 1
msg 2
msg 3

•
•
•

msg n

Message Queue

Post Message()

re-entrant

WinMain()

GetMessage()

TranslateMessage()

DispatchMessage()

Game Logic

PhysicsRenderAI

Event Handler

That’s it, you’re a Windows expert! If you grasp the concepts just covered and the
importance of the event loop, event handler, and so on, that’s 90 percent of the battle.
The rest is just details.

With that in mind, take a look at Listing 2.3. It’s a complete Windows program that
creates a single window and waits for you to close it.

0472313618 CH02 10/26/99 9:39 AM Page 85

Errata

Errata
"wm-Create" should be "WM_CREATE"

Errata

Errata
"wm-Paint" should be "WM_PAINT"

Windows Programming Foundations

86 PART I

LISTING 2.3 A Basic Windows Program

// DEMO2_3.CPP - A complete windows program

// INCLUDES ///
#define WIN32_LEAN_AND_MEAN // just say no to MFC

#include <windows.h> // include all the windows headers
#include <windowsx.h> // include useful macros
#include <stdio.h>
#include <math.h>

// DEFINES //

// defines for windows
#define WINDOW_CLASS_NAME “WINCLASS1”

// GLOBALS //

// FUNCTIONS //
LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,
WPARAM wparam,
LPARAM lparam)

{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message
switch(msg)

{
case WM_CREATE:

{
// do initialization stuff here

// return success
return(0);
} break;

case WM_PAINT:
{
// simply validate the window
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);

// return success
return(0);
} break;

0472313618 CH02 10/26/99 9:39 AM Page 86

CHAPTER 2
The Windows Programming Model

87

case WM_DESTROY:
{
// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

default:break;

} // end switch

// process any messages that we didn’t take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

// WINMAIN //
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

{

WNDCLASSEX winclass; // this will hold the class we create
HWND hwnd; // generic window handle
MSG msg; // generic message

// first fill in the window class structure
winclass.cbSize = sizeof(WNDCLASSEX);
winclass.style = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW_CLASS_NAME;
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// register the window class
if (!RegisterClassEx(&winclass))

return(0);

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Your Basic Window”, // title

continues

0472313618 CH02 10/26/99 9:39 AM Page 87

Windows Programming Foundations

88 PART I

LISTING 2.3 Continued

WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

// enter main event loop
while(GetMessage(&msg,NULL,0,0))

{
// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end while

// return to Windows like this
return(msg.wParam);

} // end WinMain

///

To compile DEMO2_3.CPP, simply create a Win32 .EXE application and add
DEMO2_3.CPP to the project. Or if you like, you can run the precompiled program,
DEMO2_3.EXE, off the CD-ROM. Figure 2.10 shows the program in action. It’s not
much to look at, but what do you want? This is a paperback book!

Figure 2.10
DEMO2_3.EXE

in action.

0472313618 CH02 10/26/99 9:39 AM Page 88

CHAPTER 2
The Windows Programming Model

89

There are a couple of issues that I want to hit you with before moving on. First, if
you take a close look at the event loop, it doesn’t look all that real-time. Meaning
that while the program waits for a message via GetMessage(), the main event loop
is basically blocked. This is very true; you must somehow get around this, since you
need to perform your game processing continuously and handle Windows events if
and when they come.

Making a Real-Time Event Loop
This type of real-time nonwaiting event loop is easy to make. All you need is a way
to test if there is a message in the message queue. If there is, you can process it;
otherwise, continue processing other game logic and repeat. The function that
performs this test is called PeekMessage().Its prototype is almost identical to
GetMessage()’s, as shown here:

BOOL PeekMessage(
LPMSG lpMsg, // pointer to structure for message
HWND hWnd, // handle to window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax, // last message
UINT wRemoveMsg); // removal flags

This returns nonzero if a message is available.

The difference is in the last parameter, which controls how the messages should be
retrieved from the message queue. The valid flags for wRemoveMsg are

• PM_NOREMOVE—Messages are not removed from the queue after processing by
PeekMessage().

• PM_REMOVE—Messages are removed from the queue after processing by
PeekMessage().

Taking these two possibilities into consideration, you can do one of two things: Use
PeekMessage() with PM_NOREMOVE and, if there is a message, call GetMessage(); or
use PM_REMOVE and use PeekMessage() itself to retrieve a message if there is one. Use
the latter. Here’s the core logic, changed to reflect this new technique in the main
event loop:

while(TRUE)
{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
// test if this is a quit

if (msg.message == WM_QUIT)
break;

0472313618 CH02 10/26/99 9:39 AM Page 89

Windows Programming Foundations

90 PART I

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here
Game_Main();

} // end while

I’ve highlighted important points in the code. The first section in bold is

if (msg.message == WM_QUIT) break;

This is how you must detect to bail out of the infinite while(TRUE) loop. Remember,
when a WM_DESTROY message is processed in the WinProc, it’s your job to send a
WM_QUIT message via the call to PostQuitMessage(). The WM_QUIT then trickles
through the event queue, and you can detect it so you can bail out of the main loop.

The last section of highlighted code simply indicates where you would put the call to
your main game code loop. But remember, the call to Game_Main()—or whatever you
call it—must return after one frame of animation or game logic. Otherwise, messages
won’t be processed by the main Windows event loop.

For an example of this new real-time structure that is more appropriate for game logic
processing, take a look at the source DEMO2_4.CPP and the associated DEMO2_4.EXE on
the CD-ROM. This structure will in fact be our model for the remainder of the book.

Opening More Windows
Before finishing up this chapter, I want to cover one more quick topic that you might
be wondering about—how do you open more than one window. Actually, this is
trivial, and you already know how to do it. All you need to do is make two or more
calls to CreateWindowEx() to create the windows, and that’s it. However, there are
some caveats to this.

First, remember that when you create a window, it’s based on a Windows class. This
class, among other things, defines the WinProc or event handler for the entire class.
This is a very important detail, so pay attention. You can make as many windows as
you want with the same class, but all the messages for them will be sent to the same
WinProc, as defined by the event handler pointed to by the lpfnWndProc field of the
WINCLASSEX structure. To see this, take a look at Figure 2.11. It depicts the message
flow in this case.

0472313618 CH02 10/26/99 9:39 AM Page 90

CHAPTER 2
The Windows Programming Model

91

This may or may not be want you want. If you want a different WinProc for each win-
dow, you must create more than one Windows class and create each window with a
different class. Hence, a different WinProc is sent messages for each class window.
Figure 2.12 shows this setup.

Figure 2.11
The message flow for

multiple windows
with the same

Windows class.

– x

hwnd 1

– x

hwnd 2

– x

hwnd 3

hwnd 1 = CreateWindowEx (…“window class”…);

hwnd 2 = CreateWindowEx (…“window class”…);

hwnd 3 = CreateWindowEx (…“window class”…);

•
•
•

lpfnWndProc
Event Handler

WinProc()

“Window class”

Messages

Figure 2.12
Multiple Windows

classes with multiple
windows.

– x

“WinClass 1”

Window 1

msg
•
•

msg

Message Queue

WinProc()“WinClass 1”

– x

“WinClass 2”

Window 2

msg
•
•

msg

Message Queue

WinProc()“WinClass 2”

Multiple Windows

Messages are
routed to each
WinProc() based
on window class.

With that in mind, here’s the code to create two windows based on the same class:

// create the first window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Window 1 Based on WINCLASS1”, // title

0472313618 CH02 10/26/99 9:39 AM Page 91

Windows Programming Foundations

92 PART I

WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

// create the second window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Window 2 Also Based on WINCLASS1”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
100,100, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

Of course, you might want to track each window handle in different variables rather
than the same one, as is the case with hwnd, but you get the idea. For an example of
opening two windows at once, take a look at DEMO2_5.CPP and the associated exe-
cutable, DEMO2_5.EXE. When you run the .EXE, you should see something like Figure
2.13. Notice that when you close either window, they both close and the application
terminates. See if you can figure out a way to close only one window at a time. (Hint:
Create two Windows classes, and don’t send a WM_QUIT message until both windows
have been closed.)

Figure 2.13
The multiple-

window program
DEMO2_5.EXE.

0472313618 CH02 10/26/99 9:39 AM Page 92

CHAPTER 2
The Windows Programming Model

93

Summary
I don’t know about you, but I’m really excited! At this point, you have everything you
need to start understanding much more complex Windows programming. You know
about the architecture of Windows and multitasking, and you know how to create
Window classes, register classes, create windows, write event loops and handlers, and
a lot more! So pat yourself on the back (or, for my alien readers, lick your eyeballs).
You have done a most excellent job <BG>.

In the next chapter, we’re going to cover some more Windows-related stuff, like using
resources, creating menus, working with dialogs, and getting information.

0472313618 CH02 10/26/99 9:39 AM Page 93

0472313618 CH02 10/26/99 9:39 AM Page 94

Advanced Windows
Programming

“Are you sure this sweet machine isn’t going to waste?”

—Dade, Hackers

It doesn’t take a rocket scientist to realize that Windows pro-
gramming is a huge subject. However, the cool thing about it is
that you don’t need to know much to get a lot done. With that in
mind, this chapter supplies some of the most important pieces
you need to make a complete Windows application. You’ll learn
about:

• Using resources such as icons, cursors, and sounds

• Menus

• Basic GDI and the video system

• Input devices

• Sending messages

CHAPTER 3

0572313618 CH03 10/26/99 9:41 AM Page 95

Windows Programming Foundations

96 PART I

Using Resources
One of the main design issues that the creators of Windows wanted to address
was storing more than just the program code in a Windows application (even Mac
programs do this). They reasoned that the data for a program should also reside
within the program’s .EXE file. This isn’t a bad idea for a number of reasons:

• A single .EXE that contains both code and data is simpler to distribute.

• If you don’t have external data files, you can’t lose them.

• Outside forces can’t easily access your data files—such as .BMPs, .WAVs, and
so on—and hack, jack, and distribute them around the planet.

To facilitate this kind of database technology, Windows programs support what are
called resources. These are simply pieces of data combined with your program code
that can be loaded in later during runtime by the program itself. Figure 3.1 depicts
this concept.

Figure 3.1
The relationship of

resources to a
Windows application.

Program Code
Data

Resources

Windows Application .EXE

Icons

Bitmaps

.wavs

cursors

String tables

Dialogs

Menus

•
•
•

Resources are located
at end of .EXE

So what kind of resources are we talking about here? Well, in reality, there is no limit
to the types of data you can compile into your program because Windows programs
support user-defined resource types. However, there are some predefined types that
should take care of most of your needs:

0572313618 CH03 10/26/99 9:41 AM Page 96

CHAPTER 3
Advanced Windows Programming

97

• Icons—Small bitmapped images used in a number of places, such as the image
that you click on to run a program within a directory. Icons use the .ICO file
extension.

• Cursors—A bitmap that represents the mouse pointer. Windows allows you
to manipulate cursors in a number of ways. For example, you might want the
cursor to change as it is moved from window to window. Cursors use the .CUR
file extension.

• Strings—The string resource might not be so obvious a choice for a resource.
You might say, “I usually put strings into my program anyway, or in a data file.”
I can see your point. Nevertheless, Windows allows you to place a table of
strings in your program as a resource and to access them via IDs.

• Sounds—Most Windows programs make at least minimal use of sounds via
.WAV files. Hence, .WAV files can be added to your resources, too. This is a great
way to keep people from hijacking your sound effects!

• Bitmaps—These are the standard bitmaps that you would imagine: a
rectangular matrix of pixels in monochrome or 4-, 8-, 16-, 24-, or 32-bit format.
They are very common objects in graphical operating systems such as Windows,
so they can be added as resources also. Bitmaps use the .BMP file extension.

• Dialogs—Dialog boxes are so common in Windows that the designers decided
to make them a resource rather than something that is loaded externally. Good
idea! Therefore, you can either create dialog boxes on-the-fly with code, or
design them with an editor and store them as a resource.

• Metafiles—Metafiles are a bit advanced. They allow you to record a sequence
of graphical operations in a file and then play the file back.

Now that you have an idea of what resources are and the types that exist, the next
question is, how does it all go together? Well, there is a program called a resource
compiler. It takes as input an ASCII text resource file with the extension .RC. This file
is a C/English–like description of all the resources you want to compile into a single
data file. The resource compiler then loads all the resources and places them into one
big data file with the extension .RES.

This .RES file contains all the binary data making up whichever icons, cursors,
bitmaps, sounds, and so forth that you may have defined in the .RC resource file. Then
the .RES file is taken, along with your .CPP, .H, .LIB, .OBJ, and so on, and compiled
into one .EXE, and that’s it! Figure 3.2 illustrates the data flow possibilities of this
process.

0572313618 CH03 10/26/99 9:42 AM Page 97

Windows Programming Foundations

98 PART I

Putting Your Resources Together
Back in the old days, you would use an external resource compiler like RC.EXE to
compile all your resources together. But these days, the compiler IDE does all this for
you. Hence, if you want to add a resource to your program, you can simply add it by
selecting New (in most cases) from the File menu in your IDE and then selecting the
resource type you want to add (more on this later).

Let’s review what the deal is with resources: You can add a number of data types and
objects to your program, and they will reside as resources within the .EXE itself
(somewhere at the end), along with the actual computer code. Then, during runtime,
you can access this resource database and load resource data from your program itself
instead of from the disk as separate files. Furthermore, to create the resource file, you
must have a resource description file that is in ASCII text and named *.RC. This file
is then fed to the compiler (along with access to the resources) and a *.RES file is
generated. This .RES file is then linked together with all your other program objects
to create a final .EXE. It’s as simple as that! Yeah, right, and I’m a billionaire!

With all that in mind, let’s cover a number of resource objects and see how to create
them and load them into our programs. I’m not going to cover all the resources
previously mentioned, but you should be able to figure out any others with the
information here. They all work in the same manner, give or take a data type,
handle, or psychotic episode of staying up all night and not sleeping.

Figure 3.2
The data flow of
resources during
compilation and

linking.

.EXE

.h

.Lib

.Objs

.c
.cpp

.h

Resources
• BMP
• ICO
• CUR
• WAV
 •
 •
 •

Resource
Compiler

C/C++
Compiler

Linker

Resource Scripts
.RC

.Res

Resource compiler
usually built into compiler

0572313618 CH03 10/26/99 9:42 AM Page 98

CHAPTER 3
Advanced Windows Programming

99

Using Icon Resources
There are only two files that you need to create to work with resources: an .RC file
and possibly an .H file, if you want to make references to symbolic identifiers in the
.RC file. I’ll cover this detail in the following pages. Of course, ultimately you need to
generate an .RES file, but we’ll let the compiler IDE do this.

As an example of creating an ICON resource, let’s see how to change the icon that the
application uses on the taskbar and the one next to the system menu on the window
itself. If you recall, you set these icons during the creation of the Windows class with
the following lines of code:

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

These lines of code load the default application icon for both the normal icon and the
small version of the icon. However, you can load any icon you want into these slots
by using icons that have been compiled into a resource file.

First, you need an icon to work with… I have created a cool icon to use for all the
applications in this book. It’s called T3DX.ICO and is shown in Figure 3.3. I created
the icon using VC++ 5.0’s Image Editor, which is shown in Figure 3.4. However, you
can create icons, cursors, bitmaps, and so on with any program you want (as long as it
supports the export type).

T3DX.ICO is 32 pixels×32 pixels, with 16 colors. Icons can range in size from 16×16
to 64×64, with up to 256 colors. However, most icons are 32×32 with 16 colors, so
let’s stick to that for now.

Once you have the icon that you’re interested in placing into a resource file, you need
to create a resource file to place it in. To keep things simple, you’re going to do every-
thing by hand. (Remember that the compiler IDE will do all this stuff for you—but
then you wouldn’t learn anything, right?)

The .RC file contains all the resource definitions, meaning that you can have more
than one resource in your program.

Figure 3.3
The T3DX.ICO
icon bitmap.

0572313618 CH03 10/26/99 9:42 AM Page 99

Windows Programming Foundations

100 PART I

Here’s how you would define an ICON resource in your .RC script file:

Method 1—By string name:

icon_name ICON FILENAME.ICO

Examples:

windowicon ICON star.ico
MyCoolIcon ICON cool.ico

or

Method 2—By integer ID:

icon_id ICON FILENAME.ICO

Examples:

windowicon ICON star.ico
124 ICON ship.ico

Figure 3.4
The VC++ 5.0
Image Editor.

Before I show you any code, I want to make a very important point
about resources. Windows uses either ASCII text strings or integer IDs to
refer to resources. In most cases, you can use both in your .RC files.
However, some resources only allow you to use one or the other. In
either case, the resources must be loaded in a slightly different way, and
if IDs are involved, an extra .H file containing the symbolic cross-
references must also be included in your project.

Note

0572313618 CH03 10/26/99 9:42 AM Page 100

CHAPTER 3
Advanced Windows Programming

101

Here’s the confusing part: Notice that there aren’t any quotes at all in method 1.
This is a bit of a problem and will cause you much grief, so listen up. You might have
noticed that the first example in each method of the ICON definitions looks exactly
the same. However, one of them is interpreted as “windowicon” and the other as the
symbol windowicon. What makes this happen is an additional file that you literally
include in the .RC file (and your application’s .CPP file) that defines any symbolic
constants. When the resource compiler parses the following line of code,

windowicon ICON star.ico

it takes a look at any symbols that have been defined via include header files. If the
symbol exists, the resource compiler then refers to the resource numerically by the
integer ID that the symbol resolves to. Otherwise, the resource compiler assumes it’s a
string and refers to the ICON by the string “windowicon”.

Thus, if you want to define symbolic ICONs in your .RC resource script, you also need
an .H file to resolve the symbolic references. To include the .H file in the .RC script,
you use the standard C/C++ #include keyword.

For example, suppose that you want to define three symbolic ICONs in your .RC file,
which we’ll name RESOURCES.RC. You’ll also need an .H file, which we’ll name
RESOURCES.H. Here’s what the contents of each file would look like:

Contents of RESOURCES.H:

#define ID_ICON1 100 // these numbers are arbitrary
#define ID_ICON2 101
#define ID_ICON3 102

Contents of RESOURCES.RC:

#include “RESOURCES.H”

// here are the icon defines, note the use of C++ comments

ID_ICON1 ICON star.ico
ID_ICON2 ICON ball.ico
ID_ICON3 ICON cross.ico

That’s it. Then you would add RESOURCES.RC to your project and make sure to
#include RESOURCES.H in your application file, and you would be ready to rock and
roll! Of course, the .ICO files must be in the working directory of your project so the
resource compiler can find them.

Now, if you didn’t #define the symbols for the icons and include an .H file, the
resource compiler would just assume that the symbols ID_ICON1, ID_ICON2, and
ID_ICON3 were literal strings. That’s how you would refer to them in the program—
”ID_ICON1”, “ID_ICON2”, and “ID_ICON3”.

0572313618 CH03 10/26/99 9:42 AM Page 101

Windows Programming Foundations

102 PART I

Now that I have completely upset the time/space continuum with all this stuff, let’s
back up to what you were trying to do—just load a simple icon!

To load an icon by string name, do the following:

In an .RC file:

your_icon_name ICON filename.ICO

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hIcon = LoadIcon(hinstance, “your_icon_name”);
winclass.hIconSm = LoadIcon(hinstance, “your_icon_name”);

And to load by symbolic reference, you would #include the header containing the
references to the symbols, as in the preceding example:

In an .H file:

#define ID_ICON1 100 // these numbers are arbitrary
#define ID_ICON2 101
#define ID_ICON3 102

In an .RC file:

// here are the icon defines, note the use of C++ comments
ID_ICON1 ICON star.ico
ID_ICON2 ICON ball.ico
ID_ICON3 ICON cross.ico

And then the program code would look like this:

// Notice the use of hinstance instead of NULL.
// use the MAKEINTRESOURCE macro to reference
// symbolic constant resource properly
winclass.hIcon = LoadIcon(hinstance,MAKEINTRESOURCE(ID_ICON1));
winclass.hIconSm = LoadIcon(hinstance,MAKEINTRESOURCE(ID_ICON1));

Notice the use of the macro MAKEINTRESOURCE(). This macro converts the integer into
a string pointer, but don’t worry about that—just use it when using #defined sym-
bolic constants.

Using Cursor Resources
Cursor resources are almost identical to ICON resources. Cursor files are small bitmaps
with the extension .CUR and can be created in most compiler IDEs or with separate
image processing programs. Cursors are usually 32×32 with 16 colors, but they can be
up to 64×64 with 256 colors and even animated!

Assuming that you have created a cursor file with your IDE or a separate paint
program, the steps to add them to an .RC file and access them via your program
are similar to the steps for ICONs. To define a cursor, use the CURSOR keyword in
your .RC file.

0572313618 CH03 10/26/99 9:42 AM Page 102

CHAPTER 3
Advanced Windows Programming

103

Method 1—By string name:

cursor_name CURSOR FILENAME.CUR

Examples:

windowcursor CURSOR crosshair.cur

MyCoolCursor CURSOR greenarrow.cur

or

Method 2—By integer ID:

cursor_id CURSOR FILENAME.CUR

Examples:

windowcursor CURSOR bluearrow.cur

292 CURSOR redcross.cur

Of course, if you use symbolic IDs, you must create an .H file with the symbol’s
defines.

Contents of RESOURCES.H:

#define ID_CURSOR_CROSSHAIR 200 // these numbers are arbitrary
#define ID_CURSOR_GREENARROW 201

Contents of RESOURCES.RC:

#include “RESOURCES.H”

// here are the icon defines, note the use of C++ comments
ID_CURSOR_CROSSHAIR CURSOR crosshair.cur
ID_CURSOR_GREENARROW CURSOR greenarrow.cur

And there isn’t any reason why a resource data file can’t exist in another directory.
For example, the greenarrow.cur might exist in the root directory in a CURSOR\ direc-
tory, like this:

ID_CURSOR_GREENARROW CURSOR C:\CURSOR\greenarrow.cur

I have created a few cursor .ICO files for this chapter. Try looking at
them with your IDE, or just open up the directory and Windows will
show the bitmap of each one by its filename!

Now that you know how to add a CURSOR resource to an .RC file, here’s the code to
load the resource from the application by string name only.

Trick

0572313618 CH03 10/26/99 9:42 AM Page 103

Windows Programming Foundations

104 PART I

In an .RC file:

CrossHair CURSOR crosshair.CUR

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hCursor = LoadCursor(hinstance, “CrossHair”);

And to load a cursor with a symbolic ID defined in an .H file, here’s what you
would do:

In an .H file:

#define ID_CROSSHAIR 200

In an .RC file:

ID_CROSSHAIR CURSOR crosshair.CUR

In program code:

// Notice the use of hinstance instead of NULL.
winclass.hCursor = LoadCursor(hinstance, MAKEINTRESOURCE(ID_CROSSHAIR));

Again, you use the MAKEINTRESOURCE() macro to convert the symbolic integer ID into
the form Windows wants.

All right, there’s one little detail that may not have crossed your mind. So far you
have only messed with the Windows class icon and cursor. But is it possible to
manipulate the window icon and cursor at the window level? For example, you might
want to create two windows and make the cursor change in each one. To do this, you
could use this SetCursor() function:

HCURSOR SetCursor(HCURSOR hCursor);

Here, hCursor is the handle of the cursor retrieved by LoadCursor(). The only
problem with this technique is that SetCursor() isn’t that smart, so your application
must do the tracking and change the cursor as the mouse moves from window to
window. Here’s an example of setting the cursor:

// load the cursor somewhere maybe in the WM_CREATE
HCURSOR hcrosshair = LoadCursor(hinstance, “CrossHair”);

// later in program code to change the cursor…
SetCursor(hcrosshair);

For an example of both setting the window icon and the mouse cursor, take a look
DEMO3_1.CPP on the CD-ROM. The following list contains excerpts of the important
code sections that load the new icon and cursor:

0572313618 CH03 10/26/99 9:42 AM Page 104

CHAPTER 3
Advanced Windows Programming

105

// include resources
#include “DEMO3_1RES.H”
.
.
// changes to the window class definition
winclass.hIcon=

LoadIcon(hinstance, MAKEINTRESOURCE(ICON_T3DX));
winclass.hCursor =

LoadCursor(hinstance, MAKEINTRESOURCE(CURSOR_CROSSHAIR));
winclass.hIconSm = LoadIcon(hinstance, MAKEINTRESOURCE(ICON_T3DX));

Furthermore, the program uses the resource script named DEMO3_1.RC and the
resource header named DEMO3_1RES.H.

Contents of DEMO3_1RES.H:

#define ICON_T3DX 100
#define CURSOR_CROSSHAIR 200

Contents of DEMO3_1.RC:

#include “DEMO3_1RES.H”

// note that this file has different types of resources
ICON_T3DX ICON t3dx.ico
CURSOR_CROSSHAIR CURSOR crosshair.cur

To build the application yourself, you’ll need the following:

DEMO3_1.CPP—The main C/C++ file

DEMO3_1RES.H—The header with the symbols defined in it

DEMO3_1.RC—The resource script itself

T3DX.ICO—The bitmap data for the icon

CROSSHAIR.CUR—The bitmap data for the cursor

All these files should be in the same directory as your project. Otherwise, the com-
piler and linker will have trouble finding them. Once you create and run the program
or use the precompiled DEMO3_1.EXE, you should see something like what’s shown in
Figure 3.5. Pretty cool, huh?

As an experiment, try opening the DEMO3_1.RC file with your IDE. Figure 3.6 shows
what VC++ 5.0 does when I do this. However, you may get different results with your
particular compiler, so don’t tweak if it doesn’t look the same. Alas, there is one point
I want to make about the IDE before moving on. As I said, you can use the IDE to
create both the .RC and .H file, but you’ll have to read the manual on this yourself.

0572313618 CH03 10/26/99 9:42 AM Page 105

Windows Programming Foundations

106 PART I

However, there is one problem with loading a handmade .RC file—if you save it with
your IDE, it will undoubtedly be inflicted with a zillion comments, macros, #defines,
and other garbage that Windows compilers like to see in .RC files. Thus, the moral of
the story is that if you want to edit your handmade .RC files, do the editing by loading
the .RC file as text. That way the compiler won’t try to load it as an .RC, but just as
plain ASCII text.

Creating String Table Resources
As I mentioned in the introduction, Windows supports string resources. Unlike other
resources, you can only have one string table that must contain all your strings.

Figure 3.5
The output of

DEMO3_1.EXE with cus-
tom ICON and CURSOR.

Figure 3.6
The results of opening

the resource file
DEMO3_1.RC in VC++

5.0.

0572313618 CH03 10/26/99 9:42 AM Page 106

CHAPTER 3
Advanced Windows Programming

107

Furthermore, string resources do not allow definition by string. Therefore, all string
tables defined in your .RC files must be accompanied by symbolic reference constants
and the associated .H header file to resolve the references.

I’m still not sure how I feel about string resources. Using them is equivalent to just
using header files, and in either case—string resources or plain header files—you
have to recompile. So I don’t see the need for them! But if you really want to get
complicated, you can put string resources into .DLLs and the main program doesn’t
have to be recompiled. However, I’m a scientist, not a philosopher, so who cares?

To create a string table in your .RC file, you must use the following syntax

STRINGTABLE
{
ID_STRING1, “string 1”
ID_STRING2, “string 2”
.
.
}

Of course, the symbolic constants can be anything, as can the strings within the
quotes. However, there is one rule: no line can be longer than 255 characters—
including the constant itself.

Here’s an example of an .H and .RC file containing a string table that you might use in
a game for the main menu. The .H file contains

// the constant values are up to you
#define ID_STRING_START_GAME 16
#define ID_STRING_LOAD_GAME 17
#define ID_STRING_SAVE_GAME 18
#define ID_STRING_OPTIONS 19
#define ID_STRING_EXIT 20

The .RC file contains

// note the stringtable does not have a name since
// only one stringtable is allowed per .RC file
STRINGTABLE
{
ID_STRING_START_GAME, “Kill Some Aliens”
ID_STRING_LOAD_GAME, “Download Logs”
ID_STRING_SAVE_GAME, “Upload Data”
ID_STRING_OPTIONS, “Tweak The Settings”
ID_STRING_EXIT, “Let’s Bail!”
}

0572313618 CH03 10/26/99 9:42 AM Page 107

Windows Programming Foundations

108 PART I

Once you have created your resource files containing the string resources, you can use
the LoadString() function to load in a particular string. Here’s its prototype:

int LoadString(HINSTANCE hInstance,//handle of module withstring resource
UINT uID, //resource identifier
LPTSTR lpBuffer, //address of buffer for resource
int nBufferMax); //size of buffer

LoadString() returns the number of characters read, or 0 if the call was unsuccessful.
Here’s how you would use the function to load and save game strings during runtime:

// create some storage space
char load_string[80], // used to hold load game string

save_string[80]; // used to hold save game string

// load in the first string and check for error
if (!LoadString(hinstance, ID_STRING_LOAD_GAME, load_string,80))

{
// there’s an error!
} // end if

// load in the second string and check for error
if (!LoadString(hinstance, ID_STRING_SAVE_GAME, save_string,80))

{
// there’s an error!
} // end if

// use the strings now

As usual, hinstance is the instance of your application as passed in WinMain().

That wraps it up for string resources. If you can find a good use for them, email me at
ceo@xgames3d.com!

Using Sound .WAV Resources
By now you’re either getting very comfortable with resource scripting or you’re so
upset that you’re about to hack into my Web site and destroy me. Remember, it wasn’t
me—it was Microsoft (http://www.microsoft.com) that invented all this stuff. I’m
just trying to make sense of it too!

All right, dog. Now that I’ve given you my occasional disclaimer, let’s continue by
loading some sound resources!

You can put almost anything you want in the strings, including
printf() command specifiers like %d, %s, etc. You can’t use escape
sequences like “\n”, but you can use octal sequences like \015 and
so on.

Tip

0572313618 CH03 10/26/99 9:42 AM Page 108

CHAPTER 3
Advanced Windows Programming

109

Most games use one of two types of sounds:

• Digital .WAV files

• MIDI .MID music files

To my knowledge, the standard resources for Windows only support .WAV files, so I’m
only going to show you how to create .WAV resources. However, even if .MIDs aren’t
supported, you can always create a user-defined resource type. I’m not going to go
into this, but the ability to do so is there.

The first thing you need is a .WAV file, which is simply a digital waveform of data
that contains a number of 8- or 16-bit samples at some frequency. Typical sample
frequencies for game sound effects are 11KHz, 22KHz, and 44KHz (for CD-level
quality). This stuff doesn’t concern you yet, but I just wanted to give you a heads up.
You’ll learn all about digital sampling theory and .WAV files when we cover
DirectSound. But for now, just know that sample size and rate are issues.

With that in mind, let’s assume that you have a .WAV file on disk, and you want to add
it to a resource file and be able to load and play it programmatically. Okay, let’s go!
The resource type for .WAV files is WAVE—there’s a surprise. To add it to your .RC file,
you would use the following syntax.

Method 1—By string name:

wave_name WAVE FILENAME.WAV

Examples:

BigExplosion WAVE expl1.wavr

FireWeapons WAVE fire.wav

Method 2—By integer ID:

ID_WAVE CURSOR FILENAME.CUR

Examples:

DEATH_SOUND_ID WAVE die.wav

20 WAVE intro.wav

Of course, the symbolic constants would have to be defined elsewhere in an .H file,
but you knew that!

At this point, we run into a little snag: WAVE resources are a little more complex than
cursors, icons, and string tables. The problem is, to load them in takes a lot more
programming than the other resources, so I’m going to hold off on showing you the
way to load .WAV resources in a real game until later. For now, I’m just going to show

0572313618 CH03 10/26/99 9:42 AM Page 109

Windows Programming Foundations

110 PART I

you a trick to load and play a .WAV on-the-fly using the PlaySound() function. Here’s
its prototype:

BOOL PlaySound(LPCSTR pszSound, // string of sound to play
HMODULE hmod, // instance of application
DWORD fdwSound); // flags parameter

Unlike LoadString(), PlaySound() is a little more complex, so let’s take a closer
look at each of the parameters:

• PszSound—This parameter is either the string name of the sound resource in the
resource file or a filename on disk. Also, you can use the MAKEINTRESOURCE()
and use a WAVE that is defined with a symbolic constant.

• Hmod—The instance of the application to load the resource from. This is simply
the hinstance of the application.

• FdwSound—This is the clincher. This parameter controls how the sound is
loaded and played. Table 3.1 contains a list of the most useful values for
FdwSound.

TABLE 3.1 Values for the FdwSound Parameter of PlaySound()

Value Description

SND_FILENAME The pszSound parameter is a filename.

SND_RESOURCE The pszSound parameter is a resource identifier; hmod must identify the
instance that contains the resource.

SND_MEMORY A sound event’s file is loaded in RAM. The parameter specified by
pszSound must point to an image of a sound in memory.

SND_SYNC Synchronous playback of a sound event. PlaySound() returns after the
sound event is completed.

SND_ASYNC The sound is played asynchronously, and PlaySound() returns immedi-
ately after beginning the sound. To terminate an asynchronously played
waveform sound, call PlaySound() with pszSound set to NULL.

SND_LOOP The sound plays repeatedly until PlaySound() is called again with the
pszSound parameter set to NULL. You must also specify the SND_ASYNC
flag to indicate an asynchronous sound event.

SND_NODEFAULT No default sound event is used. If the sound cannot be found,
PlaySound() returns silently without playing the default sound.

SND_PURGE Sounds are to be stopped for the calling task. If pszSound is not NULL,
all instances of the specified sound are stopped. If pszSound is NULL,
all sounds that are playing on behalf of the calling task are stopped.

0572313618 CH03 10/26/99 9:42 AM Page 110

CHAPTER 3
Advanced Windows Programming

111

Value Description

SND_NOSTOP The specified sound event will yield to another sound event that is
already playing. If a sound cannot be played because the resource
needed to generate that sound is busy playing another sound, the func-
tion immediately returns FALSE without playing the requested sound.

SND_NOWAIT If the driver is busy, the function returns immediately without playing
the sound.

To play a WAVE sound resource with PlaySound(), there are four general steps:

1. Create the .WAV file itself and store it on disk.

2. Create the .RC resource script and associated H file.

3. Compile the resources along with your program code.

4. In your program, make a call to PlaySound() with either the WAVE resource
name or the WAVE resource ID using the MAKEINTRESOURCE() macro.

Let’s see some examples, shall we? Let’s begin with a general RC file that has two
sounds: one with a string name and the other with a symbolic constant. Let’s name
them RESOURCE.RC and RESOURCE.H. The files would look something like this:

The RESOURCE.H file would contain

#define SOUND_ID_ENERGIZE 1

The RESOURCE.RC file would contain

#include “RESOURCE.H”

// first the string name defined sound resource
Telporter WAVE teleport.wav

// and now the symbolically defined sound
SOUND_ID_ENERGIZE WAVE energize.wav

Within your program, here’s how you would play the sounds in different ways:

// to play the telport sound asynchronously
PlaySound(“Teleporter”, hinstance,

SND_ASYNC | SND_RESOURCE);

// to play the telport sound asynchronously with looping
PlaySound(“Teleporter”, hinstance,

SND_ASYNC | SND_LOOP | SND_RESOURCE);

// to play the energize sound asynchronously
PlaySound(MAKEINTRESOURCE(SOUND_ID_ENERGIZE), hinstance,

SND_ASYNC | SND_RESOURCE);

0572313618 CH03 10/26/99 9:42 AM Page 111

Windows Programming Foundations

112 PART I

// and if you simply wanted to play a sound off disk
// directly then you could do this
PlaySound(“C:\path\filename.wav”, hinstance,

SND_ASYNC | SND_FILENAME);

And to stop all sounds, use the SND_PURGE flag with NULL as the sound name, like this:

// stop all sounds
PlaySound(NULL, hinstance, SND_PURGE);

Obviously, there are myriad flags options that you should feel free to experiment with.
Anyway, you don’t have any controls or menus yet, so it’s hard to interact with the
demo applications. However, as a simple demo of using sound resources, I have cre-
ated DEMO3_2.CPP, which you can find on the disk. I would list it here, but 99 percent
of it is just the standard template you have been using, and the sound code is nothing
more than a couple lines of code identical to the earlier examples. The demo is pre-
compiled, and you can run DEMO3_2.EXE yourself to see what it does.

However, I do want to show you the .RC and .H files that it uses. They are
DEMO3_2.RC and DEMO3_2RES.H, respectively:

Contents of DEMO3_2RES.H:

// defines for sound ids
#define SOUND_ID_CREATE 1
#define SOUND_ID_MUSIC 2

// defines for icons
#define ICON_T3DX 500

// defines for cursors
#define CURSOR_CROSSHAIR 600

Contents of DEMO3_2.RC:

#include “DEMO3_2RES.H”

// the sound resources
SOUND_ID_CREATE WAVE create.wav
SOUND_ID_MUSIC WAVE techno.wav

// icon resources
ICON_T3DX ICON T3DX.ICO

// cursor resources
CURSOR_CROSSHAIR CURSOR CROSSHAIR.CUR

You’ll notice that I have also included the ICON and CURSOR resources just to make
things a little more exciting.

0572313618 CH03 10/26/99 9:42 AM Page 112

CHAPTER 3
Advanced Windows Programming

113

To make DEMO3_2.CPP, I took the standard Window demo we have been working with
and added calls to sound code in two places: the WM_CREATE message and the
WM_DESTROY message. In WM_CREATE, I start two sound effects. One of them says
Creating window and stops, and the other is a short song in loop mode so it will
continue to play. Then, in the WM_DESTROY section, I stop all sounds.

I used the SND_SYNC flag as one of the flags for the first sound. This
flag is needed because you are only allowed to play one sound at a time
with PlaySound(), and I didn’t want the second sound to stop the first
one in midplay.

Note

Here’s the added code to the WM_CREATE and WM_DESTROY messages from
DEMO3_2.CPP:

case WM_CREATE:
{
// do initialization stuff here

// play the create sound once
PlaySound(MAKEINTRESOURCE(SOUND_ID_CREATE),

hinstance_app, SND_RESOURCE | SND_SYNC);

// play the music in loop mode
PlaySound(MAKEINTRESOURCE(SOUND_ID_MUSIC),

hinstance_app, SND_RESOURCE | SND_ASYNC | SND_LOOP);

// return success
return(0);
} break;

case WM_DESTROY:
{

// stop the sounds first
PlaySound(NULL, hinstance_app, SND_PURGE);

// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

Also, you’ll notice that there is a variable, histance_app, used as the instance handle
to the application in the PlaySound() calls. This is simply a global that saves the

0572313618 CH03 10/26/99 9:42 AM Page 113

Windows Programming Foundations

114 PART I

hinstance sent in WinMain(). It is coded right after the class definition in WinMain(),
like this:

.

.
// save hinstance in global
hinstance_app = hinstance;

// register the window class
if (!RegisterClassEx(&winclass))

return(0);
.
.

To build this application, you’ll need the following files in your project:

DEMO3_2.CPP—The main source file.

DEMO3_2RES.H—The header file contains all the symbols.

DEMO3_2.RC—The resource script itself.

TECHNO.WAV—The music clip, which just needs to be in the working directory.

CREATE.WAV—The creating window vocalization, which needs to be the in working
directory.

WINMM.LIB—The Windows Multimedia Library Extensions. This file is found in
your compiler’s LIB\ directory. You should add it to all projects from here on out.

MMSYSTEM.H—The header for WINMM.LIB. This is already included as part of
DEMO3_2.CPP, and all my demos, for that matter. All you need to know is that you
need it in your compiler’s search path. It is part of the standard Win32 header file
collection.

Last, But Not Least—Using the Compiler to Create .RC Files
Most compilers that generate Windows applications come with a quite extensive
development environment, such as Microsoft’s Visual Development Studio and so on.
Each of these IDEs contains one or more tools to create various resources, resource
scripts, and the associated headers automatically and/or with drag-and-drop
technology.

The only problem with using these tools is that you have to learn them! Moreover,
.RC files created with the IDE are in human-readable ASCII, but they have a great
deal of added #defines and macros that the compiler adds to help automate and sim-
plify the selection of constants and interfacing to MFC (wash your mouth out).

Since I’m a Microsoft VC++ 5.0 user these days, I’ll briefly cover some key elements
of using VC++ 5.0’s resource manipulation support. First, there are two ways that you
can add resources to your project:

0572313618 CH03 10/26/99 9:42 AM Page 114

CHAPTER 3
Advanced Windows Programming

115

Method 1—Using the File, New option from the main menu, you can add a number of
resources to your project. Figure 3.7 is a screen shot of the dialog that comes up.
When you add resources like icons, cursors, and bitmaps, the compiler IDE will auto-
matically launch the Image Editor (as shown back in Figure 3.4). This is a crude
image editing utility that you can use to draw your cursors and icons. If you add a
menu resource (which we will get to in the next section), the menu editor will appear.

Figure 3.7
Adding resources
with File, New in

VC++ 5.0.

Method 2—This is a bit more flexible and contains all possible resource types,
whereas method 1 only supports a few. To add any type of resource to your project,
you can use the Insert, Resource option on the main menu. The dialog that appears is
shown in Figure 3.8. However, this method does some stuff under the hood. Whenever
you add a resource, you must add it to a resource script—right? Therefore, if your
project doesn’t already have a resource script, the compiler IDE will generate one for
you and call it SCRIPT*.RC. In addition, both methods will end up generating (and/or
modifying) a file named RESOURCE.H. This file contains the resource symbols, ID
values, and so on that you define with the editor(s) in relation to resources.

Figure 3.8
Using Insert,

Resource to add
resources to your

application.

0572313618 CH03 10/26/99 9:42 AM Page 115

Windows Programming Foundations

116 PART I

I would like to delve much more into the area of resource editing via the IDE, but it’s
really a topic for an entire chapter—if not a whole book. Please review your particular
compiler’s documentation on the subject. We aren’t going to use many resources in
this book, so the info I have already given you will suffice. Let’s move on to a more
complex type of resource—the menu.

Working with Menus
Menus are one of the coolest things about a Windows program and are ultimately the
point of interaction between the user and your program (that is, if you’re making a
word processor <BG>). Knowing how to create and work with menus is very impor-
tant because you might want to design simple tools to help create your game, or you
might want to have a window-based front end to start up your game. And these tools
will undoubtedly have menus—millions of them if you’re making a 3D tool. Trust
me! In either case, you need to know how to create, load, and respond to menus.

Creating a Menu
You can create an entire menu and all the associated files with the compiler’s menu
editor, but we’ll do it manually because I can’t be sure which compiler you’re using.
This way you’ll learn what’s in a menu description, too. But when you’re writing a
real application and creating a menu, most of the time you’ll use the IDE editor
because menus are just too complex to type in manually. It’s like HTML code—when
the Web started, it wasn’t a big deal to make a home page with a text editor.
Nowadays, it’s nearly impossible to create a Web site without using a tool. (Speaking
of Web site design, my friend needs work at http://www.belmdesigngroup.com—he
has 15 kids to feed!)

Anyway, let’s get started making menus! Menus are just like the other resources you
have already worked with. They reside in an .RC resource script and must have an .H
file to resolve any symbolic references, which are all IDs in the case of menus. (One
exception: The name of the menu must be symbolic—no name strings.) Here’s the
basic syntax of a MENU description as you would see it in an .RC file:

MENU_NAME MENU DISCARDABLE
{ // you can use BEGIN instead of { if you wish

// menu definitions

} // you can use END instead of } if you wish

MENU_NAME can be a name string or a symbol, and the keyword DISCARDABLE is vesti-
gial but necessary. Seems simple enough. Of course, the stuff in the middle is miss-
ing, but chill—I’m getting there!

0572313618 CH03 10/26/99 9:42 AM Page 116

CHAPTER 3
Advanced Windows Programming

117

Before I show you the code to define menu items and submenus, we need to get some
terminology straight. For my little discussion, refer to the menu in Figure 3.9. It has
two top-level menus, File and Help. The File menu contains four menu items: Open,
Close, Save, and Exit. The Help menu contains only one menu item: About. So there
are top-level menus and menu items within them. However, this is misleading because
it’s possible to also have menus within menus, or cascading menus. I’m not going to
create any cascading menus, but the theory is simple: You just use a menu definition
for one of the menu items itself. You can do this recursively, ad infinitum.

Figure 3.9
A menu bar with two

submenus.

– x–Title Bar

File

Open About
Close
Save
Exit

Help Menu Bar

Now that we have the terminology straight, here’s how you would implement the
menu shown in Figure 3.9:

MainMenu MENU DISCARDABLE
{
POPUP “File”

{
MENUITEM “Open”, MENU_FILE_ID_OPEN
MENUITEM “Close”, MENU_FILE_ID_CLOSE
MENUITEM “Save”, MENU_FILE_ID_SAVE
MENUITEM “Exit”, MENU_FILE_ID_EXIT
} // end popup

POPUP “Help”
{
MENUITEM “About”, MENU_HELP_ABOUT
} // end popup

} // end top level menu

Let’s analyze the menu definition section by section. To begin with, the menu is
named MainMenu. At this point we don’t know if it’s a name string or an ID, but since
I usually capitalize all constants, it’s a safe bet that it’s a plain string. So that’s what
we’ll make it. Moving on, there are two top-level menu definitions, beginning with
the keyword POPUP—this is key. POPUP indicates that a menu is being defined with the
following ASCII name and menu items.

0572313618 CH03 10/26/99 9:42 AM Page 117

Windows Programming Foundations

118 PART I

The ASCII name must follow the keyword POPUP and be surrounded by quotes. The
pop-up menu definition must be contained within { } or a BEGIN END block—
whichever you like. (You Pascal people should be happy <BG>.)

Within the definition block, follow all of the menu items. To define a menu item, you
use the keyword MENUITEM with the following syntax:

MENUITEM “name”, MENU_ID

And that’s it! Of course, in this example you haven’t defined all the symbols, but you
would do so in an .H file something like this:

// defines for the top level menu FILE
#define MENU_FILE_ID_OPEN 1000
#define MENU_FILE_ID_CLOSE 1001
#define MENU_FILE_ID_SAVE 1002
#define MENU_FILE_ID_EXIT 1003

// defines for the top level menu HELP
#define MENU_HELP_ABOUT 2000

Notice the values of the IDs. I have selected to start off the first top-level
menu at 1000 and increment by 1 for each item. Then I increment by
1000 for the next top-level menu. Thus, each top-level menu differs by
1000, and each menu item within a menu differs by 1. This is a good
convention that works well. And it’s less filling.

I didn’t define “MainMenu” because I want to refer to the menu by string rather than
ID. This isn’t the only way to do it. For example, if I put the single line of code

#define MainMenu 100

within the .H file with the other symbols, the resource compiler would automatically
assume that I wanted to refer to the menu by ID. I would have to use MAKEINTRE-
SOURCE(MainMenu) or MAKEINTRESOURCE(100) to refer to the menu resource. Get it?
Alrighty, then!

You’ll notice that many menu items have hotkeys or shortcuts that you
can use instead of manually selecting the top-level menu or menu item
with the mouse. This is achieved by using the ampersand character (&).
All you do is place the ampersand in front of the character that you
want to be a shortcut or hotkey in a POPUP menu or a MENUITEM string.
For example,

MENUITEM “E&xit”, MENU_FILE_ID_EXIT

Trick

Tip

0572313618 CH03 10/26/99 9:43 AM Page 118

CHAPTER 3
Advanced Windows Programming

119

Now that you know how to create and define a menu, let’s see how to load it into your
application and attach it to a window.

Loading a Menu
There are a number of ways to attach a menu to a window. You can associate a single
menu with all windows in a Windows class, or you can attach different menus to each
window that you create. First, let’s see how to associate a single menu with the
Windows class itself.

In the definition of the Windows class, there is a line of code that defines what the
menu is

winclass.lpszMenuName = NULL;

All you need to do is assign it the name of the menu resource. Presto, that’s it!
Here’s how

winclass.lpszMenuName = “MainMenu”;

And if “MainMenu” was a constant, you would do it this way:

winclass.lpszMenuName = MAKEINTRESOURCE(MainMenu);

No problemo… almost. The only problem with this is that every window you create
will have the same menu. To get around this, you can assign a menu to a window
during creation by passing a menu handle. However, to get a menu handle, you must
load the menu resource with LoadMenu(). Here’s its prototype(s):

HMENU LoadMenu(HINSTANCE hInstance,// handle of application instance
LPCTSTR lpMenuName);// menu name string or menu-resource identifier

If successful, LoadMenu() returns an HMENU handle to the menu resource, which you
can then use.

Here’s the normal CreateWindow() call you have been making, changed to load the
menu “MainMenu” into the menu handle parameter:

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Sound Resource Demo”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y

makes the x a hotkey, and

POPUP “&File”

makes F a shortcut via Alt+F.

0572313618 CH03 10/26/99 9:43 AM Page 119

Windows Programming Foundations

120 PART I

400,400, // initial width, height
NULL, // handle to parent
LoadMenu(hinstance, “MainMenu”), // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

Or if MainMenu was a symbolic constant, the call would look like this:

LoadMenu(instance, MAKEINTRESOURCE(MainMenu)), // handle to menu

You may think I’m belaboring the difference between resources defined
by string and by symbolic constant. However, taking into consideration
that it’s the number one cause of self-mutilation among Windows
programmers, I think it’s worth the extra work—don’t you?

Note

And of course, you can have many different menus defined in your .RC file, and thus
you can attach a different one to each window.

The final method of attaching a menu to a window is by using the SetMenu()
function, shown here:

BOOL SetMenu(HWND hWnd, // handle of window to attach to
HMENU hMenu); // handle of menu

SetMenu() takes the window handle, along with the handle to the menu (retrieved
from LoadMenu()), and simply attaches the menu to the window. The new menu will
override any menu previously attached. Here’s an example listing, assuming that the
Windows class defines the menu as NULL, as does the menu handle in the call to
CreateWindow():

// first fill in the window class structure
winclass.cbSize = sizeof(WNDCLASSEX);
winclass.style = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(hinstance,

MAKEINTRESOURCE(ICON_T3DX));
winclass.hCursor = LoadCursor(hinstance,

MAKEINTRESOURCE(CURSOR_CROSSHAIR));
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL; // note this is null
winclass.lpszClassName = WINDOW_CLASS_NAME;
winclass.hIconSm = LoadIcon(hinstance, MAKEINTRESOURCE(ICON_T3DX));

0572313618 CH03 10/26/99 9:43 AM Page 120

CHAPTER 3
Advanced Windows Programming

121

// register the window class
if (!RegisterClassEx(&winclass))

return(0);

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Menu Resource Demo”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,400, // initial width, height
NULL, // handle to parent
NULL, // handle to menu, note it’s null
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

// since the window has been created you can
// attach a new menu at any time

// load the menu resource
HMENU hmenuhandle = LoadMenu(hinstance, “MainMenu”);

// attach the menu to the window
SetMenu(hwnd, hmenuhandle);

For an example of creating the menu and attaching it to the window using the second
method (that is, during the window creation call), take a look at DEMO3_3.CPP on the
CD-ROM and the associated executable, DEMO3_3.EXE, which is shown running in
Figure 3.10.

Figure 3.10
Running DEMO3_3.EXE.

The only two files of interest are the resource and header files, DEMO3_3RES.H and
DEMO3_3.RC.

0572313618 CH03 10/26/99 9:43 AM Page 121

Windows Programming Foundations

122 PART I

Contents of DEMO3_3RES.H:

// defines for the top level menu FILE
#define MENU_FILE_ID_OPEN 1000
#define MENU_FILE_ID_CLOSE 1001
#define MENU_FILE_ID_SAVE 1002
#define MENU_FILE_ID_EXIT 1003

// defines for the top level menu HELP
#define MENU_HELP_ABOUT 2000

Contents of DEMO3_3.RC:

#include “DEMO3_3RES.H”

MainMenu MENU DISCARDABLE
{
POPUP “File”

{
MENUITEM “Open”, MENU_FILE_ID_OPEN
MENUITEM “Close”, MENU_FILE_ID_CLOSE
MENUITEM “Save”, MENU_FILE_ID_SAVE
MENUITEM “Exit”, MENU_FILE_ID_EXIT
} // end popup

POPUP “Help”
{
MENUITEM “About”, MENU_HELP_ABOUT
} // end popup

} // end top level menu

To compile your own DEMO3_3.CPP executable, make sure to include

DEMO3_3.CPP—The main source.

DEMO3_3RES.H—The resource symbol header.

DEMO3_3.RC—The resource script file.

Try playing with DEMO3_3.EXE and the associated source. Change the menu items, add
some more menus by adding more POPUP blocks to the .RC file, and get a good feel
for it. Also, try making a cascading menu tree. (Hint: Just replace MENUITEM with a
POPUP for one of the MENUITEMS making up a menu.)

Responding to Menu Event Messages
The only problem with DEMO3_3.EXE is that it doesn’t do anything! True, my young
Jedi. The problem is that you don’t know how to detect the messages that menu item
selections and manipulations generate. That is the topic of this section.

0572313618 CH03 10/26/99 9:43 AM Page 122

CHAPTER 3
Advanced Windows Programming

123

The Windows menu system generates a number of messages as you slide across
top-level menu items as shown in Figure 3.11.

Figure 3.11
Window menu selec-

tion message flow.

– x
File

About

Help

ID = 2000

WinProc()
{
wm_command:
{
WParam = 2000
LParam = Hwnd
}
}

Event Handler

Hwnd

Message Sent

menu Item ID
Window Handle

The message we are interested in is sent when a menu item is selected and then the
mouse is released. This denotes a selection. Selections send a WM_COMMAND message to
the WinProc() of the window that the menu is attached to. The particular menu item
ID and various other data is stored in the wparam and lparam of the message, as
shown here:

msg—WM_COMMAND

lparam—The window handle that the message was sent from

wparam—The ID of the menu item that was selected

So all you have to do is switch() on the wparam parameter, with the cases being the
different MENUITEM IDs defined in your menu, and you’re in business. For example,
using the menu defined in DEMO3_3.RC, you would add the WM_COMMAND message han-
dler and end up with something like this for your WinProc():

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT msg,

WPARAM wparam,
LPARAM lparam)

{
// this is the main message handler of the system
PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

// what is the message

Technically, you should extract the low-order WORD from wparam with
the LOWORD() macro to be safe. This macro is part of the standard
includes, so you have access to it.

Tip

0572313618 CH03 10/26/99 9:43 AM Page 123

Windows Programming Foundations

124 PART I

switch(msg)
{
case WM_CREATE:

{
// do initialization stuff here

// return success
return(0);

} break;

case WM_COMMAND:
{
switch(LOWORD(wparam))

{
// handle the FILE menu
case MENU_FILE_ID_OPEN:
{
// do work here
} break;
case MENU_FILE_ID_CLOSE:
{
// do work here
} break;
case MENU_FILE_ID_SAVE:
{
// do work here
} break;
case MENU_FILE_ID_EXIT:
{
// do work here
} break;

// handle the HELP menu
case MENU_HELP_ABOUT:
{
// do work here
} break;

default: break;

} // end switch wparam

} break; // end WM_COMMAND

case WM_PAINT:
{
// simply validate the window
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);
// return success

return(0);

0572313618 CH03 10/26/99 9:43 AM Page 124

CHAPTER 3
Advanced Windows Programming

125

} break;

case WM_DESTROY:
{
// kill the application, this sends a WM_QUIT message
PostQuitMessage(0);

// return success
return(0);
} break;

default:break;

} // end switch

// process any messages that we didn’t take care of
return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

It’s so easy, it should be illegal! Of course, there are other messages that manipulate
the top-level menus and menu items themselves, but you can look in your Win32
SDK Help for more info. (I rarely need to know more than if a menu item was clicked
or not.)

As a solid example of doing something with menus, I have created a cool sound demo
that allows you to exit the program via the main menu, play one of four different
teleporter sound effects, and finally pop up an About box via the Help menu. Also, the
.RC file contains the sound, icon, and cursor resources. The program is DEMO3_4.CPP.
Let’s take a look at the resource script and header first.

Contents of DEMO3_4RES.H:

// defines for sounds resources
#define SOUND_ID_ENERGIZE 1
#define SOUND_ID_BEAM 2
#define SOUND_ID_TELEPORT 3
#define SOUND_ID_WARP 4

// defines for icon and cursor
#define ICON_T3DX 100
#define CURSOR_CROSSHAIR 200

// defines for the top level menu FILE
#define MENU_FILE_ID_EXIT 1000

// defines for play sound top level menu
#define MENU_PLAY_ID_ENERGIZE 2000
#define MENU_PLAY_ID_BEAM 2001
#define MENU_PLAY_ID_TELEPORT 2002
#define MENU_PLAY_ID_WARP 2003

0572313618 CH03 10/26/99 9:43 AM Page 125

Windows Programming Foundations

126 PART I

// defines for the top level menu HELP
#define MENU_HELP_ABOUT 3000

Contents of DEMO3_4.RC:

#include “DEMO3_4RES.H”

// the icon and cursor resource
ICON_T3DX ICON t3dx.ico
CURSOR_CROSSHAIR CURSOR crosshair.cur

// the sound resources
SOUND_ID_ENERGIZE WAVE energize.wav
SOUND_ID_BEAM WAVE beam.wav
SOUND_ID_TELEPORT WAVE teleport.wav
SOUND_ID_WARP WAVE warp.wav

// the menu resource
SoundMenu MENU DISCARDABLE
{
POPUP “&File”

{
MENUITEM “E&xit”, MENU_FILE_ID_EXIT
} // end popup

POPUP “&PlaySound”
{

MENUITEM “Energize!”, MENU_PLAY_ID_ENERGIZE
MENUITEM “Beam Me Up”, MENU_PLAY_ID_BEAM
MENUITEM “Engage Teleporter”, MENU_PLAY_ID_TELEPORT
MENUITEM “Quantum Warp Teleport”, MENU_PLAY_ID_WARP

} // end popup

POPUP “Help”
{
MENUITEM “About”, MENU_HELP_ABOUT
} // end popup

} // end top level menu

Based on the resource script and header file (which must be included in the main
app), let’s take a look at the code excerpts of DEMO3_4.CPP loading each resource.
First, the loading of the main menu, icon, and cursor:

winclass.hCursor = LoadCursor(hinstance,
MAKEINTRESOURCE(CURSOR_CROSSHAIR));

winclass.lpszMenuName = “SoundMenu”;
winclass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(ICON_T3DX));
winclass.hIconSm= LoadIcon(hinstance, MAKEINTRESOURCE(ICON_T3DX));

0572313618 CH03 10/26/99 9:43 AM Page 126

CHAPTER 3
Advanced Windows Programming

127

And now the fun part—the processing of the WM_COMMAND message that plays each
sound, along with the handling of the Exit menu item and the display of the About
box under Help. For brevity, I’ll just show the WM_COMMAND message handler, since
you’ve seen the entire WinProc() enough by now:

case WM_COMMAND:
{
switch(LOWORD(wparam))

{
// handle the FILE menu
case MENU_FILE_ID_EXIT:
{
// terminate window
PostQuitMessage(0);
} break;

// handle the HELP menu
case MENU_HELP_ABOUT:
{
// pop up a message box
MessageBox(hwnd, “Menu Sound Demo”,

“About Sound Menu”,
MB_OK | MB_ICONEXCLAMATION);

} break;
// handle each of sounds
case MENU_PLAY_ID_ENERGIZE:
{
// play the sound
PlaySound(MAKEINTRESOURCE(SOUND_ID_ENERGIZE),

hinstance_app, SND_RESOURCE | SND_ASYNC);
} break;
case MENU_PLAY_ID_BEAM:
{
// play the sound
PlaySound(MAKEINTRESOURCE(SOUND_ID_BEAM),

hinstance_app, SND_RESOURCE | SND_ASYNC);
} break;
case MENU_PLAY_ID_TELEPORT:
{
// play the sound
PlaySound(MAKEINTRESOURCE(SOUND_ID_TELEPORT),

hinstance_app, SND_RESOURCE | SND_ASYNC);
} break;
case MENU_PLAY_ID_WARP:
{
// play the sound
PlaySound(MAKEINTRESOURCE(SOUND_ID_WARP),

hinstance_app, SND_RESOURCE | SND_ASYNC);
} break;

0572313618 CH03 10/26/99 9:43 AM Page 127

Windows Programming Foundations

128 PART I

default: break;
} // end switch wparam

} break; // end WM_COMMAND

And that’s all I have to say about that.

As you can see, resources can do a lot and are fun to work with. Now let’s take a
break from resources and take an introductory crash course on the WM_PAINT message
and basic GDI manipulation.

Introduction to GDI
Thus far, the only experience you’ve had with GDI is the processing of the WM_PAINT
message in the main event handler. Remember that GDI, or the Graphics Device
Interface, is how all graphics are drawn under Windows when DirectX is not in use.
Alas, you haven’t yet learned how to actually draw anything on the screen with GDI,
but this is very key because rendering on the screen is one of the most important parts
of writing a video game. Basically, a game is just logic that drives a video display. In
this section, I’m going to revisit the WM_PAINT message, cover some basic video con-
cepts, and teach you how to draw text within your window. The next chapter will
focus more heavily on GDI.

Understanding the WM_PAINT message is very important for standard GDI graphics and
Windows programming because most Windows programs’ displays revolve around
this single message. In a DirectX game this isn’t true, because DirectX, or more
specifically DirectDraw or Direct3D, will do the drawing, but you still need to know
GDI to write Windows applications.

The WM_PAINT Message Once Again
The WM_PAINT message is sent to your window’s WinProc() whenever the window’s
client area needs repainting. Until now, you haven’t done much processing on this
event. Here’s the standard WM_PAINT handler you have been using:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

case WM_PAINT:
{
// simply validate the window
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);
// return success
return(0);
} break;

0572313618 CH03 10/26/99 9:43 AM Page 128

CHAPTER 3
Advanced Windows Programming

129

Refer to Figure 3.12 for the following explanation. When a window is moved, resized,
or in some way graphically obscured by another window or event, some or all of the
window’s client area must be redrawn. When this happens, a WM_PAINT message is
sent and you must deal with it.

Figure 3.12
The WM_PAINT

message.

– x

Before

– x

Before– x

After

– x

After

– x

Before

– x

After
– x

Wm_Paint
Wm_Paint
Wm_Paint
 •
 •
 •

Message Queue

Wm_Paint:
{

}

WinProc()

Movement

Resize

Window
Overlap

Case 1 Case 2 Case 3

In the case of the preceding code example, the calls to BeginPaint() and EndPaint()
accomplish a couple of tasks. First, they validate the client area, and second, they fill
the background of your window with the background brush defined in the Windows
class that the window was originally created with.

Now, if you want to do your own graphics within the BeginPaint()—EndPaint()

call, you can. However, there is one problem: You will only have access to the portion
of the window’s client area that actually needs repainting. The coordinates of the
invalid rectangle are stored in the rcPaint field of the ps (PAINSTRUCT) returned by
the call to BeginPaint():

typedef struct tagPAINTSTRUCT
{
HDC hdc; // graphics device context
BOOL fErase; // if TRUE then you must draw background
RECT rcPaint; // the RECT containing invalid region
BOOL fRestore; // internal
BOOL fIncUpdate; // internal
BYTE rgbReserved[32]; // internal
} PAINTSTRUCT;

And to refresh your memory, here’s the definition of RECT:

typedef struct _RECT
{
LONG left; // left edge if rectangle
LONG top; // upper edge of rectangle

0572313618 CH03 10/26/99 9:43 AM Page 129

Windows Programming Foundations

130 PART I

LONG right; // right edge of rectangle
LONG bottom; // bottom edge of rectangle
} RECT;

In other words, referring back to Figure 3.12, the window is 400×400, but only the
lower region of the window—300,300 to 400,400—needs repainting. Thus, the
graphics device context returned by the call to BeginPaint() is only valid for this
100×100 region of your window! Obviously, this is a problem if you want to have
access to the entire client area.

The solution to the problem has to do with gaining access to the graphics device
context for the window directly without it being sent as part of a window update
message via BeginPaint(). You can always get a graphics context for a window or
hdc using the GetDC() function, as shown here:

HDC GetDC(HWND hWnd); // handle of window

You simply pass the window handle of the graphics device context you want to
access, and the function returns a handle to it. If the function is unsuccessful, it
returns NULL. When you’re done with the graphics device context handle, you must
give it back to Windows with a call to ReleaseDC(), as shown here:

int ReleaseDC(HWND hWnd, // handle of window
HDC hDC); // handle of device context

ReleaseDC() takes the window handle and the handle to the device context you
previously acquired with GetDC().

Windows-speak gets confusing when it comes to graphics device con-
texts. Technically, a handle to a device context can refer to more than
one output device. For example, a device context could be a printer.
Therefore, I usually refer to a graphics-only device context as a graphics
device context. But the data type is HDC or handle to device context. So
typically, I will define a graphics device context variable as HDC hdc, but
sometimes I will also use HDC gdc because it makes more sense to me.
In any case, just be aware that for this book, a graphics device context
and a device context are interchangeable, and variables with the names
hdc and gdc are of the same type.

Note

Here’s how you would use GetDC()—ReleaseDC() to do graphics:

HDC gdc = NULL; // this will hold the graphics device context

// get the graphics context for the window
if (!(gdc = GetDC(hwnd)))

error();

0572313618 CH03 10/26/99 9:43 AM Page 130

CHAPTER 3
Advanced Windows Programming

131

// use the gdc here and do graphics – you don’t know how yet!

// release the dc back to windows
ReleaseDC(hwnd, gdc);

Of course, you don’t know how to do any graphics yet, but I’m getting there… The
important thing is that you now have another way to process a WM_PAINT message.
However, there is one problem: When you make a call to GetDC()—ReleaseDC(),
Windows has no idea that you have restored or validated the client area of your
window. In other words, if you use GetDC()—ReleaseDC() in place of
BeginPaint()—EndPaint(), you’ll create another problem!

The problem is that BeginPaint()—EndPaint() sends a message to Windows
indicating that the window contents have been restored (even if you don’t make any
graphics calls). Hence, Windows won’t send any more WM_PAINT messages. On the
other hand, if you replace BeginPaint()—EndPaint() with GetDC()—ReleaseDC()

in the WM_PAINT handler, WM_PAINT messages will continue to be sent forever! Why?
Because you must validate the window.

To validate the area of a window that needs repainting and tell Windows that you have
restored the window, you could call BeginPaint()—EndPaint() after the call to
GetDC()—ReleaseDC(), but this would be inefficient. Instead, use the call specifically
designed for this, called ValidateRect():

BOOL ValidateRect(HWND hWnd, // handle of window
CONST RECT *lpRect); // address of validation rectangle coordinates

To validate a window, send the handle of the window along with the region you want
to be validated in lpRect. In most cases, the region to validate would be the entire
window. Thus, to use GetDC()—ReleaseDC() in the WM_PAINT handler, you would
have to do something like this:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context
RECT rect; // rectangle of window

case WM_PAINT:
{
// simply validate the window
hdc = GetDC(hwnd);
// you would do all your painting here

ReleaseDC(hwnd,hdc);

// get client rectangle of window – use Win32 call
GetClientRect(hwnd,&rect);
// validate window
ValidateRect(hwnd,&rect);

0572313618 CH03 10/26/99 9:43 AM Page 131

Windows Programming Foundations

132 PART I

// return success
return(0);
} break;

Notice the call to GetClientRect(). All this does is get the client rec-
tangle coordinates for you. Remember, because a window can move
around, it has two sets of coordinates: window coordinates and client
coordinates. Window coordinates are relative to the screen, and client
coordinates are relative to the upper left-hand corner of the window
(0,0). Figure 3.13 shows this more clearly.

Note

You must be saying, “Does it really need to be this hard?” Of course it does—it’s
Windows <BG>. Remember, the whole reason for all this drama in the WM_PAINT
message handler is that you need to make sure that you can draw graphics anywhere
you want in the client area of the window. This is only possible if you use GetDC()—
ReleaseDC() or BeginPaint()—EndPaint() with a completely invalid window.
However, we are trying to get the best of both worlds, and we’re almost done. The
final trick I want to show you is how to invalidate a window manually.

Consider this: If you could somehow invalidate the entire window within your
WM_PAINT handler, you would be sure that the rcPaint field of the ps PAINTSTRUCT

returned by BeginPaint() and the associated gdc would give you access to the
entire client area of the window. To make this happen, you can manually enlarge the
invalidated area of any window with a call to InvalidateRect(), as shown here:

BOOL InvalidateRect(HWND hWnd, // handle of window with

Figure 3.13
Window coordinates

versus client
coordinates.

– x

Client Coords

• (0, 0)

•

(X1, Y1)

(X2, Y2)

(0, 0) Screen 1 Desktop

Border

Windows
Coords

(Window_width, Window_height)

Start

Border not
included in
client coords.

Maximum Resolution
(639, 479)
(799, 599)

•
•
•

(1599, 1399)

Screen
Origin

0572313618 CH03 10/26/99 9:43 AM Page 132

CHAPTER 3
Advanced Windows Programming

133

// changed update region
CONST RECT *lpRect, // address of rectangle coordinates
BOOL bErase); // erase-background flag

If bErase is TRUE, the call to BeginPaint() fills in the background brush; otherwise,
it doesn’t.

Simply call InvalidateRect() before the BeginPaint()—EndPaint() pair, and then,
when you do call BeginPaint(), the invalid region will reflect the union of what it
was and what you added to it with the InvalidatRect(). However, in most cases, you
will use NULL as the lpRect parameter of InvalidateRect(), which will invalidate
the entire window. Here’s the code:

PAINTSTRUCT ps; // used in WM_PAINT
HDC hdc; // handle to a device context

case WM_PAINT:
{

// invalidate the entire window
InvalidateRect(hwnd, NULL, FALSE);

// begin painting
hdc = BeginPaint(hwnd,&ps);
// you would do all your painting here

EndPaint(hwnd,&ps);
// return success
return(0);
} break;

In most of the programs in this book, you’ll use GetDC()—ReleaseDC() in places
other than the WM_PAINT message, and BeginPaint()—EndPaint() solely in the
WM_PAINT handler. Now let’s move on to some simple graphics so you can at least
print out text.

Video Display Basics and Color
At this point, I want to take time to discuss some concepts and terminology that relate
to graphics and color on the PC. Let’s start with some definitions:

• Pixel—A single addressable picture element on a raster display, such as a
computer monitor.

• Resolution—The number of pixels that the display card supports, such as
640×480, 800×600, and so forth. The higher the resolution, the better the image,
but the more memory required too. Table 3.2 lists some of the most common
resolutions and their various memory requirements.

• Color depth—The number of bits or bytes that represent each pixel on the
screen—bits per pixel (bpp). For example, if each pixel is represented by 8 bits
(a single byte), the display can only support 256 colors because 28 = 256. On

0572313618 CH03 10/26/99 9:43 AM Page 133

Windows Programming Foundations

134 PART I

the other hand, if each pixel is made of 16 bits (2 bytes), each pixel can support
up to 16,384 colors or 216. Again, the greater the color depth, the greater the
detail, but memory usage also goes up. Furthermore, 8-bit modes are usually
palettized (which will be explained shortly), 16-bit modes are called high color,
and 24- and 32-bit modes are called true color.

• Interlaced/noninterlaced displays—Computer displays are drawn by a scan-
ning electron gun one line at a time—rasterization. Standard television draws
two frames for each image. One frame consists of all the odd-numbered scan
lines, and the other frame is all the even-numbered lines. When these two
frames are drawn in quick succession, your eyes fuse them together and create a
single image. This only looks acceptable for moving images and therefore is not
acceptable for static imagery like a Windows display. However, some cards can
only support high-resolution modes if they interlace. When interlacing occurs,
you will usually see a flicker or shake in the display.

• Video RAM (VRAM)—The amount of onboard memory on a video card for
representing the video image(s) on the screen or in texture memory.

• Refresh rate—The number of times per second the video image is refreshed,
measured in Hz (hertz) or fps (frames per second). 60Hz is considered the
minimum acceptable level these days, and some monitors and display cards go
up to well over 100Hz for a rock-solid display.

• 2D acceleration—Hardware support on the video card that helps Windows
and/or DirectX with 2D operations like bitmapped graphics, lines, circles, text,
scaling, and so forth.

• 3D acceleration—Hardware support on the video card that helps Windows or
DirectX/Direct3D with 3D graphics rendering.

These elements are shown in Figure. 3.14.

TABLE 3.2 Video Resolutions and Memory Requirements

Resolution Bits per Pixel Memory (min-max)

320×200* 8 64KB

320×240* 8 64KB

640×480 8, 16, 24, 32 307KB–1.22MB

800×600 8, 16, 24, 32 480KB–1.92MB

1024×768 8, 16, 24, 32 786KB–3.14MB

1280×1024 8, 16, 24, 32 1.31MB–5.24MB

1600×1200 8, 16, 24, 32 1.92KB–7.68MB

*These are considered to be Mode X modes and may not be supported by your video card.

0572313618 CH03 10/26/99 9:43 AM Page 134

CHAPTER 3
Advanced Windows Programming

135

Of course, Table 3.2 is only a sampling of possible video modes and color depths.
Your card may support many more. The important thing is to understand that it’s
pretty easy to eat up 2MB to 4MB of video RAM. The good news is that most
DirectX Windows games that you’ll write will run in 320×240 or 640×480, which,
depending on the color depth, a 2MB card can support.

Figure 3.14
The mechanics of a

video display.
Bit Depth
1 Bit - Monochrome
2 Bit - 4 Color
4 Bit - 16 Color
8 Bit - 256 Color Palettized

16 Bit - Hi Color 65,536 Colors
24 Bit - True Color 16.7 Million Colors
32 Bit - Ultra True Color 4.2 Billion Colors

640 x 480 Resolution

Single Pixel

640 Pixels
Video surface represent in VRAM
e.g. 640 x 480 x 256 = 307,200 Bytes of VRAM

480 Lines

(0,0)

(639,479)

RGB and Palletized Modes
There are two ways to represent color on a video display: directly or indirectly. Direct
color modes, or RGB modes, represent each pixel on the screen with either 16, 24, or
32 bits that represent the red, green, and blue components of the color (see Figure
3.15). This is possible due to the additive nature of the primary colors red, green,
and blue.

Referring to Figure 3.15, you can see that for each possible color depth (16, 24, 32),
there are a number of bits assigned to each color channel. Of course, with 16-bit and
32-bit color, these numbers aren’t evenly divisible by 3; therefore, there might be an
unequal amount of one of the color channels. For example, with 16-bit color modes,
there are three different RGB encodings you might find:

• RGB (6.5.5)—Six bits of red, five bits of green, and five bits of blue.

• RGB (1.5.5.5)—One bit alpha and five bits each of red, green, and blue. Alpha
is a transparency control.

• RGB (5.6.5)—Five bits of red, six bits of green, and five bits of blue. This is
the most common, in my experience.

0572313618 CH03 10/26/99 9:43 AM Page 135

Windows Programming Foundations

136 PART I

The 24-bit mode is almost always eight bits per channel. However, the 32-bit mode
can be weird, and in most cases there are eight bits for alpha (transparency) and eight
bits each for the red, green, and blue channels.

Basically, RGB modes give you control over the exact red, green, and blue compo-
nents of each pixel on the screen. Palettized modes work on a principle called indirec-
tion. When there are only eight bits per pixel, you could decide to allocate the three
bits for red, three bits for green, and maybe two bits for blue or some combination
thereof. However, this would leave you with only a few shades of each of the primary
colors, and that wouldn’t be very exciting. Instead, 8-bit modes use a palette.

As shown in Figure 3.16, a palette is a table that has 256 entries, one for each possi-
ble value of a single byte—0 to 255. However, each of these entries is really com-
posed of three 8-bit entries of red, green, and blue. In essence, it’s a full RGB 24-bit
descriptor. The color lookup table (CLUT) works like this: When a pixel in an 8-bit
color mode is read from the screen, say value 26, the 26 is used as an index into the
color table. Then the 24-bit RGB value for color descriptor index 26 is used to drive
the red, green, and blue channels for the actual color that is sent to the display. In this
way, you can have just 256 colors on the screen at once, but they can be from among
16.7 million colors or 24-bit RGB values. Figure 3.16 illustrates the lookup process.

Figure 3.15
Color encoding for

RGB modes.

R4MSB R3 R2 R1 R0 G5 G4 G3 G2 G1

16 bit color 5.6.5 format - Green dominant

G0 B3B4 B2 B1 B0 LSB

d15 d0

Red channel Green channel Blue channel

R4XMSB R3 R2 R1 R0 G4 G3 G2 G1 G0

16 bit color 5.5.5 format

B4 B3 B2 B1 B0 LSB

d14d15 d0

Red channel Green channel Blue channel

R7MSB R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3

24 bit color 8.8.8 format 1256 shades each channel

G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 LSB

d24 d0

Red channel Green channel Blue channel

MSB Alpha Red

32 bit color A.8.8.8 format

Green Blue

Byte 3 Byte 2 Byte 1 Byte 0

LSB

d31 d0

d23 - dib
Red channel

8 Alpha channel d15 - d8

Green channel
d7 - d0

Blue channel

• Alpha or
• Intensity or
• Unused

* note: Some cards support 10.10.10 format
R G B

0572313618 CH03 10/26/99 9:43 AM Page 136

CHAPTER 3
Advanced Windows Programming

137

We are getting a little ahead of ourselves with all this color stuff, but I want to let you
chew on the concepts a bit so that when you see them again during the DirectDraw
discussion, it won’t be for the first time. In fact, color is such a complex problem to
work with in normal GDI-based Windows graphics that Windows has abstracted color
to a 24-bit model no matter what. That way you don’t have to worry about the details
of color depth and such when you’re programming. Of course, you will get better
results if you do worry about them, but you don’t have to.

Basic Text Printing
Windows has one of the most complex and robust text-rendering systems of any oper-
ating system I have ever seen. Of course, for most game programmers, printing the
score is all we want to do, but it’s nice to have nonetheless.

In reality, the GDI text engine is usually too slow to print text in a real-time game, so
in the end you will need to design our own DirectX-based text engine. For now,
though, let’s learn how to print text with GDI. At the very least, it will help with
debugging and output with demos.

There are two popular functions for printing text: TextOut() and DrawText().
TextOut() is the “ghetto ride” version of text output, and DrawText() is the Lexus. I
usually use TextOut() because it’s faster and I don’t need all the bells and whistles of
DrawText(), but we’ll take a look at both. Here are their prototypes:

BOOL TextOut(HDC hdc, // handle of device context
int nXStart, // x-coordinate of starting position
int nYStart, // y-coordinate of starting position
LPCTSTR lpString,// address of string
int cbString); // number of characters in string

Figure 3.16
How 256-color palet-

tized modes work.

Red

Green

Blue

12 5 29

9

150

Pixel values are
used as Index into
CLUT.

(0, 0) Display Buffer 256 color mode

100

29

52

0

100

0

1

2

6

255Last Index

5

200

36

255

100

36

Red
Color
Index

RGB value for each entry
can be anything you want
in range 0 - 255.

Green

Color Lookup Table (CLUT)

Blue

60

161

100

100

8 bit 8 bit

24-bit

8 bit

6

DAC

Output
Color

Digital to Analog
converterPixel values

0-255

•
•
•

0572313618 CH03 10/26/99 9:43 AM Page 137

Windows Programming Foundations

138 PART I

int DrawText(HDC hDC, // handle to device context
LPCTSTR lpString, // pointer to string to draw
int nCount, // string length, in characters
LPRECT lpRect, // ptr to bounding RECT
UINT uFormat); // text-drawing flags

Most of the parameters are self-explanatory. For TextOut(), you simply send the
device context, the x,y coordinates to print to, and the ASCII string, along with the
length of the string in bytes. DrawText(), on the other hand, is a little more complex.
Because it does word wrapping and formatting, it takes a different approach to print-
ing via a rendering RECT. Thus, DrawText() doesn’t take an x,y for the place to start
printing; instead, it takes a RECT that defines where the printing will take place within
the window (see Figure 3.17). Along with the RECT of where to print it, you send
some flags that describe how to print it (such as left-justified). Please refer to the
Win32 documentation for all the flags, because there are a ton of them. I’ll just stick
to DT_LEFT, which is the most intuitive and justifies all text to the left.

Figure 3.17
The drawing RECT of

DrawText().

– xWindow Title Bar

RECT{
Top;
Left;
Right;
Bottom;}DrawText(hoc,

“HelloWorld,”
11,
& rect);

Top

Bottom

Left

Hello World

Right

All text printed by DrawText()
is clipped to the RECT
sent to DrawText().

Client
area

The only problem with both calls is that there’s no mention of color. Hmmmm. That’s
almost as strange as Boogie Nights, but who cares? Anyway, thankfully there is a way
to set both the foreground color of the text and the background color behind it, in
addition to the transparency mode of the text.

The transparency mode of the text dictates how the characters will be drawn. Will the
characters be stamped down with rectangular regions or drawn pixel by pixel as an
overlay? Figure 3.18 illustrates transparency as it relates to printing. As you can see,
when text is printed with transparency, it looks as if it was drawn right on top of the
graphics. Without transparency, you can actually see that there is an opaque block sur-
rounding each character, which obscures everything—very ugly.

0572313618 CH03 10/26/99 9:44 AM Page 138

CHAPTER 3
Advanced Windows Programming

139

Let’s take a look at the functions to set the foreground and background colors of text:

COLORREF SetTextColor(HDC hdc, // handle of device context
COLORREF Color); // foreground character color

COLORREF SetBkColor(HDC hdc, // handle of device context
COLORREF color); // background color

Both functions take the graphics device context (from a call to GetDC() or
BeginPaint()) along with the color to use in COLORREF format. Once you set these
colors, they stay in flux until you change them. In addition, when you do set the col-
ors, each function returns the current value so you can restore the old one when
you’re done or when your application exits.

You’re almost ready to print, but this new COLORREF type has to be dealt with—don’t
you think? Okay, then! Here’s the definition of COLORREF:

typedef struct tagCOLORREF
{
BYTE bRed; // the red component
BYTE bGreen; // the green component
BYTE bBlue; // the blue component
BYTE bDummy; // unused
} COLORREF;

So in memory, a COLORREF looks like 0x00bbggrr. Remember, PCs are Little
Endian—that is, low BYTE to high BYTE. To create a valid COLORREF, you can use the
RGB() macro, like this:

COLORREF red = RGB(255,0,0);
COLORREF yellow = RGB(0,255,255);

And so forth. While we’re looking at color descriptor structures, we might as well
look at PALETTEENTRY because it is absolutely identical:

typedef struct tagPALETTEENTRY

Figure 3.18
Opaque and transpar-

ent text printing.

Rendering without transparency is faster, so if you’re printing on a
monochrome background and you can get away with it, do it!

Tip

0572313618 CH03 10/26/99 9:44 AM Page 139

Windows Programming Foundations

140 PART I

{
BYTE peRed; // red bits
BYTE peGreen; // green bits
BYTE peBlue; // blue bits
BYTE peFlags; // control flags
} PALETTEENTRY;

peFlags can take on the values in Table 3.3. In most cases you will use
PC_NOCOLLAPSE and PC_RESERVED, but for now just know they exist. The interesting
thing that I wanted to point out, though, is the similarity between COLORREFs and
PALETTEENTRYs. They are identical except for the interpretation of the last BYTE.
Hence, in many cases they’re interchangeable.

TABLE 3.3 PALLETEENTRY Flags

Value Description

PC_EXPLICIT Specifies that the low-order word of the logical palette entry designates
a hardware palette index. Advanced.

PC_NOCOLLAPSE Specifies that the color be placed in an unused entry in the system
palette instead of being matched to an existing color in the system
palette.

PC_RESERVED Specifies that the logical palette entry be used for palette animation.
This flag prevents other windows from matching colors to the palette
entry because the color frequently changes. If an unused system-
palette entry is available, the color is placed in that entry. Otherwise,
the color is not available for animation.

Now you’re almost ready to print, but remember that there was the issue of
transparency and how to set it. The function used to set the transparency mode is
SetBkMode(), and here’s its prototype:

int SetBkMode(HDC hdc, // handle to device context
int iBkMode); // transparency mode

The function takes the graphics device context along with the new transparency mode
to switch to, which can be either TRANSPARENT or OPAQUE. The function returns the old
mode so you can save it for later restoration.

Now you’re ready to kick the tires and light the fires, big daddy. Here’s how you
would print some text:

COLORREF old_fcolor, // old foreground text color
old_bcolor; // old background text color

int old_tmode; // old text transparency mode

// first get a graphics device context
HDC hdc = GetDC(hwnd);

0572313618 CH03 10/26/99 9:44 AM Page 140

CHAPTER 3
Advanced Windows Programming

141

// set the foreground color to green and save old one
old_fcolor = SetTextColor(hdc, RGB(0,255,0));

// set the background color to black and save old one
old_bcolor = SetBkColor(hdc, RGB(0,0,0));

// finally set the transparency mode to transparent
old_tmode = SetBkMode(hdc, TRANSPARENT);

// draw some text at (20,30)
TextOut(hdc, 20,30, “Hello”,strlen(“Hello”));

// now restore everything
SetTextColor(hwnd, old_fcolor);
SetBkColor(hwnd, old_bcolor);
SetBkMode(hwnd, old_tmode);

// release the device context
ReleaseDC(hwnd, hdc);

Of course, there is no law that you have to restore the old values, but I did it here just
to show you how. Also, the color and transparency settings are valid as long as you
have the handle to the device context. Let’s say you wanted to draw some blue text in
addition to the green text. You’d only have to change the text color to blue and then
draw the text. You wouldn’t have to set all three values again.

For an example of printing text using the preceding technique, take a look at
DEMO3_5.CPP and the executable DEMO3_5.EXE. The demo creates a display of ran-
domly positioned text strings in different colors all over the screen, as shown in
Figure 3.19.

Figure 3.19
Random text
output from
DEMO3_5.EXE.

0572313618 CH03 10/26/99 9:44 AM Page 141

Windows Programming Foundations

142 PART I

The following is an excerpt from the program’s WinMain(), where all the action takes
place:

// get the dc and hold it
HDC hdc = GetDC(hwnd);

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while(TRUE)

{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
// test if this is a quit
if (msg.message == WM_QUIT)

break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here

// set the foreground color to random
SetTextColor(hdc, RGB(rand()%256,rand()%256,rand()%256));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// finally set the transparency mode to transparent
SetBkMode(hdc, TRANSPARENT);

// draw some text at a random location
TextOut(hdc,rand()%400,rand()%400,
“GDI Text Demo!”, strlen(“GDI Text Demo!”));

} // end while

// release the dc
ReleaseDC(hwnd,hdc);

As a second example of printing text, let’s try doing something like updating a
counter in response to the WM_PAINT message. Here’s the code to do that:

char buffer[80] // used to print string
static int wm_paint_count = 0; // track number of msg’s

case WM_PAINT:
{

0572313618 CH03 10/26/99 9:44 AM Page 142

CHAPTER 3
Advanced Windows Programming

143

// simply validate the window
hdc = BeginPaint(hwnd,&ps);

// set the foreground color to blue
SetTextColor(hdc, RGB(0,0,255));
// set the background color to black
SetBkColor(hdc, RGB(0,0,0));
// finally set the transparency mode to transparent
SetBkMode(hdc, OPAQUE);

// draw some text at (0,0) reflecting number of times
// wm_paint has been called
sprintf(buffer,”WM_PAINT called %d times “, ++wm_paint_count);
TextOut(hdc, 0,0, buffer, strlen(buffer));

EndPaint(hwnd,&ps);
// return success

return(0);
} break;

Take a look at DEMO3_6.CPP and the executable DEMO3_6.EXE on the CD-ROM to see
the program in action. Notice that nothing will print until you move or overwrite the
window. This is because WM_PAINT is generated only when there is some reason to
restore or redraw the window, such as a movement or resize.

That’s about it for basic printing. Of course, the DrawText() function does a lot more,
but that’s up to you. Also, you might want to look into fonts and that whole can of
worms, but stuff like that is normally for full Windows GUI programming and is not
really what we’re trying to do in this book.

Handling Important Events
As you’ve been painfully learning, Windows is an event-based operating system.
Responding to events is one of the most important aspects of a standard Windows
program. This next section covers some of the more important events that have to do
with window manipulation, input devices, and timing. If you can handle these basic
events, you’ll have more than you need in your Windows arsenal to handle anything
that might come up as part of a DirectX game, which itself relies very little on events
and the Windows operating system.

Window Manipulation
There are a number of messages that Windows sends to notify you that the user has
manipulated your window. Table 3.4 contains a small list of some of the more
interesting manipulation messages that Windows generates.

0572313618 CH03 10/26/99 9:44 AM Page 143

Windows Programming Foundations

144 PART I

TABLE 3.4 Window Manipulation Messages

Value Description

WM_ACTIVATE Sent when a window is being activated or deactivated. This message is
sent first to the window procedure of the top-level window being deac-
tivated. It is then sent to the window procedure of the top-level window
being activated.

WM_ACTIVATEAPP Sent when a window belonging to an application other than the active
window is about to be activated. The message is sent both to the appli-
cation whose window is being activated and to the application whose
window is being deactivated.

WM_CLOSE Sent as a signal that a window or an application should terminate.

WM_MOVE Sent after a window has been moved.

WM_MOVING Sent to a window that the user is moving. By processing this message,
an application can monitor the size and position of the drag rectangle
and, if needed, change its size or position.

WM_SIZE Sent to a window after its size has changed.

WM_SIZING Sent to a window that the user is resizing. By processing this message,
an application can monitor the size and position of the resizing rectan-
gle and, if needed, change its size or position.

Let’s take a look at WM_ACTIVATE, WM_CLOSE, WM_SIZE, and WM_MOVE and what they do.
For each one of these messages, I’m going to list the message, wparam, lparam, and
some comments, along with a short example WinProc() handler for the event.

Message: WM_ACTIVATE

Parameterization:

fActive = LOWORD(wParam); // activation flag
fMinimized = (BOOL)HIWORD(wParam); // minimized flag
hwndPrevious = (HWND)lParam; // window handle

The fActive parameter basically defines what is happening to the window—that is, is
the window being activated or deactivated? This information is stored in the low-order
word of wparam and can take on the values shown in Table 3.5.

TABLE 3.5 The Activation Flags for WM_ACTIVATE

Value Description

WA_CLICKACTIVE Activated by a mouse click.

WA_ACTIVE The window has been activated by some means other than the mouse,
such as the keyboard interface.

WA_INACTIVE The window is being deactivated.

0572313618 CH03 10/26/99 9:44 AM Page 144

CHAPTER 3
Advanced Windows Programming

145

The fMinimized variable simply indicates if the window was minimized. This is true
if the variable is nonzero. Lastly, the hwndPrevious value identifies the window being
activated or deactivated, depending on the value of the fActive parameter. If the
value of fActive is WA_INACTIVE, hwndPrevious is the handle of the window being
activated. If the value of fActive is WA_ACTIVE or WA_CLICKACTIVE, hwndPrevious is
the handle of the window being deactivated. This handle can be NULL. That makes
sense, huh?

In essence, you use the WM_ACTIVATE message if you want to know when your appli-
cation is being activated or deactivated. This might be useful if your application keeps
track of every time the user Alt+Tabs away or selects another application with the
mouse. On the other hand, when your application is reactivated, maybe you want to
play a sound or do something. Whatever, it’s up to you.

Here’s how you code when your application is being activated in the main WinProc():

case WM_ACTIVATE:
{
// test if window is being activated
if (LOWORD(wparam)!=WA_INACTIVE)

{
// application is being activated
} // end if

else
{
// application is being deactivated
} // end else

} break;

Message: WM_CLOSE

Parameterization: None

The WM_CLOSE message is very cool. It is sent right before a WM_DESTROY and the fol-
lowing WM_QUIT are sent. The WM_CLOSE indicates that the user is trying to close your
window. If you simply return(0) in your WinProc(),nothing will happen and the
user won’t be able to close your window! Take a look at DEMO3_7.CPP and the exe-
cutable DEMO3_7.EXE to see this in action. Try killing the application—you won’t be
able to!

Don’t panic when you can’t kill DEMO3_7.EXE. Simply press Ctrl+Alt+Del,
and the Task Manager will come up. Then select and terminate the
DEMO3_7.EXE application. It will cease to exist—just like service at elec-
tronics stores starting with “F” in Silicon Valley.

Warning

0572313618 CH03 10/26/99 9:44 AM Page 145

Windows Programming Foundations

146 PART I

Here’s the coding of the empty WM_CLOSE handler in the WinProc() as coded in
DEMO3_7.CPP:

case WM_CLOSE:
{
// kill message, so no further WM_DESTROY is sent
return(0);

} break;

If making the user mad is your goal, the preceding code will do it. However, a
better use of trapping the WM_CLOSE message might be to include a message box
that confirms that the application is going to close or maybe do some housework.
DEMO3_8.CPP and the executable take this route. When you try to close the window, a
message box asks if you’re certain. The logic flow for this is shown in Figure 3.20.

Figure 3.20
The logic flow for

WM_CLOSE.

– xWindow WM_CLOSE sent

WM_CLOSE

Message Queue

•
•
•
•

GetMessage()

Case WM_CLOSE:
{

} Break;

Event Handler

Are you sure?
Yes No

Message Box

Return back and
let WM_CLOSE continue
to flow through message
system producing a
WM_DESTROY

DispatchMessage()

Return (0);

Stop processing of WM_CLOSE

Here’s the code from DEMO3_8.CPP that processes the WM_CLOSE message:

case WM_CLOSE:
{
// display message box
int result = MessageBox(hwnd,

“Are you sure you want to close this application?”,
“WM_CLOSE Message Processor”,
MB_YESNO | MB_ICONQUESTION);

// does the user want to close?
if (result == IDYES)

{
// call default handler
return (DefWindowProc(hwnd, msg, wparam, lparam));
} // end if

0572313618 CH03 10/26/99 9:44 AM Page 146

CHAPTER 3
Advanced Windows Programming

147

else // throw message away
return(0);

} break;

Cool, huh? Notice the call to the default message handler, DefWindowProc(). This
occurs when the user answers Yes and you want the standard shutdown process to
continue. If you knew how to, you could have sent a WM_DESTROY message instead,
but since you haven’t learned how to send messages yet, you just called the default
handler. Either way is fine, though.

Next, let’s take a look at the WM_SIZE message, which is an important message to
process if you’ve written a windowed game and the user keeps resizing the view
window!

Message: WM_SIZE

Parameterization:

fwSizeType = wParam; // resizing flag
nWidth = LOWORD(lParam); // width of client area
nHeight = HIWORD(lParam); // height of client area

The fwSizeType flag indicates what kind of resizing just occurred, as shown in Table
3.6, and the low and high word of lParam indicate the new window client dimensions.

TABLE 3.6 Resizing Flags for WM_SIZE

Value Description

SIZE_MAXHIDE Message is sent to all pop-up windows when some other window is
maximized.

SIZE_MAXIMIZED Window has been maximized.

SIZE_MAXSHOW Message is sent to all pop-up windows when some other window
has been restored to its former size.

SIZE_MINIMIZED Window has been minimized.

SIZE_RESTORED Window has been resized, but neither the SIZE_MINIMIZED nor
SIZE_MAXIMIZED value applies.

As I said, processing the WM_SIZE message can be very important for windowed
games because when the window is resized, the graphics display must be scaled to fit.
This will never happen if your game is running in full-screen, but in a windowed
game, you can count on the user trying to make the window larger and smaller. When
this happens, you must recenter the display and scale the universe or whatever to keep

0572313618 CH03 10/26/99 9:44 AM Page 147

Windows Programming Foundations

148 PART I

the image looking correct. As an example of tracking the WM_SIZE message,
DEMO3_9.CPP prints out the new size of the window as it’s resized. The code that
tracks the WM_SIZE message in DEMO3_9.CPP is shown here:

case WM_SIZE:
{
// extract size info
int width = LOWORD(lparam);
int height = HIWORD(lparam);

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode(hdc, OPAQUE);

// draw the size of the window
sprintf(buffer,
“WM_SIZE Called - New Size = (%d,%d)”, width, height);
TextOut(hdc, 0,0, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

You should know that the code for the WM_SIZE message handler has a
potential problem: When a window is resized, not only is a WM_SIZE
message sent, but a WM_PAINT message is sent as well! Therefore, if the
WM_PAINT message was sent after the WM_SIZE, the code in WM_PAINT
could erase the background and thus the information just printed in
WM_SIZE. Luckily, this isn’t the case, but it’s a good example of problems
that can occur when messages are out of order or when they aren’t sent
in the order you think they are.

Warning

Last, but not least, let’s take a look at the WM_MOVE message. It’s almost identical to
WM_SIZE, but it is sent when a window is moved rather than resized. Here are the
details:

Message: WM_MOVE

0572313618 CH03 10/26/99 9:44 AM Page 148

CHAPTER 3
Advanced Windows Programming

149

Parameterization:

xPos = (int) LOWORD(lParam); // new horizontal position in screen coords
yPos = (int) HIWORD(lParam); // new vertical position in screen coords

WM_MOVE is sent whenever a window is moved to a new position, as shown in Figure
3.21. However, the message is sent after the window has been moved, not during the
movement in real time. If you want to track the exact pixel-by-pixel movement of a
window, you need to process the WM_MOVING message. However, in most cases, pro-
cessing stops until the user is done moving your window.

Figure 3.21
Generation of the
WM_MOVE message.

– x

Window

(X1, Y1)

– x

Window

(X1 + DX, Y1 + DY)

Movement by:
(DX, DY)

Desktop

WM_MOVE

Event Queue

•
•
•
•

As an example of tracking the motion of a window, DEMO3_10.CPP and the associated
executable DEMO3_10.EXE print out the new position of a window whenever it’s
moved. Here’s the code that handles the WM_MOVE processing:

case WM_MOVE:
{
// extract the position
int xpos = LOWORD(lparam);
int ypos = HIWORD(lparam);

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode(hdc, OPAQUE);

0572313618 CH03 10/26/99 9:44 AM Page 149

Windows Programming Foundations

150 PART I

// draw the size of the window
sprintf(buffer,
“WM_MOVE Called - New Position = (%d,%d)”, xpos, ypos);
TextOut(hdc, 0,0, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

Well, that’s it for window manipulation messages. There are a lot more, obviously, but
you should have the hang of it now. The thing to remember is that there is a message
for everything. If you want to track something, just look in the Win32 Help and sure
enough, you’ll find a message that works for you!

The next sections cover input devices so you can interact with the user (or yourself)
and make much more interesting demos and experiments that will help you master
Windows programming.

Banging on the Keyboard
Back in the old days, accessing the keyboard required sorcery. You had to write an
interrupt handler, create a state table, and perform a number of other interesting feats
to make it work. I’m a low-level programmer, but I can say without regret that I don’t
miss writing keyboard handlers anymore!

Ultimately you’re going to use DirectInput to access the keyboard, mouse, joystick,
and any other input devices. Nevertheless, you still need to learn how to use the
Win32 library to access the keyboard and mouse. If for nothing else, you’ll need them
to respond to GUI interactions and/or to create more engaging demos throughout the
book until we cover DirectInput. So without further ado, let’s see how the keyboard
works.

The keyboard consists of a number of keys, a microcontroller, and support electronics.
When you press a key or keys on the keyboard, a serial stream of packets is sent to
Windows describing the key(s) that you pressed. Windows then processes this stream
and sends your window keyboard event messages. The beauty is that under Windows,
you can access the keyboard messages in a number of ways:

• With the WM_CHAR message

• With the WM_KEYDOWN and WM_KEYUP messages

• With a call to GetAsyncKeyState()

Each one of these methods works in a slightly different manner. The WM_CHAR and
WM_KEYDOWN messages are generated by Windows whenever a keyboard keypress or

0572313618 CH03 10/26/99 9:44 AM Page 150

CHAPTER 3
Advanced Windows Programming

151

event occurs. However, there is a difference between the types of information
encapsulated in the two messages. When you press a key on the keyboard, such as A,
two pieces of data are generated:

• The scan code

• The ASCII code

The scan code is a unique code that is assigned to each key of the keyboard and has
nothing to do with ASCII. In many cases, you just want to know if the A key was
pressed; you’re not interested in whether or not the Shift key was held down and so
on. Basically, you just want to use the keyboard like a set of momentary switches.
This is accomplished by using scan codes. The WM_KEYDOWN message is responsible for
generating scan codes when keys are pressed.

The ASCII code, on the other hand, is cooked data. This means that if you press the A
key on the keyboard but the Shift key is not pressed or the Caps Lock key is not
engaged, you see an a character. Similarly, if you press Shift+A, you see an A. The
WM_CHAR message sends these kinds of messages.

You can use either technique—it’s up to you. For example, if you were writing a
word processor, you would probably want to use the WM_CHAR message because the
character case matters and you want ASCII codes, not virtual scan codes. On the
other hand, if you’re making a game and F is fire, S is thrust, and the Shift key is the
shields, who cares what the ASCII code is? You just want to know if a particular
button on the keyboard is up or down.

The final method of reading the keyboard is to use the Win32 function
GetAsynKeyState(), which tracks the last known keyboard state of the keys in a state
table—like an array of Boolean switches. This is the method I prefer because you
don’t have to write a keyboard handler.

Now that you know a little about each method, let’s cover the details of each one in
order, starting with the WM_CHAR message.

The WM_CHAR message has the following parameterization:

wparam—Contains the ASCII code of the key pressed.

lparam—Contains a bit-encoded state vector that describes other special control
keys that may be pressed. The bit encoding is shown in Table 3.7.

0572313618 CH03 10/26/99 9:44 AM Page 151

Windows Programming Foundations

152 PART I

TABLE 3.7 Bit Encoding for the Key State Vector

Bits Description

0–15 Contains the repeat count, which is the number of times the keystroke is
repeated as a result of the user holding down the key.

16–23 Contains the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Boolean; extended key flag. If it’s 1, the key is an extended key, such as the
right-hand Alt and Ctrl keys that appear on an enhanced 101- or 102-key
keyboard.

29 Boolean; indicates whether the Alt key is down.

30 Boolean; indicates the previous key state. It’s useless.

31 Boolean; indicates the key transition state. If the value is 1, the key is being
released; otherwise, the key is being pressed.

To process the WM_CHAR message, all you have to do is write a message handle for it,
like this:

case WM_CHAR:
{
// extract ascii code and state vector
int ascii_code = wparam;
int key_state = lparam;

// take whatever action

} break;

And of course, you can test for various state information that might be of interest.
For example, here’s how you would test for the Alt key being pressed down:

// test the 29th bit of key_state to see if it’s true

#define ALT_STATE_BIT 0x20000000
if (key_state & ALT_STATE_BIT)

{
// do something
} // end if

And you can test for the other states with similar bitwise tests and manipulations.

As an example of processing the WM_CHAR message, I have created a demo that prints
out the character and the state vector in hexadecimal form as you press keys. The
program is called DEMO3_11.CPP, and the executable is of course DEMO3_11.EXE. Try
pressing weird key combinations and see what happens. The code that processes and
displays the WM_CHAR information is shown here, excerpted from the WinProc():

case WM_CHAR:
{

0572313618 CH03 10/26/99 9:44 AM Page 152

CHAPTER 3
Advanced Windows Programming

153

// get the character
char ascii_code = wparam;
unsigned int key_state = lparam;

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode(hdc, OPAQUE);

// print the ascii code and key state
sprintf(buffer,”WM_CHAR: Character = %c “,ascii_code);
TextOut(hdc, 0,0, buffer, strlen(buffer));

sprintf(buffer,”Key State = 0X%X “,key_state);
TextOut(hdc, 0,16, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} break;

The next keyboard event message, WM_KEYDOWN, is similar to WM_CHAR, except that the
information is not “cooked.” The key data sent during a WM_KEYDOWN message is the
virtual scan code of the key rather than the ASCII code. The virtual scan codes are
similar to the standard scan codes generated by any keyboard, except that virtual scan
codes are guaranteed to be the same for any keyboard. For example, it’s possible that
the scan code for a particular key on your 101 AT–style keyboard is 67, but on
another manufacturer’s keyboard, it might be 69. See the problem?

The solution used in Windows was to virtualize the real scan codes to virtual scan
code with a lookup table. As programmers, we use the virtual scan codes and let
Windows do the translation. Thanks, Windows! With that in mind, here are the details
of the WM_KEYDOWN message:

Message: WM_KEYDOWN

wparam—Contains the virtual key code of the key pressed. Table 3.8 contains a list of
the most common keys that you might be interested in.

lparam—Contains a bit-encoded state vector that describes other special control keys
that may be pressed. The bit encoding is shown in Table 3.8.

0572313618 CH03 10/26/99 9:44 AM Page 153

Windows Programming Foundations

154 PART I

TABLE 3.8 Virtual Key Codes

Value
Symbol (hexadecimal) Description

VK_BACK 08 Backspace key

VK_TAB 09 Tab key

VK_RETURN 0D Enter key

VK_SHIFT 10 Shift key

VK_CONTROL 11 Ctrl key

VK_PAUSE 13 Pause key

VK_ESCAPE 1B Esc key

VK_SPACE 20 Spacebar

VK_PRIOR 21 Page Up key

VK_NEXT 22 Page Down key

VK_END 23 End key

VK_HOME 24 Home key

VK_LEFT 25 Left-arrow key

VK_UP 26 Up-arrow key

VK_RIGHT 27 Right-arrow key

VK_INSERT 2D Ins key

VK_DELETE 2E Del key

VK_HELP 2F Help key

No VK_Code 30–39 0–9 keys

No VK_Code 41–5A A–Z keys

VK_F1 - VK_F12 70–7B F1–F12 keys

Note: The keys A–Z and 0–9 have no VK_ codes. You must use the numeric constants or define your
own.

In addition to the WM_KEYDOWN message, there is WM_KEYUP. It has the same parameteri-
zation—that is, wparam contains the virtual key code, and lparam contains the key
state vector. The only difference is that WM_KEYUP is sent when a key is released.

For example, if you’re using the WM_KEYDOWN message to control something, take a
look at the code here:

case WM_KEYDOWN:
{
// get virtual key code and data bits
int virtual_code = (int)wparam;
int key_state = (int)lparam;

0572313618 CH03 10/26/99 9:44 AM Page 154

CHAPTER 3
Advanced Windows Programming

155

// switch on the virtual_key code to be clean
switch(virtual_code)

{
case VK_RIGHT:{ } break;
case VK_LEFT: { } break;
case VK_UP: { } break;
case VK_DOWN: { } break;
// more cases…

default: break;
} // end switch

// tell windows that you processed the message
return(0);
} break;

As an experiment, try modifying the code in DEMO3_11.CPP to support the WM_KEYDOWN
message instead of WM_CHAR. When you’re done, come back and we’ll talk about the
last method of reading the keyboard.

The final method of reading the keyboard is to make a call to one of the keyboard
state functions: GetKeyboardState(), GetKeyState(), or GetAsyncKeyState(). We’ll
focus on GetAsyncKeyState() because it works for a single key, which is what you’re
usually interested in rather than the entire keyboard. If you’re interested in the other
functions, you can always look them up in the Win32 SDK. Anyway,
GetAsyncKeyState() has the following prototype:

SHORT GetAsyncKeyState(int virtual_key);

You simply send the function the virtual key code that you want to test, and if the
high bit of the return value is 1, the key is pressed. Otherwise, it’s not. I have written
some macros to make this easier:

#define KEYDOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEYUP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

The beauty of using GetAsyncKeyState() is that it’s not coupled to the event loop.
You can test for keypresses anywhere you want. For example, say that you’re writing
a game and you want to track the arrow keys, spacebar, and maybe the Ctrl key. You
don’t want to have to deal with the WM_CHAR or WM_KEYDOWN messages; you just want
to code something like this:

if (KEYDOWN(VK_DOWN))
{
// move ship down, whatever
} // end if

if (KEYDOWN(VK_SPACE))
{

0572313618 CH03 10/26/99 9:44 AM Page 155

Windows Programming Foundations

156 PART I

// fire weapons maybe?
} // end if

// and so on

Similarly, you might want to detect when a key is released to turn something off.
Here’s an example:

if (KEYUP(VK_ENTER))
{
// disengage engines
} // end if

As an example, I have created a demo that continually prints out the status of the
arrow keys in the WinMain(). It’s called DEMO3_12.CPP, and the executable is
DEMO3_12.EXE. Here’s the WinMain() from the program:

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,
LPSTR lpcmdline,

int ncmdshow)
{
WNDCLASSEX winclass; // this will hold the class we create
HWND hwnd; // generic window handle
MSG msg; // generic message
HDC hdc; // graphics device context

// first fill in the window class stucture
winclass.cbSize = sizeof(WNDCLASSEX);
winclass.style = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW_CLASS_NAME;
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// save hinstance in global
hinstance_app = hinstance;

// register the window class
if (!RegisterClassEx(&winclass))

return(0);

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class

0572313618 CH03 10/26/99 9:44 AM Page 156

CHAPTER 3
Advanced Windows Programming

157

“GetAsyncKeyState() Demo”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,300, // initial width, height
NULL, // handle to parent
NULL, // handle to menu
hinstance,// instance of this application
NULL))) // extra creation parms

return(0);

// save main window handle
main_window_handle = hwnd;

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while(TRUE)

{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
// test if this is a quit
if (msg.message == WM_QUIT)

break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here

// get a graphics context
hdc = GetDC(hwnd);

// set the foreground color to green
SetTextColor(hdc, RGB(0,255,0));

// set the background color to black
SetBkColor(hdc, RGB(0,0,0));

// set the transparency mode to OPAQUE
SetBkMode(hdc, OPAQUE);

// print out the state of each arrow key
sprintf(buffer,”Up Arrow: = %d “,KEYDOWN(VK_UP));
TextOut(hdc, 0,0, buffer, strlen(buffer));

sprintf(buffer,”Down Arrow: = %d “,KEYDOWN(VK_DOWN));
TextOut(hdc, 0,16, buffer, strlen(buffer));

0572313618 CH03 10/26/99 9:44 AM Page 157

Windows Programming Foundations

158 PART I

sprintf(buffer,”Right Arrow: = %d “,KEYDOWN(VK_RIGHT));
TextOut(hdc, 0,32, buffer, strlen(buffer));

sprintf(buffer,”Left Arrow: = %d “,KEYDOWN(VK_LEFT));
TextOut(hdc, 0,48, buffer, strlen(buffer));

// release the dc back
ReleaseDC(hwnd, hdc);

} // end while

// return to Windows like this
return(msg.wParam);

} // end WinMain

Also, if you review the entire source on the CD-ROM, you’ll notice that there aren’t
handlers for WM_CHAR or WM_KEYDOWN in the message handler for the window. The
fewer messages that you have to handle in the WinProc(), the better! In addition, this
is the first time you have seen action taking place in the WinMain(), which is the sec-
tion that does all game processing. Notice that there isn’t any timing delay or synchro-
nization, so the redrawing of the information is free-running (in other words, working
as fast as possible). In Chapter 4, “Windows GDI, Controls, and Last-Minute Gift
Ideas,” you’ll learn about timing issues, how to keep processes locked to a certain
frame rate, and so forth. But for now, let’s move on to the mouse.

Squeezing the Mouse
The mouse is probably the most innovative computer input device ever created. You
point and click, and the mouse pad is physically mapped to the screen surface—that’s
innovation! Anyway, as you guessed, Windows has a truckload of messages for the
mouse, but we’re going to look at only two classes of messages: WM_MOUSEMOVE and
WM_*BUTTON*.

Let’s start with the WM_MOUSEMOVE message. The first thing to remember about the
mouse is that its position is relative to the client area of the window that it’s in.
Referring to Figure 3.22, the mouse sends coordinates relative to the upper-left corner
of your window, which is 0,0.

Other than that, the WM_MOUSEMOVE message is fairly straightforward.

Message: WM_MOUSEMOVE

0572313618 CH03 10/26/99 9:44 AM Page 158

CHAPTER 3
Advanced Windows Programming

159

Parameterization:

int mouse_x = (int)LOWORD(lParam);
int mouse_y = (int)HIWORD(lParam);

int buttons = (int)wParam;

Basically, the position is encoded as 16-bit entries in the lparam, and the buttons are
encoded in the wparam, as shown in Table 3.9.

TABLE 3.9 Button Bit Encoding for WM_MOUSEMOVE

Value Description

MK_LBUTTON Set if the left mouse button is down.

MK_MBUTTON Set if the middle mouse button is down.

MK_RBUTTON Set if the right mouse button is down.

MK_CONTROL Set if the Ctrl key is down.

MK_SHIFT Set if the Shift key is down.

So all you have to do is logically AND one of the bit codes with the button state and
you can detect which mouse buttons are pressed. Here’s an example of tracking the
x,y position of the mouse along with the left and right buttons:

case WM_MOUSEMOVE:
{
// get the position of the mouse
int mouse_x = (int)LOWORD(lParam);
int mouse_y = (int)HIWORD(lParam);

Figure 3.22
The details of mouse

movement. – xTitle Bar

Window client area
*Does not include border or controls

Border

Controls

(0, 0)ty

tx

x = LOWORD (Lparam)
y = HIWORD (Lparam)
msg: WM_MOUSEMOVE

Controls

(MAX_X, MAX_Y)

(x, y)

Mouse Pointer

0572313618 CH03 10/26/99 9:45 AM Page 159

Windows Programming Foundations

160 PART I

// get the button state
int buttons = (int)wParam;

// test if left button is down
if (buttons & MK_LBUTTON)

{
// do something
} // end if

// test if right button is down
if (buttons & MK_RBUTTON)

{
// do something
} // end if

} break;

Trivial, ooh, trivial! For an example of mouse tracking, take a look at DEMO3_13.CPP
on the CD-ROM and the associated executable. The program prints out the position of
the mouse and the state of the buttons using the preceding code as a starting point.
Take note of how the button changes only when the mouse is moving. This is as you
would expect because the message is sent when the mouse moves rather than when
the buttons are pressed.

Now for some details. The WM_MOUSEMOVE is not guaranteed to be sent all the time.
You may move the mouse too quickly for it to track. Therefore, don’t assume that
you’ll be able to track individual mouse movements that well—for the most part, it’s
not a problem, but keep it in mind. Also, you should be scratching your head right
now, wondering how to track if a mouse button was pressed without a mouse move.
Of course, there is a whole set of messages just for that. Take a look at Table 3.10.

TABLE 3.10 Mouse Button Messages

Message Description

WM_LBUTTONDBLCLK The left mouse button was double-clicked.

WM_LBUTTONDOWN The left mouse button was pressed.

WM_LBUTTONUP The left mouse button was released.

WM_MBUTTONDBLCLK The middle mouse button was double-clicked.

WM_MBUTTONDOWN The middle mouse button was pressed.

WM_MBUTTONUP The middle mouse button was released.

WM_RBUTTONDBLCLK The right mouse button was double-clicked.

WM_RBUTTONDOWN The right mouse button was pressed.

WM_RBUTTONUP The right mouse button was released.

0572313618 CH03 10/26/99 9:45 AM Page 160

CHAPTER 3
Advanced Windows Programming

161

The button messages also have the position of the mouse encoded just as they were
for the WM_MOUSEMOVE message—in the wparam and lparam. For example, to test for a
left button double-click, you would do this:

case WM_LBUTTONDBLCLK:
{
// extract x,y and buttons
int mouse_x = (int)LOWORD(lParam);
int mouse_y = (int)HIWORD(lParam);

// do something intelligent

// tell windows you handled it
return(0);
} // break;

Killer! I feel powerful, don’t you? Windows is almost at our feet!

Sending Messages Yourself
The last subject I want to talk about is sending messages yourself. There are two ways
to do this:

SendMessage()—Sends a message to the window immediately for processing. The
function returns after the WinProc() if the receiving window has processed the
message.

PostMessage()—Sends a message to the window’s message queue and returns
immediately. Use this if you don’t care if there’s a delay until your message is
processed, or your message is a low priority.

The prototypes for both functions are similar, as shown here:

LRESULT SendMessage(HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam); // second message parameter

The return value of SendMessage() is the value returned by the WinProc() of the win-
dow you sent it to.

BOOL PostMessage(HWND hWnd, // handle of destination window
UINT Msg, // message to post
WPARAM wParam, // first message parameter
LPARAM lParam); // second message parameter

If PostMessage() is successful, it returns a nonzero value. Notice that this is different
than SendMessage(). Why? Because SendMessage() actually calls the WinProc(),
whereas PostMessage() simply places a message in the message queue of the receiv-
ing window without any processing.

0572313618 CH03 10/26/99 9:45 AM Page 161

Windows Programming Foundations

162 PART I

You might be wondering why you would ever want to send a message yourself. There
are millions of reasons—literally. This is something that the designers of Windows
want you to do, and it’s how you make things happen in a windowed environment.
For example, in the next chapter, when I talk about window controls like buttons,
sending messages is the only way to talk to a control window! But if you’re like me,
you like something a little more concrete.

In all of the demos thus far, you’ve terminated them by double-clicking the close box
or pressing Alt+F4. Wouldn’t be nice if you could programmatically kill the window?

You know that either a WM_CLOSE or WM_DESTROY will do the job. If you use WM_CLOSE,
it gives your application a little warning, whereas WM_DESTROY is a little tighter. But
either way you go, you just do something like this:

SendMessage(hwnd, WM_DESTROY,0,0);

Or if you want a little delay and don’t mind if your message is queued, use
PostMessage():

PostMessage(hwnd, WM_DESTROY,0,0);

In both cases, the application will terminate—unless there is steering logic in the
WM_DESTROY handler, of course. But the next question is when to launch the message.
Well, that’s up to you. In a game, you might track the Esc key and exit on that. Here’s
how you would do that using the KEYDOWN() macro in the main event loop:

if (KEYDOWN(VK_ESCAPE)
SendMessage(hwnd,WM_CLOSE,0,0);

For an example of the preceding code in action, take a look at DEMO3_14.CPP and the
executable DEMO3_14.EXE on the CD-ROM. The program implements the logic in the
preceding code exactly. As an experiment, try changing the message to WM_DESTROY
and using PostMessage(), too.

Sending messages out of the main event loop can cause unforeseen
problems. For example, in the preceding case, you’re killing the window
out of the main event loop by sending a message directly to the
WinProc() with SendMessage(). However, if you normally assume
that the event handling is done in the main event loop, you might cre-
ate an out-of-execution-order bug. This means that you assume that
event B happens after event A, but in some cases event B happens
before event A. Whammo! This is a typical problem when you’re send-
ing messages, so make sure to think it out. PostMessage() is usually
safer because it doesn’t leapfrog the event queue.

Warning

0572313618 CH03 10/26/99 9:45 AM Page 162

CHAPTER 3
Advanced Windows Programming

163

Finally, there is also a way to send your own custom messages called WM_USER.
Simply send a message with SendMessage() or PostMessage(), using WM_USER as the
message type. You can put whatever you want in the wparam and lparam values. For
example, you might want to use the WM_USER message to create a number of virtual
messages for a memory management system that you have. Take a look:

// defines for memory manager
#define ALLOC_MEM 0
#define DEALLOC_MEM 1

// send WM_USER message, use the lparam as amount of memory
// and the wparam as the type of operation
SendMessage(hwnd, WM_USER, ALLOC_MEM, 1000);

Then, in your WinProc(), you might have

case WM_USER:
{
// what is the virtual message
switch(wparam)

{
case ALLOC_MEM: { } break;
case DEALLOC_MEM: { } break;
// .. more messages
} // end switch

} break;

As you can see, you can encode whatever you want in the wparam and lparam
and do something as stupid as I just did for this example, or something that is more
interesting!

Summary
Thank God! I never thought I would finish this chapter—did you? We covered
resources, menus, input devices, GDIs, and messaging—wow! A good Windows trea-
tise is about 3,000 pages, so you can see my dilemma. But I think we covered a lot of
good material that’s useful. After the next chapter, you’ll know everything you need to
work with Windows.

0572313618 CH03 10/26/99 9:45 AM Page 163

0572313618 CH03 10/26/99 9:45 AM Page 164

Windows GDI, Controls,
and Last-Minute Gift Ideas

“Compuuuuterrr?”

—Scotty, Star Trek IV

This is the last chapter on pure Windows programming. Thank
the gods! Anyway, we’re going to cover more on using the
Graphics Device Interface. Stuff like drawing pixels, lines, and
simple shapes. Then we’ll touch on timing and finish off with
Windows’ child controls. Finally, we’ll take everything and cre-
ate our first shot at the T3D Game Console template application
that we’ll use throughout the remainder of the book as a starting
point for all demos. Here’s a list of the main topics:

• Advanced GDI programming, pens, brushes, and rendering

• Child controls

• System timing functions

• Sending messages

• Getting information

• The T3D Game Console

CHAPTER 4

0672313618 CH04 10/26/99 9:47 AM Page 165

Windows Programming Foundations

166 PART I

Advanced GDI Graphics
As I’ve mentioned, GDI is horribly slow when compared to DirectX. However, GDI is
good at everything and it’s the native rendering engine for Windows itself. This means
if you create any tools or standard GUI applications, knowing your way around GDI
is an asset. Moreover, knowing how to mix GDI and DirectX is a way to leverage the
power of GDI’s functionality to emulate functions you haven’t completed in your
DirectX programming. Hence, GDI has utility as a slow software emulation for
functions you might write down the road in your game design. Bottom line—you
need to know it.

What I’m going to do now is cover a few basic GDI operations. You can always learn
more by perusing the Win32 SDK, but the basic skill set you’ll learn here will more
than prepare you for figuring out any GDI function. It’s like Comdex—if you’ve seen
one, you’ve seen them all.

Under the Hood with the Graphics Device Context
In Chapter 3, “Advanced Windows Programming,” you saw the type handle to device
context, or HDC, a number of times. This of course is the data type that represents a
handle to a device context. In our case, the device context has been a graphics device
context type, but there are others like printer contexts. Anyway, you might be wonder-
ing what exactly a graphics device context is? What does it really mean? Both are
good questions.

A graphics device context is really a description of the video graphics card installed in
your system. Therefore, when you have access to a graphics device context or handle
this really means that stuffed away somewhere is an actual description of the video
card in your system and its resolution and color capabilities. This information is
needed for any graphics call you might make to GDI. In essence, the HDC handle you
supply to any GDI function is used to reference whatever important information about
your video system that a function needs to operate with. And that’s why you need a
graphics device context.

Furthermore, the graphics device context tracks software settings that you may change
throughout the life of your program. For example, GDI uses a number of graphics
objects such as pens, brushes, line styles, and more. These basic data descriptions are
used by GDI to draw any graphics primitives that you may request. Therefore, even
though the current pen color is something that you might set and isn’t intrinsic to your
video card, the graphics device context still tracks it. In this way, the graphics device
context is not only a hardware description of your video system, but a repository of
information that records your settings and stores them for you, so that the GDI calls
you make can use those settings rather than explicitly sending them along with the
call. This way you can save a lot of parameters for GDI calls. With that in mind, let’s
take a look at how to render graphics with GDI.

0672313618 CH04 10/26/99 9:47 AM Page 166

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

167

Color, Pens, and Brushes
If you think about it, there aren’t that many types of objects that you can draw on a
computer screen. Sure, there are an unlimited number of shapes and colors you can
draw them with, but the types of objects are very limited. There are points, lines, and
polygons. Everything else is really a combination of these types of primitive objects.

The approach that GDI takes is something like that of a painter. A painter paints
pictures with colors, pens, and brushes—work with me on this <BG>. GDI works in
the same manner, with the following definitions:

• Pens—These are used to draw lines or contours. They have color, thickness,
and a line style.

• Brushes—These are used to fill in any closed objects. They have color, style,
and can even be bitmaps. Take a look at Figure 4.1 for a detailed labeling.

Figure 4.1
A brush, labeled in

detail.

Width

Brush

Height• Pattern
• Bitmap
• Solid

*Patterned and solid
have RGB color also.

Applied to
object
interior

Edges/contours use pens.

Before we get into pens and brushes and actually using them, I want to take a minute
to look at the situation. GDI likes to use only one pen, and one brush at a time. Sure,
you can have many pens and brushes at your disposal, but only one of each is active
in the current graphics device context. This means that you must “select objects” into
the graphics device context to use them.

Remember, the graphics device context is not only a description of the video card and
its services, but a description of the current drawing tools. Pens and brushes are pri-
mary examples of tools that the context tracks and that you must select in and out of
the graphics context. This process is called selection. As your program runs, you’ll
select in a new pen and then select it out later, and maybe select in and out different
brushes and so on. The thing to remember is that once a drawing object is selected
into the context it’s used until it is changed.

Finally, whenever you create a new pen or brush, you must delete it when you’re
done. This is important because Windows GDI has only so many slots for pen and
brush handles and you could run out! But we’ll get to that in a minute. Okay, so let’s
cover pens first, and then brushes.

0672313618 CH04 10/26/99 9:47 AM Page 167

Windows Programming Foundations

168 PART I

Working with Pens
The handle to a pen is called HPEN. Here’s how you would create a NULL pen.

HPEN pen_1 = NULL;

pen_1 is just a handle to a pen, but pen_1 hasn’t been filled in or defined yet with the
desired information. This operation is accomplished in one of two ways:

• Using a stock object

• Creating a user-defined pen

Remember, stock objects, or stock anything, are just objects that Windows has a few
default types for to get you started. In the case of pens, there are a couple of pen types
already defined, but they are very limited. You can use the GetStockObject()
function shown in the following line to retrieve a number of different object handles,
including pen handles, brushes, and fonts.

HGDIOBJ GetStockObject(int fnObject); // type of stock object

The function simply takes the type of stock object you desire and returns a handle to
it. The types of pens that are pre-defined stock objects are shown in Table 4.1.

TABLE 4.1 Stock Object Types

Value Description

BLACK_PEN Black pen.

NULL_PEN Null pen.

WHITE_PEN White pen.

BLACK_BRUSH Black brush.

DKGRAY_BRUSH Dark gray brush.

GRAY_BRUSH Gray brush.

HOLLOW_BRUSH Hollow brush (equivalent to NULL_BRUSH).

LTGRAY_BRUSH Light gray brush.

NULL_BRUSH Null brush (equivalent to HOLLOW_BRUSH).

WHITE_BRUSH White brush.

ANSI_FIXED_FONT Standard Windows fixed-pitch (monospace) system font.

ANSI_VAR_FONT Standard Windows variable-pitch (proportional space) system
font.

DEFAULT_GUI_FONT Windows 95 only: Default font for user interface objects such
as menus and dialog boxes.

OEM_FIXED_FONT Original equipment manufacturer (OEM) dependent fixed-
pitch (monospace) font.

0672313618 CH04 10/26/99 9:48 AM Page 168

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

169

Value Description

SYSTEM_FONT The system font. By default, Windows uses the system font to
draw menus, dialog box controls, and text. In Windows ver-
sions 3.0 and later, the system font is a proportionally spaced
font; earlier versions of Windows used a monospace system
font.

SYSTEM_FIXED_FONT Fixed-pitch (monospace) system font used in Windows ver-
sions earlier than 3.0. This stock object is provided for com-
patibility with earlier versions of Windows.

As you can see from Table 4.1 there aren’t a whole lot of pens to select from (that’s a
little GDI humor—get it?). Anyway, here’s an example of how you would create a
white pen:

HPEN white_pen = NULL;
white_pen = GetStockObject(WHITE_PEN);

Of course, GDI knows nothing about white_pen because it hasn’t been selected into
the graphics device context, but we’re getting there.

A more interesting method of creating pens is to create them yourself by defining
their color, line style, and width in pixels. The function used to create a pen is called
CreatePen() and is shown here:

HPEN CreatePen(int fnPenStyle, // style of the pen
int nWidth, // width of pen in pixels
COLORREF crColor); // color of pen

The nWidth and crColor parameters are easy enough to understand, but the
fnPenStyle needs a little explanation.

In most cases you probably want to draw solid lines, but in some cases you might
need a dashed line to represent something in a charting program. You could draw a
number of lines all separated by a little space to make a dashed line, but why not let
GDI do it for you? The line style facilitates this functionality. GDI logically ANDs or
masks a line style filter as it’s rendering lines. This way, you can draw lines that are
composed of dots and dashes, or solid pixels, or whatever one-dimensional entity you
want. Table 4.2 contains the valid line styles that you can choose from.

TABLE 4.2 Line Styles for CreatePen()

Style Description

PS_NULL Pen is invisible.

PS_SOLID Pen is solid.

PS_DASH Pen is dashed.

continues

0672313618 CH04 10/26/99 9:48 AM Page 169

Windows Programming Foundations

170 PART I

TABLE 4.2 Continued

Style Description

PS_DOT Pen is dotted.

PS_DASHDOT Pen has alternating dashes and dots.

PS_DASHDOTDOT Pen has alternating dashes and double dots.

As an example, let’s create three pens, each 1 pixel wide, with solid style:

// the red pen, notice the use of the RGB macro
HPEN red_pen = CreatePen(PS_SOLID, 1, RGB(255,0,0));

// the green pen, notice the use of the RGB macro
HPEN green_pen = CreatePen(PS_SOLID, 1, RGB(0,255,0));

// the blue pen, notice the use of the RGB macro
HPEN blue_pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));

And let’s also make a white dashed pen:

HPEN white_dashed_pen = CreatePen(PS_DASHED, 1, RGB(255,255,255));

Simple enough? Now, that we have a little to work with, let’s take a look at how to
select pens into the graphics device context. We still don’t know how to draw
anything, but now is a good time to see the concept.

To select any GDI object into the graphics device context use the SelectObject()
function shown here:

HGDIOBJ SelectObject(HDC hdc, // handle of device context
HGDIOBJ hgdiobj); // handle of object

SelectObject() takes the handle to the graphics context along with the object to be
selected. Notice that SelectObject() is polymorphic, meaning that it can take many
different handle types. The reason for this is that all handles to graphics objects are
also subclasses of the data type HGDIOBJs (handles to GDI objects), so everything
works out. Also, the function returns the current handle of the object you are de-
selecting from the context. In other words, if you select a new pen into the context,
obviously you must select the old one out. Therefore, you can save the old handle and
restore it later if you wish. Here’s an example of selecting a pen into the context and
saving the old one:

HDC hdc; // the graphics context, assume valid

// create the blue
HPEN blue_pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));

HPEN old_pen = NULL; // used to store old pen

0672313618 CH04 10/26/99 9:48 AM Page 170

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

171

// select the blue pen in and save the old pen
old_pen = SelectObject(hdc, blue_pen);

// do drawing…

// restore the old pen
SelectObject(hdc, old_pen);

And then finally, when you are done with pens that you have created either with
GetStockObject() or CreatePen(), you must destroy them. This is accomplished
with DeleteObject(), which, similar to SelectObject(), is polymorphic and can
delete many object types. Here’s its prototype:

BOOL DeleteObject(HGDIOBJ hObject); // handle to graphic object

Be careful when you destroy pens. If you delete an object that is cur-
rently selected or try to select an object that is currently deleted chances
are you will cause an error and possibly a GP Fault.

Warning

The next question is when to actually call DeleteObject() on graphics objects.
Typically, you will do this at the end of the program. However, if you create hundreds
of objects, use them, and won’t use them for the remainder of the program, you
should delete them then and there. This is because Windows GDI only has limited
resources. As an example, here’s how to release and destroy the group of pens we cre-
ated in the earlier example:

DeleteObject(red_pen);
DeleteObject(green_pen);
DeleteObject(blue_pen);
DeleteObject(white_dashed_pen);

I haven’t been doing too much error checking, but obviously this is an
issue. In a real program, you should always check the return type of your
function calls to see if they are successful; otherwise, there could be
trouble.

Note

Try not to delete objects you have already deleted. It can cause unpre-
dictable results.

Warning

0672313618 CH04 10/26/99 9:48 AM Page 171

Windows Programming Foundations

172 PART I

Painting with Brushes
Let’s talk more about brushes. Brushes are similar to pens in most ways except how
they look. Brushes are used to fill in graphic objects, whereas pens are used to outline
objects or draw simple lines. However, all the same principles are in flux. The handle
to a brush is called an HBRUSH. And to define a blank brush object you would do
something like:

HBRUSH brush_1 = NULL;

To actually make the brush look like something you can either use a stock brush type
from Table 4.1 via GetStockObject() or define one yourself. For example, here’s
how to create a light gray stock brush:

brush_1 = GetStockObject(LTGRAY_BRUSH);

Bam, baby! Too easy, huh? To create more interesting brushes you can select the fill
pattern type and color just as you can for pens. Unfortunately GDI broke brushes up
into two classes: solid and hatched. I think this is stupid—GDI should allow all
brushes to be hatched and then simply have a solid type, but whatever! The function
to create a solid fill brush is called CreateSolidBrush() and is shown here:

HBRUSH CreateSolidBrush(COLORREF crColor); // brush color

To create a green solid brush all you have to do is this:

HBRUSH green_brush = CreateSolidBrush(RGB(0,255,0));

To select it into the graphics device context, do this:

HBRUSH old_brush = NULL;

old_brush = SelectObject(hdc, green_brush);

// draw something with brush

// restore old brush
SelectObject(hdc, old_brush);

At the end of your program you would delete the brush object like this:

DeleteObject(green_brush);

Starting to all make sense? In a nutshell, you create an object, select it, use it, delete
it. Okay, let’s next see how to create patterned or hatched brushes.

To create a hatch brush, use the CreateHatchBrush() function shown here:

HBRUSH CreateHatchBrush(int fnStyle, // hatch style
COLORREF clrref); // color value

0672313618 CH04 10/26/99 9:48 AM Page 172

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

173

The style of the brush can be one of the values listed in Table 4.3.

TABLE 4.3 Style Values for CreateHatchBrush()

Value Description

HS_BDIAGONAL 5-degree downward left-to-right hatch

HS_CROSS Horizontal and vertical crosshatch

HS_DIAGCROSS 45-degree crosshatch

HS_FDIAGONAL 45-degree upward left-to-right hatch

HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

As a final example of brushes, let’s create a cross-hatched red brush:

HBRUSH red_hbrush = CreateHatchBrush(HS_CROSS, RGB(255,0,0));

Select it into the device context:

HBRUSH old_brush = SelectObject(hdc, red_hbrush);

Finally, restore the old brush and delete the red brush we created:

SelectObject(hdc, old_brush);
DeleteObject(red_hbrush);

Of course, we still aren’t doing anything with the pens or brushes, but we will <BG>.

Points, Lines, Polygons, and Circles
Now that you have the concept of pens and brushes under your belt, it’s time to see
how these entities are used in real programs to draw objects. Let’s start with the sim-
plest of all graphic objects—the point.

Straight to the Point
Drawing points with GDI is trivial and doesn’t require a pen or a brush. That’s
because a point is a single pixel and selecting a pen or brush wouldn’t have much of
an effect. To draw a point within the client area of your window, you need the HDC to
your window along with the coordinates and the color you wish to draw it with.
However, you don’t need to select the color or anything like that—you simply make a
function call to SetPixel() with all this information. Take a look:

COLORREF SetPixel(HDC hdc, // the graphics context
int x, // x-coordinate
int y, // y-coordinate
COLORREF crColor); // color of pixel

0672313618 CH04 10/26/99 9:48 AM Page 173

Windows Programming Foundations

174 PART I

The function takes the HDC to the window along with the (x,y) coordinate and the
color. The function then plots the pixel and returns the color actually plotted. You see,
if you are in a 256 color mode and request an RGB color that doesn’t exist, GDI will
plot a closest match to the color for you, and either way return the RGB color that
was actually plotted. If you’re a little uneasy about the exact meaning of the (x,y)
coordinates that you send the function, take a look at Figure 4.2. The figure depicts a
window and the coordinate system that Windows GDI uses, which is an inverted
Quadrant I Cartesian system—meaning that the x increases from right to left and y
increases from top to bottom.

Figure 4.2
Windows coordinates
in relation to standard
Cartesian coordinates.

– x

Window client
coords

Screen coords

Window

(x, y) +x

+y

+y

+x(0, 0) Increasing x

Inverted y axis QI

In
cr

ea
si

ng
 y

+y

–y

+x–x (0, 0)

Quadrant I

Cartesian Coordinate System

II

IVIII

Windows coordinates

Technically, GDI has other mapping modes, but this is the default and the one to use
for all GDI and DirectX. Notice that the origin (0,0) is in the upper-left corner of the
window’s client area. It’s possible to get an HDC for the entire window with
GetWindowDC() rather than GetDC(). The difference is that if you use GetWindowDC()
to retrieve an HDC, the graphics device context is for the whole window. With an
HDC retrieved with GetDC(), you can draw over everything including the window
controls, not just the client area. Here’s an example of drawing 1000 randomly
positioned and colored pixels on a window that we know is 400×400:

HWND hwnd; // assume this is valid
HDC hdc; // used to access window

// get the dc for the window
hdc = GetDC(hwnd);

for (int index=0; index<1000; index++)
{
// get random position
int x = rand()%400;
int y = rand()%400;

COLORREF color = RGB(rand()%255,rand()%255,rand()%255));
SetPixel(hdc, x,y, color);

0672313618 CH04 10/26/99 9:48 AM Page 174

Errata

Errata
"right to left" should "left to right"

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

175

} // end for index

As an example of plotting pixels, take a look at DEMO4_1.CPP and DEMO4_1.EXE. They
illustrate the preceding code, but in a continuous loop. Figure 4.3 is a screen shot of
the program running.

Figure 4.3
Demo of pixel-

plotting program
DEMO4_1.EXE.

Getting a Line on Things
Now let’s draw the next most primitive complex—the line. To draw a line, we need to
create the pen, and then make a call to the line-drawing function. Under GDI, lines are
little more complex than that. GDI likes to draw lines in a three-step process:

1. Create a pen and select it into the graphics device contexts. All lines will be
drawn with this pen.

2. Set the initial position of the line.

3. Draw a line from the initial position to the destination position (the destination
position becomes the initial position of the next segment).

4. Go to step 3 and draw more segments if desired.

In essence, GDI has a little invisible cursor that tracks the current starting position of
a line to be drawn. This position must be set by you if you want to draw a line, but
once it’s set, GDI will update it with every segment you draw, facilitating drawing
complex objects like polygons. The function to set the initial position of the line
cursor is called MoveToEx():

BOOL MoveToEx(HDC hdc, // handle of device context
int X, // x-coordinate of new current position
int Y, // y-coordinate of new current position
LPPOINT lpPoint); // address of old current position

Suppose you wanted to draw a line from (10,10) to (50,60). You would first make a
call to MoveToEx() like this:

// set current position

0672313618 CH04 10/26/99 9:48 AM Page 175

Windows Programming Foundations

176 PART I

MoveToEx(hdc, 10,10,NULL);

Notice the NULL for the last position parameter. If you wanted to save the last position,
do this:

POINT last_pos; // used to store last position

// set current position, but save last
MoveToEx(hdc, 10,10, &last_pos);

By the way, here’s a POINT structure again just in case you forgot:

typedef struct tagPOINT
{ // pt
LONG x;
LONG y;
} POINT;

Okay, once you have set the initial position of the line, you can draw a segment with a
call to LineTo():

BOOL LineTo(HDC hdc, // device context handle
int xEnd, // destination x-coordinate
int yEnd);// destination y-coordinate

As a complete example of drawing a line, here’s how you would draw a solid green
line from (10,10) to (50,60):

HWND hwnd; // assume this is valid

// get the dc first
HDC hdc = GetDc(hwnd);

// create the green pen
HPEN green_pen = CreatePen(PS_SOLID, 1, RGB(0,255,0));

// select the pen into the context
HPEN old_pen = SelectObject(hdc, green_pen);

// draw the line
MoveToEx(hdc, 10,10, NULL);
LineTo(hdc,50,60);

// restore old pen
SelectObject(hdc, old_pen);

// delete the green pen
DeleteObject(green_pen);

// release the dc
ReleaseDC(hwnd, hdc);

0672313618 CH04 10/26/99 9:48 AM Page 176

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

177

If you wanted to draw a triangle with the vertices (20,10), (30,20), (10,20), here’s the
line drawing code:

// start the triangle
MoveToEx(hdc, 20,10, NULL);

// draw first leg
LineTo(hdc,30,20);

// draw second leg
LineTo(hdc,10,20);

// close it up
LineTo(hdc,20,10);

You can see why using the MoveToEx()—LineTo() technique is useful.

As a working example of drawing lines, take a look at DEMO4_2.CPP. It draws
randomly positioned lines at high speed. Its output is shown in Figure 4.4.

Figure 4.4
Line drawing program

DEMO4_2.EXE.

Getting Rectangular
The next step up in the food chain of GDI is rectangles. Rectangles are drawn with
both a pen and a brush (if the interior is filled). Therefore, rectangles are the most
complex GDI primitives thus far. To draw a rectangle, use the Rectangle() function
that follows:

BOOL Rectangle(HDC hdc, // handle of device context
int nLeftRect, // x-coord. of bounding

// rectangle’s upper-left corner
int nTopRect, // y-coord. of bounding

// rectangle’s upper-left corner
int nRightRect, // x-coord. of bounding

// rectangle’s lower-right corner
int nBottomRect); // y-coord. of bounding

// rectangle’s lower-right corner

0672313618 CH04 10/26/99 9:48 AM Page 177

Windows Programming Foundations

178 PART I

Rectangle() draws a rectangle with the current pen and brush as shown in Figure 4.5.

Figure 4.5
Using the

DrawRectangle()
function.

Filled with
current BRUSH
selected into
device context.

1 Pixel
thick

Border drawn with current PEN selected into device context

X1: nLeftRect
X2: nRightRect
Y1: nTopRect
Y2: nBottomRect

(X2, Y2)

(X1, Y1)

There are also two other more specific functions to draw rectangles FillRect() and
FrameRect(), shown here:

int FillRect(HDC hDC, // handle to device context
CONST RECT *lprc, // pointer to structure with rectangle
HBRUSH hbr); // handle to brush

int FrameRect(HDC hDC,// handle to device context
CONST RECT *lprc, // pointer to rectangle coordinates
HBRUSH hbr); // handle to brush

FillRect() draws a filled rectangle without a border pen and includes the upper-left
corner, but not the lower-right corner. Therefore, if you want a rectangle to fill in
(10,10) to (20,20) you must send (10,10) to (21,21) in the RECT structure.
FrameRect() on the other hand, just draws a hollow rectangle with a border.
Surprisingly, FrameRect() uses a brush rather than a pen. Any ideas? In any case,
here’s an example of drawing a solid filled rectangle with the Rectangle() function:

// create the pen and brush
HPEN blue_pen = CreatePen(PS_SOLID, 1, RGB(0,0,255));
HBRUSH red_brush = CreateSolidBrush(RGB(255,0,0));

I want to bring a very important detail to your attention. The coordi-
nates you send Rectangle() are for the bounding box of the rectan-
gle. This means that if the line style is NULL and you have a solid
rectangle, it will be 1 pixel smaller on all four sides.

Note

0672313618 CH04 10/26/99 9:48 AM Page 178

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

179

// select the pen and brush into context
SelectObject(blue_pen);
SelectObject(red_brush);

// draw the rectangle
Rectangle(hdc, 10,10, 20,20);

// do house keeping…

Here’s a similar example using the FillRect() function instead:

// define rectangle
RECT rect {10,10,20,20};

// draw rectangle
FillRect(hdc, &rect, CreateSolidBrush(RGB(255,0,0));

Notice the slickness here! I defined the RECT on-the-fly as well as the brush. The
brush doesn’t need to be deleted because it was never selected into context; hence,
it’s transient.

I’m being fairly loose about the HDC and other details in these exam-
ples, so I hope you’re awake! Obviously, for any of these examples to
work you must have a window, an HDC, and perform the appropriate
prolog and epilog code to each segment. As the book
continues, I will assume that you know this already.

Warning

As an example of using the Rectangle() function, take a look at DEMO4_3.CPP; it
draws a slew of random rectangles in different sizes and colors on the window
surface. However, as a change, I retrieved the handle to the entire window rather than
just the client area, so the window looks like it’s getting destroyed—cool, huh? Take a
look at Figure 4.6 to see the output the program creates.

Figure 4.6
Rectangle program

DEMO4_3.EXE.

0672313618 CH04 10/26/99 9:48 AM Page 179

Windows Programming Foundations

180 PART I

Round and Round She Goes—Circles
Back in the ’80s if you could make your computer draw a circle, you were a
mastermind. There were a number of ways to do it—with the explicit formula:

(x-x0)2 + (y-y0)2 = r2

Or maybe with the sine and cosine functions:

x=r*cos(angle)
y=r*sin(angle)

Or maybe with lookup tables! The point is that circles aren’t the fastest things in the
world to draw. This dilemma is no longer important with 500MHz Pentium II’s, but it
used to be. In any case, GDI has a circle drawing function—well, sort of… GDI likes
ellipses rather than circles.

If you recall from geometry, an ellipse is like a squished circle on either axis. An
ellipse has both a major axis and a minor axis, as shown in the figure. The equation
of an ellipse centered at (x0,y0) is shown in Figure 4.7.

Figure 4.7
The mathematics of
circles and ellipses.

+y

–y

+x–x

(x0, y0)

formula
(x – x0)2 + (y – y0)2 = R2

(x, y)

R Radius

Q I

Cartesian Coordinate System

II

IVIII

+y

–y

–b

b

+x–x –a a

(x0, y0)

(x, y)

Major axis

Minor
axis Q I

Cartesian Coordinate System

Circle Ellipse

II

IVIII

(x – x0)2 + (y – y0)2 = 1

a2 b2

You would think that GDI would use some of the same concepts—the major axis and
minor axis to define an ellipse—but GDI took a slightly different approach to defin-
ing an ellipse. With GDI, you simply give a bounding rectangle and GDI draws the
ellipse that’s bounded by it. In essence, you’re defining the origin of the ellipse while
at the same time the major and minor axes—whatever!

The function that draws an ellipse is called Ellipse() and it draws with the current
pen and brush. Here’s the prototype:

BOOL Ellipse(HDC hdc,// handle to device context
int nLeftRect, // x-coord. of bounding

// rectangle’s upper-left corner
int nTopRect, // y-coord. of bounding

// rectangle’s upper-left corner
int nRightRect, // x-coord. of bounding

// rectangle’s lower-right corner
int nBottomRect); // y-coord. bounding

// rectangle’s f lower-right corner

0672313618 CH04 10/26/99 9:48 AM Page 180

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

181

So to draw a circle you would make sure that the bounding rectangle was square. For
example, to draw a circle that had center (20,20) with a radius of 10, you would do
this:

Ellipse(hdc,10,10,30,30);

Get it? And if you wanted to draw a real-life ellipse with major axis 100, minor axis
50, with an origin of (300,200), you would do this:

Ellipse(hdc,250,175,350,225);

For a working example of drawing ellipses, take a look at DEMO4_4.CPP on the CD
and the associated executable. The program draws a moving ellipse in a simple
animation loop of erase, move, draw. This type of animation loop is very similar to
the technique we’ll use later called double buffering or page flipping, but with those
techniques we won’t be able to see the update as shown in the demo, and hence there
won’t be a flicker! For fun, try messing with the demo and changing things around.
See if you can figure out how to add more ellipses.

Polygon, Polygon, Wherefore Art Thou, Polygon?
The last little primitive I want to show you is the polygon primitive. Its purpose is
to draw open or closed polygonal objects very quickly. The function that draws a
polygon is called Polygon() and is shown here:

BOOL Polygon(HDC hdc, // handle to device context
CONST POINT *lpPoints, // pointer to polygon’s vertices
int nCount); // count of polygon’s vertices

You simply send Polygon() a list of POINTs along with the number of them and it will
draw a closed polygon with the current pen and brush. Take a look at Figure 4.8 to see
this graphically.

Figure 4.8
Using the

Polygon()
function.

Current Pen

Current Brush

Each vertex
is a point

Point
{
Long x;
Long y;
}

P3

P4P5

P6

P0

P1

P2

Point List
Point Points[7] =

{
P0, P1, P2, P3, P4, P5, P6

};

//code
polygon (hdc, points, 7);

0672313618 CH04 10/26/99 9:48 AM Page 181

Windows Programming Foundations

182 PART I

Here’s an example:

// create the polygon shown in the figure
POINT poly[7] = {p0x, p0y, p1x, p1y, p2x, p2y,
p3x, p3y, p4x, p4y, p5x, p5y, p6x, p6y, };

// assume hdc is valid, and pen and brush are selected into
// graphics device context
Polygon(hdc, poly,7);

That was easy! Of course, if you send points that make a degenerate polygon, or a
polygon that closes on itself, GDI will do its best to draw it, but no promises!

As an example of drawing filled polygons, DEMO4_5.CPP draws a collection of random
3–10 point polygons all over the screen with a little delay between each, so you can
see the weird results that occur with degenerate polygon vertex lists. Figure 4.9 shows
the output of the program in action. Notice that because the points are random, the
polygons are almost always degenerate due to overlapping geometry. Can you find a
way to make sure that all the points exist within a convex hull?

Figure 4.9
Output of polygon

program DEMO4_5.EXE.

More on Text and Fonts
Working with fonts is an extremely complex subject and not really something that I
want to get into. If you want an in-depth treatise on this subject, your best bet is to
pick up Petzold’s Programming Windows 95. For products such as games under
DirectX, you will in most cases render text yourself with your own font engine. The
only time you might want to use GDI to draw text is in a GUI situation or a quick
solution to drawing scores or other simple information during development of your
game. However, in the end you must create your own font system to get any kind of
speed.

To be somewhat complete I want to at least show you how to change fonts for the
DrawText() and TextOut() functions. This is done by selecting a new font object into
the current graphics device context just as you would a new pen or brush. Table 4.1
shows a number of font constants, such as SYSTEM_FIXED_FONT, which is a

0672313618 CH04 10/26/99 9:48 AM Page 182

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

183

monospaced font. Monospaced means that each character is always the same width.
Proportional fonts have different spacing. Anyway, to select a new font into the
graphics context, you would do this:

SelectObject(hdc, GetStockObject(SYSTEM_FIXED_FONT));

Whatever GDI text you rendered with TextOut() or DrawText() is drawn in the new
font. If you want a little more power over the selection of fonts, you can use one of
the built-in TrueType fonts listed in Table 4.4.

TABLE 4.4 TrueType Font Typeface Names

Font Typeface String Example

Courier New Hello World

Courier New Bold Hello World

Courier New Italic Hello World

Courier New Bold Italic Hello World

Times New Roman Hello World

Times New Roman Bold Hello World

Times New Roman Italic Hello World

Times New Roman Bold Italic Hello World

Arial Hello World

Arial Bold Hello World

Arial Italic Hello World

Arial Bold Italic Hello World

Symbol Ηελλο Ωορλδ

To create one of these fonts, you can use the CreateFont() function:

HFONT CreateFont(int nHeight, // logical height of font
int nWidth, // logical average character width
int nEscapement, // angle of escapement
int nOrientation, // base-line orientation angle
int fnWeight, // font weight
DWORD fdwItalic, // italic attribute flag
DWORD fdwUnderline, // underline attribute flag
DWORD fdwStrikeOut, // strikeout attribute flag
DWORD fdwCharSet, // character set identifier
DWORD fdwOutputPrecision,// output precision
DWORD fdwClipPrecision, // clipping precision
DWORD fdwQuality, // output quality
DWORD fdwPitchAndFamily, // pitch and family
LPCTSTR lpszFace); // pointer to typeface name string

// as shown in table 4.4

0672313618 CH04 10/26/99 9:48 AM Page 183

Windows Programming Foundations

184 PART I

The explanation of the function is far too long, so take a look at the Win32 SDK Help
for details. Basically, you fill in all those ugly parameters and the results are a handle
to a rasterized version of the font you requested. Then you can select the font into
your device context and you’re ready to rock.

Timing Is Everything
The next topic we’re going to cover is timing. Although it may seem unimportant,
timing is crucial in a video game. Without timing and proper delays a game can run
too fast or too slow and the illusion of animation is completely lost.

If you recall, back in Chapter 1, “Journey into the Abyss,” I mentioned that most
games run about 30 fps (frames per second), but I never alluded to how to keep this
timing constant. In this section you’ll learn some techniques to track time and even
send time-based messages. Later in the book you’ll see how these ideas are used over
and over to keep frame rate solid and you’ll see how to augment parametric animation
and physics on slow systems that can’t sustain high frame rates. First, though, take a
look at the WM_TIMER message.

The WM_TIMER Message
The PC has a built-in timer that can be very accurate (in the microsecond range), but
because we’re programming in Windows, it’s not a good idea to muck with the timer
ourselves. Instead, we’ll use the timing functions built into Windows (which are built
upon the actual hardware timer). The cool thing about this approach is that Windows
virtualizes the timer into an almost infinite number of virtual timers. Thus, from your
point of view, you can start and receive many messages from a number of timers, even
though there’s only one physical timer on most PCs.

Figure 4.10
Message flow for the

WM_TIMER message.
Timer 1
ID: 1
Delay: 1000

Timer 2
ID: 2
Delay: 5000

Timer 3
ID: 12
Delay: 3000

WinProc()
{
WM_Timer:

{______
}

}

WM_Timer
ID: 1

WM_Timer
ID: 2

WM_Timer
ID: 12

WM_Paint

•••

Message Queue

Event Handler

Timers Updated by Windows

0672313618 CH04 10/26/99 9:48 AM Page 184

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

185

When you create a timer you set the ID of the timer along with the delay. The timer
will begin to send messages to your WinProc() at the specified interval. Take a look at
Figure 4.10 to see the data flow of some timers. Each timer sends WM_TIMER messages
when its elapsed time has passed. You tell one timer from another when processing
the WM_TIMER message with the timer ID (which you set when you create the timer).
With that in mind, let’s take a look at the function to create a timer—SetTimer():

UNIT SetTimer(HWND hWnd, // handle to parent window
UINT nIDevent, // timer id
UINT nElapse, // time delay in milliseconds
TIMERPROC lpTimerFunc); // timer callback

To create a timer you need:

• The window handle

• ID of choice

• The time delay in milliseconds

With these three things, you’re in business. However, the last parameter takes a little
explanation. lpTimerFunc() is a callback function just like WinProc() is, hence, you
can create a timer that calls a function at some specified interval instead of processing
it in the WinProc() via WM_TIMER messages. It’s up to you, but I usually use the
WM_TIMER messages and leave the TIMERPROC set to NULL.

You can create as many timers as you wish, but remember that they all take up
resources. If the function fails, it will return 0. Otherwise, SetTimer() returns the
timer ID you sent to create the timer with.

The next question is how to tell one timer from another. The answer is that you
interrogate the wparam when the WM_TIMER message is sent; it contains the timer ID
that you originally created the timer with. As an example, here’s how you would
create two timers, one with a 1.0 second delay and the other with a 3.0-second delay:

#define TIMER_ID_1SEC 1
#define TIMER_ID_3SEC 2

// maybe do this in WM_CREATE
SetTimer(hwnd, TIMER_ID_1SEC, 1000,NULL);
SetTimer(hwnd, TIMER_ID_3SEC, 3000,NULL);

Notice that the delays are in milliseconds. In other words, 1000 milliseconds equals
1.0 seconds and so forth. Moving on, here’s the code you would need to add to your
WinProc() to process the timer messages:

case WM_TIMER:
{
// what timer fired?
switch(wparam)

0672313618 CH04 10/26/99 9:48 AM Page 185

Windows Programming Foundations

186 PART I

{
case TIMER_ID_1SEC:

{
// do processing here
} break;

case TIMER_ID_3SEC:
{
// do processing here
} break;

default:break;

} // end switch

// let windows know we handled the message
return(0);

} break;

Finally, when you’re done with a timer, you can kill it with KillTimer():

BOOL KillTimer(HWND hWnd, // handle of window
UINT uIDEvent); // timer id

Continuing with the example, you might want to kill all the timers in the WM_DESTROY
message, as shown here:

case WM_DESTROY:
{
// kill timers
KillTimer(hwnd, TIMER_ID_1SEC);
KillTimer(hwnd, TIMER_ID_3SEC);

// terminate application or whatever…
PostQuitMessage(0);

} break;

Even though timers may seem free and abundant, PCs aren’t Star Trek
computers. Timers use resources and should be used sparingly. Make
sure to kill any timer that you don’t need anymore during
run-time.

Warning

As a working example of using timers, take a look at DEMO4_6.CPP on the CD. It
creates three timers with different times and then prints out when each timer changes.
Finally, although timers take time delays in milliseconds, they are hardly millisecond-
accurate. Don’t expect your timers to be more accurate than 10–20 milliseconds. If

0672313618 CH04 10/26/99 9:48 AM Page 186

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

187

you need more accuracy, there are methods, such as using the Win32 High
Performance timers or using the Pentium Real-Time hardware counters based on the
RDTSC assembly language instruction.

Low-Level Timing
Although creating timers is at least one way to keep track of time, the technique
suffers from a few faults: First, timers send messages, and second, timers aren’t that
accurate. Finally, in most game loops you want to force the main body of the code to
run at a specific frame rate and no higher; this is achieved by locking the frame rate
via timing code. Timers aren’t very good at this. What’s really needed is a way to
query a system clock of sorts and then perform differential tests to see how much time
has elapsed. The Win32 API has such a function, and it’s called GetTickCount():

DWORD GetTickCount(void);

GetTickCount() returns the number of milliseconds since Windows was started. That
may not seem useful as an absolute reference, because you have none, but it’s perfect
as a differential reference. All you have to do at the top of any code block that you
want to time is query the current tick count and then at the end of the loop query
again, and take the difference. Whammo, you have the time difference in millisec-
onds. For example, here’s how you would make sure that a chunk of code runs at
exactly 30 fps or with a delay of 1/30fps = 33.33 milliseconds:

// get the starting time
DWORD start_time = GetTickCount();

// do work, draw frame, whatever

// now wait until 33 milliseconds has elapsed
while ((GetTickCount() - start_time) < 33);

That’s what I’m talking about, baby! Of course, sitting in a busy loop is a waste of
time performing the while() logic, but you can always branch off and test every now
and then, so you don’t waste cycles. The point is that with this technique you can
force time constraints on chunks of code.

Obviously, if your PC can’t run at 30 fps, the loop will take longer.
However, if during a free run of your code the loop ran from 30–100 fps,
the preceding code would lock it to 30 fps always. That’s the point!

Note

0672313618 CH04 10/26/99 9:49 AM Page 187

Windows Programming Foundations

188 PART I

As an example, take a look at DEMO4_7.CPP on the CD. It basically locks the frame
rate to 30 fps and updates a little screen saver with lines on each frame. Following is
the code from the WinMain() that does the work:

// get the dc and hold onto it
hdc = GetDC(hwnd);

// seed random number generator
srand(GetTickCount());

// endpoints of line
int x1 = rand()%WINDOW_WIDTH;
int y1 = rand()%WINDOW_HEIGHT;
int x2 = rand()%WINDOW_WIDTH;
int y2 = rand()%WINDOW_HEIGHT;

// intial velocity of each end
int x1v = -4 + rand()%8;
int y1v = -4 + rand()%8;
int x2v = -4 + rand()%8;
int y2v = -4 + rand()%8;

// enter main event loop, but this time we use PeekMessage()
// instead of GetMessage() to retrieve messages
while(TRUE)

{
// get time reference
DWORD start_time = GetTickCount();

// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
// test if this is a quit
if (msg.message == WM_QUIT)

break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// is it time to change color
if (++color_change_count >= 100)

{
// reset counter
color_change_count = 0;

// create a random colored pen
if (pen)

DeleteObject(pen);

0672313618 CH04 10/26/99 9:49 AM Page 188

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

189

// create a new pen
pen = CreatePen(PS_SOLID,1,

RGB(rand()%256,rand()%256,rand()%256));

// select the pen into context
SelectObject(hdc,pen);

} // end if

// move endpoints of line
x1+=x1v;
y1+=y1v;

x2+=x2v;
y2+=y2v;

// test if either end hit window edge
if (x1 < 0 || x1 >= WINDOW_WIDTH)

{
// invert velocity
x1v=-x1v;

// bum endpoint back
x1+=x1v;
} // end if

if (y1 < 0 || y1 >= WINDOW_HEIGHT)
{
// invert velocity
y1v=-y1v;

// bum endpoint back
y1+=y1v;
} // end if

// now test second endpoint
if (x2 < 0 || x2 >= WINDOW_WIDTH)

{
// invert velocity
x2v=-x2v;

// bum endpoint back
x2+=x2v;
} // end if

if (y2 < 0 || y2 >= WINDOW_HEIGHT)
{
// invert velocity
y2v=-y2v;

0672313618 CH04 10/26/99 9:49 AM Page 189

Windows Programming Foundations

190 PART I

// bum endpoint back
y2+=y2v;
} // end if

// move to end one of line
MoveToEx(hdc, x1,y1, NULL);

// draw the line to other end
LineTo(hdc,x2,y2);

// lock time to 30 fps which is approx. 33 milliseconds
while((GetTickCount() - start_time) < 33);

// main game processing goes here
if (KEYDOWN(VK_ESCAPE))

SendMessage(hwnd, WM_CLOSE, 0,0);

} // end while

// release the device context
ReleaseDC(hwnd,hdc);

// return to Windows like this
return(msg.wParam);

} // end WinMain

Other than the timing aspect of the code, there is some other logic that you should
take some time to review: the collision logic. You’ll notice that there are two ends of
the line segment, each with a position and velocity. As the segment moves, the code
tests whether it has collided with the edge of the window client area. If so, the
segment is bounced off the edge, creating the illusion of a bouncing line.

If you just want to delay your code, use a Win32 API function called
Sleep(). Just send it the time delay in milliseconds you wish to delay
and the function will. For example, to delay 1.0 second, you would say
Sleep(1000).

Playing with Controls
Normally I wouldn’t cover Window controls in a game programming book, but
because you might need to know how to make them for a tool and I got a lot of email
begging me to add them to my new book, here ya go! But just a few!

Trick

0672313618 CH04 10/26/99 9:49 AM Page 190

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

191

Window child controls are really little windows themselves. Here’s a short list of
some of the more popular child controls:

• Static text boxes

• Edit boxes

• Buttons

• List boxes

• Scroll bars

In addition, there are a number of sub-button types, such as

• Push buttons

• Check boxes

• Radio buttons

There are even further sub-types of each. Nevertheless, most complex window
controls that you see are conglomerations of these basic types. For example, a file
directory control is just a few list boxes, some text edit boxes, and some buttons. If
you can work with the basic controls listed here, you can handle anything. Once you
have mastered one, they’re all roughly the same, give or take a few details, so I’m just
going to show you how to work with a few of the child controls, including buttons.

Buttons
There are a number of button types that Windows supports. If you’re reading this
book, hopefully you have used Windows and are at least familiar with push buttons,
check boxes, and radio buttons, so I’m not go into the details of each. Rather, I’m
going to show you how to create any type of button you want and respond to
messages sent from it. The rest is up to you. Let’s begin by taking a look at
Table 4.5, which lists all the available button types.

TABLE 4.5 Button Styles

Value Description

BS_PUSHBUTTON Creates a push button that posts a WM_COMMAND message to the
owner window when the user selects the button.

BS_RADIOBUTTON Creates a small circle with text. By default, the text is displayed to
the right of the circle.

BS_CHECKBOX Creates a small empty check box with text. By default, the text is
displayed to the right of the check box.

BS_3STATE Creates a button that is the same as a check box, except that the
box can be grayed as well as checked or unchecked.

continues

0672313618 CH04 10/26/99 9:49 AM Page 191

Windows Programming Foundations

192 PART I

TABLE 4.5 Continued

Value Description

BS_AUTO3STATE Creates a button that is the same as a three-state check box, except
that the box changes its state when the user selects it. The state
cycles through checked, grayed, and unchecked.

BS_AUTOCHECKBOX Creates a button that is the same as a check box, except that the
check state automatically toggles between checked and unchecked
each time the user selects the check box.

BS_AUTORADIOBUTTON Creates a button that is the same as a radio button, except that
when the user selects it, Windows automatically sets the button’s
check state to checked and automatically sets the check state for all
other buttons in the same group to unchecked.

BS_OWNERDRAW Creates an owner-drawn button. The owner window receives a
WM_MEASUREITEM message when the button is created and a
WM_DRAWITEM message when a visual aspect of the button has
changed.

To create a child control button you simply create a window using “button” as the
class string along with one of the button styles in Table 4.5. Then, when the button is
manipulated, it sends WM_COMMAND messages to your window, as shown in Figure 4.11.
You process the wparam and lparam as usual to see what child control sent the mes-
sage and what the message was.

Figure 4.11
Child window

message passing.

case wm_command
{______
}

wm_command

•
•
•

– x

ID = 3 Button1

ID = 6 Button2

Window

child window controls

wm - command

LOword(wparam) = ID
HIword(wparam) = notification code
Lparam = Button window handle

Message Queue

Event handler
WinProc

0672313618 CH04 10/26/99 9:49 AM Page 192

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

193

Let’s begin by seeing the exact parameters you’ll need to send to CreateWindowEx()
to create a child button control. First, you need to set the class name to “button”.
Then you need to set the style flags to WS_CHILD | WS_VISIBLE logically ORed with
a button style from Table 4.5. Then in the place where you would normally put the
handle to the menu or HMENU, you send the ID you want to refer to the button with
(of course you must cast it to a HMENU). That’s about it.

As an example, here’s how you would create a push button with ID equal to 100
and the text “Push Me” on it:

CreateWindowEx(NULL, // extended style
“button”, // class
“Push Me”, // text on button
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10,10, // initial x,y
100,24, // initial width, height
main_window_handle, // handle to parent

(HMENU)(100), // id of button, notice cast to HMENU
hinstance, // instance of this application
NULL); // extra creation parms

Simple, isn’t it? When you press the button, a WM_COMMAND message is sent to the
WinProc() of the parent window with the following paramaterization:

msg: WM_COMMAND

LOWORD(wparam): Child Window id

HIWORD(wparam): Notification Code

lparam: Child Window Handle

Seem reasonable? The only mystery is the notification code. Notification codes
describe what happened to the button control and begin with BN_. Table 4.6 lists all
the possible notification codes and values.

TABLE 4.6 Notification Codes for Buttons

Code Value

BN_CLICKED 0

BN_PAINT 1

BN_HLITE 2

BN_UNHILITE 3

BN_DISABLE 4

BN_DOUBLECLICKED 5

0672313618 CH04 10/26/99 9:49 AM Page 193

Windows Programming Foundations

194 PART I

The most important of the notification codes are of course BN_CLICKED and
BN_DOUBLECLICKED. To process a button child control like a simple push button, you
might do something like this in the WM_COMMAND event handler:

// assume a child button was created with id 100
case WM_COMMAND:

{
// test for id
if (LOWORD(wparam) == 100)
{
// do whatever
} // end if

// process all other child controls, menus, etc.

// we handled it
return(0);

} break;

As an example, take a look at DEMO4_8.CPP; it creates a list of all button types and
then displays all the messages along with the wparam and lparam for each message as
you click and manipulate the buttons. Figure 4.12 shows the program in action. By
experimenting with it, you will get a much better idea of how button child controls
work.

Figure 4.12
The DEMO4_8.EXE

child control program.

If you play with DEMO4_8.EXE, you’ll quickly realize that although your WinProc() is
sending messages indicating what the user (you) is doing to the controls, you don’t
know how to change or manipulate the controls programmatically. In essence, many
of the controls don’t seem to do anything when you click them. This is important, so
let’s briefly cover it.

0672313618 CH04 10/26/99 9:49 AM Page 194

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

195

Sending Messages to Child Controls
Because child controls are windows, they can receive messages just like any other
window. But because they are children of a parent the messages are sent onto the
parent in the case of the WM_COMMAND message. However, it’s possible to send a child
control (like a button) a message and it will itself process the message with its own
default WinProc(). This is exactly how you change the state of any control—by
sending messages to it.

In the case of buttons, there are a number of messages you can send button controls,
using SendMessage() to change the state of the button and/or retrieve the state of the
button. Remember that SendMessage() returns a value too. Here’s a list of some of
the more interesting messages for use with the parameterizations of wparam and
lparam.

Purpose: To simulate clicking the button.

msg: BM_CLICK

wparam: 0

lparam: 0

Example:

// this would make the button look like it was pressed
SendMessage(hwndbutton, BM_CLICK,0,0);

Purpose: Used to set the check on a check box or radio button.

msg: BM_SETCHECK

wparam: fCheck

lparam: 0

fCheck can be one of the following:

Value Description

BST_CHECKED Sets the button state to checked.

BST_INDETERMINATE Sets the button state to grayed, indicating an indeterminate state.
Use this value only if the button has the BS_3STATE or
BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to unchecked.

Example:

// this would check a check button
SendMessage(hwndbutton, BM_SETCHECK, BST_CHECKED, 0);

0672313618 CH04 10/26/99 9:49 AM Page 195

Windows Programming Foundations

196 PART I

Purpose: Used to retrieve the current state of the button check. Possible return values
are shown here.

msg: BM_GETCHECK

wparam: 0

lparam: 0

Value Description

BST_CHECKED Button is checked.

BST_INDETERMINATE Button is grayed, indicating an indeterminate state (applies only if
the button has the BS_3STATE or BS_AUTO3STATE style).

BST_UNCHECKED Button is unchecked.

Example:

// this would get the check state of a checkbox
if (SendMessage(hwndbutton,BM_GETCHECK,0,0) == BST_CHECKED)

{
// button is checked
} // end if

else
{
// button is not checked
} // end else

Purpose: Used to highlight the button as if it were selected by the user.

msg: BM_SETSTATE

wparam: fState

lparam: 0

Where fState is a TRUE for highlighted and FALSE otherwise.

Example:

// this would highlight the button control
SendMessage(hwndbutton, BM_SETSTATE, 1, 0);

Purpose: To get the general state of the button control. Possible return values are
shown below.

msg: BM_GETSTATE

wparam: 0

lparam: 0

0672313618 CH04 10/26/99 9:49 AM Page 196

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

197

Value Description

BST_CHECKED Indicates the button is checked.

BST_FOCUS Specifies the focus state. A nonzero value indicates that the button
has the keyboard focus.

BST_INDETERMINATE Indicates the button is grayed because the state of the button is
indeterminate. This value applies only if the button has the
BS_3STATE or BS_AUTO3STATE style.

BST_PUSHED Specifies the highlight state. A nonzero value indicates that the but-
ton is highlighted. A button is automatically highlighted when the
user positions the cursor over it and presses and holds the left
mouse button. The highlighting is removed when the user releases
the mouse button.

BST_UNCHECKED Indicates the button is unchecked.

Example:

// this code can be used to get the state of the button
switch(SendMessage(hwndbutton, BM_GETSTATE, 0, 0)

{
// what is the button state
case BST_CHECKED: { } break;
case BST_FOCUS: { } break;
case BST_INDETERMINATE: { } break;
case BST_PUSHED: { } break;
case BST_UNCHECKED: { } break;

default: break;
} // end switch

Well, that’s it for child controls. At least you have an idea of what they are and how to
handle them. Now it’s time to move onto querying information from Windows.

Getting Information
Wall Street’s Gordon Gecko once said: “Why don’t you stop sending me information
and start getting some?” These words are appropriate for this circumstance and many
other things. Information about the system your game is running on is vital to making
your game take advantage of all the resources that a system has to offer. As you
would expect, Windows is full of information retrieval functions that acquire a myriad
of details about Windows settings and the hardware itself.

Win32 supports a number of Get*() functions and DirectX supports a number of
GetCaps*() functions. I’m only going to cover a few of the Win32 functions that I
use from time to time. In the next part of the book you’ll see more of the information

0672313618 CH04 10/26/99 9:49 AM Page 197

Windows Programming Foundations

198 PART I

retrieval functions that DirectX supports. Those functions are more geared toward the
multimedia end of the spectrum.

The following paragraphs describe three functions that I like to use from time to time.
(There are many more.) Basically, anything you want to know about Windows is there
and can be queried with a “Get” class function. Simply type “get” into the Win32
SDK Search engine within your compiler Help and you should find whatever you
need. We’ll take a look at these three functions just to get a feel for using them.

The first function we’ll look at is called GetSystemInfo(). It basically returns
everything you would ever want to know about the processing hardware you’re
running on—things like the type of processor, how many processors, and so forth.
Here’s the function prototype:

VOID GetSystemInfo(
LPSYSTEM_INFO lpSystemInfo);
// address of system information structure

The function simply takes a pointer to a SYSTEM_INFO structure and fills in all the
fields. Here’s what a SYSTEM_INFO structure looks like:

typedef struct _SYSTEM_INFO
{ // sinf
union {

DWORD dwOemId;
struct {

WORD wProcessorArchitecture;
WORD wReserved;
};

};
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;
} SYSTEM_INFO;

The details of all these fields are pages long and we don’t have room to cover them,
but obviously there are some interesting fields. For example, dwNumberOfProcessors
is the number of processors on the motherboard of the PC. dwProcessorType is the
actual type of the processor, which can be one of the following:

Value

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_PENTIUM

0672313618 CH04 10/26/99 9:49 AM Page 198

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

199

The other fields are all self-explanatory—just take a look at the Win32 SDK for
details. This is an amazing function, however, if you think about it. Can you imagine
how hard it is to determine the type of processor installed, let alone how many of
them? Where would you even start?

You would start by writing a very complex detection algorithm that knows things
about 486s, Pentiums, Pentium IIs, and so on, and it would poke and pry with writes
and reads until it figured out what processor was on the machine. Of course, Pentium
class processors have ID strings and machine flags, but 486s are a lot harder to figure
out. The point is that this is a great function to get system-level information.

The next function I want to show you is very general and can retrieve all kinds of cool
information about Windows and the Desktop. It’s called GetSystemMetrics():

int GetSystemMetrics(int nIndex); // system metric or configuration

➥setting to retrieve

GetSystemMetrics() is very powerful. What you do is send it the index of the data
you want retrieved, as shown in Table 4.7, and it is returned. By the way, Table 4.7 is
the longest table in the book. I really hate looking it up in the Help, so I’m going to
break down and add it to the book for your convenience <BG>.

TABLE 4.7 System Metric Constants for GetSystemMetrics()

Value Description

SM_ARRANGE Flags specifying how the system arranged
minimized windows. For more information
about minimized windows, see the following
Remarks section.

SM_CLEANBOOT Value that specifies how the system was
started:

0 Normal boot

1 Fail-safe boot

2 Fail-safe with network boot

SM_CMOUSEBUTTONS Number of buttons on mouse, or zero if no
mouse is installed.

SM_CXBORDER, SM_CYBORDER The width and height, in pixels, of a window
border. This is equivalent to the SM_CXEDGE
value for windows with the 3-D look.

SM_CXCURSOR, SM_CYCURSOR Width and height, in pixels, of a cursor. These
are the cursor dimensions supported by the
current display driver. The system cannot cre-
ate cursors of other sizes.

continues

0672313618 CH04 10/26/99 9:49 AM Page 199

Windows Programming Foundations

200 PART I

TABLE 4.7 Continued

Value Description

SM_CXDOUBLECLK, SM_CYDOUBLECLK Width and height, in pixels, of the rectangle
around the location of a first click in a
double-click sequence. The second click
must occur within this rectangle for the
system to consider the two clicks a double-
click. (The two clicks must also occur within
a specified time.)

SM_CXDRAG, SM_CYDRAG Width and height, in pixels, of a rectangle
centered on a drag point to allow for limited
movement of the mouse pointer before a drag
operation begins. This enables the user to
click and release the mouse button easily
without unintentionally starting a drag
operation.

SM_CXEDGE, SM_CYEDGE Dimensions, in pixels, of a 3-D border. These
are the 3-D counterparts of SM_CXBORDER and
SM_CYBORDER.

SM_CXFIXEDFRAME, SM_CYFIXEDFRAME Thickness, in pixels, of the frame around the
perimeter of a window that has a caption but
is not sizable. SM_CXFIXEDFRAME is the
width of the horizontal border and
SM_CYFIXEDFRAME is the height of the
vertical border.

SM_CXFULLSCREEN, SM_CYFULLSCREEN Width and height of the client area for a full-
screen window. To get the coordinates of the
portion of the screen not obscured by the tray,
call the SystemParametersInfo function
with the SPI_GETWORKAREA value.

SM_CXHSCROLL, SM_CYHSCROLL Width, in pixels, of the arrow bitmap on a
horizontal scroll bar; and height, in pixels, of
a horizontal scroll bar.

SM_CXHTHUMB Width, in pixels, of the thumb box in a
horizontal scroll bar.

SM_CXICON, SM_CYICON The default width and height, in pixels, of an
icon. These values are typically 32×32, but
can vary depending on the installed display
hardware.

0672313618 CH04 10/26/99 9:49 AM Page 200

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

201

Value Description

SM_CXICONSPACING, SM_CYICONSPACING Dimensions, in pixels, of a grid cell for items
in large icon view. Each item fits into a rec-
tangle of this size when arranged. These val-
ues are always greater than or equal to
SM_CXICON and SM_CYICON.

SM_CXMAXIMIZED, SM_CYMAXIMIZED Default dimensions, in pixels, of a maximized
top-level window.

SM_CXMAXTRACK, SM_CYMAXTRACK Default maximum dimensions, in pixels, of a
window that has a caption and sizing borders.
The user cannot drag the window frame to a
size larger than these dimensions. A window
can override these values by processing the
WM_GETMINMAXINFO message.

SM_CXMENUCHECK, SM_CYMENUCHECK Dimensions, in pixels, of the default menu
check mark bitmap.

SM_CXMENUSIZE, SM_CYMENUSIZE Dimensions, in pixels, of menu bar buttons,
such as multiple document (MDI) child close.

SM_CXMIN, SM_CYMIN Minimum width and height, in pixels, of a
window.

SM_CXMINIMIZED, SM_CYMINIMIZED Dimensions, in pixels, of a normal minimized
window.

SM_CXMINSPACING, SM_CYMINSPACING Dimensions, in pixels, of a grid cell for mini-
mized windows. Each minimized window fits
into a rectangle this size when arranged.
These values are always greater than or equal
to SM_CXMINIMIZED and SM_CYMINIMIZED.

SM_CXMINTRACK, SM_CYMINTRACK Minimum tracking width and height, in pix-
els, of a window. The user cannot drag the
window frame to a size smaller than these
dimensions. A window can override these val-
ues by processing the WM_GETMINMAXINFO
message.

SM_CXSCREEN, SM_CYSCREEN Width and height, in pixels, of the screen.

SM_CXSIZE, SM_CYSIZE Width and height, in pixels, of a button in a
window’s caption or title bar.

SM_CXSIZEFRAME, SM_CYSIZEFRAME Thickness, in pixels, of the sizing border
around the perimeter of a window that can be
resized. SM_CXSIZEFRAME is the width of the
horizontal border and SM_CYSIZEFRAME is
the height of the vertical border.

continues

0672313618 CH04 10/26/99 9:49 AM Page 201

Windows Programming Foundations

202 PART I

TABLE 4.7 Continued

Value Description

SM_CXSMICON, SM_CYSMICON Recommended dimensions, in pixels, of a
small icon. Small icons typically appear in
window captions and in small icon view.

SM_CXSMSIZE, SM_CYSMSIZE Dimensions, in pixels, of small caption
buttons.

SM_CXVSCROLL, SM_CYVSCROLL Width, in pixels, of a vertical scroll bar; and
height, in pixels, of the arrow bitmap on a
vertical scroll bar.

SM_CYCAPTION Height, in pixels, of the normal caption area.

SM_CYKANJIWINDOW For double-byte character set versions of
Windows, height, in pixels, of the Kanji win-
dow at the bottom of the screen.

SM_CYMENU Height, in pixels, of single-line menu bar.

SM_CYSMCAPTION Height, in pixels, of a small caption.

SM_CYVTHUMB Height, in pixels, of the thumb box in a verti-
cal scroll bar.

SM_DBCSENABLED TRUE or nonzero if the double-byte character
set (DBCS) version of USER.EXE is installed;
FALSE or zero otherwise.

SM_DEBUG TRUE or nonzero if the debugging version of
USER.EXE is installed; FALSE or zero other-
wise.

SM_MENUDROPALIGNMENT TRUE or nonzero if drop-down menus are
right-aligned relative to the corresponding
menu-bar item; FALSE or zero if they are left-
aligned.

SM_MIDEASTENABLED TRUE if the system is enabled for
Hebrew/Arabic languages.

SM_MOUSEPRESENT TRUE or nonzero if a mouse is installed;
FALSE or zero otherwise.

SM_MOUSEWHEELPRESENT Windows NT only: TRUE or nonzero if a
mouse with a wheel is installed; FALSE or
zero otherwise.

SM_NETWORK The least significant bit is set if a network is
present; otherwise, it is cleared. The other bits
are reserved for future use.

SM_PENWINDOWS TRUE or nonzero if the Microsoft Windows
for Pen computing extensions are installed;
zero or FALSE otherwise.

0672313618 CH04 10/26/99 9:49 AM Page 202

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

203

Value Description

SM_SECURE TRUE if security is present FALSE otherwise.

SM_SHOWSOUNDS TRUE or nonzero if the user requires an appli-
cation to present information visually in situa-
tions where it would otherwise present the
information only in audible form; FALSE or
zero otherwise.

SM_SLOWMACHINE TRUE if the computer has a low-end (slow)
processor; FALSE otherwise.

SM_SWAPBUTTON TRUE or nonzero if the meanings of the left
and right mouse buttons are swapped; FALSE
or zero otherwise.

If it isn’t in Table 4.7, you don’t need to know! As an example, here’s a cool way to
create a window that’s as large as the screen display:

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“Button Demo”, // title
WS_POPUP | WS_VISIBLE,
0,0, // initial x,y
GetSystemMetrics(SM_CXSCREEN), // initial width
GetSystemMetrics(SM_CYSCREEN), // initial height
NULL, // handle to parent
NULL, // handle to menu
hinstance, // instance of this application
NULL))) // extra creation parms
return(0);

Notice the use of the WS_POPUP window style rather than the WM_OVER-
LAPPEDWINDOW. This creates a window without any borders or controls,
resulting in a blank screen—the effect you would want for a full-screen
game application.

Note

As another example, you could use the following code to test for a mouse:

if (GetSystemMetrics(SM_MOUSEPRESENT))
{
// there’s a mouse
} // end if

else
{
// no mouse
} // end else

0672313618 CH04 10/26/99 9:49 AM Page 203

Windows Programming Foundations

204 PART I

Finally, when you’re drawing text, you might want to know about the font that GDI is
using—for example, how wide each character is and other related metrics. If you
write some code to draw text and you know the font, you can position the text with
some reasonable accuracy. The name of the function that retrieves text metrics is
called GetTextMetrics():

BOOL GetTextMetrics(HDC hdc, // handle of device context
LPTEXTMETRIC lptm); // address of text metrics structure

You may be wondering why the hdc is needed—it’s because you may have multiple
dc’s with different fonts selected, so you have to tell the function which one to
compute the metrics on. Smart little function! Anyway, lptm is a pointer to a
TEXTMETRIC structure that is filled with the information. It looks like this:

typedef struct tagTEXTMETRIC {
LONG tmHeight; // the height of the font
LONG tmAscent; // the ascent of the font
LONG tmDescent; // the descent of the font
LONG tmInternalLeading; // the internal leading
LONG tmExternalLeading; // the external leading
LONG tmAveCharWidth; // the average width
LONG tmMaxCharWidth; // the maximum width
LONG tmWeight; // the weight of the font
LONG tmOverhang; // the overhang of the font
LONG tmDigitizedAspectX; // the designed for x-aspect
LONG tmDigitizedAspectY; // the designed for y-aspect
BCHAR tmFirstChar; // first character font defines
BCHAR tmLastChar; // last character font defines
BCHAR tmDefaultChar; // char used when desired not in set
BCHAR tmBreakChar; // the break character
BYTE tmItalic; // is this an italic font
BYTE tmUnderlined; // is this an underlined font
BYTE tmStruckOut; // is this a strikeout font
BYTE tmPitchAndFamily; //family and tech,truetype..
BYTE tmCharSet; // what is the character set

} TEXTMETRIC;

Because most of us haven’t worked with a printing press our whole lives, a number of
these fields are meaningless, but I have highlighted the ones that should make some
sense. Take a look at the following list of terms and refer to Figure 4.13; it might help
with some of the terminology.

• Height—This is the total height in pixels of the character.

• Baseline—This is a reference point, usually the bottom of an uppercase
character.

• Ascent—This is the number of pixels from the baseline to the top of where an
accent mark might be.

• Descent—This is the number of pixels from the baseline to the bottom of lower
case extensions.

0672313618 CH04 10/26/99 9:49 AM Page 204

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

205

• Internal leading—This is the number of pixels to allow for accent marks.

• External leading—This is the number of pixels to allow for other characters
above the character, so they don’t run on top of each other.

Figure 4.13
The makeup of a

character.

Ascent Height

Descent

External
Leading

Baseline

Internal
Leading

Here’s an example of how you would center some text:

TEXTMETRIC tm; // holds the textmetric data

// get the textmetrics
GetTextMetrics(hdc,&tm);

// used tm data to center a string given the horizontal width
// assume width of window is WINDOW_WIDTH
int x_pos = WINDOW_WIDTH -

strlen(“Center This String”)*tm.tmAveCharWidth/2;

// print the text at the centered position
TextOut(hdc,x_pos,0,”Center This String”,

strlen(“Center This String”));

No matter what the font size is, this code will always center it.

The T3D Game Console
In the beginning of the book I mentioned that Win32/DirectX programming is almost
like 32-bit DOS programming if you create a shell Windows application and then
create a code structure that hides the details of the dull Windows stuff that’s going
on. Now you know enough to do this. In this section you’ll see how to put together
the T3D Game Console, which will be the basis for all the demos and games from
here on.

At this point, you know that to create a Windows application you need a WinProc()
and a WinMain() and that’s about it. So we’ll create a minimal Windows application
that has these components and create a generic window. The application will then call
out to three functions that perform the game logic. As a result, the details of handling

0672313618 CH04 10/26/99 9:49 AM Page 205

Windows Programming Foundations

206 PART I

Windows messages and other Win32 related drama won’t be an issue (unless of
course you want it to be). Take a look at Figure 4.14 to see the T3D Game Console
architecture.

Figure 4.14
The architecture of

the T3D Game
Console.

WinMain()
{

}

CreateWindow()

Process messages

GameInit()

Mainevent Loop

Game_shutdown()
{__________

}

Called at end

Game_shutdown()

Game_main() Game_main()
{________

}

Called each frame

Game_Init()
{________

}

Called once at beginning

WinProc()
{______

}

Input

Physics

AI

•••
Render

As you can see, there are only three functions that are needed to implement the
console:

int Game_Init(void *parms = NULL, int num_parms = 0);
int Game_Shutdown(void *parms = NULL, int num_parms = 0);
int Game_Main(void *parms = NULL, int num_parms = 0);

• Game_Init() is called before the main event loop in WinMain() is entered and
is called only once. Here is where you’ll initialize everything for your game.

• Game_Main() is like main() in a normal C/C++ program except that it is called
each cycle after any Windows message handling is performed by the main
event loop. This is where the entire logic of your game will be. You’ll do all
the rendering, sound, AI, and so forth in Game_Main() or as calls out of
Game_Main(). The only caveat about Game_Main() is that you must draw only
one frame and then return, so you don’t starve the WinMain() event handler.
Also, because this function is entered and exited each cycle, remember that
automatic variables are transient—if you want data to stick around, make it
global or local static to Game_Main().

0672313618 CH04 10/26/99 9:49 AM Page 206

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

207

• Game_Shutdown() is called after the main event loop in WinMain() is exited,
which is caused by a message sent from the user, ultimately causing a WM_QUIT
message to be posted. In Game_Shutdown() you’ll do all your housekeeping and
cleanup of resources allocated during game play.

The T3D Game Console is contained in the file T3DCONSOLE.CPP. Below is the
WinMain() section showing the calls to all the console functions:

// WINMAIN //
int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,
LPSTR lpcmdline,
int ncmdshow)

{

WNDCLASSEX winclass; // this holds the class we create
HWND hwnd; // generic window handle
MSG msg; // generic message
HDC hdc; // graphics device context

// first fill in the window class structure
winclass.cbSize = sizeof(WNDCLASSEX);
winclass.style = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra = 0;
winclass.cbWndExtra = 0;
winclass.hInstance = hinstance;
winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);
winclass.hbrBackground = GetStockObject(BLACK_BRUSH);
winclass.lpszMenuName = NULL;
winclass.lpszClassName = WINDOW_CLASS_NAME;
winclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

// save hinstance in global
hinstance_app = hinstance;

// register the window class
if (!RegisterClassEx(&winclass))

return(0);

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“T3D Game Console Version 1.0”, // title
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
0,0, // initial x,y
400,300, // initial width, height
NULL, // handle to parent

0672313618 CH04 10/26/99 9:49 AM Page 207

Windows Programming Foundations

208 PART I

NULL, // handle to menu
hinstance, // instance of this application
NULL))) // extra creation parms

return(0);

// save main window handle
main_window_handle = hwnd;

// initialize game here
Game_Init();

// enter main event loop
while(TRUE)

{
// test if there is a message in queue, if so get it
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{
// test if this is a quit
if (msg.message == WM_QUIT)

break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here
Game_Main();

} // end while

// closedown game here
Game_Shutdown();

// return to Windows like this
return(msg.wParam);

} // end WinMain

Take a moment or two and review the WinMain(). It should look very generic because
it’s the one we have been using all along! The only differences, of course, are the calls
to Game_Init(), Game_Main(), and Game_Shutdown(), which follow:

///

int Game_Main(void *parms = NULL)
{
// this is the main loop of the game, do all your processing
// here

0672313618 CH04 10/26/99 9:49 AM Page 208

CHAPTER 4
Windows GDI, Controls, and Last-Minute Gift Ideas

209

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

SendMessage(main_window_handle,WM_CLOSE,0,0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

//

int Game_Init(void *parms = NULL)
{
// this is called once after the initial window is created and
// before the main event loop is entered; do all your initialization
// here

// return success or failure or your own return code here
return(1);

} // end Game_Init

///

int Game_Shutdown(void *parms = NULL)
{
// this is called after the game is exited and the main event
// loop while is exited; do all you cleanup and shutdown here

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

The console functions don’t do much! That’s right—you’re the one that’s going to fill
them in with code each time. However, I did put a little something in Game_Main() to
test for the Esc key and send a WM_CLOSE message to kill the window. This way you
don’t always have to close the window with the mouse or Alt+F4 key combination.
Also, I’m sure that you’ve noticed the parameter list of each function looks like the
following:

Game_*(void *parms = NULL, int num_parms=0);

The num_parms is just a convenience for you if you want to send parameters to any
of the functions along with the number of parameters sent. The type is void, so it’s
flexible. Again, this isn’t in stone and you can surely change it, but it’s something to
start with.

0672313618 CH04 10/26/99 9:50 AM Page 209

Windows Programming Foundations

210 PART I

Finally, you might think that I should have forced the window to be full screen
without any controls by using the WS_POPUP style. I could have done this, but I’m
thinking of making them windowed for a number of demos so that they’re easier to
debug. We can also change to full screen on a demo-by-demo basis, so let’s leave it
windowed for now.

If you’re a C programmer, the syntax Game_Main(void *parms =
NULL, int num_parms=0) might look a little alien. The assignment
on-the-fly is called default parameters. All it does is assign the parame-
ters the listed default values so you don’t have to type in parameters if
you know that they are the same as the default values. For example, if
you don’t want to use the parameter list and don’t care if *parms ==
NULL and num_parms == 0, you can call Game_Main() just like
that—without parameters. On the other hand, if you want to send
parameters, you would have to use Game_Main(&list, 12), or some-
thing similar. Take a look at Appendix D for a short tutorial on C++ if it
still seems fuzzy.

If you run T3DCONSOLE.EXE on the CD, you won’t see much other than a blank
window. The cool thing is that all you have to do is fill in Game_Init(), Game_Main(),
and Game_Shutdown() with your 3D game code and you have a million dollars! Of
course, we have a little ways to go, but we’re getting there <BG>.

As a final demo of using the T3D Game Console, I have created an application
based on it called DEMO4_9.CPP. It’s a 3D star field demo—not bad for GDI. Check
it out and see if you can make it speed up and slow down. The program once again
illustrates the erase, move, draw animation cycle. It also locks the frame rate to 30 fps
with our timing code.

Summary
Well, my young Jedi, you are now a master of Windows—at least enough to take on
the evil empire of game programming. In this chapter, you saw a number of topics,
including GDI, controls, timing, getting information. In the end, you saw a real
template application—the T3D Game Console. With it, you can get started on some
serious Windows applications. Beginning with the next chapter, you’re going to
embark on the wonderful world of DirectX. It’s cooler than cool—definitely a
NexTGeN topic!

0672313618 CH04 10/26/99 9:50 AM Page 210

DirectX and 2D
Fundamentals

Chapter 5
DirectX Fundamentals and the Dreaded COM 213

Chapter 6
First Contact: DirectDraw 241

Chapter 7
Advanced DirectDraw and Bitmapped Graphics 287

Chapter 8
Vector Rasterization and 2D Transformations 401

Chapter 9
Uplinking with DirectInput and Force Feedback 537

Chapter 10
Sounding Off with DirectSound and DirectMusic 589

PART II

0772313618 Part 2 8/27/99 8:39 AM Page 211

0772313618 Part 2 8/27/99 8:39 AM Page 212

DirectX Fundamentals and
the Dreaded COM

“Louie, Louie, Louie… I’ve had to listen to that for centuries!”

—Lestat, Interview With the Vampire

In this chapter, we’re going to get a gargoyle’s-eye view of
DirectX and all the underlying components that make up this
incredible technology. In addition, we’re going to take a detailed
look at COM (Component Object Model), which all the DirectX
components are made of. If you’re a straight C programmer, you
should pay close attention. But not to worry, I’ll keep it chill.

However, a word of warning on this material—read the whole
chapter before you decide you don’t get it. DirectX and COM
are circularly related, so it’s hard to explain one without the
other. As an example, try to think how you would explain the
concept of zero without using the word itself in the definition.
If you think it’s easy, it’s not!

Here’s a list of the main topics we’ll touch upon:

• An introduction to DirectX

• The Component Object Model (COM)

• A working example of a COM implementation

CHAPTER 5

0872313618 CH05 10/26/99 9:54 AM Page 213

DirectX and 2D Fundamentals

214 PART II

• How DirectX and COM fit together

• The future of COM

DirectX Primer
I’m starting to feel like an evangelist for Microsoft these days (hint to Microsoft:
Send me money), trying to turn all my friends to the dark side. But the bad guys
always have better technology! Am I right? What would you rather ride around in, one
of the Empire’s Super Star Destroyers or some half-converted Rebel transport? See
what I’m saying?

DirectX may take a bit more control from you as a programmer, but in truth it’s worth
its weight in gold. It’s basically a system of software that abstracts video, audio,
input, networking, installation, and more, so no matter what a particular PC’s hard-
ware configuration is, you can use the same code. In addition, DirectX technology is
many times faster and more robust than GDI and/or MCI (the Media Control
Interface), which is native to Windows.

Figure 5.1 illustrates how you would make a Windows game with and without
DirectX. Notice how clean and elegant the DirectX solution is.

Figure 5.1
DirectX versus

GDI/MCI.

GDI MCI

Sound

slow

output

slow

Lots of latency

WinSock
Network

fast/primitive

Win32
Application

fast

User
Input

slow/few options

– x

. .
. .

Standard Win32 60I/MCI Game

output

Network

fast/robust

DirectX

very fast

Win32
Application

fast

Input

fast

Sound

fast

– x

. .
. .

DirectX Win32 Game

So how does DirectX work? Well, it gives you almost hardware-level control of all
devices. This is possible through a technology called Component Object Model
(COM) and a set of drivers and libraries written by both Microsoft and the hardware
vendors themselves. Microsoft came up with a set of conventions—functions, vari-
ables, data structures, and so on—that must be used by the hardware vendors when
implementing drivers to talk to the hardware.

0872313618 CH05 10/26/99 9:54 AM Page 214

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

215

As long as these conventions are followed, you don’t need to worry about the details
of the hardware. You just make calls to DirectX and it handles the details for you. No
matter the video card, sound card, input device, network card, or whatever, as long as
there’s DirectX support, your program will be able to use it without you knowing any-
thing about it!

Currently there are a number of DirectX components. They are listed here and shown
graphically in Figure 5.2.

• DirectDraw

• DirectSound

• DirectSound3D

• DirectMusic

• DirectInput

• DirectPlay

• DirectSetup

• Direct3DRM

• Direct3DIM

Figure 5.2
The architecture of

DirectX and its rela-
tionship to Win32.

Software Emulation

HAL
Hardware Abstraction
Layer

D
ire

ct
In

pu
t

D
ire

ct
D

ra
w

D
ire

ct
3D

R
O

M

D
ire

ct
D

IM

D
ire

ct
S

ou
nd

D
ire

ct
S

ou
nd

3D

D
ire

ct
M

us
ic

D
ire

ct
P

la
y

D
ire

ct
S

et
up

HEL
Hardware Emulation
Layer

Windows DDI
Device Driver

Interface

GDI

GDI/DirectX
Interface

Low Level
Drivers

Hardware: Video, Audio, Input…

Windows Win32 Application

DirectX Sub-systems

0872313618 CH05 10/26/99 9:54 AM Page 215

Errata

Errata
"Direct3DROM" should be "Direct3DRM"

Errata

Errata
 "DirectDIM" should be "Direct3DIM"

DirectX and 2D Fundamentals

216 PART II

The HEL and HAL
In Figure 5.2, you may notice that there are two layers under DirectX called the HEL
(Hardware Emulation Layer) and the HAL (Hardware Abstraction Layer). Here’s the
deal: DirectX is a very forward-looking design, so it assumes that advanced features
are implemented by the hardware. However, if the hardware doesn’t support some fea-
ture, what happens? This is the basis of the dual-mode HAL and HEL design.

The HAL, or Hardware Abstraction Layer, is the “to the metal” layer. It talks directly
to the hardware. This layer is usually the device driver from the vendor, and you com-
municate to it directly through generic DirectX calls. The bottom line is that HAL is
used when the feature you’re requesting is supported directly by the hardware and
thus is accelerated. For example, when you request a bitmap to be drawn, the hard-
ware blitter does the work rather than a software loop.

The HEL, or Hardware Emulation Layer, is used when the hardware doesn’t support
the feature that you’re requesting. Let’s say that you ask the video card to rotate a
bitmap. If the hardware doesn’t support rotation, the HEL kicks in and software algo-
rithms take over. Obviously, this is slower, but the point is that it does not break your
program. It will still work—just slower. In addition, the switching between the HAL
and HEL is transparent to you. If you ask DirectX to do something and the HAL does
it directly, the hardware will do it. Otherwise, a software emulation will be called to
get the job done with HEL.

Now, you might be thinking that there are a lot of layers of software here. That’s a
concern, but the truth is that DirectX is so clean that the only penalty you take for
using it is maybe an extra function call or two. That’s a small price to pay for 2D/3D
graphics, network, and audio acceleration. Can you imagine writing drivers to control
all the video accelerators on the market? Trust me, it would take literally thousands of
man-years—it just can’t be done. DirectX is really a massively distributed engineering
effort by Microsoft and all the hardware vendors to bring you an ultra-high-perfor-
mance standard.

The DirectX Foundation Classes in Depth
Now let’s take a quick look at each DirectX component, as of version 6.0, and what
they do:

DirectDraw—This is the primary rendering and 2D bitmap engine that controls the
video display. It’s the conduit that all graphics must go through and probably the most
important of all the DirectX components. The DirectDraw object represents more or
less the video card(s) in your system.

0872313618 CH05 10/26/99 9:54 AM Page 216

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

217

DirectSound—This is the sound component of DirectX. It only supports digital
sound, not MIDI. However, this component makes your life 100 times easier because
no longer do you have to license a third-party sound system to do your sound. Sound
programming is a black art, and in the past no one wanted to keep up with writing all
the drivers for all the sound cards. Hence, a couple of vendors cornered the market on
sound libraries: Miles Sound System and DiamondWare Sound Toolkit. Both were
very capable systems that allowed you to simply load and play digital and MIDI
sounds from your DOS or Win32 programs. However, with DirectSound,
DirectSound3D, and the latest DirectMusic components, there’s obviously less use for
third-party libraries.

DirectSound3D—This is the 3D sound component of DirectSound. It allows you to
position 3D sounds in space as if objects were floating around the room! This technol-
ogy is relatively new, but it’s maturing quickly. Today, most sound cards support
hardware-accelerated 3D effects, including Doppler shift, refraction, reflection, and
more. However, if software emulation is used, all this stuff comes to a halt!

DirectMusic—The newest addition to DirectX. Thank God! DirectMusic is the miss-
ing MIDI technology that DirectSound didn’t support. But more than that,
DirectMusic has a new DLS (Downloadable Sounds) system that allows you to create
digital representations of instruments and then play them back with MIDI control. It’s
much like a Wave Table synthesizer, but in software. Also, DirectMusic has a new
Performance Engine that is an Artificial Intelligence system of sorts. In real-time, it
can make changes to your music based on templates you supply it with. In essence,
the system can create new music on-the-fly. Wild, huh?

DirectInput—This system handles all input devices, including the mouse, keyboard,
joystick, paddles, space balls, and so forth. Moreover, DirectInput now supports Force
Feedback devices, which have electromechanical actuators and force sensors that
allow you to physically manifest forces so the user can feel them. It’s going to really
put the cybersex industry into overdrive!

DirectPlay—This is the networking aspect of DirectX. It allows you to make abstract
connections using the Internet, modems, direct connect, or any other kind of medium
that might come up. The cool thing about DirectPlay is that it allows you to make
these connections without knowing anything about networking. You don’t have to
write drivers, use sockets, or anything like that. In addition, DirectPlay supports the
concepts of sessions, which are games in progress, and lobbies, which are places for
gamers to congregate and play. Also, DirectPlay doesn’t force you into any kind of
multiplayer network architecture. All it does is send and receive packets for you. What
they contain and if they are reliable is up to you.

0872313618 CH05 10/26/99 9:54 AM Page 217

DirectX and 2D Fundamentals

218 PART II

Direct3DRM—This is Direct3D Retained Mode, which is a high-level, object- and
frame-based 3D system that you can use to create basic 3D programs. It takes advan-
tage of 3D acceleration, but it isn’t the fastest thing in the world. It’s great for making
walkthrough programs, model displayers, or extremely slow demos.

Direct3DIM—This is Direct3D Immediate Mode, which is the low-level 3D support
for DirectX. Originally, this was incredibly hard to work with and was the cause for
many flamewars with OpenGL. The old Immediate Mode used what are called
execute buffers, basically arrays of data and instructions that you created that
described the scene to be drawn—very ugly. However, since DirectX 5.0, Immediate
Mode now supports a much more OpenGL-like interface through the
DrawPrimitive() functions. This allows you to send triangle strips, fans, and so on to
the rendering engine and make state changes with function calls rather than execute
buffers. Hence, I now like Direct3D Immediate Mode! Even though this volume and
Volume II are software-based 3D game books, to be complete, we’re going to cover
D3D IM at the end of Volume II. In fact, there is an entire cyber-book on Direct3D
Immediate Mode on the CD of Volume II.

DirectSetup/AutoPlay—These are quasi-DirectX components that allow a program
to install DirectX from your application on the user’s machine and start your game up
directly when the CD is placed in the system. DirectSetup is a small set of functions
that load the run-time DirectX files on a user’s machine and register them in the reg-
istry. Autoplay is the standard CD subsystem that looks for the AUTOPLAY.INF file on
the CD root. If the file is found, Autoplay executes the batch command functions in
the file.

Finally, you might be wondering what the deal is with all the versions of DirectX. It
seems to be revised on a six-month basis. This is true, for the most part. It’s a hazard
of the business we’re in—graphics and game technology move very fast. However,
since DirectX is based on COM technology, programs that you write for, say, DirectX
version 3.0 are guaranteed to work on DirectX version 7.0. Let’s see how that
works…

COM: Is It the Work of Microsoft… or Demons?
Computer programs today are easily reaching multimillion-line sizes, and large sys-
tems will soon reach to billions of lines of code. With programs this large, abstraction
and hierarchy are of utmost importance. Otherwise, complete chaos would ensue.

The two most recent attempts at computer languages that foster more object-oriented
programming techniques are, of course, C++ and Java. C++ is really an evolution (or
maybe more a regurgitation) of C, with object-oriented hooks built into it. On the
other hand, Java is based on C++ but is fully object-oriented and much cleaner. In
addition, Java is more of a platform while C++ is simply a language.

0872313618 CH05 10/26/99 9:54 AM Page 218

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

219

Anyway, languages are great, but it’s how you use them that counts in the long run.
Alas, even though C++ is chock full of cool OO (object-oriented) features, many peo-
ple don’t use them or use them the wrong way. Thus, large-scale programs are still a
bit of a problem. This is one of the difficulties that the COM model addresses.

COM was invented many years back as a simple white paper on a new software para-
digm, which was similar to how computer chips or Lego blocks work. You simply
plug them together and they work. Computer chips and Lego blocks know how to be
computer chips and Lego blocks, so everything works out. To implement this kind of
technology with software, you need a very generic interface that can take on the form
of any type of function set you can imagine. This is what COM does.

One of the cool things about computer chips is that when you add more of them to a
design, you don’t have to tell all the other chips that you’ve changed something.
However, as you know, this is a little harder with software programs. You at least have
to recompile to make an executable. Fixing this problem is another goal of COM. You
should be able to add new features to a COM object without breaking the software
that uses the old COM object. In addition, COM objects can be changed without
recompiling the original program, which is very cool.

Since you can upgrade COM objects without recompiling your program, that means
you can upgrade your software without patches and new versions. For example, say
you have a program that uses three COM objects: one that implements graphics, one
for sound, and one for networking (see Figure 5.3). Now imagine that you sell
100,000 copies of this program, but you don’t want to send out 100,000 upgrades! To
update the graphics COM object, all you do is give the users the new COM object for
graphics and the program will automatically use it. No recompiling, no linking, no
nothing. Easy. Of course, all this technology is very complex at the low level, and
writing your own COM objects is a bit challenging, but using them is easy.

The next question is, how are COM objects distributed or contained, given their
plug-and-play nature? The answer is that there are no rules about this, but in most
cases COM objects are DLLs, or Dynamic Link Libraries, that can be downloaded or
supplied with the program that uses them. This way they can be easily upgraded and
changed. The only problem with this is that the program that uses the COM object
must know how to load it from a DLL. But we’ll get to that in the “Building a Quasi-
COM Object” section later in this chapter.

What Exactly Is a COM Object?
A COM object is really a C++ class or a set of C++ classes that implement a number
of interfaces. (Basically, an interface is a set of functions.) These interfaces are used
to communicate with the COM object. Take a look at Figure 5.4. Here we see a single
COM object that has three interfaces named IGRAPHICS, ISOUND, and IINPUT.

0872313618 CH05 10/26/99 9:54 AM Page 219

DirectX and 2D Fundamentals

220 PART II

Each one of these interfaces has a number of functions that you can call (when you
know how) to do work. So a single COM object can have one or more interfaces, and
you may have one or more COM objects. Moreover, the COM specification states that

Figure 5.3
An overview of

COM.
Core
Logic

Com Object
Graphics

Com Object
Sound

Com Object
Network

Core
Logic

Com Object
Graphics

Com Object
Sound

Com Object
Network

To update software,
user can download
new Com objects
and load them into
system for immediate
use.

New

New

Old

Loaded from Internet
no recompilation needed.

Application
version 1.0

Application
version 2.0

Figure 5.4
The interfaces of a

COM object.
Interface 1

func1()
func2()

•
•
•

IGRAPHICS

Interface 2

func1()
func2()

•
•
•

ISOUND

Interface 3

func1()
func2()

•
•
•

IINPUT

•
•
•
•

Win32 app
uses Com
objectIUnknown

Addref()
Release()
QueryInterface()

Interfaces all
derived from
IUnknown

Input Output

0872313618 CH05 10/26/99 9:54 AM Page 220

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

221

all interfaces you create must be derived from a special base class interface called
IUnknown. For you C programmers, all this means is that IUnknown is like a starting
point to build the interface from.

Let’s take a look at the IUnknown class definition:

struct IUnknown
{

// this function is used to retrieve other interfaces
virtual HRESULT __stdcall QueryInterface(const IID &iid, (void **)ip) = 0;

// this is used to increment interfaces reference count
virtual ULONG __stdcall AddRef() = 0;

// this is used to decrement interfaces reference count
virtual ULONG __stdcall Release() = 0;

};

Notice that all methods are pure and virtual. In addition, the methods
use __stdcall in deference to the standard C/C++ calling convention. If
you remember from Chapter 2, “The Windows Programming Model,”
__stdcall pushes the parameters on the stack from right to left.

Note

Even if you’re a C++ programmer, this class definition may look a bit bizarre if you’re
rusty on virtual functions. Anyway, let’s dissect IUnknown and see what’s up. All inter-
faces derived from IUnknown must implement, at very minimum, each of the methods
QueryInterface(), AddRef(), and Release().

QueryInterface() is the key to COM. It’s used to request a pointer to the interface
functions that you desire. To make the request happen, you must have an interface ID.
This is a unique number, 128 bits long, that you assign to your interface. There are
2128 different possible interface IDs, and I guarantee that we wouldn’t run out in a bil-
lion years even if everybody on this planet did nothing but make COM objects. More
on the interface ID when we get to a real example a little later in the chapter.

Furthermore, one of the rules of COM is that if you have an interface, you can always
request any other interface from it as long as it’s from the same COM object.
Basically, this means that you can get anywhere from anywhere else. Take a look at
Figure 5.5 to see this graphically.

AddRef() is a curious function. COM objects use a technique called reference count-
ing to track their life. This is due to one of the specifications of COM: It’s not
language-specific. Hence, AddRef() is called when a COM object is created and when

0872313618 CH05 10/26/99 9:54 AM Page 221

DirectX and 2D Fundamentals

222 PART II

interfaces are created to track how many references there are to the objects. If a COM
object were to use malloc() or new[], that would be C/C++-specific. When the refer-
ence count drops to 0, the objects are destroyed internally.

Figure 5.5
Navigating the inter-

faces of a COM
object.

Interface A
QueryInterface()

Interface_ptr **
QueryInterface()

Interface B
QueryInterface()

Interface C
QueryInterface()

Interface Z
QueryInterface()

•
•
•

From any given interface you
can request another from the
same Com object.

Com Object

This brings us to a problem—if COM objects are C++ classes, how can they be cre-
ated or used in Visual Basic, Java, ActiveX, and so on? It just so happens that the
designers of COM used virtual C++ classes to implement COM, but you don’t need
to use C++ to access them or even to create them. As long as you create the same
binary image that a Microsoft C++ compiler would when creating a virtual C++ class,
the COM object will be COM-compliant. Of course, most compiler products have
extras or tools to help make COM objects, so that’s not too much of a problem. The
cool thing about this is that you can write a COM object in C++, Visual Basic, or
Delphi, and then that COM object can be used by any of those languages! A binary
image in memory is a binary image in memory.

Release() is used to decrement the reference count of a COM object or interface. In
most cases, you must call this function yourself when you’re done with an interface.
However, sometimes if you create an object and then create another object from that
object, calling Release() on the parent will trickle down and Release() the child or
derived object. But either way, it’s a good idea to Release() in the opposite order that
you queried.

Tip Usually, you don’t have to call AddRef() yourself on interfaces or
COM objects. It’s done internally by the QueryInterface() function. But
sometimes you may have to, if you want to increase the reference count
to trick the COM object into thinking that there are more references to
it than there really are.

0872313618 CH05 10/26/99 9:55 AM Page 222

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

223

More on Interface IDs and GUIDs
As I mentioned earlier, every COM object and interface thereof must have a unique
128-bit identifier that you use to request or access it. These numbers are called GUIDs
(Globally Unique Identifiers) in general. More specifically, when defining COM inter-
faces they’re called Interface IDs or IIDs. To generate them, you must use a program
called GUIDGEN.EXE created by Microsoft (or a similar program that uses the same
algorithm). Figure 5.6 shows GUIDGEN.EXE in action.

Figure 5.6
The GUID generator

GUIDGEN.EXE in action.

What you do is select what kind of ID you want (there are four different formats), and
then the program generates a 128-bit vector that is guaranteed to never be generated
again on any machine at any time. Seem impossible? It’s not. It’s just math and proba-
bility theory. The bottom line is that it works, so don’t get a headache asking why.

After you generate the GUID or IID, it’s placed on the Clipboard and you can paste it
into your programs by pressing Ctrl+V. Here’s an example of an IID I just made while
writing this paragraph:

// {C1BCE961-3E98-11d2-A1C2-004095271606}
static const <<name>> =
{ 0xc1bce961, 0x3e98, 0x11d2,
{ 0xa1, 0xc2, 0x0, 0x40, 0x95, 0x27, 0x16, 0x6 } };

Of course, you would replace <<name>> with the name you choose for the GUID in
your program, but you get the idea.

GUIDs and IIDs (Interface IDs) are used to reference COM objects and their inter-
faces. So whenever you make a new COM object and a set of interfaces, these are the
only numbers that you have to give to programmers to work with your COM objects.
Once they have the IIDs, they can create COM objects and interfaces.

0872313618 CH05 10/26/99 9:55 AM Page 223

DirectX and 2D Fundamentals

224 PART II

Building a Quasi-COM Object
Creating a full-fledged COM object is well beyond the scope of this book. You only
need to know how to use them. However, if you’re like me, you like to have some
idea of what’s going on. So what we’re going to do is build up a very basic COM
example to help you answer some of the questions that I’m sure I’ve created for you.

All right, you know that all COM objects contain a number of interfaces, but all COM
objects must be derived from the IUnknown class to begin with. Then, once you have
all your interfaces built, you put them all in a container class and implement every-
thing. As an example, let’s create a COM object that has three interfaces: ISound,
IGraphics, and IInput. Here’s how you might define them:

// the graphics interface
struct IGraphics : IUnknown
{
virtual int InitGraphics(int mode)=0;
virtual int SetPixel(int x, int y, int c)=0;
// more methods...
};

// the sound interface
struct ISound : IUnknown
{
virtual int InitSound(int driver)=0;
virtual int PlaySound(int note, int vol)=0;
// more methods...
};

// the input interface
struct IInput: IUnknown
{
virtual int InitInput(int device)=0;
virtual int ReadStick(int stick)=0;
// more methods...
};

Now that you have all your interfaces, let’s create your container class, which is really
the heart of the COM object:

class CT3D_Engine: public IGraphics, ISound, IInput
{
public:

// implement IUnknown here
virtual HRESULT __stdcall QueryInterface(const IId& iid,

(void **)ip)
{ /* real implementation */ }

// this method increases the interfaces reference count

0872313618 CH05 10/26/99 9:55 AM Page 224

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

225

virtual ULONG __stdcall Addref()
{ /* real implementation */}

// this method decreases the interfaces reference count
virtual ULONG __stdcall Release()

{ /* real implementation */}

// note there still isn’t a method to create one of these
// objects...

// implement each interface now

// IGraphics
virtual int InitGraphics(int mode)

{ /*implementation */}
virtual int SetPixel(int x, int y, int c)

{/*implementation */}

// ISound
virtual int InitSound(int driver)

{ /*implementation */}
virtual int PlaySound(int note, int vol)

{ /*implementation */}

// IInput
virtual int InitInput(int device)

{ /*implementation */}

virtual int ReadStick(int stick)
{ /*implementation */}

private:

// .. locals

};

You’re still missing a generic way to create a COM object. This is a prob-
lem, no doubt. The COM specification states that there are a number of
ways to do it, but none of them can tie the implementation to a specific
platform or language. One of the simpler ways to do it is to create a
function called CoCreateInstance() or ComCreate() to create the initial
IUnknown instance of the object. The function usually loads a DLL that
contains the COM code and works from there. Again, this technology is
beyond what you need to know, but I just want to throw it out there
for you. However, we’re going to cheat a little to continue with the
example.

Note

0872313618 CH05 10/26/99 9:55 AM Page 225

DirectX and 2D Fundamentals

226 PART II

As you can see from the example, COM interfaces and coding are nothing really more
than slightly advanced C++ virtual classes with some conventions. However, true
COM objects must be created properly and registered in the registry, and a number of
other rules must be adhered to. But at the lowest level, they are simply classes with
methods (or for you C programmers, structs) with function pointers, more or less.
Anyway, let’s take a brief step back and review what you know about COM.

A Quick Recap of COM
COM is a new way of writing component software that allows you to create reusable
software modules that are dynamically linked at run-time. Each of these COM objects
has one or more interfaces that do the actual work. These interfaces are nothing more
than collections of methods or functions that are referenced through a virtual function
table pointer (more on this in next section).

Each COM object and interface is unique from the others due to the use of GUIDs, or
Globally Unique Identifiers, that you must generate for your COM objects and inter-
faces. You use the GUIDs or IIDs to refer to COM objects and interfaces and share
them with other programmers.

If you create a new COM object that upgrades an old one, you must still implement
the old interfaces along with any new ones you might add. This is a very important
rule: all programs based on COM objects should still work, without recompilation,
with new versions of the COM object(s).

COM is a general specification that can be followed with any language on any
machine. The only rule is that the binary image of the COM object must be that of a
virtual class generated by a Microsoft VC compiler—it just worked out that way.
However, COM can be used on other machines, like Mac, SGI, and so on, as long as
they follow the rules for using and creating COM objects.

Finally, COM opens up the possibility of creating massive computer programs
(in the multibillion-line range) by means of its component-level generic architecture.
And of course, DirectX, OLE, and ActiveX are all based on COM, so you need to
understand it!

A Working COM Program
As a complete example of creating a COM object and a couple of interfaces, I have
created DEMO5_1.CPP for you. The program implements a COM object called
CCOM_OJBECT that is composed of two interfaces, IX and IY. The program is a decent
implementation of a COM object, but of course it’s missing some of the high-level
details like being a DLL, loading dynamically, and so on. But the COM object is fully
implemented as far as all the methods and the IUnknown class are concerned.

0872313618 CH05 10/26/99 9:55 AM Page 226

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

227

What I want you to do is look at it very carefully, play with the code, and see how it
works. Listing 5.1 contains the entire source for the COM object and a simple C/C++
main() test bed to run it in.

LISTING 5.1 A Complete COM Object Program

// DEMO5_1.CPP - A ultra minimal working COM example
// NOTE: not fully COM compliant

// INCLUDES ///

#include <stdio.h>
#include <malloc.h>
#include <iostream.h>
#include <objbase.h> // note: you must include this header it

// contains important constants
// you must use in COM programs

// GUIDS //

// these were all generated with GUIDGEN.EXE

// {B9B8ACE1-CE14-11d0-AE58-444553540000}
const IID IID_IX =
{ 0xb9b8ace1, 0xce14, 0x11d0,
{ 0xae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

// {B9B8ACE2-CE14-11d0-AE58-444553540000}
const IID IID_IY =
{ 0xb9b8ace2, 0xce14, 0x11d0,
{ 0xae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

// {B9B8ACE3-CE14-11d0-AE58-444553540000}
const IID IID_IZ =
{ 0xb9b8ace3, 0xce14, 0x11d0,
{ 0xae, 0x58, 0x44, 0x45, 0x53, 0x54, 0x0, 0x0 } };

// INTERFACES ///

// define the IX interface
interface IX: IUnknown
{

virtual void __stdcall fx(void)=0;

};

continues

0872313618 CH05 10/26/99 9:55 AM Page 227

DirectX and 2D Fundamentals

228 PART II

// define the IY interface
interface IY: IUnknown
{

virtual void __stdcall fy(void)=0;

};

// CLASSES AND COMPONENTS /////////////////////////////////////

// define the COM object
class CCOM_OBJECT : public IX,

public IY
{
public:

CCOM_OBJECT() : ref_count(0) {}
~CCOM_OBJECT() {}

private:

virtual HRESULT __stdcall QueryInterface(const IID &iid, void **iface);
virtual ULONG __stdcall AddRef();
virtual ULONG __stdcall Release();

virtual void __stdcall fx(void)
{cout << “Function fx has been called.” << endl; }

virtual void __stdcall fy(void)
{cout << “Function fy has been called.” << endl; }

int ref_count;

};

// CLASS METHODS //

HRESULT __stdcall CCOM_OBJECT::QueryInterface(const IID &iid,
void **iface)

{
// this function basically casts the this pointer or the IUnknown
// pointer into the interface requested, notice the comparison with
// the GUIDs generated and defined in the beginning of the program

// requesting the IUnknown base interface
if (iid==IID_IUnknown)

{
cout << “Requesting IUnknown interface” << endl;
iface = (IX)this;

} // end if

LISTING 5.1 Continued

0872313618 CH05 10/26/99 9:55 AM Page 228

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

229

// maybe IX?
if (iid==IID_IX)

{
cout << “Requesting IX interface” << endl;
iface = (IX)this;

} // end if
else // maybe IY
if (iid==IID_IY)

{
cout << “Requesting IY interface” << endl;
iface = (IY)this;

} // end if
else

{ // cant find it!
cout << “Requesting unknown interaface!” << endl;
*iface = NULL;
return(E_NOINTERFACE);
} // end else

// if everything went well cast pointer to
// IUnknown and call addref()
((IUnknown *)(*iface))->AddRef();

return(S_OK);

} // end QueryInterface

///

ULONG __stdcall CCOM_OBJECT::AddRef()
{
// increments reference count
cout << “Adding a reference” << endl;
return(++ref_count);

} // end AddRef

///

ULONG __stdcall CCOM_OBJECT::Release()
{
// decrements reference count
cout << “Deleting a reference” << endl;
if (--ref_count==0)

{
delete this;
return(0);
} // end if

else
return(ref_count);

continues

0872313618 CH05 10/26/99 9:55 AM Page 229

Errata

Errata
"interaface!" should be "interface!"

DirectX and 2D Fundamentals

230 PART II

} // end Release

///

IUnknown *CoCreateInstance(void)
{
// this is a very basic implementation of CoCreateInstance()
// it creates an instance of the COM object, in this case
// I decided to start with a pointer to IX -- IY would have
// done just as well

IUnknown *comm_obj = (IX *)new(CCOM_OBJECT);

cout << “Creating Comm object” << endl;

// update reference count
comm_obj->AddRef();

return(comm_obj);

} // end CoCreateInstance

//

void main(void)
{

// create the main COM object
IUnknown *punknown = CoCreateInstance();

// create two NULL pointers the IX and IY interfaces
IX *pix=NULL;
IY *piy=NULL;

// from the original COM object query for interface IX
punknown->QueryInterface(IID_IX, (void **)&pix);

// try some of the methods of IX
pix->fx();

// release the interface
pix->Release();

// now query for the IY interface
punknown->QueryInterface(IID_IY, (void **)&piy);

// try some of the methods
piy->fy();

// release the interface

LISTING 5.1 Continued

0872313618 CH05 10/26/99 9:55 AM Page 230

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

231

piy->Release();

// release the COM object itself
punknown->Release();

} // end main

I have already precompiled the program for you into the executable DEMO5_1.EXE.
However, if you want to experiment and compile DEMO5_1.CPP, remember to create a
Win32 Console Application because the demo uses main() rather than WinMain() and
is, of course, a text-based program.

Working with DirectX COM Objects
Now that you have an idea what DirectX is and how COM works, let’s take a closer
look at how they actually work together. Like I said, there are a number of COM
objects that make up DirectX. These COM objects are contained within your system
as DLLs when you load the run-time version of DirectX. When you run a third-party
DirectX game, what happens is that one or more of these DLLs are loaded by the
DirectX application, and then interfaces are requested and the methods (functions) of
the interfaces are used to get the work done. That’s the run-time side of things.

The compile-time angle is a little different. The designers of DirectX knew that they
were dealing with us game programmers, and assumed that most of us hate Windows
programming—very true. Alas, they knew that they better keep the COM stuff to a
minimum, or else game programmers would really hate using DirectX. Thus, 90% of
the DirectX COM objects are wrapped in nice little function calls that take care of the
COM stuff. So, you don’t have to call CoCreateInstance(), do COM initialization,
and stuff like that. However, you may have to query for a new interface with
QueryInterface(), but we’ll get to that in a bit. The point is, DirectX really tries to
hide the tedium of working with COM from you so you can work with the core func-
tionality of DirectX.

With all that said, to compile a DirectX program, you must include a number of
import libraries that have the COM wrappers within them so you can make calls to
DirectX using those wrapper functions to create the COM objects. For the most part,
the libraries you need are

DDRAW.LIB
DSOUND.LIB
DINPUT.LIB
DSETUP.LIB
DPLAYX.LIB
D3DIM.LIB
D3DRM.LIB

0872313618 CH05 10/26/99 9:55 AM Page 231

DirectX and 2D Fundamentals

232 PART II

But remember, these libraries don’t contain the COM objects themselves. These are
only wrapper libraries and hooks that make calls to load the DirectX DLLs them-
selves, which are the COM objects. Finally, when you do call one of the DirectX
COM objects, the result is usually just an interface pointer. This is where are the
action occurs. Just like in the example of DEMO5_1.CPP, once you have the interface
pointer, you’re free to make function calls—or more correctly in C++ speak, method
calls. However, if you’re a C programmer, take a quick look at the next section if you
feel uncomfortable with function pointers. If you’re a C++ programmer, you can skip
ahead to the next section if you want.

COM and Function Pointers
Once you have created a COM object and retrieved an interface pointer, what you
really have is a VTABLE (Virtual Function Table) pointer. Take a look at Figure 5.7 to
see this graphically. Virtual functions are used so that you can code with function calls
that are not bound until run-time. This is the key to COM and virtual functions. In
essence, C++ has this built in, but you can do the same thing with C by using straight
function pointers.

Figure 5.7
Virtual Function Table

architecture. Int X;
Int Y;

•
•
•

Func1();
Func2();

VTable Pointer & Func3();

& Func4() ;

& FuncN();

Class with Virtual Functions

Virtual Functions table

Normal functions Notice 2nd level
of indirection

•
•
•
•

A function pointer is a type of pointer used to make calls to a function. But instead of
the function being hard-bound to some code, you can move it around as long as the
prototype of the function pointer is the same as the function(s) you point it to. For
example, say that you want to write a graphics driver function to plot a pixel on the
screen. But also suppose that you have dozens of different video cards to support and
they all work differently, as shown in Figure 5.8.

0872313618 CH05 10/26/99 9:55 AM Page 232

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

233

You want to call the plot pixel function the same way for all these video cards, but the
internal code is different depending on what card is plugged in. Here’s a typical C
programmer’s solution:

int SetPixel(int x, int y, int color, int card)
{
// what video card do we have?
switch(card)

{
case ATI: { /* hardware specific code */ } break;
case VOODOO: { /* hardware specific code */ } break;
case SIII: { /* hardware specific code */ } break;
.
.
.
default: { /* standard VGA code */ } break;

} // end switch

// return success
return(1);

} // end SetPixel

Do you see the problem with this? First, the switch statement sucks. It’s slow, long,
prone to errors, and you might break the function while adding support for another
card. A better solution for straight C is to use function pointers like this:

// function pointer declaration, weird huh?
int (* SetPixel)(int x, int y, int color);

Figure 5.8
Software design

needed to support dif-
ferent video cards.

Hardware Dependent
Driver

Graphics Card
1

Hardware Dependent
Driver

Application

Graphics Card
2

Hardware Dependent
Driver

Graphics Card
N

General Abstraction Layer (Slow)

• • • •

0872313618 CH05 10/26/99 9:55 AM Page 233

DirectX and 2D Fundamentals

234 PART II

// now here’s all our set pixel functions

int SetPixel_ATI(int x, int y, int color)
{
// code for ATI

} // end SetPixel_ATI

///

int SetPixel_VOODOO(int x, int y, int color)
{
// code for VOODOO

} // end SetPixel_VOODOO

///

int SetPixel_SIII(int x, int y, int color)
{
// code for SIII

} // end SetPixel_SIII

Now you’re ready to rock. When the system starts up, it checks what kind of card is
installed and then, once and only once, sets the generic function pointer to point to the
correct card’s function. For example, if you wanted SetPixel() to point to the ATI
version, you would code it like this:

// assigning a function pointer
SetPixel = SetPixel_ATI;

Isn’t that easy? Figure 5.9 shows what this looks like graphically.

Figure 5.9
Using function point-
ers to enable different

code blocks.

SetPixel_SIII()
{_______________
 •
 •_____
}

SetPixel_voodoo()
{_______________
 •
 •_____
}

SetPixel_ATI()
{_______________
 •
 •_____
}

*SetPixel

SetPixel (…);
This call is equivalent to calling
one of the functions SetPixel_SIII(),

SetPixel_ATI(),
SetPixel_voodoo()

0872313618 CH05 10/26/99 9:55 AM Page 234

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

235

Notice that SetPixel() is, in a way, an alias for SetPixel_ATI(). This is the key to
function pointers. Now, to call SetPixel() you make a normal call, but instead of
calling the empty SetPixel(), the call really calls SetPixel_ATI():

// this really calls SetPixel_ATI(10,20,4);
SetPixel(10,20,4);

The point is that your code always looks like same, but it does different things based
on how you assign the function pointer. This is such a cool technology that much of
C++ and virtual functions are based on it. That’s all virtual functions really are—late
binding of function pointers, but nicely built into the language and then built up as
you’ve done here.

With that in mind, let’s see how you would finish your generic video driver link-up…
All you have to do is test to see which card is installed, set the SetPixel() function
pointer once to the proper SetPixel*() function, and that’s it. Take a look:

int SetCard(int card)
{
// assign the function pointer based on the card
switch(card)

{
case ATI:

{
SetPixel = SetPixel_ATI;

} break;

case VOODOO:
{
SetPixel = SetPixel_VOODOO;
} break;

case SIII:
{
SetPixel = SetPixel_SIII;
} break;

default: break;

} // end switch

} // end SetCard

At the beginning of your code, you would make a call to the set up function like this:

SetCard(card);

And from then on, you’re good to go. This is how function pointers and virtual func-
tions are used in C++, so now let’s see how these techniques are used with DirectX.

0872313618 CH05 10/26/99 9:55 AM Page 235

Errata

Errata
"like" should be "the"

DirectX and 2D Fundamentals

236 PART II

Creating and Using DirectX Interfaces
At this point, I think you understand that COM objects are collections of interfaces,
which are simply function pointers (and more specifically, VTABLEs). Hence, all you
need to do to work with a DirectX COM object is create it, retrieve an interface
pointer, and then make calls to the interface using the proper syntax. As an example,
I’ll use the main DirectDraw interface to show how this is done.

First off, you need three things to experiment with DirectDraw:

• The DirectDraw run-time COM object(s) and DLLs must be loaded and regis-
tered. This is what the DirectX installer does.

• You must include the DDRAW.LIB import library in your Win32 programs so that
the wrapper functions you call are linked in.

• You need to include DDRAW.H in your program so the compiler can see the
header information, prototypes, and data types for DirectDraw.

With that in mind, here’s the data type for a DirectDraw interface pointer:

LPDIRECTDRAW lpdd = NULL;

Now, to create a DirectDraw COM object and retrieve an interface pointer to the
DirectDraw object (which represents the video card), all you need to do is use the
wrapper function DirectDrawCreate() like this:

DirectDrawCreate(NULL, &lpdd, NULL);

In Chapter 6, “First Contact: DirectDraw,” I go into the parameters in detail. But for
now, just be aware that this call creates a DirectDraw object and assigns the interface
pointer to lpdd.

Of course, there’s a lot going on in the function. It opens a DLL, loads it,
makes calls, and does about a million other things. But you don’t have
to worry about it.

Note

Now you’re in business and can make calls to DirectDraw. But wait a minute! You
don’t know the methods or functions that are available—that’s why you’re reading
this book <BG>. As an example, here’s how you would set the video mode to
640×480 with 256 colors:

lpdd->SetVideoMode(640, 480, 256);

Is that simple or what? About the only extra work is the pointer dereference from the
DirectDraw interface pointer lpdd—that’s it. Of course, what’s really happening is a
lookup in the virtual table of the interface, but don’t be concerned about that.

0872313618 CH05 10/26/99 9:55 AM Page 236

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

237

In essence, any call to DirectX takes the following form:

interface_pointer->method_name(parameter list);

Also, you can get any other interfaces that you might want to work with (for example,
Direct3D) from the original DirectDraw interface by using QueryInterface().
Moreover, since there are multiple versions of DirectX floating around, a while ago
Microsoft stopped writing wrapped functions to retrieve the latest interface. What this
means is that you must manually retrieve the latest DirectX interface yourself with
QueryInterface(). Let’s take a look at that.

Querying for Interfaces
The weird thing about DirectX is that all the version numbers are out of sync. This is
a bit of a problem, and definitely a cause for confusion. Here’s the deal: when the first
version of DirectX came out, the DirectDraw interface was named like this:

IDIRECTDRAW

Then, when DirectX 2.0 came out, DirectDraw was upgraded to version 2.0, so we
had this:

IDIRECTDRAW
IDIRECTDRAW2

Now, at version 6.0, we have something like this:

IDIRECTDRAW
IDIRECTDRAW2
IDIRECTDRAW4

Wait a minute—what happened to interfaces 3 and 5? I have no idea, but this is the
problem. Hence, the idea is that even though you’re using DirectX 7.0, it doesn’t
mean that the interfaces are up to that version. Moreover, they can all be out of sync.
DirectX 6.0 may have DirectDraw interfaces up to IDIRECTDRAW4, but DirectSound is
only up to interface version 1.0, which is simply called IDIRECTSOUND. You can see
the mess we’re in! The moral of the story is that whenever you use a DirectX inter-
face, you should make sure that you’re using the latest version. If you’re not sure, use
the revision 1 interface pointer from the generic create function to get the latest ver-
sion.

Here’s an example of what I’m talking about: DirectDrawCreate() returns a revision
1.0 interface pointer, but DirectDraw is really up to IDIRECTDRAW4. So how do you
take advantage of this new functionality?

If you’re having a panic attack over this stuff, don’t feel alone. I was
using the version 1.0 interfaces up until version 5.0 of DirectX, since the
DirectX docs are nebulous in this area—typical!

Tip

0872313618 CH05 10/26/99 9:55 AM Page 237

DirectX and 2D Fundamentals

238 PART II

There are two ways to do this: with low-level COM functions or with
QueryInterface(). Let’s use the latter. The process goes like this: First, you create
the DirectDraw COM interface with a call to DirectDrawCreate(). This returns a
boring IDIRECTDRAW interface pointer. Then, you make a call to QueryInterface()
using this pointer and you retrieve it using the Interface ID (or GUID) for IDIRECT-
DRAW4. Here’s an example:

LPDIRECTDRAW lpdd; // version 1.0
LPDIRECTDRAW4 lpdd4; // version 6.0, but called 4.0

// create version 1.0 DirectDraw object interface
DirectDrawCreate(NULL, &lpdd, NULL);

// now look in DDRAW.H header, find IDIRECTDRAW4 interface
// ID and use it to query for the interface
lpdd->QueryInterface(IID_IDirectDraw4, &lpdd4);

At this point, you have two interface pointers. But you don’t need the pointer to
IDIRECTDRAW, so you should release it:

// release, decrement reference count
lpdd->Release();

// set to NULL to be safe
lpdd = NULL;

Remember this? You should release an interface when you’re done with it. Hence,
when your program terminates, you would also release the IDIRECTDRAW4 interface
like this:

// release, decrement reference count
lpdd4->Release();

// set to NULL to be safe
lpdd4 = NULL;

That’s all there is to using DirectX and COM. Of course, you haven’t seen all the
hundreds of functions that DirectX components have or all the interfaces—but you
will <BG>.

The Future of COM
Currently, there are a number of distributed object technologies similar to COM, such
as COBRA (Common Object Broker Architecture). However, since you’re worried
about Windows games, these other technologies aren’t as important.

The latest version of COM is called COM++, and it’s a much more robust implemen-
tation, with better rules and a more thought-out set of implementation details.
COM++ will make distributed component software even easier to create. Granted,
COM++ is a bit more complex than COM, but hey, that’s life.

0872313618 CH05 10/26/99 9:55 AM Page 238

Errata

Errata
"COBRA" should be "CORBA" "Common Object Broker Architecture" should be "Common Object Request Broker Architecture"

Errata

CHAPTER 5
DirectX Fundamentals and the Dreaded COM

239

In addition to COM and COM++, there’s also the full Internet/intranet version of
COM called DCOM—Distributed COM. With DCOM technology, the COM objects
don’t even need to be on your machine. They can be served from other machines on
the network. Is that cool or what? Imagine having massive DCOM servers that your
programs basically act as clients to. Incredible technology, if I do say so myself.

Summary
This chapter has covered some pretty technical material and concepts. COM is not
simple to understand, and it does take a bit of studying to really get a good hold on it.
However, using COM is ten times easier than understanding it, as you’ll see in the
next chapter. Anyway, you also took a look at DirectX and all of its components. So
once you’ve seen the details of each component and how to use it in the following
chapters, you’ll have a good idea of how they fit together.

0872313618 CH05 10/26/99 9:55 AM Page 239

0872313618 CH05 10/26/99 9:55 AM Page 240

First Contact: DirectDraw
“Are you sure you don’t want to come upstairs?”

—John Milton, The Devil’s Advocate

In this chapter you’re going to take your first look at one of the
most important components of DirectX: DirectDraw. This is
perhaps the most enabling technology in DirectX because it’s the
conduit through which 2D graphics are performed and the frame
buffer layer that Direct3D is built upon. Furthermore, if you
understand DirectDraw alone, you have more than enough power
to create any kind of graphical application that you might have
written under DOS16/32. DirectDraw is the key to understand-
ing a number of concepts indigenous to DirectX, so listen up!

Here’s your hit list for this chapter:

• The interfaces of DirectDraw

• Creating a DirectDraw object

• Cooperating with Windows

• Getting into the mode of things

• The subtleties of color

• Building a display surface

CHAPTER 6

0972313618 CH06 10/26/99 9:59 AM Page 241

DirectX and 2D Fundamentals

242 PART II

The Interfaces of DirectDraw
DirectDraw is composed of a number of interfaces. If you recall from the discussion
on the Component Object Model (COM) in Chapter 5, “DirectX Fundamentals and
the Dreaded COM,” interfaces are nothing more than collections of functions and/or
methods that you use to communicate with components. Take a look at Figure 6.1 for
a graphical illustration of the DirectDraw interfaces.

Figure 6.1
The interfaces of

DirectDraw.

IDirectDraw

IUnknownIDirectDrawPalette IDirectDrawSurface

IDirectDrawClipper

Main Com object all others
are retrieved from

Interface Characteristics
As you can see, there are only five interfaces that make up DirectDraw:

IUnknown—All COM objects must be derived from this base interface, and
DirectDraw is no exception. IUnknown doesn’t contain much more than the Addref(),
Release(), and QueryInterface() functions that are overridden by each of the other
interfaces.

IDirectDraw—This is the main interface object that must be created to start working
with DirectDraw. IDirectDraw literally represents the video card and support hard-
ware. Interestingly enough, with MMS (Multiple Monitor Support) and Windows
98/NT, now you can have more than one video card installed in your system and
hence more than one DirectDraw object. However, in this book we’ll assume that
there is only one video card in the computer and always select the default card to
represent the DirectDraw object, even if there is more than one card in the system.

IDirectDrawSurface—This represents the actual display surface(s) that you will
create, manipulate, and display using DirectDraw. A DirectDraw surface can exist on
the video card itself using VRAM (Video RAM) or within system memory. There are
basically two types of surfaces: primary surfaces and secondary surfaces.

Primary surfaces usually represent the actual video buffer that is currently being
rasterized and displayed by the video card. Secondary surfaces, on the other hand, are
usually offscreen. In most cases, you will create a single primary surface to represent

0972313618 CH06 10/26/99 9:59 AM Page 242

CHAPTER 6
First Contact: DirectDraw

243

the actual video display, and then one or more secondary surfaces to represent object
bitmaps and/or back buffers to represent offscreen drawing areas where you’ll build
up the next frame of animation. We’ll get to the details of surfaces later in the chapter,
but for now, take a look at Figure 6.2 for a little graphical elaboration.

Figure 6.2
DirectDraw surfaces.

m1xn1

m2xn2

m3xn3

(0, 0)

(0, 0)

(0, 0)

IDirectDraw Surface

Off-screen surfaces
in main directory

Primary Surface

mxn

Secondary Surface
Back Buffer
for smooth
animation

mxn

Video Card
VRAM (fast)

Video Display (mxn)

•
•
•

Rasterization Hardware

Off-screen

DirectDraw

Main Memory (slower)

IDirectDrawPalette—DirectDraw is equipped to deal with any color space, from
1-bit monochrome to 32-bit Ultra-True Color. Thus, DirectDraw supports the
IDirectDrawPalette interface to deal with color palettes in video modes that use 256
or fewer colors. In this case, you will use the 256-color mode extensively in a number
of demos because it’s the fastest mode for a software rasterizer. In the discussion of
Direct3D Immediate Mode in Volume II, you’ll switch over to 24-bit color because
that’s the native mode that D3D likes to work in. In any case, the
IDirectDrawPalette interface is used to create, load, and manipulate palettes, and to
attach palettes to drawing surfaces, such as the primary or secondary surfaces that
you might create for your DirectDraw applications. Take a look at Figure 6.3 to see
the relationship between a drawing surface and a DirectDraw palette.

IDirectDrawClipper—This is used to help with clipping DirectDraw raster and
bitmap operations to some subset of the visible display surface. In most cases, you’ll
only use DirectDraw clippers for windowed DirectX applications and/or to clip
bitmap operations to the extents of your display surface, whether it be a primary or
secondary surface. The cool thing about the IDirectDrawClipper interface is that it
takes advantage of hardware acceleration if it’s available, and the costly pixel-by-
pixel or sub-image processing that is normally needed to clip bitmaps to the screen
extents is done for you.

0972313618 CH06 10/26/99 9:59 AM Page 243

DirectX and 2D Fundamentals

244 PART II

Now, before you move on to creating a DirectDraw object, I want to refresh your
memory with some tasty tidbits of information that we touched upon in the previous
chapter when dealing with COM. DirectDraw and all DirectX components are in con-
stant flux, and thus the interfaces are always being upgraded. Alas, even though so far
in this chapter I have referred to the interfaces of DirectDraw generically as
IDirectDraw, IDirectDrawSurface, IDirectDrawPalette, and IDirectDrawClipper,
for the most part these interfaces have all been updated and newer versions exist. For
example, IDirectDraw is up to IDirectDraw4 as of DirectX version 6.0.

All this means is that if you want the very latest software and hardware performance,
you should always IUnknown::QueryInterface() for the latest interface revision.
However, to find this out you’ll have to take a look at the DirectX SDK docs. Of
course, in this book you’re using DirectX 6.0, so you already know what’s up, but
keep in mind that when you upgrade to 7.0 you might have some newer interfaces that
you want to use. However, both volumes of this book are about writing your own ras-
terization and 3D software, so I want to cheat as little as possible. In most cases,
you’re going to be using very few of the bells and whistles of all the new revisions.
Cool, home slice?

Using the Interfaces Together
Next, I want to briefly run down how all the interfaces are used together to create a
DirectDraw application:

1. Create the main DirectDraw object and retrieve a IDirectDraw4 interface.
Using this interface, set both the cooperation level and video mode.

2. Using the IDirectDrawSurface interface, create at least a primary surface to
draw on. Based on the color depth of the surface and the video mode itself, a
palette will be needed if the video mode is 8 bits per pixel or less.

Figure 6.3
The relationship

between DirectDraw
surfaces and palettes.

DirectDraw Surface

Usually primary
320 x 240
640 x 480
800 x 600

•
•
•
•

IDirectDraw Surface

Color
Video Display

256 Colors

IDirectDraw palette

R0 G0 B0

R1 G1 B1

 •
 •
 •
 •
 •
 •

R255 G255 B255

0

1

255

Each entry is composed
of Red, Green, and Blue
in 8.8.8 format.

Color Index

Color
Palette

0972313618 CH06 10/26/99 9:59 AM Page 244

CHAPTER 6
First Contact: DirectDraw

245

3. Create a palette using the IDirectDrawPalette interface, initialize it with RGB
triples, and attach it to the surface of interest.

4. If the DirectDraw application is going to be windowed, or if you’re going to
render bitmaps that could potentially go out of bounds of the visible DirectDraw
surface, at least create a single clipper and size it to the extents of the visible
window. See Figure 6.4.

Figure 6.4
DirectDraw clippers.

No Clipper

mxn Not Clipped

Direct Draw
Surface

With Clipper (mxn)

mxn

Clipped
(only works for Blitter)

IDirectDraw clipper
same size as surface

Direct Draw
Surface

5. Draw on the primary surface.

Of course, there are about a bazillion (yes, that’s a technical term) little details I’ve
left out, but that’s the gist of using the different interfaces. With that in mind, let’s get
down to details and really make these interfaces work…

You might want to have both the DDRAW.H header file and the DirectX
SDK Help system open for reference during the remainder of the
chapter.

Creating a DirectDraw Object
To create a DirectDraw object with C++, all you need to do is call
DirectDrawCreate(), shown here:

HRESULT WINAPI DirectDrawCreate(GUID FAR *lpGUID, // guid of object
LPDIRECTDRAW FAR *lplpDD, // receives interface
IUnknown FAR *pUnkOuter); // com stuff

Tip

0972313618 CH06 10/26/99 9:59 AM Page 245

DirectX and 2D Fundamentals

246 PART II

lpGUID—This is the GUID (Globally Unique Identifier) of the display driver that you
want to use. In most cases, you’ll simply send NULL to represent the default hardware.

lplpDD—This is a pointer to a pointer that receives the IDirectDraw interface pointer
if the call is successful. Note that the function returns a IDirectDraw interface, not a
IDirectDraw4 interface!

pUnkOuter—Advanced feature; always send NULL.

Here’s how you would use the function to create a default DirectDraw object based on
the IDirectDraw interface:

LPDIRECTDRAW lpdd = NULL; // storage for IDirectDraw

// create the DirectDraw object
DirectDrawCreate(NULL, &lpdd, NULL);

If the function is successful, lpdd will be a valid IDirectDraw object interface.
However, you still would like that latest interface, IDirectDraw4. But before you
learn how to do that—what about error handling?

Error Handling with DirectDraw
Error handling in DirectX is very clean. There are a number of macros that can test
the results of any function for general success or failure. The Microsoft-endorsed way
of testing for errors with DirectX functions is to use these two macros:

FAILED()—Tests for failure.

SUCCEEDED()—Tests for success.

Based on this new information, you could do something smart by adding the
following error handling code:

if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))
{
// error
} // end if

Or similarly, you could test for success:

if (SUCCEEDED(DirectDrawCreate(NULL, &lpdd, NULL)))
{
// move onto next step
} // end if

else
{
// error
} // end else

0972313618 CH06 10/26/99 9:59 AM Page 246

CHAPTER 6
First Contact: DirectDraw

247

I usually use the FAILED() macro because I don’t like having two different logic
paths, but whatever lights your fusion reactor… The only problem with the macros is
that they don’t tell you much; they are more to detect a general problem. If you want
to know the exact problem, you can always take a look at the return code for the
function. In this case, Table 6.1 lists the possible return codes for DirectX version 6.0
DirectDrawCreate().

TABLE 6.1 Return Codes for DirectDrawCreate()

Return Code Description

DD_OK Total Success.

DDERR_DIRECTDRAWALREADYCREATED DirectDraw object has already been created.

DDERR_GENERIC DirectDraw has no idea what’s wrong.

DDERR_INVALIDDIRECTDRAWGUID The device GUID is unknown.

DDERR_INVALIDPARAMS Something is wrong with the parameters you sent.

DDERR_NODIRECTDRAWHW There isn’t any hardware.

DDERR_OUTOFMEMORY Take a wild guess?

The only problem with using the constants along with conditional logic is that
Microsoft doesn’t guarantee that they won’t completely change all the error codes.
However, I think that you’ll be pretty safe with

if (DirectDrawCreate(...)!=DD_OK)
{
// error
} // end if

in all cases. Moreover, DD_OK is defined for all DirectDraw functions, so you can use
it safely without worrying.

Getting an Interface Lift
As I said, you can use the basic IDirectDraw interface stored in lpdd from the call to
DirectDrawCreate(). Or you can upgrade it to the latest version (whatever it may be)
by querying for a new interface via the IUnknown interface method
QueryInterface(), which is part of every DirectDraw interface implementation. The
latest DirectDraw interface as of DirectX version 6.0 is IDirectDraw4, so here’s how
you retrieve the interface pointer:

LPDIRECTDRAW lpdd = NULL; // standard DirectDraw 1.0
LPDIRECTDRAW lpdd4 = NULL; // DirectDraw 6.0 interface 4

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{

0972313618 CH06 10/26/99 9:59 AM Page 247

DirectX and 2D Fundamentals

248 PART II

// error
} // end if

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
{
// error
} // end if

Now, here are the important things to pay attention to:

• The way that QueryInterface() is called.

• The constant used to request the IDirectDraw4 interface, which is
IID_IDirectDraw4.

In general, all calls from an interface are in the form

interface_pointer->method(parms...);

And all Interface Identifiers are in the form

IID_IDirectCD

Here, C refers to the component: Draw for DirectDraw, Sound for DirectSound, Input
for DirectInput, and so on. D is a number, from 2 to n, indicating the interface you
desire. In addition, you can find all these constants within the DDRAW.H file.

Moving on with this example, you now have a bit of a dilemma—you have both a
IDirectDraw interface and a IDirectDraw4 interface. What to do? Simply blow the
old interface away since you don’t need it, like this:

lpdd->Release();
lpdd = NULL; // set to NULL for safety

And from this point on, do all method calls using the new interface IDirectDraw4.

Along with the new functionality of IDirectDraw4 comes a little
housekeeping and responsibility. The problem is that not only is the
IDirectDraw4 interface more sophisticated and advanced, but in many
cases it needs and returns new data structures rather than the base
structures defined for DirectX 1.0. The only way to be sure about these
anomalies is to take a look at the DirectX SDK documentation and verify
the version of the data structure that any specific function needs and/or
returns. However, this is just a warning in general. I’ll show you the cor-
rect structures for all the examples that you work through in this book—
because I’m that kind of guy! By the way, my birthday is on
June 14th.

Warning

0972313618 CH06 10/26/99 9:59 AM Page 248

CHAPTER 6
First Contact: DirectDraw

249

In addition to using the QueryInterface() function from the initial IDirectDraw
interface pointer (lpdd), there is a more direct “COM way” of getting the
IDirectDraw4 interface directly. Under COM, you can retrieve an interface pointer to
any interface as long as you have the Interface ID, or IID, that represents the interface
that you desire. In most cases, I personally prefer not to use low-level COM functions
because I already have enough drama in my life. Nevertheless, when you get to
DirectMusic there will be no way around using low-level COM stuff, so this is a good
place to at least introduce the process to you. Here’s how you would directly obtain an
IDirectDraw4 interface:

// first initialize COM, this will load the COM libraries
// if they aren’t already loaded
if (FAILED(CoInitialize(NULL)))

{
// error
} // end if

// Create the DirectDraw object by using the
// CoCreateInstance() function
if (FAILED(CoCreateInstance(&CLSID_DirectDraw,

NULL,
CLSCTX_ALL,
&IID_IDirectDraw4,
&lpdd4)))

{
// error
} // end if

// now before using the DirectDraw object, it must
// be initialized using the initialize method

if (FAILED(IDirectDraw4_Initialize(lpdd4, NULL)))
{
// error
} // end if

// now that we’re done with COM, uninitialize it
CoUninitialize();

The preceding code is the Microsoft-recommended way to create a DirectDraw
object. However, the technique does cheat a bit and use one macro:

IDirectDraw4_Initialize(lpdd4, NULL);

You can get rid of this and be totally COM by replacing it with

lpdd4->Initialize(NULL);

0972313618 CH06 10/26/99 9:59 AM Page 249

DirectX and 2D Fundamentals

250 PART II

where the NULL in both calls is the video device, which in this case is the default
driver. (That’s why it’s been left NULL.) In any case, it’s not hard to see how the
macro expands out into the code in the preceding line. Just makes life easier, I guess?
But then, why doesn’t Microsoft continue to make macros to create new interfaces
like

DirectDrawCreate4(...);

That would be nice, but why ask why? My point is that you might want to do this
yourself so that all your code looks fairly uniform.

Now that you know how to create a DirectDraw object and obtain the latest interface,
let’s move on to the next step in the sequence of getting DirectDraw working, which
is setting the cooperation level.

Cooperating with Windows
As you know, Windows is a cooperative, shared environment. At least that’s the idea,
although as a programmer I still haven’t figured out how to make it cooperate with
my code! Anyway, DirectX is similar to any Win32 system, and at the very least, it
must inform Windows that it’s going to use various resources so that other Windows
applications don’t try to request (and get) resources that DirectX has control over.
Basically, DirectX can be a complete resource hog as long is it tells Windows what
it’s doing—seems fair to me <BG>.

In the case of DirectDraw, about the only thing that you should be interested in is the
video display hardware. There are two cases that you must concern yourselves with:

• Full-screen mode

• Windowed mode

In full-screen mode, DirectDraw acts much like an old DOS program. That is, the
entire screen surface is allocated to your game, and you write directly to the video
hardware. No other application can touch the hardware. Windowed mode is a little
different. In windowed mode, DirectDraw must cooperate much more with Windows
because other applications may need to update their own client window areas (which
may be visible to the user). Hence, in windowed mode your control and monopoliza-
tion of the video hardware is much more restrained. However, you still have full
access to 2D and 3D acceleration, so that’s a good thing. But then, so were bell-
bottoms at first…

Chapter 7, “Advanced DirectDraw and Bitmapped Graphics,” will talk more about
windowed DirectX applications, but they are a little more complex to handle. Most of
this chapter will deal with full-screen modes because they are easier to work with, so

0972313618 CH06 10/26/99 9:59 AM Page 250

CHAPTER 6
First Contact: DirectDraw

251

keep that in mind.

Now that you know a little bit about why there needs to be cooperation between
Windows and DirectX, let’s see how to tell Windows how you want to cooperate.
To set the cooperation level of DirectDraw, use the IDirectDraw4::
SetCooperativeLevel() function, which is a method of IDirectDraw4.

For you C programmers, the syntax IDirectDraw4::SetCooperative
Level() may be a little cryptic. The :: operator is called the scope
resolution operator, and the syntax simply means that
SetCooperativeLevel() is a method (or member function) of the
IDirectDraw4 interface. This is basically a class that is nothing more
than a structure with data and a virtual function table. In some cases, I
may forgo using the interface to prefix the method and write it like
SetCooperativeLevel(). However, be advised that all DirectX func-
tions are part of an interface and thus must be called using a function
pointer style call, like lpdd->function(...).

Here’s the prototype of IDirectDraw4::SetCooperativeLevel():

HRESULT SetCooperativeLevel(HWND hWnd, // window handle
DWORD dwFlags);// control flags

This returns DD_OK if successful, and an error code if not.

Interestingly enough, this is the first time that the window handle has entered into the
DirectX equation. The hWnd parameter is needed so that DirectX (or more specifically,
DirectDraw) has something to anchor to. Simply use your main window handle in all
cases.

The second and last parameter to SetCoopertiveLevel() is dwFlags, which is the
control flags parameter and directly influences the way that DirectDraw works with
Windows. Table 6.2 lists the most commonly used values that can be logically OR’ed
together to obtain the desired cooperation level.

TABLE 6.2 Control Flags for SetCooperativeLevel()

Value Description

DDSCL_ALLOWMODEX Allows the use of Mode X (320×200,240,400) display
modes. Can be used only if the DDSCL_EXCLUSIVE and
DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT Allows Ctrl+Alt+Del to be detected while in exclusive
(full-screen) mode.

continues

0972313618 CH06 10/26/99 9:59 AM Page 251

DirectX and 2D Fundamentals

252 PART II

TABLE 6.2 Continued

Value Description

DDSCL_EXCLUSIVE Requests the exclusive level. This flag must be used with
the DDSCL_FULLSCREEN flag.

DDSCL_FPUSETUP Indicates that the calling application is likely to keep the
FPU set up for optimal Direct3D performance (single pre-
cision and exceptions disabled) so Direct3D does not need
to explicitly set the FPU each time. For more information,
look up “DirectDraw Cooperative Levels and FPU
Precision” in the DirectX SDK.

DDSCL_FULLSCREEN Indicates full-screen mode will be used. GDI from other
applications will not be able to draw on the screen. This
flag must be used with the DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED Requests multithread-safe DirectDraw behavior. Don’t
worry about this for now.

DDSCL_NORMAL Indicates that the application will function as a regular
Windows application. This flag cannot be used with the
DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or
DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES Indicates that DirectDraw is not allowed to minimize or
restore the application window on activation.

If you take a good look at the various flags, it may seem that some of them are
redundant—very true. Basically, DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE must be
used together, and if you decide to use any Mode X modes, you must use
DDSCL_FULLSCREEN, DDSCL_EXCLUSIVE, and DDSCL_ALLOWMODEX all together. Other
than that, the flags pretty much do what they would seem to from their definitions. In
most cases, you’ll set full-screen applications like this:

lpdd4->SetCooperativeLevel(hwnd,
DDSCL_FULLSCREEN |
DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE |
DDSCL_ALLOWREBOOT);

and normal windowed applications like this:

lpdd4->SetCooperativeLevel(hwnd, DDSCL_NORMAL);

Of course, when you get to multithreaded programming techniques later in the book,
you might want to add the multithreading flag DDSCL_MULTITHREADED to play it safe.
Anyway, let’s see how you would create a DirectDraw object and set the cooperation
level together:

0972313618 CH06 10/26/99 9:59 AM Page 252

CHAPTER 6
First Contact: DirectDraw

253

LPDIRECTDRAW lpdd = NULL; // standard DirectDraw 1.0
LPDIRECTDRAW lpdd4 = NULL; // DirectDraw 6.0 interface 4

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
} // end if

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
{
// error
} // end if

// now set the cooperation level for windowed directdraw
// since we aren’t going to do any drawing yet
if (FAILED(lpdd4->SetCooperativeLevel(hwnd, DDSCL_NORMAL)))

{
// error
} // end if

I may start leaving out the error handling calls to FAILED() and/or
SUCCEEDED() to save space, but remember that you should always
check for errors!

Note

At this point, you have enough information to create a complete DirectX application
that creates a window, starts up DirectDraw, and sets the cooperation level. Although
you don’t know how to draw, it’s a start. As an example, take a look at DEMO6_1.CPP
on the CD, along with its executable DEMO6_1.EXE. When you run the program, you’ll
see something like what’s shown in Figure 6.5. I based the program on the T3D
Game Console template, so the only changes I made were in the Game_Init() and
Game_Shutdown() to create and set the cooperation level for DirectDraw.

Figure 6.5
DEMO6_1.EXE in action.

0972313618 CH06 10/26/99 10:00 AM Page 253

Errata

Errata
"LPDIRECTDRAW" should be "LPDIRECTDRAW4"

DirectX and 2D Fundamentals

254 PART II

Here are those functions with the added DirectDraw code from DEMO6_1.CPP, so you
can see how simple DirectDraw is to set up:

int Game_Init(void *parms = NULL, int num_parms = 0)
{
// this is called once after the initial window is created and
// before the main event loop is entered, do all your initialization
// here

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
return(0);
} // end if

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
{
// error
return(0);
} // end if

// set cooperation to normal since this will be a windowed app
lpdd4->SetCooperativeLevel(main_window_handle, DDSCL_NORMAL);

// return success or failure or your own return code here
return(1);

} // end Game_Init

///

int Game_Shutdown(void *parms = NULL, int num_parms = 0)
{
// this is called after the game is exited and the main event
// loop while is exited, do all you cleanup and shutdown here

// simply blow away the IDirectDraw4 interface
if (lpdd4)

{
lpdd4->Release();
lpdd4 = NULL;
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

0972313618 CH06 10/26/99 10:00 AM Page 254

CHAPTER 6
First Contact: DirectDraw

255

Getting into the Mode of Things
The next step in setting up DirectDraw is probably the coolest of all. Normally, in
DOS setting the video mode is fairly reasonable for the basic ROM BIOS modes, but
in Windows it’s nearly impossible due to the aftershocks of the mode switch.
However, with DirectX, it’s a snap. One of the main goals of DirectDraw was to make
video mode switching trivial and transparent to the programmer. No more VGA/CRT
control register programming just to make a single call. Presto—the mode will be set
to whatever you desire (if the card can do it, of course).

The function to set the video mode is called SetVideoMode() and is a method of the
IDirectDraw4 interface, or, in C++-speak, IDirectDraw4::SetVideoMode(). Here’s
its prototype:

HRESULT SetDisplayMode(DWORD dwWidth, // width of mode in pixels
DWORD dwHeight, // height if mode in pixels
DWORD dwBPP, // bits per pixel, 8,16,24, etc.
DWORD dwRefreshRate, // desired refresh, 0 for default
DWORD dwFlags); // extra flags (advanced) 0 for default

As usual, the function returns DD_OK if successful.

All you should be saying is, “Wow, this is too good to be true!” Have you ever tried to
set up a Mode X mode like 320×400 or 800×600 mode? Even if you’re successful,
good luck trying to render to the video buffer! With this DirectDraw function, you just
send the width, height, and color depth, and bam! DirectDraw handles all the idiosyn-
crasies of whichever video card is plugged in, and if the requested mode can be built,
it is. Moreover, the mode is guaranteed to have a linear memory buffer… but more on
that later. Take a look at Table 6.3 for a brief refresher on the most commonly used
video modes and their color depths.

TABLE 6.3 Common Video Mode Resolutions

Width Height BPP Mode X

320 200 8 *

320 240 8 *

If you’re about to jump in head-first and try to compile DEMO6_1.CPP,
please remember to manually include DDRAW.LIB from the DirectX 6.0
SDK LIB\ directory, along with adding the DirectX header paths to your
compiler’s .H search directories as the first directory! And of course, you
should build a Win32 .EXE. I get at least 10 emails a day from rookie
compiler users who forget to include the .LIB files, so don’t be another
statistic…

continues

Tip

0972313618 CH06 10/26/99 10:00 AM Page 255

DirectX and 2D Fundamentals

256 PART II

TABLE 6.3 Continued

Width Height BPP Mode X

320 400 8 *

512 512 8,16,24,32

640 480 8,16,24,32

800 600 8,16,24,32

1024 768 8,16,24,32

1280 1024 8,16,24,32

Interestingly enough, you can request any mode you wish. For example, you can
choose 400×400, and if the video driver can build it, it will work. However, it’s best
to stick to the modes listed in Table 6.3 because they are the most common.

Actually, there is a Win32 API function to set the video mode that I have
used before, but it wreaks havoc on the system and really messes things
up.

Referring back to the function, the first three parameters are straightforward, but
the last two need a bit of explanation. dwRefreshRate is used to override the video
driver’s default refresh for the mode you request. Hence, if you request a 320×200
mode, chances are the refresh will be at 70Hz. But with this parameter, you could
force it to 60Hz if you wanted to. I would leave the refresh rate alone, to tell you the
truth, and simply set the bit to 0 (which indicates to the driver to use the default).

The last parameter, dwFlags, is an extra flags WORD that is a catchall and is of very
little use. Currently, it’s used as an override so you can use VGA mode 13h for
320×200 instead of Mode X 320×200 via the flag DDSDM_STANDARDVGAMODE. Again,
I wouldn’t worry about it. If you do write a game that uses 320×200, you can try
experimenting with this flag and using VGA mode 13h or Mode X for 320×200 to
see which is faster, but the performance difference will be almost negligible. For now,
just set dwFlags to 0.

That’s enough of the preliminaries. Let’s get to switching modes! To switch modes,
you must create the DirectDraw object, set the cooperation level, and finally set the
display mode, like this:

lpdd4->SetDisplayMode(width,height,bpp,0,0);

For example, to create a 640×480 mode in 256 (8-bit) color, you would do this:

Trick

0972313618 CH06 10/26/99 10:00 AM Page 256

CHAPTER 6
First Contact: DirectDraw

257

lpdd4->SetDisplayMode(640,480,8,0,0);

And to set a 800×600 with 16-bit color, you would do this:

lpdd4->SetDisplayMode(800,600,16,0,0);

Now, there’s a big difference between these two modes that extends further than the
mere difference in resolution: the color depth. An 8-bit mode works completely
differently than a 16-, 24-, or 32-bit mode. If you’ll recall, the previous chapters on
Win32/GDI programming covered the topic of palettes extensively (Chapter 3,
“Advanced Windows Programming,” and Chapter 4, “Windows GDI, Controls, and
Last-Minute Gift Ideas”), and the same theory is in force with DirectDraw. That is,
when you create an 8-bit mode, you are requesting a palettized mode, and you must
also create a palette and fill it with 8.8.8 RGB entries.

On the other hand, if you create a straight RGB mode like 16, 24, or 32 bpp (bits per
pixel), you don’t have to take this step. You can write encoded data directly to the
video buffer (when you learn how). At very least, you must learn how to work with
DirectDraw palettes (which will be the next topic of discussion). However, before
moving on, let’s take a look at a complete example of creating a full-screen DirectX
application with a resolution of 640×480×8.

DEMO6_2.CPP on the CD and the associated executable do just that. I would show you
a figure, but all you would see is a black rectangle because the demo is a full-screen
application. However, I can surely show you the code that makes it happen. As usual,
I have based the demo on your game console, with the appropriate modifications, and
made the DirectX-related changes to the Game_Init() and Game_Shutdown() sections,
which are listed here from DEMO6_2.CPP. Take a close look at them and be amazed by
the simplicity…

int Game_Init(void *parms = NULL, int num_parms = 0)
{
// this is called once after the initial window is created and
// before the main event loop is entered, do all your initialization
// here

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
return(0);
} // end if

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
{
// error

0972313618 CH06 10/26/99 10:00 AM Page 257

DirectX and 2D Fundamentals

258 PART II

return(0);
} // end if

// set cooperation to full screen
if (FAILED(lpdd4->SetCooperativeLevel(main_window_handle,

DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))

{
// error
return(0);
} // end if

// set display mode to 640x480x8
if (FAILED(lpdd4->SetDisplayMode(SCREEN_WIDTH,

SCREEN_HEIGHT, SCREEN_BPP,0,0)))
{
// error
return(0);
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Init

///

int Game_Shutdown(void *parms = NULL, int num_parms = 0)
{
// this is called after the game is exited and the main event
// loop while is exited, do all your cleanup and shutdown here

// simply blow away the IDirectDraw4 interface
if (lpdd4)

{
lpdd4->Release();
lpdd4 = NULL;
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

At this point, there are two things that you’re still missing: controlling the palette
(in 256-color modes) and accessing the display buffers. Let’s take care of the color
problem first.

0972313618 CH06 10/26/99 10:00 AM Page 258

CHAPTER 6
First Contact: DirectDraw

259

The Subtleties of Color
DirectDraw supports a number of different color depths, including 1, 2, 4, 8, 16, 24,
and 32 bpp. Obviously, 1, 2, and 4 bits per pixel are a little outdated, so don’t concern
yourself with these color depths. On the other hand, the 8-, 16-, 24-, and 32-bit modes
are of utmost interest. Most games you write, you’ll write to run in either 8-bit
palettized mode for speed reasons, or 16- or 24-bit mode for full RGB color utiliza-
tion. The RGB modes work by writing similar-sized WORDs into the frame buffer, as
shown in Figure 6.6. The palletized mode works by using a look-up table that is
indexed by each individual pixel value in the frame buffer, which is always a single
byte. Thus, there are 256 different values—you have seen all this before, so it should
look familiar.

Figure 6.6
Comparison of vari-

ous color depths.
R0 G0 B0

R1 G1 B1

 •
 •
 •

R102 G102 B102

 •
 •
 •

R255 G255 B255

0

1

255

1028-bit
mode
fastest

Color Palette (IDirectDraw Palette)

In 256 color modes
each pixel is an Index
into color lookup table

12

8-bit color
Index

102

Index

640 x 480 x 8 256 color mode

16-bit
mode
fast

16-Bit

16-Bit

Each pixel is
2 bytes

RGB
5.6.5

640 x 480 x 16 64k color mode

R4 - R0

D15 D0Red

G5 - G0

Green

B4 - B0

Blue

16-Bit RGB color
DirectX Encoded

24-bit
mode
slow

24-Bit

24-Bit

RGB

8.8.8

640 x 480 x 24 16.7 million color mode (True Color)

R7 - R0

D31 D0Red

G7 - G0

Green

B7 - B0

Blue

24-Bit color
8.8.8 format

Lots of data

What you need to learn to do is create a 256-color palette and then tell DirectDraw
that you want to use it. So let’s see the steps involved:

0972313618 CH06 10/26/99 10:00 AM Page 259

DirectX and 2D Fundamentals

260 PART II

1. Create one or more palette data structures as arrays of 256 PALETTENTRY’s.

2. Create a DirectDraw palette interface IDirectDrawPalette object from the
DirectDraw object itself. In many cases, this will be directly mapped to the
hardware VGA palette registers.

3. Attach the palette object to a drawing surface, such as the primary surface, so
all data rendered to it is displayed in the appropriate colors.

4. (Optional) If you desire, you can change the palette entries or the entire palette.
You will need to take this step if you sent a NULL palette during step 2 and opted
to omit step 1. Basically, what I’m trying to say is that when you create a
palette interface, you can send it a palette of color also. But if you don’t, you
can always do it later. Therefore, step 2 can be step 1 if you remember to fill up
the palette entries at a later time.

Let’s begin by creating the palette data structure. It’s nothing more than an array of
256 palette entries based on the PALETTENTRY Win32 structure, shown here:

typedef struct tagPALETTEENTRY
{
BYTE peRed; // red component 8-bits
BYTE peGreen; // green component 8-bits
BYTE peBlue; // blue component 8-bits
BYTE peFlags; // control flags: set to PC_NOCOLLAPSE
} PALETTEENTRY;

Look familiar? It better! Anyway, to create a palette, you simply create an array of
these structures, like this:

PALETTEENTRY palette[256];

And then you fill them up in any way you desire. However, there is one rule: You
must set the peFlags field to PC_NOCOLLAPSE. This is necessary because you don’t
want Win32/DirectX optimizing your palette for you. With that in mind, here’s an
example of creating a random palette with black in position 0 and white in
position 255:

PALETTEENTRY palette[256]; // palette storage

// fill em up with color!
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;
palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

// set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

0972313618 CH06 10/26/99 10:00 AM Page 260

CHAPTER 6
First Contact: DirectDraw

261

// now fill in entry 0 and 255 with black and white
palette[0].peRed = 0;
palette[0].peGreen = 0;
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

palette[255].peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

That’s all there is to it! Of course, you can create multiple palettes and fill them with
whatever you want; it’s up to you.

Moving on, the next step is to create the actual IDirectDrawPalette interface.
Luckily for you, the interface hasn’t changed as of DirectX 6.0, so you don’t need to
use QueryInterface() or anything. Here’s the prototype for IDirectDraw4::
CreatePalette(), which creates a palette object:

HRESULT CreatePalette(DWORD dwFlags, // control flags
LPPALETTEENTRY lpDDColorArray, // palette data or NULL
LPDIRECTDRAWPALETTE FAR *lplpDDPalette, // received palette interface

IUnknown FAR *pUnkOuter); // advanced, make NULL

The function returns DD_OK if successful.

Let’s take a look at the parameters. The first parameter is dwFlags, which controls the
various properties of the palette—more on this in a minute. The next parameter is a
pointer to the initial palette, or NULL if you don’t want to send one. Next you have the
actual IDirectDrawPalette interface storage pointer that receives the interface if the
function is successful. Finally, pUnkOuter is for advanced COM stuff, so simply send
NULL.

The only interesting parameter of the bunch is, of course, the flags parameter
dwFlags. Let’s take a more in-depth look at what your options are. Refer to Table 6.4
for the possible values you can logically OR to create the flags WORD.

TABLE 6.4 Control Flags for CreatePalette()

Value Description

DDPCAPS_1BIT 1-bit color. There are two entries in the color table.

DDPCAPS_2BIT 2-bit color. There are four entries in the color table.

DDPCAPS_4BIT 4-bit color. There are 16 entries in the color table.

DDPCAPS_8BIT 8-bit color. The most common. There are 256 entries in the
color table.

continues

0972313618 CH06 10/26/99 10:00 AM Page 261

DirectX and 2D Fundamentals

262 PART II

TABLE 6.4 Continued

Value Description

DDPCAPS_8BITENTRIES This is for an advanced feature referred to as indexed
palettes and is used for 1-, 2-, and 4-bit palettes. Just
say no.

DDPCAPS_ALPHA Indicates that the peFlags member of the associated
PALETTEENTRY structure is to be interpreted as a single
8-bit alpha value controlling the transparency. A palette
created with this flag can only be attached to a D3D texture
surface created with the DDSCAPS_TEXTURE capability
flag. Again, this is advanced and for big G’s.

DDPCAPS_ALLOW256 Indicates that this palette can have all 256 entries defined.
Normally, entries 0 and 255 are reserved for black and
white, respectively, and on some systems like NT you can’t
write to these entries under any circumstances. However, in
most cases you don’t need this flag because 0 is usually
black anyway, and most palettes can live with entry 255
being white. It’s up to you.

DDPCAPS_INITIALIZE Initialize this palette with the colors in the color array
passed at lpDDColorArray. This is used to enable the
palette data sent to be downloaded into the hardware
palette.

DDPCAPS_PRIMARYSURFACE This palette is attached to the primary surface. Changing
this palette’s color table immediately affects the display
unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC Forces palette updates to be performed only during the ver-
tical blank period. This minimizes color anomalies and
sparkling. Not fully supported yet, though.

A lot of confusing control words, if you ask me. Basically, you only need to work
with 8-bit palettes, so the control flags you need to OR together are

DDPCAPS_8BIT | DDPCAPS_ALLOW256 | DDPCAPS_INITIALIZE

And if you don’t care about setting color entries 0 and 256, you can omit
DDPCAPS_ALLOW256. Furthermore, if you’re not sending a palette during the
CreatePalette() call, you can omit DDPCAPS_INITIALIZE.

Sucking all that down into your brain, here’s how you would create a palette object
with your random palette:

LPDIRECTDRAWPALETTE lpddpal = NULL; // palette interface

0972313618 CH06 10/26/99 10:00 AM Page 262

CHAPTER 6
First Contact: DirectDraw

263

if (FAILED(lpdd4->CreatePalette(DDPCAPS_8BIT |
DDPCAPS_ALLOW256 |
DDPCAPS_INITIALIZE,
palette,
&lpddpal,
NULL)))

{
// error
} // end if

If the function call is successful, lpddpal will return with a valid
IDirectDrawPalette interface. Also, the hardware color palette will instantly be
updated with the sent palette, which in this case is a collection of 256 random colors.

Normally, at this point I would drop a demo on you, but unfortunately we’re at one of
those “chicken and the egg” points in DirectDraw. That is, you can’t see the colors
until you can draw on the screen. So that’s what’s next!

Building a Display Surface
As you know, the image displayed on the screen is nothing more than a matrix of
colored pixels represented in memory for some format, either palletized or RGB.
In either case, to make anything happen, you need to know how to draw into this
memory. However, under DirectDraw the designers decided to abstract the concept
of video memory just a little bit so that no matter how weird the video card in your
system (or someone else’s) is, accessing the video surfaces will be the same for you
(the programmer’s point of view). Thus, DirectDraw supports what are called
surfaces.

Referring to Figure 6.7, surfaces are rectangular regions of memory that can hold
bitmap data. Furthermore, there are two kinds of surfaces: primary and secondary.

Figure 6.7
Surfaces can be

any size.

400 x 400

Secondary Surface

640 x 480

Video
Display

Primary Surface (VRAM)DirectDraw

100 x 80

Blitter
Hardware

Secondary Surface

1 x 1

Secondary Surface

Any size you want

O
ff-

sc
re

en
 s

ur
fa

ce
s

co
ul

d
be

in
 V

R
A

M
 o

r
sy

st
em

 m
em

or
y

0972313618 CH06 10/26/99 10:00 AM Page 263

DirectX and 2D Fundamentals

264 PART II

A primary surface directly corresponds to the actual video memory being rasterized
by the video card and is visible at all times. Hence, you will have only one primary
surface in any DirectDraw program, and it refers directly to the screen image and
usually resides in VRAM. When you manipulate it, you see the results instantly on the
screen. For example, if you set the video mode to 640×480×256, you must create a
primary surface that is also 640×480×256 and then attach it to the display device—the
IDirectDraw4 object.

Secondary surfaces, on the other hand, are much more flexible. They can be any size,
can reside in either VRAM or system memory, and you can create as many of them as
memory will allow. In most cases, you will create one or two secondary surfaces
(back buffers) for smooth animation. These will always have the same color depth and
geometry as the primary surface. Then you update these offscreen surfaces with the
next frame of animation, and then quickly copy or page flip the offscreen surface into
the primary surface for smooth animation. This is called double or triple buffering.
You’ll learn more on this in the next chapter, but that’s one use for secondary sur-
faces.

The second use for secondary surfaces is to hold your bitmap images and animations
that represent objects in the game. This is a very important feature of DirectDraw
because only by using DirectDraw surfaces can you invoke hardware acceleration on
bitmap data. If you write your own bit blitting (bitmap image transferring) software to
write bitmaps, you lose all acceleration.

Now, I’m getting a little ahead of myself here, so I want to come out of warp and
back down to sub-light speed. I just wanted to get you thinking a bit. For now, let’s
just see how to create a simple primary surface that’s the same size as your display
mode, and then you’ll learn to write data to it and plot pixels on the screen.

Creating a Primary Surface
All right, to create any surface, you must follow these steps:

1. Fill out a DDSURFACEDESC2 data structure that describes the surface you want to
create.

2. Call IDirectDraw4::CreateSurface() to create the surface.

Here’s the prototype for CreateSurface():

HRESULT CreateSurface(
LPDDSURFACEDESC2 lpDDSurfaceDesc2,
LPDIRECTDRAWSURFACE4 FAR *lplpDDSurface,
IUnknown FAR *pUnkOuter);

Basically, the function takes a DirectDraw surface description of the surface you want
to create, a pointer to receive the interface, and finally NULL for the advanced COM

0972313618 CH06 10/26/99 10:00 AM Page 264

CHAPTER 6
First Contact: DirectDraw

265

feature pUnkOuter. Huh? Filling out the data structure can be a bit bewildering,
but I’ll step you through it. First, let’s take a look at the DDSURFACEDESC2:

typedef struct _DDSURFACEDESC2
{
DWORD dwSize; // size of this structure
DWORD dwFlags; // control flags
DWORD dwHeight; // height of surface in pixels
DWORD dwWidth; // width of surface in pixels
union
{
LONG lPitch; // memory pitch per row
DWORD dwLinearSize; // size of the buffer in bytes
} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount; // number of back buffers chained
union
{
DWORD dwMipMapCount; // number of mip-map levels
DWORD dwRefreshRate; // refresh rate
} DUMMYUNIONNAMEN(2);
DWORD dwAlphaBitDepth; // number of alpha bits
DWORD dwReserved; // reserved
LPVOID lpSurface; // pointer to surface memory
DDCOLORKEY ddckCKDestOverlay; // dest overlay color key
DDCOLORKEY ddckCKDestBlt; // destination color key
DDCOLORKEY ddckCKSrcOverlay; // source overlay color key
DDCOLORKEY ddckCKSrcBlt; // source color key
DDPIXELFORMAT ddpfPixelFormat; // pixel format of surface
DDSCAPS2 ddsCaps; // surface capabilities
DWORD dwTextureStage; // used to bind a texture

// to specific stage of D3D
} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

As you can see, this is a complicated structure. Moreover, 75 percent of the fields are
more than cryptic. Luckily, you only need to know about the ones that I’ve bolded.
Let’s take a look at their functions in detail, one by one:

dwSize—This is one of the most important fields in any DirectX data structure. Many
DirectX data structures are sent by address, so the receiving function or method
doesn’t know the size of the data structure. However, if the first 32-bit value is always
the size of the data structure, the receiving function will always know how much data
is there just by dereferencing the first DWORD. Hence, DirectDraw and DirectX data
structures in general have the size specifier as the first element of all structures. It
may seem redundant, but it’s a good design—trust me. All you need to do is fill it in
like this:

DDSURFACEDESC2 ddsd;
ddsd.dwSize = sizeof(DDSURFACEDESC2);

0972313618 CH06 10/26/99 10:00 AM Page 265

DirectX and 2D Fundamentals

266 PART II

dwFlags—This field is used to indicate to DirectDraw which fields you’ll be filling in
with valid info or, if you’re using this structure in a query operation, which fields you
want to retrieve. Take a look at Table 6.5 for the possible values that the flags word
can take on. For example, if you were going to place valid data in the dwWidth and
dwHeight fields, you would set the dwFlags field like this:

ddsd.dwFlags = DDSD_WIDTH | DDSD_HEIGHT;

Then DirectDraw would know to look in the dwHeight and dwWidth fields and that the
data would be valid. Think of dwFlags as a valid data specifier.

TABLE 6.5 The Various Flags for the dwFlags Field of DDSURFACEDESC2

Value Description

DDSD_ALPHABITDEPTH Indicates that the dwAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT Indicates that the dwBackBufferCount member is valid.

DDSD_CAPS Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT Indicates that the dwHeight member is valid.

DDSD_LINEARSIZE Indicates that the dwLinearSize member is valid.

DDSD_LPSURFACE Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT Indicates that the dwMipMapCount member is valid.

DDSD_PITCH Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE Indicates that the dwRefreshRate member is valid.

DDSD_TEXTURESTAGE Indicates that the dwTextureStage member is valid.

DDSD_WIDTH Indicates that the dwWidth member is valid.

dwWidth—Indicates the width of the surface in pixels. When you create a surface, this
is where you set the width—320, 640, and so on. In addition, if you query the proper-
ties of a surface, this field will return the width of the surface (if you requested it).

dwHeight—Indicates the height of the surface in pixels. Similarly to dwWidth, this is
where you set the height of the surface you are creating—200, 240, 480, and so on.

lPitch—This is an interesting field. It’s basically the horizontal memory pitch of the
display mode that you’re in. Referring to Figure 6.8, the lPitch is the number of

0972313618 CH06 10/26/99 10:00 AM Page 266

CHAPTER 6
First Contact: DirectDraw

267

bytes per line for the video mode, also referred to as the stride or memory width.
However you pronounce it, the bottom line is that this is a very important piece of
data for the following reason: When you request a video mode like 640×480×8, you
know that there are 640 pixels per line and each pixel is 8 bits (or 1 byte). Therefore,
there should be exactly 640 bytes per line, and hence lPitch should be 640. Right?
Not necessarily.

Figure 6.8
Accessing a surface.

Row 0

Row 1

Row 2

Row 479

00

Lpitch

2•Lpitch

479•Lpitch

640 Bytes

Lpitch

640 x 480

(0, 0) (639, 0)

(0, 479) (639, 479)

Working Area

Extra
≥0

In
cr

ea
si

ng

Memory Addresses Cache, Virtual mem
LP Surface (first byte)

Most new video boards support what are called linear memory modes and have
addressing hardware, so this property holds true, but it’s not guaranteed. Therefore,
you can’t assume that a 640×480×8 video mode has 640 bytes per line. This is what
the lPitch field is for. You must refer to it to make your memory addressing calcula-
tions correct, so that you can move from line to line. For example, to access any pixel
in a 640×480×8 (256-color) display mode, you can use the following code, assuming
you’ve already requested DirectDraw to give you lPitch and lpSurface is pointing
to the surface memory (which I’ll explain next):

ddsd.lpSurface[x + y*ddsd.lPitch] = color;

Simple, isn’t it? In most cases, ddsd.lPitch would be 640 for a 640×480×8 mode,
and for a 640×480×16 mode, ddsd.lPitch would be 1280 (two bytes per pixel =
640×2). But for some cards, this may not be the case due to the way memory is stored
on the card, the internal cache for the card, or whatever… The moral of the story is:
Always use lPitch for your memory calculations and you’ll always be safe.

0972313618 CH06 10/26/99 10:00 AM Page 267

Errata

Errata
"LP Surface" should be "LP_Surface"

DirectX and 2D Fundamentals

268 PART II

lpSurface—This field is used to retrieve a pointer to the actual memory that the sur-
face you create resides in. The memory may be in VRAM or system memory, but you
don’t need to worry about it. Once you have the pointer to it, you can manipulate it as
you would any other memory—write to it, read from it, and so on. This is exactly
how you’re going to implement pixel plotting. Alas, making this pointer valid takes a
little work, but we’ll get there in a minute. Basically, you must “lock” the surface
memory and tell DirectX that you’re going to muck with it and that no other process
should attempt to read or write from it. Furthermore, when you do get this pointer,
depending on the color depth—8, 16, 24, 32 bpp—you will usually cast and assign it
to a working alias pointer.

dwBackBufferCount—This field is used to set or read the number of back buffers or
secondary offscreen flipping buffers that are chained to the primary surface. If you’ll
recall, back buffers are used to implement smooth animation by creating one or more
virtual primary buffers (buffers with the same geometry and color depth) that are
offscreen. Then you draw on the back buffer, which is invisible to the user, and then
quickly flip or copy the back buffer(s) to the primary buffer for display. If you have
only one back buffer, the technique is called double buffering. Using two back buffers
is called triple buffering, which is a little better but memory-intensive. To keep things
simple, in most cases you’ll create flipping chains that contain a single primary
surface and one back buffer.

ddckCKDestBlt—This field is used to control the destination color key, which is used
in blitting operations to control the color(s) that can be written to. More on this later
in the Chapter 7, “Advanced DirectDraw and Bitmapped Graphics.”

ddckCKSrcBlt—This field is used to indicate the source color key, which is basically
the colors that you don’t want to be blitted when you’re performing bitmapping
operations. This is how you set the transparent colors for your bitmaps. More on this
in Chapter 7.

ddpfPixelFormat—This field is used to retrieve the pixel format of a surface, which
is quite important if you’re trying to figure out what the properties of a surface are.
The following is the general structure, but you’ll have to look at the DirectX SDK for
all the details because they’re lengthy and not really relevant right now:

Even though lPitch may not equal the horizontal resolution of the
mode that you set, it may be worth it to test for it so that you can
switch to more optimized functions. For example, during the initializa-
tion of your code, you might get lPitch and compare it to the selected
horizontal resolution. If they are equal, you might switch to highly
optimized code that hard-codes the number of bytes per line.

Trick

0972313618 CH06 10/26/99 10:00 AM Page 268

CHAPTER 6
First Contact: DirectDraw

269

typedef struct _DDPIXELFORMAT
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwFourCC;
union
{
DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
DWORD dwLuminanceBitCount; // new for DirectX 6.0
DWORD dwBumpBitCount; // new for DirectX 6.0
} DUMMYUNIONNAMEN(1);
union
{
DWORD dwRBitMask;
DWORD dwYBitMask;
DWORD dwStencilBitDepth; // new for DirectX 6.0
DWORD dwLuminanceBitMask; // new for DirectX 6.0
DWORD dwBumpDuBitMask; // new for DirectX 6.0
} DUMMYUNIONNAMEN(2);
union
{
DWORD dwGBitMask;
DWORD dwUBitMask;
DWORD dwZBitMask; // new for DirectX 6.0
DWORD dwBumpDvBitMask; // new for DirectX 6.0
} DUMMYUNIONNAMEN(3);
union
{
DWORD dwBBitMask;
DWORD dwVBitMask;
DWORD dwStencilBitMask; // new for DirectX 6.0
DWORD dwBumpLuminanceBitMask; // new for DirectX 6.0
} DUMMYUNIONNAMEN(4);
union
{
DWORD dwRGBAlphaBitMask;
DWORD dwYUVAlphaBitMask;
DWORD dwLuminanceAlphaBitMask; // new for DirectX 6.0
DWORD dwRGBZBitMask;
DWORD dwYUVZBitMask;
} DUMMYUNIONNAMEN(5);
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

I have bolded some of the more commonly used fields.Note

0972313618 CH06 10/26/99 10:00 AM Page 269

DirectX and 2D Fundamentals

270 PART II

ddsCaps—This field is used to indicate the requested properties of the surface that
haven’t been defined elsewhere. In reality, this field is another data structure.
DDSCAPS2 is shown here:

typedef struct _DDSCAPS2
{
DWORD dwCaps; // Surface capabilities
DWORD dwCaps2; // More surface capabilities
DWORD dwCaps3; // future expansion
DWORD dwCaps4; // future expansion
} DDSCAPS2, FAR* LPDDSCAPS2;

In 99.9 percent of all cases, you will set only the first field, dwCaps. dwCaps2 is for 3D
stuff, and the remaining fields, dwCaps3 and dwCaps4, are future expansion and
unused. In any case, a partial list of the possible flag settings for the dwCaps are
shown in Table 6.6. For a complete listing, take a look at the DirectX SDK.

For example, when creating a primary surface you would set ddsd.ddsCaps like this:

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

I know this may seem overly complex, and in some ways it is. Having doubly nested
control flags is a bit of a pain, but oh well…

TABLE 6.6 Capabilities Control Settings for DirectDraw Surfaces

Value Description

DDSCAPS_BACKBUFFER Indicates that this surface is the back buffer of a surface
flipping structure.

DDSCAPS_COMPLEX Indicates that a complex surface is being described. A
complex surface is a surface with a primary surface and
one or more back buffers to create a flipping chain.

DDSCAPS_FLIP Indicates that this surface is a part of a surface flipping
structure. When this capability is passed to the
CreateSurface() method, a front buffer and one or
more back buffers are created.

DDSCAPS_LOCALVIDMEM Indicates that this surface exists in true, local video
memory rather than non-local video memory. If this flag
is specified, DDSCAPS_VIDEOMEMORY must be specified
as well.

DDSCAPS_MODEX Indicates that this surface is a 320×200 or 320×240 Mode
X surface.

DDSCAPS_NONLOCALVIDMEM Indicates that this surface exists in non-local video
memory rather than true, local video memory. If this flag
is specified, DDSCAPS_VIDEOMEMORY flag must be
specified as well.

0972313618 CH06 10/26/99 10:00 AM Page 270

CHAPTER 6
First Contact: DirectDraw

271

Value Description

DDSCAPS_OFFSCREENPLAIN Indicates that this surface is an offscreen surface that is not
a special surface such as an overlay, texture, z-buffer, front-
buffer, back-buffer, or alpha surface. Usually used for
sprites.

DDSCAPS_OWNDC Indicates that this surface will have a device context asso-
ciation for a long period.

DDSCAPS_PRIMARYSURFACE Indicates that this surface is the primary surface. It repre-
sents what is visible to the user at the moment.

DDSCAPS_STANDARDVGAMODE Indicates that this surface is a standard VGA mode surface,
and not a Mode X surface. This flag cannot be used in
combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY Indicates that this surface memory was allocated in system
memory.

DDSCAPS_VIDEOMEMORY Indicates that this surface exists in display memory.

Now that you have an idea of the complexity and power that DirectDraw gives you
when you’re creating surfaces, let’s put the knowledge to work and create a simple
primary surface that’s the same size and color depth as the display mode (default
behavior). Here’s the code to create a primary surface:

// interface pointer to hold primary surface, note that
// it’s the 4th revision of the interface
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL;

DDSURFACEDESC2 ddsd; // the DirectDraw surface description

// MS recommends clearing out the structure
memset(&ddsd,0,sizeof(ddsd)); // could use ZeroMemory()

// now fill in size of structure
ddsd.dwSize = sizeof(ddsd);

// enable data fields with values from table 6.5 that we
// will send valid data in
// in this case only the ddsCaps field is enabled, we
// could have enabled the width, height etc., but they
// aren’t needed since primary surfaces take on the
// dimensions of the display mode by default
ddsd.dwFlags = DDSD_CAPS;

// now set the capabilities that we want from table 6.6
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// now create the primary surface

0972313618 CH06 10/26/99 10:00 AM Page 271

DirectX and 2D Fundamentals

272 PART II

if (FAILED(lpdd->CreateSurface(&ddsd, &lpddsprimary, NULL)))
{
// error
} // end if

If the function was successful, lpddsprimary will point to the new surface interface
and you can call methods on it (of which there are quite a few, such as attaching the
palette in 256-color modes). Let’s take a look at this to bring the palette example back
full-circle.

Attaching the Palette
In the previous section on palettes, you did everything except attach the palette to a
surface. You created the palette and filled it with entries, but you couldn’t attach the
palette to a surface because you didn’t have one yet. Now that you have a surface (the
primary), you can complete this step.

To attach a palette to any surface, all you need to do is use the
IDirectDrawSurface4::SetPalette() function, which is shown here:

HRESULT SetPalette(LPDIRECTDRAWPALETTE lpDDPalette);

This function simply takes a pointer to the palette that you want to be attached. Using
the same palette that you created in the previous palette section, here’s how you
would associate the palette with the primary surface:

if (FAILED(lpddsprimary->SetPalette(lpddpal)))
{
// error
} // end if

Not too bad, huh? At this point, you have everything you need to emulate the entire
power of a DOS32 game. You can switch video modes, set the palette, and create a
primary drawing surface that represents the active video image. However, there are
still some details that you have to learn about, like actually locking the primary sur-
face memory and gaining access to the VRAM and plotting a pixel. Let’s take a look
at that now.

Plotting Pixels
To plot a pixel (or pixels) in a full-screen DirectDraw mode, you first must set up
DirectDraw, set the cooperation level, set a display mode, and create at least a primary
surface. Then you have to gain access to the primary surface and write to the video
memory. However, before you learn how to do this, let’s take another look at how
video surfaces work.

If you’ll recall, all DirectDraw video modes and surfaces are linear, as shown in
Figure 6.9. This means that memory increases from left to right and from top to
bottom as you move from row to row.

0972313618 CH06 10/26/99 10:00 AM Page 272

CHAPTER 6
First Contact: DirectDraw

273

In addition, to locate any position in the video buffer, you need only two pieces of
information: the memory pitch per line (that is, how many bytes make up each row)
and the size of each pixel (8-bit, 16-bit, 24-bit, 32-bit). You can use the following
formula:

// assume this points to VRAM or the surface memory
UCHAR *video_buffer8;

Figure 6.9
DirectDraw surfaces

are linear.
(0, 0)

(m-1, n-1)

Surface
mxn

Logical View

Increasing Memory

In
cr

ea
si

ng
 M

em
or

y

Pixel 0

Pixel 1

•
•
•
•
•
•
•
•
•
•
•
•
•

Pixel (mxn-1)

0Physical View

1

•
•
•
•
•
•
•
•
•
•
•
•
•

(mxn-1)

Increasing Memory

Tip You may be wondering how DirectDraw can magically turn a non-
linear video mode into a linear one if the video card itself doesn’t sup-
port it. For example, Mode X is totally nonlinear and bank-switched.
Well, the truth is this—when DirectDraw detects that a mode is nonlin-
ear in hardware, a driver called VFLATD.VXD is invoked, which creates a
software layer between you and the VRAM and makes the VRAM look
linear. Keep in mind that this is going to be slow.

0972313618 CH06 10/26/99 10:00 AM Page 273

DirectX and 2D Fundamentals

274 PART II

video_buffer8[x + y*memory_pitchB] = pixel_color_8;

Of course, this is not exactly true because this formula works only for 8-bit modes, or
modes that have one BYTE per pixel. For a 16-bit mode, or two BYTEs per pixel,
you would have to do something like this:

// assume this points to VRAM or the surface memory
USHORT *video_buffer16;

video_buffer16[x + y*(memory_pitchB >> 1)] = pixel_color_16;

There’s a lot going on here, so let’s take a look at the code carefully. Since we’re in a
16-bit mode, I’m using a USHORT pointer to the VRAM. What this does is let me use
array access, but with 16-bit pointer arithmetic. Hence, when I say

video_buffer16[1]

this really accesses the second SHORT or byte pair 2,3. In addition, because
memory_pitchB is in bytes, you must divide it by two by shifting right one bit so that
it’s in SHORT or 16-bit memory pitch. Finally, the assignment of pixel_color16 is
also misleading because now a complete 16-bit USHORT will be written into the video
buffer, rather than a single 8-bit value as in the previous example. Moreover, the 8-bit
value would be a color index, whereas a 16-bit value must be a RGB value, usually
encoded in R5G6B5 format or five bits for red, six bits for green, and five bits for
blue, as shown in Figure 6.10.

Figure 6.10
Possible 16-bit RGB
encodings, including

5.6.5 format. R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2

RedD15 D0Green Blue

5-Bits for Red 6-Bits for Green

5.6.5 Format (full 16 bit color)

5-Bits for Blue

B1 B0

X R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2

D15 D14 D0

5-Bits for Red 5-Bits for Green

1.5.5.5 Format (15 bit color)

Other formats also existUnused or alpha

5-Bits for Blue

B1 B0

Here’s a macro to make up a 16-bit RGB word:

// this builds a 16 bit color value
#define _RGB16BIT565(r,g,b) ((b%32) + ((g%64) << 5) + ((r%32) << 11))

As you can see, 16-bit modes and RGB modes in general have a little more complex
addressing and manipulation than do the 256-color 8-bit modes, so let’s begin there.

0972313618 CH06 10/26/99 10:01 AM Page 274

CHAPTER 6
First Contact: DirectDraw

275

To gain access to any surface—primary, secondary, and so on—you must lock and
unlock the memory. This lock and unlock sequence is necessary for two reasons:
First, to tell DirectDraw that you are in control of the memory (that is, it shouldn’t be
accessed by other processes), and second, to indicate to the video hardware that it
shouldn’t move any cache or virtual memory buffers around while you’re messing
with the locked memory. Remember, there is no guarantee that VRAM will stay in the
same place. It could be virtual, but when you lock it, the memory will stay in the
same address space for the duration of the lock so you can manipulate it. The function
to lock memory is called IDirectDrawSurface4::Lock() and is shown here:

HRESULT Lock(LPRECT lpDestRect, // destination RECT to lock
LPDDSURFACEDESC2 lpDDSurfaceDesc, // address of struct to receive info
DWORD dwFlags, // request flags
HANDLE hEvent); // advanced, make NULL

The parameters aren’t that bad, but there are some new players. Let’s step through
them. The first parameter is the RECT of the region of surface memory that you want
to lock; take a look at Figure 6.11. DirectDraw allows you to lock only a certain
portion of surface memory so that, if another process is accessing a region that you
aren’t, processing can continue. This is great if you know that you’re going to update
only a certain part of the surface and don’t need a full lock on the entire surface.
However, in most cases you’ll just lock the entire surface to keeps things simple.
This is accomplished by passing NULL.

Figure 6.11
Locking surface

memory.

Rect
to Lock

m x n

Can be any size up
to the entire surface
m1=m2 n1=n2

m1 x m2

Surface

IDirectDrawSurface4→Lock (…)

Only this region
will be accessible

The second parameter is the address of a DDSURFACEDESC2 that will be filled with
information about the surface that you request. Basically, just send a blank
DDSURFACEDESC2 and that’s it. The next parameter, dwFlags, tells Lock() what you
want to do. Table 6.7 contains a list of the most commonly used values.

0972313618 CH06 10/26/99 10:01 AM Page 275

DirectX and 2D Fundamentals

276 PART II

TABLE 6.7 The Control Flags for the Lock() Method

Value Description

DDLOCK_READONLY Indicates that the surface being locked will be read-only.

DDLOCK_SURFACEMEMORYPTR Indicates that a valid memory pointer to the top of the
specified RECT should be returned. If no rectangle is
specified, a pointer to the top of the surface is returned.
This is the default.

DDLOCK_WAIT If a lock cannot be obtained because a blit operation is in
progress, the method retries until a lock is obtained or
another error occurs, such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY Indicates that the surface being locked will be
write-enabled.

I have bolded the most commonly used flags.Note

The last parameter is to facilitate an advanced feature that Win32 supports called
events. Set it to NULL.

Locking the primary surface is really easy. What you want to do is request the
memory pointer to the surface, along with requesting DirectDraw to wait for the
surface to become available. Here’s the code:

DDSURFACEDESC2 ddsd; // this will hold the results of the lock

// clear the surface description out always
memset(&ddsd, 0, sizeof(ddsd));

// set the size field always
ddsd.dwSize = sizeof(ddsd);

// lock the surface
if (FAILED(lpddsprimary->Lock(NULL,

&ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL)))

{
// error

} // end if

// ****** at this point there are two fields that we are
// concerned with: ddsd.lPitch which contains the memory
// pitch in bytes per line and ddsd.lpSurface which is a
// pointer to the top left corner of the locked surface

0972313618 CH06 10/26/99 10:01 AM Page 276

CHAPTER 6
First Contact: DirectDraw

277

Once you’ve locked the surface, you’re free to manipulate the surface memory as you
wish. The memory pitch per line is stored in ddsd.lPitch, and the pointer to the
actual surface is ddsd.lpSurface. Therefore, if you’re in any 8-bit mode (1 byte per
pixel), the following function can be used to plot a pixel anywhere on the primary
surface:

inline void Plot8(int x, int y, // position of pixel
UCHAR color, // color index of pixel
UCHAR *buffer, // pointer to surface memory
int mempitch) // memory pitch per line

{
// this function plots a single pixel
buffer[x+y*mempitch] = color;

} // end Plot8

Here’s how you would call it to plot a pixel at (100,20) with color index 26:

Plot8(100,20,26, (UCHAR *)ddsd.lpSurface,(int)ddsd.lPitch);

Similarly, here’s a 16-bit 5.6.5 RGB mode plot function:

inline void Plot16(int x, int y, // position of pixel
UCHAR red,
UCHAR green,
UCHAR, blue // RGB color of pixel
USHORT *buffer, // pointer to surface memory
int mempitch) // memory pitch bytes per line

{
// this function plots a single pixel
buffer[x+y*(mempitch>>1)] = _RGB16BIT565(red,green,blue);

} // end Plot16

And here’s how you would plot a pixel at (300,100) with RGB value (10,14,30):

Plot16(300,100,10,14,30,(USHORT *)ddsd.lpSurface,(int)ddsd.lPitch);

Now, once you’re done with all your video surface access for the current frame of
animation, you need to unlock the surface. This is accomplished with the
IDirectDrawSurface4::Unlock() method shown here:

HRESULT Unlock(LPRECT lpRect);

You send Unlock() the original RECT that you used in the lock command, or NULL if
you locked the entire surface. In this case, here’s all you would do to unlock the
surface:

if (FAILED(lpddsprimary->Unlock(NULL)))
{
// error
} // end if

0972313618 CH06 10/26/99 10:01 AM Page 277

DirectX and 2D Fundamentals

278 PART II

That’s all there is to it. Now, let’s see all the steps put together to plot random pixels
on the screen (without error detection):

LPDIRECTDRAW lpdd = NULL; // standard DirectDraw 1.0
LPDIRECTDRAW lpdd4 = NULL; // DirectDraw 6.0 interface 4
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL; // surface ptr
DDSURFACEDESC2 ddsd; // surface description
LPDIRECTDRAWPALETTE lpddpal = NULL; // palette interface
PALETTEENTRY palette[256]; // palette storage

// first create base IDirectDraw interface
DirectDrawCreate(NULL, &lpdd, NULL);

// now query for IDirectDraw4
lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4);

// release lpdd
lpdd->Release();

// set the cooperative level for full-screen mode
lpdd4->SetCooperativeLevel(hwnd,

DDSCL_FULLSCREEN |
DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE |
DDSCL_ALLOWREBOOT);

// set the display mode to 640x480x256
lpdd4->SetDisplayMode(640,480,8,0,0);

// clear ddsd and set size
memset(&ddsd,0,sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS;

// request primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL);

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;
palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

0972313618 CH06 10/26/99 10:01 AM Page 278

CHAPTER 6
First Contact: DirectDraw

279

// set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry 0 and 255 with black and white
palette[0].peRed = 0;
palette[0].peGreen = 0;
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

palette[255].peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

// create the palette object
lpdd4->CreatePalette(DDPCAPS_8BIT |DDPCAPS_ALLOW256 |

DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL);

// finally attach the palette to the primary surface
lpddsprimary->SetPalette(lpddpal);

// and you’re ready to rock n roll!
// lock the surface first and retrieve memory pointer
// and memory pitch

// clear ddsd and set size, never assume it’s clean
memset(&ddsd,0,sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

lpddsprimary->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT, NULL))

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don’t
// have to cast
int mempitch = ddsd.lPitch;
UCHAR *video_buffer = ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index<1000; index++)

{
// select random position and color for 640x480x8
UCHAR color = rand()%256;
int x = rand()%640;
int y = rand()%480;

// plot the pixel
video_buffer[x+y*mempitch] = color;

0972313618 CH06 10/26/99 10:01 AM Page 279

DirectX and 2D Fundamentals

280 PART II

} // end for index

// now unlock the primary surface
lpddsprimary->Unlock(NULL);

Of course, I’m leaving out all the Windows initialization and event loop stuff, but
that never changes. However, to be complete, take a look at DEMO6_3.CPP and the
associated executable DEMO6_3.EXE on the CD. They contain the preceding code
injected into your Game Console’s Game_Main() function, shown in the following
listing along with the updated Game_Init(). Figure 6.12 is a screen shot of the
program in action.

Figure 6.12
DEMO6_3.EXE in

action.

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

SendMessage(main_window_handle,WM_CLOSE,0,0);

// plot 1000 random pixels to the primary surface and return
// clear ddsd and set size, never assume it’s clean
memset(&ddsd,0,sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

if (FAILED(lpddsprimary->Lock(NULL, &ddsd,
DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,
NULL)))

0972313618 CH06 10/26/99 10:01 AM Page 280

CHAPTER 6
First Contact: DirectDraw

281

{
// error
return(0);
} // end if

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don’t
// have to cast
int mempitch = (int)ddsd.lPitch;
UCHAR *video_buffer = (UCHAR *)ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index < 1000; index++)

{
// select random position and color for 640x480x8
UCHAR color = rand()%256;
int x = rand()%640;
int y = rand()%480;

// plot the pixel
video_buffer[x+y*mempitch] = color;

} // end for index

// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))

return(0);

// sleep a bit
Sleep(30);

// return success or failure or your own return code here
return(1);

} // end Game_Main

//

int Game_Init(void *parms = NULL, int num_parms = 0)
{
// this is called once after the initial window is created and
// before the main event loop is entered, do all your initialization
// here

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd, NULL)))

{
// error
return(0);
} // end if

0972313618 CH06 10/26/99 10:01 AM Page 281

DirectX and 2D Fundamentals

282 PART II

// now query for IDirectDraw4
if (FAILED(lpdd->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
{
// error
return(0);
} // end if

// set cooperation to full screen
if (FAILED(lpdd4->SetCooperativeLevel(main_window_handle,

DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))

{
// error
return(0);
} // end if

// set display mode to 640x480x8
if (FAILED(lpdd4->SetDisplayMode(SCREEN_WIDTH,

SCREEN_HEIGHT, SCREEN_BPP,0,0)))
{
// error
return(0);
} // end if

// clear ddsd and set size
memset(&ddsd,0,sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS;

// request primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
if (FAILED(lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))

{
// error
return(0);
} // end if

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;
palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

0972313618 CH06 10/26/99 10:01 AM Page 282

CHAPTER 6
First Contact: DirectDraw

283

// set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry 0 and 255 with black and white
palette[0].peRed = 0;
palette[0].peGreen = 0;
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

palette[255].peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

// create the palette object
if (FAILED(lpdd4->CreatePalette(DDPCAPS_8BIT | DDPCAPS_ALLOW256 |

DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL)))

{
// error
return(0);
} // end if

// finally attach the palette to the primary surface
if (FAILED(lpddsprimary->SetPalette(lpddpal)))

{
// error
return(0);
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Init

The only other detail I want to bring to your attention about the demo program code is
the creation of the main window, shown here:

// create the window
if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME, // class
“T3D DirectX Pixel Demo”, // title
WS_POPUP | WS_VISIBLE,
0,0, // initial x,y

640,480, // initial width, height
NULL, // handle to parent

NULL, // handle to menu
hinstance, // instance of this application
NULL))) // extra creation parms

return(0);

0972313618 CH06 10/26/99 10:01 AM Page 283

DirectX and 2D Fundamentals

284 PART II

Notice that instead of using the WS_OVERLAPPEDWINDOW window style, the demo uses
WS_POPUP. If you’ll recall, this style is devoid of all controls and Windows GUI stuff,
which is what you want for a full-screen DirectX application.

Cleaning Up
Before moving on to the end of the chapter, I want to bring up a topic that I’ve been
putting off for a while—resource management. Yuck! Anyway, this seemingly un-fun
concept simply means making sure that you Release() DirectDraw or DirectX
objects in general when you’re done with them. For example, if you take a look at the
source code in DEMO6_3.CPP, in the Game_Shutdown() function you’ll see a number of
Release() calls to release all the DirectDraw objects back to the operating system,
and DirectDraw itself, shown here:

int Game_Shutdown(void *parms = NULL, int num_parms = 0)
{
// this is called after the game is exited and the main event
// loop while is exited, do all you cleanup and shutdown here

// first the palette
if (lpddpal)

{
lpddpal->Release();
lpddpal = NULL;
} // end if

// now the primary surface
if (lpddsprimary)

{
lpddsprimary->Release();
lpddsprimary = NULL;
} // end if

// now blow away the IDirectDraw4 interface
if (lpdd4)

{
lpdd4->Release();
lpdd4 = NULL;
} // end if

// return success or failure or your own return code here
return(1);

} // end Game_Shutdown

In general, you should Release() objects only when you’re done with them, and you
should do so in reverse order of creation. For example, you created the DirectDraw
object, the primary surface, and the palette, in that order, so a good rule of thumb
would be to release the palette, surface, and then DirectDraw, like this:

0972313618 CH06 10/26/99 10:01 AM Page 284

CHAPTER 6
First Contact: DirectDraw

285

// first kill the palette
if (lpddpal)

{
lpddpal->Release();
lpddpal = NULL;
} // end if

// now the primary surface
if (lpddsprimary)

lpddsprimary->Release();

// and finally the directdraw object itself
if (lpdd4)

{
lpdd4->Release();
lpdd4 = NULL;
} // end if

Before you make a call to Release(), notice the testing to see if the
interface is non-NULL. This is absolutely necessary because the interface
pointer may be NULL, and releasing on a NULL pointer may cause
problems if the implementers of the interface haven’t thought of it.

Warning

Summary
In this chapter you learned the basics of DirectDraw—how to get it up and running in
full-screen mode, for the most part. Also, we touched upon palettes, display surfaces,
and the differences between full-screen and windowed applications. In the next
chapter, I’m going to put on the gas and we’re going to cover a lot of ground, so
strap on your seat belt, baby!

0972313618 CH06 10/26/99 10:01 AM Page 285

0972313618 CH06 10/26/99 10:01 AM Page 286

Advanced DirectDraw and
Bitmapped Graphics

“There are a lot of decaffeinated brands on the market that are
just as tasty as the real thing…”

—Chris Knight, Real Genius

In this chapter I’m going to show you the guts of DirectDraw
and start working on the first module of the graphics library
(T3DLIB1.CPP|H), which will be the basis of all demos and
games created in this book. A lot of material will be covered in
this chapter, in addition to me throwing a graphics library at you
that I’ll write through the course of this chapter. However, I
promise that everything will be reasonably simple, while still
complex enough to do something cool with. Here’s what this
chapter will cover:

• High-color modes

• Page flipping and double buffering

• The blitter

• Clipping

• Loading bitmaps

• Color animation

CHAPTER 7

1072313618 CH07 10/26/99 10:04 AM Page 287

DirectX and 2D Fundamentals

288 PART II

• Windowed DirectX

• Getting information from DirectX

Working with High-Color Modes
High-color modes (modes that require more than eight bits per pixel) are of course
more visually pleasing to the eye than the 256-color modes. However, they aren’t used
in software-based 3D engines for a number of reasons. The biggest reasons are as fol-
lows:

• Computational speed—A standard 640×480 pixel frame buffer consists of
307,200 pixels. If each pixel is 8-bit, that means that most calculations can be
done using a single byte per pixel and rasterization is simpler. On the other
hand, in 16-bit or 24-bit modes, full RGB space calculations are usually
employed (or very large lookup tables) and the speed is cut at least in half.
Furthermore, two or three bytes per pixel must be written to the frame buffer
instead of one as in 8-bit modes.

Of course, with acceleration hardware, this isn’t as much of a problem for
bitmapping or 3D (in fact, most 3D cards work in 24/32-bit color), but for soft-
ware rasterization (which is what you’re learning in this book), it’s a big deal.
You want to write the least amount of data per pixel as possible, and 8-bit mode
meets this requirement (although it’s not as pretty as 16-bit). However, with
8-bit mode, you can rest assured that someone with a Pentium 75-100 might be
able to play your game, and you won’t have to worry about your audience hav-
ing a P233 with MMX and 3D acceleration at a minimum.

• Memory bandwidth—This is something that people hardly ever take into con-
sideration. Your PC has either an ISA (Industry Standard Architecture), VLB
(VESA Local Bus), PCI (Peripheral Component Interface), or PCI/AGP
(Accelerated Graphics Port) hybrid bus system. The bottom line is that every-
thing but the AGP port is relatively slow compared to video clock rates. This
means that although you may have a 500+ MHz Pentium III, it’s not going to do
you any good if you have a PCI bus that’s bottlenecking your access to video
RAM and/or acceleration hardware. Of course, a number of hardware optimiza-
tions can help in this area, such as caching, multi-port VRAM, and so forth, but
there’s always a fill rate limit that you can never exceed no matter what you do.
The moral of the story is that as you move to higher and higher resolutions and
color depths, in many cases the memory bandwidth is more of a limiting factor
than the processor’s speed. However, with AGP 2x and 4x this will become less
of an issue.

1072313618 CH07 10/26/99 10:05 AM Page 288

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

289

Now that I’ve made my initial points about the appropriate uses for high-color modes,
I’ll cover them in detail and show you how to work with them. I’ve decided to primar-
ily target 8-bit modes to make the material and the 3D software easier to comprehend
(3D is hard enough to understand without adding high-color RGB calculations to it).
So let’s get started.

Working with high-color modes is conceptually similar to working with palletized
modes, with the single caveat that you aren’t writing color indices into the frame
buffer, but instead full RGB-encoded pixel values. This means that you must know
how to create an RGB pixel encoding for the high-color modes that you want to work
with. Figure 7.1 depicts a number of various 16-bit pixel encodings.

Figure 7.1
16-Bit RGB pixel

encodings. A R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

5
Red 5-Bit

5
Green 5-Bit

5
Blue 5-Bit

A

Alpha
High Bit

X R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

d15 d0

5
Red 5-Bit

5
Green 5-Bit

5
Blue 5-Bit

X

Don't care

R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

d15 d0

5
Red 5-Bit

16 Bits
Red Green Blue

6
Green 6-Bit

5
Blue 5-Bit

Low Bit

16-Bit High-Color Mode
Referring to Figure 7.1, there are a number of possible bit encodings for 16-bit modes:

Alpha.5.5.5—This mode uses a single bit at position D15 to represent a possible Alpha
component (transparency), and the remaining 15 bits are equally distributed with five
bits for red, five bits for green, and five bits for blue. This makes a total of 25 = 32
shades for each color and a palette of 32×32×32 = 32,768 colors.

X.5.5.5—This mode is similar to the Alpha.5.5.5 mode, except the MSB (most signifi-
cant bit) is unused and can be anything. The color range is still 32 shades of each pri-
mary color (red, green, and blue), with a total of 32×32×32 = 32,768 colors.

1072313618 CH07 10/26/99 10:05 AM Page 289

DirectX and 2D Fundamentals

290 PART II

5.6.5—This is the most common mode and uses all 16 bits of the WORD to define the
color. The format is, of course, five bits for red, six bits for green, and five bits for
blue, for a total of 32×64×32 = 65536 color. Now, you may ask, “Why six bits for
green?” Well, my little leprechaun, the answer is that human eyes are more sensitive
to green, and therefore the increased range for green is the most logical choice of the
three primaries.

Now that you know the RGB bit-encoding formats, the question is how to build them
up. You accomplish this task with simple bit shifting and masking operations, as
shown in the following macros:

// this builds a 16 bit color value in 5.5.5 format (1-bit alpha mode)
#define _RGB16BIT555(r,g,b) ((b%32) + ((g%32) << 5) + ((r%32) << 10))

// this builds a 16 bit color value in 5.6.5 format (green dominate mode)
#define _RGB16BIT565(r,g,b) ((b%32) + ((g%64) << 6) + ((r%32) << 11))

You’ll notice from the macros and Figure 7.2 that the red bits are located in the high-
order bits of the color WORD, the green bits are in the middle bits, and the blue bits are
located in the low-order bits of the color WORD. This may seem backwards because
PCs are little-endian and place data in low-to-high order, but in this case the bits are
in big-endian format, which is much better because they follow RGB order from MSB
to LSB.

Figure 7.2
Color WORDs are big-

endian.
Red Green Blue

High Byte Low Byted15 d7 d0

MSB LSB

Before you build a quick demo of 16-bit mode, there’s one more little
detail that I must address—how on Earth do you detect if the video
mode is 5.5.5 or 5.6.5? This is important because it’s not under your con-
trol. You can tell DirectDraw to create a 16-bit mode, but the bit encod-
ing is up to the hardware. You must know this detail because the green
channel will be all jacked up if you don’t take it into consideration!
What you need to know is the pixel format.

Warning

Getting the Pixel Format
To figure out the pixel format of any surface, all you need to do is call the function
IDIRECTDRAWSURFACE4:GetPixelFormat(), shown here:

HRESULT GetPixelFormat(LPDDPIXELFORMAT lpDDPixelFormat);

You already saw the DDPIXELFORMAT structure in the previous chapter, but the fields
you’re interested in are

1072313618 CH07 10/26/99 10:05 AM Page 290

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

291

DWORD dwSize; // the size of the structure, must be set by you
DWORD dwFlags; // flags describing the surface, refer to Table 7.1
DWORD dwRGBBitCount; // number of bits for Red, Green, and Blue

The dwSize field must be set before you make the call to the size of a DDPIXELFORMAT
structure. After the call, both the dwFlags field and the dwRGBBitCount fields will be
valid and contain the informational flags, along with the number of RGB bits for the
surface in question. Table 7.1 lists a subset of the possible flags contained in dwFlags.

TABLE 7.1 Valid Flags for DDPIXELFORMAT.dwFlags

Value Description

DDPF_ALPHA The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS The surface has alpha channel information in the pixel
format.

DDPF_LUMINANCE The pixel format describes a luminance-only or
luminance-alpha surface.

DDPF_PALETTEINDEXED1 The surface is 1-bit color indexed.

DDPF_PALETTEINDEXED2 The surface is 2-bit color indexed.

DDPF_PALETTEINDEXED4 The surface is 4-bit color indexed.

DDPF_PALETTEINDEXED8 The surface is 8-bit color indexed. Most common.

DDPF_PALETTEINDEXEDTO8 The surface is 1-, 2-, or 4-bit color indexed to an 8-bit
palette.

DDPF_RGB The RGB data in the pixel format structure is valid.

DDPF_ZBUFFER The pixel format describes a z-buffer surface.

DDPF_ZPIXELS The surface contains z information in the pixels.

Note that there are a lot more flags especially for D3D-related properties. Please refer to the
DirectX SDK for more information.

The fields that matter the most right now are

DDPF_PALETTEINDEXED8—This indicates that the surface is an 8-bit palettized mode.

DDPF_RGB—This indicates that the surface is an RGB mode and the format can be
queried by testing the value in dwRGBBitCount.

So all you need to do is write a test that looks something like this:

DDPIXELFORMAT ddpixel; // used to hold info

LPDIRECTDRAWSURFACE4 lpdds_primary; // assume this is valid

// clear our structure
memset(&ddpixel, 0, sizeof(ddpixel));

1072313618 CH07 10/26/99 10:05 AM Page 291

DirectX and 2D Fundamentals

292 PART II

// set length
ddpixel.dwSize = sizeof(ddpixel);

// make call off surface (assume primary this time)
lpdds_primary->GetPixelFormat(&ddpixel);

// now perform tests
// check if this is an RGB mode or palettized
if (ddpixel.dwFlags & DDPF_RGB)

{
// RGB mode
// what’s the RGB mode
switch(ddpixel.dwRGBBitCount)

{
case 15: // must be 5.5.5 mode

{
// use the _RGB16BIT555(r,g,b) macro
} break;

case 16: // must be 5.6.5 mode
{
// use the _RGB16BIT565(r,g,b) macro
} break;

case 24: // must be 8.8.8 mode
{
} break;

case 32: // must be alpha(8).8.8.8 mode
{
} break;

default: break;

} // end switch

} // end if
else
if (ddpixel.dwFlags & DDPF_PALETTEINDEXED8)

{
// 256 color palettized mode
} // end if

else
{
// something else??? more tests
} // end else

Fairly simple code, huh? A bit ugly, but that comes with the territory, baby! The real
power of GetPixelFormat() comes into play when you don’t set the video mode and
you simply create a primary surface in a windowed mode. In that case, you’ll have no
idea about the properties of the video system and you must query the system.

1072313618 CH07 10/26/99 10:05 AM Page 292

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

293

Otherwise, you won’t know the color depth, pixel format, or even the resolution of the
system.

Now that you’re a 16-bit expert, here’s a demo! There’s nothing to creating a 16-bit
application—just make the call to SetDisplayMode() with 16 bits for the color depth,
and that’s it. As an example, here are the steps you would take to create a full-screen,
16-bit color mode in DirectDraw:

LPDIRECTDRAW lpdd_temp = NULL; // used to get directdraw1
LPDIRECTDRAW4 lpdd = NULL; // used to get directdraw4
DDSURFACEDESC2 ddsd; // surface description
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL; // primary surface

// create IDirectDrawdirectdraw interface 1.0 object and test for error
if (FAILED(DirectDrawCreate(NULL,&lpdd_temp,NULL)))

return(0);

// now query for IDirectDraw4
if (FAILED(lpdd_temp->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd)))
return(0);

// set cooperation level to requested mode
if (FAILED(lpdd->SetCooperativeLevel(main_window_handle,

DDSCL_ALLOWMODEX | DDSCL_FULLSCREEN |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))

return(0);

// set the display mode to 16 bit color mode
if (FAILED(lpdd->SetDisplayMode(640,480,16,0,0)))

return(0);

// Create the primary surface
memset(&ddsd,0,sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;

// set caps for primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
lpdd->CreateSurface(&ddsd,&lpddsprimary,NULL);

And that’s all there is to it. At this point, you would see a black screen (possibly
garbage if the primary buffer memory has data in it).

To simplify the discussion, assume that you already tested the pixel format and found
that it’s RGB 16-bit 5.6.5 mode—which is correct, because you set the mode! In the
worst-case scenario, however, it could have been the 5.5.5 format. Anyway, to write a
pixel to the screen, you must

1072313618 CH07 10/26/99 10:05 AM Page 293

DirectX and 2D Fundamentals

294 PART II

1. Lock the surface. In this example, that means locking the primary surface with a
call to Lock().

2. Build the RGB WORD for 16-bit mode. This entails using one of the macros or
doing it yourself. Basically, you’re going to send the pixel-plotting function red,
green, and blue values. They must be scaled and then combined into the 16-bit
5.6.5 format that the primary surface needs.

3. Write the pixel. This means addressing the primary buffer using a USHORT
pointer and writing the pixel into the VRAM buffer.

4. Unlock the primary surface. A call to Unlock() is made.

Here’s the code for a rough 16-bit plot pixel function:

void Plot_Pixel16(int x, int y, int red, int green, int blue,
LPDIRECTDRAWSURFACE4 lpdds)

{
// this function plots a pixel in 16-bit color mode
// very inefficient…

DDSURFACEDESC2 ddsd; // directdraw surface description

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// now lock video buffer
DDRAW_INIT_STRUCT(ddsd);

lpdds->Lock(NULL,&ddsd,DDLOCK_WAIT |
DDLOCK_SURFACEMEMORYPTR,NULL);

// write the pixel

// alias the surface memory pointer to a USHORT ptr
USHORT *video_buffer = ddsd.lpSurface;

// write the data
video_buffer[x + y*(ddsd.lPitch >> 1)] = pixel;

// unlock the surface
lpdds->Unlock(NULL);

} // end Plot_Pixel16

Notice the use of DDRAW_INIT_STRUCT(ddsd), which is a simple macro that zeros out
the structure and sets its dwSize field. I’m getting tired of doing it the long way.
Here’s the macro definition:

// this macro should be on one line
#define DDRAW_INIT_STRUCT(ddstruct)
{ memset(&ddstruct,0,sizeof(ddstruct));
ddstruct.dwSize=sizeof(ddstruct); }

1072313618 CH07 10/26/99 10:05 AM Page 294

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

295

For example, to plot a pixel on the primary surface at (10,30) with RGB values
(255,0,0), you would do something like this:

Plot_Pixel16(10,30, // x,y
255,0,0, // rgb
lpddsprimary); // surface to draw on

Although the function seems reasonably simple, it’s extremely inefficient. There are a
number of optimizations that you can take advantage of. The first problem is that the
function locks and unlocks the sent surface each time. This is totally unacceptable.
Locking/unlocking can take hundreds of microseconds on some video cards, and
maybe even longer. The bottom line is that in a game loop, you should lock a surface
once, do all the manipulation you’re going to do with it, and unlock it when you’re
done, as shown in Figure 7.3. That way you don’t have to keep locking/unlocking,
zeroing out memory, etc. For example, the memory fill of the DDSURFACEDESC2 struc-
ture probably takes longer than the pixel plot! Not to mention that the function isn’t
inline and the function overhead is probably killing you.

Figure 7.3
DirectDraw surfaces
should be locked as

little as possible.

Lock ()

Game Loop

Do Manual Blitting

Unlock ()

Use Hardware
Blitter
Blt()
Bltfast()

Hardware Blitter
is locked out

while you
have a lock

on the surface

These are the types of things that a game programmer needs to keep in mind. You
aren’t writing a word processor program here—you need speed! Here’s another ver-
sion of the function with a little bit of optimization, but it can still be 10 times faster:

inline void Plot_Pixel_Fast16(int x, int y,
int red, int green, int blue,
USHORT *video_buffer, int lpitch)

{
// this function plots a pixel in 16-bit color mode

1072313618 CH07 10/26/99 10:05 AM Page 295

DirectX and 2D Fundamentals

296 PART II

// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// write the data
video_buffer[x + y*(lpitch >> 1)] = pixel;

} // end Plot_Pixel_Fast16

I still don’t like the multiply and shift, but this new version isn’t bad. You can get rid
of both the multiply and shift with a couple of tricks. First, the shift is needed because
lPitch is memory width in bytes. However, because you’re assuming that the caller
already locked the surface and queried the memory pointer and pitch from the surface,
it’s a no-brainer to add one more step to the process to compute a WORD or 16-bit
strided version of lpitch, like this:

int lpitch16 = (lpitch >> 1);

Basically, lpitch16 is now the number of 16-bit WORDs that make up a video line.
With this new value, you can rewrite the functions once again, like this:

inline void Plot_Pixel_Faster16(int x, int y,
int red, int green, int blue,
USHORT *video_buffer, int lpitch16)

{
// this function plots a pixel in 16-bit color mode
// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// first build up color WORD
USHORT pixel = _RGB16BIT565(red,green,blue);

// write the data
video_buffer[x + y*lpitch16] = pixel;

} // end Plot_Pixel_Faster16

That’s getting there! The function is inline and has a single multiply, addition, and
memory access. Not bad, but it could be better! The final optimization is to use a
huge lookup table to get rid of the multiply, but this may not be needed because inte-
ger multiplies are getting down to single cycles on newer Pentium X architectures. It
is a way to speed things up, however.

On the other hand, you can get rid of the multiply by using a number of shift-adds.
For example, assuming a perfectly linear memory mode (without any extra stride per
line), you know that it’s exactly 1,280 bytes from one video line to another in a
640×480 16-bit mode. Therefore, you need to multiply y by 640 because the array

1072313618 CH07 10/26/99 10:05 AM Page 296

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

297

access will use automatic pointer arithmetic and scale anything in the [] array opera-
tor by a factor of 2 (2 bytes per USHORT WORD). Anyway, here’s the math:

y*640 = y*512 + y*128

512 is equal to 29, and 128 is equal to 27. Therefore, if you were to shift y to the left 9
times and then add that to y shifted to the left 7 times, the result should be equivalent
to y*640, or mathematically:

y*640 = y*512 + y*128
= (y << 9) + (y << 7)

That’s it! If you aren’t familiar with this trick, take a look at Figure 7.4. Basically,
shifting any binary-encoded number to the right is the same as dividing by 2 and
shifting to the left is the same as multiplying by 2. Furthermore, multiple shifts accu-
mulate. Hence, you can use this property to perform very fast multiplication on num-
bers that are powers of 2. However, if the numbers aren’t powers of 2, you can always
break them into a sum of products that are—as in the previous case.

Figure 7.4
Using binary shifting

to multiply and
divide.

0

128

0

64

1

32

1

16

0

8

1

4

1

2

0

1

= 2 + 4 + 16 + 32 = 54

Valve
Original Byte

d7 d0

0 0 0 1 1 0 1 1 = 1 + 2 + 8 + 16 = 27 = = 27
Shifted Right

1 bit

d7 d0

0 0 1 1 0 1 1 0 = 2 + 4 + 16 + 32 = 54 = = 54
Shifted Left

1 bit

d7 d0

Divide by two
when Right Shift.

54
2

Multiply by two
when Left Shift.

27 * 2

Carry In

Carry Out

For an example of using the 16-bit modes to write pixels to the screen, take a look at
DEMO7_1.CPP|EXE on the CD. The program basically implements what you’ve done
here and blasts random pixels to the screen. Take a look at the code and note that you
don’t need a palette anymore, which is kind of nice <BG>. By the way, the code is in
the standard T3D Game Engine template, so the only things you need to really look at
are Game_Init() and Game_Main(). The contents of Game_Main() are shown here:

You’ll see a lot more of these tricks when you get to the Chapter 11,
“Algorithms, Data Structures, Memory Management, and
Multithreading.”

Note

1072313618 CH07 10/26/99 10:05 AM Page 297

DirectX and 2D Fundamentals

298 PART II

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

SendMessage(main_window_handle,WM_CLOSE,0,0);

// plot 1000 random pixels to the primary surface and return
// clear ddsd and set size, never assume it’s clean
DDRAW_INIT_STRUCT(ddsd);

// lock the primary surface
if (FAILED(lpddsprimary->Lock(NULL, &ddsd,

DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,
NULL)))

return(0);

// now ddsd.lPitch is valid and so is ddsd.lpSurface

// make a couple aliases to make code cleaner, so we don’t
// have to cast
int lpitch16 = (int)(ddsd.lPitch >> 1);
USHORT *video_buffer = (USHORT *)ddsd.lpSurface;

// plot 1000 random pixels with random colors on the
// primary surface, they will be instantly visible
for (int index=0; index < 1000; index++)

{
// select random position and color for 640x480x16
int red = rand()%256;
int green = rand()%256;
int blue = rand()%256;
int x = rand()%640;
int y = rand()%480;

// plot the pixel
Plot_Pixel_Faster16(x,y,red,green,blue,video_buffer,lpitch16);

} // end for index

// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

1072313618 CH07 10/26/99 10:05 AM Page 298

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

299

24/32-Bit High-Color Mode
Once you’ve mastered 16-bit mode, 24-bit and 32-bit modes are trivial. I’ll begin with
24-bit mode because it’s simpler than 32-bit mode—which is not a surprise! 24-bit
mode uses exactly one byte per channel of RGB blue. Thus, there’s no loss and a total
of 256 shades per channel, giving a total possible number of colors of 256×256×256 =
16.7 million. The bits for red, green, and blue are encoded just as they were in 16-bit
mode, except that you don’t have to worry about one channel using more bits than
another.

Because there’s one byte per channel and three channels, there are three bytes per
pixel. This makes for really ugly addressing, as shown in Figure 7.5. Alas, writing
pixels in pure 24-bit mode is rather contrived, as shown in the following 24-bit ver-
sion of the pixel-writing function:

inline void Plot_Pixel_24(int x, int y,
int red, int green, int blue,
UCHAR *video_buffer, int lpitch)

{
// this function plots a pixel in 24-bit color mode
// assuming that the caller already locked the surface
// and is sending a pointer and byte pitch to it

// in byte or 8-bit math the proper address is: 3*x + y*lpitch
// this is the address of the low order byte which is the Blue channel
// since the data is in RGB order
DWORD pixel_addr = (x+x+x) + y*lpitch;

// write the data, first blue
video_buffer[pixel_addr] = blue;

// now red
video_buffer[pixel_addr+1] = green;

// finally green
video_buffer[pixel_addr+2] = red;

} // end Plot_Pixel_24

The function takes as parameters the x,y, along with the RGB color, and finally the
video buffer starting address and the memory pitch in bytes. There’s no point in send-
ing the memory pitch or the video buffer in some WORD length because there isn’t any
data type that’s three bytes long. Hence, the function basically starts addressing the
video buffer at the requested pixel location and then writes the blue, green, and red
bits for the pixel.

For an example of 24-bit mode, take a look at DEMO7_2.CPP|EXE on the CD. It basi-
cally mimics the functionality of DEMO7_1.CPP, but in 24-bit mode.

1072313618 CH07 10/26/99 10:05 AM Page 299

DirectX and 2D Fundamentals

300 PART II

Moving on to 32-bit color, the pixel setup is a little different, as shown in Figure 7.6.
In 32-bit mode, the pixel data is arranged in the following two formats:

Alpha(8).8.8.8—This format uses eight bits for alpha or transparency information (or
sometimes other information) and then eight bits for each channel: red, green, and
blue. However, where simple bitmapping is concerned, you can usually disregard the
alpha information and simply write eights to it. The nice thing about this mode is that
it’s 32 bits per pixel, which is the fastest possible memory addressing mode for a
Pentium.

X(8).8.8.8—Similar to the preceding mode, except in this mode the upper eight bits of
the color WORD are “don’t care’s” or irrelevant. However, I still suggest setting them to
zeroes to be safe. You may say, “This mode seems like a 24-bit mode, so why have
it?” The answer is that many video cards can’t address on three-byte boundaries, so
the fourth byte is just for alignment.

Now, take a look at a macro to create a 32-bit color WORD:

// this builds a 32 bit color value in A.8.8.8 format (8-bit alpha mode)
#define _RGB32BIT(a,r,g,b) (+ ((g) << 8) + ((r) << 16) + (<< 24))

Figure 7.5
Three-byte RGB

addressing is ugly.

16-Bit Frame Buffer
n Words (Pixels)/Line

Byte offset in buffer

0 1 2 3 4 5 6 7 8 9 . (3n–1)

R G B R G B R G B

Each RGB word
is on a 3 byte

boundary.

Many video cards don’t support 24-bit color mode. They support only
32-bit color, which is usually 8 bits of alpha transparency and then 24
bits of color. This is due to addressing constraints. So DEMO7_2.EXE may
not work on your system.

Warning

1072313618 CH07 10/26/99 10:05 AM Page 300

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

301

Then all you need to do is change your pixel-plotting function to use the new macro
and take advantage of the four-byte-per-pixel data size. Here it is:

inline void Plot_Pixel_32(int x, int y,
int alpha,int red, int green, int blue,
UINT *video_buffer, int lpitch32)

{
// this function plots a pixel in 32-bit color mode
// assuming that the caller already locked the surface
// and is sending a pointer and DWORD aligned pitch to it

// first build up color WORD
UINT pixel = _RGB32BIT(alpha,red,green,blue);

// write the data
video_buffer[x + y*lpitch32] = pixel;

} // end Plot_Pixel_32

This should look familiar. The only thing hidden is the fact that lpitch32 is the byte
pitch divided by four, so it’s a DWORD or 32-bit WORD stride. With that all in mind,
check out DEMO7_3.CPP|EXE. It’s the same pixel-plotting demo, but in 32-bit mode. It
should work on your machine because more video cards support 32-bit mode than
pure 24-bit mode.

All righty, then! I think I’ve belabored high-color modes enough that you can work
with them and convert any 8-bit color code that you want. Remember, I can’t assume
that everyone has a Pentium II 450MHz with a Voodoo II 3D Accelerator. Sticking to
8-bit color is a good way to keep the processing power within reach of most people.

Double Buffering
Thus far you’ve directly modified the contents of the primary surface, which is
directly rasterized each frame by the video controller. This is fine for demos and static

Figure 7.6
32-bit RGB pixel

encodings.

d31 d23 d15 d7 d0

A.8.8.8 format

Alpha Red Green Blue

A7 – A0 R7 – R0 G7 – G0 B7 – B0

d31 d23 d15 d7 d0

X.8.8.8 format

don't care Red Green Blue

x x x x x x x x R7 – R0 G7 – G0 B7 – B0

used for
alignment only

1072313618 CH07 10/26/99 10:05 AM Page 301

DirectX and 2D Fundamentals

302 PART II

imagery, but what if you want to perform smooth animation? This is a definite prob-
lem; let me explain. As I alluded to earlier in the book, most computer animation is
achieved by drawing each frame of animation in an offscreen buffer area and then
blasting the image to the visible display surface very quickly, as shown in Figure 7.7.

Figure 7.7
Performing animation
with double buffering.

memcpy()
flip

Data is copied

(On-screen visible VRam)

Raster
Display

(Off screen image in
system memory or VRam)

Next frame this will be copied to visible display.

This way the user can’t see you erase images, generate the display, or anything else
you might do in each frame. As long as the copying of the offscreen image to the vis-
ible surface is very quick, you could theoretically do it 15 times a second, or 15 fps,
and still have a reasonably smooth game. However, the standard these days is at least
30 fps, so that has become the minimum to get high-quality animation.

The process of drawing an image in an offscreen area and then copying it to the dis-
play surface is called double buffering, and it’s how 99 percent of all games perform
animation. However, in the past (under DOS especially), there wasn’t special hard-
ware to help with this process. This obviously changed with the introduction of
DirectX/DirectDraw.

If acceleration hardware is present (and enough VRAM memory is on the video
card), a process that’s similar to double buffering, called page flipping, can be
employed. Page flipping is roughly the same idea as double buffering, except that you
draw to one of two potentially visible surfaces and then direct the hardware to make
the other surface the active display surface. This basically removes the “copy” step
because the hardware addressing system is used to point the video rasterizer to a dif-
ferent portion of memory. The end result is an instantaneous page flip and update of
the visual on the screen (hence the term page flipping).

1072313618 CH07 10/26/99 10:05 AM Page 302

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

303

Of course, page flipping has always been possible, and many game programmers used
it when programming Mode X modes (320×240, 320×400). However, it’s a down-
low-and-direct technique. Assembly language and video controller programming was
usually needed to accomplish the task. But with DirectDraw it’s a snap. You’ll get to
it in the next section. I just wanted you to have an idea of where this chapter is going
before I show you double buffering in detail.

Implementing double buffering is trivial. All you need to do is allocate a portion of
memory that has the same geometry as the primary DirectDraw surface, draw each
frame of animation on it, and then copy the double buffer memory to the primary dis-
play surface. Unfortunately, there’s a problem with this scheme…

Let’s say you’ve decided to create a 640×480×8 DirectDraw mode. Hence, you would
need to allocate a double buffer that was 640×480 or a linear array of 307,200 bytes.
And keep in mind that the data is mapped in a row-order form, one row for each row
on the screen. This is no problem, though. Here’s the code to create the double buffer:

UCHAR *double_buffer = (UCHAR *)malloc(640*480);

Or, using the new operator in C++:

UCHAR *double_buffer = new UCHAR[640*480];

Either way you do it, you have an array of 307,200 bytes linearly addressable in
memory that double_buffer points to. To address a single pixel at position (x,y), you
would use the following code:

double_buffer[x + 640*y] = …

Seems reasonable because there are 640 bytes per virtual line and you’re assuming a
rectangular mapping of 640 bytes per line and 480 lines. Okay, here’s the problem:
Assume that you’ve also locked a pointer to the primary display surface and it’s in
primary_buffer. In addition, assume that during the lock you’ve extracted the mem-
ory pitch and stored it in mempitch, as shown in Figure 7.8. If mempitch is equal to
640, you can use the following code to copy the double_buffer to the
primary_buffer:

memcpy((void *)primary_buffer, (void *)double_buffer,640*480);

And almost instantly, the double_buffer will show up in the primary buffer.

1072313618 CH07 10/26/99 10:05 AM Page 303

DirectX and 2D Fundamentals

304 PART II

Everything seems fine, right? Wrong! The preceding memcpy() code will work only if
mempitch or the primary surface stride is exactly 640 bytes per line. This may or may
not be true. Alas, the preceding memcpy() code may fail terribly. A better way to write
the double buffer copy function is to add a little function that tests if the memory
pitch of the primary surface is 640. If so, the memcpy() is employed; if not, a line-by-
line copy is used. A little slower, but the best you can do… Here’s the code for that:

// can we use a straight memory copy?
if (mempitch==640)
{
memcpy((void *)primary_buffer, (void *)double_buffer,640*480);
} // end if
else
{
// copy line by line, bummer!
for (int y=0; y<480; y++)

{
// copy next line of 640 bytes
memcpy((void *)primary_buffer, (void
*)double_buffer,640);

// now for the tricky part…

Mem ditch

Extra bytes for
cache alignment, etc.
can cause memory
problem.

k

Display memory

640 × 480 × 1 byte
direct draw surface
in VRam

640 + ∆m

639
∆m

0
LP surface

Primary Buffer (VRam)

640 × 480 × 1 byte
in system memory

6390

Double Buffer (System memory)

Off Screen Linear Buffer

Copy640

Figure 7.8
Primary display sur-
faces may have extra

memory per line,
causing addressing

problems.

There’s a potential optimization here. Notice, I’m using memcpy(). This
function is rather slow because it only copies bytes (on some compilers).
A better method would be to write your own DWORD or 32-bit copy func-
tion to move more data per cycle. You can do this with inline or external
assembly language. You’ll see how when you get to optimization theory,
but this is a good example if you’re taking advantage of the largest
data chunk that the Pentium can process, which is a 32-bit value.

Trick

1072313618 CH07 10/26/99 10:05 AM Page 304

Errata

Errata
"Mem ditch" should be "Mem Pitch"

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

305

// advance each pointer ahead to next line

// advance to next line which is mempitch bytes away
primary_buffer+=mempitch;

// we know that we need to advance 640 bytes per line
double_buffer+=640;

} // end for y

} // end else

Figure 7.9 shows the process graphically. As you can see, this is one of the times that
you have to do the work—no cheating! However, at least you can optimize the code
with 4-byte or 32-bit copy code later. That makes me feel a little better.

Figure 7.9
Copying the double
buffer line by line.

Display Surface in VRamDouble Buffer in
System Memory Each line must be

copied separately

Extra memory
per line
≥ 0 depending
on mode and
manufacturer.

For load

line copy();

Line 0
Line 1

Line n

Line 0
Line 1

Line n

As an example, I have created a demo that draws a set of random pixels on a double
buffer and then copies the double buffer to the primary buffer in 640×480×8 mode.
There’s a long delay between copies, so you can see that the image is entirely differ-
ent. The name of the program is DEMO7_4.CPP|EXE and it’s on the CD. Remember to
compile it yourself to add DDRAW.LIB to your project and have the header file paths set
to the DirectX include directory. Here’s the Game_Main() from the program, which is
where all the action occurs:

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

UCHAR *primary_buffer = NULL; // used as alias to primary surface buffer

1072313618 CH07 10/26/99 10:05 AM Page 305

Errata
The little squiggily lines should be "..." vertically, as shown by the marks on the hardcopy.

DirectX and 2D Fundamentals

306 PART II

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// erase double buffer
memset((void *)double_buffer,0, SCREEN_WIDTH*SCREEN_HEIGHT);

// you would perform game logic...

// draw the next frame into the double buffer
// plot 5000 random pixels
for (int index=0; index < 5000; index++)

{
int x = rand()%SCREEN_WIDTH;
int y = rand()%SCREEN_HEIGHT;
UCHAR col = rand()%256;
double_buffer[x+y*SCREEN_WIDTH] = col;
} // end for index

// copy the double buffer into the primary buffer
DDRAW_INIT_STRUCT(ddsd);

// lock the primary surface
lpddsprimary->Lock(NULL,&ddsd,

DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// get video pointer to primary surfce
primary_buffer = (UCHAR *)ddsd.lpSurface;

// test if memory is linear
if (ddsd.lPitch == SCREEN_WIDTH)

{
// copy memory from double buffer to primary buffer
memcpy((void *)primary_buffer, (void *)double_buffer,

SCREEN_WIDTH*SCREEN_HEIGHT);
} // end if

else
{ // non-linear

// make copy of source and destination addresses
UCHAR *dest_ptr = primary_buffer;
UCHAR *src_ptr = double_buffer;

// memory is non-linear, copy line by line
for (int y=0; y < SCREEN_HEIGHT; y++)

1072313618 CH07 10/26/99 10:05 AM Page 306

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

307

{
// copy line
memcpy((void *)dest_ptr, (void *)src_ptr, SCREEN_WIDTH);

// advance pointers to next line
dest_ptr+=ddsd.lPitch;
src_ptr +=SCREEN_WIDTH;

// note: the above code can be replaced with the simpler
// memcpy(&primary_buffer[y*ddsd.lPitch],
// double_buffer[y*SCREEN_WIDTH], SCREEN_WIDTH);
// but it is much slower due to the recalculation
// and multiplication each cycle

} // end for

} // end else

// now unlock the primary surface
if (FAILED(lpddsprimary->Unlock(NULL)))

return(0);

// wait a sec
Sleep(500);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Surface Dynamics
Throughout the book I’ve mentioned that you can create a number of different types
of surfaces, but up to this point you’ve only seen how to work with primary surfaces.
Now I want to talk about offscreen surfaces. Basically, there are two types of off-
screen surfaces. The first kind is the back buffer.

Back buffers are surfaces used in an animation chain that have the same geometry and
color depth as the primary surface. Back buffer surfaces are unique because you cre-
ate them as you create the primary surface. They’re part of the primary surface’s flip-
ping chain. In other words, when you request one or more secondary surfaces to be
back buffers, by default DirectDraw assumes that you’ll be using them in an anima-
tion loop. Figure 7.10 shows the relationship between the primary surface and sec-
ondary surfaces that are back buffers.

1072313618 CH07 10/26/99 10:05 AM Page 307

DirectX and 2D Fundamentals

308 PART II

The reason you would create a back buffer is to emulate the functionality of double
buffering, but in a more DirectDraw kind of way. If you create a DirectDraw back
buffer, usually it will be in VRAM and thus will be very fast. Moreover, you’ll be able
to page flip it with the primary surface, which is much faster than the memory copy
needed for a double buffering scheme.

Technically, you can have as many back buffers as you want in a flipping chain.
However, at some point you’ll run out of VRAM and the surface will have to be cre-
ated in system memory, which is much slower. In general, if you create an m×n mode
with a color depth of one byte, the amount of memory for the primary buffer is of
course m*n bytes (unless there’s memory pitch alignment). Therefore, if you have one
extra back buffer secondary surface, you would multiply this by 2 because back
buffers have the same geometry and color depth. So 2*m*n bytes would be the mem-
ory required. Finally, if the color depth is 16-bit, you would have to scale all the cal-
culations by two bytes, and similarly for 32-bit buffers you would scale by 4. For
example, the primary buffer for a 640×480×16-bit mode would take

Width * Height * Number of bytes per pixel

640 * 480 * 2 = 614,400 bytes

And if you want one extra back buffer, you need to multiply that result by 2 so the
final number of bytes is

614,400 * 2 = 1,228,800 bytes

Roughly 1.2MB of VRAM! Hence, if you have only a 1MB card, you can forget hav-
ing a VRAM back buffer in 640×480×16-bit color mode. Most cards have at least
2MB these days, so you’re usually safe, but it’s always good to test for the amount of

Figure 7.10
The primary surface

and back buffer(s).

Primary Surface
Flipping Chain

1 or more Back Buffers

Double Buffer
(standard)

Triple Buffer
(better

performance)

Display

m×n pixels

m×n pixels

m×n pixels

m×n pixels

S
ec

on
da

ry
 S

ur
fa

ce
s

1072313618 CH07 10/26/99 10:06 AM Page 308

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

309

memory available on the card. You can do so with a GetCaps class function. We’ll
cover that at the end of the chapter.

To create a primary surface that has a back buffer surface attached to it, you have to
create what DirectDraw calls a complex surface. Here are the steps:

1. First, you have to add DDSD_BACKBUFFERCOUNT to the dwFlags flag field to indi-
cate to DirectDraw that the dwBackBufferCount field of the DDSURFACEDESC2
structure will be valid and contain the number of back buffers (one in this case).

2. Second, you must add the control flags DDSCAPS_COMPLEX and DDSCAPS_FLIP to
the capabilities WORD of the DDSURFACEDESC2 structure contained in the
ddsCaps.dwCaps field.

3. Finally, create the primary surface as usual. From it, request the attached back
buffer with a call to IDIRECTDRAWSURFACE4::GetAttachedSurface(), shown
below, and you’re in business.

HRESULT GetAttachedSurface(LPDDSCAPS2 lpDDSCaps,
LPDIRECTDRAWSURFACE4 FAR *lplpDDAttachedSurface);

lpDDSCaps is a DDSCAPS2 structure containing the requested surface capabilities. In
your case, you’re requesting a back buffer, so you’ll set it like this:

DDSCAPS2 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;

Or just use the DDSCAPS2 field of the DDSURFACEDESC2 structure to save another vari-
able, like this:

ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

Here’s the code to create a primary surface and a single back buffer flipping chain:

// assume we already have the directdraw object etc…

DDSURFACEDESC2 ddsd; // directdraw surface description
LPDIRECTDRAWSURFACE4 lpddsprimary = NULL; // primary surface
LPDIRECTDRAWSURFACE4 lpddsback = NULL; // back buffer

// clear ddsd and set size
DDRAW_INIT_STRUCT(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// set the backbuffer count field to 1
ddsd.dwBackBufferCount = 1;

// request a complex, flippable
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

DDSCAPS_COMPLEX | DDSCAPS_FLIP;

1072313618 CH07 10/26/99 10:06 AM Page 309

DirectX and 2D Fundamentals

310 PART II

// create the primary surface
if (FAILED(lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))

return(0);

// now query for attached surface from the primary surface

// this line is needed by the call
ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

if (FAILED(lpddsprimary->GetAttachedSurface(&ddsd.ddsCaps, &lpddsback);

At this point, lpddsprimary points to the primary surface, which is currently visible,
and lpddsback points to the back buffer surface, which is not. Take a look at Figure
7.11 to see this graphically. To access the back buffer, you can lock/unlock it just like
the primary surface.

Figure 7.11
A true complex

surface. Primary Buffer
Surface

(on-screen)

Back Buffer
Surface

(off-screen)

Lpdds primary

Lpdds back

Attached surface Simple flipping chain

So, if you wanted to manipulate the information in the back buffer, you could do this:

// copy the double buffer into the primary buffer
DDRAW_INIT_STRUCT(ddsd);

// lock the back buffer surface
lpddsback->Lock(NULL,&ddsd, DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// now ddsd.lpSurface and ddsd.lPitch are valid
// do whatever…

// unlock the back buffer, so hardware can work with it
lpddsback->Unlock(NULL);

Now, the only problem is that you don’t know how to flip the pages, or, in other
words, make the back buffer surface the primary surface and hence animate the two
pages. Let me show you how that’s done!

1072313618 CH07 10/26/99 10:06 AM Page 310

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

311

Page Flipping
Once you’ve created a complex surface with a primary surface and a back buffer sur-
face, you’re ready to page flip. The standard animation loop requires these steps (see
Figure 7.12):

1. Clear back buffer.

2. Render scene to back buffer.

3. Flip primary surface with back buffer surface.

4. Lock to frame rate (30 fps, for example).

5. Repeat step 1.

Figure 7.12
A page flipped anima-

tion system.

Clear

Render

Flip

Lock

LPDDS primary

LPDDS back

Back Buffer

Primary Buffer

Display

1

2

4

5

3

Main animation loop

Flipping
chain

There are a few details that may confuse you. First, if the back buffer is flipped with
the primary buffer, won’t the back buffer become the primary buffer, and vice versa?
If so, won’t you need to draw on the primary surface every other frame? Although this
may seem to make sense, it’s not what really happens. In reality, pointers to VRAM
are switched by the hardware, and from your point of view and DirectDraw’s, the
back buffer surface is always offscreen and the primary is always onscreen. Therefore,
you always draw to the back buffer and flip with the primary surface each frame.

To flip the primary surface with the next attached surface in the flipping chain, you
use the function IDIRECTDRAWSURFACE4::Flip(), shown here:

HRESULT Flip(LPDIRECTDRAWSURFACE4 lpDDSurfaceTargetOverride, // override surface
DWORD dwFlags); // control flags

1072313618 CH07 10/26/99 10:06 AM Page 311

DirectX and 2D Fundamentals

312 PART II

This returns DD_OK if successful and an error code if not.

The parameters are simple. lpDDSurfaceTargetOverride is basically an advanced
parameter used to override the flipping chain and flip to another surface other than the
back buffer attached to the primary surface; just send NULL here. The dwFlags parame-
ter, however, might be of interest to you. Table 7.2 contains the various settings for it.

TABLE 7.2 Control Flags for Flip()

Value Description

DDFLIP_INTERVAL2 Flip after two vertical retraces.

DDFLIP_INTERVAL3 Flip after three vertical retraces.

DDFLIP_INTERVAL4 Flip after four vertical retraces.

(Note that the default is one vertical retrace.)

These flags indicate how many vertical retraces to wait between each flip. The default
is one. DirectDraw will return DERR_WASSTILLDRAWING for each surface involved in
the flip until the specified number of vertical retraces has occurred. If DDFLIP_INTER-
VAL2 is set, DirectDraw will flip on every second vertical sync; if DDFLIP_INTERVAL3,
on every third sync; and if DDFLIP_INTERVAL4, on every fourth sync.

These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the DDCAPS structure
returned for the device.

DDFLIP_NOVSYNC—This flag causes DirectDraw to perform the physical flip as close
as possible to the next scan line.

DDFLIP_WAIT—This flag forces the hardware to wait until a flip is possible rather than
returning back immediately if there’s a problem.

It’s possible to create a complex surface with two back buffers or a flip-
ping chain that has a total of three surfaces, including the primary sur-
face. This is called triple buffering, and it gives the ultimate in
performance. The reason is obvious: If you have a single back buffer, the
video hardware may be bottlenecked by your accessing it along with the
video hardware and so on. But with two extra surfaces in the flipping
chain, the hardware never has to wait. The beauty of triple buffering
with DirectDraw is that you simply use Flip() and the hardware flips
the surfaces in a cyclic manner, but you still only render to a single back
buffer, so it’s transparent to you.

Typically, you’ll set the flags for DDFLIP_WAIT and that’s it. Also, you must call
Flip() as a method from the primary surface, not the back buffer. This should make

Trick

1072313618 CH07 10/26/99 10:06 AM Page 312

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

313

sense because the primary surface is the “parent” of the back buffer surface, and the
back buffer is part of the parent’s flipping chain. Anyway, here’s how you would make
the call to flip pages:

lpddsprimary->Flip(NULL, DDFLIP_WAIT);

And I’ve found that adding a little logic like this helps if the function errors out for
some stupid reason:

while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT));

Both the back buffer surface and the primary surface must be unlocked
to perform the flip, so make sure you’ve unlocked them both before try-
ing a call to Flip().

Warning

For an example of page flipping, check out DEMO7_5.CPP|EXE. I took DEMO7_4.CPP
and changed the double buffering to page flipping, and of course I updated the
Game_Init() code to create a complex surface with a single back buffer. Here are
Game_Init() and Game_Main() for your review:

int Game_Init(void *parms = NULL, int num_parms = 0)
{
// this is called once after the initial window is created and
// before the main event loop is entered, do all your initialization
// here

LPDIRECTDRAW lpdd_temp;

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd_temp, NULL)))

return(0);

// now query for IDirectDraw4
if (FAILED(lpdd_temp->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd4)))
return(0);

// set cooperation to full screen
if (FAILED(lpdd4->SetCooperativeLevel(main_window_handle,

DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX |
DDSCL_EXCLUSIVE | DDSCL_ALLOWREBOOT)))

return(0);

// set display mode to 640x480x8
if (FAILED(lpdd4->SetDisplayMode(SCREEN_WIDTH, SCREEN_HEIGHT,

SCREEN_BPP,0,0)))
return(0);

1072313618 CH07 10/26/99 10:06 AM Page 313

DirectX and 2D Fundamentals

314 PART II

// clear ddsd and set size
DDRAW_INIT_STRUCT(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// set the backbuffer count field to 1, use 2 for triple buffering
ddsd.dwBackBufferCount = 1;

// request a complex, flippable
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

DDSCAPS_COMPLEX | DDSCAPS_FLIP;

// create the primary surface
if (FAILED(lpdd4->CreateSurface(&ddsd, &lpddsprimary, NULL)))

return(0);

// now query for attached surface from the primary surface

// this line is needed by the call
ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

// get the attached back buffer surface
if (FAILED(lpddsprimary->GetAttachedSurface(&ddsd.ddsCaps, &lpddsback)));

// build up the palette data array
for (int color=1; color < 255; color++)

{
// fill with random RGB values
palette[color].peRed = rand()%256;
palette[color].peGreen = rand()%256;
palette[color].peBlue = rand()%256;

// set flags field to PC_NOCOLLAPSE
palette[color].peFlags = PC_NOCOLLAPSE;
} // end for color

// now fill in entry 0 and 255 with black and white
palette[0].peRed = 0;
palette[0].peGreen = 0;
palette[0].peBlue = 0;
palette[0].peFlags = PC_NOCOLLAPSE;

palette[255].peRed = 255;
palette[255].peGreen = 255;
palette[255].peBlue = 255;
palette[255].peFlags = PC_NOCOLLAPSE;

// create the palette object
if (FAILED(lpdd4->CreatePalette(DDPCAPS_8BIT | DDPCAPS_ALLOW256 |

DDPCAPS_INITIALIZE,
palette,&lpddpal, NULL)))

1072313618 CH07 10/26/99 10:06 AM Page 314

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

315

return(0);

// finally attach the palette to the primary surface
if (FAILED(lpddsprimary->SetPalette(lpddpal)))

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Init

///
////

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// lock the back buffer
DDRAW_INIT_STRUCT(ddsd);
lpddsback->Lock(NULL,&ddsd, DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// alias pointer to back buffer surface
UCHAR *back_buffer = (UCHAR *)ddsd.lpSurface;

// now clear the back buffer out

// linear memory?
if (ddsd.lPitch == SCREEN_WIDTH)

memset(back_buffer,0,SCREEN_WIDTH*SCREEN_HEIGHT);
else

{
// non-linear memory

// make copy of video pointer
UCHAR *dest_ptr = back_buffer;

// clear out memory one line at a time
for (int y=0; y<SCREEN_HEIGHT; y++)

{
// clear next line

1072313618 CH07 10/26/99 10:06 AM Page 315

DirectX and 2D Fundamentals

316 PART II

memset(dest_ptr,0,SCREEN_WIDTH);

// advance pointer to next line
dest_ptr+=ddsd.lPitch;

} // end for y

} // end else

// you would perform game logic...

// draw the next frame into the back buffer, notice that we
// must use the lpitch since it’s a surface and may not be linear

// plot 5000 random pixels
for (int index=0; index < 5000; index++)

{
int x = rand()%SCREEN_WIDTH;
int y = rand()%SCREEN_HEIGHT;
UCHAR col = rand()%256;
back_buffer[x+y*ddsd.lPitch] = col;
} // end for index

// unlock the back buffer
if (FAILED(lpddsback->Unlock(NULL)))

return(0);

// perform the flip
while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT)));

// wait a sec
Sleep(500);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Also, note the boldfaced code from Game_Main() that deals with the lock
window_closed, reprinted here:

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

1072313618 CH07 10/26/99 10:06 AM Page 316

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

317

That’s about all there is to page flipping. DirectDraw does most of the work, but I
want to leave you with some last details about it. First, when you create a back buffer,
there is the possibility that DirectDraw will create it in system memory rather than
VRAM (if there isn’t any left). In that case, you don’t have to do anything;
DirectDraw will emulate the functionality of page flipping with double buffering and
copy the back buffer to the primary surface when you make a call to Flip().
However, it will be slower. The cool thing is that your code will work no matter what.
So that’s pretty killer and drama-free, baby!

I needed to add the exit state in the preceding code because it’s possible
that Game_Main() will be called one extra time even though the window
was destroyed. This will cause an error, of course, because DirectDraw
anchors to the window handle. Hence, I have created a locking variable
(or binary semaphore if you will) that’s set once the window is closed,
and the gate keeps the Game_Main() function from any future entry. This
is a very important detail that I should have mentioned in the last pro-
gram, but I didn’t. Of course, I could have rewritten the text, but I just
wanted to show you how easy it is to make a mistake with
DirectX/Win32 asynchronous programming.

In general, when you create the primary and secondary back buffer, you
want them both in VRAM. The primary is always in VRAM, but it’s possi-
ble to get stuck with a system memory back buffer. However, always
remember that there’s only so much VRAM, and you might want to
forgo the use of a VRAM back buffer in exchange for putting all your
game graphics in VRAM to speed the blitting of images. Using the hard-
ware blitter to move bitmaps from VRAM to VRAM is much faster than
moving them from system memory to VRAM. Alas, you might decide to
make a system memory back buffer in cases where you have a lot of
small sprites or bitmaps and you’re going to do a lot of blitting. In this
case, you’re doing so much blitting, the speed loss of a double buffer
scheme in deference to page flipping with a VRAM animation system is
far outweighed by the performance gain of having all your game
bitmaps in VRAM.

Note

Using the Blitter
If you’ve been programming in DOS, not only have you been stuck in a quasi-32-bit
world (even with a DOS extender), but I’ll bet you’ve never been able to use hardware
acceleration for 2D/3D graphics without a driver from the manufacturer or a fat third-
party library. Hardware acceleration has been around since way before DOOM, but
game programmers could rarely use it because it was more of a Windows thing.

Trick

1072313618 CH07 10/26/99 10:06 AM Page 317

DirectX and 2D Fundamentals

318 PART II

However, with DirectX you can take total advantage of all acceleration—graphics,
sound, input, networking, etc. But the coolest thing is finally being able to use the
hardware blitter to move bitmaps and do fills! Let me show you how it works…

Normally, when you want to draw a bitmap or fill a video surface, you have to do it
manually, pixel by pixel and so forth. For example, take a look at Figure 7.13, which
depicts an 8×8, 256-color bitmap. Imagine that you want to copy this image to a video
or offscreen buffer at position (x,y) that’s 640×480 with linear pitch. Here’s the code
to do it:

UCHAR *video_buffer; // points to VRAM or offscreen surface

UCHAR bitmap[8*8]; // holds our bitmap in row major form

// crude bitmap copy

// outer loop is for each row
for (int index_y=0; index_y<8; index_y++)

{
// inner loop for each pixel of each row
for (int index_x=0; index_x<8; index_x++)

{
// copy the pixel without transparency
video_buffer[x+index_x + (y+index_y)*640] =

bitmap[index_x + index_y*8];
} // end for index_x

} // end for index_y

Figure 7.13
An 8×8, 256-color

bitmap.
10 10 10

10 10 10

10 10

15

10

8 8

10

8 8 8 8

10 5 5 10

10 8 8 10

8 x 8 Bitmap
1-Byte per pixel (256 color)

Data Representation
in Memory

Each pixel is 8-bits

Now take a few minutes (or seconds, if you’re a cyborg) and make sure you com-
pletely understand what’s going on and could write this yourself without looking.
Refer back to Figure 7.13 to help visualize it. Basically, you’re simply copying a

1072313618 CH07 10/26/99 10:06 AM Page 318

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

319

rectangular bitmap of pixels from one place in memory to another. There are
obviously a number of optimizations and problems with this function. First, I’ll talk
about the problems:

Problem 1: The function is incredibly slow.

Problem 2: The function doesn’t take into consideration transparency, meaning that if
you have a game object in the bitmap that has black around it, the black will be
copied. This problem is shown in Figure 7.14. You need to add code for this.

Figure 7.14
Transparent pixels

aren’t copied to the
destination surface

during blitting.

Source Bitmap Destination Surface

0 - Denotes transparent
not copied

Transparent: 0
Non-transparent: 3, 10, 15

Non-transparent pixels
are copied during Blit

15

3

15 15 15 15 15

15 15 15 15 15

1515

1515

15 3 3 15

15 3 3 3 15

10 10

B
lit

tin
g

F
un

ct
io

n

0 0 0 0 0 0

0 0 0 0

0

0 0 0 0 0 0

0 0 0 0

0 0 0

0

0 0 0 0 0 0 0 0

0 0 0

0 0 0

As far as optimizations go, you can do the following:

Optimization 1: Get rid of all the multiplication and most of the addition by precom-
puting starting addresses in the source and destination buffers and then increment
pointers for each pixel.

Optimization 2: Use memory fills for nontransparent runs of pixels (advanced).

Let’s start with making a real function that takes transparency into consideration (use
color 0), and that uses better addressing to speed things up and get rid of the multi-
plies. Here’s one example:

void Blit8x8(int x, int y,
UCHAR *video_buffer,
UCHAR *bitmap)

{
// this function blits the image sent in bitmap to the
// destination surface pointed to by video_buffer
// the function assumes a 640x480x8 mode with linear pitch

// compute starting point into video buffer
// video_buffer = video_buffer + (x + y*640)

1072313618 CH07 10/26/99 10:06 AM Page 319

DirectX and 2D Fundamentals

320 PART II

video_buffer+= (x + (y << 9) + (y << 7));

UCHAR pixel; // used to read/write pixels

// main loop
for (int index_y=0; index_y < 8; index_y++)

{
// inner loop, this is where it counts!
for (int index_x=0; index_x < 8; index_x++)

{
// copy pixel, test for transparent though
if ((pixel = bitmap[index_x])

video_buffer[index_x] = pixel;
} // end for index_x

// advance pointers
bitmap+=8; // next line in bitmap
video_buffer+=640; // next line in video_buffer

} // end for index_y

} // end Blit8x8

This version of the blitter function is many times faster than the previous one with
multiplication, and this one even works with bitmaps that have transparent pixels—
wow! The point of this exercise is to show you how something so simple can take up
so many processor cycles. If you count cycles, the function is still crap. There’s the
overhead of the loop mechanics, of course, but the guts of the function are still ugly.
A test for transparency must be made, two array accesses, a write to memory… yuck,
yuck, yuck! This is why there are accelerators. A hardware blitter can do this in its
sleep, which is why you need to use the hardware to blit images down. That way you
can save processor cycles for other things, like AI and physics!

Not to mention that the blitter function just shown is really stupid. It is hard-coded to
640×480×256, doesn’t do any clipping (more logic), and only works for 8-bit images.

Now that I’ve shown you the old way to draw bitmaps, here’s the first look at the blit-
ter and how to use it to do memory fills. Then you’ll see how to copy images from
one surface to another. Later in the chapter, you’ll use the blitter to draw game
objects, but take your time.

Using the Blitter for Memory Filling
Although accessing the blitter under DirectDraw is trivial compared to programming
it manually, it’s still a reasonably complex piece of hardware. Therefore, whenever I
get my hands on a new piece of video hardware, I always like to try something simple
first before I try pushing the envelope. So let me show you how to do something that’s
very useful—memory fills.

1072313618 CH07 10/26/99 10:06 AM Page 320

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

321

Memory filling simply means filling a region of VRAM with some value. You’ve done
this a number of times by locking a surface and then using memset() or memcpy() to
manipulate and fill the surface memory, but there are a number of problems with this
approach. First, you’re using the main CPU to do the memory fill, so the main bus is
part of the transfer. Second, the VRAM that makes up a surface may not be totally lin-
ear. In that case, you’ll have to do a line-by-line fill or move. However, with the hard-
ware blitter you can directly fill or move chunks of VRAM or DirectDraw surfaces
instantly!

The two functions that DirectDraw supports for blitting are
IDIRECTDRAWSURFACE4::Blt() and IDIRECTDRAWSURFACE4::BltFast(). Their proto-
types are shown here:

HRESULT Blt(LPRECT lpDestRect, // dest RECT
LPDIRECTDRAWSURFACE4 lpDDSrcSurface, // dest surface
LPRECT lpSrcRect, // source RECT
DWORD dwFlags, // control flags
LPDDBLTFX lpDDBltFx); // special fx (very cool!)

The parameters are defined here and illustrated graphically in Figure 7.15:

lpDestRect is the address of a RECT structure that defines the upper-left and lower-
right points of the rectangle to blit to on the destination surface. If this parameter is
NULL, the entire destination surface will be used.

lpDDSrcSurface is the address of an IDIRECTDRAWSURFACE4 interface for the
DirectDraw surface to be used as the source of the blit.

lpSrcRect is the address of a RECT structure that defines the upper-left and lower-
right points of the rectangle to blit from on the source surface. If this parameter is
NULL, the entire source surface will be used.

dwFlags determines the valid members of the next parameter, which is a DDBLTFX
structure. Within DDBLTFX, special behaviors such as scaling, rotation, and so on can
be controlled, as well as color key information. The valid flags for dwFlags are shown
in Table 7.3.

lpDDBltFx is a structure containing special blitter-relating information about the blit
you’re requesting. The data structure follows.

typedef struct _DDBLTFX
{
DWORD dwSize; // the size of this structure in bytes
DWORD dwDDFX; // type of blitter fx
DWORD dwROP; // Win32 raster ops that are supported
DWORD dwDDROP; // DirectDraw raster ops that are supported
DWORD dwRotationAngle; // angle for rotations
DWORD dwZBufferOpCode; // z-buffer fields (advanced)

1072313618 CH07 10/26/99 10:06 AM Page 321

DirectX and 2D Fundamentals

322 PART II

DWORD dwZBufferLow; // advanced..
DWORD dwZBufferHigh; // advanced..
DWORD dwZBufferBaseDest; // advanced..
DWORD dwZDestConstBitDepth; // advanced..
union
{
DWORD dwZDestConst; // advanced..
LPDIRECTDRAWSURFACE lpDDSZBufferDest; // advanced..
};
DWORD dwZSrcConstBitDepth; // advanced..
union
{
DWORD dwZSrcConst; // advanced..
LPDIRECTDRAWSURFACE lpDDSZBufferSrc; // advanced..
};
DWORD dwAlphaEdgeBlendBitDepth; // alpha stuff (advanced)
DWORD dwAlphaEdgeBlend; // advanced..
DWORD dwReserved; // advanced..
DWORD dwAlphaDestConstBitDepth; // advanced..
union
{
DWORD dwAlphaDestConst; // advanced..
LPDIRECTDRAWSURFACE lpDDSAlphaDest; // advanced..
};
DWORD dwAlphaSrcConstBitDepth; // advanced..
union
{
DWORD dwAlphaSrcConst; // advanced..
LPDIRECTDRAWSURFACE lpDDSAlphaSrc; // advanced..
};
union // these are very important
{
DWORD dwFillColor; // color word used for fill
DWORD dwFillDepth; // z filling (advanced)
DWORD dwFillPixel; // color fill word for RGB(alpha) fills
LPDIRECTDRAWSURFACE lpDDSPattern;
};
// these are very important
DDCOLORKEY ddckDestColorkey; // destination color key
DDCOLORKEY ddckSrcColorkey; // source color key
} DDBLTFX,FAR* LPDDBLTFX;

(Note that I’ve boldfaced useful fields.)

1072313618 CH07 10/26/99 10:06 AM Page 322

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

323

TABLE 7.3 Control Flags for dwFlags Parameter of Blt()

Value Description

General Flags

DDBLT_COLORFILL Uses the dwFillColor member of the DDBLTFX struc-
ture as the RGB color that fills the destination rec-
tangle on the destination surface.

DDBLT_DDFX Uses the dwDDFX member of the DDBLTFX structure to
specify the effects to use for this blit.

DDBLT_DDROPS Uses the dwDDROP member of the DDBLTFX structure
to specify the raster operations (ROPs) that are not
part of the Win32 API.

DDBLT_DEPTHFILL Uses the dwFillDepth member of the DDBLTFX struc-
ture as the depth value with which to fill the destina-
tion rectangle on the destination z-buffer surface.

DDBLT_KEYDESTOVERRIDE Uses the ddckDestColorkey member of the DDBLTFX
structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE Uses the ddckSrcColorkey member of the DDBLTFX
structure as the color key for the source surface.

DDBLT_ROP Uses the dwROP member of the DDBLTFX structure for
the ROP for this blit. These ROPs are the same as
those defined in the Win32 API.

Figure 7.15
Blitting from source

to destination.

Source Surface
(LpDDS_Source)

Destination Surface
(LpDDS_Dest)

Blitter

Source
Rect

(x2, y2) =
(Right, Bottom)

(Left, top) = (x1, y1)

Dest
Rect

(Right, Bottom)
= (x4, y4)

(Left, top) = (x3, y3)

Lpdds_Dest Blt(Lpdds_Source . . .);

continues

1072313618 CH07 10/26/99 10:06 AM Page 323

DirectX and 2D Fundamentals

324 PART II

DDBLT_ROTATIONANGLE Uses the dwRotationAngle member of the DDBLTFX
structure as the rotation angle (specified in 1/100ths
of a degree) for the surface. This only works with
hardware support. The HEL (Hardware Emulation
Layer) can’t do rotation—bummer!

Color Key Flags

DDBLT_KEYDEST Uses the color key associated with the destination
surface.

DDBLT_KEYSRC Uses the color key associated with the source sur-
face.

Behavior Flags

DDBLT_ASYNC Performs this blit asynchronously through the FIFO
(First In, First Out) in the order received. If no room
is available in the FIFO hardware, the call fails. Fast,
but risky; error logic is needed to use this flag prop-
erly.

DDBLT_WAIT Waits until the blit can be performed and doesn’t
return the error DDERR_WASSTILLDRAWING if the blitter
was busy.

(Note that I’ve boldfaced the most useful flags.)

If you’re losing your mind, that’s fantastic—it shows that you’re following me <BG>.
Now, take a look at BltFast():

HRESULT BltFast(
DWORD dwX, // x-position of blit on destination
DWORD dwY, // y-position of blit on destination
LPDIRECTDRAWSURFACE4 lpDDSrcSurface, // source surface
LPRECT lpSrcRect, // source RECT to blit from
DWORD dwTrans); // type of transfer

dwX and dwY are the (x,y) coordinates to blit to on the destination surface.

lpDDSrcSurface is the address of the IDIRECTDRAWSURFACE4 interface for the
DirectDraw surface to be used as the source of blit.

lpSrcRect is the address of the source RECT that defines the upper-left and lower-right
points of the rectangle to blit from on the source surface.

dwTrans is the type of blitter operation. Table 7.4 shows the possible values.

TABLE 7.3 Control Flags for dwFlags Parameter of Blt()

Value Description

General Flags

1072313618 CH07 10/26/99 10:06 AM Page 324

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

325

TABLE 7.4 Control Flags for BltFast() Blitter Operation

Value Description

DDBLTFAST_SRCCOLORKEY Specifies a transparent blit that uses the source’s
color key.

DDBLTFAST_DESTCOLORKEY Specifies a transparent blit that uses the destination’s
color key.

DDBLTFAST_NOCOLORKEY Specifies a normal copy blit with no transparency.
Could be faster on some hardware; definitely faster
in HEL.

DDBLTFAST_WAIT Forces the blitter to wait while busy and not send
back the DDERR_WASSTILLDRAWING message.
BltFast() returns as soon as the blit can be per-
formed, or a serious error occurs.

(Note that I’ve boldfaced the most useful flags.)

All right, the first question is, “Why are there two different blitter functions?” The
answer should be apparent from the functions themselves: Blt() is the full-blown
kitchen sink model, while BltFast() is simpler but has fewer options. Furthermore,
Blt() uses DirectDraw clippers while BltFast() doesn’t. This means that BltFast()
is faster than Blt() in the HEL by about 10%, and may even be faster in hardware (if
the hardware is crappy and sucks at clipping). The point is, use Blt() if you need
clipping, and use BltFast() if you don’t.

Let me show you how to use the Blt() function to fill a surface. This will be reason-
ably simple because there isn’t a source surface (only a destination surface). A lot of
the parameters, therefore, can be NULL. To do a memory fill, you must perform the fol-
lowing steps:

1. Place the color index or RGB-encoded color you want to fill the surface with in
the dwColorFil0 l field of a DDBLTFX structure.

2. Set up a RECT structure with the area that you want to fill on your destination
surface.

3. Make a call to Blt() from the destination surface’s IDIRECTDRAWSURFACE4
interface pointer with the control flags DDBLT_COLORFILL | DDBLT_WAIT. This
is very important; Blt() and BltFast() are both called from the destination
surface’s interface, not the source!

Here’s the code to fill a region of an 8-bit surface with a color:

DDBLTFX ddbltfx; // the blitter fx structure
RECT dest_rect; // used to hold the destination RECT

1072313618 CH07 10/26/99 10:06 AM Page 325

DirectX and 2D Fundamentals

326 PART II

// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT(ddbltfx);

// now set the color word info to the color we desire
// in this case, we are assuming an 8-bit mode, hence,
// we’ll use a color index from 0-255, but if this was a
// 16/24/32 bit example then we would fill the WORD with
// the RGB encoding for the pixel – remember!
ddbltfx.dwFillColor = color_index;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface
dest_rect.left = x1;
dest_rect.top = y1;
dest_rect.right = x2;
dest_rect.bottom = y2;

// make the blitter call
lpddsprimary->Blt(&dest_rect, // pointer to dest RECT

NULL, // pointer to source surface
NULL, // pointer to source RECT
DDBLT_COLORFILL | DDBLT_WAIT,
// do a color fill and wait if you have to
&ddbltfx); // pointer to DDBLTFX holding info

There’s one little detail with any of the RECT structures that you send to
most DirectDraw functions: In general, they’re upper-left inclusive, but
lower-right exclusive. In other words, if you send a RECT that’s (0,0) to
(10,10), the actual rectangle scanned will be (0,0) to (9,9) inclusive. So
keep that in mind. Basically, if you want to fill the entire 640×480
screen, you would send upper-left as (0,0) and lower-right as (641, 481).

Note

The important things to notice are the setup and that both the source surface and RECT
are NULL. This makes sense because you’re using the blitter to fill with a color, not to
copy data from one surface to another. Okay, let’s move on, my little leprechaun.

The preceding example was for an 8-bit surface; the only change you need to make
for a high-color mode in 16/24/32-bit mode is to simply change the value in
ddbltfx.dwFillColor to reflect the pixel value that you want the fill to be performed
in. Isn’t that cool?

For example, if the display happened to be a 16-bit mode and you wanted to fill the
screen with green, the following code would work:

ddbltfx.dwFillColor = _RGB16BIT565(0,255,0);

Everything else in the preceding 8-bit example would stay the same. DirectDraw isn’t
that bad, huh?

1072313618 CH07 10/26/99 10:06 AM Page 326

Errata

Errata
"(641, 481)" should be "(640, 480)"

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

327

To see the blitter hardware in action, I’ve created a little psychedelic demo for you
called DEMO7_6.CPP|EXE. It puts the system into 640×480×16-bit mode and then fills
different regions of the screen with random color. You’ll see about a zillion colored
rectangles per second getting blitted to the screen (try turning the lights off and trip-
ping out on it). Take a look at the Game_Main(); it’s almost trivial:

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

DDBLTFX ddbltfx; // the blitter fx structure
RECT dest_rect; // used to hold the destination RECT

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT(ddbltfx);

// now set the color word info to the color we desire
// in this case, we are assuming an 8-bit mode, hence,
// we’ll use a color index from 0-255, but if this was a
// 16/24/32 bit example then we would fill the WORD with
// the RGB encoding for the pixel - remember!
ddbltfx.dwFillColor = _RGB16BIT565(rand()%256, rand()%256, rand()%256);

// get a random rectangle
int x1 = rand()%SCREEN_WIDTH;
int y1 = rand()%SCREEN_HEIGHT;
int x2 = rand()%SCREEN_WIDTH;
int y2 = rand()%SCREEN_HEIGHT;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface
dest_rect.left = x1;
dest_rect.top = y1;
dest_rect.right = x2;
dest_rect.bottom = y2;

// make the blitter call
if (FAILED(lpddsprimary->Blt(&dest_rect, // pointer to dest RECT

NULL, // pointer to source surface
NULL, // pointer to source RECT

1072313618 CH07 10/26/99 10:06 AM Page 327

DirectX and 2D Fundamentals

328 PART II

DDBLT_COLORFILL | DDBLT_WAIT,
// do a color fill and wait if you have to
&ddbltfx))) // pointer to DDBLTFX holding info

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Now that you know how to use the blitter to fill, let me show you how to use it to
copy data from surface to surface. This is where the real power of the blitter comes
into play. It’s the foundation for the sprite or blitter object engine that you’re going to
make in a little while.

Copying Bitmaps from Surface to Surface
The whole point of the blitter is to copy rectangular bitmaps from some source mem-
ory to destination memory. This may involve copying the entire screen, or small
bitmaps that represent game objects. In either case, you need to learn how to instruct
the blitter to copy data from one surface to another. Actually, you already know how
to do this and may not realize it. The blitter fill demo will do the job with a couple of
changes.

When you’re using the Blt() function, you basically send a source RECT and surface
and a destination RECT and surface to perform the blit. The blitter will then copy the
pixels from the source RECT to the destination RECT. The source and destination sur-
face can be the same (surface to surface copy or move), but they’re usually different.
In general, the latter is the basis for most sprite engines. (A sprite is a bitmap game
image that moves around the screen.)

At this point you know how to create a primary surface and secondary surface that
serves as a back buffer, but you don’t know how to create plain offscreen surfaces that
aren’t related to the primary surface. You can’t blit them if you can’t make them.
Thus, I’m going to hold off on showing you the general blitting case of any surface to
the primary surface until I’ve shown you how to blit from the back buffer to the pri-
mary surface. Then the transition from generic surface to primary or back buffer will
be trivial.

All you need to do to make a blit from any two surfaces (the back buffer to the pri-
mary surface, for example) is set the RECTs up correctly and make a call to Blt() with
the right parameterization. Take a look at Figure 7.15. Imagine that you want to copy
the RECT defined by (x1,y1) to (x2,y2) on the source surface (the back buffer in this
case) to (x3,y3) to (x4,y4) on the destination surface (the primary surface in this
case). Here’s the code:

1072313618 CH07 10/26/99 10:06 AM Page 328

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

329

RECT source_rect, // used to hold source RECT
dest_rect; // used to hold the destination RECT

// set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the destination surface
source_rect.left = x1;
source_rect.top = y1;
source_rect.right = x2;
source_rect.bottom = y2;

// now set up the RECT structure to fill the region from
// (x3,y3) to (x4,y4) on the destination surface
dest_rect.left = x3;
dest_rect.top = y3;
dest_rect.right = x4;
dest_rect.bottom = y4;

// make the blitter call
lpddsprimary->Blt(&dest_rect, // pointer to dest RECT

lpddsback, // pointer to source surface
&source_rect, // pointer to source RECT
DDBLT_WAIT, // control flags
NULL); // pointer to DDBLTFX holding info

That was easy, huh? Of course, there are still a few details I’m leaving out, such as
clipping and transparency. I’ll talk about clipping first. Take a look at Figure 7.16,
which depicts a bitmap that’s drawn to a surface with and without clipping. Blitting
without clipping is obviously a problem if the bitmap extends past the rectangle of the
destination surface. Memory may be overwritten and so forth, so DirectDraw supports
clipping via the IDirectDrawClipper interface. Or, if you wrote your own bitmap ras-
terizer, as you did in the example Blit8x8(), you could always add clipping code.
That will slow things down, however. The second issue pertaining to blitting is trans-
parency.

Figure 7.16
The basic bitmap clip-

ping problem. Must be
clipped!

Written off
surface into
invalid memory

Bitmap Bitmap

(0,0)
A. Blitting without clipping

(m,n)

(0,0)
B. Blitting with clipping

Destination Surface Destination Surface
(m,n)

Portion of bitmap that
extends beyond viewing

window is clipped by
hardware or software

1072313618 CH07 10/26/99 10:07 AM Page 329

DirectX and 2D Fundamentals

330 PART II

When you draw a bitmap, the image is always within a rectangular matrix of pixels.
However, you don’t want all those pixels copied when you blit. In many cases, you
select a color, such as black, blue, green, or whatever, to serve as a transparent color
that isn’t copied (you saw this implemented in Blit8x8()). DirectDraw also has sup-
port for this called color keys, which I will also talk about shortly.

Before you move on to clipping, I’d like to show you a demo of blitting from the back
buffer to the primary surface. Take a look at DEMO7_7.CPP|EXE on the CD. The only
problem is that I haven’t shown you how to load bitmaps from disk yet, so I can’t
really blit anything cool—bummer! So what I did was draw a gradient of green in
16-bit color mode from top to bottom on the back buffer, and then use this as the
source data. You’ll see a bunch of gradient rectangles copied to the primary surface at
warp speed. Here’s the source from Game_Main() for your review:

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

RECT source_rect, // used to hold the destination RECT
dest_rect; // used to hold the destination RECT

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// get a random rectangle for source
int x1 = rand()%SCREEN_WIDTH;
int y1 = rand()%SCREEN_HEIGHT;
int x2 = rand()%SCREEN_WIDTH;
int y2 = rand()%SCREEN_HEIGHT;

// get a random rectangle for destination
int x3 = rand()%SCREEN_WIDTH;
int y3 = rand()%SCREEN_HEIGHT;
int x4 = rand()%SCREEN_WIDTH;
int y4 = rand()%SCREEN_HEIGHT;

// now set up the RECT structure to fill the region from
// (x1,y1) to (x2,y2) on the source surface
source_rect.left = x1;
source_rect.top = y1;
source_rect.right = x2;

1072313618 CH07 10/26/99 10:07 AM Page 330

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

331

source_rect.bottom = y2;

// now set up the RECT structure to fill the region from
// (x3,y3) to (x4,y4) on the destination surface
dest_rect.left = x3;
dest_rect.top = y3;
dest_rect.right = x4;
dest_rect.bottom = y4;

// make the blitter call
if (FAILED(lpddsprimary->Blt(&dest_rect, // pointer to dest RECT

lpddsback, // pointer to source surface
&source_rect,// pointer to source RECT
DDBLT_WAIT, // control flags
NULL))) // pointer to DDBLTFX holding info

return(0);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Also, in Game_Init() I used a little inline assembly to do a DWORD or 32-bit line of
two 16-bit pixels at once in RGB.RGB format instead of a slower 8-bit fill. Here’s that
code:

_asm
{
CLD ; clear direction of copy to forward
MOV EAX, color ; color goes here
MOV ECX, (SCREEN_WIDTH/2) ; number of DWORDS goes here
MOV EDI, video_buffer ; address of line to move data
REP STOSD ; send the Pentium X on its way…
} // end asm

Basically, the preceding code implements the following C/C++ loop:

for (DWORD ecx = 0, DWORD *edi = video_buffer;
ecx < (SCREEN_WIDTH/2); ecx++)
edi[ecx] = color;

If you don’t know assembly language, don’t freak out. I just like to use it now and
then for little things like this. Also, it’s good practice to use the inline assembler; it
keeps you on your toes!

As an exercise, see if you can make the program work only on the primary surface.
Simply delete the back buffer code, draw the image on the primary surface, and then
run the blitter with the source and destination as the same surface. Watch what hap-
pens…

1072313618 CH07 10/26/99 10:07 AM Page 331

DirectX and 2D Fundamentals

332 PART II

Clipper Fundamentals
I’m going to talk about clipping over and over in this book. Pixel clipping, bitmap
clipping, 2D clipping, 3D clipping, and I’m sure I’ll think of some more <BG>. Right
now, though, the theme is DirectDraw. I want to focus on pixel clipping and bitmap
clipping to help you ease into the subject, which I guarantee is going to get very com-
plex when you do it in 3D!

Clipping is generally defined as “not drawing pixels or image elements that are out of
bounds of the view port or window.” Just like Windows clips anything you draw to the
client area of your window, you need to do this in a game that runs under DirectX.
Now, as far as 2D graphics go, the only thing that DirectDraw accelerates are bitmaps
and bit blitting. Sure, many cards know how to draw lines, circles, and other conic
sections, but DirectDraw doesn’t support these primitives, so you don’t get access to
them (hopefully you will soon, though).

What this all means is that if you write a graphics engine that draws pixels, lines, and
bitmaps, you have to do the clipping yourself for the pixel and line drawing algo-
rithms. However, DirectDraw can help with the bitmaps—as long as the bitmaps are
in the form of DirectDraw surfaces, or IDirectDrawSurfaces to be exact.

The help that DirectDraw gives is in the form of DirectDraw clippers under the
IDirectDrawClipper interface. What you do is create an IDirectDrawClipper, give
it valid regions to clip to, and then attach it to a surface. Then, when you use the blit-
ter function, Blt(), it will clip to the clipping regions and you won’t have any out-of-
bounds blitting or performance hits—if you have the proper hardware, of course. But
first, take a look at how to clip pixels and do a rewrite of the Blit8x8() function that
does clip.

Clipping Pixels to a Viewport
Figure 7.17 gives you a visual of the problem. You want to clip a pixel with coordi-
nates (x,y) to a viewport located at (x1,y1) to (x2,y2). If (x,y) is within the rectangle
defined by (x1,y1) to (x2,y2), render it; otherwise, don’t. Simple enough?

Here’s the code for a 640×480 linear 8-bit mode:

// assume clipping rectangle is global
int x1,y1,x2,y2; // these are defined somewhere

void Plot_Pixel_Clip8(int x, int y,
UCHAR color,
UCHAR *video_buffer)

{
// test the pixel to see if it’s in range

1072313618 CH07 10/26/99 10:07 AM Page 332

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

333

if (x>=x1 && x<=x2 && y>=y1 && y<=y2)
video_buffer[x+y*640] = color;

} // end if

Figure 7.17
A detailed view of the

clipping region.

Outside clip region

In clipping region

Pixel to be clipped
(x, y)

Outside clip region

Outside clip region

Outside clip region

Clipping region

(x1, y1)

(x2, y2)

Of course, there’s a lot of room for optimization, but you get the point—you’ve cre-
ated a software filter on the pixel coordinates. Only pixel coordinate values that satisfy
the if statement pass through the filter—interesting concept, huh? Now, the preceding
clipper is very general, but in many cases, the window or viewport is located at (0,0)
and has dimensions (win_width, win_height). This simplifies your code a little:

// assume clipping rectangle is global
int x1,y1,x2,y2; // these are defined somewhere

void Plot_Pixel2_Clip8(int x, int y,
UCHAR color,
UCHAR *video_buffer)

{
// test the pixel to see if it’s in range
if (x>=0 && x<win_width && y>=0 && y<=win_height)

video_buffer[x+y*640] = color;

} // end if

See? In addition, more optimizations can be made whenever zeros are around. Now
that you get the point of clipping and know how to do it, I’ll show you how to clip an
entire bitmap.

1072313618 CH07 10/26/99 10:07 AM Page 333

DirectX and 2D Fundamentals

334 PART II

Clipping Bitmaps the Hard Way
Clipping bitmaps is as simple as clipping pixels. There are two ways to approach it:

• Method 1: Clip each pixel of the bitmap on a independent basis as it’s gener-
ated. Simple, but slow.

• Method 2: Clip the bounding rectangle of the bitmap to the viewport, and then
only draw the portion of the bitmap that’s within the viewport. More complex,
but very fast, with almost no performance loss and no hit at all in the inner loop.

Obviously, you’re going to use Method 2, which is shown graphically in Figure 7.18.
Also, I’m going to generalize a little and assume that the screen extends from (0,0) to
(SCREEN_WIDTH-1, SCREEN_HEIGHT-1), that your bitmap has it’s upper-left corner at
(x,y), and that it’s exactly so many width×height pixels in dimension—or in other
words, the bitmap extends from (x,y) to (x+width-1, y+height-1). Please take a minute
and make sure you see the reasoning for the “-1” factors. Basically, if a bitmap is 1×1,
it has a width of 1 and a height of 1. Therefore, if the origin of the bitmap is at (x,y),
the bitmap extends from (x,y) to (x+1-1,y+1-1) or (x,y). This is because it’s only 1×1
pixels, so the “-1” factor is needed, as shown by this base case.

Figure 7.18
How to clip the

bounding box of a
bitmap.

(0,0)

A. Before clipping

(Screen_width-1, screen_height-1)

(0,0)

B. After clipping

Clipping region Clipping region

(Screen_width-1, screen_height-1)

(Screen_width-1, y + height-1)

After clipping
(screen_width-1,0)

(x, 0)

(x, y + height-1)

Width

Height

(x, y)

(x + width-1,
y + height-1)

Bounding box of bitmap
to be clipped

The plan of attack for clipping is simple—you just clip the virtual rectangle of the
bitmap to the viewport and then draw only the portions of the bitmap that are in the
clipped bitmap. Here’s the code for a 640×480×8 linear mode:

// dimensions of window or viewport (0,0) is origin
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

void Blit_Clipped(int x, int y, // position to draw bitmap
int width, int height, // size of bitmap in pixels

1072313618 CH07 10/26/99 10:07 AM Page 334

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

335

UCHAR *bitmap, // pointer to bitmap data
UCHAR *video_buffer) // pointer to video buffer surface

{
// this function blits and clips the image sent in bitmap to the
// destination surface pointed to by video_buffer
// the function assumes a 640x480x8 mode with linear pitch

// first do trivial rejections of bitmap, is it totally invisible?
if ((x >= SCREEN_WIDTH) || (y>= SCREEN_HEIGHT) ||

((x + width) <= 0) || ((y + height) <= 0))
return;

// clip source rectangle
// pre-compute the bounding rect to make life easy
int x1 = x;
int y1 = y;
int x2 = x1 + width - 1;
int y2 = y1 + height -1;

// upper left hand corner first
if (x1 < 0)

x1 = 0;

if (y1 < 0)
y1 = 0;

// now lower left hand corner
if (x2 >= SCREEN_WIDTH)

x2 = SCREEN_WIDTH-1;

if (y2 >= SCREEN_HEIGHT)
y2 = SCREEN_HEIGHT-1;

// now we know to draw only the portions
// of the bitmap from (x1,y1) to (x2,y2)
// compute offsets into bitmap on x,y axes,
// we need this to compute starting point
// to rasterize from
int x_off = x1 - x;
int y_off = y1 - y;

// compute number of columns and rows to blit
int dx = x2 - x1 + 1;
int dy = y2 - y1 + 1;

// compute starting address in video_buffer
video_buffer += (x1 + y1*640);

// compute starting address in bitmap to scan data from
bitmap += (x_off + y_off*width);

1072313618 CH07 10/26/99 10:07 AM Page 335

DirectX and 2D Fundamentals

336 PART II

// at this point bitmap is pointing to the first
// pixel in the bitmap that needs to
// be blitted, and video_buffer is pointing to
// the memory location on the destination
// buffer to put it, so now enter rasterizer loop

UCHAR pixel; // used to read/write pixels

for (int index_y = 0; index_y < dy; index_y++)
{
// inner loop, where the action takes place
for (int index_x = 0; index_x < dx; index_x++)

{
// read pixel from source bitmap,
// test for transparency and plot
if ((pixel = bitmap[index_x]))

video_buffer[index_x] = pixel;

} // end for index_x

// advance pointers
video_buffer+=640; // bytes per scanline
bitmap +=width; // bytes per bitmap row

} // end for index_y

} // end Blit_Clipped

As a demo of this little software clipper, I’ve written the crudest bitmap engine you’ve
ever seen. Basically, I created an array of 64 bytes to hold a little happy face. Here’s
the declaration:

UCHAR happy_bitmap[64] = {0,0,0,0,0,0,0,0,
0,0,1,1,1,1,0,0,
0,1,0,1,1,0,1,0,
0,1,1,1,1,1,1,0,
0,1,0,1,1,0,1,0,
0,1,1,0,0,1,1,0,
0,0,1,1,1,1,0,0,
0,0,0,0,0,0,0,0};

Then I put the system into 320×240×8 back buffer mode and made color index
RGB(255,255,0), which is yellow. Then I made the little happy face move around the
screen by moving it on a constant random velocity and then wrapping the face around
when it goes too far off any of the four screen edges. It goes out of the window just
far enough for you to see the clipping function work. Then I got carried away and
made 100 happy faces! The final program is DEMO7_8.CPP|EXE, and Figure 7.19 is a
screen shot of the program in action.

1072313618 CH07 10/26/99 10:07 AM Page 336

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

337

Here’s the Game_Main() function for your review:

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is the main loop of the game, do all your processing
// here

DDBLTFX ddbltfx; // the blitter fx structure

// make sure this isn’t executed again
if (window_closed)

return(0);

// for now test if user is hitting ESC and send WM_CLOSE
if (KEYDOWN(VK_ESCAPE))

{
PostMessage(main_window_handle,WM_CLOSE,0,0);
window_closed = 1;
} // end if

// use the blitter to erase the back buffer
// first initialize the DDBLTFX structure
DDRAW_INIT_STRUCT(ddbltfx);

// now set the color word info to the color we desire
ddbltfx.dwFillColor = 0;

// make the blitter call
if (FAILED(lpddsback->Blt(NULL, // ptr to dest RECT, NULL means all

Figure 7.19
DEMO7_8.EXE in action.

1072313618 CH07 10/26/99 10:07 AM Page 337

DirectX and 2D Fundamentals

338 PART II

NULL, // pointer to source surface
NULL, // pointer to source RECT
DDBLT_COLORFILL | DDBLT_WAIT,
// do a color fill and wait if you have to
&ddbltfx))) // pointer to DDBLTFX holding info

return(0);

// initialize ddsd
DDRAW_INIT_STRUCT(ddsd);

// lock the back buffer surface
if (FAILED(lpddsback->Lock(NULL,&ddsd,

DDLOCK_WAIT | DDLOCK_SURFACEMEMORYPTR,
NULL)))

return(0);

// draw all the happy faces
for (int face=0; face < 100; face++)

{
Blit_Clipped(happy_faces[face].x,

happy_faces[face].y,
8,8,
happy_bitmap,
(UCHAR *)ddsd.lpSurface,
ddsd.lPitch);

} // end face

// move all happy faces
for (face=0; face < 100; face++)

{
// move
happy_faces[face].x+=happy_faces[face].xv;
happy_faces[face].y+=happy_faces[face].yv;

// check for off screen, if so wrap
if (happy_faces[face].x > SCREEN_WIDTH)

happy_faces[face].x = -8;
else
if (happy_faces[face].x < -8)

happy_faces[face].x = SCREEN_WIDTH;

if (happy_faces[face].y > SCREEN_HEIGHT)
happy_faces[face].y = -8;

else
if (happy_faces[face].y < -8)

happy_faces[face].y = SCREEN_HEIGHT;

} // end face

// unlock surface
if (FAILED(lpddsback->Unlock(NULL)))

return(0);

1072313618 CH07 10/26/99 10:07 AM Page 338

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

339

// flip the pages
while (FAILED(lpddsprimary->Flip(NULL, DDFLIP_WAIT)));

// wait a sec
Sleep(30);

// return success or failure or your own return code here
return(1);

} // end Game_Main

Make sure to look at the code for Blit_Clipped() in the demo program,
because I slightly modified it to work with a variable memory pitch. No
big deal, but I thought you might want to know. Also, you may be won-
dering why I decided to use 320×240 mode. Well, the little 8×8 bitmap
in 640×480 was so small, I was going blind <BG>.

Note

Making a DirectDraw Clip with IDirectDrawClipper
Now that you see the work it takes to perform clipping via software, it’s time to look
at how easy it is with DirectDraw. DirectDraw has an interface called
IDirectDrawClipper that’s used for all 2D blitter clipping, as well as 3D rasterization
under Direct3D. In essence, the buck stops here. Right now, however, you’re only
interested in using the clipper to clip bitmaps that are blitted using the Blt() function
and the associated blitter hardware.

To set up DirectDraw clipping, you must do the following:

1. Create a DirectDraw clipper object.

2. Create a clipping list.

3. Send the clipping list data to the clipper with
IDIRECTDRAWCLIPPER::SetClipList().

4. Attach the clipper to a window and/or surface with
IDIRECTDRAWSURFACE4::SetClipper().

I’ll begin with step 1. The function to create an IDirectDrawClipper interface is
called IDIRECTDRAW4::CreateClipper() and is shown here:

HRESULT CreateClipper(DWORD dwFlags, // control flags
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, // address of interface pointer
IUnknown FAR *pUnkOuter); // COM stuff

The function returns DD_OK if successful.

1072313618 CH07 10/26/99 10:07 AM Page 339

DirectX and 2D Fundamentals

340 PART II

The parameters are pretty easy. dwFlags is currently unused and must be 0.
lplpDDClipper is the address of a IDirectDrawClipper interface that will point to a
valid DirectDraw clipper after the function succeeds. Finally, pUnkOuter is for COM
aggregation, which is something you don’t care about—make it NULL. To create a clip-
per object, just enter this:

LPDIRECTDRAWCLIPPER lpddclipper = NULL; // hold the clipper

if (FAILED(lpdd->CreateClipper(0,&lpddclipper,NULL)))
return(0);

If the function succeeds, lpddclipper will point to a valid IDirectDrawClipper
interface and you can call the methods on it.

That’s great, but how do you create the clipping list, and what does it represent?
Under DirectDraw, the clipping list is a list of rectangles stored in RECT structures that
indicate the valid regions that can be blitted to, as shown in Figure 7.20. As you can
see, there are a number of rectangles on the display surface, but DirectDraw’s blitter
system can blit only within these rectangles. You can draw anywhere you want with
Lock()/Unlock(), but the blitter hardware will be able to draw only within the clip-
ping regions, more commonly called the clip list.

Figure 7.20
The relationship

between the clip list
and the blitter.

Clipping List: Array of RECT's

(0, 0)

• RECT

• RECT

• RECT

• RECT

HAL & HEL will only
Blt into these
RECTs, everything
else will be clipped.

(m, n)

Display surface

1 or more

•
•
•

To create a clip list, you must fill in a rather ugly data structure called RGNDATA
(Region Data), which is shown here:

typedef struct _RGNDATA
{ /* rgnd */
RGNDATAHEADER rdh; // header info
char Buffer[1]; // the actual RECT list
} RGNDATA;

1072313618 CH07 10/26/99 10:07 AM Page 340

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

341

This is a very odd data structure. Basically, it’s a variant size structure, which means
that the Buffer[] part of it can be any length. The structure is generated dynamically
rather than statically, and its true length is stored in the RGNDATAHEADER. What you’re
seeing here is the old version of the new DirectX data structure technique that sets the
dwSize field of every structure. Maybe a better approach would have been to make
Buffer[] a pointer rather than storage for a single byte?

Whatever the thinking was, here’s the deal: All you have to do is allocate enough
memory for a RGNDATAHEADER structure, along with memory to hold an array of one or
more RECT structures that are contiguous in memory, as shown in Figure 7.21. Then
you’ll just cast it to a RGNDATA type and pass it.

Figure 7.21
The memory footprint

of the RGNDATA
clipping structure. RGN DATA HEADER

RGN DATA structure (variable length)

RECT

RECT

RECT

RECT

•
•
•
•

Starting address

Buffer Clip list

Anyway, look at what’s in the RGNDATAHEADER structure:

typedef struct _RGNDATAHEADER
{ // rgndh
DWORD dwSize; // size of this header in bytes
DWORD iType; // type of region data
DWORD nCount; // number of RECT’S in Buffer[]
DWORD nRgnSize; // size of Buffer[]
RECT rcBound; // a bounding box around all RECTS
} RGNDATAHEADER;

To set this structure up, set dwSize to the sizeof(RGNDATAHEADER), set iType to
RDH_RECTANGLES, set nCount to the number of rectangles or RECTS in your clipping
list, set nRgnSize to the size in bytes of your Buffer[] (which is equal to
sizeof(RECT)*nCount), create a bounding box around all your RECTs, and store this
box in rcBound. Once you’ve generated the RGNDATA structure, you send it to your
clipper with a call to IDIRECTDRAWCLIPPER::SetClipList(), shown here:

HRESULT SetClipList(LPRGNDATA lpClipList, // ptr to RGNDATA
DWORD dwFlags); // flags, always 0

1072313618 CH07 10/26/99 10:07 AM Page 341

DirectX and 2D Fundamentals

342 PART II

There’s not much more to say about this. Assuming you’ve already generated the
RGNDATA structure for your clipping list, here’s how you would set the clipping list:

if (FAILED(lpddclipper->SetClipList(&rgndata,0)))
return(0);

Once the clip list is set, you can finally attach the clipper to the surface you want it to
be associated with using IDIRECTDRAWSURFACE4::SetClipper(), which is shown
here:

HRESULT SetClipper(LPDIRECTDRAWCLIPPER lpDDClipper);

And here’s the function in action:

if (FAILED(lpddsurface->SetClipper(&lpddcliper)))
return(0);

In most cases, lpddsurface would be your offscreen rendering surface, such as the
back buffer surface. Usually, you don’t attach a clipper to the primary surface.

Okay, I know you’re probably turning purple with frustration because I’ve hedged
about the details of creating the RGNDATA structure and setting it up. The reason is that
it’s too hard to explain detail by detail; it’s easier to just look at the code. Hence, I’ve
created a function called DDraw_Attach_Clipper() (part of the graphics library) that
creates a clipper and a clip list, and attaches them to any surface. Here’s the code:

LPDIRECTDRAWCLIPPER DDraw_Attach_Clipper(LPDIRECTDRAWSURFACE4 lpdds,
int num_rects,
LPRECT clip_list)

{
// this function creates a clipper from the sent clip list and attaches
// it to the sent surface

int index; // looping var
LPDIRECTDRAWCLIPPER lpddclipper; // pointer to the newly

// created dd clipper
LPRGNDATA region_data; // pointer to the region

// data that contains
// the header and clip list

// first create the direct draw clipper
if (FAILED(lpdd->CreateClipper(0,&lpddclipper,NULL)))

return(NULL);

// now create the clip list from the sent data

// first allocate memory for region data
region_data = (LPRGNDATA)malloc(sizeof(RGNDATAHEADER)+

num_rects*sizeof(RECT));

1072313618 CH07 10/26/99 10:07 AM Page 342

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

343

// now copy the rects into region data
memcpy(region_data->Buffer, clip_list, sizeof(RECT)*num_rects);

// set up fields of header
region_data->rdh.dwSize = sizeof(RGNDATAHEADER);
region_data->rdh.iType = RDH_RECTANGLES;
region_data->rdh.nCount = num_rects;
region_data->rdh.nRgnSize = num_rects*sizeof(RECT);

region_data->rdh.rcBound.left = 64000;
region_data->rdh.rcBound.top = 64000;
region_data->rdh.rcBound.right = -64000;
region_data->rdh.rcBound.bottom = -64000;

// find bounds of all clipping regions
for (index=0; index<num_rects; index++)

{
// test if the next rectangle unioned with
// the current bound is larger
if (clip_list[index].left < region_data->rdh.rcBound.left)

region_data->rdh.rcBound.left = clip_list[index].left;

if (clip_list[index].right > region_data->rdh.rcBound.right)
region_data->rdh.rcBound.right = clip_list[index].right;

if (clip_list[index].top < region_data->rdh.rcBound.top)
region_data->rdh.rcBound.top = clip_list[index].top;

if (clip_list[index].bottom > region_data->rdh.rcBound.bottom)
region_data->rdh.rcBound.bottom = clip_list[index].bottom;

} // end for index

// now we have computed the bounding rectangle region and set up the data
// now let’s set the clipping list

if (FAILED(lpddclipper->SetClipList(region_data, 0)))
{
// release memory and return error
free(region_data);
return(NULL);
} // end if

// now attach the clipper to the surface
if (FAILED(lpdds->SetClipper(lpddclipper)))

{
// release memory and return error
free(region_data);
return(NULL);
} // end if

// all is well, so release memory and
// send back the pointer to the new clipper

1072313618 CH07 10/26/99 10:07 AM Page 343

DirectX and 2D Fundamentals

344 PART II

free(region_data);
return(lpddclipper);

} // end DDraw_Attach_Clipper

The function is almost trivial to use. Let’s say you have an animation system with a
primary surface called lpddsprimary and a secondary back buffer called lpddsback,
to which you want to attach a clipper with the following RECT list:

RECT rect_list[3] = {{10,10,50,50},
{100,100,200,200},
{300,300, 500, 450}};

Here’s the call to do it:

LPDIRECTDRAWCLIPPER lpddclipper =
DDraw_Attach_Clipper(lpddsback,3,rect_list);

Cool, huh? If you made this call, only portions of bitmaps that were within the rectan-
gles (10,10) to (50,50), (100,100) to (200,200), and (300,300) to (500, 450) would be
visible. Also, just to let you know, this function is part of a library that I’m working
on as I write this chapter. Later, I’m going to show you all the functions in it so you
don’t have to write all this tedious DirectDraw code yourself and you can focus on
game programming, my little spawn <BG>.

Anyway, based on the preceding code, I’ve created a demo called DEMO7_9.CPP|EXE.
Basically, I took the blitter demo program DEMO7_7.CPP, converted it to 8-bit color,
and added the clipper function so that only blits within the current clipping regions
are displayed on the primary surface. Furthermore, to be consistent, the clipping
regions are the same ones listed in the preceding paragraph. Figure 7.22 is a screen
shot of the program in action. Notice that it looks like a bunch of little windows that
the clipper allows bitmaps to be rendered to.

Here’s the code that sets up the clipper in the Game_Main() of DEMO7_9.CPP:

// now create and attach clipper
RECT rect_list[3] = {{10,10,50,50},

{100,100,200,200},
{300,300, 500, 450}};

if (FAILED(lpddclipper = DDraw_Attach_Clipper(lpddsprimary,3,rect_list)))
return(0);

Coolio! At this point, I’m extremely bored with gradient fills and colored rectangles.
If I don’t see some bitmaps, I’m going to lose my mind! Next I’ll show you how to
load bitmaps with Windows.

1072313618 CH07 10/26/99 10:07 AM Page 344

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

345

Working with Bitmaps
There are about a trillion different bitmap file formats, but I only use a few for game
programming: .PCX (PC Paint), .TGA (Targa), and .BMP (Windows native format).
They all have their pros and cons, but you’re using Windows, so you might as well
use the native format .BMP to make life easier. (I’m already in DirectX API revision
hell, so I’m a bit unstable at this point. If I see one more Don Lapre commercial, I
think I’m going to go postal!)

The other formats all work in similar ways, so once you learn how to deal with one
file format, figuring out another involves nothing more than getting hold of the header
structure format and reading some bytes off the disk.

Loading .BMP files
There are a number of ways to read a .BMP file—you can write a reader yourself, use
a Win32 API function, or a mixture of the two. Because figuring out Win32 functions
is usually as hard as writing your own, you might as well write a .BMP loader your-
self. A .BMP file consists of three parts, as shown in Figure 7.23.

Figure 7.22
DEMO7_9.EXE in action.

1072313618 CH07 10/26/99 10:07 AM Page 345

DirectX and 2D Fundamentals

346 PART II

The three parts are as follows:

Bitmap file header—This holds general information about the bitmap and is con-
tained in the Win32 data structure BITMAPFILEHEADER:

typedef struct tagBITMAPFILEHEADER
{ // bmfh
WORD bfType; // Specifies the file type.

// Must be 0x4D42 for .BMP
DWORD bfSize; // Specifies the size in bytes of

// the bitmap file.
WORD bfReserved1; //Reserved; must be zero.
WORD bfReserved2; // Reserved; must be zero.
DWORD bfOffBits; // Specifies the offset, in

// bytes, from the
// BITMAPFILEHEADER structure
// to the bitmap bits.

} BITMAPFILEHEADER;

Bitmap info section—This is composed of two other data structures, the BITMAPIN-
FOHEADER section and the palette information (if there is one):

typedef struct tagBITMAPINFO
{ // bmi
BITMAPINFOHEADER bmiHeader; // the info header
RGBQUAD bmiColors[1]; // palette (if there is one)
} BITMAPINFO;

And here’s the BITMAPINFOHEADER structure:

typedef struct tagBITMAPINFOHEADER{ // bmih
DWORD biSize; // Specifies the number of

// bytes required by the structure.
LONG biWidth; // Specifies the width of the bitmap, in pixels.
LONG biHeight; // Specifies the height of the bitmap, in pixels.

// If biHeight is positive, the bitmap is a
// bottom-up DIB and its

Figure 7.23
The structure of a
.BMP file on disk.

Bitmap file header Very simple header info

Detailed info about data
and BMP dimensions

RGB quad []

Actual data for bitmap

Bitmap.Bmp file

Bitmap info

Palette if palettized

Bitmap data
RGB pixels

or
Indexed data

1072313618 CH07 10/26/99 10:07 AM Page 346

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

347

// origin is the lower left corner
// If biHeight is negative, the bitmap
// is a top-down DIB and its origin is the upper left corner.

WORD biPlanes; // Specifies the number of color planes, must be 1.
WORD biBitCount // Specifies the number of bits per pixel.

// This value must be 1, 4, 8, 16, 24, or 32.
DWORD biCompression; // specifies type of compression (advanced)

// it will always be
// BI_RGB for uncompressed .BMPs
// which is what we’re going to use

DWORD biSizeImage; // size of image in bytes
LONG biXPelsPerMeter; // specifies the number of

// pixels per meter in X-axis
LONG biYPelsPerMeter; // specifies the number of

// pixels per meter in Y-axis
DWORD biClrUsed; // specifies the number of

// colors used by the bitmap
DWORD biClrImportant; // specifies the number of

// colors that are important
} BITMAPINFOHEADER;

8-bit images will usually have the biClrUsed and biClrImportant fields
both set to 256, while 16 and 24-bit images will set them to 0. Hence,
always test the biBitCount to find out how many bits per pixel are used
and go from there.

Note

Bitmap data area—This is a byte stream that describes the pixels of the image (this
may or may not be in compressed form) in 1-, 4-, 8-, 16-, or 24-bit format. The data
is in line-by-line order, but it may be upside-down so that the first line of data is the
last line of the image, as shown in Figure 7.24. You can detect this by looking at the
sign of biHeight—a positive sign means the bitmap is upside-down, and a negative
sign means the bitmap is normal.

Figure 7.24
The image data in a

.BMP file is sometimes
inverted on the y-axis.

Width

Height

Line 0

Line N

Original bitmap

Width

Height

Line 0

Line N

Data stored in .BMP

Save

Paint
program

.BMP

Some paint programs
do this.

During the file load, re-invert the image.

1072313618 CH07 10/26/99 10:07 AM Page 347

DirectX and 2D Fundamentals

348 PART II

To read a .BMP file manually, you first open the file (with any file I/O technique you
like) and then read in the BITMAPFILEHEADER. Next, read in the BITMAPINFO section,
which is really just a BITMAPINFOHEADER plus palette (if 256 color), so really you’re
just reading in the BITMAPINFOHEADER structure. From this, you determine the size of
the bitmap (biWidth, biHeight) and its color depth (biBitCount, biClrUsed). Here
you also read in the bitmap data along with the palette (if there is one). Of course,
there are a lot of details, such as allocating buffers to read the data and moving file
pointers around. Also, the palette entries are RGBQUAD, which are in reverse order of
normal PALETTEENTRYs, so you have to convert them like this:

typedef struct tagRGBQUAD
{ // rgbq
BYTE rgbBlue; // blue
BYTE rgbGreen; // green
BYTE rgbRed; // red
BYTE rgbReserved; // unused
} RGBQUAD;

Back in Chapter 4, “Windows GDI, Controls, and Last-Minute Gift Ideas,” you may
recall the LoadBitmap() function that’s used to load bitmap resources from disk. You
could use this function, but then you would always have to compile all your game
bitmaps into your .EXE as a resource. Although this is cool for a complete product, it’s
not something you want to do when developing. Basically, you want to be able to
tweak your graphics with a paint or modeling program, dump the bitmaps in a direc-
tory, and run your game to see what’s up. Hence, you need a more general disk file-
based bitmap reading function, which you’ll write in a moment. Before you do, take a
look at the Win32 API function to load bitmaps. Run LoadImage():

HANDLE LoadImage(
HINSTANCE hinst, // handle of the instance that contains

// the image
LPCTSTR lpszName, // name or identifier of image
UINT uType, // type of image
int cxDesired, // desired width
int cyDesired, // desired height
UINT fuLoad); // load flags

This function is rather general, but you only want to use it to load .BMP files from the
disk, so you don’t have to worry about all the other stuff it does. Simply set the para-
meters to the following values to load a .BMP from disk:

hinst—This is the instance handle. Set it to NULL.

lpszName—This is the name of the .BMP file on disk. Send a standard NULL-terminated
filename like ANDRE.BMP, C:/images/ship.bmp, and so forth.

uType—This is the type of image to load. Set it to IMAGE_BITMAP.

1072313618 CH07 10/26/99 10:07 AM Page 348

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

349

cxDesired, cyDesired—These are the desired width and height of the bitmap. If
you set these to any number other than 0, LoadImage() will scale the bitmap to fit.
Therefore, if you know the size of the image, set them. Otherwise, leave them at 0 and
read the size of the image later.

fuLoad—This is a load control flag. Set it to (LR_LOADFROMFILE | LR_CREATEDIB-
SECTION). This instructs LoadImage() to load the data from disk using the name in
lpszName and to not translate the bitmap data to the current display device’s color
characteristics.

The only problem with this function is that it’s so general that getting to the damn
data is difficult. You have to use more functions to access the header information, and
if there’s a palette, more trouble arises. Instead, I just created my own
Load_Bitmap_File() function that loads a bitmap from disk in any format (including
palettized) and stuffs the information into this structure:

typedef struct BITMAP_FILE_TAG
{
BITMAPFILEHEADER bitmapfileheader; // this contains the

// bitmapfile header
BITMAPINFOHEADER bitmapinfoheader; // this is all the info

// including the palette
PALETTEENTRY palette[256];// we will store the palette here
UCHAR *buffer; // this is a pointer to the data

} BITMAP_FILE, *BITMAP_FILE_PTR;

Notice that I’ve basically put the BITMAPINFOHEADER and the exploded BITMAPINFO all
together in one structure. This is much easier to work with. Now for the
Load_Bitmap_File() function:

int Load_Bitmap_File(BITMAP_FILE_PTR bitmap, char *filename)
{
// this function opens a bitmap file and loads the data into bitmap

int file_handle, // the file handle
index; // looping index

UCHAR *temp_buffer = NULL; // used to convert 24 bit images to 16 bit
OFSTRUCT file_data; // the file data information

// open the file if it exists
if ((file_handle = OpenFile(filename,&file_data,OF_READ))==-1)

return(0);

// now load the bitmap file header
_lread(file_handle, &bitmap->bitmapfileheader,sizeof(BITMAPFILEHEADER));

// test if this is a bitmap file
if (bitmap->bitmapfileheader.bfType!=BITMAP_ID)

1072313618 CH07 10/26/99 10:07 AM Page 349

DirectX and 2D Fundamentals

350 PART II

{
// close the file
_lclose(file_handle);

// return error
return(0);
} // end if

// now we know this is a bitmap, so read in all the sections

// first the bitmap infoheader

// now load the bitmap file header
_lread(file_handle, &bitmap->bitmapinfoheader,sizeof(BITMAPINFOHEADER));

// now load the color palette if there is one
if (bitmap->bitmapinfoheader.biBitCount == 8)

{
_lread(file_handle, &bitmap->palette,

MAX_COLORS_PALETTE*sizeof(PALETTEENTRY));

// now set all the flags in the palette correctly
// and fix the reversed
// BGR RGBQUAD data format
for (index=0; index < MAX_COLORS_PALETTE; index++)

{
// reverse the red and green fields
int temp_color = bitmap->palette[index].peRed;
bitmap->palette[index].peRed = bitmap->palette[index].peBlue;
bitmap->palette[index].peBlue = temp_color;

// always set the flags word to this
bitmap->palette[index].peFlags = PC_NOCOLLAPSE;
} // end for index

} // end if

// finally the image data itself
_lseek(file_handle,

-(int)(bitmap->bitmapinfoheader.biSizeImage),SEEK_END);

// now read in the image

if (bitmap->bitmapinfoheader.biBitCount==8 ||
bitmap->bitmapinfoheader.biBitCount==16 ||
bitmap->bitmapinfoheader.biBitCount==24)
{
// delete the last image if there was one
if (bitmap->buffer)

free(bitmap->buffer);

// allocate the memory for the image
if (!(bitmap->buffer =

1072313618 CH07 10/26/99 10:07 AM Page 350

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

351

(UCHAR *)malloc(bitmap->bitmapinfoheader.biSizeImage)))
{
// close the file
_lclose(file_handle);

// return error
return(0);
} // end if

// now read it in
_lread(file_handle,bitmap->buffer,

bitmap->bitmapinfoheader.biSizeImage);

} // end if
else

{
// serious problem
return(0);

} // end else

// close the file
_lclose(file_handle);

// flip the bitmap
Flip_Bitmap(bitmap->buffer,

bitmap->bitmapinfoheader.biWidth*
(bitmap->bitmapinfoheader.biBitCount/8),
bitmap->bitmapinfoheader.biHeight);

// return success
return(1);

} // end Load_Bitmap_File

There’s a call to Flip_Bitmap() at the end of the function. This simply
inverts the image because most .BMP files are in bottom-up format.
Flip_Bitmap() is part of the library I’m building, and it’s copied into the
demos that will come shortly so you can review it at any time.

Note

The function isn’t really that long or that complex; it’s just a pain to write, that’s all. It
opens the bitmap file, loads in the headers, and then loads in the image and palette (if
the image is a 256-color bitmap). The function works on 8-, 16-, and 24-bit color
images. However, regardless of the image format, the buffer that holds the image
UCHAR buffer is just a byte pointer, so you must do any casting or pointer arithmetic if
the image is 16- or 24-bit. In addition, the function allocates a buffer for the image, so
the buffer must be released back to the operating system when you’re done mucking
with the image bits. This is accomplished with a call to Unload_Bitmap_File(),
shown here:

1072313618 CH07 10/26/99 10:08 AM Page 351

DirectX and 2D Fundamentals

352 PART II

int Unload_Bitmap_File(BITMAP_FILE_PTR bitmap)
{
// this function releases all memory associated with the bitmap
if (bitmap->buffer)

{
// release memory
free(bitmap->buffer);

// reset pointer
bitmap->buffer = NULL;

} // end if

// return success
return(1);

} // end Unload_Bitmap_File

In a moment, I’ll show you how to load bitmap files into memory and display them,
but first I want to describe what you’ll do with these images in the general context of
a game.

Working with Bitmaps
Most games have a lot of artwork, which consists of 2D sprites, 2D textures, 3D mod-
els, and so forth. In most cases, 2D art is loaded a frame at a time as single images (as
shown in Figure 7.25), or as templates—that is, as a number of similar images all
together in a rectangular matrix (as shown in Figure 7.26). Both methods have their
pros and cons. The cool thing about loading single images, or one image per file, is
that if you make a change to the image with an image processor, you can use the data
immediately. However, there may be hundreds of frames of animation that make up a
2D game character. This means hundreds or thousands of separate image .BMP files!

Templated images, as shown in Figure 7.26, are great because the template holds all
the animation for a single character, and hence all the data is in one file. The only
downfall is that someone has to template the data! This can be very time-consuming,
not to mention that there’s an alignment problem because you must create a template
of cells, where each cell is m×n (usually m and n are powers of 2) with a one-pixel
border around each cell. Next, you write some software to extract an image from a
particular cell, because you now know the size of the cell and so forth. You might use
both techniques, depending on the type of game and how much artwork it uses. In any
case, later you’re going to have to write software that can extract images from loaded
bitmaps in single-image or templated format, and then and load the data into
DirectDraw surfaces. This allows you to use the blitter, but I’ll get to that later. For
now, just use the Load_Bitmap_Function() to load an 8-, 16-, and 24-bit bitmap and
display it in the primary buffer to get a feel for the function.

1072313618 CH07 10/26/99 10:08 AM Page 352

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

353

Loading an 8-Bit Bitmap
To load an 8-bit image, this all you need to do:

BITMAP_FILE bitmap; // this will hold the bitmap

if (!Load_Bitmap_File(&bitmap,”path:\filename.bmp”))
{ /* error */ }

// do what you will with the data stored in bitmap.buffer

// in addition, the palette is stored in bitmap.palette

// when done, you must release the buffer holding the bitmap
Unload_Bitmap(&bitmap);

Figure 7.25
A standard set of

bitmaps without tem-
plating.

Figure 7.26
Bitmap images tem-

plated for easy access
and extraction.

I created most of the art for these demos myself, using various paint or
3D modeling programs and writing the art out as .BMP files (some of the
art was done by other artists). This is where a good 2D paint program
with support for lots of image formats comes in handy. I usually use
Paint Shop Pro, the best all-around 2D paint program as far as price and
performance go—it’s on this book’s CD, too!

Note

1072313618 CH07 10/26/99 10:08 AM Page 353

DirectX and 2D Fundamentals

354 PART II

The only interesting thing about loading an 8-bit bitmap is that the palette information
in the BITMAP_FILE structure is valid. You can use the data to change the DirectDraw
palette, save it, or whatever. This brings us to a little detail about writing 8-bit games.

You can have only 256 colors on the screen at once, so when you’re gen-
erating your artwork, remember to find a 256-color palette that looks
good when all the artwork is converted to 256 colors (Debabelizer is a
great tool for this). In many cases you’ll need multiple palettes—one for
each level of the game—but no matter what, all the bitmaps that are
going to be used for the same level and could be visible must be in the
same palette!

Warning

Now is a good time to bring up something that I haven’t had a good reason to show
you yet—changing palette entries after the palette has already been created and
attached to an 8-bit DirectDraw surface. As you know, most of the demos that you’ve
written for 8-bit mode usually create a random or gradient palette and leave it at that.
But this time, you’re loading an image that has its own palette, and you want to
update the DirectDraw palette object with the new palette entries. When you copy the
image to the primary buffer, it looks right. To do this, all you need is the IDIRECT-
DRAWPALETTE:SetEntries() function, as shown here:

BITMAP_FILE bitmap; // holds the 8-bit image

// given that the 8-bit image has been loaded

if (FAILED(lpddpal->SetEntries(0,0,MAX_COLORS_PALETTE,
bitmap.palette)))

{ /* error */ }

That’s so easy it’s sickening!

For an illustration of loading an 8-bit image and displaying it, take a look at
DEMO7_10.CPP|EXE. It loads an 8-bit image in 640×480 and dumps it to the primary
buffer.

Loading a 16-Bit Bitmap
Loading a 16-bit bitmap is almost identical to loading an 8-bit image. However, you
don’t need to worry about the palette because there isn’t one. Also, very few paint
programs can generate 16-bit .BMP files, so if you want to use a 16-bit DirectDraw
mode, you may have to load a 24-bit bitmap and then manually convert the bits to
16-bit by using a color-scaling algorithm. In general, you would perform the follow-
ing operations to convert a 24-bit image to a 16-bit image:

1072313618 CH07 10/26/99 10:08 AM Page 354

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

355

1. Create a buffer that’s m×n WORDs, where each WORD is 16-bit. This will hold your
16-bit final image.

2. Access the image buffer after loading the 24-bit image into your BITMAP_FILE
structure, and convert each 24-bit pixel to 16-bit by using the following crude
color transform:
// each pixel in BITMAP_FILE.buffer[] is encoded as 3-bytes
// in BGR order, or BLUE, GREEN, RED

// assuming index is pointing to the next pixel…
UCHAR blue = (bitmap.buffer[index*3 + 0]) >> 3,

green = (bitmap.buffer[index*3 + 1]) >> 3,
red = (bitmap.buffer[index*3 + 2]) >> 3;

// build up 16 bit color word
USHORT color = _RGB16BIT565(red,green,blue);

And then you write color into your destination 16-bit buffer. Later in the book, when
you see all the library functions, I’ll be sure to write a 24-bit to 16-bit bitmap con-
verter for you (because I’m that kind of guy).

Anyway, assuming that the bitmap is actually in 16-bit format and you don’t need to
do this operation, the bitmap load should be identical to the 8-bit load. For example,
DEMO7_11.CPP|EXE loads a 24-bit image, converts it to 16-bit, and dumps it into the
primary buffer.

Loading a 24-Bit Bitmap
Loading a 24-bit bitmap is the simplest of all. Just create a 24-bit bitmap file and then
load it with the Load_Bitmap_File() function. Then BITMAP_FILE.buffer[] will
hold the data in 3-byte pixels left to right, row by row, but in BGR (blue, green, red)
format. Remember this, because it matters when you extract the data. Furthermore,
many graphics cards don’t support 24-bit graphics; they support 32-bit because they
don’t like the odd byte addressing (multiples of 3). So an extra byte is used for
padding or alpha channeling. In either case, when you read out each pixel from
BITMAP_FILE.buffer[] and write it to the primary surface or an offscreen
DirectDraw surface that’s 32-bit, you’ll have to do this padding yourself. Here’s an
example:

// each pixel in BITMAP_FILE.buffer[] is encoded as 3-bytes
// in BGR order, or BLUE, GREEN, RED

// assuming index is pointing to the next pixel…
UCHAR blue = (bitmap.buffer[index*3 + 0]),

green = (bitmap.buffer[index*3 + 1]),
red = (bitmap.buffer[index*3 + 2]);

// this builds a 32 bit color value in A.8.8.8 format (8-bit alpha mode)
_RGB32BIcxT(0,red,green,blue);

1072313618 CH07 10/26/99 10:08 AM Page 355

Errata

Errata
 "green = (bitmap.buffer[index*3 + 1]) >> 3" should be "green = (bitmap.buffer[index*3 + 1]) >> 2"

Errata

Errata
 "_RGB32BIcxT(0,red,green,blue);" should be "_RGB32BIT(0,red,green,blue);"

DirectX and 2D Fundamentals

356 PART II

And you’ve seen this macro, so don’t freak out. Here it is again to refresh
your memory:

// this builds a 32 bit color value in A.8.8.8 format (8-bit alpha mode)
#define _RGB32BIT(a,r,g,b) (+ ((g) << 8) + ((r) << 16) + (<< 24))

For an example of loading and displaying a nice 24-bit image, take a look at
DEMO7_12.CPP|EXE. It loads a full 24-bit image, sets the display mode for 32-bit color,
and copies the image to the primary surface. Looks sweet, huh?

Last Word on Bitmaps
Well, that’s it for loading bitmaps in 8-, 16-, or 24-bit format. However, you can see
that a lot of utility functions will have to be written here! I’ll do the dirty work, so
don’t worry. In addition, you might want to be able to load Targa files with the .TGA
extension, because a number of 3D modelers can render animation sequences only to
files with the name filenamennnn.tga, where nnnn varies from 0000 to 9999. You’re
probably going to need to be able to load animation sequences like this, so when I
dump the library functions on you, I’ll show you a .TGA load. It’s much easier than
the .BMP format.

Offscreen Surfaces
The whole point of DirectDraw is to take advantage of hardware acceleration. Alas,
you can’t do that unless you use DirectDraw data structures and objects to hold
bitmaps. DirectDraw surfaces are the key to using the blitter. You’ve already seen how
to create a primary surface along with a secondary back buffer to create a page flip-
ping animation chain, but you still need to learn how to create general m×n offscreen
surfaces in either system memory or VRAM. With surfaces like this, you can stuff
bitmaps into them and then blit the surfaces to the screen using the blitter.

At this point in the game, you can load bitmaps and get the bits out of them, so that
problem is solved (minus some cell extraction software). The only piece missing is
how to create a general offscreen DirectDraw surface that’s neither a primary surface
nor a back buffer.

Creating Offscreen Surfaces
Creating an offscreen surface is almost identical to creating the primary buffer except
for the following:

1. You must set the DDSURFACEDESC2.dwFlags to (DDSD_CAPS | DDSD_WIDTH |
DDSD_HEIGHT).

2. You must set dimensions of the requested surface in DDSURFACEDESC2.dwWidth
and DDSURFACEDESC2.dwHeight.

1072313618 CH07 10/26/99 10:08 AM Page 356

Errata

Errata
"#define _RGB32BIT(a,r,g,b) (+ ((g) << 8) + ((r) << 16) + (<< 24))" should be "#define _RGB32BIT(a,r,g,b) ((B) + ((g) << 8) + ((r) << 16) + ((a) << 24))"

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

357

3. You must set the DDSURFACEDESC2.ddsCaps.dwCaps to DDSCAPS_OFFSCREEN-
PLAIN | memory_flags, where memory_flags determines where you want the
surface to be created. If you set it to DDSCAPS_VIDEOMEMORY, the surface will be
created in VRAM (if there’s any space). If you set memory_flags equal to
DDSCAPS_SYSTEMMEMORY, the surface will be created in system memory, and so
the blitter will be almost unused because the bitmap data will have to be trans-
ferred over the system bus.

As an example, here’s a function that creates any type of surface you request:

LPDIRECTDRAWSURFACE4 DDraw_Create_Surface(int width, int height,
int mem_flags)

{
// this function creates an offscreen plain surface

DDSURFACEDESC2 ddsd; // working description
LPDIRECTDRAWSURFACE4 lpdds; // temporary surface

// initialize structure
DDRAW_INIT_STRUCT(ddsd);

// set to access caps, width, and height
ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT;

// set dimensions of the new bitmap surface
ddsd.dwWidth = width;
ddsd.dwHeight = height;

// set surface to offscreen plain
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | mem_flags;

// create the surface
if (FAILED(lpdd->CreateSurface(&ddsd,&lpdds,NULL)))

return(NULL);

// set color key to color 0
DDCOLORKEY color_key; // used to set color key
color_key.dwColorSpaceLowValue = 0;
color_key.dwColorSpaceHighValue = 0;

// now set the color key for source blitting
lpdds->SetColorKey(DDCKEY_SRCBLT, &color_key);

// return surface
return(lpdds);

} // end DDraw_Create_Surface

For example, if you wanted to create a 64×64 pixel surface in VRAM, you’d make the
following call:

1072313618 CH07 10/26/99 10:08 AM Page 357

DirectX and 2D Fundamentals

358 PART II

LPDIRECTDRAWSURFACE4 space_ship = NULL; // used to hold surface

// create surface
if (!(space_ship = DDraw_Create_Surface(64,64,DDSCAPS_VIDEOMEMORY)))

{ /* error */ }

When you’re creating surfaces to hold bitmaps, only create VRAM sur-
faces of bitmaps that you’re going to draw a lot. Moreover, create them
in order from largest to smallest.

Now you can do whatever you want with the surface. For example, you might want to
lock it so you can copy a bitmap to it. Here’s how you would do that:

DDSURFACEDESC2 ddsd; // directdraw surface description

// initialize the structure
DDRAW_INIT_STRUCT();

// lock the surface, check for error in RL (real-life)
space_ship->Lock(NULL, &ddsd,

DDLOCK_WAIT | DDLOCK_SURFACEMEMORYPTR,
NULL););

// do what you will to ddsd.lpSurface and ddsd.lPitch

// unlock
space_ship->Unlock(NULL);

Then when you’re done with the surface (the game is over, whatever) you must
release the surface back to DirectDraw as usual with Release():

if (space_ship)
space_ship->Release();

That’s all there is to creating an offscreen surface with DirectDraw! Now let me show
you how to blit it to another surface, such as the back buffer or primary surface.

Blitting Offscreen Surfaces
Now that you know how to load bitmaps, create surfaces, and use the blitter, it’s time
to put it all together and do some real animation! The goal of this section is to load
bitmaps that contain the frames of animation for some object (ship, creature, what-
ever), create a number of small surfaces to hold each frame of animation, and then
load the images into each of the surfaces. Once all the surfaces are loaded with
bitmap data, you want to blit the surfaces on the screen and animate the object!

Actually, you already know how to accomplish all these steps. About the only thing
you haven’t done is use the blitter to blit from a surface other than the back buffer to

Trick

1072313618 CH07 10/26/99 10:08 AM Page 358

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

359

the primary buffer, but there’s no difference. Referring to Figure 7.27, you see a num-
ber of small surfaces, each with a different frame of animation. In addition, you see
both a primary surface and a back buffer surface. The plan is to load all the bitmaps
into the small surfaces (the object to animate), use the blitter to blit the small surfaces
onto the back buffer, and page flip to see the results. Every so often, you’ll blit a dif-
ferent image and move the destination of the blit slightly to animate and move the
object.

Figure 7.27
Blitting offscreen sur-

faces to the back
buffer.

Control
logic

32 × 32 (could be any size though)

Frames of animation

(m, n)

(0, 0)
Back buffer surface

Off-screen surfaces (system memory or VRAM)

Visible display

(m, n)

(0, 0)
Primary surface (VRAM)

Flip

Setting Up the Blitter
To set up the blitter, you need to do the following:

1. Set up the source RECT to blit from. This will be the small surface (8×8, 16×16,
64×64, etc.) containing the image of interest. Usually the coordinates will be
(0,0) to (width–1, height–1)—that is, the whole surface.

2. Set up the destination RECT, which will usually be the back buffer. This part is a
little tricky because you want to copy the source image at some location (x,y),
so the RECT should be set with this in mind: (x,y) to (x+width-1,y+height-1).

3. Make a call to IDIRECTDRAWSURFACE4::Blt() with the proper parameters—
which you’ll see shortly.

If you make the destination RECT larger or smaller than the source RECT
(the image), the blitter will scale the image appropriately to fit—this is
the basis of 2.5D sprite-scaled games.

Note

1072313618 CH07 10/26/99 10:08 AM Page 359

DirectX and 2D Fundamentals

360 PART II

There’s one problem that I must address before you see the call to the Blt()
function—color keying.

Color Keys
Color keys are a bit hard to explain, probably because of their naming convention
under DirectDraw. Let me give it a try. When you’re performing bitmap operations, in
most cases you’re blitting bitmap objects that are contained in rectangular cells.
However, when you draw the bitmap of a little creature, you usually don’t want to
copy the contents of the entire cell. You want only to copy the bits that relate to the
creature, so you need to select a color (or colors) as transparent. Figure 7.28 shows a
transparent blit vs. a nontransparent blit. I’ve discussed this before, and you’ve even
implemented it in your software blitter for the exercise.

Figure 7.28
Transparent blit (top)
versus nontransparent

blit (bottom).

1072313618 CH07 10/26/99 10:08 AM Page 360

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

361

DirectDraw has a much more sophisticated color keying system than just selecting a
simple transparent color. It can do much more than just perform blits with basic trans-
parency. Let’s take a quick look at the different types of color keys, and then I’ll show
you how to set up color keying for the type of operation you’re interested in.

Source Color Keying
Source color keying is the color keying that you want to use and is the easiest to
understand. Basically, you select a single color index (in 256-color modes) or a range
of RGB color values that will act as transparent for your source image. Then, when
you blit the source to the destination, the pixels that have the same value as the trans-
parent color(s) will not be copied. Figure 7.14 shows this process. You can set the
color key for a surface while creating the surface, or do it after the fact with IDIRECT-
DRAWSURFACE4::SetColorKey(). I’ll show you both methods in a moment, but first
look at the data structure that holds the color key. It’s called DDCOLORKEY:

typedef struct _DDCOLORKEY
{
DWORD dwColorSpaceLowValue; // low value (inclusive)
DWORD dwColorSpaceHighValue; // high value (inclusive)
} DDCOLORKEY,FAR* LPDDCOLORKEY;

The low- and high-color key values are a bit tricky, so listen up. If you’re using 8-bit
surfaces, the values should be color indices. If you’re using 16-, 24-, or 32-bit sur-
faces, you actually use the RGB-encoded WORDs for the particular surface format as
the values to store in the low- and high-color keywords. For example, let’s say you’re
running in an 8-bit mode and you want color index 0 to be transparent. Here’s how
you would set up the color key:

DDCOLORKEY key;

key.dwColorSpaceLowValue = 0;
key.dwColorSpaceHighValue = 0;

And if you wanted the range from color index 10-20 (inclusive) to be transparent:

key.dwColorSpaceLowValue = 10;
key.dwColorSpaceHighValue = 20;

Next, let’s say you’re running in a 16-bit 5.6.5 mode and want pure blue to be trans-
parent:

key.dwColorSpaceLowValue = _RGB16BIT565(0,0,32);
key.dwColorSpaceHighValue = _RGB16BIT565(0,0,32);

Similarly, let’s say you want the range of colors from black to half-intensity red to be
transparent in the same 16-bit mode:

key.dwColorSpaceLowValue = _RGB16BIT565(0,0,0);
key.dwColorSpaceHighValue = _RGB16BIT565(16,0,0);

1072313618 CH07 10/26/99 10:08 AM Page 361

DirectX and 2D Fundamentals

362 PART II

Get the idea? Now let’s take a look at how to set a DirectDraw surface’s color key
during creation. All you need to do is add the flag DDSD_CKSRCBLT (other valid settings
shown in Table 7.5) to the dwFlags WORD of the surface descriptor, and then assign the
low- and high-color keywords in the DDSURFACEDESC2.ddckCKSrcBlt,
member.dwColorSpaceLowValue, and DDSURFACEDESC2.ddckCKSrcBlt.
dwColorSpaceHighValue fields (there are also members for destination and overlay
color key information).

TABLE 7.5 Color Key Surface Flags

Value Description

DDSD_CKSRCBLT Indicates that the ddckCKSrcBlt member of the
DDSURFACEDESC2 is valid and contains color key
information for source color keying.

DDSD_CKDESTBLT Indicates that the ddckCKDestBlt member of the
DDSURFACEDESC2 is valid and contains color key
information for destination color keying.

DDSD_CKDESTOVERLAY Indicates that the ddckCKDestOverlay member of the
DDSURFACEDESC2 is valid and contains color key
information for destination overlay color keying.

DDSD_CKSRCBLT Indicates that the ddckCKSrcBlt member of the
DSURFACEDESC2 is valid and contains color key informa-
tion for source color keying.

DDSD_CKSRCOVERLAY Indicates that the ddckCKSrcOverlay member of the
DSURFACEDESC2 is valid and contains color key informa-
tion for source overlay color keying.

Here’s an example:

DDSURFACEDESC2 ddsd; // working description
LPDIRECTDRAWSURFACE4 lpdds; // temporary surface

// initialize structure
DDRAW_INIT_STRUCT(ddsd);

// set to access caps, width, and height
ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT | DDSD_CKSRCBLT;

// set dimensions of the new bitmap surface
ddsd.dwWidth = width;
ddsd.dwHeight = height;

// set surface to offscreen plain
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | mem_flags;

1072313618 CH07 10/26/99 10:08 AM Page 362

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

363

// set the color key fields
ddsd.ddckCKSrcBlt.dwColorSpaceLowValue = low_color;
ddsd.ddckCKSrcBlt.dwColorSpaceHighValue = high_color;

// create the surface
if (FAILED(lpdd->CreateSurface(&ddsd,&lpdds,NULL)))

return(NULL);

And once you’ve created a surface with or without a color key, you can always set it
after the fact using the function IDIRECTDRAWSURFACE4:SetColorKey():

HRESULT SetColorKey(DWORD dwFlags,
LPDDCOLORKEY lpDDColorKey);

The valid flags are listed in Table 7.6.

TABLE 7.6 Valid Flags for SetColorKey()

Value Description

DDCKEY_COLORSPACE Indicates that the structure contains a color space. You
must set this if you’re setting a range of colors.

DDCKEY_SRCBLT Indicates that the structure specifies a color key or color
space to be used as a source color key for blit opera-
tions.

DDCKEY_DESTBLT Indicates that the structure specifies a color key or color
space to be used as a destination color key for blit oper-
ations.

DDCKEY_DESTOVERLAY Set if the structure specifies a color key or color space
to be used as a destination color key for overlay opera-
tions. (Advanced)

DDCKEY_SRCOVERLAY Set if the structure specifies a color key or color space
to be used as a source color key for overlay operations.
(Advanced)

Here’s an example:

// assume lpdds points to a valid surface

// set color key
DDCOLORKEY color_key; // used to set color key
color_key.dwColorSpaceLowValue = low_value;
color_key.dwColorSpaceHighValue = high_value;

// now set the color key for source blitting, notice
// the use of DDCKEY_SRCBLT
lpdds->SetColorKey(DDCKEY_SRCBLT, &color_key);

1072313618 CH07 10/26/99 10:08 AM Page 363

DirectX and 2D Fundamentals

364 PART II

Destination Color Keying
Destination color keying is great in theory, but it never seems to get used. The basic
concept of destination color keying is shown in Figure 7.29. The idea is as follows:
You set a color or range of colors in the destination surface that can be blitted to.
In essence, you’re creating a mask of sorts. This way you can simulate windows,
fences, etc.

Figure 7.29
Destination color

keying. Source image

Destination surface

(x1, y1)
(x1, y1)

(x2, y2) (x2, y2)

Bitmap is
occluded by
destination
color ray bits.

Destination color keyed (26-31) can't be blitted to
values

You can set a destination color key the exact same way you did for a source. Just
change a couple of the flags. For example, to set a destination color key during cre-
ation of a surface, you set the exchange DDSD_CKSRCBLT for DDSD_CKDESTBLT when
setting up the DDRAWSURFACEDESC2.dwFlags, and of course the key values will go into
ddsd.ddckCKDestBlt rather than ddsd.ddckCKSrcBlt:

// set the color key fields
ddsd.ddckCKDestBlt.dwColorSpaceLowValue = low_color;
ddsd.ddckCKDestBlt.dwColorSpaceHighValue = high_color;

If you want to set a destination color key after a surface is created, you do everything
the same except during the call to SetColorKey(), where you must switch the
DDCKEY_SRCBLT flag to DDCKEY_DESTBLT, like this:

lpdds->SetColorKey(DDCKEY_DESTBLT, &color_key);

If you set a range of colors for the source key, you must add the flag
DDCKEY_COLORSPACE in the call to SetColorKey(). For example:

lpdds->SetColorKey(DDCKEY_SRCBLT | DDCKEY_COLORSPACE,

&color_key);

Otherwise, DirectDraw will collapse the range to one value.

Note

1072313618 CH07 10/26/99 10:08 AM Page 364

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

365

Destination color keying is currently only available in the HAL (Hardware
Abstraction Layer), not the HEL. Hence, if there isn’t hardware support
for destination color keying, it won’t work. This will probably change for
future versions of DirectX.

Warning

Finally, there are two more types of keys: source overlays and destination overlays.
They’re useless for your purposes, but they come in handy for video processing. If
you’re interested, take a look at the DirectX SDK.

Using the Blitter (Finally!)
Now that you have the preliminaries out of the way, blitting an offscreen surface to
any other surface is a snap. Here’s how. Assume that you’ve created a 64×64-pixel
8-bit color surface image with color index 0 as the transparent color, or something
like this:

DDSURFACEDESC2 ddsd; // working description
LPDIRECTDRAWSURFACE4 lpdds_image; // temporary surface

// initialize structure
DDRAW_INIT_STRUCT(ddsd);

// set to access caps, width, and height
ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT | DDSD_CKSRCBLT;

// set dimensions of the new bitmap surface
ddsd.dwWidth = 64;
ddsd.dwHeight = 64;

// set surface to offscreen plain
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | mem_flags;

// set the color key fields
ddsd.ddckCKSrcBlt.dwColorSpaceLowValue = 0;
ddsd.ddckCKSrcBlt.dwColorSpaceHighValue = 0;

// create the surface
if (FAILED(lpdd->CreateSurface(&ddsd,&lpdds_image,NULL)))

return(NULL);

Next, imagine that you have both a primary surface, lpddsprimary, and a back buffer
surface, lpddsback, and that you want to blit the surface lpdds_image to the back
buffer at location (x,y) with the source color key you set. Here’s how:

// fill in the destination rect
dest_rect.left = x;
dest_rect.top = x;
dest_rect.right = x+64-1;
dest_rect.bottom = y+64-1;

1072313618 CH07 10/26/99 10:08 AM Page 365

DirectX and 2D Fundamentals

366 PART II

// fill in the source rect
source_rect.left = 0;
source_rect.top = 0;
source_rect.right = 64-1;
source_rect.bottom = 64-1;

// blt to destination surface
if (FAILED(lpddsback->Blt(&dest_rect, lpdds_image,

&source_rect,
(DDBLT_WAIT | DDBLT_KEYSRC),
NULL)))

return(0);

That’s it, baby! Notice the flag DDBLT_KEYSRC. You must have this in the blit call, or
else the color key won’t work even though there is one defined by the surface.

When you’re blitting remember to watch out for clipping. Not setting a
clipping region to the destination surface and blitting beyond it would
be very bad. But all you have to do is make a call to your function
DDraw_Attach_Clipper() and set a single clipping RECT that’s identical to
the bounds of the screen.

Warning

Figure 7.30
DEMO7_13.EXE in

action.

At long last, you’re ready for a reasonably cool demo. Figure 7.30 is a screen shot of
DEMO7_13.CPP|EXE. Looks cool, huh? What I’ve decided to do is add a little game
programming so you can get more out of this demo than just some moving bitmaps.
Basically, the demo loads in a large background bitmap and a number of frames of
animation for an alien. The large background is copied to the back buffer each frame,
along with a number of replicated and animated copies of the alien (which are sur-
faces). The aliens are then animated and moved at various velocities. See if you can
add a player that’s controlled by the keyboard to the demo!

Bitmap Rotation and Scaling
DirectDraw supports both bitmap rotation and scaling, as shown in Figure 7.31.
However, only the HAL supports rotation. This means that if there isn’t hardware sup-
port for rotation, you’re out of luck. You might ask, “Why does the HEL support scal-
ing and not rotation?” The answer is that bitmap rotation is about 10–100 times
slower than a scaling operation, and Microsoft found that no matter how well they

1072313618 CH07 10/26/99 10:08 AM Page 366

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

367

wrote software rotation code, it was just too slow! So the long and the short of it is
that you can always count on scaling, but not rotation. You can always write your own
bitmap rotation function, but this is rather complex and not really necessary for 3D
polygon games. I’m not going to cover it in this book.

Figure 7.31
Bitmap scaling and

rotation.

Performing bitmap scaling is easy. All you need to do is change the size of the desti-
nation RECT to make it different from the source RECT image, and the image will be
scaled. For example, let’s say that you have an image that’s 64×64, and you want to
scale it to a size m× n and position it at (x,y). Here’s the code:

// fill in the destination rect
dest_rect.left = x;
dest_rect.top = x;
dest_rect.right = x+m-1;
dest_rect.bottom = y+n-1;

// fill in the source rect
source_rect.left = 0;
source_rect.top = 0;
source_rect.right = 64-1;
source_rect.bottom = 64-1;

// blt to destination surface
if (FAILED(lpddsback->Blt(&dest_rect, lpdds_image,

&source_rect,
(DDBLT_WAIT | DDBLT_KEYSRC),
NULL)))

return(0);

That’s easy enough! Rotation is a little harder, though, because you have to set up a
DDBLTFX structure. To perform a rotation operation on a bitmap. you must have
hardware acceleration that supports it (very rare) and then set up a DDBLTFX struc-
ture, as follows:

DDBLTFX ddbltfx; // this holds our data

// initialize the structure
DDRAW_INIT_STRUCT(ddbltfx);

// set rotation angle, note that each unit is in 1/100
// of a degree rotation
ddbltfx.dwRotationAngle = angle; // each unit is

1072313618 CH07 10/26/99 10:08 AM Page 367

DirectX and 2D Fundamentals

368 PART II

Then you make the call to Blt() as you normally would, but you add the flag
DDBLT_ROTATIONANGLE to the flags parameter and add the ddbltfx parameter like this:

// blt to destination surface
if (FAILED(lpddsback->Blt(&dest_rect, lpdds_image,

&source_rect,
(DDBLT_WAIT | DDBLT_KEYSRC | DDBLT_ROTATIONANGLE),
&ddbltfx)))
return(0);

You can determine if your hardware has rotation support by querying
the surface capabilities of the DDSCAPS structure of a surface and looking
at the DDFXCAPS_BLTROTATION* caps flags in the dwFxCaps member of
DDSCAPS. You can query the capabilities of a surface with the IDIRECT-
DRAWSURFACE4::GetCaps() function, which I’ll cover at the end of the
chapter.

Note

And if you have hardware-accelerated rotation, the bitmap will rotate!

Before moving on to demos of DirectDraw scaling and rotation, I want to talk a little
about sampling theory and how you would go about implementing scaling, at the very
least, in software.

Discrete Sampling Theory
This is going to be brief: I’ll turn your brain to mush with this stuff when you get to
3D texture mapping in Volume II, but for now, this is just a little teaser.

When you work with bitmaps, you’re really working with signals; it’s just that these
signals are discrete 2D image data rather than continuous analog data like a radio sig-
nal. In either case, you can use signal processing, or more correctly digital signal pro-
cessing concepts, on images. One of the areas of interest to us is data sampling and
mapping.

Within the realm of 2D and 3D graphics, there will be numerous times when you
want to sample a bitmap image and then perform some operation on it, such as scal-
ing, rotation, or texture mapping. There are two types of general mappings: forward
mappings and inverse mappings. Figures 7.32 and 7.33 show these graphically.

In general, a forward mapping takes pixels from the source and maps them or deposits
them on the destination. The only problem with this is that during the mapping, some
pixels on the destination may not get mapped from the source due to the mapping
function selected.

1072313618 CH07 10/26/99 10:08 AM Page 368

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

369

Inverse mapping, on the other hand, is much better. It takes every pixel on the destina-
tion and finds what its source pixel should have been. Of course, there’s a problem
with this too—some pixels in the destination may have to be replicated because the
source doesn’t have enough data to fill up the destination. This problem creates alias-
ing. In a case where there’s too much data, aliasing can also occur, but this can be
minimized by averaging or using various mathematical filters. The point is, it’s better
to have too much data than not enough.

Figure 7.32
Sampling theory:
forward mapping.

Figure 7.33
Sampling theory:
inverse mapping.

P0

P1

P2

P3

P4

P5

P6

P7

Samples from pixels centers

OutputInput

Bitmap to sample 1 × 8 Resulting bitmap

Destination pixel coordinates
no longer centered on integer
values — producing gaps

Forward mapping

P0

P1

P2

P3

P4

P5

P6

P7

Each destination pixel is sampled

OutputInput

Bitmap to sample 1 × 8 Resulting bitmap

Destination pixels are
computed from centers and
scanned off center from
source if needed.

Inverse mapping

Pixel center

1072313618 CH07 10/26/99 10:08 AM Page 369

DirectX and 2D Fundamentals

370 PART II

Scaling is an operation that lends itself to either forward or inverse mapping, but
inverse mapping is the way to go. Let me show you how to scale a one-dimensional
bitmap, and then you can generalize the algorithm to two dimensions. This is an
important point: Many image processing algorithms are separable, meaning that
images can be processed in multiple dimensions simultaneously. The results of one
axis don’t affect another—sort of.

• Example 1: Let’s say you have a 1×4-pixel bitmap and you want to scale it to
1×8. Figure 7.34 shows the results. Basically, I just copied each pixel from the
source to the destination twice.

Figure 7.34
Scaling a 1×4-pixel

bitmap to 1×8 pixels.

Source

Pixel 0

1

2

3

Pixel 0

1

2

3

4

5

6

7

20

5

12

86

20

20

5

5

12

12

86

86

1 × 4 1 × 8

Destination (scaled)

Data is
replicated

• Example 2: Let’s say you have a 1×4-pixel bitmap and you want to scale it to
1×2. Figure 7.35 shows the results. Basically, I threw away two pixels from the
source. This brings up a problem: You’ve thrown away information. Is this cor-
rect? Yes and no. “No” in the sense that data has been lost, but “yes” in the
sense that it works and works quickly.

Figure 7.35
Scaling a 1×4-pixel

bitmap to 1×2 pixels.

Source

Pixel 0

1

2

3

Pixel 0

Pixel 1

20

5

12

86

20

12

1 × 4 1 × 2

Destination

Discarded

Data was lost

1072313618 CH07 10/26/99 10:09 AM Page 370

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

371

A better strategy in both examples would be to use a filter during the process. For
example, in Example 1 you copied the pixels, but you could have taken the average of
the two pixels above and below every extra pixel and used that value. This would have
made the stretching look better. This is where the graphics term bi-linear filtering
comes from; it’s based on this idea, but just in the 2D case. In Example 2, you could
have used a filter also and done the same thing—average the pixel values so that even
though you throw away two pixels, you accumulate some of their information into the
remaining pixels to make the results look more natural.

I’m not going to show you how to do filtering until later in the book, so you’re just
going to do scaling by brute force. Reviewing the examples, you should be able to
pick up that we are sampling the source at some rate—call that the sample rate—and
then, based on this sample rate, filling in the destination. Mathematically, this is what
you’re doing:

// the source height of the 1D bitmap.
float source_height;

// the destination height of the desired scaled 1D bitmap.
float dest_height;

// the sample rate
float sample_rate = source_height/destination_height;

// used to index source data
float sample_index = 0;

// generate scaled destination bitmap
for (index = 0; index < dest_height; index++)

{
// write pixel
dest_bitmap[index] =
source_bitmap[(int)sample_index];

// advance source index
sample_index+=sample_rate;

} // end for index

That’s all the code you need for scaling a bitmap. Of course, you have to add the
other dimension, and I would lose the floating point math, but it works.

Given that the source bitmap is 1×4 and looks like this:

1x4 Pixel Values

source_bitmap[0] = 12

source_bitmap[1] = 34

source_bitmap[2] = 56

source_bitmap[3] = 90

1072313618 CH07 10/26/99 10:09 AM Page 371

DirectX and 2D Fundamentals

372 PART II

Now let’s scale the 1×4 image data to 1×8:

Set source_height = 4

dest_height = 8

sample_rate = 4/8 = 0.5

Algorithm Run (with rounding)

index sample_index dest_bitmap[index]

0 0 12

1 0.5 12

2 1.0 34

3 1.5 34

4 2.0 56

5 2.5 56

6 3.0 90

7 3.5 90

Not bad—it exactly replicated each pixel twice. Now, try a compressive scale to three
pixels high:

Set source_height = 4

dest_height = 3

sample_rate = 4/3 = 1.333

Algorithm Run (with rounding)

index sample_index dest_bitmap[index]

0 0 12

1 1.333 34

2 2.666 56

Notice that you missed the last pixel in the source—the 90—altogether. You may or
may not like this; maybe you always want to see the top and bottom pixel in the scal-
ing operation for scales 1×2 and greater and would rather throw away some in-
between pixels. This is where rounding and biasing the sample_rate and
sample_index come into play—think about it…

Now that you know how to scale an image, let DirectDraw do it for you.
DEMO7_14.CPP|EXE is a remake of DEMO7_13.CPP|EXE, but I’ve added some code to
arbitrarily scale the aliens so that they seem to be different sizes. If you have hardware

1072313618 CH07 10/26/99 10:09 AM Page 372

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

373

scaling, the demo will run very smoothly, but if you don’t, you may notice some
degradation. Again, you’ll see how to use IDIRECTDRAWSURFACE4::GetCaps() to
detect this later in the chapter.

Color Effects
The next subject I want to discuss is color animation and tricks. In the past, 256-color
palettized modes were the only bit depths available, and a lot of tricks and techniques
were invented to take advantage of the instantaneous nature of color changes—that is,
a change to one or more of the palette registers is instantly visible on the screen.
These days 256-color modes are fading away due to faster hardware and acceleration.
However, learning these techniques is still crucial to understanding other related con-
cepts, not to mention that it will be many years until all games are totally RGB. There
are a lot of 486 machines and even slower-MHz Pentiums still around that can handle
only 256-color modes at any sort of reasonable speed!

Color Animation in 256-Color Modes
Color animation basically refers to any operation of modifying or shifting around
color palette entries on-the-fly. For example, glowing objects, blinking lights, and
many other effects can be created simply by manipulating the entries of the color
table on-the-fly. The cool thing is that any object on the screen that has pixels with the
values that you’re manipulating in the color table will be affected.

Imagine how hard it would be to do this with bitmaps. For example, let’s say you had
a little ship with running lights on it, and you wanted them to blink. You would need a
bitmap for each frame of animation. But with color animation, all you need to do is
draw a single bitmap, make the lights a specific color index, and then animate the
color index. Figure 7.36 illustrates this indirection graphically.

Figure 7.36
Color animation using

palette indirection.

8=bit/256 color bitmap Color look up table

1 byte per pixel

Each value is indexed into
color look up table

3
3 3 3 3

4 4 4

5 5

3

3 3 3 3 3

3
3
3

3
3
3
3

Red Green Blue

R G B

Color Index 0
1
2

255

Animate ()

 modifies color index 5

Indexes

1072313618 CH07 10/26/99 10:09 AM Page 373

DirectX and 2D Fundamentals

374 PART II

Two of my favorite effects are blinking and glowing colors. Let’s begin with a blink-
ing light function. Here’s the functionality you want:

• Creating up to 256 blinking lights.

• Each light has an on and off color, in addition to a time delay measured in
cycles for the on and off state.

• Turning on or off any blinking light at any time with an ID, and/or resetting its
parameters.

• Terminating any blinking light and reusing its data storage.

This is a perfect example for showing some persistent data techniques and showing
how to update DirectDraw palette entries. My strategy will be to create a single func-
tion that’s called to create and destroy the lights as well as to perform the animation.
The function will use static data arrays that are local and the function will have a
number of operation modes:

BLINKER_ADD—Used to add a blinking color to the database. When called, the func-
tion returns an ID number used to reference the blinking light. System holds up to 256
lights.

BLINKER_DELETE—Deletes a blinking light of the sent ID.

BLINKER_UPDATE—Updates the on/off parameters of the sent ID’s light.

BLINKER_RUN—Processes all the lights through one cycle.

The data structure used to hold a single light and also to create one is called BLINKER
and is shown here:

// blinking light structure
typedef struct BLINKER_TYP

{
// user sets these
int color_index; // index of color to blink
PALETTEENTRY on_color; // RGB value of “on” color
PALETTEENTRY off_color; // RGB value of “off” color
int on_time; // number of frames to keep “on”
int off_time; // number of frames to keep “off”

// internal member
int counter; // counter for state transitions
int state; // state of light,

// -1 off, 1 on, 0 dead
} BLINKER, *BLINKER_PTR;

Basically, you fill in the “user” fields and then call the function with a BLINKER_ADD
command. Anyway, the general operation is as follows: You call the function at any
time to add, delete, or update, but only once per frame with the run command. Here’s
the code for the function:

1072313618 CH07 10/26/99 10:09 AM Page 374

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

375

int Blink_Colors(int command, BLINKER_PTR new_light, int id)
{
// this function blinks a set of lights

static BLINKER lights[256]; // supports up to 256 blinking lights
static int initialized = 0; // tracks if function has initialized

// test if this is the first time function has run
if (!initialized)

{
// set initialized
initialized = 1;

// clear out all structures
memset((void *)lights,0, sizeof(lights));

} // end if

// now test what command user is sending
switch (command)

{
case BLINKER_ADD: // add a light to the database

{
// run thru database and find an open light
for (int index=0; index < 256; index++)

{
// is this light available?
if (lights[index].state == 0)

{
// set light up
lights[index] = *new_light;

// set internal fields up
lights[index].counter = 0;
lights[index].state = -1; // off

// update palette entry
lpddpal->SetEntries(0,lights[index].color_index,

1,&lights[index].off_color);

// return id to caller
return(index);

} // end if

} // end for index

} break;

case BLINKER_DELETE: // delete the light indicated by id
{
// delete the light sent in id

1072313618 CH07 10/26/99 10:09 AM Page 375

DirectX and 2D Fundamentals

376 PART II

if (lights[id].state != 0)
{
// kill the light
memset((void *)&lights[id],0,sizeof(BLINKER));

// return id
return(id);

} // end if
else

return(-1); // problem

} break;

case BLINKER_UPDATE: // update the light indicated by id
{
// make sure light is active
if (lights[id].state != 0)

{
// update on/off parms only
lights[id].on_color = new_light->on_color;
lights[id].off_color = new_light->off_color;
lights[id].on_time = new_light->on_time;
lights[id].off_time = new_light->off_time;

// update palette entry
if (lights[id].state == -1)

lpddpal->SetEntries(0,lights[id].color_index,
1,&lights[id].off_color);

else
lpddpal->SetEntries(0,lights[id].color_index,

1,&lights[id].on_color);

// return id
return(id);

} // end if
else

return(-1); // problem

} break;

case BLINKER_RUN: // run the algorithm
{
// run thru database and process each light
for (int index=0; index < 256; index++)

{
// is this active?
if (lights[index].state == -1)

{
// update counter

1072313618 CH07 10/26/99 10:09 AM Page 376

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

377

if (++lights[index].counter >= lights[index].off_time)
{
// reset counter
lights[index].counter = 0;

// change states
lights[index].state = -lights[index].state;

// update color
lpddpal->SetEntries(0,lights[index].color_index,

1,&lights[index].on_color);

} // end if

} // end if
else
if (lights[index].state == 1)

{
// update counter
if (++lights[index].counter >= lights[index].on_time)

{
// reset counter
lights[index].counter = 0;

// change states
lights[index].state = -lights[index].state;
// update color
lpddpal->SetEntries(0,lights[index].color_index,

1,&lights[index].off_color);

} // end if
} // end else if

} // end for index

} break;

default: break;

} // end switch

// return success
return(1);

} // end Blink_Colors

I’ve boldfaced the sections that update the DirectDraw palette entries. I
assume that there’s a global palette interface lpddpal.

Note

1072313618 CH07 10/26/99 10:09 AM Page 377

DirectX and 2D Fundamentals

378 PART II

The function has three main sections: initialization, updating, and run logic. When the
function is called for the first time, it initializes itself. Then the next code segment
tests for updating commands or the run command. If an update-type command is
requested, logic is performed to add, delete, or update a blinking light. If the run
mode is requested, the lights are all processed through one cycle. In general, you
would use the function after first adding one or more lights, which you’d do by setting
up a generic BLINKER structure and then passing the structure to the function with the
BLINKER_ADD command. The function would then return the ID of your blinking light,
which you’d save—you’ll need the ID if you want to delete or update a blinking light.

After you’ve created all the lights you want, you can call the function with all NULLs
except for the command, which is BLINKER_RUN. You do this for each frame of your
game loop. For example, let’s say you have a game that runs at 30fps, and you want a
red light to blink with a 50-50 duty cycle—one second on, one second off—along
with a green light with a 50-50 duty cycle of two seconds on and two seconds off.
Furthermore, you want to use palette entries 250 and 251 for the red and green light,
respectively. Here’s the code you need:

BLINKER temp; // used to hold temp info

PALETTEENTRY red = {255,0,0,PC_NOCOLLAPSE};
PALETTEENTRY green = {0,255,0,PC_NOCOLLAPSE};
PALETTEENTRY black = {0,0,0,PC_NOCOLLAPSE};

// add red light
temp.color_index = 250;
temp.on_color = red;
temp.off_color = black;
temp.on_time = 30; // 30 cycles at 30fps = 1 sec
temp.off_time = 30;

// make call
int red_id = Blink_Colors(BLINKER_ADD, &temp, 0);

// now create green light
temp.color_index = 251;
temp.on_color = green;
temp.off_color = black;
temp.on_time = 60; // 30 cycles at 30fps = 2 secs
temp.off_time = 60;

// make call
int green_id = Blink_Colors(BLINKER_ADD, &temp, 0);

Now you’re ready to rock and roll! In the main part of your game loop, you would
make a call to Blink_Colors() each cycle, something like this:

// enter main event loop
while(TRUE)

1072313618 CH07 10/26/99 10:09 AM Page 378

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

379

{
// test if there is a message in queue, if so get it

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
// test if this is a quit

if (msg.message == WM_QUIT)
break;

// translate any accelerator keys
TranslateMessage(&msg);

// send the message to the window proc
DispatchMessage(&msg);
} // end if

// main game processing goes here
Game_Main();

// blink all the colors
// could put this into Game_Main() also – better idea
Blink_Colors(BLINKER_RUN, NULL, 0);

} // end while

Of course, you can delete a blinker with its ID at any time, and it won’t be processed
anymore. For example, if you want to kill the red light:

Blink_Colors(BLINKER_DELETE, NULL, red_id);

It’s as simple as that. And of course, you can update a blinker’s on/off time and color
values by setting up another BLINKER structure and then making the call with
BLINKER_UPDATE. For example, if you want to alter the green blinker’s parameters:

// set new parms
temp.on_time = 100;
temp_off_time = 200;
temp.on_color = {255,255,0,PC_NOCOLLAPSE};
temp.off_color = {0,0,0,PC_NOCOLLAPSE};

// update blinker
Blink_Colors(BLINKER_UPDATE, temp, green_id);

That’s enough of that! Check out DEMO7_15.CPP|EXE, which uses the Blink_Colors()
function to make some of the lights on the starship image blink.

Color Rotation in 256-Color Modes
The next interesting color animation effect is called color rotation or color shifting.
Basically, it’s the process of taking a collection of adjacent color entries or registers
and shifting them in a circular manner, as shown in Figure 7.37. Using this technique,
you can make objects seem as if they’re moving or shifting without writing a single

1072313618 CH07 10/26/99 10:09 AM Page 379

DirectX and 2D Fundamentals

380 PART II

pixel to the screen. It’s great for simulating water or the motion of fluids. In addition,
you can draw a number of images at different positions, each with a different color
index. Then, if you rotate the colors, it will look like the object is moving. Great 3D
Star Wars trenches can be created like this.

Figure 7.37
Color rotation.

Color registers to animate

Color i i + 1 i + 2 i + k

Each RGB Triple in the palette is
shifted into the next within

the range of rotation.

The code for color rotation is fairly trivial. Algorithmically, to rotate color[c1] to
color[c2], use the following code:

temp = color[c1];

for (int index = c1; index < c2; index++)
color[c1] = color[c1+1];

// finish the cycle, close the loop
color[index] = temp;

Here’s a function that implements the algorithm that I’m using for our library:

int Rotate_Colors(int start_index, int end_index)
{
// this function rotates the color between start and end

int colors = end_index - start_index + 1;

PALETTEENTRY work_pal[MAX_COLORS_PALETTE]; // working palette

// get the color palette
lpddpal->GetEntries(0,start_index,colors,work_pal);

// shift the colors
lpddpal->SetEntries(0,start_index+1,colors-1,work_pal);

// fix up the last color
lpddpal->SetEntries(0,start_index,1,&work_pal[colors - 1]);

// update shadow palette
lpddpal->GetEntries(0,0,MAX_COLORS_PALETTE,palette);

1072313618 CH07 10/26/99 10:09 AM Page 380

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

381

// return success
return(1);

} // end Rotate_Colors

Basically, the algorithm takes the starting and ending color index that you want to
rotate and performs the rotation. Don’t worry about the “shadow palettes” stuff; this is
a library thing, so just focus on the logic. The interesting thing is how the algorithm
works. It does the same thing as the FOR loop version, but in a different way. This is
possible via an in-place shift. Anyway, for a demo of the function, take a look at
DEMO7_16.CPP|EXE. It uses the function to create a moving stream of acid—water is
for wimps!

Tricks with RGB Modes
The problem with RGB modes is that there isn’t any color indirection. In other words,
every pixel on the screen has its own RGB values, so there’s no way to make a single
change that affects the entire image. However, there are two ways to perform color-
related processing:

• Using manual color transformations or lookup tables.

• Using the new DirectX color and gamma correction subsystems that perform
real-time color manipulation on the primary surface.

Gamma correction deals with the nonlinear response of a computer
monitor to the input drive. In most cases, gamma correction allows you
to modify the intensity or the brightness of the video signal. However,
gamma correction can be performed separately on each red, green, and
blue channel to obtain interesting effects.

Manual Color Transforms and Lookup Tables
At the very least, you can use the gamma correction system to perform filter opera-
tions on the entire image on the screen. Anyway, I’ll talk about lookup tables in RGB
modes first, and then discuss the DirectX gamma correction system.

When dealing with pixels that are encoded as RGB WORDs, there’s really no way out of
doing the work if you want to perform color animation. Not only must you write each
pixel for which you want to change the color, but you may also have to read it. Hence,
in the worst case you might have to perform a read, transform, and write cycle for
each pixel you want to manipulate. There’s simply no way around this.

However, help is available. In most cases, performing mathematical transformation in
RGB space is very computationally expensive. For example, let’s say that you want to

Trick

1072313618 CH07 10/26/99 10:09 AM Page 381

DirectX and 2D Fundamentals

382 PART II

simulate a square-shaped spotlight with a 16-bit graphics mode at location (x,y) with
size (width, height). What would you do?

Well, you would begin by scanning out the rectangle of pixels that made up the spot-
light area and storing them into a bitmap. Then, for each pixel in the bitmap, you
would perform a color transform that looked something like this:

I*pixel(r,g,b) = pixel(I*r, I*g, I*b)

Three multiplies to modulate the intensity. Not to mention that you would have to first
extract out the RGB components of the 16-bit WORD and then put the 16-bit RGB WORD
back together after the transform. The trick here is to use a lookup table.

Instead of using all 65,536 colors available in 16-bit mode, you only draw objects that
can possibly be illuminated with, say, 1,024 colors that are equally distributed
throughout the 64KB color space. Then you create a lookup table that contains a 2D
array that’s 1,024 times however many levels of intensity you want, such as 64. Then
you take the RGB level of each real color, compute 64 shades of it, and store each of
them in the table. Then, when you create the spotlight, you use the 16-bit WORD as the
index into the table, along with the light level as the second index, and the resulting
16-bit in the table is the RGB value premodulated! Hence, the lighting operation is a
simple lookup.

This technique can be used for transparency, alpha-blending, lighting, darkening, and
so on. I’m not going to show you a demo of it until the next chapter, but if you want
to use lighting or color effects in 16-, 24-, or 32-bit color modes with any kind of
speed, using lookup tables is the only way to go.

The New DirectX Color and Gamma Controls
Interface

In DirectX 5.0, two new interfaces were added to help game programmers and video
programmers gain more control over the color properties of the screen image without
resorting to complex software algorithms. For example, it would seem to be a simple
thing to add a little red to the image on the screen, change the tint, etc. But operations
like these, which require nothing more than a turn of a knob on a television, are rather
complex to perform with digital data in software. Thankfully, the two new interfaces
IDirectDrawGammaControl and IDirectDrawColorControl let programmers make
these changes with some very simple calls.

IDirectDrawColorControl is very similar to a TV interface and gives you control
over the brightness, contrast, hue, saturation, sharpness, and general gamma. To use
the interface, you must query for it from the primary surface pointer with the

1072313618 CH07 10/26/99 10:09 AM Page 382

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

383

IID_IDirectDrawColorControl identifier. Once you have the interface, set up a
DDCOLORCONTROL structure, shown here:

typedef struct _DDCOLORCONTROL
{
DWORD dwSize; // size of this struct
DWORD dwFlags; // indicates which fields are valid
LONG lBrightness;
LONG lContrast;
LONG lHue;
LONG lSaturation;
LONG lSharpness;
LONG lGamma;
LONG lColorEnable;
DWORD dwReserved1;
} DDCOLORCONTROL, FAR *LPDDCOLORCONTROL;

Next you make a call to IDIRECTDRAWCOLORCONTROL::SetColorControl(), and the
primary surface will be immediately modified. The changes will remain in effect until
you make another call.

HRESULT SetColorControl(LPDDCOLORCONTROL lpColorControl);

The gamma control is a little different. Instead of you setting all the TV-like settings,
the gamma correction control gives you control over the red, green, and blue color
ramps of the primary surface. In essence, the shape of the ramps you define deter-
mines the color response of red, green, and blue. The setup of an
IDirectDrawGammaControl is similar to the color control, so I’m not going to cover it
(as if I really covered the color control). Take a look at the DirectX SDK for more
information on these subjects, because they can make a number of effects very easy to
do, such as underwater scenes, screen flashes, lightness, darkness, and so on. The only
problem is that they only work with hardware that supports them, and very few cards
do—not one of mine does, so I can’t make a demo!

Mixing GDI and DirectX
AAHAHAHAHAHAAHAHAHAHAH! Sorry, I just needed some tension relief. Now
back to business. GDI, or the Graphics Device Interface, is the Win32 graphics sub-
system responsible for all Windows rendering. You’ve already seen how to work with
GDI in the previous sections on Windows programming, so I’m not going to reiterate
device contexts and such.

To use GDI with DirectDraw, all you need to do is retrieve a compatible DC from
DirectDraw and then use it like you’d use the DC from the standard GetDC() call. The
cool thing is that once you retrieve a GDI-compatible DC from DirectDraw, there’s
really no difference in how you use the GDI functions. In fact, all of your code will
work almost without change!

1072313618 CH07 10/26/99 10:09 AM Page 383

DirectX and 2D Fundamentals

384 PART II

Now, you may be wondering how GDI can work with DirectDraw if DirectDraw takes
over the graphics system, as it does in full-screen mode. Well, Windows can’t use
GDI to draw on any of your DirectDraw surfaces while in exclusive mode, but you
can. This is the important detail that confuses many newbies to DirectX. In general,
Windows sends messages to its subsystems like GDI, MCI, and so on. If DirectX has
control of the hardware systems and is sharing them exclusively, the messages won’t
be processed. For example, a GDI graphics call to draw something while in full-
screen mode will be dumped.

However, you can always use the software of the subsystems to do work for you
because you’re the one in charge. It’s like a plasma blaster that’s encoded to your
DNA; if I pick it up it won’t fire, but it will if you pick it up. So the user dictates
when the blaster works, but the blaster is always functional. Weird example, huh? You
try not sleeping for weeks—it’s going to get weirder <BG>.

Because you do all your drawing on surfaces, you would assume that there’s a way to
get a GDI-compatible DC from a DirectDraw surface, and there is. The name of the
function is IDIRECTDRAWSURFACE4::GetDC() and it’s shown here:

HRESULT GetDC(HDC FAR *lphDC);

All you do is make a call with some storage for the DC, and you’re good to go. Here’s
an example:

LPDIRECTDRAWSURFACE4 lpdds; // assume this is valid

HDC xdc; // I like calling DirectX DC XDC’s

if (FAILED(lpdds->GetDC(&xdc)))
{ /* error */ }

// do what you will with the DC…

Once you’re done with the DirectDraw-compatible DC, you must release it just as you
would a normal GDI DC. The function is IDIRECTDRAWSURFACE4::ReleaseDC() and
is shown here:

HRESULT ReleaseDC(HDC hDC);

Basically, just send it the DC you retrieved like this:

if (FAILED(lpdds->ReleaseDC(xdc)))
{ /* error */ }

1072313618 CH07 10/26/99 10:09 AM Page 384

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

385

For an example of using GDI, take a look at DEMO7_17.CPP|EXE. It creates a full-
screen DirectDraw application in 640×480×256 and then prints GDI text at random
locations. The code that prints the text is shown here:

int Draw_Text_GDI(char *text, int x,int y,
COLORREF color, LPDIRECTDRAWSURFACE4 lpdds)

{
// this function draws the sent text on the sent surface
// using color index as the color in the palette

HDC xdc; // the working dc

// get the dc from surface
if (FAILED(lpdds->GetDC(&xdc)))

return(0);

// set the colors for the text up
SetTextColor(xdc,color);

// set background mode to transparent so black isn’t copied
SetBkMode(xdc, TRANSPARENT);

// draw the text a
TextOut(xdc,x,y,text,strlen(text));

// release the dc
lpdds->ReleaseDC(xdc);

// return success
return(1);
} // end Draw_Text_GDI;GDI;DirectA, combining>

If a surface is locked, GetDC() won’t work on it because GetDC() also
locks the surface. In addition, once you get the DC from a surface, make
sure you ReleaseDC() as soon as you’re done because GetDC() creates an
internal lock on the surface, and you won’t be able to access it. In
essence, only GDI or DirectDraw can write to a surface at any time, not
both.

Warning

Please note that color is in the form of a COLORREF. This is a very impor-
tant performance issue. If you recall, COLORREFs are 24-bit RGB-encoded
structures, meaning that the requested color is always in 24-bit RGB
form. The problem with this is that when DirectX is in palettized mode,
it must hunt for the nearest match to the requested color. This is in addi-
tion to the slow speed of GDI in general, which makes text printing
using GDI very slow. I highly recommend writing your own text blitter
for any speed-intensive text printing.

Trick

1072313618 CH07 10/26/99 10:09 AM Page 385

DirectX and 2D Fundamentals

386 PART II

The function does all the manipulation of the DC itself, so all you have to do is call it.
For example, to print out “You da Man!” at (100,100) in pure green on the primary
surface, you would write

Draw_Text_GDI(“You da Man!”,
100,100,
RGB(0,255,0),
lpddsprimary);

Before moving on, I want to talk a little about when to use GDI. In general, GDI is
slow. I usually use it during development to print text, draw GUI stuff, and so on.
Also, it’s very useful for slow emulation during development. For example, let’s say
that you’re planning to write a really fast line-drawing algorithm called Draw_Line().
You might not have time to do it yet, but you can always emulate Draw_Line() with
GDI calls. That way at least you get something on the screen, and later you can write
the fast line-drawing algorithm.

Getting the Lowdown on DirectDraw
As you’ve been learning, DirectDraw is a rather complex graphics system. It has a
number of interfaces, each with numerous functions. The main point of DirectDraw is
the utilization of hardware in a uniform manner. Therefore, it pays for game program-
mers to be able to query various DirectDraw interfaces for their states and/or capabili-
ties so that the proper action can be taken. For example, when you’re creating
surfaces, you might want to first find out how much VRAM is available so you can
optimize the creation order. Or maybe you want to use hardware rotation, but first you
need to make sure it’s available. The list of details that you might be interested in
adding to the system your game is running goes on and on. Hence, there are a number
of capability-testing functions, named GetCaps() or Get*() in general, available on
each of the main interfaces. Let’s take a look at the most useful GetCaps() functions.

The Main DirectDraw Object
The DirectDraw object itself represents the video card and describes the HEL and
HAL. The function of interest is called IDIRECTDRAW4::GetCaps():

HRESULT GetCaps(
LPDDCAPS lpDDDriverCaps, // ptr to storage for HAL caps
LPDDCAPS lpDDHELCaps); // ptr to storage for HEL caps

This function can be used to retrieve both the HEL and HAL capabilities. Then you
can review the DDCAPS structures returned for the data of interest. For example, here’s
how you would query for both the HAL and HEL:

DDCAPS hel_caps, hal_caps;

// initialize the structures
DDRAW_INIT_STRUCT(hel_caps);

1072313618 CH07 10/26/99 10:09 AM Page 386

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

387

DDRAW_INIT_STRUCT(hal_caps);

// make the call
if (FAILED(lpdd->GetCaps(&hal_caps, &hel_caps)))

return(0);

At this point you would index into either hel_caps or hal_caps and check things out.
Here’s what DDCAPS looks like:

typedef struct _DDCAPS
{
DWORD dwSize;
DWORD dwCaps; // driver-specific caps
DWORD dwCaps2; // more driver-specific caps
DWORD dwCKeyCaps; // color key caps
DWORD dwFXCaps; // stretching and effects caps
DWORD dwFXAlphaCaps; // alpha caps
DWORD dwPalCaps; // palette caps
DWORD dwSVCaps; // stereo vision caps
DWORD dwAlphaBltConstBitDepths; // alpha bit-depth members
DWORD dwAlphaBltPixelBitDepths; // .
DWORD dwAlphaBltSurfaceBitDepths; // .
DWORD dwAlphaOverlayConstBitDepths; // .
DWORD dwAlphaOverlayPixelBitDepths; // .
DWORD dwAlphaOverlaySurfaceBitDepths; // .
DWORD dwZBufferBitDepths; // Z-buffer bit depth
DWORD dwVidMemTotal; // total video memory
DWORD dwVidMemFree; // total free video memory
DWORD dwMaxVisibleOverlays; // maximum visible overlays
DWORD dwCurrVisibleOverlays; // overlays currently visible
DWORD dwNumFourCCCodes; // number of supported FOURCC codes
DWORD dwAlignBoundarySrc; // overlay alignment restrictions
DWORD dwAlignSizeSrc; // .
DWORD dwAlignBoundaryDest; // .
DWORD dwAlignSizeDest; // .
DWORD dwAlignStrideAlign; // stride alignment
DWORD dwRops[DD_ROP_SPACE]; // supported raster ops
DWORD dwReservedCaps; // reserved
DWORD dwMinOverlayStretch; // overlay stretch factors
DWORD dwMaxOverlayStretch; // .
DWORD dwMinLiveVideoStretch; // obsolete
DWORD dwMaxLiveVideoStretch; // .
DWORD dwMinHwCodecStretch; // .
DWORD dwMaxHwCodecStretch; // .
DWORD dwReserved1; // reserved
DWORD dwReserved2; // .
DWORD dwReserved3; // .
DWORD dwSVBCaps; // system-to-video

// blit related caps
DWORD dwSVBCKeyCaps; // .
DWORD dwSVBFXCaps; // .
DWORD dwSVBRops[DD_ROP_SPACE]; // .
DWORD dwVSBCaps; // video-to-system

1072313618 CH07 10/26/99 10:09 AM Page 387

DirectX and 2D Fundamentals

388 PART II

// blit related caps
DWORD dwVSBCKeyCaps; // .
DWORD dwVSBFXCaps; // .
DWORD dwVSBRops[DD_ROP_SPACE]; // .
DWORD dwSSBCaps; // system-to-system

// blit related caps
DWORD dwSSBCKeyCaps; // .
DWORD dwSSBCFXCaps; // .
DWORD dwSSBRops[DD_ROP_SPACE]; // .
DWORD dwMaxVideoPorts; // maximum number of

// live video ports
DWORD dwCurrVideoPorts; // current number of

// live video ports
DWORD dwSVBCaps2; // additional

// system-to-video blit caps
DWORD dwNLVBCaps; // nonlocal-to-local

// video memory blit caps
DWORD dwNLVBCaps2; // .
DWORD dwNLVBCKeyCaps; // .
DWORD dwNLVBFXCaps; // .
DWORD dwNLVBRops[DD_ROP_SPACE];// .
DDSCAPS2 ddsCaps; // general surface caps
} DDCAPS,FAR* LPDDCAPS;

Describing each field would require another book, so look it up in the SDK. Most of
them are fairly obvious. For example, DDCAPS.dwVidMemFree is one of my favorite
members because it indicates the amount of real VRAM that’s available for use as
surfaces.

There’s also another function that I like to use, called GetDisplayMode(). It’s useful
in figuring out the mode that the system is in when running in windowed mode.
Here’s the prototype:

HRESULT GetDisplayMode(LPDDSURFACEDESC2 lpDDSurfaceDesc2);

And you’ve seen a DDSURFACEDESC2 structure before, so you know what to do there.

In most cases, all DirectX data structures are used to write as well as to
read. In other words, you may set up a data structure to create an
object, but when you want to know about an object via a GetCaps()
call, the object will fill in the same data structure with the data of
object.

Note

Surfing on Surfaces
Most of the time, you couldn’t care less about finding out the properties of a surface
that you’ve created because you already know (you did create the darn thing)!
However, the properties of the primary and back buffer surfaces are of utmost

1072313618 CH07 10/26/99 10:09 AM Page 388

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

389

importance because they give you insight into the hardware properties of each. The
function (or “method,” if you’re anal-retentive) that tells you about the general surface
capabilities is IDIRECTDRAWSURFACE4::GetCaps():

HRESULT GetCaps(LPDDSCAPS2 lpDDSCaps);

This function returns a standard DDSCAPS2 structure, which you’ve seen before. Just
open it up and pour it out!

The next surface-related function of interest is called IDIRECTDRAWSURFACE4::
GetSurfaceDesc(). It returns a DDSURFACEDESC2 structure, which has a little more
detail about the surface itself. Here’s the prototype:

HRESULT GetSurfaceDesc(LPDDSURFACEDESC2 lpDDSurfaceDesc);

There’s also a IDIRECTDRAWSURFACE4::GetPixelFormat() method, but I’ve talked
about this before, and GetSurfaceDesc() returns the pixel format in
DDSURFACEDESC2.ddpfPixelFormat anyway.

Playing with Palettes
There’s not much to talk about when it comes to palettes. DirectDraw only gives you
a bit-encoded WORD that describes the abilities of any given palette. The function is
called IDIRECTDRAWPALETTE::GetCaps() and is shown here:

HRESULT GetCaps(LPDWORD lpdwCaps);

lpdwCaps is a bit-encoded WORD with the values in Table 7.7.

TABLE 7.7 Possible Flags for Palette Capabilities

Value Description

DDPCAPS_1BIT Supports 1-bit color palettes.

DDPCAPS_2BIT Supports 2-bit color palettes.

DDPCAPS_4BIT Supports 4-bit color palettes.

DDPCAPS_8BIT Supports 8-bit color palettes.

DDPCAPS_8BITENTRIES Palette is an index palette.

DDPCAPS_ALPHA Supports an alpha component with each palette entry.

DDPCAPS_ALLOW256 All 256 colors can be defined.

DDPCAPS_PRIMARYSURFACE Palette is attached to primary surface.

DDPCAPS_VSYNC Palette can be modified synchronously with monitor’s
refresh.

1072313618 CH07 10/26/99 10:09 AM Page 389

DirectX and 2D Fundamentals

390 PART II

Using DirectDraw in Windowed Modes
The last subject that I want to touch upon is using DirectDraw in windowed mode.
The problem with windowed mode, as far as games go, is that you have very little
control over the initial setting of the color depth and resolution. Writing DirectDraw
applications that run full-screen is hard enough, but generalizing to a windowed mode
is much more complex. You have to take into consideration that the user may start
your application at any resolution and/or color depth. This means that the perfor-
mance of your application may suffer. Not only that, but your game may be designed
to work solely for 8- or 16-bit modes, and your code could fall apart completely if the
user is in a higher color depth.

Although writing games that work in both windowed mode and full-screen mode is
the best of both worlds, I’m going to stick to full-screen mode to simplify most of the
work and demos. However, I may create a number of windowed applications that run
specifically in 800×600 or higher resolutions with a color depth of 8 bits. This way
you can more easily debug your DirectX application and/or have other output win-
dows, including the graphics output. In any case, let’s take a look at how to write a
windowed DirectX application and how to manipulate the primary surface.

The first thing to know about windowed DirectDraw applications is that the primary
surface is the entire screen display, not just your window! Take a look at Figure 7.38
to see this graphically. What this means is that you can’t just write to the screen dis-
play blindly, or you’ll end up mangling the client areas of other application windows.
Of course, this may be your intent if you’re writing a screen saver or other screen
manipulation program. However, in most cases, you’ll only want to write to the client
area of your application’s window. That means that somehow you must find the exact
coordinates of your client window and then make sure only to draw in that area.

The second problem is with clipping. If you intend to use the Blt() function, it has
no idea about your client window and will blit over the edges of the client window.
This means that somehow you must tell the DirectDraw clipping system that you have
a window on the screen so that it will make sure to clip to the window no matter
where it’s moved to or how it’s sized.

This brings us to yet another problem—what if the window is moved or resized by the
user? True, you can at least force the window to stay the same size, but movement is
an absolute must. Otherwise, why even have a windowed application? To handle this,
you must track the WM_SIZE and WM_MOVE messages.

The next problem is 8-bit palettes. If the video mode is 8-bit mode and you want to
change the palette, you’re in for trouble. Windows has a Palette Manager that you
must appease if you’re going to mess with the 8-bit palette, because you’ll probably
make all other Windows applications look ugly. In most cases, you can change the

1072313618 CH07 10/26/99 10:09 AM Page 390

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

391

palette, but it’s a good idea to leave about 20 of the palette entries alone (the Windows
and system colors) so the Palette Manager can make the other applications look some-
thing like what they’re supposed to.

Figure 7.38
In windowed modes,
the entire desktop is

mapped to the
DirectDraw primary

surface.

Finally, the most obvious problems are those of bit blitting and pixel manipulation
based on varying modes. Hence, you have to write code that handles all color depths
if you really want to be robust.

So I’ll begin with the details of getting into a windowed mode. You already know how
to do this! The only difference is that you don’t set the video mode or create a sec-
ondary back buffer. You’re not allowed to page flip in windowed modes. You must
either use the blitter to double buffer or do it yourself, but you can’t set up a complex
surface chain and then call Flip(). It won’t work. No problem, really; you’ll just cre-
ate another surface that’s the same size as your window’s client area, draw on it, and
blit it to the client area of your window on the primary buffer. That way you can avoid
screen flicker.

Let me show you the code to create a windowed DirectDraw application. First, the
DirectDraw initialization:

LPDIRECTDRAW lpdd_temp = NULL; // used to get IDIRECTDRAW4 interface

// first create base IDirectDraw interface
if (FAILED(DirectDrawCreate(NULL, &lpdd_temp, NULL)))

return(0);

1072313618 CH07 10/26/99 10:09 AM Page 391

DirectX and 2D Fundamentals

392 PART II

// now query for IDirectDraw4
if (FAILED(lpdd_temp->QueryInterface(IID_IDirectDraw4,

(LPVOID *)&lpdd)))
return(0);

// set cooperation to full screen
if (FAILED(lpdd->SetCooperativeLevel(main_window_handle, DDSCL_NORMAL)))

return(0);

// clear ddsd and set size
DDRAW_INIT_STRUCT(ddsd);

// enable valid fields
ddsd.dwFlags = DDSD_CAPS;

// request primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

// create the primary surface
if (FAILED(lpdd->CreateSurface(&ddsd, &lpddsprimary, NULL)))

return(0);

The key thing here is the cooperation level setting. Notice that it’s DDSCL_NORMAL,
rather than the usual (DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX | DDSCL_EXCLUSIVE
| DDSCL_ALLOWREBOOT) that you’ve been using for full-screen modes.

Also, when you’re creating the application window, you’ll want to use WS_OVERLAPPED
or maybe WS_OVERLAPPEDWINDOW rather than WS_POPUP. The WS_POPUP style creates a
window without any title, controls, and so on. WS_OVERLAPPED creates a window with
a title, but it can’t be resized, and the WS_OVERLAPPEDWINDOW style creates a fully func-
tional window with all the controls. However, in most cases I like to use WS_OVER-
LAPPED because I don’t want to deal with the resizing problem—it’s up to you.

For an example of what you know so far, take a look at DEMO7_18.CPP|EXE. It basi-
cally creates a windowed DirectX application with a client window that’s 400×400,
along with a primary surface.

Drawing Pixels in a Window
Okay, now let’s move on to accessing the client area of the window. There are two
things to remember: The primary surface is the entire screen, and you don’t know the
color depth. Let’s look at the first problem—finding the client area of the window.

Because the user can move a window anywhere on the screen, the client coordinates
are always changing—that is, if you think in terms of absolute coordinates. You need
to find a way to figure out the upper-left corner of the client area in screen coordinates
and then use that as your origin for pixel plotting. The function you need to use
(which I’ve mentioned before) is GetWindowRect():

1072313618 CH07 10/26/99 10:10 AM Page 392

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

393

BOOL GetWindowRect(HWND hWnd, // handle of window
LPRECT lpRect); // address of structure

// for window coordinates

GetWindowRect() actually retrieves the coordinates of your entire win-
dow, including the controls and border. I’ll show you how to figure out
the exact client coordinates in a bit, but keep that in mind…

Warning

When you send the window handle of your application window, the function returns
the screen coordinates of the client area of your window in lpRect. So all you need to
do is call this function to retrieve the upper-left corner of your window in screen coor-
dinates. Of course, every time the window moves, the coordinates change, so you
must call GetWindowRect() every frame or when you receive a WM_MOVE message.
I prefer calling it once a frame because I hate processing Windows messages!

Now that you know the screen coordinates of your window’s client area, you’re ready
to manipulate the pixels. But wait a minute—what’s the pixel format?

I’m glad you asked, because you know the answer! That’s right, you need to use the
GetPixelFormat() function at the beginning of your program to determine the color
depth and then, based on this, make calls to different pixel plotting functions. So
somewhere in your program, maybe in Game_Init() after setting up DirectDraw, you
should make a call to GetPixelFormat() from the primary surface, like this:

int pixel_format = 0; // global to hold the bpp
DDPIXELFORMAT ddpixelformat; // hold the pixel format

// clean out the structure and set it up
DDRAW_INIT_STRUCT(ddpixelformat);

// get the pixel format
lpddsprimary->GetPixelFormat(&ddpixelformat);

// set global pixel format
pixel_format = ddpixelformat.dwRGBBitCount;

Then, once you know the pixel format, you can use some conditional logic, function
pointers, or virtual functions to set the pixel plotting function to the correct color
depth. To keep things simple, you’ll just use some conditional logic that tests the
global pixel_format variable before plotting. Here’s some code that plots random
pixels at random locations in the client area of the window:

DDSURFACEDESC2 ddsd; // directdraw surface description
RECT client; // used to hold client rectangle

1072313618 CH07 10/26/99 10:10 AM Page 393

DirectX and 2D Fundamentals

394 PART II

// get the window’s client rectangle in screen coordinates
GetWindowRect(main_window_handle, &client);

// initialize structure
DDRAW_INIT_STRUCT(ddsd);

// lock the primary surface
lpddsprimary->Lock(NULL,&ddsd,

DDLOCK_SURFACEMEMORYPTR | DDLOCK_WAIT,NULL);

// get video pointer to primary surface
// cast to UCHAR * since we don’t know what we are
// dealing with yet and I like bytes :)
UCHAR *primary_buffer = (UCHAR *)ddsd.lpSurface;

// what is the color depth?
if (pixel_format == 32)

{
// draw 10 random pixels in 32 bit mode
for (int index=0; index<10; index++)

{
int x=rand()%(client.right - client.left) + client.left;
int y=rand()%(client.bottom - client.top) + client.top;
DWORD color = _RGB32BIT(0,rand()%256, rand()%256, rand()%256);
*((DWORD *)(primary_buffer + x*4 + y*ddsd.lPitch)) = color;
} // end for index

} // end if 24 bit

else
if (pixel_format == 24)

{
// draw 10 random pixels in 24 bit mode (very rare???)
for (int index=0; index<10; index++)

{
int x=rand()%(client.right - client.left) + client.left;
int y=rand()%(client.bottom - client.top) + client.top;
((primary_buffer + x*3 + y*ddsd.lPitch))[0] = rand()%256;
((primary_buffer + x*3 + y*ddsd.lPitch))[1] = rand()%256;
((primary_buffer + x*3 + y*ddsd.lPitch))[2] = rand()%256;
} // end for index

} // end if 24 bit
else
if (pixel_format == 16)

{
// draw 10 random pixels in 16 bit mode
for (int index=0; index<10; index++)

{
int x=rand()%(client.right - client.left) + client.left;
int y=rand()%(client.bottom - client.top) + client.top;
USHORT color = _RGB16BIT565(rand()%256, rand()%256, rand()%256);
*((USHORT *)(primary_buffer + x*2 + y*ddsd.lPitch)) = color;
} // end for index

1072313618 CH07 10/26/99 10:10 AM Page 394

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

395

} // end if 16 bit
else

{// assume 8 bits per pixel
// draw 10 random pixels in 8 bit mode
for (int index=0; index<10; index++)

{
int x=rand()%(client.right - client.left) + client.left;
int y=rand()%(client.bottom - client.top) + client.top;
UCHAR color = rand()%256;
primary_buffer[x + y*ddsd.lPitch] = color;
} // end for index

} // end else

// unlock primary buffer
lpddsprimary->Unlock(NULL);

Of course, this code is an optimization nightmare, and it hurts me to
even show you such slow, crude, troglodyte code, but it’s easy to under-
stand. In real life, you would use function pointers or a virtual function,
completely remove all multiplies and mods, and use incremental
addressing. Anyway, just wanted to indemnify myself <BG>.

For an example of plotting pixels in any color depth, take a look at
DEMO7_19.CPP|EXE. It creates a 400×400 window and then plots pixels in the client
area (well, almost). Try running the program with different color depths, and notice
that it still works! When you’re done, come back and I’ll talk about rendering more
accurately to the actual interior client area…

Finding the Real Client Area (51)
The problem with windows is that when you create a window using CreateWindow()
or CreateWindowEx(), you’re specifying the total width and size of the window,
including any controls. Hence, if you create a blank WS_POPUP window without any
controls, the size of the window is exactly the size of the client area. Presto—no
drama. On the other hand, the second you add controls, menus, borders, whatever, and
make the call to CreateWindowEx(), Windows shrinks the interior client area so that it
can fit in all the controls. The result: a working area that’s less than what you desired.
Figure 7.39 illustrates this cosmic dilemma. The solution is to resize your window
taking into consideration the border, controls, etc.

Trick

1072313618 CH07 10/26/99 10:10 AM Page 395

DirectX and 2D Fundamentals

396 PART II

For example, let’s say you want a window that has a working area of 640×480, but
you want to also have a border, a menu, and standard window controls. What you
need to do is calculate how many pixels all the extra Windows gadgetry takes in the X
and Y direction, and then simply increase the size of your window until the working
client area is the desired size. The magical function that computes the size of a win-
dow with various styles is called AdjustWindowRectEx() and is shown here:

BOOL AdjustWindowRectEx(
LPRECT lpRect, // pointer to client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu, // menu-present flag
DWORD dwExStyle);// extended style

You fill in all the parameters, and the function resizes the structure data sent in
lpRect to take into consideration all the extra styles and flags for the window. To use
the function, you first set up a RECT structure with the desired client area size, say,
640×480. Then you make the call, along with all the proper parameters you created
the original window with. However, I never can remember what I set the window to,
or the exact names of the flags, so you can ask Windows to tell you what you did and
save some neurons. Here’s the call, along with the window’s helper functions that
query the styles based on the HWND that you send:

// the client size we desire
RECT window_rect = {0,0,640,480};

// make the call to adjust window_rect
AdjustWindowRectEx(&window_rect,

GetWindowStyle(main_window_handle),
GetMenu(main_window_handle) != NULL,
GetWindowExStyle(main_window_handle));

Figure 7.39
A window’s client

area is smaller
than the window

surrounding it.

(0, 0)

(Width – 1, Height – 1)

Window title

Title bar 16+ pixels in height

Border
a few pixels thick

Window = {width × height}
Client = {width – m, height – n}
where (m, n) ≥ 0

Client area smaller
than size of window
as created in call to
create window (. . .);

1072313618 CH07 10/26/99 10:10 AM Page 396

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

397

// now resize the window with a call to MoveWindow()
MoveWindow(main_window_handle,

CW_USEDEFAULT, // x position
CW_USEDEFAULT, // y position
window_rect.right – window_rect.left, // width
window_rect.bottom – window_rect.top, // height
FALSE;

And that’s it, baby!

Clipping a DirectX Window
Now we’re getting somewhere! The next piece of the DirectDraw windowed mode
conundrum is to get the clipping working. Make sure that you understand that clip-
ping only matters to the blitter; it has no effect on what you do directly with the pri-
mary surface.

You’ve seen the IDIRECTDRAWCLIPPER interface before, so I’m not going to belabor it
anymore. (I still have the shakes from figuring out the exact nature of the coordinates
in a RECT structure.) The first thing you need to do is create a DirectDraw clipper, like
this:

LPDIRECTDRAWCLIPPER lpddclipper = NULL; // hold the clipper

if (FAILED(lpdd->CreateClipper(0,&lpddclipper,NULL)))
return(0);

Next, you must attach the clipper to your application’s window with IDIRECTDRAW-
CLIPPER::SetHWnd(). This associates the clipper to your window and handles all the
details for sizing and movement for you. In fact, you don’t even have to send a clip-
ping list at all; it’s all automatic. The function is so simple. Here’s the prototype:

HRESULT SetHWnd(DWORD dwFlags, // unused, set to 0
HWND hWnd); // app window handle

Here’s the call to associate the clipper with your main window:

if (FAILED(lpddclipper->SetHWnd(0, main_window_handle)))
return(0);

Next you have to associate the clipper with the surface you want to clip—in this case,
the primary surface. To do this, you use SetClipper(), which you’ve already seen:

if (FAILED(lpddsprimary->SetClipper(lpddclipper)))
return(0);

1072313618 CH07 10/26/99 10:10 AM Page 397

DirectX and 2D Fundamentals

398 PART II

Remember that the clipping that’s attached to the window only matters for blits to the
primary surface—that is, the contents of the window. But in most cases, you’ll create
an offscreen surface to simulate a double buffer, blit to that, and then copy the off-
screen surface to the primary buffer using the blitter—a crude form of page flipping.
Alas, attaching the blitter to the primary buffer only helps if the blits you make to it
(the offscreen buffer) go out of bounds. And this will only occur if the user resizes.

Working with 8-Bit Windowed Modes
The last topic I want to touch upon is 8-bit windowed mode and the palette. To make
a long story short, you can’t just create a palette, do anything you want with it, and
then attach it to the primary surface. You must work a little with the Windows Palette
Manager. Window palette management under GDI is beyond the scope of this book (I
always wanted to say that), and I don’t feel like boring you with all the stupid details.
The bottom line is, if you run your game in windowed 256-color mode, you’re going
to have fewer than 256 colors at your disposal.

Each application running on the desktop has a logical palette that contains the desired
colors of the application. However, the physical palette is the one that really matters.
The physical palette reflects the actual hardware palette, and this is the compromise
that Windows works with. When your application gets the focus, your logical palette
is realized—in other words, the Windows Palette Manager starts mapping your colors
to the physical palette as best it can. Sometimes it does a good job, and sometimes it
doesn’t.

Moreover, the way you set up your logical palette’s flags determines how much slack
Windows has to work with. Finally, at the very least, Windows needs 20 colors out of
the palette: the first and last 10. These are reserved for Windows colors and are the
bare minimum to make Windows applications look reasonable. The trick to creating a
256-color mode windowed application is restraining your artwork to 236 colors or
less—so you have room for the Windows colors—and then setting the palette flags of

Now you’re ready to rock. There’s one little DirectX problem, though.
The reference count on the clipper is now at 2—1 for the creation, 2 for
the call to SetClipper(). This is fine, but destroying the surface won’t
kill the clipper. You must make another call to lpddclipper->Release()
to kill it, after releasing the surface with a call to lpddsprimary-
>Release(). The bottom line is you might think that you killed the clip-
per with a call to lpddclipper->Release(), but that only reduces the
reference count to 1. Alas, Microsoft recommends that you make a call
to lpddclipper->Release() right after the preceding code sequence, so
that the reference count of lpddclipper is 1 as it should be—Whatever!

Warning

1072313618 CH07 10/26/99 10:10 AM Page 398

CHAPTER 7
Advanced DirectDraw and Bitmapped Graphics

399

your logical palette appropriately. Windows will then leave them alone when your
palette is realized.

Here’s the code that creates a generic palette. You can change the code to use your
own RGB value for the entries from 10 to 245, inclusive. This code simply makes
them all gray:

LPDIRECTDRAW4 lpdd; // this is already setup
PALETTEENTRY palette[256]; // holds palette data
LPDIRECTDRAWPALETTE lpddpal = NULL; // palette interface

// first set up the windows static entries
// note it’s irrelevant what we make them
for (int index = 0; index < 10 ; index++)

{
// the first 10 static entries
palette[index].peFlags = PC_EXPLICIT;
palette[index].peRed = index;
palette[index].peGreen = 0;
palette[index].peBlue = 0;

// The last 10 static entries:
palette[index+246].peFlags = PC_EXPLICIT;
palette[index+246].peRed = index+246;
palette[index+246].peGreen = 0;
palette[index+246].peBlue = 0;
} // end for index

// Now set up our entries. You would load these from
// a file etc., but for now we’ll make them grey
for (index = 10; index < 246; index ++)

{
palette[index].peFlags = PC_NOCOLLAPSE;
palette[index].peRed = 64;
palette[index].peGreen = 64;
palette[index].peBlue = 64;
} // end for index

// Create the palette.
if (FAILED(lpdd->CreatePalette(DDPCAPS_8BIT, palette,

&lpddpal,NULL)))
{ /* error */ }

// attach the palette to the primary surface…

Notice the use of PC_EXPLICIT and PC_NOCOLLAPSE. PC_EXPLICIT means “these colors
map to hardware,” and PC_NOCOLLAPSE means “don’t try to map these colors to other
entries; leave them as they are.” If you wanted to animate some color registers, you
would also logically OR the flag PC_RESERVED. This tells the palette manager not to
map other Windows applications colors to the entry because it may change at any
time.

1072313618 CH07 10/26/99 10:10 AM Page 399

DirectX and 2D Fundamentals

400 PART II

Summary
Without a doubt, this has been one of the longest chapters in the book. Hey, sue me!
There was just a lot of material to cover. I could still keep going, but I want to leave
some trees in the rain forest!

I’ve covered all kinds of stuff, including high-color modes, the blitter, clipping, color
keys, sampling theory, windowed DirectDraw, GDI, and querying information from
DirectDraw. Also, I’m done with the T3DLIB1.CPP|H library. You can check it out now
if you want, or you can wait until the end of the next chapter when I go through each
function.

In the next chapter, I’m going to take a break from DirectDraw for a bit (although it
returns at the end of the chapter) and I’m going to cover some vector-based 2D geom-
etry, transformations, and rasterization theory.

1072313618 CH07 10/26/99 10:10 AM Page 400

Vector Rasterization and
2D Transformations

“There are a lot worse things out than vampires tonight…”
—Blade

This chapter will cover vector topics, such as how to draw lines
and polygons, and will show you how to finish off the first mod-
ule of the T3DLIB game library. This is the first chapter that
pours on the math, but if you take your time, there shouldn’t be
anything you can’t handle with a little effort. About the hardest
thing I’m going to talk about is matrices. (It’s just an introduc-
tion so that when you get to the 3D chapters, matrix math won’t
look totally alien.) Also, by popular request, I’m going to give
you some ideas on how to do scrolling and even isometric 3D
engines. Remember, this is a 3D book, so I have to save pages
for the 3D stuff! However, anything that I don’t have room for
here will be covered on the CD itself. Here’s the hit list for this
chapter:

• Drawing lines

• Clipping

• Matrices

• 2D transformation

CHAPTER 8

1172313618 CH08 10/26/99 10:14 AM Page 401

DirectX and 2D Fundamentals

402 PART II

• Drawing polygons

• Scrolling and ISO 3D engines

• Timing

• The T3DLIB version 1.0

Drawing Lines
Up to this point, you’ve drawn all of your graphical objects with either single points
or bitmaps. Both of these entities are considered non-vector entities. A vector entity is
something like a line or a polygon, as shown in Figure 8.1. So your first problem is
figuring out how to draw a line.

Figure 8.1
A vector/line-based

object. +y

–y

–x +x(0, 0)

P7 P6 P3 P2

P1

P1

P8

P0

P0

P5 P4

Vector P0 P1

You may think that drawing a line is trivial, but I assure you it’s not. Drawing a line
on a computer screen has a number of problems associated with it, such as finite reso-
lution, mapping real numbers onto an integer grid, speed issues, and so forth. In many
cases, a 2D or 3D image is composed of a number of points that define the polygons
or faces that make up an object or scene. These points are usually in the form of real
numbers, such as (10.5, 120.3) and so on.

The first problem is that a computer screen is represented by a 2D grid of whole num-
bers, so plotting (10.5, 120.3) is almost impossible. You can only approximate it. You
might decide to truncate the coordinates and plot (10,120), or you might decide to
round them and plot (11,120). Finally, you might go high-tech and decide to perform
a weighted pixel plotting function that plots a number of pixels of differing intensities
centered at the pixel center (10.5, 120.3), as shown in Figure 8.2.

1172313618 CH08 10/26/99 10:14 AM Page 402

CHAPTER 8
Vector Rasterization and 2D Transformations

403

Basically, an area filter computes how much the original pixel overlaps into the other
pixel positions and then draws those pixels in the same color as the desired pixel, but
with decreased intensity. This creates a much rounder-looking pixel that looks anti-
aliased, but in general you have lowered your maximum resolution.

Instead of me jabbering on about line-drawing algorithms, filtering, and such, let’s get
to the cream pie and see a couple of really good line-drawing algorithms that you can
use to compute the integer coordinates of a line from (x0,y0) to (x1,y1).

Bresenham’s Algorithm
The first algorithm I want to present you with is called Bresenham’s algorithm, named
after the man who invented it in 1965. Originally, the algorithm was designed to draw
lines on plotters, but it was later adapted to computer graphics. Let’s take a quick look
at how the algorithm works and then see some code. Figure 8.3 shows the general
problem you’re trying to solve. You want to fill in the pixels from point p1 to p2 with
the pixels that most closely fit to the real line. This process is called rasterization.

+y

–y

–x +x(0, 0) 2

20

40

60

80

120

100

4 6 8 10

(10.5, 120.3) is desired

Real pixel location

(10,121) (11,121)

(10,120) (11,120)

Zoomed in

Each pixel is colored
proportional to overlap
of virtual real pixel.

Figure 8.2
Area filtering a single

pixel.

+y

–y

–x +x(0, 0)

P2 = (x2, y2)

P1 = (x1, y1)

Pixels plotted to approximate line

Desired line (true line)

Figure 8.3
Rasterizing a line.

1172313618 CH08 10/26/99 10:14 AM Page 403

DirectX and 2D Fundamentals

404 PART II

If you’re a little rusty on lines, let me refresh your memory. The slope of a line is
related to the angle that the line makes with the x-axis. Hence, a line with slope 0 is
totally horizontal, while a line with infinite slope is totally vertical. A line with slope
1.0 is diagonal or 45 degrees. Slope is defined as rise over run, or, mathematically:

Rise Change in y dy (y1–y0)
Slope = ------ = ------------- ---- = m = ---------

Run Change in x dx (x1–x0)

For example, if you have a line with coordinates p0(1,2) and p1(5,22), the slope
or m is:

(y2–y1)/(x2–x1) = (22–2)/(5–1) = 20/4 = 5.0

So what does the slope really mean? It means that if you increment the x-coordinate
by 1.0 unit, the y-coordinate will change by 5.0 units. Okay, this is the beginning of a
rasterization algorithm. At this point, you have a rough idea of how to draw a line:

1. Compute the slope m.

2. Plot (x0,y0).

3. Advance x by 1.0 and then advance y by the slope m. Add this value to (x0,y0).

4. Repeat steps 2-4 until done.

Figure 8.4 shows this example for the previous values of p0 and p1.

+y

–y

–x +x(0, 0)

Note: Rasterized pixels are not centered.
This is a side effect of Integer Rasterization.

1 5 10 15

1

5

10

15

20

25

Dx = 1, Dy = 5.0

Dx = 1, Dy = 5.0
(2, 7)

Dx = 1, Dy = 5.0
(3, 12)

Dx = 1, Dy = 5.0
(4, 17)

P1 = (5, 22)

endpoint

endpoint

P0 = (1, 2)

Slope = M = = = = 5.0
Dy
Dx

22 – 2
5 – 1

20
4

Figure 8.4
A first attempt at

rasterization.

1172313618 CH08 10/26/99 10:14 AM Page 404

CHAPTER 8
Vector Rasterization and 2D Transformations

405

Do you see the problem? Every time you step one pixel in x, you step 5.0 pixels in y.
Therefore, you’re drawing a line that has a lot of holes in it! The mistake you’re mak-
ing is not tracing a line, but plotting pixels as integer intervals; that is, whenever x is a
whole number. In essence, you’re plugging whole numbers into the equation of a line:

(y–y0) = m*(x–x0)

Here, (x,y) are the current values or pixel locations, (x0,y0) is the starting point, and
m is the slope. Rearranging this a little, you have

y = m*(x–x0)+y0

So, if you let (x0,y0) be (1,2) and m be 5 as in the example, you get the following
results:

x y = 5*(x–1)+2

1 2 (starting point)
2 7
3 12
4 17
5 22 (ending point)

Now, you might ask if the slope-intercept form of a line can help:

y = m*x + b

Here, b is the point where the line intercepts the y-axis. Again, though, this doesn’t do
you any good. The fundamental problem is that you’re moving x by 1.0 each cycle.
You have to move it by a much smaller amount, such as 0.01, so that you catch all the
pixels and don’t skip any, or else you have to try a different approach. Astute readers
will realize that now matter how small you step x, you can always find a slope that
will make it skip. You need to try something else—this is the basis of Bresenham’s
algorithm.

In a nutshell, Bresenham’s algorithm starts at (x0,y0), but instead of using the slope to
move, it moves x by one pixel and then decides which way to move the y component
so that the line it’s tracing out matches the true line as closely as possible. This is
accomplished with an error term that tracks the closeness of the line being rasterized
to the true line. The algorithm continually updates the error term and tries to keep the
digital rasterized line as close as possible.

The algorithm basically works in quadrant I of the Cartesian plane, and the other
quadrants are derived with reflections. In addition, the algorithm considers two kinds
of lines: lines with slope less than 45 degrees, or m < 1, and lines with slope greater
than 45 degrees, or m > 1. I like to call these x-dominate and y-dominate, respec-
tively. Here’s some pseudocode for an x-dominate line p0(x0,y0) and p1(x1, y1):

1172313618 CH08 10/26/99 10:14 AM Page 405

DirectX and 2D Fundamentals

406 PART II

// initialize starting point
x = x0;
y = y0;

// compute deltas
dx = x1 – x0;
dy = y1 – y0;

// initialize error term
error = 0;

// draw line
for (int index = 0; index < dx; index++)

{
// plot the pixel
Plot_Pixel(x,y,color);

// adjust the error
error+=dy;

// test the error
if (error > dx)

{
// adjust error
error-=dx;

// move up to next line
y--;

} // end if

} // end for index

That’s it! Of course, this is only for the first octant, but all the others are taken care of
simply by checking signs and switching values. The algorithm is the same.

There’s one point I want to make before I show you the code, and it’s about accuracy.
The algorithm continually minimizes the error between the rasterized line and the true
line, but the starting conditions could be a little better. You see, you’re starting the
error term at 0.0. This is actually incorrect. It would be better to somehow take into
consideration the first pixel position and then set the error a little better so that it
straddles the minimum and maximum error. This can be done by setting the error term
to 0.5, but because you’re using integers you must scale this by 2 and then add in the
contribution from dx and dy. The bottom line is, you’re going to change the final
algorithm to set the error to something like this:

// x-dominate
error = 2*dy – dx

// y-dominate
error = 2*dx – dy

1172313618 CH08 10/26/99 10:14 AM Page 406

CHAPTER 8
Vector Rasterization and 2D Transformations

407

And then you’re going to scale the error accumulation by two accordingly. Here’s the
final algorithm, implemented as a function from your library called Draw_Line().
Notice that it takes both of the endpoints, color, video buffer, and video pitch and
draws the line:

int Draw_Line(int x0, int y0, // starting position
int x1, int y1, // ending position
UCHAR color, // color index
UCHAR *vb_start,
int lpitch) // video buffer and memory pitch

{
// this function draws a line from xo,yo to x1,y1
// using differential error
// terms (based on Bresenhams work)

int dx, // difference in x’s
dy, // difference in y’s
dx2, // dx,dy * 2
dy2,
x_inc, // amount in pixel space to move during drawing
y_inc, // amount in pixel space to move during drawing
error, // the discriminant i.e. error i.e. decision variable
index; // used for looping

// precompute first pixel address in video buffer
vb_start = vb_start + x0 + y0*lpitch;

// compute horizontal and vertical deltas
dx = x1-x0;
dy = y1-y0;

// test which direction the line is going in i.e. slope angle
if (dx>=0)

{
x_inc = 1;

} // end if line is moving right
else

{
x_inc = -1;
dx = -dx; // need absolute value

} // end else moving left

// test y component of slope

if (dy>=0)
{
y_inc = lpitch;
} // end if line is moving down

else
{
y_inc = -lpitch;

1172313618 CH08 10/26/99 10:14 AM Page 407

DirectX and 2D Fundamentals

408 PART II

dy = -dy; // need absolute value

} // end else moving up

// compute (dx,dy) * 2
dx2 = dx << 1;
dy2 = dy << 1;

// now based on which delta is greater we can draw the line
if (dx > dy)

{
// initialize error term
error = dy2 - dx;

// draw the line
for (index=0; index <= dx; index++)

{
// set the pixel
*vb_start = color;

// test if error has overflowed
if (error >= 0)

{
error-=dx2;

// move to next line
vb_start+=y_inc;

} // end if error overflowed

// adjust the error term
error+=dy2;

// move to the next pixel
vb_start+=x_inc;

} // end for

} // end if |slope| <= 1
else

{
// initialize error term
error = dx2 - dy;

// draw the line
for (index=0; index <= dy; index++)

{
// set the pixel
*vb_start = color;

// test if error overflowed
if (error >= 0)

{

1172313618 CH08 10/26/99 10:14 AM Page 408

CHAPTER 8
Vector Rasterization and 2D Transformations

409

error-=dy2;

// move to next line
vb_start+=x_inc;

} // end if error overflowed

// adjust the error term
error+=dx2;

// move to the next pixel
vb_start+=y_inc;

} // end for

} // end else |slope| > 1

// return success
return(1);

} // end Draw_Line

This function works in 8-bit modes only. However, the library has a
16-bit version as well, with the name Draw_Line16().

Note

The function basically has three main sections. The first section does all the sign and
endpoint swapping and computes the x and y axes’ deltas. Then based on the domi-
nance of the line, that is, if dx > dy, or dx <= dy ,one of two main loops draws the
line.

Speeding Up the Algorithm
Looking at the code, you might think that it’s fairly tight and there’s no room for opti-
mization. However, there are a couple of ways to speed up the algorithm. The first
way is to take into consideration that all lines are symmetrical about their midpoints,
as shown in Figure 8.5, so there’s no need to run the algorithm for the whole line. All
you have to do is halve the line and copy the other half. In theory this is solid, but
implementing it is a pain because you have to worry about lines that have an odd
number of pixels and then decide to draw one extra pixel at either end. Not that it’s
hard—just ugly.

The other optimizations have been discovered by a number of people (including
myself), including Michael Abrash’s algorithm Run-Slicing, Xialon Wu’s Symmetric
Double Step, and Rokne’s Quadruple Step. Basically, all these algorithms take advan-
tage of the consistency of the pixel patterns that make up a line. The Run-Slicing

1172313618 CH08 10/26/99 10:14 AM Page 409

DirectX and 2D Fundamentals

410 PART II

algorithm takes advantage of the fact that sometimes large runs of pixels exist, such as
the line (0,0) to (100,1). The line should consist of two runs of 50 pixels. One runs
from (0-49,0) and the other runs from (50-100,1), as shown in Figure 8.6.

+y

–y

–x +x(0, 0)

P1

P0

P midpoint

Lines are symmetric about midpoint
thus rasterization can be accomplished by
drawing one segment and reflecting each
pixel to draw the other segment.

Figure 8.5
Lines are symmetrical
about their midpoints.

So what’s the point in doing the line algorithm on each pixel? The problem is that the
setup and the innards of the algorithm are very complex, but they work for lines with
very large or very small slopes.

+y

–y

–x +x(0, 0)

(0, 49) (100, 1)
Run slice 1

Run slice 2

During run slice no logic is needed,
just a memory fill.

10 20 30 40 50 60 70 80 90 100

1 P0 P0

2

3

Figure 8.6
The Run-Slicing line

drawing optimization.

1172313618 CH08 10/26/99 10:14 AM Page 410

CHAPTER 8
Vector Rasterization and 2D Transformations

411

Wu’s Symmetric Double Step algorithm works on a similar premise, but instead of
considering runs, it notes that for every two pixels there are only four different pat-
terns that can occur, as shown in Figure 8.7. It’s fairly easy to compute the next pat-
tern by looking at the error term and then plotting the entire pattern, in essence
moving at twice normal speed. This, coupled with symmetry, gives you a speed
increase of four times over the basic Bresenham algorithm. That’s the story.

Any line can be rasterized
with these patterns or a
90° rotated version of them

Line segment to rasterize

P1

P0

3

Pattern 1 Pattern 2 Pattern 3 Pattern 4Figure 8.7
Drawing lines using

raster patterns.

For a demo of the line drawing function, take a look at DEMO8_1.CPP|EXE, which
draws random lines in 640×480 mode.

If I decide you need a faster line, I’ll write it. But for now I’d like to keep
things simple, so let’s move on to clipping.

Note

Basic 2D Clipping
There are two ways to clip computer images: at the image space level and at the
object space level. Image space really means at the pixel level. When the image is
being rasterized, there is a clipping filter that determines if a pixel is within the view-
port. This is appropriate for plotting single pixels, but not for large objects such as
bitmaps, lines, or polygons. For objects like those that have some geometry to them,
you might as well take advantage of the extra information.

For example, if you’re writing a bitmap clipper, all you have to do is clip one rectan-
gle against another; that is, clip your bitmap’s bounding rectangle to the viewport.
The intersection of the two is the area that you need to blit.

Although you wouldn’t think so, lines are a little more difficult to clip. Take a look at
Figure 8.8 to see the general problem of clipping a line to a rectangular viewport.

1172313618 CH08 10/26/99 10:14 AM Page 411

DirectX and 2D Fundamentals

412 PART II

As you can see, there are four general cases:

• Case 1—The line is completely outside the clipping region. This is the trivial
rejection case, which is good!

• Case 2—The line is completely inside the clipping region. In this case, no clip-
ping is needed and the line can be passed to the rasterizer as is.

• Case 3—One end of the line segment is outside the clipping region and must be
clipped.

• Case 4—Both ends of the line are outside the clipping region and must be
clipped.

There are a number of known algorithms to clip lines, such as Cohen-Sutherland,
Cyrus-Beck, and so on. But before you take a look at any full clipping algorithms,
let’s see if you can figure it out yourself!

Given that you have a line (x0,y0) to (x1,y1) in 2D space, along with a viewport
defined by the rectangle (rx0, ry0) to (rx1, ry1), you want to clip all lines to this
region. So what you need is a preprocessor—or clipping filter, if you will—that takes
the input values (x0,y0), (x1,y1), (rx0,ry0), and (rx1,ry1) and outputs a new line seg-
ment, (x0’,y0’) to (x1’,y1’), that represents the new line. This process is shown in
Figure 8.9. Looking at this problem, the first thing you should notice is that at some
point you’re going to have to compute the intersection of two lines. Alas, this is a fun-
damental problem you need to figure out right off the bat, so you might as well start
there.

Totally visible

Case 2

Clipping region

Clipped at both ends
Case 4

Totally invisible
Case 1

(rx0, ry0)

(rx1, ry1)

Partially clipped
Case 3

Figure 8.8
The general line clip-

ping problem.

1172313618 CH08 10/26/99 10:14 AM Page 412

CHAPTER 8
Vector Rasterization and 2D Transformations

413

Basically, the line segment from (x0,y0) to (x1,y1) will intersect either the left, right,
top, or bottom edge of the clipping rectangle. This means that at least you don’t have
to find the intersection of two arbitrarily oriented lines since the line being rasterized
will always intersect either a vertical or horizontal line. Knowing this may or may not
help, but it’s worth noting. To compute the intersection of two lines, there are a num-
ber of methods, but they are all based on the mathematical form of the lines.

In general, lines can take these general forms:

Y-Intercept Form: y=m*x+b
Point Slope: (y–y0)=m*(x–x0)
Two Point Form: (y–y0)=(x–x0)*(y1–y0)/(x1–x0)
General Form: a*x+b*y=c
*Parametric Form: P=p0+V*t

Clipping
region

Clipper

(rx0, ry0)

(rx1, ry1)

Line segment

Input

(x0, y0)

(p0, p1) (x1, y1)
Clipped lines

Output

(x0', y0')

(x1', y1')

Figure 8.9
The clipping process

diagrammed.

Tip If you’re uneasy with the parametric form, don’t worry. I’ll explain
parametric equations shortly. In addition, Note that the Point Slope
form and the Two Point form are really the same because in both cases
m = (y1 – y0)/(x1 – x0).

Computing the Intersection of Two Lines Using the Point
Slope Form

Off the top of my head, I like both the Point Slope form and the general form. As a
good example of algebra, let’s work through the intersection of two lines, p0 and p1,
using each type of representation. This should warm you up a little for the really
gnarly math that’s ahead in later chapters <BG>. Let’s do the general Point Slope ver-
sion first (see Figure 8.10).

Referring to Figure 8.10:

Let the first line segment p0 be (x0,y0) to (x1,y1)
Let the second line segment p1 be (x2,y2) to (x3,y3)

1172313618 CH08 10/26/99 10:14 AM Page 413

DirectX and 2D Fundamentals

414 PART II

Here, p0 and p1 can have any orientation:

Eq.1 – Point Slope form of p0:
m0 = (y1 – y0)/(x1 – x0)

and,

(x – x0) = m0*(y – y0)
Eq.2 – Point Slope form of p1:

m1 = (y3 – y2)/(x3 – x2)

and,

(x – x2) = m1*(y – y2)

Now you have two equations in two unknowns:

Eq.1: (x – x0) = m0*(y – y0)
Eq.2: (x – x2) = m1*(y – y2)

There are two primary ways to solve for (x,y): substitution or matrix operations. Let’s
try substitution first. The idea here is to find one variable in terms of the other and
then plug it into the other equation. Let’s try finding x in terms of y for Equation 1
and then plug it into Equation 2:

Equation 1—x in terms of y:

(x – x0) = m0*(y – y0)

x = m0*(y-y0) + x0

That was easy. Now let’s plug it into Equation 2 for x.

Equation 2 is

(x – x2) = m1*(y – y2)

Figure 8.10
Computing the inter-
section of two lines.

+y

–y

–x +x(0, 0)

Point of intersection
= f (x0, y0, x1, y1, x2, y2, x3, y3)

(x2, y2)

(x0, y0)

(x3, y3)

(x1, y1)
p1

p0

General case of line intersection

1172313618 CH08 10/26/99 10:14 AM Page 414

Errata

Errata
"Point of intersection" should be "Point of intersection (x,y)"

CHAPTER 8
Vector Rasterization and 2D Transformations

415

In Equation 1, x = m0*(y-y0) + x0. Let’s plug that into x:

(m0*(y-y0) + x0 – x2) = m1*(y – y2)

Simplifying for y:

m0*y – m0*y0 + x0 – x2 = m1*y – m1*y2

Collect terms:

m0*y - m1*y = – m1*y2 – (– m0*y0 + x0 – x2)

Pull out y and multiply all signs:

y*(m0 – m1) = m0*y0 – m1*y2 + x2 – x0

And finally, divide both sides by (m0 – m1):

y = (m0*y0 – m1*y2 + x2 – x0)/(m0 – m1)

At this point you could plug this back into Equation 1 and solve for x, or you could
rewrite Equation 2 in terms of x and plug that into y of Equation 1. The results will be
the same and are shown here.

Equation 3:

x = (-m0/(m1 – m0))*x2 + m0*(y2 – y0) + x0

Equation 4:

y = (m0*y0 – m1*y2 + x2 – x0)/(m0 – m1)

Now, there are some things here that you must consider. First, are there any situations
where the previous equations will have problems? Yes! In advanced mathematics,
infinity isn’t a problem to work with, but in computer graphics, it is! In Equations 3
and 4, the term (m1 – m0) and (m0 – m1) could be 0.0 if the slope of the two lines is
the same—in other words, when the lines are parallel.

In this case, they can’t possibly intersect and you get a 0.0 in the denominators, dri-
ving the quotients of both Equation 3 and 4 to infinity. Of course, this means that at
infinity the lines touch, but because you’re only working with screens that have a res-
olution of 1024×768 or so, it’s not something you need to consider <BG>.

The bottom line is that this tells you that the intersection equations only work for lines
that intersect! If they can’t possibly intersect, the math will fail. This is easy to test.
Simply check m0 and m1 before doing the math. If m0 == m1, there isn’t an intersec-
tion. Anyway, let’s move on…

If you take a look at Equations 3 and 4 and count up the operations, you’re doing
about four divides, four multiplies, and eight additions (subtractions count as addi-
tions). If you count computing the slopes m0 and m1, that adds four more additions
and two divisions. Not too bad.

1172313618 CH08 10/26/99 10:14 AM Page 415

DirectX and 2D Fundamentals

416 PART II

Computing the Intersection of Two Lines Using the General Form
The general form of any linear equation is

a*x + b*y = c

Or, if you like the canonical form:

a*x + b*y + c = 0

In reality, both the Point Slope form and Y-Intercept form can be put into the general
form. For example, if you look at the Y-Intercept form:

y = m*x+b

m*x – 1*y = b

Or a = m, b = -1, and c = b (the intercept). But what if you don’t have the intercept?
How can you find the values of (a,b,c) if you only have the coordinates (x0,y1) and
(x2,y2)? Well, let’s see if the Point Slope form can help out…

(y – y0) = m*(x – x0)

Multiplying by m:

y – y0 = m*x – m*x0

Collecting x and y on the LHS (left-hand side):

-m*x + y = y0 + m*x0

Multiplying by –1:

m*x + (-1)*y = (-m)*x0 + (-1)*y0

The (-1) and the associated multiplies aren’t necessary. They just make
the extraction of (a,b,c) easier to see.

Computing the Intersection of Two Lines Using the Matrix Form
So it looks like a = m, b = -1, and c = (-m*x0 – y0). Now that you know how to
transform the Point Slope form into the general form, you can move on to yet another
method of solutions based on matrices. Let’s take a look.

Given two general linear equations in this form:

a1*x + b1*y = c1
a2*x + b2*y = c2

1172313618 CH08 10/26/99 10:14 AM Page 416

CHAPTER 8
Vector Rasterization and 2D Transformations

417

You want to find (x,y) such that both equations are simultaneously solved. In the pre-
vious example, you used substitution, but there’s another method based on matrices.
I’m not going to go into the theory too much because I’m going to give you a crash
course in vector/matrix math when you get to 3D. For now, I’m just going to show
you the results and tell you how to find (x,y) using matrix operations. Take a look.

Let the matrix A equal

|a1 b1|
|a2 b2|

and X (the unknowns) equal

|x|
|y|

and finally, Y (the constants) equals

|c1|
|c2|

Therefore, you can write the matrix equation:

A*X = Y

Multiplying both sides by the inverse of A, or A-1, you get

A-1*A*X = A-1*Y

Simplifying:

X = A-1*Y

That’s it! Of course, you have to know how to find the inverse of a matrix and then
perform the matrix multiplication to extract (x,y), but I’ll give you some help here and
show the final results:

x = Det(A1)/Det
y = Det(A2)/Det

where A1 equals

|c1 b1|
|c2 b2|

and A2 equals

|a1 c1|
|a2 c2|

In essence, you have replaced the first and second column of A with Y to create A1
and A2, respectively. Det(M) means the determinate of M and is computed as follows
(in general).

1172313618 CH08 10/26/99 10:14 AM Page 417

DirectX and 2D Fundamentals

418 PART II

Given a general 2×2 matrix M:

M = |a b|
|c d|

Det(M) = (a*d – c*b)

With all that in mind, here’s a real example:

A*X = Y

5*x – 2*y = -1
2*x + 3*y = 3

A = |5 –2|
|2 3|

X = |x|
|y|

Y = |-1|
| 3|

Therefore:

A1 = |-1 –2|
|3 3|

A2 = |5 -1|
|2 3|

Solving for x,y:

Det |-1 –2|
| 3 3| (-1*3 – 3*(-2))

x = ---------- = ---------------- = 3/19
Det |5 -2| (5*3 – 2*(-2))

|2 3|

Det |5 –1|
|2 3| (5*3 – 2*(-1))

y = ---------- = ---------------- = 17/19
Det |5 -2| (5*3 – 2*(-2))

|2 3|

Wow! Seems like a lot of drama, huh? Well, that’s what game programming is all
about—math! Especially these days. Luckily, once you write the math code, you don’t
have to worry about it. But it’s good to understand it, which is why I’m giving you a
brief refresher on it.

Now that you’ve taken a little mathematical detour, let’s get back to the reason for all
this—clipping.

1172313618 CH08 10/26/99 10:14 AM Page 418

CHAPTER 8
Vector Rasterization and 2D Transformations

419

Clipping the Line
As you can see, the concept of clipping is trivial, but the actual implementation can be
a bit complex because linear algebra comes into play. At the very least, you have to
understand how to deal with linear equations and compute their intersection. However,
as I mentioned before, you can always take advantage of a priori knowledge about the
geometry of the problem to help simplify the math, and this is one of those times.

Ultimately, you still have a long way to go to clip a line against a general rectangle,
but we’ll get to that. Right now, let’s take a look at the problem and see if it can help
to know that you’re always going to clip a general line against either a vertical line or
horizontal line. Take a look at Figure 8.11.

y = yv

Vertical line
intersection

(x0, y0)

y' = * (xn – x0) + y0

x' = xv x = xv

(x', y'): Point of intersection

Line to clip

(x', y')

(x1, y1)
Horizontal line
intersection

y1 – y0

x1 – x0

x' = (y – y0) + x0

y' = yv

1
m

Figure 8.11
Clipping against a
rectangle is much

easier than the
general case.

You see in Figure 8.11 that you only need to consider one variable at a time here,
either the x or the y. This greatly simplifies the math. Basically, instead of doing all
the hard math (which you need to know once you get to 3D), you can use the Point
Slope form of the line itself to find the intersection point by plugging in the known
value for either a line of the form X = constant or Y = constant. For example, let’s say
that your clipping region is (x1,y1) to (x2,y2). If you want to find where your line
intersects the left edge, you know that at the point of intersection the x-coordinate
must be x1! Thus, all you have to do is find the y coordinate and you’re done.

Conversely, if you want to find the point of intersection on a horizontal line such as
the bottom of the clipping rectangle, y2 in this case, you know that the y-coordinate is
y2 and you just have to find the x—get it? Here’s the math for computing the (x,y)
intersections of a line, (x0,y0) to (x1,y1), with a horizontal line with value Y = Yh,
and for a vertical line X = xv.

1172313618 CH08 10/26/99 10:14 AM Page 419

DirectX and 2D Fundamentals

420 PART II

Horizontal Line Intersection—(x,Yh):

We want x…

Start with Point-Slope, m =(y1 – y0)/(x1 – x0)

(y – y0) = m*(x – x0)

(y – y0) = m*x – m*x0
(y – y0) + m*x0 = m*x
((y – y0) + m*x0)/m = x

x = ((y – y0) + m*x0)/m

or

x = 1/m * (y – y0) + x0

Vertical Line Intersection—(Xv, y):

We want y…

Start with Point-Slope, m =(y1 – y0)/(x1 – x0)

(y – y0) = m*(x – x0)

y = m*(x – x0) + y0

And that’s how that goes. So now you can compute the intersection of a line with an
arbitrary line and with a purely vertical or horizontal line (the important one in the
case of rectangular clipping). At this point, we can talk about the rest of the clipping
problem.

The Cohen-Sutherland Algorithm
In general, you need to figure out if a line is totally visible, partially visible, partially
clipped (one end), or totally clipped (both ends). This turns out to be quite an under-
taking, and a number of algorithms have been invented to deal with all the cases.
However, one algorithm is the most widely used: Cohen-Sutherland. It’s reasonably
fast, not too bad to implement, and well published.

Basically, it’s a brute-force algorithm. But instead of using millions of if statements
to figure out where the line is, the algorithm breaks the clipping region into a number
of sectors and then assigns a bit code to each of the endpoints of the line segment
being clipped. Then, using only a few if statements or a case statement, it figures out
what the situation is. Figure 8.12 shows the plan of attack graphically.

1172313618 CH08 10/26/99 10:15 AM Page 420

CHAPTER 8
Vector Rasterization and 2D Transformations

421

The following function is a version of the Cohen-Sutherland I wrote that works on the
same premise:

int Clip_Line(int &x1,int &y1,int &x2, int &y2)
{
// this function clips the sent line using the globally defined clipping
// region

// internal clipping codes
#define CLIP_CODE_C 0x0000
#define CLIP_CODE_N 0x0008
#define CLIP_CODE_S 0x0004
#define CLIP_CODE_E 0x0002
#define CLIP_CODE_W 0x0001

#define CLIP_CODE_NE 0x000a
#define CLIP_CODE_SE 0x0006
#define CLIP_CODE_NW 0x0009
#define CLIP_CODE_SW 0x0005

int xc1=x1,
yc1=y1,
xc2=x2,
yc2=y2;

int p1_code=0,
p2_code=0;

// determine codes for p1 and p2
if (y1 < min_clip_y)

p1_code|=CLIP_CODE_N;
else
if (y1 > max_clip_y)

p1_code|=CLIP_CODE_S;

Clipping regionClip_code_west:0x0001 Clip_code_east:0x0002

Clip_code_north:0x0008Clip_code_nw:0x0009 Clip_code_ne:0x000A

Clip_code_south:0x0004Clip_code_sw:0x0005 Clip_code_se:0x0006

Figure 8.12
Using clipping codes
for efficient line end-
point determination.

1172313618 CH08 10/26/99 10:15 AM Page 421

DirectX and 2D Fundamentals

422 PART II

if (x1 < min_clip_x)
p1_code|=CLIP_CODE_W;

else
if (x1 > max_clip_x)

p1_code|=CLIP_CODE_E;

if (y2 < min_clip_y)
p2_code|=CLIP_CODE_N;

else
if (y2 > max_clip_y)

p2_code|=CLIP_CODE_S;

if (x2 < min_clip_x)
p2_code|=CLIP_CODE_W;

else
if (x2 > max_clip_x)

p2_code|=CLIP_CODE_E;

// try and trivially reject
if ((p1_code & p2_code))

return(0);

// test for totally visible, if so leave points untouched
if (p1_code==0 && p2_code==0)

return(1);

// determine end clip point for p1
switch(p1_code)

{
case CLIP_CODE_C: break;

case CLIP_CODE_N:
{
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
} break;

case CLIP_CODE_S:
{
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);
} break;

case CLIP_CODE_W:
{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} break;

case CLIP_CODE_E:
{
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);

1172313618 CH08 10/26/99 10:15 AM Page 422

CHAPTER 8
Vector Rasterization and 2D Transformations

423

} break;

// these cases are more complex, must compute 2 intersections
case CLIP_CODE_NE:

{
// north hline intersection
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);

// test if intersection is valid,
// if so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)

{
// east vline intersection
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if

} break;

case CLIP_CODE_SE:
{

// south hline intersection
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);

// test if intersection is valid,
// if so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)

{
// east vline intersection
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if

} break;

case CLIP_CODE_NW:
{

// north hline intersection
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);

// test if intersection is valid,
// if so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)

{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if

} break;

1172313618 CH08 10/26/99 10:15 AM Page 423

DirectX and 2D Fundamentals

424 PART II

case CLIP_CODE_SW:
{
// south hline intersection
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);

// test if intersection is valid,
// if so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)

{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if

} break;

default:break;

} // end switch

// determine clip point for p2
switch(p2_code)

{
case CLIP_CODE_C: break;

case CLIP_CODE_N:
{
yc2 = min_clip_y;
xc2 = x2 + (min_clip_y-y2)*(x1-x2)/(y1-y2);
} break;

case CLIP_CODE_S:
{
yc2 = max_clip_y;
xc2 = x2 + (max_clip_y-y2)*(x1-x2)/(y1-y2);
} break;

case CLIP_CODE_W:
{
xc2 = min_clip_x;
yc2 = y2 + (min_clip_x-x2)*(y1-y2)/(x1-x2);
} break;

case CLIP_CODE_E:
{
xc2 = max_clip_x;
yc2 = y2 + (max_clip_x-x2)*(y1-y2)/(x1-x2);
} break;

// these cases are more complex, must compute 2 intersections
case CLIP_CODE_NE:

{

1172313618 CH08 10/26/99 10:15 AM Page 424

CHAPTER 8
Vector Rasterization and 2D Transformations

425

// north hline intersection
yc2 = min_clip_y;
xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);

// test if intersection is valid,
// if so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)

{
// east vline intersection
xc2 = max_clip_x;
yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if

} break;

case CLIP_CODE_SE:
{

// south hline intersection
yc2 = max_clip_y;
xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);

// test if intersection is valid,
// if so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)

{
// east vline intersection
xc2 = max_clip_x;
yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if

} break;

case CLIP_CODE_NW:
{

// north hline intersection
yc2 = min_clip_y;
xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);

// test if intersection is valid,
// if so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)

{
xc2 = min_clip_x;
yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if

} break;

case CLIP_CODE_SW:
{
// south hline intersection
yc2 = max_clip_y;

1172313618 CH08 10/26/99 10:15 AM Page 425

DirectX and 2D Fundamentals

426 PART II

xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);

// test if intersection is valid,
// if so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)

{
xc2 = min_clip_x;
yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if

} break;

default:break;

} // end switch

// do bounds check
if ((xc1 < min_clip_x) || (xc1 > max_clip_x) ||

(yc1 < min_clip_y) || (yc1 > max_clip_y) ||
(xc2 < min_clip_x) || (xc2 > max_clip_x) ||
(yc2 < min_clip_y) || (yc2 > max_clip_y))
{
return(0);
} // end if

// store vars back
x1 = xc1;
y1 = yc1;
x2 = xc2;
y2 = yc2;

return(1);

} // end Clip_Line

All you do is send the function the endpoints of the line, and it clips them to the clip-
ping rectangle defined by the globals:

int min_clip_x = 0, // clipping rectangle
max_clip_x = SCREEN_WIDTH-1,
min_clip_y = 0,
max_clip_y = SCREEN_HEIGHT-1;

I usually set these globals to the size of the screen. The only detail about the function
is that it takes the parameters as a call by the reference, so the variables can be modi-
fied. Make copies if you don’t want the variables to be changed. Here’s an example of
the function in use:

// clip the line (x1,y1) to (x2,y2)

// make copies
int clipped_x1 = x1,

1172313618 CH08 10/26/99 10:15 AM Page 426

CHAPTER 8
Vector Rasterization and 2D Transformations

427

clipped_y1 = y1,
clipped_x2 = x2,
clipped_y2 = y2;

// clip the line
Clip_Line(clipped_x1, clipped_y1,

clipped_x2, clipped_y2);

When the function returns the clipped_* variables, they will have new clipped values
based on the clipping rectangle stored in the globals.

The demo, DEMO8_2.CPP|EXE, creates a 200×200 clipping region that is centered on
the screen and then draws random lines within it. Notice how they’re clipped <BG>.

Wireframe Polygons
Now that you know how to draw lines and clip them to a rectangle, you’re ready to
move on to higher order objects such as polygons. Figure 8.13 illustrates a number of
different polygons: a triangle, a square, and a pentagon. A polygon consists of three or
more connected points and is closed. Also, polygons can be either convex or concave.
There is a mathematical definition and proof to prove that a polygon is convex or con-
cave, but in general a convex polygon has no “dents” in it, while a concave polygon
does.

p0

p2

p1

p0 p1

p3 p2 p2

p1

p0

p4

p3

x-files located
here

No concavities

Triangle Square Pentagon

Figure 8.13
Some general

polygons.

Now I want to give you some ideas about how you might represent 2D polygonal
objects and manipulate them.

One way to test for concavity is the following: If you can draw a line
from any two edges of a polygon and the line falls outside the polygon,
the polygon is concave.

1172313618 CH08 10/26/99 10:15 AM Page 427

DirectX and 2D Fundamentals

428 PART II

Polygon Data Structures
In a game, the selection of data structures is of the utmost importance. Forget every-
thing you ever learned about using complex data structures and concentrate on one
thing—speed! In a game, you must access data all the time because the game is being
rendered based on it. You must consider the ease of access, the size of the data, and
the relative size the data is accessed by the processor cache, as well as the second-
level cache and so forth. The bottom line is that having a 1000Mhz processor isn’t
going to help much if you can’t get to your data effectively and quickly.

My rules of thumb when designing data structures are these:

• Keep it simple.

• Use static arrays for small structures that you know the size of, within 25 per-
cent.

• Use linked lists when it makes sense.

• Use trees and other exotic data structures only if it’s going to make the code run
faster, not just because it’s cool!

• Finally, think ahead when you’re designing data structures. Don’t corner your-
self into not allowing new features or inventing some absurd limit on objects.

Anyway, enough preaching. Let’s take a look at a very basic structure for a polygon.
Assume that a polygon can have a large number of vertices. That limits the static
array to hold the vertices, so the storage will have to be dynamic for the actual ver-
tices. Other than that, you’ll need the polygon’s (x,y) position, its velocity (more on
this later), its color, and maybe some state information to track attributes that you may
not think of. Here’s my first hack at it:

typedef struct POLYGON2D_TYP
{
int state; // state of polygon
int num_verts; // number of vertices
int x0,y0; // position of center of polygon
int xv,yv; // initial velocity
DWORD color; // could be index or PALETTENTRY
VERTEX2DI *vlist; // pointer to vertex list

} POLYGON2D, *POLYGON2D_PTR;

This is a perfect place for C++ and a class, but I want to keep it simple in
case you’re a straight C user. However, as an exercise, I would like all
C++ programmers to convert all this polygon stuff into a nice class.

1172313618 CH08 10/26/99 10:15 AM Page 428

CHAPTER 8
Vector Rasterization and 2D Transformations

429

Not bad, but you’re missing something here: the definition of VERTEX2DI. Again, this
is typical when you’re designing data structures. You haven’t defined everything, but
know you need something. Let’s define VERTEX2DI now. Basically, it’s just an integer-
accurate 2D vertex:

typedef struct VERTEX2DI_TYP
{
int x,y;

} VERTEX2DI, *VERTEX2DI_PTR;

In many 2D/3D engines, all vertices are only accurate to whole numbers.
Of course, this makes all scaling and rotation transformations less than
accurate. The problem with floating-point numbers is that they’re slow
to convert to integers. Even though the Pentium can perform floating-
point math as fast or faster than integer math, the conversion to integer
at the end of rasterization kills you. This isn’t an issue as long as the con-
version happens at the very end, but if you keep going back and forth,
you will kill your performance. The bottom line is that if you can hang
with integer accuracy, do so exclusively. Otherwise, go to floating-point,
but keep the conversions down!

At this point, you have nice data structure to hold a vertex and a polygon. Figure 8.14
depicts the structure abstractly in relationship to a real polygon.

Polygon object

Vertex 20# VList

Polygon 2D

Vertex2DI
0 1 2 n

Vertex list

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

Polygon

Figure 8.14
The polygon data

structure.

About the only thing you need to do to the POLYGON structure to use it is allocate the
memory for the actual vertex storage, which you would do with something like this:

1172313618 CH08 10/26/99 10:15 AM Page 429

DirectX and 2D Fundamentals

430 PART II

POLYGON2D triangle; // our polygon

// initialize the triangle
triangle.state = 1; // turn it on
triangle.num_verts = 3; // triangle
triangle.x0 = 100; // position it
triangle.y0 = 100;
triangle.xv = 0; // initial velocity
triangle.yv = 0;
triangle.color = 50; // assume 8-bit mode index 50
triangle.vlist = new VERTEX2DI[triangle.num_verts];

Note that I’ve used the C++ new operator to allocate the memory. Thus,
I’ll have to use the delete operator to delete it. In straight C, the alloca-
tion would look like

(VERTEX2DI_PTR)malloc(triangle.num_verts*sizeof(VERTEX2DI)).

Fantabulous! Now let’s see how to draw one of these things.

Drawing and Clipping Polygons
Drawing a polygon is as simple as drawing n connected line segments. You already
know how to draw a line, so all you have to do to draw a polygon is loop on the ver-
tices and connect the dots. Of course, if you want the polygon clipped, you should
call the clipping function, which I’ve put a little wrapper around called
Draw_Clip_Line(). It has the same parameterization as Draw_Line(), except it clips
to the globally defined clipping region. Here’s a general function to draw a POLYGON2D
structure:

int Draw_Polygon2D(POLYGON2D_PTR poly, UCHAR *vbuffer, int lpitch)
{
// this function draws a POLYGON2D based on

// test if the polygon is visible
if (poly->state)

{
// loop thru and draw a line from vertices 1 to n
for (int index=0; index < poly->num_verts-1; index++)

{
// draw line from ith to ith+1 vertex
Draw_Clip_Line(poly->vlist[index].x+poly->x0,

poly->vlist[index].y+poly->y0,
poly->vlist[index+1].x+poly->x0,
poly->vlist[index+1].y+poly->y0,
poly->color,
vbuffer, lpitch);

} // end for

1172313618 CH08 10/26/99 10:15 AM Page 430

CHAPTER 8
Vector Rasterization and 2D Transformations

431

// now close up polygon
// draw line from last vertex to 0th
Draw_Clip_Line(poly->vlist[0].x+poly->x0,

poly->vlist[0].y+poly->y0,
poly->vlist[index].x+poly->x0,
poly->vlist[index].y+poly->y0,
poly->color,
vbuffer, lpitch);

// return success
return(1);
} // end if

else
return(0);

} // end Draw_Polygon2D

The only weird thing about the function is the use of (x0,y0) as the center of the poly-
gon. This is so you can move the polygon around without messing with the individual
vertices. Furthermore, defining the polygon in a relative manner from its center allows
you to use what are called local coordinates rather than world coordinates. Take a
look at Figure 8.15 to see the relationship between the two.

(0, 0)–x

+y

–y

World origin

x0

x0 +x

(0, 0)

(x0, y0) is
absolute position

Local coordinates

Polygon (object etc.)

Vertices defined relative to (0, 0)
Center then translated to (x0, y0)

Figure 8.15
Local coordinates in

relation to world
coordinates.

It’s always much better to define polygons relative to the center of (0,0) (local coordi-
nates) and then later transform the polygon out to a position (x,y) (world coordinates).
You’ll learn about local, world, and camera (the point relative to the viewpoint) coor-
dinates in detail when you get to 3D, but for now, just take note that they exist.

1172313618 CH08 10/26/99 10:15 AM Page 431

DirectX and 2D Fundamentals

432 PART II

As a demo, I have created DEMO8_3.CPP|EXE. It first creates an array of polygon
objects, each with eight points. These polygons look like little asteroids. Then the pro-
gram randomly positions these asteroids and moves (translates) them around the
screen. The program works in 640×480×8 and uses page flipping to accomplish the
animation. Figure 8.16 is a screen shot from the program.

Figure 8.16
DEMO8_3.EXE in action.

All right, Mr. Spock, now you can define a polygon and draw it. The next topic I want
to cover is 2D transformations—translating, rotating, and scaling polygons.

Transformations in the 2D Plane
As I’m sure you can tell, you’re slipping into the world of mathematics—I’ve been
sneaking up on you <BG>. Nevertheless, this stuff is fun, and if you understand the
basics, there’s really nothing in 3D game programming that you won’t be able to
tackle! So let’s hit it!

You’ve seen translation a number of times up to this point, but you haven’t really
looked at a mathematical description of it, or for that matter any other transforma-
tions, like rotation and scaling. Let’s take a look at each one of these concepts and
how they relate to 2D vector images. Then, when you make the leap to 3D graphics,
all you’ll need to do is add a variable or two and take into consideration the z-axis—
but we’ll get to that.

1172313618 CH08 10/26/99 10:15 AM Page 432

CHAPTER 8
Vector Rasterization and 2D Transformations

433

Translation
Translation is nothing more than moving an object or point from one position to
another. Let’s assume that you have a single point, (x,y), that you want to translate by
some amount, (dx,dy). The process of translation is shown in Figure 8.17.

–x +x

–y

+y

(0, 0)

(x, y)

Point before
translation

–x +x

–y

+y

(0, 0)

(x, y)
(xt, yt)

Dy

Dx

Point after
translation

translate by Dx, Dy

x + Dx = XT
y + Dy = YT

Figure 8.17
Translating a single

point.

Basically, you add the translation factors to the (x,y) coordinate, come up with a new
position, and call it (xt,yt). Here’s the math:

xt = x + dx;
yt = y + dy;

Here, dx,dy can be either positive or negative. If we’re taking about translation with
standard display coordinates, where (0,0) is in the upper-left corner, positive transla-
tions in the x-axis move an object to the right. Positive translations in the y-axis move
an object down. Negative translations in the x-axis move an object to the left. And
finally, negative translations in the y-axis move an object up.

To translate an entire object, you simply apply the translation transformation to the
center of the object, if the object has an x,y position that all points are relative to (as
does the polygon structure). If the object doesn’t have a general x,y position, you
must apply the formula to every point that makes up the polygon. This brings us to
the concept of local and world coordinates.

Generally, in 2D/3D computer graphics you want to define all objects to have at least
local and world coordinates. The local coordinates of an object are those relative to
(0,0) or (0,0,0) in 3D. Then the world coordinates are found by adding the world posi-
tion (x0,y0) to each of the local coordinates, in essence translating the local coordi-
nates each by (x0,y0) to place the object. This is shown in Figure 8.18.

In light of this, in the future you may decide to add more data storage to your polygon
so that you can store both local and world coordinates. In fact, you will do this later.
Moreover, you’ll add storage for camera coordinates. The reasoning for the added
storage is that once you transform an object to world coordinates and are ready to

1172313618 CH08 10/26/99 10:15 AM Page 433

DirectX and 2D Fundamentals

434 PART II

draw it, you don’t want to have to do it each frame. As long as the object doesn’t
move or transform, you won’t have to. You can just save the last calculated world
coordinates.

–x +x

–x

+y

–y

+x

–y

+y

(0, 0)

Translate center
to (x0, y0)

(x3, y3)

(x0, y0)

(x3 + x0, y3 + y0)

(x2 + x0, y2 + y0) (x1 + x0, y1 + y0)(x1, y1)(x2, y2)

(0, 0)
New center

Local coordinates

World coordinatesObject defined in
local coordinates

Figure 8.18
Translation of an

object and the result-
ing vertices.

With that all in your little neural net, let’s take a look at a general polygon translation
function. It’s so simple, it should be illegal <BG>.

int Translate_Polygon2D(POLYGON2D_PTR poly, int dx, int dy)
{
// this function translates the center of a polygon

// test for valid pointer
if (!poly)

return(0);

// translate
poly->x0+=dx;
poly->y0+=dy;

// return success
return(1);

} // end Translate_Polygon2D

I think that deserves a Pentium.II.AGP double snap!!!

1172313618 CH08 10/26/99 10:15 AM Page 434

CHAPTER 8
Vector Rasterization and 2D Transformations

435

Rotation
Rotation of bitmaps is rather complex, but rotation of single points in the plane is
almost trivial—or at least the actual rotation is. Deriving the rotation is a bit more
complex, but I have a new derivation that I think is very cool. However, before I show
it to you, let’s take a look at what you want to do. Referring to Figure 8.19, you can
see the point p0 with coordinates (x,y). You want to rotate this point an angle theta
about the z-axis (which is running through the paper) to find the rotated coordinates
p01 with coordinates (xr,yr).

–x

+y

–y

+x(0, 0)

R

z-axis
p0 = (x, y)

Before rotation

After rotation

p0' = (r • cosø, r • sinø)

ø

Figure 8.19
The rotation of a

point.

Trigonometry Review
Obviously, you’re going to need to use some trigonometry here. If you’re rusty, here’s
a quick review of some basic facts.

Most trigonometry is based on the analysis of a right triangle, as shown in Figure
8.20.

Table 8.1 shows the differences between radians and degrees.

1172313618 CH08 10/26/99 10:15 AM Page 435

DirectX and 2D Fundamentals

436 PART II

TABLE 8.1 Radians Versus Degrees

Degrees Radians (pi) Radians (Numerically)

360 2*pi 6.28

180 1*pi 3.14159

90 pi/2 1.57

57.295 pi/pi 1.0

1 pi/180 0.0175

Here are some trigonometric facts:

• There are 360 degrees in a complete circle, or 2*pi radians. Hence, there are pi
radians in 180 degrees. The computer functions sin() and cos() work in radi-
ans, not degrees—remember that! Table 8.1 lists the values.

• The sum of the interior angles theta1 + theta2 + theta3 = 180 degrees or
pi radians.

• Referring to the right triangle in Figure 8.20, the side opposite theta1 is called
the opposite side, the side below it is called the adjacent side, and the long side
is called the hypotenuse.

–x

+y

–y

+x(0, 0)

C or R

Hypotenuse

Ø

Note: Various naming conventions

X or A 90°

Y or B Opposite side

(x, y)

sin ø = = =

Adjacent side

Y
R

B
C

Adjacent
Hypotenuse

cos ø = = =
X
R

A
C

Opposite
Hypotenuse

Figure 8.20
The right triangle.

1172313618 CH08 10/26/99 10:15 AM Page 436

CHAPTER 8
Vector Rasterization and 2D Transformations

437

• The sum of the squares of the sides of a right triangle equal the square of the
hypotenuse. This is called the Pythagorean theorem. Mathematically, you write
it like this:

hypotenuse2 = adjacent2 + opposite2

Or sometimes you can use a, b, and c for dummy variables:

c2 = a2 + b2

Therefore, if you have two sides of a triangle, you can find the third.

• There are three main trigonometric ratios that mathematicians like to use, called
the sine, cosine, and tangent. They’re defined as

adjacent side x
cos(theta) = ---------------- = -------

hypotenuse r

Domain: 0 <= theta <= 2*pi

Range: -1 to 1
opposite side y

sin(theta) = ---------------- = -------
hypotenuse r

Domain: 0 <= theta <= 2*pi

Range: -1 to 1
sin(theta) opposite/hypotenuse

tan(theta) = -------------- = ----------------------
cos(theta) adjacent/hypotenuse

opposite y
= ------------ = --- = slope = M

adjacent x

Domain: -pi/2 <= theta <= pi/2

Range: -infinity to +infinity

Note the use of the terms domain and range. These simply mean the
input and the output, respectively.

Figure 8.21 shows graphs of all the functions. Notice that all the functions are peri-
odic (repeating) and that sin(theta) and cos(theta) have periodicity of 2*pi, while
the tangent has periodicity of pi. Also, notice that tan(theta) goes to +-infinity
whenever theta mod pi is pi/2.

1172313618 CH08 10/26/99 10:15 AM Page 437

DirectX and 2D Fundamentals

438 PART II

Now, there are about a bazillion trigonometric identities and tricks, and it would take
a math book to prove them all. I’m just going to give you a table of the ones that a
game programmer should know. Table 8.2 lists some other trigonometric ratios, as
well as some neat identities.

TABLE 8.2 Useful Trigonometric Identities

Cosecant csc(theta) = 1/sin(theta)

Secant sec(theta) = 1/cos(theta)

Cotangent cot(theta) = 1/tan(theta)

Pythagorean theorem in terms of trig functions:

sin(theta)2 + cos(theta)2 = 1

Conversion identity:

sin(theta1) = cos(theta1 – PI/2)

–x +x

–y

+y
y = sin x

0

–2∏ 2∏–∏–3∏
2

3∏
2

5∏
2

–∏
2

∏ ∏
2

–1

1

–x +x

–y

+y
y = cos x

0

–2∏ 2∏–∏–3∏
2

3∏
2

5∏
2

–∏
2

∏ ∏
2

–1

1

–x +x

–y

+y
y = tan x

0–2∏ 2∏–∏–3∏
2

3∏
2

5∏
2

–∏
2

∏ ∏
2

–5∏
2

Figure 8.21
Graphs of basic

trigonometric
functions.

1172313618 CH08 10/26/99 10:15 AM Page 438

CHAPTER 8
Vector Rasterization and 2D Transformations

439

Reflection identities:

sin(-theta) = -sin(theta)
cos(-theta) = cos(theta)

Addition identities:

sin(theta1 + theta2) = sin(theta1)*cos(theta2) + cos(theta1)*sin(theta2)

cos(theta1 + theta2) = cos(theta1)*cos(theta2) - sin(theta1)*sin(theta2)

sin(theta1 - theta2) = sin(theta1)*cos(theta2) - cos(theta1)*sin(theta2)

cos(theta1 - theta2) = cos(theta1)*cos(theta2) + sin(theta1)*sin(theta2)

Of course, you could derive identities until you turned many shades of blue. In gen-
eral, identities help you simplify complex trigonometric formulas so you don’t have to
do the math. Hence, when you come up with an algorithm based on sin, cos, tan, and
so on, always take a look in a trigonometry book and see if you can simplify your
math so that fewer computations are needed to get the result. Remember, speed,
speed, speed!!!

Rotating a Point in a 2D Plane
Now that you have an idea of what sin, cos, and tan are, let’s use them to rotate a
point in a 2D plane. Take a look at Figure 8.22, which shows the setup for the rotation
formulas.

–x

+y

–y

+x(0, 0) (x, 0)

R

P

Ø

–x

+y

–y

+x

R

P

Ø
α

x'

y'

y

x

B. General rotationA. Rotating an axis aligned vectorFigure 8.22
Derivation of the rota-

tion equations.

Start off by showing that any point on a circle of radius R is computed as

xr = r*cos(theta)
yr = r*sin(theta)

Hence, if you always wanted to rotate a point that had coordinates (x,0), you could
use this equation. However, you need to generalize a little. You want to rotate a point
(x,y) about an angle theta, as shown in Figure 8.22. You can think of this in two ways:

1172313618 CH08 10/26/99 10:15 AM Page 439

DirectX and 2D Fundamentals

440 PART II

as rotating the point P, or as rotating the axes themselves. If you think of it as rotating
the axes themselves, you have two coordinate systems: one before the rotation, and
one after.

In the coordinate system before the rotation, you have

xr = r*cos(theta)
yr = r*sin(theta)

But after the rotation, you have

Equations 1:

xr = r*cos(theta + alpha)
yr = r*sin(theta + alpha)

Equations 2:

x = r*cos(alpha)
y = r*sin(alpha)

Here, alpha is basically the angle created from the x-axis of the new system and the
position vector from the origin to P.

If you’re confused, let me explain what you’re doing here in another way. You always
know how to find the point (x,0) rotated about theta, and if you rotate the axes by
theta, you can compute P in both the old axes and the new. Then, based on these two
formulas, you can come up with the rotation equations. If you take Equations 1 and
use the addition identities, you’ll get the following results.

Equations 3:

xr = r*cos(theta)*sin(alpha) – r*sin(theta)*sin(alpha)
yr = r*sin(theta)*cos(alpha) + r*sin(theta)*cos(alpha)

Wait a minute, let me put some boom in it. You know that x,y are also equal to

x = r*cos(alpha)
y = r*sin(alpha)

Substituting these values into the bolded parts of Equations 3 gives you the results
you desire.

Equations 4, the rotation formulas:

xr = x*cos(theta) – y*sin(theta)
yr = x*sin(theta) + y*cos(theta)
Q.E.D.

For you math-heads, this derivation is very similar to a polar-only rota-
tion with conversion to Cartesian coordinates at the end. That’s how I
came up with it.

1172313618 CH08 10/26/99 10:16 AM Page 440

CHAPTER 8
Vector Rasterization and 2D Transformations

441

Back to reality. You now know that to rotate a point (x,y) by an angle theta, you can
use Equations 4. However, there is one detail to remember: The equations rotate a
point in the counterclockwise direction for positive theta and in the clockwise direc-
tion for negative theta. However, there is one more problem… you did the derivation
for quadrant I of the normal Cartesian coordinate system. Thus, the y-axis is inverted
on the display screen and the roles of positive and negative are reversed.

Later, when you do 3D graphics, you’ll transform all screen coordinates so that the
x,y-axes are centered in the middle and are both pointing in the positive directions,
just like quadrant I of the 2D Cartesian system. But for now, who cares?

Rotating a Polygon
Taking all of your immense knowledge, let’s write a rotation function that rotates a
polygon:

int Rotate_Polygon2D(POLYGON2D_PTR poly, float theta)
{
// this function rotates the local coordinates of the polygon

// test for valid pointer
if (!poly)

return(0);

// loop and rotate each point, very crude, no lookup!!!
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)

{
// perform rotation
float xr = poly->vlist[curr_vert].x *cos(theta) –

poly->vlist[curr_vert].y*sin(theta);

float yr = poly->vlist[curr_vert].x*sin(theta) +
poly->vlist[curr_vert].y*cos(theta);

// store result back
poly->vlist[curr_vert].x = xr;
poly->vlist[curr_vert].y = yr;

} // end for curr_vert

// return success
return(1);

} // end Rotate_Polygon2D

There are a few things you should note. First, the math is performed in floating-point
and then the results are stored as integers, so there’s loss of precision.

Next, the function takes the angle in radians rather than degrees because the function
uses the math libraries’ sin() and cos() functions, which use radians. The loss of
accuracy isn’t a huge problem, but the use of trig functions in a real-time program is

1172313618 CH08 10/26/99 10:16 AM Page 441

DirectX and 2D Fundamentals

442 PART II

just about as ugly as it gets. What you need to do is create a lookup table that has the
sine and cosine values for, say, 0–360 degrees already precomputed, and then replace
the library function calls to sin() and cos() with table lookups.

The question is, how do you design the table? This really depends on the situation.
Some programmers might want to use a single BYTE to index into the table. Thus, it
would have 256 virtual degrees that made up a circle, as shown in Figure 8.23.

Angle in normal degrees = • 360
Ø256
256

0.00
Angle Lookup256

.02451

.04902

.008127

.01255

sinØ256

xr = R•cosØ256
yr = R•sinØ256

Angle in virtual degrees

–x +x

+y

–y

127°

63°

191°

255°
0°

R

Ø256

Figure 8.23
Breaking a circle into

256 virtual degrees.

It’s up to you and the situation, but usually I like to make the table hold the angles
from 0–359 degrees. Here’s how you might create such tables:

// storage for our tables
float cos_look[360];
float sin_look[360];

// generate the tables
for (int ang = 0; ang < 360; ang++)

{
// convert ang to radians
float theta = (float)ang*3.14159/180;

// insert next entry into table
cos_look[ang] = cos(theta);

1172313618 CH08 10/26/99 10:16 AM Page 442

CHAPTER 8
Vector Rasterization and 2D Transformations

443

sin_look[ang] = sin(theta);

} // end for ang

Then we can rewrite our rotation function to take an angle from 0–359 and use the
tables by replacing the sin() and cos() with sin_look[] and cos_look[], respec-
tively:

int Rotate_Polygon2D(POLYGON2D_PTR poly, int theta)
{
// this function rotates the local coordinates of the polygon

// test for valid pointer
if (!poly)

return(0);

// loop and rotate each point, very crude, no lookup!!!
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)

{
// perform rotation
float xr = poly->vlist[curr_vert].x*cos_look[theta] –

poly->vlist[curr_vert].y*sin_look[theta];

float yr = poly->vlist[curr_vert].x*sin_look[theta] +
poly->vlist[curr_vert].y*cos_look[theta];

// store result back
poly->vlist[curr_vert].x = xr;
poly->vlist[curr_vert].y = yr;

} // end for curr_vert

// return success
return(1);

} // end Rotate_Polygon2D

To rotate a POLYGON2D object 10 degrees, you would make the call

Rotate_Polygon2D(&object, 10);

Note that all this rotation stuff mangles the original polygon’s coordi-
nates. Sure, if you rotate 10 degrees, you can then rotate –10 degrees to
get back to the original vertices, but you will slowly lose your original
vertex coordinates due to integer truncation and rounding. This is the
reason for having a second set of coordinates stored in the polygon
structure. It can hold transformations, and you always keep the originals
too, so you can refresh your data if need be. More on this later.

Note

1172313618 CH08 10/26/99 10:16 AM Page 443

DirectX and 2D Fundamentals

444 PART II

A Word on Accuracy
I originally wrote this demo with integers to hold the local vertices. But to my dismay,
the values degraded into fuzz within just a few rotations. Thus, I had to rewrite the
demo to use FLOATs. You must redefine your POLYGON2D structure to contain a
floating-point-accurate vertex rather than an integer-accurate vertex.

There are two ways around this. One is to have a local and transformed (world) set of
coordinates that are both integers, convert the local coordinates to floats, perform the
transformation, store the result in the transformed coordinates, and then render. Then,
on the next frame, use the local coordinates again. That way, no error creeps into the
local coordinates.

Or you can just keep one set of local/transformed coordinates in floating-point. This is
what I did. Hence, you have two new data structures for a vertex and for a polygon:

// a 2D vertex
typedef struct VERTEX2DF_TYP

{
float x,y; // the vertex
} VERTEX2DF, *VERTEX2DF_PTR;

// a 2D polygon
typedef struct POLYGON2D_TYP

{
int state; // state of polygon
int num_verts; // number of vertices
int x0,y0; // position of center of polygon
int xv,yv; // initial velocity
DWORD color; // could be index or PALETTENTRY
VERTEX2DF *vlist; // pointer to vertex list

} POLYGON2D, *POLYGON2D_PTR;

I just replaced the vertex list with the new floating-point vertex so I wouldn’t have to
rewrite everything. Now, both the translation and rotation work, although translation is
still integer-based. Of course, I could have done this before writing about it, but I
want you to see the process in action, the give and take of game programming. You
hope that things will work out, but if they don’t, you take a step back and try again
<BG>.

For an example of using both the translation and rotation functions, I have taken
DEMO8_3.CPP and modified it into DEMO8_4.CPP|EXE. It rotates all the asteroids at vari-
ous rates. The program also uses the lookup tables. Take a look!

1172313618 CH08 10/26/99 10:16 AM Page 444

CHAPTER 8
Vector Rasterization and 2D Transformations

445

Scaling
After all that, anything should be easy. Scaling is almost as simple as translation. Take
a look at Figure 8.24. All you need to do to scale an object is multiply each coordi-
nate by the scaling factor.

–x

+y

–y

+x

(0, 0)

–x

+y

–y

+x
(0, 0)

(–2, –2) (2, –2)

(x, y)

(0, 3)
xs = sx • x
ys = sy • y

2 • (0, 3) = (0, 6)

2 • (–2, –2) = (–4, –4) 2 • (2, –2) = (4, –4)

General
scaled
point

After
• Scale by 2.0• Before Scaling

Figure 8.24
The math of scaling.

Scaling factors that are greater than 1.0 will make the object bigger, while scaling fac-
tors less that 1.0 will make the object smaller. A scaling factor of 1.0 will do nothing.
The math to scale a point (x,y) by scaling factor s, resulting in (xs,ys), is

xs = s*x
ys = s*y

Also, you can scale each axis non-uniformly—that is, with different scaling factors
for the x and y coordinates, like this:

xs = sx*x
ys = sy*y

Most of the time, you want to scale equally. But you might want to make an object
grow in one axis, so who knows? Here’s a function that scales a polygon. It takes both
an x- and a y-axis scaling factor, just in case:

int Scale_Polygon2D(POLYGON2D_PTR poly, float sx, float sy)
{
// this function scales the local coordinates of the polygon

// test for valid pointer
if (!poly)

1172313618 CH08 10/26/99 10:16 AM Page 445

DirectX and 2D Fundamentals

446 PART II

return(0);

// loop and scale each point
for (int curr_vert = 0; curr_vert < poly->num_verts; curr_vert++)

{
// scale and store result back
poly->vlist[curr_vert].x *= sx;
poly->vlist[curr_vert].y *= sy;

} // end for curr_vert

// return success
return(1);

} // end Scale_Polygon2D

That one was easy, huh, hot rocks?

To scale a polygon to 1/10 its size, you would make the call

Scale_Polygon2D(&polygon, 0.1, 0.1);

Notice that the x- and y-axis scale factors are both equal to 0.1. Thus, the scaling will
be uniform on each axis.

As a demo of scaling, I have created DEMO8_5.CPP|EXE. It creates a single rotating
asteroid. When you press the A key, the object gets bigger by 10 percent; when you
press the S key, it gets smaller by 10 percent.

You may notice that the mouse pointer is visible on most demos. If you
want to make it disappear (which is a good idea for games in general),
you can make a call to the Win32 function ShowCursor(BOOL bshow). If
you send TRUE, the internal display count is incremented, and FALSE
decrements it. When the system starts, the display count is 0. If the dis-
play count is greater than or equal to 0, the mouse pointer is displayed.
Hence, the call ShowCursor(FALSE) will make the cursor disappear, and
the call ShowCursor(TRUE) will make it appear again at some later time.
Remember, though, that ShowCursor() accumulates your calls to it, so if
you call ShowCursor(FALSE) five times, you must call ShowCursor(TRUE)
five times to “unwind” the counter.

Note

Introduction to Matrices
When we start talking about 3D graphics, I’m really going to drown you in vectors,
matrices, and other mathematical concepts. However, at this point, I just want to show
you a few things about matrices and how they can be used in relation to the simple
2D transformations you’ve been doing the longhand way. Sound like a plan?

1172313618 CH08 10/26/99 10:16 AM Page 446

CHAPTER 8
Vector Rasterization and 2D Transformations

447

A matrix is nothing more than a rectangular array of numbers with a given number of
rows and columns. We usually say that a matrix is m×n, meaning it has m rows and n
columns. The m×n is also referred to as the dimension of the matrix. For example,
here’s a matrix A that is 2×2:

A = |1 4|
|9 –1|

Notice that I use the capital letter A to denote the matrix. In general, most people use
capital letters to denote matrices and bold letters for vectors. In the previous example,
the first row is <1 4> and the second row is <9 –1>. Here’s a 3×2 matrix:

|5 6|
B = |2 3|

|100 -7|

And here’s a 2×3 matrix:

C = | 3 5 0 |
|-8 12 4 |

To locate the <i,j>th element in the matrix, you simply go to the ith row and the jth
column and look up the value. However, there is a gotcha…most math books start
counting matrix elements with 1, rather than 0 as you do in computer programs, so
keep that in mind. You’re going to start counting with 0 because this will make using
C/C++ matrices work more naturally. For example, here’s the labeling of a 3×3
matrix:

|a00 a01 a02|
A = |a10 a11 a12|

|a20 a21 a22|

Easy enough. So that’s all there is to the actual matrix itself and the labeling conven-
tions. But you might ask, “Where do matrices come from?” Matrices are simply
mathematical tools for lazy mathematicians, I kid you not. Basically, if you have a
system of equations like

3*x + 2*y = 1
4*x – 9*y = 9

then that’s a lot of work writing all the variables down. You know that they’re (x,y), so
why keep writing them? Why not just create a compact format that contains only the
stuff you want to work with? This is how matrices came to be. In the previous exam-
ple, there are three different sets of values that you can dump into matrices. You can
work with these values together or separately.

Here are the coefficients:

3*x + 2*y = 1
4*x – 9*y = 9

1172313618 CH08 10/26/99 10:16 AM Page 447

DirectX and 2D Fundamentals

448 PART II

A = |3 2|
|4 -9|

Dimension is 2x2

Here are the variables themselves:

3*x + 2*y = 1
4*x – 9*y = 9

X = |x|
|y|

Dimension is 2x1

And finally, here are the constants to the right:

3*x + 2*y = 1
4*x – 9*y = 9

B = |1|
|9|

Dimension is 2x1

With all these nice matrices, you can focus on, say, the coefficient matrix A without
all the other stuff. Moreover, you can write matrix equations like

A*X = B

If you perform the math, you get

3*x + 2*y = 1
4*x – 9*y = 9

But how to perform the math? That’s our next topic.

The Identity Matrix
The first thing you need to define in any mathematical system is 1 and 0. In matrix
mathematics, there are analogs of both of the values. The analog of 1 is called the
identity matrix and is created by placing all 1s in the main diagonal of the matrix and
0s everywhere else. Furthermore, because matrices can be any size, there are obvi-
ously an infinite number of identity matrices. However, there is one constraint: All
identity matrices must be square, or in other words m×m, where m >= 1. Here are a
couple of examples:

I2 = |1 0|
|0 1|

Dimension 2x2

1172313618 CH08 10/26/99 10:16 AM Page 448

CHAPTER 8
Vector Rasterization and 2D Transformations

449

|1 0 0 |
I3 = |0 1 0 |

|0 0 1 |

Dimension 3x3

Ironically, the identity matrix isn’t exactly the analog of 1, but is under matrix multi-
plication (which we’ll get to in a second).

The second type of fundamental matrix is called the zero matrix, and it’s 0 under both
addition and multiplication. It’s nothing more than a matrix of dimension m×n with all
entries 0. Other than that, there are no special constraints:

|0 0 0|
Z3x3 = |0 0 0|

|0 0 0|

Z1x2 = |0 0|

The only interesting thing about the zero matrix is that it has the standard properties
of scalar 0 for both matrix addition and multiplication. Other than that, it’s pretty use-
less.

Matrix Addition
Addition and subtraction of matrices is performed by adding or subtracting each ele-
ment in two matrices and coming up with a result for each entry. The only rule to
addition and subtraction is that the matrices that the operation is being performed on
must be of the same dimension. Here are two examples:

A = |1 5| B = |13 7 |
|-2 0| |5 –10|

A + B = |1 5| + |13 7 | = |(1+13) (5+7)| = |14 12|
|-2 0| |5 –10| |(-2+5) (0-10| |3 -10|

A – B = |1 5| + |13 7 | = |(1-13) (5-7) | = |-12 –2|
|-2 0| |5 –10| |(-2-5) (0-(-10))| |-7 10|

Note that both addition and subtraction are associative; that is, A + (B + C) = (A + B)
+ C. However, they’re not commutative under subtraction. (A – B) may not equal
(B – A).

Matrix Multiplication
There are two forms of matrix multiplication: scalar and matrix. Scalar matrix multi-
plication is simply the multiplication of a matrix by a scalar number. You simply mul-
tiply each element of the matrix by the number. The matrix can be m×n at any size.

1172313618 CH08 10/26/99 10:16 AM Page 449

DirectX and 2D Fundamentals

450 PART II

Here’s a general description for a 3×3 matrix. Let k be any real constant:

|a00 a01 a02|
Let A = |a10 a11 a12|

|a20 a21 a22|

|a00 a01 a02| |k*a00 k*a01 k*a02|
Then k*A = k*|a10 a11 a12| = |k*a10 k*a11 k*a12|

|a20 a21 a22| |k*a20 k*a21 k*a22|

Here’s an example:

3*| 1 4| = |(3*1) (3*4)| = |3 12|
|-2 6| |(3*(-2)) (3*6)| |-6 18|

Scalar multiplication is also valid for matrix equations, as long as you
perform the multiplication on both sides. This is true because you can
always multiply the coefficients of any system by a constant as long as
you do so to both the RHS (right hand side) and LHS (left hand side) of
the system.

The second type of multiplication is true matrix multiplication. Its mathematical basis
is a bit complex, but you can think of a matrix as an “operator” that operates on
another matrix. Given two matrices, A and B, that you want to multiply, they must
have the same inner dimension. In other words, if A is m×n, B must be n×r. m and r
may or may not be equal, but the inner dimension must be. For example, you can
multiply a 2×2 by a 2×2, a 3×2 by a 2×3, and a 4×4 by a 4×5, but you can’t multiply
a 3×3 by a 2×4 because the inner dimensions aren’t equal. The resulting matrix will
have a size that is equal to the outer dimension of the multiplier and multiplicand
matrix. For example, a 2×3 multiplying a 3×4 would have dimension 2×4.

Matrix multiplication is one of those things that’s very hard to describe with words. I
always end up waving my hands a lot to show what I’m saying, so take a look at
Figure 8.25 while I give you the technical description of the multiplication algorithm.

Given a matrix A and B, or A×B, and to multiply them together to compute each ele-
ment of the result matrix C, you must take a row of A and multiply it by a column in
B. To perform the multiplication, you sum the products of each element, which is also
called the dot product. Here’s an example for a 2×2 multiplying a 2×3—order counts!

Let A = |1 2| B = |1 3 5|
|3 4| |6 0 4|

C = A x B = |(1*1 + 2*6) (1*3 + 2*0) (1*5 +2*4)|
|(3*1 + 4*6) (3*3 + 4*0) (3*5 +4*4)|

= |13 3 13|
|27 9 31|

1172313618 CH08 10/26/99 10:16 AM Page 450

CHAPTER 8
Vector Rasterization and 2D Transformations

451

As an aside, I want to bring your attention to the bolded sum of products (1*1 + 2*6).
This product and all the others are really vector dot products (a vector is just a collec-
tion of values, like a matrix with one row). A dot product has a very explicit mathe-
matical meaning, which we’ll get to later, but in general, you can compute the dot
product of two vectors that are each 1×n by simply summing up the products of the
independent components. Or, mathematically:

Let a = [1 2 3] b = [4 5 6]

a.b = [(1*4) + (2*5) + (3*6)]
= [32]
1x1

Or, if you want to be a little wet ’n’ wild, it’s just a scalar.

a31 a32 a33

a21 a22 a23

a11 a12 a13

A3x3

Use ith row

b31 b32 b33

b21 b22 b23

b11 b12 b13

c31 c32 c33

c21 c22 c23

c11 c12 c13

B3x3 C3x3

Use Jth column

x = (a31 • b13 +a32 • b23 + a33 • b33) = C (3,3)

x = (a11 • b11 +a12 • b21 + a13 • b31) = C (i, J) = C (1, 1)
RowA • ColumnB

A • B = C

Figure 8.25
The mechanics of

matrix multiplication.

I’m being a little cavalier right now with dot products; technically,
they’re only valid for vectors, but a column or row of a matrix is really a
vector. Basically, I’m in a transitional period and I don’t want to kill you.
I want to help you…

Warning

So that’s how you multiply matrices. Another way to think of it is that if you want to
compute the product of A×B, call it C. You can do this element by element. Hence, if
you want the cijth element (where both i and j are zero-based), you can find it by tak-
ing the ith row of A and doting (summing the products) with the jth column of B.

At this point, I think you get the general idea of what’s going on. Let’s take a look at
some code that performs matrix multiplication. First, let’s define a matrix type:

1172313618 CH08 10/26/99 10:16 AM Page 451

DirectX and 2D Fundamentals

452 PART II

// here’s a 3x3, useful for 2D stuff and some 3D
typedef struct MATRIX3X3_TYP

{
float M[3][3]; // data storage
} MATRIX3X3, *MATRIX3X3_PTR;

int Mat_Mul3X3(MATRIX3X3_PTR ma,
MATRIX3X3_PTR mb,
MATRIX3X3_PTR mprod)

{
// this function multiplies two matrices together and
// stores the result

for (int row=0; row<3; row++)
{
for (int col=0; col<3; col++)

{
// compute dot product from row of ma
// and column of mb

float sum = 0; // used to hold result

for (int index=0; index<3; index++)
{
// add in next product pair
sum+=(ma->M[row][index]*mb->M[index][col]);
} // end for index

// insert resulting row,col element
mprod->M[row][col] = sum;

} // end for col

} // end for row

return(1);

} // end Mat_Mul3X3

You’ll notice that there’s a lot of math going on. In general, matrix multiplication is
an N3 operation, meaning that there are three nested loops. However, a number of
optimizations can be used, such as testing either the multiplier or multiplicand for 0
and not performing the multiplication.

Transformations Using Matrices
Using matrices to perform 2D/3D transformations is a snap. Basically, what you’re
going to do is multiply the point you want to be transformed against the desired trans-
formation matrix. Or, mathematically:

p’ = p*M

1172313618 CH08 10/26/99 10:16 AM Page 452

CHAPTER 8
Vector Rasterization and 2D Transformations

453

where p’ is the transformed point, p is the original point, and M is the transformation
matrix. If I haven’t mentioned that matrix multiplication is not commutative, let me
do so now:

(A*B) NOT EQUAL (B*A)

This statement is generally true unless A or B is the identity matrix or the zero matrix,
or they’re the same matrix. Order counts when you’re matrix multiplying.

In this case, you’re going to convert a single (x,y) point into a single row matrix with
dimension 1×3, and then pre-multiply it by a 3×3 transformation matrix. The result
will also be a 1×3 row matrix, and you can pick off the first two components as the
transformed x’,y’. Alas, you should have a slight problem with all this—what is the
last component of the initial matrix p there for, if only two pieces of data, x and y, are
needed?

In general, you’re going to represent all points like this:

[x y 1.0]

The factor 1.0 is to make the matrix into what are called homogenous coordinates.
This allows any transformed point to be scaled, and it also allows for translations in
transformations. Other than that, the mathematical basis for it is unimportant. Just
think of it as a dummy variable that you need. Hence, you’re going to create a matrix
that’s 1×3 to hold your input point and then post-multiply it by the transformation
matrix. Here are the data structures for the point or 1×3 matrix:

typedef struct MATRIX1X3_TYP
{
float M[3]; // data storage
} MATRIX1X3, *MATRIX1X3_PTR;

And here’s a function to multiply a point against a 3×3 matrix:

int Mat_Mul1X3_3X3(MATRIX1X3_PTR ma,
MATRIX3X3_PTR mb,
MATRIX1X3_PTR mprod)

{
// this function multiplies a 1x3 matrix against a
// 3x3 matrix – ma*mb and stores the result

for (int col=0; col<3; col++)
{
// compute dot product from row of ma
// and column of mb

float sum = 0; // used to hold result

for (int index=0; index<3; index++)
{

1172313618 CH08 10/26/99 10:16 AM Page 453

DirectX and 2D Fundamentals

454 PART II

// add in next product pair
sum+=(ma->M[index]*mb->M[index][col]);
} // end for index

// insert resulting col element
mprod->M[col] = sum;

} // end for col
return(1);

} // end Mat_Mul_1X3_3X3

And to create a point p with components x and y, you would do the following:

MATRIX1X3 p = {x,y,1};

With all that in mind, let’s take a look at the transformation matrices for all the opera-
tions you’ve performed manually.

Translation
To perform translation, you want to leave the x,y components alone while adding the
translation factors to x,y. This matrix will do the job:

|1 0 0 |
Mt =|0 1 0 |

|dx dy 0 |

Example:

p = [x y 1]

|1 0 0 |
p’ = p*Mt = [x y 1] * |0 1 0 | = [(x+1*dx) (y+1*dy) 1]

|dx dy 1 |

Notice the necessity of the 1.0 factor in the left-hand matrix represent-
ing the point. Without it, there would be no way to perform translation.

And if you pull out the first two elements, you get

x’ = x+dx
y’ = y+dy

This is exactly what you wanted.

1172313618 CH08 10/26/99 10:16 AM Page 454

CHAPTER 8
Vector Rasterization and 2D Transformations

455

Scaling
To scale a point relative to the origin, you want to multiply the x,y components by
scaling factors sx and sy, respectively. In addition, you want no translation during the
scaling operation. Here’s the matrix you want:

|sx 0 0|
Ms =|0 sy 0|

|0 0 1|

Eg. p = [x y 1]

|sx 0 0|
p’ = p*Ms = [x y 1] * |0 sy 0| = [(x*sx) (y*sy) 1]

|0 0 1|

Again, this is the desired result for scaling; that is

x’ = sx*x
y’ = sy*y

Note the 1 in the lower-right corner of the transformation matrix.
Technically, it’s not necessary because you’re never going to use the
result from the third column. Hence, you’re wasting math cycles. The
question is, can you remove the last column of all the transformation
matrices and use a 3×2 instead? Let’s see the rotation matrix before you
answer that…

Rotation
The rotation matrix is the most complex of all the transformations because it’s full of
trig functions. Basically, you want to rotate the input point by using the rotation equa-
tions. To achieve this, you must look at the rotation equations, pick the operators, and
then push them into a matrix. In addition, you don’t want any translation, so the bot-
tom row in positions 0 and 1 will be 0. Here’s the matrix that does the job:

| cos × sin × |
Mr = |-sin × cos × |

| 0 0 1 |
Eg. p = [x y 1]

| cos × sin × |
p’ = p*Mr = [x y 1] * |-sin × cos × | =

| 0 0 1 |
p’ = [(x*cos × – y*sin ×) (x*sin × + y*cos ×) 1]

Which is correct!

1172313618 CH08 10/26/99 10:16 AM Page 455

Errata

Errata

Errata

Errata
The rotation matrix at the bottom of the page:|cos x sin x||-sin x cos x||0 0 1|should be:| cos x sin x 0||-sin x cos x 0||0 0 1|

DirectX and 2D Fundamentals

456 PART II

Before moving on to polygons, let’s discuss the question that was posed before in ref-
erence to using a 3×2 post-multiplication matrix rather than a 3×3. It looks as if the
last term in all the matrix multiplications is completely discarded, in addition to
always being 1.0. Both of these statements are true.

Therefore, for the transformations that you’ve performed thus far, you can use a 3×2.
However, I wanted to use a 3×3 to make a point about homogenous matrices and
coordinates. The significance of the last 1.0 is this (in reality, let’s refer to it as q): To
convert the coordinates to their final correct form after the transformation is complete,
you would divide by the factor q, or in other words:

p’ =[x y q]

x’ = x/q
y’ = y/q

However, because q = 1 in this case, the divisions are unnecessary, as is the computa-
tion of q. Nonetheless, this factor will have importance later in the discussion of 3D
graphics, so keep it in mind.

In any case, with this new information, you can change a couple of data structures and
store all points in a 1×2 and all transformation matrices in a 3×2, using the following
data structures and transform function:

// the transformation matrix

typedef struct MATRIX3X2_TYP
{
float M[3][2]; // data storage
} MATRIX3X2, *MATRIX3X2_PTR;

// our 2D point
typedef struct MATRIX1X2_TYP

{
float M[2]; // data storage
} MATRIX1X2, *MATRIX1X2_PTR;

int Mat_Mul1X2_3X2(MATRIX1X2_PTR ma,
MATRIX3X2_PTR mb,
MATRIX1X2_PTR mprod)

{
// this function multiplies a 1x2 matrix against a
// 3x2 matrix – ma*mb and stores the result
// using a dummy element for the 3rd element of the 1x2
// to make the matrix multiply valid i.e. 1x3 X 3x2

for (int col=0; col<2; col++)
{
// compute dot product from row of ma

1172313618 CH08 10/26/99 10:16 AM Page 456

CHAPTER 8
Vector Rasterization and 2D Transformations

457

// and column of mb

float sum = 0; // used to hold result

for (int index=0; index<2; index++)
{
// add in next product pair
sum+=(ma->M[index]*mb->M[index][col]);
} // end for index

// add in last element * 1
sum+= mb[index][col];

// insert resulting col element
mprod->M[col] = sum;

} // end for col

return(1);

} // end Mat_Mul_1X2_3X2

You must always multiply a m × r matrix by an r × n matrix. In other
words, the inner dimension must be equal. Obviously, 1×2 and 3×2 don’t
work because 2 is not equal to 3. However, in the code, you can add a
dummy element 1.0 to each of the 1×2’s, making them into 1×3’s, just
for the math to work out.

Note

For a demo of using matrices in a program, check out DEMO8_6.CPP|EXE. I’ve created
a polygon that resembles a little spaceship in wire frame, and you can scale, rotate,
and translate it. Take a look at Figure 8.26 for a screen shot.

Here are the control keys for this demo:

Esc Exits the demo.

A Scales up 10%.

S Scales down 10%.

Z Rotates counterclockwise.

X Rotates clockwise.

Arrow keys Translates in x and y.

1172313618 CH08 10/26/99 10:16 AM Page 457

DirectX and 2D Fundamentals

458 PART II

Solid Filled Polygons
Let’s take a break from all the math and get back to something a little more tangible,
shall we? One of the most basic requirements of a 3D engine, and many 2D engines,
is to draw a solid or filled polygon, as shown in Figure 8.27. This is the next problem
you’re going to tackle.

Figure 8.26
DEMO8_6.EXE in action.

P0

P1

P2

P3

P3P0

P0P1

P1P2

P2P3

P0

P1

P2

P3

P3P0

P0P1

P1P2

P2P3

Line segments filled
from left to right
for each edge

A. Vector or wire frame version B. Filled version

Figure 8.27
Filling a polygon.

1172313618 CH08 10/26/99 10:16 AM Page 458

CHAPTER 8
Vector Rasterization and 2D Transformations

459

There are a number of ways to draw filled polygons. However, because the point of
all this is to create 2D/3D games, you want to be able to draw a filled polygon that
can be a single color or texture-mapped, as shown in Figure 8.28. For now let’s leave
texture mapping alone until we get to the 3D stuff and just figure out how to draw a
solid polygon of any color.

Figure 8.28
A solid shaded poly-
gon versus a texture-

mapped polygon.

Before you solve the problem, you must clearly define what it is that you’re trying to
solve. The first constraint is that all polygons must be convex, so no holes or weird
shapes are allowed. Then you have to decide how complex the polygon can be. Can it
have three sides, four sides, or any number of sides? This is a definite issue, and you
must employ a different algorithm for polygons that have more than three sides (four-
sided polygons or quadrilaterals can be broken into two triangles).

Thus, I’m going to show you how to fill both general polygons and triangles (which
will be the basis of the final 3D engine you create).

Types of Triangles and Quadrilaterals
First off, let’s take a look at a general quadrilateral, shown in Figure 8.29. The quadri-
lateral can be decomposed into two triangles, ta and tb, which simplifies the problem
of drawing a quadrilateral. Therefore, you can now concentrate on drawing a single
triangle, which you can then use to draw either a triangle or a quadrilateral. Refer to
Figure 8.30 and let’s get busy.

First, there are only four possible types of triangles that you can generate. Let’s label
them:

• Flat top—This is a triangle that has a flat top, or in other words, the two top-
most vertices have the same y coordinate.

• Flat bottom—This is a triangle that has a flat bottom, or in other words, the
two bottommost vertices have the same y coordinate.

• Right side major—This is a triangle in which all three vertices have different y
coordinates, but the longest side of the triangle slopes to the right.

• Left side major—This is a triangle in which all three vertices have different y
coordinates, but the longest side of the triangle slopes to the left.

1172313618 CH08 10/26/99 10:16 AM Page 459

DirectX and 2D Fundamentals

460 PART II

The first two types are the easiest to rasterize because each triangle leg is the same
length (you’ll see why that’s important shortly). However, the latter two types are just
as easy if you first decompose them into a pair of flat bottom and flat top triangles.
You may or may not want to do this, but I usually do. If you don’t, your rasterizer will
need to contain steering logic to help with the slope changes on the side of the trian-
gle with the two sides. Anyway, this will be much clearer once you see some exam-
ples.

–x +x
Quad is decomposed into 2 triangles

–y

+y

0

P2

P3

P0

P1
Triangle Ta: (P0, P2, P3)

Triangle Tb: (P0, P1, P2)

Original quad

Figure 8.29
A general four-sided

quadrilateral.

Figure 8.30
General triangle

types.

A. Flat top B. Flat bottom C. Right side major D. Left side major

Split into type a, b

Any triangle can be broken up into one of 4 types.

Flat top

Flat
bottom

Worse cases

P2 P0 P0 P0 P0

P1 P2 P2

P2

P1

P1

P1

1172313618 CH08 10/26/99 10:17 AM Page 460

CHAPTER 8
Vector Rasterization and 2D Transformations

461

Drawing Triangles and Quadrilaterals
Drawing a triangle is much like drawing a line, in that you must trace out the pixels of
the edges to be drawn and then fill the triangle line by line. This is shown in Figure
8.31 for a flat bottom triangle. As you can see, once the slope of each edge is com-
puted, you can simply move down each scanline, adjust the x endpoints xs and xe
based on the slope (or more accurately 1/slope), and then draw a connecting line.

0–x +x

–y

+y

Desired triangle
to rasterize

P0 (x0, y0)

P2 (x2, y2) P1 (x1, y1)

0–x +x

–y

+y P0 (x0, y0)

P2 (x2, y2) P1 (x1, y1)

Rasterized a scanline
at a time by tracing
the pixels intersected
by edges at integral
values from P0 (P1, P2)

dxy – Right
x1 – x0
y1 – y0

=

1
mR

=

dxy – Left
x2 – x0
y2 – y0

1
mL

=

xs xe

Figure 8.31
Rasterization of

a triangle.

You don’t need to use Bresenham’s algorithm because you aren’t interested in draw-
ing a line. You’re only interested in seeing where the line intersects the pixel centers
at each integer interval. Here’s the algorithm for the flat bottom triangle fill:

1. First, compute the ratio dx/dy for the left side and the right side. Basically, this
is 1/slope. You need it because you’re going to use a vertically oriented
approach. Thus, you want to know the change in x for each y, which is simply
dx/dy or 1/M. Call these values dxy_left and dxy_right for the left and right
side, respectively.

2. Starting at the topmost vertex (x0,y0), set xs=xe=x0 and y=y0.

3. Add dxy_left to xs and dxy_right to xe. This will trace the endpoints to fill.

4. Draw a line from (xs,y) to (xe,y).

5. Go back to step 3 until the height of the triangle from the top to the bottom has
been rasterized.

Of course, the initial conditions and boundary conditions for the algorithm take a little
care to get right, but that’s all there is to it, more or less—fairly simple. Now, before I
show you anything else, let’s talk about optimization for a minute.

At first glance, you might be tempted to use floating-point math for the edge tracing,
which would work fine. However, the problem isn’t that floating-point math is slower

1172313618 CH08 10/26/99 10:17 AM Page 461

DirectX and 2D Fundamentals

462 PART II

than integer math on a Pentium; the problem is that at some point, you’ll have to con-
vert the floating-point number into an integer.

If you let the compiler do it, you’re looking at around 60 cycles. If you do it manually
with FPU code, you can make it happen in about 10-20 cycles (remember, you need
to convert to integers and then store). In any case, I refuse to lose 40 cycles on each
raster line just to find my endpoints! Thus, you’re going to create a floating-point ver-
sion to show you the algorithm, but the final production model will use fixed-point
math (which I’ll brief you on in a moment).

Let’s implement the flat bottom triangle rasterizer based on floating-point. First, let’s
label as shown in Figure 8.31. Here’s the algorithm:

// compute deltas
float dxy_left = (x2-x0)/(y2-y0);
float dxy_right = (x1-x0)/(y1-y0);

// set starting and ending points for edge trace
float xs = x0;
float xe = x0;

// draw each scanline
for (int y=y0; y <= y1; y++)

{
// draw a line from xs to xe at y in color c
Draw_Line((int)xs, (int)xe, y, c);

// move down one scanline
xs+=dxy_left;
xe+=dxy_right;

} // end for y

Now, let’s talk about some of the details of the algorithm and what’s missing. First
off, the algorithm truncates the endpoints each scanline. This is probably a bad thing
because you’re throwing away information. A better approach would be to round the
value of each endpoint by adding 0.5 before converting to integer. Another problem
has to do with the initial conditions. On the first iteration, the algorithm draws a line
that’s a single pixel wide. This works, but it’s definitely a place for optimization.

Now, let’s see if you can write the algorithm for a flat top triangle based on what you
know. All you need to do is label the vertices, as shown in Figure 8.31, and then
change the algorithm’s initial conditions slightly so that the left and right interpolants
are correctly computed. Here are the changes:

// compute deltas
float dxy_left = (x2-x0)/(y2-y0);
float dxy_right = (x2-x1)/(y2-y1);

1172313618 CH08 10/26/99 10:17 AM Page 462

CHAPTER 8
Vector Rasterization and 2D Transformations

463

// set starting and ending points for edge trace
float xs = x0;
float xe = x1;

// draw each scanline
for (int y=y0; y <= y2; y++)

{
// draw a line from xs to xe at y in color c
Draw_Line((int)(xs+0.5), (int)(xe+0.5), y, c);

// move down one scanline
xs+=dxy_left;
xe+=dxy_right;

} // end for y

Who’s baaaaddd? Anyway, back to reality—you’re halfway there. At this point, you
can draw a triangle that has a flat top or a flat bottom, and you know that a triangle
that doesn’t have a flat top or bottom can be decomposed into one that does. Let’s
take a look at that problem and how to handle it.

Figure 8.32 shows a right side major triangle. Without proof, if you can rasterize a
right side major triangle, the left side major is trivial. The first thing to notice is that
you can start the algorithm off the same way you do for a flat bottom—that is, by
starting the edge interpolators from the same starting point. The problem occurs when
the left interpolator gets to the second vertex. This is where you need to make some
changes. In essence, you must recompute the left side interpolant and continue raster-
izing.

–x +x

–y

+y

P2

P0

P1

P1

PIntersection
Tb

Tb

Ta P2

P2

P0

PIntersection = y

PIntersection

Ta

Rasterize

Rasterize

Splitting
boundary

Figure 8.32
Rasterization of a

right side major
triangle.

1172313618 CH08 10/26/99 10:17 AM Page 463

DirectX and 2D Fundamentals

464 PART II

There are a number of ways to solve the problem. In the inner loop, you could draw
the first part of the triangle up to the slope change, recompute the left side interpolant,
and continue. Or you could do some triangular decomposition and break the triangle
into two triangles (flat top and flat bottom) and then call the code you already have
that draws a flat top and flat bottom triangle.

The latter is the technique you’ll employ at this point. If you later find that this tech-
nique is inadequate in the 3D arena, change up and try the other method.

Triangular Deconstruction Details
Before I show you the code that draws a complete 8-bit colored triangle, I want to talk
about a few more details involved in writing the algorithm correctly.

To decompose the triangle into a two triangles, one with a flat bottom and the other
with a flat top, is a bit tricky. In essence, you need to take the height of the short side
up until the first point where the slope changes, and then use this to find the point on
the long side you’ll use to partition the triangle. Basically, you take the vertical span
from the top of the triangle and then, instead of interpolating one scanline on the long
side, you interpolate n scanlines all at once by multiplying.

The result is equivalent to manually walking down the long edge of the triangle scan-
line by scanline. Then, once you have the correct point where you want to split the tri-
angles, you simply make a call to your top and bottom triangle rasterizer and the
triangle is drawn! Figure 8.32 showed the details of the splitting algorithm.

In addition to making the split, there comes another little problem—overdraw. If you
send common vertices for the top triangle and the bottom triangle, the single scanline
that is common to both will be rasterized twice. This isn’t a big deal, but it’s some-
thing to think about. You might want to step down on the bottom triangle one scanline
to avoid the overdraw of the common scanline.

Almost ready… let’s see, what else? Yes, what about clipping? If you recall, there are
two ways to clip: object space and image space. Object space is great, but if you clip
your triangle to the rectangle of the screen, in the very worst case you could add four
more vertices! Take a look at Figure 8.33 to see this illustrated.

Instead you’ll take the easy route and clip in image space as the polygon is being
drawn, but you’ll at least clip each scanline rather than each pixel. Moreover, you’ll
do some trivial rejection tests to determine if clipping is needed at all. If not, you’ll
jump to a part of the code that runs without clipping tests to run faster. Sound good?

Finally, while we’re on the subject of trivial rejection and tests, we need to address all
the degenerate cases of a triangle, such as a single point and a straight horizontal or
vertical line. The code should test for these cases without blowing up! And of course,

1172313618 CH08 10/26/99 10:17 AM Page 464

CHAPTER 8
Vector Rasterization and 2D Transformations

465

you can’t assume that the vertices are in the correct order when sent to the function,
so you’ll sort them top to bottom, left to right. That way you’ll have a known starting
point. With all that in mind, here are the three functions that make up your 8-bit trian-
gle drawing engine.

Figure 8.33
Worst-case scenario

when clipping a
triangle.

P0*

P0*

P1*

P1

P1*

P2*

P2*

P2

P3*

P3*

P4*P5*

P6*

New polygon—yuck! 7 vertices

Triangle to clip (3 vertices P0, P1, P2)

Clipping rectangle

(xc2, yc2)

(xc1, yc1)

P4*

P0

P5*

P6*

This function draws a triangle with a flat top:

void Draw_Top_Tri(int x1,int y1,
int x2,int y2,
int x3,int y3,
int color,
UCHAR *dest_buffer, int mempitch)

{
// this function draws a triangle that has a flat top

float dx_right, // the dx/dy ratio of the right edge of line
dx_left, // the dx/dy ratio of the left edge of line
xs,xe, // the starting and ending points of the edges
height; // the height of the triangle

int temp_x, // used during sorting as temps
temp_y,
right, // used by clipping
left;

// destination address of next scanline
UCHAR *dest_addr = NULL;

1172313618 CH08 10/26/99 10:17 AM Page 465

DirectX and 2D Fundamentals

466 PART II

// test order of x1 and x2
if (x2 < x1)

{
temp_x = x2;
x2 = x1;
x1 = temp_x;
} // end if swap

// compute delta’s
height = y3-y1;

dx_left = (x3-x1)/height;
dx_right = (x3-x2)/height;

// set starting points
xs = (float)x1;
xe = (float)x2+(float)0.5;

// perform y clipping
if (y1 < min_clip_y)

{
// compute new xs and ys
xs = xs+dx_left*(float)(-y1+min_clip_y);
xe = xe+dx_right*(float)(-y1+min_clip_y);

// reset y1
y1=min_clip_y;

} // end if top is off screen

if (y3>max_clip_y)
y3=max_clip_y;

// compute starting address in video memory
dest_addr = dest_buffer+y1*mempitch;

// test if x clipping is needed
if (x1>=min_clip_x && x1<=max_clip_x &&

x2>=min_clip_x && x2<=max_clip_x &&
x3>=min_clip_x && x3<=max_clip_x)
{
// draw the triangle
for (temp_y=y1; temp_y<=y3; temp_y++,dest_addr+=mempitch)

{
memset((UCHAR *)dest_addr+(unsigned int)xs,

color,(unsigned int)(xe-xs+1));

// adjust starting point and ending point
xs+=dx_left;
xe+=dx_right;

} // end for

1172313618 CH08 10/26/99 10:17 AM Page 466

CHAPTER 8
Vector Rasterization and 2D Transformations

467

} // end if no x clipping needed
else

{
// clip x axis with slower version

// draw the triangle
for (temp_y=y1; temp_y<=y3; temp_y++,dest_addr+=mempitch)

{
// do x clip
left = (int)xs;
right = (int)xe;

// adjust starting point and ending point
xs+=dx_left;
xe+=dx_right;

<s$I~graphics;triangles;drawing>
// clip line
if (left < min_clip_x)

{
left = min_clip_x;

if (right < min_clip_x)
continue;

}

if (right > max_clip_x)
{
right = max_clip_x;

if (left > max_clip_x)
continue;

}

memset((UCHAR *)dest_addr+(unsigned int)left,
color,(unsigned int)(right-left+1));

} // end for

} // end else x clipping needed

} // end Draw_Top_Tri

This function draws a triangle with a flat bottom:

void Draw_Bottom_Tri(int x1,int y1,
int x2,int y2,
int x3,int y3,
int color,
UCHAR *dest_buffer, int mempitch)

{
// this function draws a triangle that has a flat bottom

float dx_right, // the dx/dy ratio of the right edge of line

1172313618 CH08 10/26/99 10:17 AM Page 467

DirectX and 2D Fundamentals

468 PART II

dx_left, // the dx/dy ratio of the left edge of line
xs,xe, // the starting and ending points of the edges
height; // the height of the triangle

int temp_x, // used during sorting as temps
temp_y,
right, // used by clipping
left;

// destination address of next scanline
UCHAR *dest_addr;

// test order of x1 and x2
if (x3 < x2)

{
temp_x = x2;
x2 = x3;
x3 = temp_x;
} // end if swap

// compute delta’s
height = y3-y1;

dx_left = (x2-x1)/height;
dx_right = (x3-x1)/height;

// set starting points
xs = (float)x1;
xe = (float)x1; // +(float)0.5;

// perform y clipping
if (y1<min_clip_y)

{
// compute new xs and ys
xs = xs+dx_left*(float)(-y1+min_clip_y);
xe = xe+dx_right*(float)(-y1+min_clip_y);

// reset y1
y1=min_clip_y;

} // end if top is off screen

if (y3>max_clip_y)
y3=max_clip_y;

// compute starting address in video memory
dest_addr = dest_buffer+y1*mempitch;

// test if x clipping is needed
if (x1>=min_clip_x && x1<=max_clip_x &&

x2>=min_clip_x && x2<=max_clip_x &&
x3>=min_clip_x && x3<=max_clip_x)

1172313618 CH08 10/26/99 10:17 AM Page 468

CHAPTER 8
Vector Rasterization and 2D Transformations

469

{
// draw the triangle
for (temp_y=y1; temp_y<=y3; temp_y++,dest_addr+=mempitch)

{
memset((UCHAR *)dest_addr+(unsigned int)xs,

color,(unsigned int)(xe-xs+1));

// adjust starting point and ending point
xs+=dx_left;
xe+=dx_right;

} // end for

} // end if no x clipping needed
else

{
// clip x axis with slower version

// draw the triangle

for (temp_y=y1; temp_y<=y3; temp_y++,dest_addr+=mempitch)
{
// do x clip
left = (int)xs;
right = (int)xe;

// adjust starting point and ending point
xs+=dx_left;
xe+=dx_right;

// clip line
if (left < min_clip_x)

{
left = min_clip_x;

if (right < min_clip_x)
continue;

}

if (right > max_clip_x)
{
right = max_clip_x;

if (left > max_clip_x)
continue;

}

memset((UCHAR *)dest_addr+(unsigned int)left,
color,(unsigned int)(right-left+1));

} // end for

1172313618 CH08 10/26/99 10:17 AM Page 469

DirectX and 2D Fundamentals

470 PART II

} // end else x clipping needed

} // end Draw_Bottom_Tri

And finally, this function draws a general triangle by splitting it into a flat top and flat
bottom if needed:

void Draw_Triangle_2D(int x1,int y1,
int x2,int y2,
int x3,int y3,
int color,

UCHAR *dest_buffer, int mempitch)
{
// this function draws a triangle on the destination buffer
// it decomposes all triangles into a pair of flat top, flat bottom

int temp_x, // used for sorting
temp_y,
new_x;

// test for h lines and v lines
if ((x1==x2 && x2==x3) || (y1==y2 && y2==y3))

return;

// sort p1,p2,p3 in ascending y order
if (y2<y1)

{
temp_x = x2;
temp_y = y2;
x2 = x1;
y2 = y1;
x1 = temp_x;
y1 = temp_y;
} // end if

// now we know that p1 and p2 are in order
if (y3<y1)

{
temp_x = x3;
temp_y = y3;
x3 = x1;
y3 = y1;
x1 = temp_x;
y1 = temp_y;
} // end if

// finally test y3 against y2
if (y3<y2)

{

1172313618 CH08 10/26/99 10:17 AM Page 470

CHAPTER 8
Vector Rasterization and 2D Transformations

471

temp_x = x3;
temp_y = y3;
x3 = x2;
y3 = y2;
x2 = temp_x;
y2 = temp_y;

} // end if

// do trivial rejection tests for clipping
if (y3<min_clip_y || y1>max_clip_y ||

(x1<min_clip_x && x2<min_clip_x && x3<min_clip_x) ||
(x1>max_clip_x && x2>max_clip_x && x3>max_clip_x))
return;

// test if top of triangle is flat
if (y1==y2)

{
Draw_Top_Tri(x1,y1,x2,y2,x3,y3,color, dest_buffer, mempitch);
} // end if

else
if (y2==y3)

{
Draw_Bottom_Tri(x1,y1,x2,y2,x3,y3,color, dest_buffer, mempitch);
} // end if bottom is flat

else
{
// general triangle that’s needs to be broken up along long edge
new_x = x1 + (int)(0.5+(float)(y2-y1)*(float)(x3-x1)/(float)(y3-y1));

// draw each sub-triangle
Draw_Bottom_Tri(x1,y1,new_x,y2,x2,y2,color, dest_buffer, mempitch);
Draw_Top_Tri(x2,y2,new_x,y2,x3,y3,color, dest_buffer, mempitch);

} // end else

} // end Draw_Triangle_2D

To use the function, you need only call the last function because it internally calls the
other support functions. Here’s an example of calling the function to draw a triangle
with the coordinates (100,100), (200,150), (40,200) in color 30:

Draw_Triangle_2D(100,100, 200,150, 40,200, 30, back_buffer, back_pitch);

In general, you should send the coordinates in counterclockwise as they wind around
the triangle. At this point it doesn’t matter, but when you get to 3D, this detail
becomes very important because a number of the 3D algorithms look at the vertex
order to determine the front- or back-facing property of the polygon.

1172313618 CH08 10/26/99 10:17 AM Page 471

DirectX and 2D Fundamentals

472 PART II

For an example of the polygon function in action, take a look at DEMO8_7.CPP|EXE. It
draws randomly clipped triangles in 8-bit mode. Note that the global clipping region
is defined by the general rectangular clipping variables:

int min_clip_x = 0, // clipping rectangle
max_clip_x = (SCREEN_WIDTH-1),
min_clip_y = 0,
max_clip_y = (SCREEN_HEIGHT-1);

Now, let’s move on to more complex rasterization techniques used for polygons with
more than three vertices.

The General Case of Rasterizing a Quadrilateral
As you can see, rasterizing a simple triangle isn’t the easiest thing in the world.
Hence, you could assume that rasterizing polygons with more than three vertices is
even harder. Guess what? It is!

Rasterizing a quadrilateral isn’t bad if you split it into two triangles. For example, take
a look back at Figure 8.29, where you see a quad being split into two triangles.
Essentially, you can use this simple deterministic algorithm to split any quad into a
two triangles:

Given that the polygon vertices are labeled 0, 1, 2, 3 in some order, such as CW
(clockwise)…

Triangle 1 is composed of vertices 0, 1, 3

Triangle 2 is composed of vertices 1, 2, 3

That’s it, home slice <BG>.

With that in mind, to create a quad rasterizer, you can simply implement the previous
code into a function that does the splitting. I’ve done this for you in a function called
Draw_QuadFP_2D(...). There isn’t a floating-point version. Anyway, here’s the code
for it:

In addition to the preceding functions for drawing polygons, I’ve also
created fixed-point versions of the functions that run a bit faster during
the rasterization phase. These are also in the library file T3DLIB1.CPP.
They’re named with FP appended to each function name, but they all
work the same. Basically, the only one you need to call is
Draw_TriangleFP_2D(...). The function generates the same image as
Draw_Triangle_2D(...) does, but it works a bit faster. If you’re inter-
ested in fixed-point math, skip ahead to the Chapter 11, “Algorithms,
Data Structures, Memory Management, and Multithreading,” which cov-
ers optimization.

Trick

1172313618 CH08 10/26/99 10:17 AM Page 472

CHAPTER 8
Vector Rasterization and 2D Transformations

473

inline void Draw_QuadFP_2D(int x0,int y0,
int x1,int y1,
int x2,int y2,
int x3, int y3,
int color,
UCHAR *dest_buffer, int mempitch)

{
// this function draws a 2D quadrilateral

// simply call the triangle function 2x, let it do all the work
Draw_TriangleFP_2D(x0,y0,x1,y1,x3,y3,color,dest_buffer,mempitch);
Draw_TriangleFP_2D(x1,y1,x2,y2,x3,y3,color,dest_buffer,mempitch);

} // end Draw_QuadFP_2D

The function is identical to the triangle function, except that it takes one more vertex.
For an example of this function in use, take a look at DEMO8_8.CPP|EXE. It creates a
number of random quads and draws them on the screen.

I’m getting sloppy with the parameters here. You could probably do a
lot better by defining a polygon structure here and then passing an
address rather than an entire set of vertices. I’m going to leave the code
“as is” for now, but keep that in mind because you’ll get to it when you
do the 3D stuff.

Note

Triangulating Quads
So let’s see… you can draw a triangle and a quad, but how do you draw a polygon
with more than four vertices? You could triangulate the polygon, as shown in Figure
8.34. Although this is a good approach, and many graphics engines do just this (espe-
cially hardware), it’s a bit too complex of a problem to solve in general.

However, if the polygon is constrained to be convex (as yours are), it’s much simpler.
There are many algorithms to do this, but the one I generally use is recursive in nature
and very simple. Figure 8.35 shows the steps of a five-sided convex polygon being tri-
angulated.

Note in Figure 8.35 that there are several possible valid triangulations. Thus, there
may be heuristics and/or some kind of evaluation function applied to optimize the tri-
angulation. For example, it may be a good idea to triangulate with the triangles that
have nearly the same area, or first you might want to try to create very large triangles.

Whatever the case, it’s something to think about in relation to your final engine.
Anyway, here’s a general algorithm that gets the job done.

1172313618 CH08 10/26/99 10:17 AM Page 473

DirectX and 2D Fundamentals

474 PART II

Given a convex polygon with n vertices (n can be even or odd) in CC or CW order to
triangulate…

1. If the number of vertices left to process is greater than three, continue to step 2;
otherwise, stop.

P0

P1

P4

P3

P2

P0

P1

P4

P3

P2

A. Polygon before triangulation B. Polygon after triangulation

Ta

Tb

Tc

P0

P1

P4

P3
P2

Ta

Tb

Tc

Note: There are other possible
triangulations, e.g.

Figure 8.34
Triangulating a large,

multisided polygon.

Given

P4

P0

P3

P2

P1

P4

P4

P4

P0

P3

P3

P2

P2

P1

P1

Done (P0, P1, P4)

Done (P0, P1, P4)

Step 1
first split

Step 2
second split

P3
P2Done (P4, P2, P3)

Stop here. Nothing to
split num verts = 3

Figure 8.35
A possible triangula-

tion algorithm
visualized.

1172313618 CH08 10/26/99 10:17 AM Page 474

CHAPTER 8
Vector Rasterization and 2D Transformations

475

2. Take the first three vertices and create a triangle with them.

3. Split off the new triangle and recursively process step 2 with the remaining
(n-1) vertices.

In essence, the algorithm keeps “peeling” off triangles and then resubmitting the
remaining vertices back to the algorithm. It’s very stupid and it doesn’t do any prepro-
cessing or testing, but it works. And of course, once you’re done converting the poly-
gon into triangles, you can send each one down the rasterization pipeline to the
triangle renderer.

Okay, that’s enough of that boooorrrrrriiinnnggg algorithm. Now let’s look at another
approach to rasterizing a general convex polygon the hard way. If you think in terms
of how you rasterized a triangle, it’s simply a matter of housekeeping to rasterize an
n-sided convex polygon.

Take a look at Figure 8.36 to see the algorithm in action. In general, what you’re
going to do is sort the vertices from top to bottom and left to right so you have a
sorted array of vertices in CW order this time. Then, starting from the topmost vertex,
you’re going to start rasterizing the two edges (left and right) emanating from the top
vertex. When one of the edges comes to the point where it hits another vertex on the
right or left side, you’ll recompute the rasterization interpolants—that is, the dx_left
or dx_right values—and continue until the polygon is rasterized.

P0 (x0, y0)

P1 (x1, y1)

P2 (x2, y2)

P3 (x3, y3)

P4 (x4, y4)

P5 (x5, y5)

Slope =
y3 – y4
x3 – x4

Slope =
y4 – y5
x4 – x5

Slope =
y1 – y0
x1 – x0

Slope =
y2 – y1
x2 – x1

Slope =
y3 – y2
x3 – x2

Slope =
y5 – y0
x5 – x0

x5 xE

Interpolators based on slope
of left and right edge

At each vertex, there is an interpolate change
for the left and right edges.

Figure 8.36
Rasterizing an n-sided
convex polygon with-

out triangulation.

1172313618 CH08 10/26/99 10:17 AM Page 475

DirectX and 2D Fundamentals

476 PART II

That’s really all there is to it. A flow chart for the algorithm is shown in Figure 8.37.
Again, there are a number of boundary details to worry about, such as being careful
not to put one of the edge interpolators out of sync during a vertex transition, but
that’s about it. And again, you can clip using image space or object space. Let’s talk
about this for a moment.

Interpolate down v0 v1
and v0 v2, draw line

between them

Begin Find top vertex
Call it v0 v2

v0

v1

done

Find next vertex in
counterclockwise
direction, call it v2

Find next vertex in
clockwise direction,

call it v1

no

no no

yes yes

no

Done
interpolating

v0 v2?

Make v0 v2 Make v0 v1

Done
interpolating

v0 v1?

Figure 8.37
A flowchart of the

general n-sided con-
vex polygon-

rendering algorithm.

When you’re rasterizing triangles, you don’t want to clip in image space because you
could end up with a six-sided polygon if all vertices are clipped. This would be bad
because you’d have to convert the new polygon back into triangles. However, because
your new algorithm likes general polygons, who cares about adding vertices?

Nevertheless, you need to consider one point—can a convex polygon be turned con-
cave during a clipping operation? Absolutely, but (there’s always a “but,” and this
time it’s a good one) only if the clipping region is itself concave. Thus, clipping the
convex polygon to the rectangle of the screen will at worst add one vertex per vertex
that falls out of the clipping region.

This is usually the best approach when you’re rasterizing an n-sided polygon—that is,
to clip in object space and then rasterize the polygon without internal scanline clip-
ping code. This is the approach you’ll take here.

1172313618 CH08 10/26/99 10:17 AM Page 476

CHAPTER 8
Vector Rasterization and 2D Transformations

477

The following function takes a standard POLYGON2D_PTR, along with the frame buffer
address and memory pitch, and then rasterizes the sent polygon. Of course, the poly-
gon must be convex, and all vertex points must be within the clipping region because
the function doesn’t clip. Here’s the function prototype:

void Draw_Filled_Polygon2D(POLYGON2D_PTR poly,

UCHAR *vbuffer, int mempitch);

To draw a square centered at 320,240 with sides 100×100, here’s what you would do:

POLYGON2D square; // used to hold the square

// define points of object (must be convex)
VERTEX2DF square_vertices[4]

= {-50,-50, 50,-50, 50,50,-50, 50};

// initialize square
object.state = 1; // turn it on
object.num_verts = 4;
object.x0 = 320;
object.y0 = 240;
object.xv = 0;
object.yv = 0;
object.color = 255; // white
object.vlist = new VERTEX2DF [square.num_verts];

// copy the vertices into polygon
for (int index = 0; index < square.num_verts; index++)

square.vlist[index] = square_vertices[index];

// .. in the main game loop
Draw_Filled_Polygon2D(&square, (UCHAR *)ddsd.lpSurface, ddsd.lPitch);

UHHHH! Can you feel that, baby? Anyway, I would show you the listing of the func-
tion, but it’s rather large. However, you can see the code for yourself in
DEMO8_9.CPP|EXE, which illustrates the use of the function by rotating around a four-
sided polygon (a square) and then calling the fill function to draw the polygon. But
instead of drawing the square using two triangles, the function rasterizes the polygon
directly—without clipping.

Tip Whenever you write a rasterization function, it’s always a good idea
to test if it can successfully render an object as it rotates. Many times
when you test a rasterization function, you end up sending it “easy”
coordinates. However, by rotating an object, you get all kinds of
tweaked-out values. If the function can hang through a complete
360-degree rotation, you know it’s good to go!

1172313618 CH08 10/26/99 10:17 AM Page 477

DirectX and 2D Fundamentals

478 PART II

Collision Detection with Polygons
Thank Zeus that we’re through all that material. I’ve about had it with rasterizing and
transforming polygons! Let’s take a bit of a break and talk about some game-related
topics, such as collision detection and how to make such determinations with polygon
objects. With that in mind, I’m going to show you three different ways to look at the
problem. By using these techniques (or hybrids thereof), you should be able to handle
all your polygon collision-detection needs.

Proximity AKA Bounding Sphere/Circle
The first method of testing two polygons for collision is to simply assume that the
objects have an average radius and then test if the radii overlap. This can be accom-
plished with a simple distance calculation, as shown in Figure 8.38.

Collision

No collision

P1
P2

P3

P2

P4

P1

P0
P0

R
R

centercenter

Bounding circles computed using largest distance from
center to each vertex or average.

Figure 8.38
Using bounding cir-
cles (spheres in 3D)
to detect collisions.

Of course, you’re putting circular bounding boxes around each polygon. When tested
by the preceding method, this results in collisions when there are none, as well as
missed collisions (depending on how the average radius is computed).

1172313618 CH08 10/26/99 10:17 AM Page 478

CHAPTER 8
Vector Rasterization and 2D Transformations

479

To implement the algorithm, first you must compute a radius value for each polygon.
This can be done in a number of ways. You might take the distance from the center of
the polygon to each vertex and then average the radius values of each, use the largest
value, or some other heuristic. I usually like to use a value that’s midway between the
average and the farthest vertex. In any case, this computation can be done out of the
game loop, so there are no worries about CPU cycles. However, the actual test during
runtime is a problem.

To compute the distance between two points, (x1,y1) and (x2,y2), in a 2D
space, use the formula d = sqrt((x1-x2)2 + (y1-y2)2). For a 3D space, just
add the (z1-z2)2 term within the square root radical.

Given that you have two polygons—poly1, located at (x1,y1), and poly2, located at
(x2,y2), with radius r1 and r2, respectively (calculated in whatever way)—to test if
the polygon’s radii are overlapping, you can use the following pseudo-code:

// compute the distance between the center of each polygon
dist = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));

// test the distance
if (dist <= (r1+r2)

{
// collision!
} // end if

This works just as you’d expect, but there’s one problem…it’s freakin’ slow! The
square root function takes about a month in CPU cycles, so you know you need to get
rid of that. But let’s start with the simpler optimizations just to warm up. First, there’s
no need to compute the difference twice, (x1-x2) and (y1-y2). You can compute it
once and then use the result in the computation, like this:

float dx = (x1-x2);
float dy = (y1-y2);

dist = sqrt(dx*dx + dy*dy);

That helps a bit, but the sqrt() function takes about 70 times longer than a floating-
point multiply. That is, an FMUL takes about 1-3 cycles on a standard Pentium, and
the FSQRT takes about 70 cycles. In either case, it’s unacceptable. Let’s see what you
can do. One trick is to compute the distance using a mathematical trick based on a
Taylor/Maclaurin series expansion.

1172313618 CH08 10/26/99 10:17 AM Page 479

DirectX and 2D Fundamentals

480 PART II

After working through the math, you can write a function that approximates the dis-
tance between two points, p1 and p2, in 2D space (or 3D) with only a few tests and
additions. Here are algorithms for both the 2D and 3D cases:

// used to compute the min and max of two expressions
#define MIN(a, b) ((<) ? :)
#define MAX(a, b) ((>) ? :)

int Fast_Distance_2D(int x, int y)
{
// this function computes the distance from 0,0 to x,y with 3.5% error

// first compute the absolute value of x,y
x = abs(x);
y = abs(y);

// compute the minimum of x,y
int mn = MIN(x,y);

// return the distance
return(x+y-(mn>>1)-(mn>>2)+(mn>>4));

} // end Fast_Distance_2D

///

float Fast_Distance_3D(float fx, float fy, float fz)
{
// this function computes the distance from the origin to x,y,z

int temp; // used for swaping
int x,y,z; // used for algorithm

// make sure values are all positive
x = fabs(fx) * 1024;
y = fabs(fy) * 1024;
z = fabs(fz) * 1024;

// sort values
if (y < x) SWAP(x,y,temp)

Taylor/Maclaurin series are mathematical tools used to approximate
complex functions by summing up simpler terms based on evaluating
the function at constant intervals, along with taking the function’s deriv-
ative into consideration. In general, the Maclaurin series expansion of
f(x) is

f(0) + f’(0)*x1/1! + f”(0)*x2/2! + .. + f(n)(0)*xn/n!

where ‘ means derivative and ! means factorial. For example: 3! =

1172313618 CH08 10/26/99 10:17 AM Page 480

Errata
The code for min max at the top of the page:#define MIN(a,b) ((<) ? :)#define MAX(a,b) ((>) ? :)Should be:#define MIN(a,b) ((a < b) ? a : b)#define MAX(a,b) ((a > b) ? a : b)

Errata

Errata

CHAPTER 8
Vector Rasterization and 2D Transformations

481

if (z < y) SWAP(y,z,temp)
if (y < x) SWAP(x,y,temp)

int dist = (z + 11*(y >> 5) + (x >> 2));

// compute distance with 8% error
return((float)(dist >> 10));

} // end Fast_Distance_3D

The parameters to each function are simply the deltas. For example, to use
Fast_Distance_2D() in the context of your previous algorithm, you would do the fol-
lowing:

dist = Fast_Distance_2D(x1-x2, y1-y2);

This new technique, based on the function call, uses only three shifts, four additions, a
few compares, and a couple of absolute values—much faster!

Notice that both algorithms are approximations, so be careful if exact
accuracy is needed. The 2D version has a maximum error of 3.5 percent,
and the 3D version is around 8 percent.

Note

One last thing… Astute readers may notice that there’s yet another optimization to
take advantage of—and that’s not finding the square root at all! Here’s what I mean:
Let’s say that you want to detect if one object is within 100 units of another. You
know that the distance is dist = sqrt(x*x + y*y), but if you were to square both
sides of the equation, you’d get

dist2 = (x*x + y*y)

And dist in this case was 100, so 1002 is 10,000. Thus, if you test the RHS and it’s
< 10,000, that’s equivalent to testing if it’s < 100 if you take the square root! Cool,
huh? The only problem with this technique is overflowing, but there is no reason
whatsoever to compute the actual distance. Just do all your comparisons in terms of
the square of the distance.

Bounding Box
Although the mathematics of the bounding sphere/circle algorithm are very straight-
forward, the obvious problem in your case is that the object (polygon) is being
approximated with a circular object. This may or may not be appropriate. For exam-
ple, take a look at Figure 8.39. It depicts a polygonal object that has general rectangu-
lar geometry. Approximating this object with a bounding sphere would induce a lot of
errors, so it’s better to use a geometrical entity that’s more like the object itself. In
these cases, you can use a bounding box (square or rectangle) to make the collision
detection easier.

1172313618 CH08 10/26/99 10:18 AM Page 481

DirectX and 2D Fundamentals

482 PART II

Creating a bounding rectangle for a polygon is done in the same manner as for a
bounding sphere, except that you must find four edges rather than a radius. I usually
like to call them (max_x, min_x, max_y, min_y) and they’re relative to the center of
the polygon. Figure 8.40 shows the setup graphically.

Bounding rectangle (box)
fits almost perfectly

Collision zone

Bounding sphere is terrible due
to amount of area contained
in collision zone not contained
in polygon

Figure 8.39
Using the best bound-

ing geometry for the
job.

Figure 8.40
Bounding rectangle

(box) setup.

(min_x, max_y)

(min_x, min_y)

(max_x, max_y)

(max_x, min_y)

P4

P0

P1

P2

P3

Polygon to bound

Extra area included in
collision zone – creates
errors, invalid collisions

Bounding box

To find the values for (max_x, min_x, max_y, min_y), you can use the following sim-
ple algorithm:

1. Initialize (max_x=0, min_x=0, max_y=0, min_y=0). This assumes that the cen-
ter of the polygon is at (0,0).

1172313618 CH08 10/26/99 10:18 AM Page 482

CHAPTER 8
Vector Rasterization and 2D Transformations

483

2. For each vertex in the polygon, test the (x,y) component against (max_x, min_x,
max_y, min_y) and update appropriately.

And here’s the algorithm coded to work for your standard POLYGON2D structure:

int Find_Bounding_Box_Poly2D(POLYGON2D_PTR poly,
float &min_x, float &max_x,
float &min_y, float &max_y)

{
// this function finds the bounding box of a 2D polygon
// and returns the values in the sent vars

// is this poly valid?
if (poly->num_verts == 0)

return(0);

// initialize output vars (note they are pointers)
// also note that the algorithm assumes local coordinates
// that is, the poly verts are relative to 0,0
max_x = max_y = min_x = min_y = 0;

// process each vertex
for (int index=0; index < poly->num_verts; index++)

{
// update vars – run min/max seek
if (poly->vlist[index].x > max_x)

max_x = poly->vlist[index].x;

if (poly->vlist[index].x < min_x)
min_x = poly->vlist[index].x;

if (poly->vlist[index].y > max_y)
max_y = poly->vlist[index].y;

if (poly->vlist[index].y < min_y)
min_y = poly->vlist[index].y;

} // end for index

// return success
return(1);

} // end Find_Bounding_Box_Poly2D

Notice that the function sends the parameters as “call by reference”
using the & operator. This is similar to using a pointer, except that you
don’t have to dereference. Moreover, unlike a pointer, & references are
aliases.

Note

1172313618 CH08 10/26/99 10:18 AM Page 483

DirectX and 2D Fundamentals

484 PART II

You would call the function like this:

POLYGON2D poly; // assume this is initialized

float min_x, min_y, max_x, max_y; // used to hold results

// make call
Find_Bounding_Box_Poly2D(&poly, min_x, max_x, min_y, max_y);

After the call, the min/max rectangle will be built and stored in (min_x, max_x, min_y,
max_y). With these values, along with the position of the polygon (x0,y0), you can
then perform a bounding box collision test by testing two different bounding boxes
against each other. Of course, you can accomplish this in a number of ways, including
by testing if any of the four corner points of one box are contained within the other
box, or by using more clever techniques.

Point Containment
In light of my last statement about testing if a point is contained within a rectangle, I
thought it might be a good idea to show you how to figure out if a point is contained
within a general convex polygon. What do you think? Obviously, figuring out if a
point is within a rectangle is no more than the following:

Given rectangle (x1,y1) to (x2,y2) and that you want to test (x0,y0) for containment:

if (x0 >= x1 && x0 <= x2) // x-axis containment
if (y0 >= y1 && y0 <= y2) // y-axis containment

{ /* point is contained */ }

I could have used a single if statement along with another && to con-
nect the two terms, but this code more clearly illustrates the linear sepa-
rability of the problem—that is, the x- and y-axes can be processed
independently.

Note

Let’s see if you can figure out if a point is contained within a convex polygon, as
shown in Figure 8.41. At first, you might think that it’s an easy problem, but I assure
you that it’s not. There are a number of ways to approach the problem, but one of the
most straightforward is the half-space test. Basically, if the polygon you’re testing is
convex (which it is in this case), you can think of each side as a segment that is colin-
ear with an infinite plane. Each plane divides space into two half-spaces, as shown in
Figure 8.42.

1172313618 CH08 10/26/99 10:18 AM Page 484

CHAPTER 8
Vector Rasterization and 2D Transformations

485

If the point you’re testing is on the interior side of each half-space, the point must be
within the polygon because of the convex property of the polygon. Thus, all you need
to do is figure out a way to test if a point in a 2D space is on one side of a line or the
other.

–x +x

+y

–y

0

P0

P1

P2P3

P4

T1
(x1, y1)

Inside

T2
(x2, y2)

Outside

is T1 in poly P(0, 1, 2, 3, 4) ? y

is T2 in poly P(0, 1, 2, 3, 4) ? n

Figure 8.41
The setup for a

point in polygon
containment testing.

P3

P4

P0

P1

P2

T(x, y)

Interior Half space(s)

P0P1

Infinite plane dividing space into 2 half spaces

Exterior half spaces

PerpendicularP0P1

Polygon

Using the dot product
of T and each edge
you can determine what
side of each half space
test point T is and
thus if it's contained
in P.

P
Figure 8.42

Using half-spaces to
help solve the point in

a polygon problem.

1172313618 CH08 10/26/99 10:18 AM Page 485

DirectX and 2D Fundamentals

486 PART II

This isn’t too bad, assuming that you label the lines in some order and convert them
to vectors. Then you’ll think of each of the line segments as a plane. Using the dot
product operator, you can determine if a point is on either side of each plane or on the
plane itself. This is the basis of the algorithm.

You may not be up to speed on vectors, dot products, and so on, so I’m going to hold
off for this test and the accompanying algorithm until we cover 3D math—no need to
confuse you here. However, I wanted you to at least understand the geometry of the
solution. The details are just math, and any high-level organic or inorganic organism
can perform math if taught properly… right?

More on Timing and Synchronization
In most of the programs thus far, I’ve been using a very cheesy timing system—
Sleep(). That’s about as low-tech as you can get <BG>. In real life, you need to lock
your game to some frame rate, such as 30fps. A better way to achieve this lock is to
start a timer at the top of the game loop (or take note of the current time) and then,
at the end of the game loop, test if the amount of time for 30 fps—that is, 1/30
seconds—has elapsed. If so, continue to the next frame. If not, wait until the time has
elapsed (maybe work on the next frame or do some housekeeping so as not to waste
cycles).

In computer code, you would structure your Game_Main() something like this:

DWORD Get_Clock(void);
DWORD Start_Clock(void);
DWORD Wait_Clock(DWORD count);

int Game_Main(void *parms = NULL, int num_parms = 0)
{
// this is called each frame

// get the current time in milliseconds since windows
// was started
Get_Clock();

// do work…

// sync to frame rate, 30 fps in this case
Wait_Clock(30);

} // end Game_Main

Simple as that! Oh yeah… what about these phantom functions? Ahhh yes, here they
are—based on Win32 timing functions:

DWORD Get_Clock(void)

1172313618 CH08 10/26/99 10:18 AM Page 486

CHAPTER 8
Vector Rasterization and 2D Transformations

487

{
// this function returns the current tick count

// return time
return(GetTickCount());

} // end Get_Clock

///

DWORD Start_Clock(void)
{
// this function starts the clock, that is, saves the current
// count, use in conjunction with Wait_Clock()

return(start_clock_count = Get_Clock());

} // end Start_Clock

//

DWORD Wait_Clock(DWORD count)
{
// this function is used to wait for a specific number of clicks
// since the call to Start_Clock

while((Get_Clock() - start_clock_count) < count);
return(Get_Clock());

} // end Wait_Clock

Notice that they’re based on the Win32 function GetTickCount(), which returns a
DWORD equal to the number of milliseconds elapsed since Windows was started. Hence,
the time is relative, but who cares? That’s all you need. Also, notice the use of the
global start_clock_count to store the starting time. It’s set every time Get_Clock()
is called and is defined like this in the library:

DWORD start_clock_count = 0; // used for timing

This is a perfect place for a C++ class; feel free.

DirectX also has a vertical blank detection function that you can use to determine the
state of the electron gun as it renders the image on the CRT. The IDIRECTDRAW4 inter-
face supports a function called WaitForVerticalBlank(), as shown here:

HRESULT WaitForVerticalBlank(DWORD dwFlags,
HANDLE hEvent);

1172313618 CH08 10/26/99 10:18 AM Page 487

DirectX and 2D Fundamentals

488 PART II

You can use it to determine the various states of the vertical blank. dwFlags controls
the operation of the function, and hEvent is a handle to a Win32 event (advanced
stuff). Take a look at Table 8.3 for the valid flag settings.

TABLE 8.3 Flag Settings for WaitForVerticalBlank()

Flag Description

DDWAITVB_BLOCKBEGIN Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKEND Returns when the vertical-blank interval ends and the display
begins.

Scrolling and Panning
All right, I guess that I think scrolling is easy because I never really put it in my
books. (But in my defense, I did put page scrolling in Sams Teach Yourself Game
Programming in 21 Days, and I put full layered and playfield scrolling in The Black
Art of 3D Game Programming.) Scrolling games are in a class all their own, and
really explaining all the 2D scrolling techniques would take a good chapter or two.
Instead, I want to talk to you in a more abstract way about each scrolling method and
then show you some demos.

Page Scrolling Engines
Page scrolling basically means that as the player moves around on the screen and
crosses some threshold, the entire screen is updated as if the player has walked into
another room. This technique is very easy to implement and can be coded in a number
of ways. Referring to Figure 8.43, you see a typical game universe consisting of a 4×2
matrix of full screens at 640×480 pixels each. Hence, the entire universe is 2560×960.

Page 1

Page 0 Page 1 Page 2 Page 3

Page 4 Page 5 Page 6 Page 7

040

480

(max.x, max.y)

Universe origin (0, 0) World [2] [4] of screen

A single page at a time
is mapped to video display

Figure 8.43
A page scrolling uni-

verse setup.

1172313618 CH08 10/26/99 10:18 AM Page 488

CHAPTER 8
Vector Rasterization and 2D Transformations

489

The rendering logic is simple for this setup. You load the first screen into memory,
and then you can load all adjacent screens into RAM or virtualize them on disk.
Either way you do it, the scrolling works the same. As the player’s character moves
around the screen, you test it for some boundary condition (maybe the screen edges).
When the boundary condition is met, you advance to the next “room” or screen and
move the player’s character to the appropriate position. For example, if you were
walking from left to right and you hit the right edge of the screen, the new page
would be displayed with the character at the left side of the screen. Of course, this is a
bit crude, but it’s a start…

For a demo of this technique, take a look at DEMO8_10.EXE|CPP on the CD. It basi-
cally creates a 3×1 universe and lets you move a little character around with the arrow
keys. When you hit a screen edge, the image is updated. Note that I’m using bitmaps
for the screen images, but there’s no reason why you couldn’t use vector images or a
mixture.

Also, I’m cheating a little on this demo by using functions from the final
T3DLIB1.CPP file at the end of this chapter, but you can always look at the source if
you want to. I simply needed more power than what we have so far to make a decent
demo!

Finally, make sure to take a look at the “terrain following” code in the demo. The
character follows the floor as you move right to left by scanning for a specific color
index representing the floor (116, I think). When the scanner detects the color, the
character is pushed up a little, keeping it above the floor line.

Homogeneous Tile Engines
The previous example of scrolling wasn’t really scrolling in the sense of a side-
scrolling platform game. That kind of scrolling is a bit smoother—the entire screen
image isn’t warped page to page, but is smoothly scrolled up, down, left, or right.

Using DirectX, there are a number of ways to achieve this effect. You could create a
large surface and then display only a portion of it on the primary display surface, as
shown in Figure 8.44.

However, this only works on DirectX 6.0 (and later) and needs heavy acceleration. A
better approach is to break up your worlds into tiles and then represent each screen by
a square matrix of tiles or cells, where each cell represents a bitmap(s) to be displayed
at that position. Figure 8.45 shows this setup.

1172313618 CH08 10/26/99 10:18 AM Page 489

DirectX and 2D Fundamentals

490 PART II

For example, you might decide to make all your tiles 32×32 pixels and to run in a
640×480 mode, which means that the a single screen will require a tile map of
640/32×480/32 = 20×15. Or if you decide to go 64×64, you would need a tile map of
640/64×480/64 = 10×7.5 or, rounding down, 10×7 (7×64 = 448; the last 48 pixels at
the bottom of the screen you’ll leave for a control panel).

To make this work, you’ll need a data structure, like an array or matrix of integers, or
maybe structures that each hold the bitmap information (just a pointer or an index)
along with anything else you might need. Here’s an example of how you might create
a tiled image:

typedef struct TILE_TYP
{
int x,y; // position of tile in matrix
int index; // index of bitmap
int flags; // general flags for the cell

} TILE, *TILE_PTR;

Figure 8.44
Using a large

DirectDraw surface to
achieve smooth

scrolling.

Primary buffer (640x480)

Back buffer (640x480)

Direct draw offscreen surface: game universe
4000 x 480

Blitter

(3aaa,47a)

(3aaa,0)(0,0)

Scrolling window
(source blitter RECT)

1172313618 CH08 10/26/99 10:18 AM Page 490

CHAPTER 8
Vector Rasterization and 2D Transformations

491

Then, to hold one screen of information, you would do something like this:

typedef struct TILED_IMAGE_TYP
{
TILE image[7][10]; // 7 rows by 10 columns
} TILED_IMAGE, *TILE_IMAGE_PTR;

And finally, here’s a world that’s 3×3 of these large tiled images:

TILED_IMAGE world[3][3];

Or you might decide to just create a tile array large enough to hold 3×3 screens,
30×21, and forget the array, like this:

typedef struct TILED_IMAGE_TYP
{
TILE image[21][30]; // 21 rows by 30 columns
} TILED_IMAGE, *TILE_IMAGE_PTR;

TILED_IMAGE world;

Viewport

Rendered bitmap from data
(0, 0)

(3, 3)

Bitmap data array

32 x 32

32 x 32

32 x 32

32 x 32

Data is then blitted
into proper cell
positition on screen

0

1

5

n

Index into table

Usually much larger

Tile map

World [4] [4] = 3

1

3

4

3

6

9

6

9

5

12

7

8

0

18

9

Figure 8.45
Using a tile-based

data structure to rep-
resent a scrolling

world.

You can design the data structure either way, but the single large array
is easier to work with because you don’t have to deal with jumping
screen maps as you scroll past each 10×7 tile map.

Note

1172313618 CH08 10/26/99 10:18 AM Page 491

DirectX and 2D Fundamentals

492 PART II

So how do you draw each screen? First, you need to load your bitmaps into a large
array of 64×64 surfaces. You may have one or more tiles, and some may be repeat-
able, such as ships, edges, water, and so on. Figure 8.46 shows an example tile set.

Figure 8.46
Bitmap template of a

typical tile set.

Then you write a tool, or just use an ASCII editor with some conversion software, so
you can generate your tile maps. For example, you might decide to use ASCII data
along with a bit of conversion software, so the numbers 0-9 may be used to indicate
tiles 0 to 9 in the tile set. Given that, you would need to define a tile set composed of
a 30×21 set of cells. Here’s what I would do:

// use an array of string pointers, could have used an
// array of chars or int, but harder to initialize
// the characters ‘0’ – ‘9’ represent bitmaps 0-9 in some texture memory
char *map1[21] =
{
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,

1172313618 CH08 10/26/99 10:18 AM Page 492

CHAPTER 8
Vector Rasterization and 2D Transformations

493

“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,
“000000000000000000000000000000”,

};

During runtime, you scan the map information into your main structure, and then
you’re ready to render. To render, you must first have a viewport setup or a m×n win-
dow that the user is currently viewing.

In most cases, this window is the same size as the screen—640×480, 800×600, and so
forth—but not necessarily. You may have a control panel to the right or something that
doesn’t scroll. In any case, assuming that the whole screen scrolls and it’s 640×480,
you must take a couple of things into consideration:

• How the 640×480 viewport overlaps the main tile map of 10×7 cells.

• The boundary conditions.

Let’s try and figure out what I’m talking about here. (I think it may help me too—I’m
confusing myself!) All right, imagine that the viewport is at (0,0) in the uppermost tile
map, as shown in Figure 8.47.

x-offset

Viewport

(0, 0)
y-offset

Tile map with cell
aligned viewport

Tile map with non-cell
aligned viewport

0

0

1

2

3

4

5

0

1

2

3

4

5

1 2 3 4 5 0 1 2 3 4 5

Figure 8.47
Boundary problems

with scrolling tile
maps.

In this case, you must draw only the tiles from map[0][0] to map[6][9]. But the sec-
ond the map scrolls to the right or down, you’re going to have to draw some of the
edge tiles from the tile map to the right and directly under the current viewport. Then,
as you scroll one entire cell (64×64), you won’t draw an entire row and/or column of
tile map[0][0].

1172313618 CH08 10/26/99 10:18 AM Page 493

DirectX and 2D Fundamentals

494 PART II

So, you can see that any time you’re going to draw a rectangular collection of tiles
that’s always 10×7, those tiles will come from one or more tile maps. Moreover, as
you scroll +/- from positions that are multiples of 64, you’ll only see part of the edge
tiles, so clipping is involved. Luckily, DirectDraw clips all bitmap surfaces for you, so
if you draw a bitmap that’s partially off the screen, it will just be clipped. Hence, your
final algorithm only needs to determine the tiles to render, look up the bitmap surfaces
that each tile represents, and then send them to the blitter.

For a demo of this, check out DEMO8_11.EXE|CPP on the CD. It creates the exact
world just discussed and allows you to move around in it.

Sparse Bitmap Tile Engines
The only problem with tile engines is that there are a lot of bitmaps to draw.
Sometimes you may want to make a scrolling game but you don’t have a ton of
graphics to scroll around. Moreover, you might not want to make all the tiles the same
size. This is true for a lot of space shooters, because those games are mostly blank
space. For those types of worlds, you want to create a universe map that’s very large
(as usual)—let’s say 4×4 (or 40×40) screens for argument’s sake. Then, instead of
having tile maps for each subscreen, you simply place each object or bitmap at any
location in world coordinates. Using this method, not only can each object bitmap be
any size, but it can be placed anywhere.

The only problem with this scheme is efficiency. Basically, for any position where the
current viewport resides, you must find all the objects that are within it so they can be
rendered. If you have a small universe with a small number of objects, testing 100 or
so objects for inclusion in the current windows isn’t going to kill you. But if you have
to test thousands of objects, it just might kill you!

The solution to the problem is to sectorize the game universe. In essence, you create a
secondary data structure that tracks all the objects and their relations to a number of
cells that you break the universe up into. But wait a minute, aren’t you just using a tile
map set again? Yes and no. In this case, the sectors can be any size and don’t really
have any relationship to the screen size. The selection of their size is more related to
collision detection and tracking.

Take a look at Figure 8.48, which shows the data structures and their relationships to
the screen, world, and viewport.

Note that this is only one method of solving the problem; there are many more, of
course. Nevertheless, the point is that you have a collection of objects that are spaced
out in a universe that is much larger than the screen—maybe 100000×100000—and
you want to be able to move around in it. No problem, just position all the objects
with their real-world coordinates and then, based on where the viewport window is

1172313618 CH08 10/26/99 10:18 AM Page 494

CHAPTER 8
Vector Rasterization and 2D Transformations

495

(which is 640×480), map or translate all the objects in the window to the screen or
video buffer. Of course, I’m again assuming that you have good clipping, because
many objects will partially extend off the video display surface when drawn.

Object 1
state position

Sparse object list

Object 2
state position

Object N
state position

(0, 0)

(0, 0)

(10000, 10000)

Mostly empty

Mapped to screen

Viewport

(639, 479)

10,000 x 10,000

Figure 8.48
Sparse scrolling

engine data structures.

As an example of sparse scrolling, I’ve created a space demo (this isn’t a high-budget
production, you know) that allows you to move around in a starfield along with a
number of stellar objects. In this demo, there isn’t very much data structure support
for the sectorizing, and the objects themselves are placed randomly. In real life, you
would of course have world maps, sectorizing for collision and rendering optimiza-
tion, and so on. I’ve written a demo of sparse scrolling named DEMO8_12.CPP|EXE.
Again, it makes use of the T3DLIB1.CPP|H files, so make sure to include them in your
project.

DEMO8_12.EXE basically loads a number of bitmap objects and then randomly places
them in a space that’s 10×10 screens in size. Then you navigate around the world with
the arrow keys as usual. The beauty of this type of scrolling is that the entire screen
doesn’t need to be rendered. Only the bitmaps that are visible or partially visible are
rendered. Hence, there’s a clipping phase in this demo where each object is tested,
and if it’s totally invisible, it isn’t sent to the bitmap rendering code.

1172313618 CH08 10/26/99 10:18 AM Page 495

DirectX and 2D Fundamentals

496 PART II

Fake 3D Isometric Engines
I have to admit, I’ve been getting so much email on this topic, I feel like I should have
just written a book called Isometric 3D Games! What are those, you ask? Well,
they’re games in which the viewpoint is at some skewed angle, such as 45 degrees.
Some of the old isometric (ISO) 3D games include Zaxxon, PaperBoy, and Marble
Madness.

These days ISO games are making a comeback—Diablo, Loaded, and a slew of RPGs
and wargames use it. Its popularity stems from that fact that the view allows a lot of
cool gameplay and fairly interesting visuals as compared to full 3D. And of course,
ISO 3D is about 10 times easier to create than full 3D. So how do you do it?

Well, this is a secret in the game community, and it’s not something that anyone
writes about too much. What I’m going to do is give you some food for thought and
describe a couple of ways to do this. The hints I give you here should be more than
enough for you to implement an ISO engine yourself.

There are three ways to approach ISO 3D:

• Method 1—Cell-based, totally 2D.

• Method 2—Full-screen-based, with 2D or 3D collision networks.

• Method 3—Using full 3D math, with a fixed camera view.

Let’s talk about each…

Method 1: Cell-Based, Totally 2D
With Method 1, basically you have to decide on your angle of view and then draw all
your artwork with that in mind. Usually, you’ll draw everything as rectangular tiles,
just like you would with a normal scrolling engine. Take a look at the art cells in
Figure 8.49.

Figure 8.49
Predrawn isometric

3D artwork.

1172313618 CH08 10/26/99 10:18 AM Page 496

CHAPTER 8
Vector Rasterization and 2D Transformations

497

However, the tricky part comes with the rendering. When you draw the universe, you
can’t just draw things in any order that you want. You must draw the bitmaps so that
the far objects are occluded by near ones. In essence, draw the screen like a painter
does, from back to front. Hence, if you have a straight 45-degree view—meaning that
the art is tilted 45 degrees from the top view—and you draw the screen from top to
bottom, the order should be correct.

This is important when you have an object like a tree, and a little character walks
behind the tree. It had better look like the little guy’s behind it. Hence, you must make
sure to draw him at the right time in the display list. Take a look at Figure 8.50 to see
the problem. This is almost a no-brainer if you just make sure to draw the character at
the right time, which is after the row that’s slightly behind the character and before
the row that’s slightly in front. This is also shown in Figure 8.50. So, the bottom line
is that you have to work out a little math and sorting to draw moveable objects at the
right times.

Figure 8.50
Order of drawing is

important in isometric
3D rendering.

Also, you may have an ISO engine with tiles of varying height. Or in other words,
each tile can extend many tiles high. You could just put multiple tiles at multiple row
positions, or take height into consideration and think of each row of tiles as varying
heights. When you render, you may have to start rendering the current row at a
y-position higher than the actual row position.

Figure 8.51 shows this case graphically. There’s no difference in drawing this; the
only problem is locating the starting y for each block height you add onto the current
row. Basically, it’s just the height of a cell.

1172313618 CH08 10/26/99 10:18 AM Page 497

DirectX and 2D Fundamentals

498 PART II

Now, let’s make thinks a little harder. What if the angle is 45 tilt and 45 yaw? Or in
other words, a standard Diablo or Zaxxon view? In this case, you just need to order
your rendering on the x-axis also. So you must draw from left to right (or right to left,
depending on the direction of yaw) and from top to bottom. And again, you’ll need to
sort your objects on both the x- and y-axis when drawing.

Well, think about it: That’s one way to do it. Of course, there are a lot of details when
it comes to collision and so forth, and many game programmers use complex coordi-
nate systems based on hexagons or octagons and then map objects into these systems,
but this technique will get you going.

Method 2: Full-Screen-Based, with 2D or 3D Collision Networks
The full-screen method is much cooler than using tiles. Basically, what you do is draw
an ISO 3D world any way you like (with a 3D modeler or what have you), and you
can make each screen any size you want. Then you create a secondary data structure
that contains collision information that is overlaid onto the fake 2D world. Using this
technique, you augment the 2D information (which has no height or collision data)
with extra 2D/3D information, either 2D or 3D, depending on how complex you want
to get.

Then you simply draw the background bitmap all at once, but as you draw all your
moveable objects, you clip them to the extra geometrical data that is overlaid onto the
2D/pseudo-3D image. Take a look at Figure 8.52 to see this. Here you see a 2D-ren-
dered scene that looks ISO.

(0, 0) Screen (rendering buffer)

Cell rows drawn top to bottom

Due to its height, this cell
has to have its starting "y" completed higher

y0

y2

y2*

y1

Dy_cell

Dy_cell

Dy_cell
Adjust

Figure 8.51
Drawing large cells in

an isometric 3D
engine.

1172313618 CH08 10/26/99 10:18 AM Page 498

CHAPTER 8
Vector Rasterization and 2D Transformations

499

In Figure 8.53, you see the same scene with polygon information overlaid on it. This
is what you use to clip, do collisions, and so forth.

Figure 8.52
A fake rendered iso-

metric 3D scene.

Figure 8.53
A polygon collision

geometry overlaid on
a fake rendered

image.

To generate it, you can do one of two things: Extract it from the 3D modeler, or write
a tool that allows you to literally draw the information on each screen full of data.

1172313618 CH08 10/26/99 10:19 AM Page 499

DirectX and 2D Fundamentals

500 PART II

I’ve used both methods, so it’s up to you. However, I suggest you use a 3D modeler to
draw your universes and then figure out a way to export only certain important geom-
etry. Drawing the collision geometry by hand with a tool is time-consuming, and one
change in the graphics means a redo!

Method 3: Using Full 3D Math, with a Fixed Camera View
This is the easiest of all because there aren’t any tricks. Basically, using a full 3D
engine, you simply lock the camera at an ISO view and you have an ISO game.
Moreover, because you know that the view is always at a certain angle, you can make
certain optimizations and assumptions about the drawing order and the scene com-
plexity. This is how many ISO games on the Sony Playstation I and II work—they’re
really full 3D, but they’re locked in a 45-degree view.

As I said, this scrolling stuff is really a 2D topic and could fill up a small
book in itself, so I’ve placed additional articles on the CD if you haven’t
had enough.

Note

The T3DLIB1 Library
At this point, you’re ready to take a look at all the defines, macros, data structures,
and functions that you’ve created throughout the book. Moreover, I’ve put them all
into a single pair of files: T3DLIB1.CPP|H. You can link these into your programs and
use everything you’ve learned so far without hunting down all the code from the
dozens of programs you’ve written.

In addition to all the stuff you’ve already written, I’ve created a few more 2D sprite
functions to help facilitate 2D game programming. Actually, I used this stuff to create
some of the demos at the end of the chapter, so you get to see that code clearly
defined. Anyway, I’m not going to take too much time explaining everything here, but
I’ll give you enough to help you figure it out. Let’s take a look at each code element
one by one.

The Engine Architecture
Thus far you have a fairly simple 2D engine going, as shown in Figure 8.54.
Basically, it’s a 2D 8-bit/256-color back buffered DirectX engine that has support for
any resolution, along with clipping to the primary display surface.

However, the engine is full-screen only as is, but oh well—it’s free! To build an appli-
cation using the library, you’ll need to include T3DLIB1.CPP|H (from the CD) along
with DDRAW.LIB (DirectDraw Library), WINMM.LIB (Win32 Multimedia Library), and a
main game program based on T3DCONSOLE.CPP (you made this earlier in the book).
Then you’re ready to go.

1172313618 CH08 10/26/99 10:19 AM Page 500

CHAPTER 8
Vector Rasterization and 2D Transformations

501

Of course, you wrote a lot of code, and you’re free to modify, use, abuse all this stuff,
or even burn it if you like. I just thought you might like it all explained and put
together in a couple of easy-to-use files. And of course, you’ll probably end up mak-
ing a lot of 16-bit conversions to it, but I’ll leave this to you because I’ve covered
16- and 24-bit modes in depth and it’s not that hard to make the conversions.

Basic Definitions
The engine has one header file, T3DLIB1.H, and within it are a number of #defines
that the engine uses. Here they are for your reference:

// DEFINES //

// default screen size
#define SCREEN_WIDTH 640 // size of screen
#define SCREEN_HEIGHT 480
#define SCREEN_BPP 8 // bits per pixel
#define MAX_COLORS_PALETTE 256

// bitmap defines
#define BITMAP_ID 0x4D42 // universal id for a bitmap
#define BITMAP_STATE_DEAD 0
#define BITMAP_STATE_ALIVE 1
#define BITMAP_STATE_DYING 2
#define BITMAP_ATTR_LOADED 128

#define BITMAP_EXTRACT_MODE_CELL 0
#define BITMAP_EXTRACT_MODE_ABS 1

// defines for BOBs
#define BOB_STATE_DEAD 0 // this is a dead bob
#define BOB_STATE_ALIVE 1 // this is a live bob
#define BOB_STATE_DYING 2 // this bob is dying
#define BOB_STATE_ANIM_DONE 1 // done animation state
#define MAX_BOB_FRAMES 64 // maximum number of bob frames
#define MAX_BOB_ANIMATIONS 16 // maximum number of

// animation sequeces

Bobs

Vectors

Bitmaps

Shadow
palette

Graphics
engine

Math
engine

VRam

Back
buffer
m x n

Primary
buffer
m x n

GDI

Clipper

Display

Figure 8.54
The architecture of

the graphics engine.

1172313618 CH08 10/26/99 10:19 AM Page 501

DirectX and 2D Fundamentals

502 PART II

#define BOB_ATTR_SINGLE_FRAME 1 // bob has single frame
#define BOB_ATTR_MULTI_FRAME 2 // bob has multiple frames
#define BOB_ATTR_MULTI_ANIM 4 // bob has multiple animations
#define BOB_ATTR_ANIM_ONE_SHOT 8 // bob will perform

// the animation once
#define BOB_ATTR_VISIBLE 16 // bob is visible
#define BOB_ATTR_BOUNCE 32 // bob bounces off edges
#define BOB_ATTR_WRAPAROUND 64 // bob wraps around edges
#define BOB_ATTR_LOADED 128 // the bob has been loaded
#define BOB_ATTR_CLONE 256 // the bob is a clone

// screen transition commands
#define SCREEN_DARKNESS 0 // fade to black
#define SCREEN_WHITENESS 1 // fade to white
#define SCREEN_SWIPE_X 2 // do a horizontal swipe
#define SCREEN_SWIPE_Y 3 // do a vertical swipe
#define SCREEN_DISOLVE 4 // a pixel disolve
#define SCREEN_SCRUNCH 5 // a square compression
#define SCREEN_BLUENESS 6 // fade to blue
#define SCREEN_REDNESS 7 // fade to red
#define SCREEN_GREENNESS 8 // fade to green

// defines for Blink_Colors
#define BLINKER_ADD 0 // add a light to database
#define BLINKER_DELETE 1 // delete a light from database
#define BLINKER_UPDATE 2 // update a light
#define BLINKER_RUN 3 // run normal

// fixed point mathematics constants
#define FIXP16_SHIFT 16
#define FIXP16_MAG 65536
#define FIXP16_DP_MASK 0x0000ffff
#define FIXP16_WP_MASK 0xffff0000
#define FIXP16_ROUND_UP 0x00008000

You’ve seen all of these in one place or another.

Working Macros
Next are all the macros you’ve written thus far. Again, you’ve seen them all in one
place or another, but here they are all at once:

// MACROS ///

// these read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

// this builds a 16 bit color value in 5.5.5 format (1-bit alpha mode)
#define _RGB16BIT555(r,g,b) ((b%32) + ((g%32) << 5) + ((r%32) << 10))

// this builds a 16 bit color value in 5.6.5 format (green dominate mode)
#define _RGB16BIT565(r,g,b) ((b%32) + ((g%64) << 6) + ((r%32) << 11))

1172313618 CH08 10/26/99 10:19 AM Page 502

CHAPTER 8
Vector Rasterization and 2D Transformations

503

// bit manipulation macros
#define SET_BIT(word,bit_flag) ((word)=((word) | (bit_flag)))
#define RESET_BIT(word,bit_flag) ((word)=((word) & (~bit_flag)))

// initializes a direct draw struct, basically zeros
// it and sets the dwSize field
#define DDRAW_INIT_STRUCT(ddstruct)
{ memset(&ddstruct,0,sizeof(ddstruct));
ddstruct.dwSize=sizeof(ddstruct); }

// used to compute the min and max of two expressions
#define MIN(a, b) ((<) ? :)
#define MAX(a, b) ((>) ? :)

// used for swapping algorithm
#define SWAP(a,b,t) {t=a; a=b; b=t;}

// some math macros
#define DEG_TO_RAD(ang) ((ang)*PI/180)
#define RAD_TO_DEG(rads) ((rads)*180/PI)

Data Types and Structures
The next set of code elements includes the types and data structures that the engine
uses. I’m going to list them all, but be warned that there are a couple you haven’t seen
yet that have to do with the Blitter Object Engine (BOB). To be consistent, let’s take a
look at everything at once:

// basic unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char UCHAR;
typedef unsigned char BYTE;

// container structure for bitmaps .BMP file
typedef struct BITMAP_FILE_TAG

{
BITMAPFILEHEADER bitmapfileheader; // this contains the

// bitmapfile header
BITMAPINFOHEADER bitmapinfoheader; // this is all the info

// including the palette
PALETTEENTRY palette[256]; // we will store

// the palette here
UCHAR *buffer; // this is a pointer

// to the data

} BITMAP_FILE, *BITMAP_FILE_PTR;

// the blitter object structure BOB
typedef struct BOB_TYP

{
int state; // the state of the object (general)

1172313618 CH08 10/26/99 10:19 AM Page 503

DirectX and 2D Fundamentals

504 PART II

int anim_state; // an animation state variable, up to you
int attr; // attributes pertaining

// to the object (general)
int x,y; // position bitmap will be displayed at
int xv,yv; // velocity of object
int width, height; // the width and height of the bob
int width_fill; // internal, used to force 8*x wide surfaces
int counter_1; // general counters
int counter_2;
int max_count_1; // general threshold values;
int max_count_2;
int varsI[16]; // stack of 16 integers
float varsF[16]; // stack of 16 floats
int curr_frame; // current animation frame
int num_frames; // total number of animation frames
int curr_animation; // index of current animation
int anim_counter; // used to time animation transitions
int anim_index; // animation element index
int anim_count_max; // number of cycles before animation
int *animations[MAX_BOB_ANIMATIONS]; // animation sequences

LPDIRECTDRAWSURFACE4 images[MAX_BOB_FRAMES]; // the bitmap images
// DD surfaces

} BOB, *BOB_PTR;

// the simple bitmap image
typedef struct BITMAP_IMAGE_TYP

{
int state; // state of bitmap
int attr; // attributes of bitmap
int x,y; // position of bitmap
int width, height; // size of bitmap
int num_bytes; // total bytes of bitmap
UCHAR *buffer; // pixels of bitmap

} BITMAP_IMAGE, *BITMAP_IMAGE_PTR;

// blinking light structure
typedef struct BLINKER_TYP

{
// user sets these
int color_index; // index of color to blink
PALETTEENTRY on_color; // RGB value of “on” color
PALETTEENTRY off_color;// RGB value of “off” color
int on_time; // number of frames to keep “on”
int off_time; // number of frames to keep “off”

// internal member
int counter; // counter for state transitions
int state; // state of light, -1 off, 1 on, 0 dead

1172313618 CH08 10/26/99 10:19 AM Page 504

CHAPTER 8
Vector Rasterization and 2D Transformations

505

} BLINKER, *BLINKER_PTR;

// a 2D vertex
typedef struct VERTEX2DI_TYP

{
int x,y; // the vertex
} VERTEX2DI, *VERTEX2DI_PTR;

// a 2D vertex
typedef struct VERTEX2DF_TYP

{
float x,y; // the vertex
} VERTEX2DF, *VERTEX2DF_PTR;

// a 2D polygon
typedef struct POLYGON2D_TYP

{
int state; // state of polygon
int num_verts; // number of vertices
int x0,y0; // position of center of polygon
int xv,yv; // initial velocity
DWORD color; // could be index or PALETTENTRY
VERTEX2DF *vlist; // pointer to vertex list

} POLYGON2D, *POLYGON2D_PTR;

// matrix defines
typedef struct MATRIX3X3_TYP

{
float M[3][3]; // data storage
} MATRIX3X3, *MATRIX3X3_PTR;

typedef struct MATRIX1X3_TYP
{
float M[3]; // data storage
} MATRIX1X3, *MATRIX1X3_PTR;

typedef struct MATRIX3X2_TYP
{
float M[3][2]; // data storage
} MATRIX3X2, *MATRIX3X2_PTR;

typedef struct MATRIX1X2_TYP
{
float M[2]; // data storage
} MATRIX1X2, *MATRIX1X2_PTR;

Not bad; nothing new, really. Basic types, all the bitmap stuff, polygon support, and a
little matrix math.

1172313618 CH08 10/26/99 10:19 AM Page 505

DirectX and 2D Fundamentals

506 PART II

Global Domination
You know that I like globals because they’re so fast. Moreover, they’re really appro-
priate for a lot of system-level variables (which a 2D/3D engine has a lot of). So here
are the globals for the engine. Again, you’ve seen many of them, but the ones that
look alien have comments, so read them:

extern FILE *fp_error; // general error file

// notice that interface 4.0 is used on a number of interfaces
extern LPDIRECTDRAW4 lpdd; // dd object
extern LPDIRECTDRAWSURFACE4 lpddsprimary;// dd primary surface
extern LPDIRECTDRAWSURFACE4 lpddsback; // dd back surface
extern LPDIRECTDRAWPALETTE lpddpal; // a pointer to the

// created dd palette
extern LPDIRECTDRAWCLIPPER lpddclipper; // dd clipper
extern PALETTEENTRY palette[256]; // color palette
extern PALETTEENTRY save_palette[256]; // used to save palettes
extern DDSURFACEDESC2 ddsd; // a direct draw surface

// description struct
extern DDBLTFX ddbltfx; // used to fill
extern DDSCAPS2 ddscaps;// a direct draw surface

// capabilities struct
extern HRESULT ddrval; // result back from dd calls
extern UCHAR *primary_buffer; // primary video buffer
extern UCHAR *back_buffer; // secondary back buffer
extern int primary_lpitch; // memory line pitch
extern int back_lpitch; // memory line pitch
extern BITMAP_FILE bitmap8bit; // a 8 bit bitmap file
extern BITMAP_FILE bitmap16bit; // a 16 bit bitmap file
extern BITMAP_FILE bitmap24bit; // a 24 bit bitmap file

extern DWORD start_clock_count;// used for timing
extern int windowed_mode; // tracks if dd is

// windowed or not

// these defined the general clipping rectangle for software clipping
extern int min_clip_x, // clipping rectangle

max_clip_x,
min_clip_y,
max_clip_y;

// these are overwritten globally by DD_Init()
extern int screen_width, // width of screen

screen_height, // height of screen
screen_bpp; // bits per pixel

extern int window_client_x0; // used to track the starting
// (x,y) client area

extern int window_client_y0; // for windowed mode directdraw operations

1172313618 CH08 10/26/99 10:19 AM Page 506

CHAPTER 8
Vector Rasterization and 2D Transformations

507

// storage for our lookup tables
extern float cos_look[360];
extern float sin_look[360];

The DirectDraw Interface
Now that you’ve seen all the data support, let’s take a look at all the DirectDraw sup-
port functions that you’ve written. Surprisingly, you’ve done a lot of work, but you
probably haven’t really noticed. The DirectDraw system you’ve worked out is double
buffered (has a back buffer), supports 256 colors, and has a palette, along with a
shadow palette, clipping, and the capability to write to both the primary and sec-
ondary buffers, along with page flipping, of course. Let’s take a quick look at each
function.

Function Prototype:

int DDraw_Init(int width, // width of display
int height, // height of display
int bpp); // bits per pixel

Purpose:

DDraw_Init() starts up and initializes DirectDraw. You can send any resolution and
color depth. Returns TRUE if successful.

Example:

// put the system into 800x600 with 256 colors
DDraw_Init(800,600,8);

Function Prototype:

int DDraw_Shutdown(void);

Purpose:

DDraw_Shutdown() shuts down DirectDraw and releases all interfaces.

Example:

// in your system shutdown code you might put
DDraw_Shutdown();

Function Prototype:

LPDIRECTDRAWCLIPPER
DDraw_Attach_Clipper(

LPDIRECTDRAWSURFACE4 lpdds, // surface to attach to
int num_rects, // number of rects
LPRECT clip_list); // pointer to rects

1172313618 CH08 10/26/99 10:19 AM Page 507

DirectX and 2D Fundamentals

508 PART II

Purpose:

DDraw_Attach_Clipper() attaches a clipper to the sent surface (the back buffer in
most cases). In addition, you must send the number of rectangles in the clipping list
and a pointer to the RECT list itself. Returns TRUE if successful.

Example:

// creates a clipping region the size of the screen
RECT clip_zone = {0,0,SCREEN_WIDTH-1, SCREEN_HEIGHT-1};
DDraw_Attach_Clipper(lpddsback, 1, &clip_zone);

Function Prototype:

LPDIRECTDRAWSURFACE4
DDraw_Create_Surface(int width, // width of surface

int height, // height of surface
int mem_flags); // control flags

Purpose:

DDraw_Create_Surface() is used to create a generic offscreen DirectDraw surface in
system memory, VRAM, or AGP memory. The default is DDSCAPS_OFFSCREENPLAIN.
Any additional control flags are logically OR’ed with the default. They’re the standard
DirectDraw DDSCAP* flags, such as DDSCAPS_SYSTEMMEMORY and DDSCAPS_VIDEO-
MEMORY for system memory and VRAM, respectively. If the function is successful, it
returns a pointer to the new surface. Otherwise, it returns NULL.

Example:

// let’s create a 64x64 surface in VRAM
LPDIRECTDRAWSURFACE4 image =

DDraw_Create_Surface(64,64, DDSCAPS_VIDEOMEMORY);

Function Prototype:

int DDraw_Flip(void);

Purpose:

DDraw_Flip() simply flips the primary surface with the secondary surface. The call
waits until the flip can take place, so it may not return immediately. Returns TRUE if
successful.

Example:

// flip em baby
DDraw_Flip();

Function Prototype:

int DDraw_Wait_For_Vsync(void);

1172313618 CH08 10/26/99 10:19 AM Page 508

CHAPTER 8
Vector Rasterization and 2D Transformations

509

Purpose:

DDraw_Wait_For_Vsync() waits until the next vertical blank period begins (when the
raster hits the bottom of the screen). Returns TRUE if successful and FALSE if some-
thing really bad happened.

Example:

// wait 1/70th of sec
DDraw_Wait_For_Vsync();

Function Prototype:

int DDraw_Fill_Surface(LPDIRECTDRAWSURFACE4 lpdds,int color);

Purpose:

DDraw_Fill_Surface() is used to fill a surface with a color. The color must be in the
color depth format of the surface, such as a single byte in 256-color mode or a RGB
descriptor in high-color modes. Returns TRUE if successful.

Example:

// fill the primary surface with color 0
DDraw_Fill_Surface(lpddsprimary,0);

Function Prototype:

UCHAR *DDraw_Lock_Surface(LPDIRECTDRAWSURFACE4 lpdds,int *lpitch);

Purpose:

DDraw_Lock_Surface() locks the sent surface (if possible) and returns a UCHAR
pointer to the surface, along with updating the sent lpitch variable with the linear
memory pitch of the surface. While the surface is locked, you can manipulate it and
write pixels to it, but the blitter will be blocked, so remember to unlock the surface
ASAP. In addition, after unlocking the surface, the memory pointer and pitch most
likely become invalid and should not be used. DDraw_Lock_Surface() returns the
non-NULL address of the surface memory if successful and NULL otherwise.

Example:

// holds the memory pitch
int lpitch = 0;

// let’s lock the little 64x64 image we made
UCHAR *memory = DDraw_Lock_Surface(image, &lpitch);

Function Prototype:

int DDraw_Unlock_Surface(LPDIRECTDRAWSURFACE4 lpdds);

1172313618 CH08 10/26/99 10:19 AM Page 509

DirectX and 2D Fundamentals

510 PART II

Purpose:

DDraw_Unlock_Surface() unlocks a surface previously locked with
DDraw_Lock_Surface(). You need only send the pointer to the surface. Returns TRUE
if successful.

Example:

// unlock the image surface
DDraw_Unlock_Surface(image);

Function Prototypes:

UCHAR *DDraw_Lock_Back_Surface(void);
UCHAR *DDraw_Lock_Primary_Surface(void);

Purpose:

These two functions are used to lock the primary and secondary rendering surfaces.
However, in most cases you’ll only be interested in locking the secondary surface in
the double buffered system, but the ability to lock the primary surface is there if you
need it. If you call DDraw_Lock_Primary_Surface(), the following globals will
become valid:

extern UCHAR *primary_buffer; // primary video buffer
extern int primary_lpitch; // memory line pitch

Then you’re free to manipulate the surface memory as you want; however, the blitter
will be blocked. Anyway, making the call to DDraw_Lock_Back_Surface() will lock
the back buffer surface and validate the following globals:

extern UCHAR *back_buffer; // secondary back buffer
extern int back_lpitch; // memory line pitch

Do not change any of these globals yourself; they’re used to track state
changes in the locking functions. Changing them yourself may make the
engine go crazy.

Note

Example:

// let lock the primary surface and write a pixel to the
// upper left hand corner
DDraw_Lock_Primary();

primary_buffer[0] = 100;

Function Prototype:

int DDraw_Unlock_Primary_Surface(void);
int DDraw_Unlock_Back_Surface(void);

1172313618 CH08 10/26/99 10:19 AM Page 510

CHAPTER 8
Vector Rasterization and 2D Transformations

511

Purpose:

These functions are used to unlock the primary or back buffer surfaces. If you try to
unlock a surface that wasn’t locked, there’s no effect. Returns TRUE if successful.

Example:

// unlock the secondary back buffer
DDraw_Unlock_Back();

2D Polygon Functions
The next set of functions make up the 2D polygon system. This is by no means
advanced, fast, or cutting-edge, but just your work up to this point. The functions do
the job. There are better ways to do all of this stuff, but that’s why you’re glued to the
book, right? <BG>

Function Prototype(s):

void Draw_Triangle_2D(int x1,int y1, // triangle vertices
int x2,int y2,
int x3,int y3,
int color, // 8-bit color index
UCHAR *dest_buffer, // destination buffer
int mempitch); // memory pitch

// fixed point high speed version, slightly less accurate
void Draw_TriangleFP_2D(int x1,int y1,

int x2,int y2,
int x3,int y3,
int color,
UCHAR *dest_buffer,
int mempitch);

Purpose:

Draw_Triangle_2D() draws a filled triangle in the given memory buffer with the sent
color. The triangle will be clipped to the current clipping region set in the globals, not
by the DirectDraw clipper. This is because the function uses software, not the blitter,
to draw lines. Note: Draw_TriangleFP_2D() does the exact same thing, but it uses
fixed-point math internally, is slightly faster, and is slightly less accurate. Both func-
tions return nothing.

Example:

// draw a triangle (100,10) (150,50) (50,60)
// with color index 50 in the back buffer surface
Draw_Triangle_2D(100,10,150,50,50,60,

50, // color index 50
back_buffer,
back_lpitch);

1172313618 CH08 10/26/99 10:19 AM Page 511

DirectX and 2D Fundamentals

512 PART II

Function Prototype:

inline void Draw_QuadFP_2D(int x0,int y0, // vertices
int x1,int y1,
int x2,int y2,
int x3,int y3,
int color, // 8-bit color index
UCHAR *dest_buffer, // destination video buffer
int mempitch); // memory pitch of buffer

Purpose:

Draw_QuadFP_2D() draws the sent quadrilateral as a composition of two triangles.
Returns nothing.

Example:

// draw a quadrilateral, note vertices must be ordered
// either in cw or ccw order
Draw_QuadFP_2D(0,0, 10,0, 15,20, 5,25,

100,
back_buffer, back_lpitch);

Function Prototype:

void Draw_Filled_Polygon2D(
POLYGON2D_PTR poly, // poly to render
UCHAR *vbuffer, // video buffer
int mempitch); // memory pitch

Purpose:

Draw_Filled_Polygon2D() draws a general filled polygon with n sides. The function
simply takes the polygon to render, a pointer to the video buffer, and the pitch, and
that’s it! Note: The function renders relative to the poly’s (x0,y0), so make sure these
are initialized. Returns nothing.

Example:

// draw a polygon in the primary buffer
Draw_Filled_Polygon2D(&poly,

primary_buffer,
primary_lpitch);

Function Prototype:

int Translate_Polygon2D(
POLYGON2D_PTR poly, // poly to translate
int dx, int dy); // translation factors

Purpose:

Translate_Polygon2D() translates the given polygon’s origin (x0,y0). Note: The
function does not transform or modify the actual vertices making up the polygon.
Returns TRUE if successful.

1172313618 CH08 10/26/99 10:19 AM Page 512

CHAPTER 8
Vector Rasterization and 2D Transformations

513

Example:

// translate polygon 10,-5
Translate_Polygon2D(&poly, 10, -5);

Function Prototype:

int Rotate_Polygon2D(
POLYGON2D_PTR poly, // poly to rotate
int theta); // angle 0-359

Purpose:

Rotate_Polygon2D() rotates the sent polygon in a counterclockwise fashion about its
origin. The angle must be an integer from 0-359. Returns TRUE if successful.

Example:

// rotate polygon 10 degrees
Rotate_Polygon2D(&poly, 10);

Function Prototype:

int Scale_Polygon2D(POLYGON2D_PTR poly, // poly to scale
float sx, float sy); // scale factors

Purpose:

Scale_Polygon2D() scales the sent polygon by scale factors sx and sy in the x- and y-
axes, respectively. Returns nothing.

Example:

// scale the poly equally 2x
Scale_Polygon2D(&poly, 2,2);

2D Graphic Primitives
This set of functions contains a few of everything; it’s kind of a potpourri of graphics
primitives. Nothing you haven’t seen—at least I don’t think so, but then I’ve had so
much Snapple Raspberry that I’m freaking out and little purple mechanical spiders are
crawling all over me!

Function Prototype:

int Draw_Clip_Line(int x0,int y0, // starting point
int x1, int y1, // ending point
UCHAR color, // 8-bit color
UCHAR *dest_buffer, // video buffer
int lpitch); // memory pitch

Purpose:

Draw_Clip_Line() clips the sent line to the current clipping rectangle and then draws
a line in the sent buffer. Returns TRUE if successful.

1172313618 CH08 10/26/99 10:19 AM Page 513

DirectX and 2D Fundamentals

514 PART II

Example:

// draw a line in the back buffer from (10,10) to (100,200)
Draw_Clip_Line(10,10,100,200,

5, // color 5
back_buffer,
back_lpitch);

Function Prototype:

int Clip_Line(int &x1,int &y1, // starting point
int &x2, int &y2); // ending point

Purpose:

Clip_Line() is for the most part internal, but you can call it to clip the sent line to the
current clipping rectangle. Note that the function modifies the sent endpoints, so save
them if you don’t want this side effect. Also, the function does not draw anything; it
only clips the endpoints. Returns TRUE if successful.

Example:

// clip the line defined by x1,y1 to x2,y2
Clip_Line(x1,y1,x2,y2);

Function Prototype:

int Draw_Line(int xo, int yo, // starting point
int x1,int y1, // ending point
UCHAR color, // 8-bit color index
UCHAR *vb_start, // video buffer
int lpitch); // memory pitch

Purpose:

Draw_Line() draws a line without any clipping, so make sure that the endpoints
are within the display surface’s valid coordinates. This function is slightly faster
than the clipped version because the clipping operation is not needed. Returns TRUE
if successful.

Example:

// draw a line in the back buffer from (10,10) to (100,200)
Draw_Line(10,10,100,200,

5, // color 5
back_buffer,
back_lpitch);

Function Prototype:

inline int Draw_Pixel(int x, int y, // position of pixel
int color, // 8-bit color
UCHAR *video_buffer, // gee hmm?
int lpitch); // memory pitch

1172313618 CH08 10/26/99 10:19 AM Page 514

CHAPTER 8
Vector Rasterization and 2D Transformations

515

Purpose:

Draw_Pixel() draws a single pixel on the display surface memory. In most cases, you
won’t create objects based on pixels because the overhead of the call itself takes more
time than plotting the pixel. But if speed isn’t your concern, the function does the job.
At least it’s inline! Returns TRUE if successful.

Example:

// draw a pixel in the center of the 640x480 screen
Draw_Pixel(320,240, 100, back_buffer, back_lpitch);

Function Prototype:

int Draw_Rectangle(int x1, int y1, // upper left corner
int x2, int y2, // lower right corner
int color, // 8-bit color
LPDIRECTDRAWSURFACE lpdds); // dd surface

Purpose:

Draw_Rectangle() draws a rectangle on the sent DirectDraw surface. Note that the
surface must be unlocked for the call to work. Moreover, the function uses the blitter,
so it’s very fast. Returns TRUE if successful.

Example:

// fill the screen using the blitter
Draw_Rectangle(0,0,639,479,0,lpddsback);

Function Prototype:

void HLine(int x1,int x2, // start and end x points
int y, // row to draw on
int color, // 8-bit color
UCHAR *vbuffer, // video buffer
int lpitch); // memory pitch

Purpose:

HLine() draws a horizontal line very quickly as compared to the general line drawing
function. Returns nothing.

Example:

// draw a fast line from 10,100 to 100,100
HLine(10,100,100,

20, back_buffer, back_lpitch);

Function Prototype:

void VLine(int y1,int y2, // start and end row
int x, // column to draw in
int color, // 8-bit color
UCHAR *vbuffer,// video buffer
int lpitch); // memory pitch

1172313618 CH08 10/26/99 10:19 AM Page 515

DirectX and 2D Fundamentals

516 PART II

Purpose:

VLine() draws a fast vertical line. It’s not as fast as HLine(), but it’s faster than
Draw_Line(), so use it if you know a line is going to be vertical in all cases. Returns
nothing.

Example:

// draw a line from 320,0 to 320,479
VLine(0,479,320,54,

primary_buffer,
primary_lpitch);

Function Prototype:

void Screen_Transitions(int effect, // screen transition
UCHAR *vbuffer,// video buffer
int lpitch); // memory pitch

Purpose:

Screen_Transition() performs various in-memory screen transitions, as listed in the
previous header information. Note that the transformations are destructive, so please
save the image and/or palette if you need them after the transition. Returns nothing.

Example:

// fade the primary display screen to black
Screen_Transition(SCREEN_DARKNESS, NULL, 0);

Function Prototype(s):

int Draw_Text_GDI(char *text, // null terminated string
int x,int y, // position
COLORREF color, // general RGB color
LPDIRECTDRAWSURFACE4 lpdds); // dd surface

int Draw_Text_GDI(char *text, // null terminated string
int x,int y, // position
int color, // 8-bit color index
LPDIRECTDRAWSURFACE4 lpdds); // dd surface

Purpose:

Draw_Text_GDI() draws GDI text on the sent surface with the desired color and posi-
tion. The function is overloaded to take both a COLORREF in the form of the RGB()
macro or a 256-color 8-bit color index. Note that the destination surface must be
unlocked for the function to operate because it locks it momentarily to perform the
text blitting with GDI. Returns TRUE if successful.

1172313618 CH08 10/26/99 10:19 AM Page 516

CHAPTER 8
Vector Rasterization and 2D Transformations

517

Example:

// draw text with color RGB(100,100,0);
Draw_Text_GDI(“This is a test”,100,50,

RGB(100,100,0),lpddsprimary);

Math and Error Functions
The math library thus far is almost nonexistent, but that will soon change once you
get to the math section of the book. I’ll pump your brain full of all kinds of fun math-
ematical information and functions. Until then, sip the sweet simplicity because it will
be your last…

Function Prototype:

int Fast_Distance_2D(int x, int y);

Purpose:

Fast_Distance() computes the distance from (0,0) to (x,y) using a fast approxima-
tion. Returns the distance within a 3.5 percent error truncated to an integer.

Example:

int x1=100,y1=200; // object one
int x2=400,y2=150; // object two

// compute the distance between object one and two
int dist = Fast_Distance_2D(x1-x2, y1-y2);

Function Prototype:

float Fast_Distance_3D(float x, float y, float z);

Purpose:

Fast_Distance_3D() computes the distance from (0,0,0) to (x,y,z) using a fast
approximation . The function returns the distance within an 11 percent error.

Example:

// compute the distance from (0,0,0) to (100,200,300)
float dist = Fast_Distance_3D(100,200,300);

Function Prototype:

int Find_Bounding_Box_Poly2D(
POLYGON2D_PTR poly, // the polygon
float &min_x, float &max_x, // bounding box
float &min_y, float &max_y);

1172313618 CH08 10/26/99 10:19 AM Page 517

DirectX and 2D Fundamentals

518 PART II

Purpose:

Find_Bounding_Box_Poly2D() computes the smallest rectangle that contains the sent
polygon in poly. Returns TRUE if successful. Also, notice that the function takes para-
meters by reference.

Example:

POLYGON2D poly; // assume this is initialized
int min_x, max_x, min_y, max_y; // hold result

// find bounding box
Find_Bounding_Box_Poly2D(&poly,min_x,max_x,min_y,max_y);

Function Prototype:

int Open_Error_File(char *filename);

Purpose:

Open_Error_File() opens a disk file that receives error messages sent by you via the
Write_Error() function. Returns TRUE if successful.

Example:

// open a general error log
Open_Error_File(“errors.log”);

Function Prototype:

int Close_Error_File(void);

Purpose:

Close_Error_File() closes a previously opened error file. Basically, it shuts down
the stream. If you call this and an error file is not open, nothing will happen. Returns
TRUE if successful.

Example:

// close the error system, note no parameter needed
Close_Error_File();

Function Prototype:

int Write_Error(char *string, ...); // error formatting string

Purpose:

Write_Error() writes an error out to the previously opened error file. If there is no
file open, the function returns a FALSE and there’s no harm. Note that the function
uses the variable parameter indicator, so you can use this function as you would
printf(). Returns TRUE if successful.

1172313618 CH08 10/26/99 10:19 AM Page 518

CHAPTER 8
Vector Rasterization and 2D Transformations

519

Example:

// write out some stuff
Write_Error(“\nSystem Starting…”);
Write_Error(“x-vel = %d”, y-vel = %d”, xvel, yvel);

Bitmap Functions
The following function set makes up the BITMAP_IMAGE and BITMAP_FILE manipula-
tion routines. There are functions to load 8-, 16-, 24-, and 32-bit bitmaps, as well as to
extract images from them and create simple BITMAP_IMAGE objects (which are not
DirectDraw surfaces). In addition, there’s functionality to draw these images, but
there’s no clipping support. Hence, you can modify the source yourself if you need
clipping or want to step up to the BOB objects, described at the end of the section.

Function Prototype:

int Load_Bitmap_File(BITMAP_FILE_PTR bitmap, // bitmap file
char *filename); // disk .BMP file to load

Purpose:

Load_Bitmap_File() loads a .BMP bitmap file from disk into the sent BITMAP_FILE
structure where you can manipulate it. The function loads 8-, 16-, and 24-bit bitmaps,
as well as the palette information on 8-bit .BMP files. Returns TRUE if successful.

Example:

// let’s load “andre.bmp” off disk
BITMAP_FILE bitmap_file;

Load_Bitmap_File(&bitmap_file, “andre.bmp”);

Function Prototype:

int Unload_Bitmap_File(BITMAP_FILE_PTR bitmap);
// bitmap to close and unload

Purpose:

Unload_Bitmap_File() deallocates the memory associated with the image buffer of a
loaded BITMAP_FILE. Call this function when you’ve copied the image bits and/or are
done working with a particular bitmap. You can reuse the structure, but the memory
must be freed first. Returns TRUE if successful.

Example:

// close the file we just opened
Unload_Bitmap_File(&bitmap_file);

1172313618 CH08 10/26/99 10:19 AM Page 519

DirectX and 2D Fundamentals

520 PART II

Function Prototype:

int Create_Bitmap(BITMAP_IMAGE_PTR image, // bitmap image
int x, int y, // starting position
int width, int height); // size

Purpose:

Create_Bitmap() creates an 8-bit system memory bitmap at the given position with
the given size. The bitmap is initially blank and is stored in the BITMAP_IMAGE image.
The bitmap is not a DirectDraw surface, so there’s no acceleration or clipping avail-
able. Returns TRUE if successful.

There’s a big difference between a BITMAP_FILE and a BITMAP_IMAGE. A
BITMAP_FILE is a disk .BMP file, whereas a BITMAP_IMAGE is a system mem-
ory object like a sprite that can be moved and drawn.

Note

Example:

// let’s create a 64x64 bitmap image at (0,0)
BITMAP_IMAGE ship;

Create_Bitmap(&ship, 0,0, 64,64);

Function Prototype:

int Destroy_Bitmap(BITMAP_IMAGE_PTR image); // bitmap image to destroy

Purpose:

Destroy_Bitmap() is used to release the memory allocated during the creation of a
BITMAP_IMAGE object. You should call this function on your object when you’re all
done working with it—usually during the shutdown of the game, or if the object has
been destroyed in a bloody battle. Returns TRUE if successful.

Example:

// destroy the previously created BITMAP_IMAGE
Destroy_Bitmap(&ship);

Function Prototype:

int Load_Image_Bitmap(
BITMAP_IMAGE_PTR image, // bitmap to store image in
BITMAP_FILE_PTR bitmap, // bitmap file object to load from
int cx,int cy, // coordinates where to scan (cell or abs)
int mode); // image scan mode: cell based or absolute

#define BITMAP_EXTRACT_MODE_CELL 0
#define BITMAP_EXTRACT_MODE_ABS 1

1172313618 CH08 10/26/99 10:19 AM Page 520

CHAPTER 8
Vector Rasterization and 2D Transformations

521

Purpose:

Load_Image_Bitmap() is used to scan an image from a previously loaded
BITMAP_FILE object into the sent BITMAP_IMAGE storage area. This is how you get
objects and image bits into a BITMAP_IMAGE. Now, to use the function, you first must
load a BITMAP_FILE and create the BITMAP_IMAGE. Then you make the call to scan an
image of the same size out of the bitmap data stored in the BITMAP_FILE. There are
two ways the function works, cell mode or absolute mode:

• In cell mode, BITMAP_EXTRACT_MODE_CELL, the image is scanned making the
assumption that all the images are in the .BMP file in a template that is some
given size, m×n, with a 1-pixel border between each cell. The cells usually
range from 8×8, 16×16, 32×32, 64×64, and so on. Take a look at
TEMPLATE*.BMP on the CD; it contains a number of templates. Cell numbers
range from left to right, top to bottom, and they start with (0,0).

• The second mode of operation is absolute coordinate mode,
BITMAP_EXTRACT_MODE_ABS. In this mode, the image is scanned at the exact
coordinates sent in cx, cy. This method is good if you want to load your artwork
with various-sized images on the same .BMP; hence, you can’t template them.

Example:

// assume the source bitmap .BMP file is 640x480 and
// has a 8x8 matrix of cells that are each 32x32
// then to load the 3rd cell to the right on the 2nd
// row (cell 2,1), you would do this

// load in the .BMP file into memory
BITMAP_FILE bitmap_file;
Load_Bitmap_File(&bitmap_file,”images.bmp”);

// initialize the bitmap
BITMAP_IMAGE ship;
Create_Bitmap(&ship, 0,0, 32,32);

// now scan out the data
Load_Image_Bitmap(&ship, &bitmap_file, 2,1,

BITMAP_EXTRACT_MODE_CELL);

To load the exact same image, assuming it’s still in the template, but using the
absolute mode, you have to figure out the coordinates. Remember that there’s a
1-pixel partitioning wall on each side of the image.

Load_Image_Bitmap(&ship, &bitmap_file,
2*(32+1)+1,1*(32+1)+1,
BITMAP_EXTRACT_MODE_ABS);

1172313618 CH08 10/26/99 10:19 AM Page 521

DirectX and 2D Fundamentals

522 PART II

Function Prototype:

int Draw_Bitmap(BITMAP_IMAGE_PTR source_bitmap, // bitmap to draw
UCHAR *dest_buffer, // video buffer
int lpitch, // memory pitch
int transparent); // transparency?

Purpose:

Draw_Bitmap() draws the sent bitmap on the destination memory surface with or
without transparency. If transparent is 1, transparency is enabled and any pixel
with a color index of 0 will not be copied. Function returns TRUE if successful.

Example:

// draw our little ship on the back buffer
Draw_Bitmap(&ship, back_buffer, back_lpitch, 1);

Function Prototype:

int Flip_Bitmap(UCHAR *image, // image bits to vertically flip
int bytes_per_line, // bytes per line
int height); // total rows or height

Purpose:

Flip_Bitmap() is usually called internally to flip upside-down .BMP files during load-
ing to make them right-side up, but you might want to use it to flip an image yourself.
The function does an in-memory flip and actually inverts the bitmap line by line, so
your original sent data will be inverted. Watch out! Returns TRUE if successful.

Example:

// for fun flip the image bits of our little ship
Flip_Bitmap(ship->buffer, ship->width, ship_height);

Palette Functions
The following functions make up the 256-color palette interface. These functions are
only relevant if you have the display set for a 256-color mode—that is, 8-bit color.

Function Prototype:

int Set_Palette_Entry(
int color_index, // color index to change
LPPALETTEENTRY color); // the color

Purpose:

Set_Palette_Entry() is used to change a single color in the color palette. You sim-
ply send the color index 0..255, along with a pointer to PALETTEENTRY holding the
color, and the update will occur on the next frame. In addition, this function updates

1172313618 CH08 10/26/99 10:19 AM Page 522

CHAPTER 8
Vector Rasterization and 2D Transformations

523

the shadow palette. Note: This function is slow; if you need to update the entire
palette, use Set_Palette(). Returns TRUE if successful and FALSE otherwise.

Example:

// set color 0 to black
PALETTEENTRY black = {0,0,0,PC_NOCOLLAPSE};
Set_Palette_Entry(0,&black);

Function Prototype:

int Get_Palette_Entry(
int color_index, // color index to retrieve
LPPALETTEENTRY color); // storage for color

Purpose:

Get_Palette_Entry() retrieves a palette entry from the current palette. However, the
function is very fast because it retrieves the data from the RAM-based shadow palette.
Hence, you can call this as much as you like because it doesn’t disturb the hardware
at all. However, if you make changes to the system palette by using
Set_Palette_Entry() or Set_Palette(), the shadow palette won’t be updated and
the data retrieved may not be valid. Returns TRUE if successful and FALSE otherwise.

Example:

// let’s get palette entry 100
PALETTEENTRY color;
Get_Palette_Entry(100,&color);

Function Prototype:

int Save_Palette_To_File(
char *filename, // filename to save at
LPPALETTEENTRY palette); // palette to save

Purpose:

Save_Palette_To_File() saves the sent palette data to an ASCII file on disk for later
retrieval or processing. This function is very handy if you generate a palette on-the-fly
and want to store it on disk. However, the function assumes that the pointer in the
palette points to a 256-entry palette, so watch out! Returns TRUE if successful and
FALSE otherwise.

Example:

PALETTEENTRY my_palette[256]; // assume this is built

// save the palette we made
// note file name can be anything, but I like *.pal
Save_Palette_To_file(“/palettes/custom1.pal”,my_palette);

1172313618 CH08 10/26/99 10:20 AM Page 523

DirectX and 2D Fundamentals

524 PART II

Function Prototype:

int Load_Palette_From_File(
char *filename, // file to load from
LPPALETTEENTRY palette); // storage for palette

Purpose:

Load_Palette_From_File() is used to load a previously saved 256-color palette from
disk via Save_Palette_To_File(). You simply send the filename along with storage
for all 256 entries, and the palette is loaded from disk into the data structure.
However, the function does not load the entries into the hardware palette; you must do
this yourself with Set_Palette(). Returns TRUE if successful and FALSE otherwise.

Example:

// load the previously saved palette
PALETTEENTRY disk_palette[256];

Load_Palette_From_Disk(“/palettes/custom1.pal”,&disk_palette);

Function Prototype:

int Set_Palette(LPPALETTEENTRY set_palette);
// palette to load into hardware

Purpose:

Set_Palette() loads the sent palette data into the hardware and updates the shadow
palette also. Returns TRUE if successful and FALSE otherwise.

Example:

// lets load the palette into the hardware
Set_Palette(disk_palette);

Function Prototype:

int Save_Palette(LPPALETTEENTRY sav_palette); // storage for palette

Purpose:

Save_Palette() scans the hardware palette out into sav_palette so that you can
save it to disk or manipulate it. sav_palette must have enough storage for all 256
entries.

Example:

// retrieve the current DirectDraw hardware palette
PALETTEENTRY hardware_palette[256];
Save_Palette(hardware_palette);

1172313618 CH08 10/26/99 10:20 AM Page 524

CHAPTER 8
Vector Rasterization and 2D Transformations

525

Function Prototype:

int Rotate_Colors(int start_index, // starting index 0..255
int end_index); // ending index 0..255

Purpose:

Rotate_Colors() rotates a bank of colors in a cyclic manner. It manipulates the color
palette hardware directly. Returns TRUE if successful and FALSE otherwise.

Example:

// rotate the entire palette
Rotate_Colors(0,255);

Function Prototype:

int Blink_Colors(int command, // blinker engine command
BLINKER_PTR new_light, // blinker data
int id); // id of blinker

Purpose:

Blink_Colors() is used to create asynchronous palette animation. The function is too
long to explain here, so please refer to Chapter 7, “Advanced DirectDraw and
Bitmapped Graphics,” for a more in-depth description.

Example:

None

Utility Functions
The next set of functions are just utility functions that I seem to use a lot, so I thought
you might want to use them too.

Function Prototype:

DWORD Get_Clock(void);

Purpose:

Get_Clock() returns the current clock time in milliseconds since Windows was
started.

Example:

// get the current tick count
DWORD start_time = Get_Clock();

1172313618 CH08 10/26/99 10:20 AM Page 525

DirectX and 2D Fundamentals

526 PART II

Function Prototype:

DWORD Start_Clock(void);

Purpose:

Start_Clock() basically makes a call to Get_Clock() and stores the time in a global
variable for you. Then you can call Wait_Clock(), which will wait for a certain num-
ber of milliseconds since your call to Start_Clock(). Returns the starting clock value
at the time of the call.

Example:

// start the clock and set the global
Start_Clock();

Function Prototype:

DWORD Wait_Clock(DWORD count); // number of milliseconds to wait

Purpose:

Wait_Clock() simply waits the sent number of milliseconds since the call was made
to Start_Clock(). Returns the current clock count at the time of the call. However,
the function will not return until the time difference has elapsed.

Example:

// wait 30 milliseconds
Start_Clock();

// code…

Wait_Clock(30);

Function Prototype:

int Collision_Test(int x1, int y1, // upper lhs of obj1
int w1, int h1, // width, height of obj1
int x2, int y2, // upper lhs of obj2
int w2, int h2);// width, height of obj2

Purpose:

Collision_Test() basically performs an overlapping rectangle test on the two sent
rectangles. The rectangles can represent whatever you like. You must send the upper-
left-corner coordinates of each rectangle, along with its width and height. Returns
TRUE if there is an overlap and FALSE if not.

Example:

// do these two BITMAP_IMAGE’s overlap?
if (Collision_Test(ship1->x,ship1->y,ship1->width,ship1->height,

ship2->x,ship2->y,ship2->width,ship2->height))

1172313618 CH08 10/26/99 10:20 AM Page 526

CHAPTER 8
Vector Rasterization and 2D Transformations

527

{ // hit

} // end if

Function Prototype:

int Color_Scan(int x1, int y1, // upper left of rect
int x2, int y2, // lower right of rect
UCHAR scan_start, // starting scan color
UCHAR scan_end, // ending scan color
UCHAR *scan_buffer, // memory to scan
int scan_lpitch); // linear memory pitch

Purpose:

Color_Scan() is another collision-detection algorithm that scans a rectangle for a sin-
gle 8-bit value or sequence of values in some continuous range. You can use it to
determine if a color index is present within some area. Of course, it only works with
8-bit images, but the source is easily extensible to 16-bit or higher modes. Returns
TRUE if the color(s) was found.

Example:

// scan for colors in range from 122-124 inclusive
Color_Scan(10,10, 50, 50, 122,124, back_buffer, back_lpitch);

The BOB (Blitter Object) Engine
Although with a bit of programming you can get the BITMAP_IMAGE type to do what
you want, it’s lacking in a serious way—it doesn’t use DirectDraw surfaces, so there’s
no support for acceleration. Therefore, I’ve created a new type called a Blitter Object
(BOB) that’s very similar to a sprite. For those of you who’ve been in a game pro-
gramming cave, a sprite is nothing more than an object you can move around the
screen that usually doesn’t disturb the background. In this case that isn’t true, so I
called my animation object a BOB rather than a sprite—so there!

You haven’t seen any of the BOB engine source code so far in this book, but you have
seen everything that went into making it. I don’t have enough space to list the source
code, but it’s in the file T3DLIB1.CPP along with everything else. What I’m going to
do is show you each function that makes up the engine, and you’re free to use the
code, print it out and burn it, or whatever. I just wanted to give you a good example of
using DirectDraw surfaces and full acceleration before you moved on to the remain-
ing nongraphical components of DirectX.

Let’s talk briefly about what a BOB is. First, take a look at the data structure for a
BOB, which is back in the section “Data Types and Structures,” and then come back
here… Ready?

1172313618 CH08 10/26/99 10:20 AM Page 527

DirectX and 2D Fundamentals

528 PART II

A BOB is basically a graphical object represented by one or more DirectDraw sur-
faces (up to 64). You can move a BOB, draw a BOB, and animate a BOB. BOBs are
clipped by the current DirectDraw clipper, so they’re clipped as well as accelerated—
which is a good thing! Figure 8.55 shows a BOB and its relationship to its animation
frames.

Animation sequences contain frame numbers of bitmap to display

Animation [n] = (0, 0, 0, 10, 10)

Animation [1] = (1, 2, 4, 4, 3, 2, 1)

Animation [0] = (0, 1, 2, 3, 2, 1)

State
pos
.
.
.
Image array []
Animations []

Bob (Blitter object)

Frame 0 Frame 1 Frame 2 Frame 3 Frame n

Figure 8.55
The BOB

(blitter object)
animation system.

Also, the BOB engine supports animation sequences, so you can load in a set of
frames and an animation sequence and the sequence will play by feeding from the
frames. This is a very cool feature. Also, all the BOB functions return TRUE if success-
ful and FALSE otherwise. So let’s take a look at them all…

Function Prototype:

int Create_BOB(BOB_PTR bob, // ptr to bob to create
int x, int y, // initial position of bob
int width, int height, // size of bob
int num_frames, // total number of frames for bob
int attr, // attributes of bob
int mem_flags); // surface memory flags, 0 is VRAM

Purpose:

Create_BOB() creates a single BOB object and sets it up. The function sets up all the
internal variables in addition to creating a separate DirectDraw surface for each
frame. Most of the parameters are self-explanatory; the only value that needs a little

1172313618 CH08 10/26/99 10:20 AM Page 528

CHAPTER 8
Vector Rasterization and 2D Transformations

529

explanation is the attribute variable attr. Take a look at Table 8.4 to see a better
description of each of the attributes you can logically OR together and send in this
field.

TABLE 8.4 Valid BOB Attributes

Value Description

BOB_ATTR_SINGLE_FRAME Creates BOB with a single frame.

BOB_ATTR_MULTI_FRAME Creates BOB with multiple frames, but the animation of
the BOB will be a linear sequence through the frames
0..n.

BOB_ATTR_MULTI_ANIM Creates a multiple frame BOB that supports animation
sequences.

BOB_ATTR_ANIM_ONE_SHOT If this is set, an animation sequence will play only once
and then stop. At that point the internal variable
anim_state will be set. To play the animation again,
reset this variable.

BOB_ATTR_BOUNCE This flag tells the BOB to bounce off the screen bound-
aries like a ball. This only works if you use Move_BOB().

BOB_ATTR_WRAPAROUND This flag tells the BOB to wrap around to the other side
of the screen as it moves. This only works if you use
Move_BOB().

Examples:

Here are some examples of creating BOBs. First, a single-frame BOB at (50,100)
with a size of 96×64:

BOB car; // a car bob

// create the bob
if (!Create_BOB(&car, 50,100,

96,64,1,BOB_ATTR_SINGLE_FRAME,0))
{ /* error */ }

And here’s a multiple-frame BOB with eight frames and a size of 32×32:

BOB ship; // a space ship bob

// create the bob
if (!Create_BOB(&ship, 0,0,

32,32,8,BOB_ATTR_MULTI_FRAME,0))
{ /* error */ }

1172313618 CH08 10/26/99 10:20 AM Page 529

DirectX and 2D Fundamentals

530 PART II

Finally, a multiple-frame BOB that supports animation sequences:

BOB greeny; // a little green man bob

// create the bob
if (!Create_BOB(&greeny, 0,0,

32,32,32,BOB_ATTR_MULTI_ANIM,0))
{ /* error */ }

Function Prototype:

int Destroy_BOB(BOB_PTR bob); // ptr to bob to destroy

Purpose:

Destroy_BOB() destroys a previously created BOB. You would do this when you are
done with the BOB and want to release the memory it used back to Windows.

Example:

// destroy the BOB above, you would do this
Destroy_BOB(&greeny);

Function Prototype:

int Draw_BOB(BOB_PTR bob, // ptr of bob to draw
LPDIRECTDRAWSURFACE dest); // dest surface to draw on

Purpose:

Draw_BOB() is a very powerful function. It draws the sent BOB on the DirectDraw
surface that you send it. The BOB is drawn in its current position and current frame,
as defined by its animation parameters.

For this function to work, the destination surface must not be locked.Warning

Example:

// this is how you would position a multiframe BOB at
// (50,50) and draw the first frame of it on the back
// surface:
BOB ship; // a space ship bob

// create the bob
if (!Create_BOB(&ship, 0,0,

32,32,8,BOB_ATTR_MULTI_FRAME,0))

// load the bob images in..well get to this in a bit
// set the position and frame of bob
ship.x = 50;

1172313618 CH08 10/26/99 10:20 AM Page 530

CHAPTER 8
Vector Rasterization and 2D Transformations

531

ship.y = 50;
ship.curr_frame = 0; // this contains the frame to draw

// draw bob
Draw_BOB(&ship, lpddsback);

Function Prototype:

int Draw_Scaled_BOB(BOB_PTR bob, // ptr of bob to draw
int swidth, int sheight, // new width and height of bob
LPDIRECTDRAWSURFACE dest); // dest surface to draw on

Purpose:

Draw_Scaled_BOB() works exactly like Draw_BOB(), except that you can send a new
width and height to draw the BOB with. This is very cool, and if you have accelera-
tion, it’s a great way to scale a BOB to make it look 3D!

Example:

// an example of drawing the ship 128x128 even though
// it was created as only 32x32 pixels
Draw_Scaled_BOB(&ship, 128,128,lpddsback);

Function Prototype:

int Load_Frame_BOB(
BOB_PTR bob, // ptr of bob to load frame into
BITMAP_FILE_PTR bitmap,// ptr of bitmap file to scan data
int frame, // frame number to place image into 0,1,2...
int cx,int cy, // cell pos or abs pos to scan from
int mode); // scan mode, same as Load_Frame_Bitmap()

Purpose:

The Load_Frame_BOB() function works identically to the Load_Frame_Bitmap() func-
tion, so refer to that for details. The only additional control parameter frame is the
frame to load. If you create a BOB that has four frames, you’ll load the frames in one
by one.

Example:

// here’s an example of loading 4 frames into a BOB from a
// bitmap file in cell mode

BOB ship; // the bob
// loads frames 0,1,2,3 from cell position (0,0), (1,0),
// (2,0), (3,0)
// from bitmap8bit bitmap file, assume it has been loaded

for (int index=0; index<4; index++)
Load_Frame_BOB(&ship,&bitmap8bit,

index, index,0,
BITMAP_EXTRACT_MODE_CELL);

1172313618 CH08 10/26/99 10:20 AM Page 531

DirectX and 2D Fundamentals

532 PART II

Function Prototype:

int Load_Animation_BOB(
BOB_PTR bob, // bob to load animation into
int anim_index, // which animation to load 0..15
int num_frames, // number of frames of animation
int *sequence); // ptr to array holding sequence

Purpose:

Load_Animation() takes a little explaining. This function is used to load one of 16
arrays internal to the BOB that contain animation sequences. Each sequence contains
an array of indices or frame numbers to display in sequence.

Example:

You might have a BOB that has eight frames, 0,1,...7, but you might have four anima-
tions defined as follows:

int anim_walk[] = {0,1,2,1,0};
int anim_fire[] = {5,6,0};
int anim_die[] = {3,4};
int anim_sleep[] = {0,0,7,0,0};

Then, to load the animations into the BOB, you would do the following:

// create a mutli animation bob
// create the bob
if (!Create_BOB(&alien, 0,0, 32,32,8,BOB_ATTR_MULTI_ANIM,0))

{ /* error */ }

// load the bob frames in...
// load walk into animation 0
Load_Animation_BOB(&alien, 0,5,anim_walk);

// load fire into animation 1
Load_Animation_BOB(&alien, 1,3,anim_fire);

// load die into animation 2
Load_Animation_BOB(&alien, 2,2,anim_die);

// load sleep into animation 3
Load_Animation_BOB(&alien, 3,5,anim_sleep);

After loading the animations, you can set the active animation and play them with
functions you’ll see in a minute.

Function Prototype:

int Set_Pos_BOB(BOB_PTR bob, // ptr to bob to set position
int x, int y); // new position of bob

1172313618 CH08 10/26/99 10:20 AM Page 532

CHAPTER 8
Vector Rasterization and 2D Transformations

533

Purpose:

Set_Pos_BOB() is a simple way to set the position of the BOB. It does nothing more
than assign the internal (x,y) variables, but it’s nice to have a function.

Example:

// set the position of the alien BOB above
Set_Pos_BOB(&alien, player_x, player_y);

Function Prototype:

int Set_Vel_BOB(BOB_PTR bob, // ptr to bob to set velocity
int xv, int yv); // new x,y velocity

Purpose:

Each BOB has an internal velocity contained in (xv,yv). Set_Vel_BOB() simply
assigns these values the new values sent in the function. The velocity values in the
BOB won’t do anything unless you use the function Move_BOB() to move your BOBs.
However, even if you don’t, you can use (xv,yv) to track the velocity of the BOB
yourself.

Example:

// make the BOB move in a straight horizontal line
Set_Vel_BOB(&alien, 10,0);

Function Prototype:

int Set_Anim_Speed_BOB(BOB_PTR bob, // ptr to bob
int speed); // speed of animation

Purpose:

Set_Anim_Speed() sets the internal animation rate for a BOB anim_count_max. The
higher this number, the slower the animation. The lower the number (0 is the lowest),
the faster the animation. However, this function only matters if you use the internal
BOB animation function Animate_BOB(). And of course, you must have created a
BOB that has multiple frames.

Example:

// set the rate to change frames every 30 frames
Set_Anim_Speed_BOB(&alien, 30);

Function Prototype:

int Set_Animation_BOB(
BOB_PTR bob, // ptr of bob to set animation
int anim_index); // index of animation to set

1172313618 CH08 10/26/99 10:20 AM Page 533

DirectX and 2D Fundamentals

534 PART II

Purpose:

Set_Animation_BOB() sets the current animation that will be played by the BOB. In
the earlier example of Load_Animation_BOB(), you created four animations.

Example:

// make animation sequence number 2 active
Set_Animation_BOB(&alien, 2);

This also resets the BOB animation to the first frame in the sequence.Note

Function Prototype:

int Animate_BOB(BOB_PTR bob); // ptr to bob to animate

Purpose:

Animate_BOB() animates a BOB for you. Normally, you would call this function once
per frame to update the animation of the BOB.

Example:

// erase everything...
// move everything...
// animate everything
Animate_BOB(&alien);

Function Prototype:

int Move_BOB(BOB_PTR bob); // ptr of bob to move

Purpose:

Move_BOB() moves the BOB a delta of xv,yv, and then, depending on the attributes, it
will either bounce the BOB off the walls, wrap it around, or do nothing. Similarly to
the Animate_BOB() function, you would place this call once in the main loop right
after (or before) Animate_BOB().

Example:

// animate bob
Animate_BOB(&alien);

// move it
Move_BOB(&alien);

1172313618 CH08 10/26/99 10:20 AM Page 534

CHAPTER 8
Vector Rasterization and 2D Transformations

535

Function Prototype:

int Hide_BOB(BOB_PTR bob); // ptr to bob to hide

Purpose:

Hide_BOB() simply sets the invisible flag on the BOB so Draw_BOB() won’t display it.

Example:

// hide the bob
Hide_BOB(&alien);

Function Prototype:

int Show_BOB(BOB_PTR bob); // ptr to bob to show

Purpose:

Show_BOB() sets the visible flag on a BOB so it will be drawn (undoes a Hide_BOB()
call). Here’s an example of hiding and showing a BOB because you’re displaying a
GDI object or something and don’t want the BOB to occlude it:

Example:

Hide_BOB(&alien);
// make calls to Draw_BOB and GDI etc.
Show_BOB(&alien);

Function Prototype:

int Collision_BOBS(BOB_PTR bob1, // ptr to first bob
BOB_PTR bob2); // ptr to second bob

Purpose:

Collision_BOBS() detects if the bounding rectangles of two BOBs overlap. This can
be used for collision detection in a game to see if a player BOB hits a missile BOB or
whatever.

Example:

// check if a missile BOB hit a player BOB:
if (Collision_BOBS(&missile, &player))

{ /* make explosion sound */ }

Summary
This chapter has taken forever, huh? There’s simply too much material to cover, so
I’ve tried to give you just the most important data on a wide variety of topics.
However, don’t despair—you’re going to hit all this polygon stuff again when you get
to 3D in Volume II, so you’ll be expert when that’s said and done.

1172313618 CH08 10/26/99 10:20 AM Page 535

DirectX and 2D Fundamentals

536 PART II

Think of this chapter as a primer on a number of topics: rasterization, clipping, line
drawing, matrices, collision detection, timing, scrolling, isometric engines, and more.
Sometimes you have to take a top-down approach and then follow it up with a bot-
tom-up approach later. Game programming is like that. Anyway, enough philosophy.
Now that you have a full bitmap and polygon library, you can do some real damage
with the demos during the remaining chapters. Let’s have some fun…

1172313618 CH08 10/26/99 10:20 AM Page 536

Uplinking with DirectInput
and Force Feedback

“How’s about I pin you?”

—Pleasantville

I remember a time when I built joystick interfaces out of TTL
chips so that games I wrote on my Atari 800 could support up to
four players per 9-pin joystick port. Does that make me a sick
person? Anyway, input devices have come a long way, an d so
has the DirectX support for them. In this chapter, we’re going to
take a look at DirectInput along with some general input algo-
rithms, and I’ll throw in a taste of force feedback. Here’s what
you’ll see:

• Overview of DirectInput

• The keyboard

• The mouse

• The joystick

• Input merging

• Force feedback

• The input library

CHAPTER 9

1272313618 CH09 10/26/99 10:23 AM Page 537

DirectX and 2D Fundamentals

538 PART II

The Input Loop Revisited
This is as good as time as any to review the general structure of a game and the rela-
tionship of input to the event loop. Referring to Figure 9.1, you see the generic game
loop of erase, move, draw, wait, repeat. That’s all there is to a video game. Of course,
this is oversimplified. In the world of Win32/DirectX, we already had to add a good
amount of setup, termination, and Windows event handling code to get a
Windows/DirectX application up and running. But once that’s all taken care of, basi-
cally you have erase, move, draw, wait, repeat.

Get Input

Erase Clear buffer

Move ships

Move player

Move objects

Draw background

Draw foreground objects

Move

Draw

Wait

Figure 9.1
A generic input loop.

The question is, where does the input go? Good question. It turns out that you could
actually put the input in a number of places—at the beginning of the sequence, in the
middle, at the end—but most game programmers like to put it right before the move
section. That way, the last input state set by the player is acted on during the next
frame.

Figure 9.2 shows a more detailed game loop with input and all the sections broken
down into more detail. Remember, because you’re using the game console that you’ve
been working on, you have agreed to do everything for each frame within the
Game_Main() function. In essence, your whole world exists within this single function
call.

All right, now that I’ve refreshed your memory on where the input should be scanned
or read in, let’s see how to do it with DirectInput!

1272313618 CH09 10/26/99 10:23 AM Page 538

CHAPTER 9
Uplinking with DirectInput and Force Feedback

539

DirectInput Overture
DirectInput is basically a miracle—just like DirectDraw. Without DirectInput, you
would be on the phone with every input device manufacturer in the world, begging
them for drivers (one for DOS, Win16, Win32, and so on) and having a really bad
day—trust me! DirectInput takes all these problems away. Of course, because it was
designed by Microsoft, it creates whole new problems, but at least they are localized
at one company!

DirectInput is just like DirectDraw. It’s a hardware-independent virtual input system
that allows hardware manufacturers to create conventional and non-conventional input
devices that all act as interfaces in the same way. This is good for you because you
don’t need a driver for every single input device that your users might own. You talk
to DirectInput in a generic way, and the DirectInput driver translates this code into
hardware-specific calls, as does DirectDraw.

Take a look at Figure 9.3 to see an illustration of DirectInput as it relates to the hard-
ware drivers and physical input devices.

As you can see, you are always insulated by the HAL (Hardware Abstraction Layer).
There’s not much to emulate with the HEL (Hardware Emulation Layer), so it’s not as
important as it was with DirectDraw. In any case, that’s the basic idea of DirectInput.
Let’s take a look at what it supports:

Every single input device that exists.

Winmain ()
{
Game_Init ()
While (. .)
{

Game_main ()

{
Game_shutdown ()
}

Called one time/frame

Erase ();

Get_Input ();

Move ();

Draw ();

Wait ();

Return ()

Main entry point

Merge
data

Joystick

Mouse

Keyboard

Figure 9.2
Detailed input loop.

1272313618 CH09 10/26/99 10:24 AM Page 539

DirectX and 2D Fundamentals

540 PART II

That’s pretty much the truth. As long as there is a DirectInput driver for a device,
DirectInput can talk to it, and hence you can too. Of course, it’s up to the hardware
vendor to write a driver, but that’s their job. With that in mind, you can expect support
for the following devices:

• Keyboards

• Mice

• *Joysticks

• *Paddles

• *Game pads

• *Steering wheels

• *Flight yokes

• *Head-mounted display trackers

• *6-DOF (degree of freedom) space balls

• *Cybersex suits (as soon as they hit the mass market in early 2002)

The devices with asterisks are all considered to be joysticks as far as DirectInput is
concerned. There are so many subclasses of joystick-like input devices that
DirectInput just decided to call them all devices. Each of these devices can have one
or more input objects, which might be axial, rotational, momentary, pressure, and so

Figure 9.3
DirectInput system-

level schematic. Win32 App

Direct Input

Win32 App
DDI
Device driver
 interface HAL

HEL

DirectX 3.0

Not much to emulate !

Joystick Mouse Keyboard

Hardware

Input devices

…

1272313618 CH09 10/26/99 10:24 AM Page 540

CHAPTER 9
Uplinking with DirectInput and Force Feedback

541

on. Get it? For example, a joystick with two axes (X and Y) and two momentary
switches has four input objects—that’s it.

DirectInput doesn’t really care whether the device in question is a joystick because
the device could represent a steering wheel just as easily. However, in reality,
DirectInput does subclass a little. Anything that’s not a mouse or keyboard is a joy-
stick-like device, whether you hold it, squeeze it, turn it, or step on it. Coolio?

DirectInput differentiates between all these devices by forcing the manufacturer (and
hence the driver) to give each device a unique GUID to represent it. This way, at least
there is a unique name of sorts for every single device that exists or will exist, and
DirectInput can query the system for any device using this name. Once the device is
found, however, it’s just a bunch of input objects. I’m belaboring this point because it
seems to confuse people. Okay, let’s move on…

The Components of DirectInput
DirectInput consists of a number of COM interfaces, as do any of the DirectX subsys-
tems. Take a look at Figure 9.4. You can see that there is the main interface,
IDirectInput, and then only one other main interface, IDirectInputDevice (and the
new version IDirectInputDevice2).

Figure 9.4
The interfaces of

DirectInput.

IDirectInput

IDirectInputDevice IDirectInputDevice IDirectInputDevice2

Mouse Keyboard

Analog/digital
vs-sidewinder

Joystick Force
feedback
device

New method
in DirectX 5.0+

Poll ();

Let’s take a look at these interfaces:

• IDirectInput—This is the main COM object that you must create to start up
DirectInput. Luckily there is a wrapper to do DirectInputCreate() that does
all the COM stuff for you. Once you have created the IDirectInput interface,
you will make calls to it to set up the properties of DirectInput and to create and
acquire any input devices that you may want to work with.

• IDirectInputDevice—This interface is created from the main IDirectInput
interface and is the conduit that you use to communicate with a device, whether
it be a mouse, keyboard, joystick, or whatever. They are all IDirectInput
devices.

1272313618 CH09 10/26/99 10:24 AM Page 541

DirectX and 2D Fundamentals

542 PART II

• IDirectInputDevice2—This is the updated version of IDirectInputDevice
and was created during DirectX 5.0. This new interface contains all the func-
tionality of the older IDirectInputDevice interface, but adds support for joy-
sticks and force feedback devices. In addition, it allows polled devices to be
plugged; some joysticks need to be polled.

Previous to DirectX 5.0 and the IDirectInputDevice2 interface, the joystick
support for DirectInput was limited to the Win32 driver; that is, there was no
support! If you want to use this interface, query for it from a previously created
IDirectInputDevice interface with QueryInterface(). (Can you remember
that? I’ll show you again when we get there.)

The General Steps for Setting Up DirectInput
There are a number of steps involved in getting DirectInput up and running, connect-
ing to one or more devices, and finally getting data from the device(s). First is the
setup of DirectInput, and next is the setup of each input device. The second part is
almost identical for each device, so we can generalize it. That’s cool, huh? Here’s
what you have to do:

1. Create the main DirectInput interface IDirectInput with a call to
DirectInputCreate(). This returns the IDirectInput interface.

2. (Optional) Query for device GUIDs. During this step, you will query DirectInput
for input devices belonging to the class keyboard, mouse, joystick, or generic
device (one that doesn’t fall into the previous list). This is accomplished with
(get ready to throw up) a callback function and an enumeration. Basically, you
request DirectInput to enumerate all devices of some type/subtype. DirectInput
filters them through a callback, which you then build up with a database of
GUIDs. Disgusting, huh? Well, luckily this is really only an issue for joystick-
like devices, because you can usually bank on a generic mouse and keyboard
and there are stock GUIDs for them. I’ll show you how this step works when I
cover joysticks a little later.

3. For each device that you want to use in your application, you must create it with
a call to CreateDevice() passing a GUID. CreateDevice() is an interface func-
tion of IDirectInput, so you must obtain the IDirectInput interface before
making this call. Also, this step will come after step 2 if you don’t know the
GUID of the device that you are trying to create. There are two built-in GUIDs,
one for the keyboard and one for the mouse:

GUID_SysKeyboard—This is globally defined and will always work as the
primary keyboard device GUID.

GUID_SysMouse—This is globally defined and will always work as the pri-
mary mouse device GUID.

1272313618 CH09 10/26/99 10:24 AM Page 542

CHAPTER 9
Uplinking with DirectInput and Force Feedback

543

Finally, if you want the IDirectInputDevice2 interface, this would be the time
to query for it. You would query for IDirectInputDevice2 from the
IDirectInputDevice:: interface if you wanted the improved interface with the
call IDirectInputDevice::QueryInterface(...). This must be done before
you set the cooperative level.

4. Once you have created the device, you must set the cooperative level for each.
This is accomplished with the call
IDirectInputDevice::SetCooperativeLevel(). Note the C++ syntax here—it
simply means that this SetCooperativeLevel() is an interface method or func-
tion of IDirectInputDevice. The cooperation levels are much like those in
DirectDraw, but there are fewer of them. We will take a closer look at them
when we walk through the keyboard example.

5. Set the data format of each device with a call to SetDataFormat() from the
IDirectInputDevice interface. This is a bit confusing in practice, but not that
bad conceptually. The data format is how you want the data packet for each
device event to be formatted. That was nice of DirectInput! This just gives you
more flexibility, that’s all. Thank goodness, there are some globally predefined
data formats that you can use that are reasonably intelligent, so you don’t have
to set one up yourself.

6. Set any properties of the device that you desire with
IDirectInputDevice::SetProperty(). This is device context-sensitive, mean-
ing that some devices have some properties and some don’t. Thus, you have to
know what you’re trying to set. In this case, you’ll only use this to set some of
the range properties of the joystick device, but be aware that in most cases, any-
thing that is configurable on a device is configured with a call to
SetProperty(). As usual, the call is fairly horrific, but I’ll show you exactly
how to do it when we cover the joystick example.

7. Acquire each device with a call to IDirectInputDevice::Acquire(). This basi-
cally attaches or associates the device(s) with your application and tells
DirectInput that in the future you’ll be requesting data from the device.

8. (Optional) Poll the device(s) with a call to IDirectInputDevice2::Poll()
(note that I used the IDirectInputDevice2 interface in this example to illustrate
that polling only works with IDirectInput2). Some input devices need to be
polled rather than you generating interrupts and keeping the input state current.

A while ago, an astute reader sent me an email asking about how to
detect and use more than one mouse. I hadn’t really thought about it,
but if the driver supports more than one mouse, you should be able to
use it under DirectInput. In this case, you would have to query for the
secondary mouse GUID to create it.

Tip

1272313618 CH09 10/26/99 10:24 AM Page 543

DirectX and 2D Fundamentals

544 PART II

Many joysticks fall into this class, so it’s always a good idea to poll joysticks
whether they need it or not. Polling doesn’t hurt and costs nothing if it isn’t
needed (the function just returns). However, as I mentioned, you can only poll
from version 2 of the interface.

9. Read the device data for each device with a call to
IDirectInputDevice::GetDeviceState(). The data returned from the call will
be different for each device, but the call is exactly the same. This call retrieves
the data from the device and places it into a buffer so you can read it.

That’s all there is to it! Seems like a lot, but it’s really a small price to pay to access
any input device without having to worry about the device driver for it!

Data Acquisition Modes
Last, but not least, I want to briefly alert you to the existence of immediate and
buffered data modes. DirectInput can send you immediate state information or buffer
input, time-stamped in a message format. I haven’t had much use for the buffered
input model, but it’s there if you want to use it (read the DirectX SDK if you’re inter-
ested). We’ll use the immediate mode of data acquisition, which is the default.

Creating the Main DirectInput Object
Now let’s see how to create the main DirectInput COM object IDirectInput. Then
we’ll take a look at how to work with the keyboard, mouse, and joystick.

The interface pointer to the main DirectInput object is defined in DINPUT.H as follows:

LPDIRECTINPUT lpdi; // main directinput interface

To create the main COM interface, use the standalone function
DirectInputCreate(), shown here:

HRESULT WINAPI DirectInputCreate(
HINSTANCE hinst, // the main instance of the app
DWORD dwVersion, // the version of directinput you want
LPDIRECTINPUT * lplpDirectInput, // ptr to storage

// for interface ptr
LPUNKNOWN punkOuter); // COM stuff, always NULL

The parameters are as follows:

hinst is the instance handle of your application. This is one of the few function
calls that needs this handle. It’s the same handle that is passed into WinMain() at
the start of your application, so just save it in a global and stuff it in here.

dwVersion is a constant that describes which version of DirectInput you want to be
compatible with. If you assume that some of your game will be played on DirectX
3.0 machines, this will be of concern, but just send DIRECTINPUT_VERSION for the
latest version of DirectInput and that will do.

1272313618 CH09 10/26/99 10:24 AM Page 544

CHAPTER 9
Uplinking with DirectInput and Force Feedback

545

lplpDirectInput is the address of the interface pointer that will receive the COM
interface to DirectInput.

And lastly, punkOuter is for COM aggregation and is not of concern. Set it to
NULL.

DirectInputCreate() returns DI_OK (DirectInput OK) if successful, or something
else if not. As usual, though, we are going to use the macros SUCCESS() and
FAILURE() rather than test for DI_OK because it’s now the preferred method under
DirectX to test for a problem. But it’s pretty safe to use DI_OK if you want.

Here’s an example of creating the main DirectInput object:

#include “DINPUT.H” // need this and DINPUT.LIB

// the rest of your includes, defines etc.

// globals...

LPDIRECTINPUT lpdi = NULL; // used to point to com interface

// create the main DirectInput object
if (FAILED(DirectInputCreate(main_instance,

DIRECTINPUT_VERSION,
&lpdi, NULL))

{ /* error */ }

It’s very important that you include DINPUT.H and DINPUT.LIB in your
application, or else the compiler and linker won’t know what to do.
Also, if you’ve never read my instructions on compiling, please include
the .LIB file directly in the application project. Setting a search path in
the library search settings is usually not enough.

Note

And that’s that. If the function was successful, at this point you’ll have a pointer to
the main DirectInput object that you can then use to create devices.

As with all COM objects, when your application is complete and you are releasing
resources, you must make a call to Release() to decrement the reference count of the
COM object. Here’s how:

// the shutdown
lpdi->Release();

And if you want to be technical:

// the shutdown
if (lpdi)

lpdi->Release();

1272313618 CH09 10/26/99 10:24 AM Page 545

DirectX and 2D Fundamentals

546 PART II

Of course, you would do this after releasing the devices created. Remember always to
make your calls to Release() in the reverse order you created your objects, like
unwinding a stack.

The 101-Key Control Pad
Because setting up one DirectInput device is similar to setting up all other devices,
I’m going to really go into detail with the keyboard and then speed things up with the
mouse and joystick. So make sure to read this section carefully, because it will be
applicable to the other devices as well.

Creating the Keyboard Device
The first step in getting any device up and running is creating it with a call to IDI-
RECTINPUT::CreateDevice(). Remember, this function basically gives you an inter-
face to the particular device that you requested (the keyboard in this first example),
which you can then work with. Let’s take a look at the function:

HRESULT CreateDevice(
REFGUID rguid, // the GUID of the device to create
LPDIRECTINPUTDEVICE *lplpDirectInputDevice, // ptr to the

// IDIRECTINPUTDEVICE
// interface to receive ptr

LPUNKNOWN pUnkOuter); // COM stuff, always NULL

Simple enough, huh, baby? The first parameter, rguid, is the GUID of the device you
want to create. You can either query for the GUID of interest or use one of the defaults
for the most common devices:

GUID_SysKeyboard—The keyboard.

GUID_SysMouse—The mouse.

Danger, Will Robinson! Remember, these are in DINPUT.H, so that must
be included along with DINPUT.LIB. Furthermore, for all this GUID stuff,
you should also place a #define INITGUID at the top of your application
before all other includes (but only once), as well as including the header
OBJBASE.H with your application. You can also include the .LIB file
DXGUID.LIB with your program, but OBJBASE.H is preferred. In any case,
you can always look at the chapter demos on the CD and see a working
example of what to include and what not to include; it’s just one of the
stupid details.

Warning

The second parameter is the receiver of the new interface, and of course the last is just
NULL. The function returns DI_OK if successful and something else if not.

1272313618 CH09 10/26/99 10:24 AM Page 546

CHAPTER 9
Uplinking with DirectInput and Force Feedback

547

All right, based on your new-found knowledge of CreateDevice(), let’s see if you
can create the keyboard device. The first thing you need is a variable to hold the inter-
face pointer that will be created during the call. All devices are of type IDIRECTIN-
PUTDEVICE or IDIRECTINPUTDEVICE2, but the keyboard isn’t fancy, so you can get
away with version 1.0 of the interface:

IDIRECTINPUTDEVICE lpdikey = NULL; // ptr to keyboard device

Now, let’s create the device with a call to CreateDevice() from the main COM
object. Here’s all the code, including the creation of the main COM object and all
necessary inclusion/defines:

// this needs to come first
#define INITGUID

// includes
#include <OBJBASE.H> // need this one for GUIDS
#include “DINPUT.H” // need this for directinput and

// DINPUT.LIB

// globals...

LPDIRECTINPUT lpdi = NULL; // used to point to com interface
IDIRECTINPUTDEVICE lpdikey = NULL; // ptr to keyboard device

// create the main DirectInput object
if (FAILED(DirectInputCreate(main_instance,

DIRECTINPUT_VERSION,
&lpdi, NULL))

{ /* error */ }

// now create the keyboard device
if (FAILED(lpdi->CreateDevice(GUID_SysKeyboard, &lpdikey, NULL)))

{ /* error */ }

// do all the other stuff....

At this point, lpdikey points to the keyboard device, and you can call methods of the
interface to set the cooperation level, data format, and so on. Of course, when you’re
done with the device, you release it with a call to Release(). However, this call will
be before you’ve released the main DirectInput object lpdi, so put something like this
in your shutdown:

// release all devices
if (lpdikey)

lpdikey->Release();

// .. more device releases, joystick, mouse etc.

1272313618 CH09 10/26/99 10:24 AM Page 547

DirectX and 2D Fundamentals

548 PART II

// now release main COM object
if (lpdi)

lpdi->Release();

Setting the Keyboard’s Cooperative Level
Once you’ve created your device (the keyboard in this case), you must set its coopera-
tion level, just like the main DirectDraw object. But in the case of DirectInput, there
isn’t as much of a selection. Table 9.1 lists the various possibilities for the cooperation
level.

TABLE 9.1 Cooperation Flags for DirectInput SetCooperativeLevel()

Value Description

DISCL_BACKGROUND Your application can use a DirectInput device when it’s either
in the background or active in the foreground.

DISCL_FOREGROUND The application requires foreground access. If foreground
access is granted, the device is automatically unacquired when
the associated window moves to the background.

DISCL_EXCLUSIVE Once you acquire the device, no other application can request
exclusive access to it. However, other applications can still
request non-exclusive access.

DISCL_NONEXCLUSIVE The application requires non-exclusive access. Access to the
device will not interfere with other applications that are access-
ing the same device.

These give me a headache. It’s like, “Background, foreground, exclusive,
non-exclusive—you’re killing me!” However, after reading the definitions a few times,
it becomes clear how the various flags work. In general, if you set DISCL_
BACKGROUND, your application will receive input whether it’s active or minimized.
Setting DISCL_FOREGROUND will only send your application input when it’s on top.

The exclusive/non-exclusive setting controls whether your application has total control
of the device and no other application can have access. For example, the mouse and
keyboard are implicitly exclusive devices; when your application acquires them, no
other application can use them until it gains focus. This creates some paradoxes.

First, you can only acquire the keyboard in non-exclusive mode because Windows
itself always has to be able to get the Alt-key combinations. Second, you can acquire
the mouse in exclusive mode if you want, but you will lose normal mouse messages to
your application (this may be your intent) and the mouse cursor will disappear. Like
you care, because you will most probably render one yourself. Finally, most force
feedback joysticks (and joysticks in general) should be acquired in exclusive mode.
However, you can set normal joysticks for non-exclusive.

1272313618 CH09 10/26/99 10:24 AM Page 548

CHAPTER 9
Uplinking with DirectInput and Force Feedback

549

Thus, the moral of the story is to set the flags to DISCL_BACKGROUND | DISCL_NONEX-
CLUSIVE. The only time you’ll really need to set exclusive access is for force feedback
devices. Of course, with this setting it’s possible that you could lose the device to
something that wants exclusive access when it becomes the active application. In that
case you will have to reacquire the device, but we’ll get to that in a moment.

For now, just set the cooperation level with
IDIRECTINPUTDEVICE::SetCooperativeLevel(...), shown here:

HRESULT SetCooperativeLevel(HWND hwnd, // the window handle
DWORD dwFlags); // cooperation flags

And here’s the call to set the cooperation level for your keyboard (all devices are done
in the same way):

if (FAILED(lpdikey->SetCooperativeLevel(main_window_handle,
DISCL_BACKGROUND | DISCL_NONEXCLUSIVE)))

{ /* error */ }

The only way this won’t work is if there is another application that has exclusive/fore-
ground access and is the current application. Then you just have to wait or tell the
user to kill the application that is hogging the input device.

Setting the Data Format of the Keyboard
The next step to getting the keyboard ready to send input is to set the data format.
This is done with a call to IDIRECTINPUTDEVICE::SetDataFormat(), shown here:

HRESULT SetDataFormat(LPCDIDATAFORMAT lpdf); // ptr to data format structure

Bummer… That single parameter is the problem. Here’s the data structure:

// directinput dataformat
typedef struct
{
DWORD dwSize; // size of this structure in bytes
DWORD dwObjSize; // size of DIOBJECTDATAFORMAT in bytes
DWORD dwFlags; // flags:either DIDF_ABSAXIS or

// DIDF_RELAXIS for absolute or
// relative reporting

DWORD dwDataSize;// size of data packets
DWORD dwNumObjs; // number of objects that are defined in

// the following array of object
LPDIOBJECTDATAFORMAT rgodf; // ptr to array of objects
} DIDATAFORMAT, *LPDIDATAFORMAT;

This a really complex structure to set up and is overkill for your purposes. Basically,
it allows you to define how the data from the input device will be formatted at the
device object level. Luckily, though, DirectInput comes with some custom-made data
formats that work for just about everything, and you will use one of them. Take a look
at Table 9.2 to see these formats.

1272313618 CH09 10/26/99 10:24 AM Page 549

DirectX and 2D Fundamentals

550 PART II

TABLE 9.2 Generic Data Formats Available to DirectInput

Value Description

c_dfDIKeyboard Generic keyboard

c_dfDIMouse Generic mouse

c_dfDIJoystick Generic joystick

c_dfDIJoystick2 Generic force feedback

Once you set the data format to one of these types, DirectInput will send each data
packet back in a certain format. DirectInput again has some predefined formats to
make this easy, as shown in Table 9.3.

TABLE 9.3 DirectInput Data Structures Used to Send Data When Using Generic Data
Formats

Name Description

DIMOUSESTATE This data structure holds a mouse message.

DIJOYSTATE This data structure holds a standard joystick-like device mes-
sage.

DIJOYSTATE2 This data structure holds a standard force feedback device
message.

I’ll show you the actual structures when we get to the mouse and the joystick.
However, you’re probably wondering where the damn keyboard structure is. Well, it’s
so simple that there isn’t a type for it. It’s nothing more than an array of 256 bytes,
each representing one key, thus making the keyboard look like a set of 101 momen-
tary switches.

Hence, using the default DirectInput data format and data type is very similar to using
the Win32 function GetAsyncKeyState(). In any case, all you need is a type like this:

typedef _DIKEYSTATE UCHAR[256];

If DirectX is missing something and I want to create a “DirectXish” ver-
sion of it, I will usually create the missing data structure or function, but
with a leading underscore to remind me six months from now that I
invented it.

So with all that in mind, let’s set the data format for the poor little keyboard:

// set data format
if (FAILED(lpdikey->SetDataFormat(&c_dfDIKeyboard)))

{ /* error */ }

Trick

1272313618 CH09 10/26/99 10:24 AM Page 550

CHAPTER 9
Uplinking with DirectInput and Force Feedback

551

Notice that I used the & operator to get the address of the global c_dfDIKeyboard
because the function wants a pointer to it.

Acquiring the Keyboard
You’re getting there! Almost done. You’ve created the DirectInput main COM object,
created a device, set the cooperation level, and set the data format. The next step is to
acquire the device from DirectInput. To do this, use the function method IDIRECTIN-
PUTDEVICE::Acquire() with no parameters. Here’s an example:

// acquire the keyboard
if (FAILED(lpdikey->Acquire()))

{ /* error */ }

And that’s all there is to it. Now you’re ready to get input from the device! It’s time to
celebrate. I think I’ll have a Power Bar. :)

Retrieving Data from the Keyboard
Retrieving data from all devices is mostly the same, plus or minus a couple of details
that may be device-specific. In general, you must do the following:

1. (Optional) Poll the device for IDIRECTINPUTDEVICE2 devices like joysticks.

2. Read the immediate data from the device with a call to IDIRECTINPUT-
DEVICE::GetDeviceState() or IDIRECTINPUTDEVICE2::GetDeviceState().

Remember, any method you can call with a IDIRECTINPUTDEVICE inter-
face can be called with a IDIRECTINPUTDEVICE2 interface.

Here’s what the GetDeviceState() function looks like:

HRESULT GetDeviceState(
DWORD cbData, // size of state data structure
LPVOID lpvData); // ptr to memory to receive data

The first parameter is the size of the receiving data structure that the data will be
stuffed into: 256 for keyboard data, sizeof(DIMOUSESTATE) for the mouse,
sizeof(DIJOYSTATE) for the plain joystick, and so on. The second parameter is just a
pointer to where you want the data to be stored. Hence, here’s how you might read
the keyboard:

// here’s our little helper typedef
typedef _DIKEYSTATE UCHAR[256];

_DIKEYSTATE keystate[256]; // this will hold the keyboard data

Tip

1272313618 CH09 10/26/99 10:24 AM Page 551

DirectX and 2D Fundamentals

552 PART II

Now let’s read the keyboard:

if (FAILED(lpdikey->GetDeviceState(sizeof(_DIKEYSTATE),
(LPVOID)keystate)))

{ /* error */ }

Of course, you would do this once for each game loop at the top of the loop, before
any processing has occurred.

Once you have the data, you’ll want to test for keypresses, right? Just as there are
constants for the GetAsyncKeyState() function, there are constants for the keyboard
switches that resolve to their positions in the array. They all start with DIK_
(DirectInput key, I would imagine) and are defined in DINPUT.H. Table 9.4 contains a
partial list of them (please refer to the DirectX SDK docs for the complete list).

TABLE 9.4 The DirectInput Keyboard State Constants

Symbol Description

DIK_ESCAPE The Esc key

DIK_0-9 Main keyboard 0 through 9

DIK_MINUS Minus key

DIK_EQUALS Equals key

DIK_BACK Backspace key

DIK_TAB Tab key

DIK_A-Z Letters A through Z

DIK_LBRACKET Left bracket

DIK_RBRACKET Right bracket

DIK_RETURN Return/Enter on main keyboard

DIK_LCONTROL Left control

DIK_LSHIFT Left shift

DIK_RSHIFT Right shift

DIK_LMENU Left Alt

DIK_SPACE Spacebar

DIK_F1-15 Function keys 1 through 15

DIK_NUMPAD0-9 Numeric keypad keys 0 through 9

DIK_ADD + on numeric keypad

DIK_NUMPADENTER Enter on numeric keypad

DIK_RCONTROL Right control

DIK_RMENU Right Alt

DIK_HOME Home on arrow keypad

1272313618 CH09 10/26/99 10:24 AM Page 552

CHAPTER 9
Uplinking with DirectInput and Force Feedback

553

DIK_UP Up arrow on arrow keypad

DIK_PRIOR PgUp on arrow keypad

DIK_LEFT Left arrow on arrow keypad

DIK_RIGHT Right arrow on arrow keypad

DIK_END End on arrow keypad

DIK_DOWN Down arrow on arrow keypad

DIK_NEXT PgDn on arrow keypad

DIK_INSERT Insert on arrow keypad

DIK_DELETE Delete on arrow keypad

Bolded entries simply mean to follow the sequence. For example, DIK_0-9 means that there are con-
stants DIK_0, DIK_1, DIK_2, and so forth.

To test if any key is down, you must test the 0x80 bit in the 8-bit byte of the key in
question; in other words, the uppermost bit. For example, you’d use the following if
you wanted to test whether the Esc key was pressed:

if (keystate[DIK_ESCAPE] & 0x80)
{ // it’s pressed */ }

else
{ /* it’s not */ }

Symbol Description

You could probably get away without the & and the bit test, but
Microsoft doesn’t guarantee that other bits won’t be high even if the
key isn’t down. It’s a good idea to do the bit test just to be safe.

The and operator is a bit ugly; you can make it look better with a macro like this:

#define DIKEYDOWN(data,n) (data[n] & 0x80)

Then you can just write this:

if (DIKEYDOWN(keystate, DIK_ESCAPE))
{ /* do it to it baby! */ }

Much cleaner, huh? And of course, when you’re done with the keyboard, you must
“unacquire” it with Unacquire() and release it (along with the main DirectInput
COM object) like this:

// unacquire keyboard
if (lpdikey)

lpdikey->Unacquire();

Tip

1272313618 CH09 10/26/99 10:24 AM Page 553

DirectX and 2D Fundamentals

554 PART II

// release all devices
if (lpdikey)

lpdikey->Release();

// .. more device unacquire/releases, joystick, mouse etc.

// now release main COM object
if (lpdi)

lpdi->Release();

This is the first time that I’ve talked about the function Unacquire(), but it is so
closely tied to releasing the object that I thought it appropriate for use here. However,
if you simply want to unacquire a device but not release it, you can surely call
Unacquire() on a device and reacquire it later. You might want to do this if you want
another application to have access to the device when you aren’t using it.

Of course, if you want to release the keyboard but keep the joystick (or
some other combination), don’t release the main COM object until
you’re completely ready to kill DirectInput.

Warning

For an example of using the keyboard, take a look at DEMO9_1.CPP|EXE on the CD.
Figure 9.5 shows a screen shot of the action. The program uses all the techniques we
have covered to set up the keyboard, and it lets you move a character around. To com-
pile the program, remember to include DDRAW.LIB, DINPUT.LIB, and WINMM.LIB for
VC++ users. Also, if you look at the header section of the program, you’ll notice that
it uses T3DLIB1.H. Thus, it obviously needs T3DLIB1.CPP in the project to compile.
By the end of the chapter, you will create an entire input library (which I have already
completed and named T3DLIB2.CPP|H, but I’ll show that to you later in the chapter).

Problem During Reading: Reacquisition
I hate to talk about problems that can occur with DirectX because there are so many
of them. They aren’t bugs, but simply manifestations of running in a cooperative OS
like Windows. One such problem that can occur with DirectInput is due to a device
getting yanked from you or acquired by another application.

In this case, it’s possible that you had the device during the last frame of animation,
and now it’s gone. Alas, you must detect this and be able to reacquire the device.
Luckily, there is a way to test for it that is fairly simple. When you read a device, you
test to see if it was acquired by another application. If so, you simply reacquire it and
try reading the data again. You can tell because the GetDeviceState() function will
return an error code.

1272313618 CH09 10/26/99 10:24 AM Page 554

Chapter 9

Uplinking with DirectInput and Force Feedback

555

The real error codes that GetDeviceState() returns are shown in Table 9.5.

TABLE 9.5 Error Codes for GetDeviceState()

Value Description

DIERR_INPUTLOST Device has lost input and will lose acquisition on next call.

DIERR_INVALIDPARAM One of the parms to the function was invalid.

DIERR_NOTACQUIRED You have totally lost the device.

DIERR_NOTINITIALIZED The device is not ready.

E_PENDING Data not yet available: chill.

So what you want to do is test for DIERR_INPUTLOST during a read and then try to
reacquire if that error occurs. Here’s an example:

HRESULT result; // general result

while(result = lpdikey->GetDeviceState(
sizeof(_DIKEYSTATE),
(LPVOID)keystate) == DIERR_INPUTLOST)

{
// try an re-acquire the device
if (FAILED(result = lpdikey->Acquire()))

{
break; // serious error
} // end if

Figure 9.5
DEMO9_1.EXE in

action.

1272313618 CH09 10/26/99 10:24 AM Page 555

DirectX and 2D Fundamentals

556 PART II

} // end while

// at this point, there is either a serious error or the data is valid
if (FAILED(result))

{ /* error */}

Although I’m showing you an example of reacquiring the keyboard,
chances are this will never happen. In most cases, you will only lose
joystick-like devices.

Trapping the Mouse
The mouse is one of the most amazingly useful input devices ever created. Can you
imagine being the guy who invented the mouse and having so many people laugh at
how ridiculous they thought it was? I hope the inventor is laughing on some island
over margaritas! The point is, sometimes it’s the most unusual things that work best,
and the mouse is a good example of that. Anyway, let’s get serious now… let me take
this bra off my head. :)

The standard PC mouse has either two or three buttons and two axes of motion: X
and Y. As the mouse is moved around, it builds up packets of information describing
state changes and then sends them to the PC serially (in most cases). The data is then
processed by a driver and finally sent on up to Windows or DirectX. As far as we are
concerned, the mouse is black magic. All we want to know is how to determine when
it moves and when a button is pressed. DirectInput does this and more.

There are two ways to communicate with the mouse: absolute mode and relative
mode. In absolute mode, the mouse returns its position relative to the screen coordi-
nates based on where the mouse pointer is. Thus, in a screen resolution of 640×480,
you would expect the position of the mouse to vary from 0-639, 0-479. Figure 9.6
shows this graphically.

In relative mode, the mouse driver sends the position of the mouse as relative deltas at
each clock tick rather than as an absolute position. This is shown in Figure 9.7. In
reality, all mice are relative; it’s the driver that keeps track of the absolute position of
the mouse. Hence, I am going to work with the mouse in relative mode because it’s
more flexible.

Tip

1272313618 CH09 10/26/99 10:24 AM Page 556

CHAPTER 9
Uplinking with DirectInput and Force Feedback

557

Now that you know a little about the mouse, let’s see what you need to do to get it
working under DirectInput:

1. Create the mouse device with CreateDevice().

2. Set the cooperation level with SetCooperativeLevel().

3. Set the data format with SetDataFormat().

4. Acquire the mouse with Acquire().

5. Read the mouse state with GetDeviceState().

6. Repeat step 5 until done.

Direct input(305, 410)(100, 150)App
Mouse

Mouse samples absolute position

(639, 479)

(0, 0) 640x480

+x

+y

(100, 150) (x, y) [0 . . . 639, 0 . . . 479]

Sample 2

(305, 410)

Sample 1

Desktop

1 2

Mousepad

Figure 9.6
The mouse in

absolute mode.

Direct inputPx=–40, Py=30Px=50, Py=20App
Mouse

Mouse samples absolute position

(639, 479)

(0, 0)

+x

+y

1 2

Px=100, Py=10

Px=100, Py=10
Px=40, Py=30

Px=50, Py=20

3

Mousepad

Start
Move 1

Move 2

Move 3

Figure 9.7
The mouse in relative

mode.

1272313618 CH09 10/26/99 10:24 AM Page 557

DirectX and 2D Fundamentals

558 PART II

Creating the Mouse Device
Looks like bedrock, baby. Let’s give it a try. First, you need an interface pointer to
receive the device once you create it. Use a IDIRECTINPUTDEVICE pointer for this:

// of course you need all the other stuff

LPDIRECTINPUTDEVICE lpdimouse = NULL; // the mouse device

// assuming that lpdi is valid

// create the mouse device
if (FAILED(lpdi->CreateDevice(GUID_SysMouse,

&lpdimouse, NULL)))
{ /* error */ }

Step 1 is handled. Note that you used the device constant GUID_SysMouse for this
type. This gives you the default mouse device.

Setting the Cooperation Level of Mouse
Now, set the cooperation level:

if (FAILED(lpdimouse->SetCooperativeLevel(
main_window_handle,
DISCL_BACKGROUND | DISCL_NONEXCLUSIVE)))

{ /* error */ }

Setting the Data Format of the Mouse
Now for the data format. Remember, there are a number of standard data formats pre-
defined by DirectInput (shown in Table 9.2); the one you want is c_dfDIMouse. Plug it
into the function and set the data format:

// set data format
if (FAILED(lpdimouse->SetDataFormat(&c_dfDIMouse)))

{ /* error */ }

Okay, now you need to take a pause for a moment. With the keyboard data format
c_dfDIKeyboard, the data structure returned was an array of 256 UCHARS. However,
with the mouse, the data format defines something that is more mouse-like. :)
Referring back to Table 9.3, the data structure that you’ll be working with is called
DIMOUSESTATE and is shown here:

// the mouse data structure
typedef struct DIMOUSESTATE

{

If these steps look unfamiliar, please read the previous keyboard section.Note

1272313618 CH09 10/26/99 10:24 AM Page 558

CHAPTER 9
Uplinking with DirectInput and Force Feedback

559

LONG lX; // X-axis
LONG lY; // Y-axis
LONG lZ; // Z-axis (wheel in most cases)
BYTE rgbButtons[4]; // buttons, high bit means down
} DIMOUSESTATE, *LPDIMOUSESTATE;

Thus, when you make a call to get the device state with GetDeviceState(), this is the
structure that will be returned. No surprises here. Everything is what it would seem.

Acquiring the Mouse
The next step is to acquire the mouse with a call to Acquire(). Here it is:

// acquire the mouse
if (FAILED(lpdimouse->Acquire()))

{ /* error */ }

Cool! This is so easy. Wait until you put a wrapper around all this stuff, which will be
even easier!

Reading the Data from the Mouse
At this point, you have created the mouse device, set the cooperation level and the
data format, and acquired it. Now you’re ready to shake that booty. To make the shake
happen, you need to read the data from the mouse with GetDeviceState(). However,
you must send the correct parameters based on the new data format, c_dfDIMouse,
and the data structure the data will be placed in, DIMOUSESTATE. Here’s how you read
the mouse:

DIMOUSESTATE mousestate; // this holds the mouse data

// .. somewhere in your main loop

// read the mouse state
if (FAILED(lpdimouse->GetDeviceState(sizeof(DIMOUSESTATE),

(LPVOID)mousestate)))
{ /* error */ }

Notice how smart the function is. Instead of having multiple functions,
the function uses a size and ptr to work with any data format that
exists now or that you might think of later. This is a good programming
technique to remember, young Jedi.

Now that you have the mouse data, let’s work with it. Imagine that you want to move
an object around based on the motion of the mouse. If the player moves the mouse
left, you want the object to move left by the same amount. In addition, if the user
presses the left mouse button, it should fire a missile, and the right button should exit
the program. Here’s the main code:

Trick

1272313618 CH09 10/26/99 10:25 AM Page 559

DirectX and 2D Fundamentals

560 PART II

// obviously you need to do all the other steps...

// defines
#define MOUSE_LEFT_BUTTON 0
#define MOUSE_RIGHT_BUTTON 1
#define MOUSE_MIDDLE_BUTTON 2 // (most of the time)

// globals
DIMOUSESTATE mousestate; // this holds the mouse data

int object_x = SCREEN_CENTER_X, // place object at center
object_y = SCREEN_CENTER_Y;

// .. somewhere in your main loop

// read the mouse state
if (FAILED(lpdimouse->GetDeviceState(sizeof(DIMOUSESTATE),

(LPVOID)mousestate)))
{ /* error */ }

// move object
object_x += mousestate.lX;
object_y += mousestate.lY;

// test for buttons
if (mousestate.rgbButtons[MOUSE_LEFT_BUTTON] & 0x80)

{ /* fire weapon */ }
else
if (mousestate.rgbButtons[MOUSE_RIGHT_BUTTON] & 0x80)

{ /* send exit message */ }

Releasing the Mouse from Service
When you’re done with the mouse, you need to first unacquire it with a call to
Unacquire() and then release the device as usual. Here’s the code:

// unacquire mouse
if (lpdimouse)

lpdimouse->Unacquire();

// release the mouse
if (lpdimouse)

lpdimouse->Release();

As an example of working with the mouse, I have created a little demo called
DEMO9_2.CPP|EXE. As before, you need to link in DDRAW.LIB, DINPUT.LIB, and
WINMM.LIB (for VC++ users), along with T3DLIB1.CPP. Figure 9.8 shows a screen shot
of the program in action.

1272313618 CH09 10/26/99 10:25 AM Page 560

CHAPTER 9
Uplinking with DirectInput and Force Feedback

561

Working the Joystick
The joystick is probably the most complex of all DirectInput devices. The term joy-
stick really encompasses all possible devices other than the mouse and keyboard.
However, to keep things manageable, I’m going to primarily focus on devices that
look like a joystick or game paddle, such as the Microsoft Sidewinder, Microsoft
Gamepad, Gravis Flight Stick, and so forth.

Before we get into this, take a look at Figure 9.9. Here you see a joystick and a con-
trol pad. Both devices are considered to be joysticks under DirectInput. The only
joystick-like device that has a class of its own is the force feedback device, but I’ll get
to that later.

Figure 9.8
DEMO9_2.EXE in action.

Button 1 Button 2

Y - Axis

X - Axis
Y - Axis

X - Axis

6

5

4

Button 1

2

 3

JOYSTICK DEVICE

JOYSTICK

GAME PAD

Axis: 2
Buttons: 2

JOYSTICK DEVICE

Axis: 2
Buttons: 6

Direct input cares about these only:

Figure 9.9
DirectInput devices

are collections of
device objects.

1272313618 CH09 10/26/99 10:25 AM Page 561

DirectX and 2D Fundamentals

562 PART II

Anyway, the point that I want to make about the joystick and gamepad is that they’re
both the same thing as far as DirectInput is concerned. They are both a collection of
axes, switches, and sliders. It’s just that the axes on the joystick have many positions
(they are continuous), and the gamepad has clamped or extreme positions. The point
is that each device is a collection of device objects or device things or input objects,
depending on your terminology and what reference you use. They’re all just input
devices that happen to be on the same physical piece of hardware. Get it? I hope so. :)

The steps for setting up a joystick-like device are the same as for the keyboard and
mouse, except that there are a couple of added steps. Let’s take a look:

1. Create the joystick device with CreateDevice().

2. Use QueryInterface() to acquire an interface pointer to the IDIRECTINPUT-
DEVICE2 interface (which you’ll need for joysticks). This step is new, of course.

3. Set the cooperation level with SetCooperativeLevel().

4. Set the data format with SetDataFormat().

5. Set the joystick range, dead zone, and other properties with SetProperties().
This step is new.

6. Acquire the joystick with Acquire().

7. Poll the joystick with the Poll() function. This step basically makes sure that
joysticks without interrupt drivers have valid data when GetDeviceState() is
called. This step is new.

8. Read the mouse state with GetDeviceState().

9. Repeat step 8 until done.

Enumerating for Joysticks
I always hate explaining callback functions and enumeration functions because they
seem so complex. However, by the time you get your hands on this book, you will
probably be familiar with these types of functions because DOS programming has
been falling by the wayside for quite some time. If you are just learning Windows
programming, this will seem like overkill, but once you get over it, you won’t have to
worry about it anymore.

Basically, a callback function is something similar to the WinProc() in your Windows
programs. It’s a function Windows calls that you supply to do something. This is
fairly straightforward and understandable. Figure 9.10 shows a standard callback like
that of the Windows WinProc().

1272313618 CH09 10/26/99 10:25 AM Page 562

CHAPTER 9
Uplinking with DirectInput and Force Feedback

563

However, Win32/DirectX also uses callback functions for enumeration. Enumeration
means that Windows (or DirectInput in this case) needs to have the capability to scan
the system registry, or whichever database, for something that you’re looking for, such
as what kind of joysticks are plugged in and available.

There are two ways to do this:

• You could call a DirectInput function that builds a list for you and stores it in a
data structure, and you later parse and extrapolate out the important informa-
tion.

• You could supply DirectInput with a callback/enumeration function that it will
call for each new device that it finds. You can be the one who builds up the
device list by adding each new entry every time your callback function is called.

The second method is how DirecInput works, so you just have to deal with it. Now,
you might wonder why you need to do an enumeration at all. Well, you have no idea
what types of joystick devices are plugged in, and even if you did, you need the exact
GUID of one or more of them. So you need to scan for them no matter what because
you need that GUID for the call to CreateDevice().

The function that does the enumeration is called IDIRECTINPUT::EnumDevices() and
is called directly from the main DirectInput COM object. Here’s its prototype:

HRESULT EnumDevices(
DWORD dwDevType, // type of device to scan for
LPDIENUMCALLBACK lpCallback, // ptr to callback func
LPVOID pvRef, // 32 bit value passed back to you
DWORD dwFlags); // type of search to do

Let’s take a look at the parameters. First, dwDevType indicates what kind of devices
you want to scan for; the possibilities are shown in Table 9.6.

Figure 9.10
A callback function.

Callback function
“your code” Other code

Your code

Windows code

“Event”

Causes callback

Win 32 Application

Windows calls the callback for you

1272313618 CH09 10/26/99 10:25 AM Page 563

DirectX and 2D Fundamentals

564 PART II

TABLE 9.6 The Basic Device Types for DirectInput

Value Description

DIDEVTYPE_MOUSE A mouse or mouse-like device (such as a trackball).

DIDEVTYPE_KEYBOARD A keyboard or keyboard-like device.

DIDEVTYPE_JOYSTICK A joystick or similar device, such as a steering wheel.

DIDEVTYPE_DEVICE A device that doesn’t fall into one of the previous categories.

If you want EnumDevices() to be more specific, you can also give it a subtype that
you logically OR with the main type. Table 9.7 contains a partial list of subtypes for
mouse and joystick device enumeration.

TABLE 9.7 DirectInput Subtypes (partial)

Value Description

DIDEVTYPEMOUSE_TOUCHPAD Standard touchpad.

DIDEVTYPEMOUSE_TRACKBALL Standard trackball.

DIDEVTYPEJOYSTICK_FLIGHTSTICK General flightstick.

DIDEVTYPEJOYSTICK_GAMEPAD Nintendo-like gamepad.

DIDEVTYPEJOYSTICK_RUDDER Simple rudder control.

DIDEVTYPEJOYSTICK_WHEEL Steering wheel.

DIDEVTYPEJOYSTICK_HEADTRACKER VR head tracker.

There are few dozen other subtypes that I haven’t listed. The point is,
DirectInput can be as general or as specific in the search as you want it
to be. However, you’re just going to use DIDEVTYPE_JOYSTICK as the
value for dwDevType because you just want to find the basic, run-of-the-
mill joystick(s).

Note

The next parameter in EnumDevices() is a pointer to the callback function that
DirectInput is going to call for each device it finds. I will show you the form of this
function in a moment. The next parameter, pvRef, is a 32-bit pointer that points to a
value that will be passed to the callback. Thus, you can modify the value in the call-
back if you want, or use it to pass data back instead of globally.

Finally, dwFlags controls how the enumeration function should scan. That is, should it
scan for all devices, just the ones that are plugged in, or just force feedback devices?
Table 9.8 contains the scanning codes to control enumeration.

1272313618 CH09 10/26/99 10:25 AM Page 564

CHAPTER 9
Uplinking with DirectInput and Force Feedback

565

TABLE 9.8 Enumeration Scanning Control Codes

Value Description

DIEDFL_ALLDEVICES Scans for all devices that have been installed, even if they
aren’t currently connected.

DIEDFL_ATTACHEDONLY Scans for devices that are installed and connected.

DIEDFL_FORCEFEEDBACK Scans only for force feedback devices.

You should use the DIEDFL_ATTACHEDONLY value because it doesn’t
make sense to allow the player to connect to a device that isn’t plugged
into the computer.

Warning

Now, let’s take a more detailed look at the callback function. The way EnumDevices()
works is that it sits in a loop internally, calling your callback over and over for each
device it finds, as shown in Figure 9.11. Hence, it’s possible that your callback could
be called many times if there are a lot of devices installed or attached to the PC.

DirectInput

You Call

Returns back control

DoneLoops

Your callback

Device 1

Device 2

Device 3

Device n

Physical input
devices

All devices
enumerated

DInput_Enum_Joystick ()
{

//Make a list
//Up to you?
}

EnumDevices ()

Figure 9.11
The device enumera-

tion flow diagram.

This means that it’s up to your callback function to record all these devices in a table
or something so you can later review them after the EnumDevices() returns. Cool.
With that in mind, let’s take a look at the generic prototype for the callback function
to be compatible with DirectInput:

BOOL CALLBACK EnumDevsCallback(
LPDIDEVICEINSTANCE lpddi, // a ptr from DirectInput

// containing info about the
// device it just found on
// this iteration

LPVOID data); // the ptr sent in pvRef to EnumDevices()

1272313618 CH09 10/26/99 10:25 AM Page 565

DirectX and 2D Fundamentals

566 PART II

All you need to do is write a function with the previous prototype (but write the con-
trol code, of course), pass it as lpCallback to EnumDevices(), and you’re all set.
Furthermore, the name can be anything you want because you’re passing the function
by address.

What you put inside the function is up to you, of course, but you probably want to
record or catalog the names of all the devices and their GUIDs as they are retrieved by
DirectInput. Remember, your function will be called once for each device found.
Then, with the list in hand, you can select one yourself or let the user select one from
a list, and then use the associated GUID to create the device.

In addition, DirectInput allows you to continue the enumeration or stop it at any time.
This is controlled via the value you return from the callback function. At the end of
the function, you can return one of these two constants:

• DIENUM_CONTINUE—Continues enumeration.

• DIENUM_STOP—Stops enumeration.

So if you simply return DIENUM_STOP as the return value of the function, it will enu-
merate only one device even if more exist. I don’t have enough room here to show
you a function that catalogs and records all the device GUIDs, but I’m going to give
you one that will find the first device and set it up.

The aforementioned enumeration function will enumerate the first device and stop.
But before I show it to you, take a quick look at the DIDEVICEINSTANCE data structure
that is sent to your callback function for each enumeration. It’s full of interesting
information about the device:

typedef struct
{
DWORD dwSize; // the size of the structure
GUID guidInstance; // instance GUID of the device

// this is the GUID we need
GUID guidProduct; // product GUID of device, general
DWORD dwDevType; // dev type as listed in tables 9.1-2
TCHAR tszInstanceName[MAX_PATH]; // generic instance name

// of joystick device like “joystick 1”
TCHAR tszProductName[MAX_PATH]; // product name of device

// like “Microsoft Sidewinder Pro”
GUID guidFFDriver; // GUID for force feedback driver
WORD wUsagePage; // advanced. don’t worry about it
WORD wUsage; // advanced. don’t worry about it
} DIDEVICEINSTANCE, *LPDIDEVICEINSTANCE;

In most cases, the only fields of interest are tszProductName and guidInstance.
Taking that into consideration, here’s the enumeration function that you can use to get
the GUID of the first joystick device enumerated:

1272313618 CH09 10/26/99 10:25 AM Page 566

CHAPTER 9
Uplinking with DirectInput and Force Feedback

567

BOOL CALLBACK DInput_Enum_Joysticks(
LPCDIDEVICEINSTANCE lpddi, LPVOID guid_ptr)
{
// this function enumerates the joysticks, but stops at the
// first one and returns the instance guid
// so we can create it, notice the cast
(GUID)guid_ptr = lpddi->guidInstance;

// copy product name into global
strcpy(joyname, (char *)lpddi->tszProductName);

// stop enumeration after one iteration
return(DIENUM_STOP);
} // end DInput_Enum_Joysticks

To use the function to enumerate for the first joystick, you would do something like
this:

char joyname[80]; // space for joystick name
GUID joystickGUID; // used to hold GUID for joystick

// enumerate attached joystick devices only with
// DInput_Enum_Joysticks() as the callback function
if (FAILED(lpdi->EnumDevices(

DIDEVTYPE_JOYSTICK, // joysticks only
DInput_Enum_Joysticks, // enumeration function
&joystickGUID, // send guid back in this var
DIEDFL_ATTACHEDONLY)))

{ /* error */ }

// notice that we scan for joysticks that are attached only

In a real product, you might want to continue the enumeration function until it finds
all devices and then, during a setup or options phase, allow the player to select a
device from a list. Then you use the GUID for that device to create the device, which is
the next step!

Creating the Joystick
Once you have the device GUID of the device that you want to create, the call to create
the device is, as usual, CreateDevice(). Assuming that the call to EnumDevices() and
the device GUID has been stored in joystickGUID, here’s how you would create the
joystick device:

LPDIRECTINPUTDEVICE lpdijoy; // joystick device interface
// create the joystick with GUID
if (FAILED(lpdi->CreateDevice(joystickGUID, &lpdijoy,

NULL)))
{ /* error */ }

1272313618 CH09 10/26/99 10:25 AM Page 567

DirectX and 2D Fundamentals

568 PART II

However, because joysticks require polling and other functionality not present in
IDIRECTINPUTDEVICE, you need to use IDIRECTINPUTDEVICE to query for the
IDIRECTINPUTDEVICE2 interface.

Querying for the IDIRECTDINPUTDEVICE2 Interface
If you recall, all interfaces inherit from IUnknown based on class. Thus, they all have
the QueryInterface() and Release() methods. Furthermore, one of the rules of
COM is that you can always get to one interface from another. Thus, to get the
IDIRECTINPUTDEVICE2 interface, you can make a call from the IDIRECTINPUT-
DEVICE interface with the IID (interface ID) of the IDIRECTINPUTDEVICE2 interface
that you want to acquire. That was a mouthful! Here’s the code to do it:

// version 2 interface pointer
LPDIRECTINPUTDEVICE2 lpdijoy2;

// query for the new interface from the old one
lpdijoy->QueryInterface(IID_IDirectInputDevice2,

(void **) &lpdijoy2);

Notice that I have highlighted the IID. This isn’t something I made up; you have to
look it up in the DirectX header files. It currently resides in DINPUT.H, but someday it
could move. In any case, you can always look in DINPUT.H for any interface IDs that
you might want to query for…

Now that you have created the interface to the 2.0 version of the joystick interface,
there is no need to keep the 1.0 version. Thus, you can release it:

if (lpdijoy)
lpdijoy->Release();

And from now on, just use the lpdijoy2 interface as you would the original. It has all
the same functionality and more.

In the demo engines that I create, I tend to use temporary interface
pointers to old interfaces to gain access to the latest ones. Thus, in my
demos I use a temp pointer, query for the latest, and call it lpdijoy
rather than lpdijoy2. I do this because I got sick of having numbered
interfaces around. The bottom line is that all of the interfaces used in
this book are the latest ones available for the job.

Note

Setting the Joystick’s Cooperation Level
Setting the joystick’s cooperation level is done in the exact same way as with the
mouse and keyboard. However, if you had a force feedback stick, you would want
exclusive access to it. Here’s the code:

1272313618 CH09 10/26/99 10:25 AM Page 568

CHAPTER 9
Uplinking with DirectInput and Force Feedback

569

if (FAILED(lpdijoy->SetCooperativeLevel(
main_window_handle,
DISCL_BACKGROUND | DISCL_NONEXCLUSIVE)))

{ /* error */ }

Setting the Data Format
Now for the data format. As with the mouse and keyboard, use a standard data format
as shown in Table 9.2. The one you want is c_dfDIJoystick (ci_dfDIJoystick2 is
for force feedback). Plug it into the function and set the data format:

// set data format
if (FAILED(lpdijoy->SetDataFormat(&c_dfDIJoystick)))

{ /* error */ }

As with the mouse, you need a specific type of data structure to hold the device state
data for the joystick. Referring back to Table 9.3, you see that the data structure you’ll
be working with is called DIJOYSTATE (DIJOYSTATE2 is for force feedback), shown
here:

// generic virtual joystick data structure

typedef struct DIJOYSTATE
{
LONG lX; // x-axis of joystick
LONG lY; // y-axis of joystick
LONG lZ; // z-axis of joystick
LONG lRx; // x-rotation of joystick (context sensitive)
LONG lRy; // y-rotation of joystick (context sensitive)
LONG lRz; // y-rotation of joystick (context sensitive)
LONG rglSlider[2];// slider like controls, pedals, etc.
DWORD rgdwPOV[4]; // Point Of View hat controls, up to 4
BYTE rgbButtons[32]; // 32 standard momentary buttons
} DIJOYSTATE, *LPDIJOYSTATE;

As you can see, the structure has a lot of data fields. This generic data format is very
versatile; I doubt that you would need to ever make your own data format, because I
haven’t seen many joysticks that have more than this! Anyway, the comments should
explain what the data fields are. The axes are in ranges (that can be set), and the but-
tons are usually momentary with 0x80 (high bit), meaning that they’re pressed.

Thus, when you make a call to get the device state with GetDeviceState(), this is the
structure that will be returned and the one that you will query.

Almost done. There is one more detail that you have to take into consideration: the
details of the values that are going to be sent back to you in this structure. A button is
a button. It’s either on or off, but the range entries like lX, lY, and lZ may vary from
one manufacturer to another. Thus, DirectInput lets you scale them to a fixed range
for all cases so that your game input logic can always work with the same numbers.
Let’s take a look at how to set this and other properties of the joystick.

1272313618 CH09 10/26/99 10:25 AM Page 569

DirectX and 2D Fundamentals

570 PART II

Setting the Input Properties of the Joystick
Because the joystick is inherently an analog device, the motion of the yoke has finite
range. The problem is, you must set it to known values so your game code can inter-
pret it. In other words, when you query the joystick for its position and it returns lX =
2000, lY=-3445, what does it mean? You can’t interpret the data because you have no
frame of reference, so that’s what you need to clarify.

At the very least, you need to set the ranges of any analog axis (even if it’s digitally
encoded) that you want to read. For example, you might decide to set both the X and
Y axes to -1000 to 1000 and -2000 to 2000, respectively, or maybe -128 to 128 for
both so you can fit them in a byte. Whatever you decide to do, you must do some-
thing. Otherwise, you won’t have any way of interpreting the data when you retrieve
it, unless you have set the range yourself.

Setting any property of the joystick, including the ranges of the joystick, is accom-
plished with the SetProperty() function. Its prototype is shown here:

HRESULT SetProperty(
REFGUID rguidProp, // GUID of property to change
LPCDIPROPHEADER pdiph);// ptr to property header struct

// containing detailed information
// relating to the change

SetProperty() is used to set a number of various properties, such as relative or
absolute data format, range of each axis, dead zone (or dead band; area that is neu-
tral), and so forth. Using the SetProperty() function is extremely complex due to the
nature of all the constants and nested data structures.

Suffice it to say that you shouldn’t call SetProperty() unless you absolutely must.
Most of the default values will work fine. I spent many hours looking at the circular
data structures going, “What the heck?” (I didn’t really say “What the heck?”, but this
is a PG-rated book.)

Luckily, you only need to set the range of the X-Y axes (and maybe the dead zone) to
make things work, so that’s all I’m going to show. If you’re interested in learning
more, refer to the DirectX SDK on this subject. Nonetheless, the following code
should get you started on setting other properties if you need to. The structure you
need to set up is as follows:

typedef struct DIPROPRANGE
{
DIPROPHEADER diph;
LONG lMin;
LONG lMax;
} DIPROPRANGE, *LPDIPROPRANGE;

1272313618 CH09 10/26/99 10:25 AM Page 570

CHAPTER 9
Uplinking with DirectInput and Force Feedback

571

This has another nested structure, DIPROPHEADER:

typedef struct DIPROPHEADER
{
DWORD dwSize;
DWORD dwHeaderSize;
DWORD dwObj;
DWORD dwHow;
} DIPROPHEADER, *LPDIPROPHEADER;

And both of them have a billion ways of being set up, so please look at the DirectX
SDK if you’re interested. It would take 10 more pages just to list all the various flags
you can send! Anyway, here’s the code to set the axes ranges:

// this structure holds the data for the property changes
DIPROPRANGE joy_axis_range;

// first set x axis tp -1024 to 1024
joy_axis_range.lMin = -1024;
joy_axis_range.lMax = 1024;

joy_axis_range.diph.dwSize = sizeof(DIPROPRANGE);
joy_axis_range.diph.dwHeaderSize = sizeof(DIPROPHEADER);

// this holds the object you want to change
joy_axis_range.diph.dwObj = DIJOFS_X;

// above can be any of the following:
//DIJOFS_BUTTON(n) - for buttons buttons
//DIJOFS_POV(n) - for point-of-view indicators.
//DIJOFS_RX - for x-axis rotation.
//DIJOFS_RY - for y-axis rotation.
//DIJOFS_RZ - for z-axis rotation (rudder).
//DIJOFS_X - for x-axis.
//DIJOFS_Y - for y-axis.
//DIJOFS_Z - for the z-axis.
//DIJOFS_SLIDER(n) - for any of the sliders.
// object access method, use this way always
joy_axis_range.diph.dwHow = DIPH_BYOFFSET;

// finally set the property
lpdijoy->SetProperty(DIPROP_RANGE,&joy_axis_range.diph);

// now y-axis
joy_axis_range.lMin = -1024;
joy_axis_range.lMax = 1024;
joy_axis_range.diph.dwSize = sizeof(DIPROPRANGE);
joy_axis_range.diph.dwHeaderSize = sizeof(DIPROPHEADER);
joy_axis_range.diph.dwObj = DIJOFS_Y;
joy_axis_range.diph.dwHow = DIPH_BYOFFSET;

// finally set the property
lpdijoy->SetProperty(DIPROP_RANGE,&joy_axis_range.diph);

1272313618 CH09 10/26/99 10:25 AM Page 571

DirectX and 2D Fundamentals

572 PART II

At this point, the joystick would have the X and Y axes set to a range of -1024 to
1024. This range is arbitrary, but I like it. Notice that you use a data structure called
DIPROPRANGE. This is the structure that you set up to do your bidding. The bad thing
about it is that there are a million ways to set up the structure, so it’s a real pain.
However, using the previous template, you can at least set the range of any axis—just
change the joy_axis_range.diph.dwObj and joy_axis_range.diph.dwHow fields to
whatever you need.

As a second example of setting properties, let’s set the dead zone (or dead band) of
the X and Y axes. The dead zone is the amount of neutral area in the center of the
stick. You might want the stick to be able to move a bit away from the center and not
send any values. This is shown in Figure 9.12.

Side view

x-axis (y-axis similar)

Dead zone
no signal

(0, 0) still sent

Centerline neutral (0, 0)

Yoke

Figure 9.12
The mechanics of the

joystick dead zone.

For example, in the previous example you set the X and Y axis range to -1024 to
1024, so if you wanted a 10 percent dead zone on both axes, you would set it for
about 102 units in both the + and - directions, right? Wrong!!! The dead zone is in
terms of an absolute range of 0–10,000, no matter what range you set the joystick to.
Thus, you have to compute 10 percent of 10,000 rather than 1024—10% × 10000 =
1000. This is the number you need to use.

The dead zone is always in terms of 0–10000 or hundreds of a percent. If
you want a dead zone of 50%, use 5000, for 10% use 1000, and so
forth.

Warning

1272313618 CH09 10/26/99 10:25 AM Page 572

CHAPTER 9
Uplinking with DirectInput and Force Feedback

573

Because this operation is a little simpler, you need only use the DIPROPWORD structure:

typedef struct DIPROPDWORD
{
DIPROPHEADER diph;
DWORD dwData;
} DIPROPDWORD, *LPDIPROPDWORD;

This is much simpler than the DIPROPRANGE structure used in the previous example.
Here’s how to do it:

DIPROPDWORD dead_band; // here’s our property word

dead_band.diph.dwSize = sizeof(dead_band);
dead_band.diph.dwHeaderSize = sizeof(dead_band.diph);
dead_band.diph.dwObj = DIJOFS_X;
dead_band.diph.dwHow = DIPH_BYOFFSET;

// 100 will be used on both sides of the range +/-
dead_band.dwData = 1000;

// finally set the property
lpdijoy->SetProperty(DIPROP_DEADZONE,&dead_band.diph);

And now for the Y-axis:

dead_band.diph.dwSize = sizeof(dead_band);
dead_band.diph.dwHeaderSize = sizeof(dead_band.diph);
dead_band.diph.dwObj = DIJOFS_Y;
dead_band.diph.dwHow = DIPH_BYOFFSET;

// 100 will be used on both sides of the range +/-
dead_band.dwData = 1000;

// finally set the property
lpdijoy->SetProperty(DIPROP_DEADZONE,&dead_band.diph);

And that’s all there is to that. Thank Zeus!

Acquiring the Joystick
Now, let’s acquire the joystick with a call to Acquire():

// acquire the joystick
if (FAILED(lpdijoy->Acquire()))

{ /* error */ }

Of course, remember to Unacquire() the joystick when you’re through with it, right
before calling Release() on the interface to release the device itself.

1272313618 CH09 10/26/99 10:25 AM Page 573

DirectX and 2D Fundamentals

574 PART II

Polling the Joystick
Joysticks are the only devices that need polling (so far). The reason for polling is the
following: Some joystick drivers generate interrupts, and the data is always fresh.
Some drivers are less intelligent (or more efficient) and must be polled. Whatever the
philosophical viewpoint of the driver developer, you must always call Poll() on the
joystick before trying to read the data. Here’s the code for doing so:

If (FAILED(lpdijoy->Poll()))
{ /* error */ }

Reading the Joystick State Data
Now you’re ready to read the data from the joystick (you should be an expert at this
by now). Make a call to GetDeviceState(). However, you must send the correct para-
meters based on the new data format, c_dfDIJoystick (c_dfDIJoystick2 for force
feedback), and the data structure the data will be placed in, DIJOYESTATE. Here’s the
code:

DIJOYSTATE joystate; // this holds the joystick data

// .. somewhere in your main loop

// read the joystick state
if (FAILED(lpdijoy->GetDeviceState(sizeof(DIJOYSTATE),

(LPVOID)joystate)))
{ /* error */ }

Now that you have the joystick data, let’s work with it. However, you need to take
into consideration that the data is in a range. Let’s write a little program that moves an
object around, much like the mouse example. And if the user presses the fire button
(usually index 0), a missile fires:

// obviously you need to do all the other steps...

// defines
#define JOYSTICK_FIRE_BUTTON 0

// globals
DIJOYSTATE joystate; // this holds the joystick data

int object_x = SCREEN_CENTER_X, // place object at center
object_y = SCREEN_CENTER_Y;

// .. somewhere in your main loop

// read the joystick state
if (FAILED(lpdijoy->GetDeviceState(sizeof(DIJOYSTATE),

(LPVOID)joystate)))
{ /* error */ }

1272313618 CH09 10/26/99 10:25 AM Page 574

CHAPTER 9
Uplinking with DirectInput and Force Feedback

575

// move object

// test for buttons
if (mousestate.rgbButtons[JOYSTICK_FIRE_BUTTON] & 0x80)

{ /* fire weapon */ }

Releasing the Joystick from Service
When you’re done with the joystick, you need unacquire and release the device as
usual. Here’s the code:

// unacquire joystick
if (lpdijoy)

lpdijoy->Unacquire();

// release the joystick
if (lpdijoy)

lpdijoy->Release();

Releasing before unacquiring can be devastating! Make sure to
unacquire and then release.

Warning

As an example of working with the joystick, I have created a little demo called
DEMO9_3.CPP|EXE. As before, you need to link in DDRAW.LIB, DINPUT.LIB, and
WINMM.LIB (for VC++ users), along with T3DLIB1.CPP. Figure 9.13 shows a screen
shot of the program in action.

Figure 9.13
DEMO9_3.EXE in action.

1272313618 CH09 10/26/99 10:25 AM Page 575

DirectX and 2D Fundamentals

576 PART II

Massaging Your Input
Now that you know how to read each input device, the question becomes one of input
system architecture. In other words, you might be obtaining input from a number of
input devices, but it would be a pain to have separate control code for each input
device. Thus, you might come up with the idea of creating a generic input record,
merging all the input from the mouse, keyboard, and joystick together, and then using
this structure to make your decisions. Figure 9.14 shows the concept graphically.

Joy state data

Mouse state data

Keyboard state data

GetDeviceState()

GetDeviceState()

GetDeviceState()

IDirectInputDevice

IDirectInputDevice

IDirectInputDevice

Application

Virtual input record

Merge
function

x, y
buttons

.

.

.

.

Poll()

Joystick

Mouse

Keyboard

Figure 9.14
Merging input data
into a virtual input

record.

In the case of plain old DirectInput, let’s say that you want the player to be able to
play with the keyboard, mouse, and joystick all at the same time. The left mouse but-
ton might be the fire button, but so is the Ctrl key on the main keyboard and the first
button on the joystick. In addition, if the player moves the mouse to the right, presses
the right arrow on the keyboard, or moves the joystick to the right, you want all of
these events to make the player move right.

As an example of what I’m talking about, let’s build a really simple input system that
takes a keyboard, joystick, and mouse input record from DirectInput and then merges
them into one record that you can query. And when you do query the record, you
won’t care whether it was the mouse, keyboard, or joystick that was the source of the
input because all the input events will be scaled and normalized.

The system you’re going to implement will have the following:

• X-axis

• Y-axis

• Fire button

• Special button

1272313618 CH09 10/26/99 10:25 AM Page 576

CHAPTER 9
Uplinking with DirectInput and Force Feedback

577

And here are the details of the device variables and event mappings:

Mouse Mapping

+x-axis: if (lx > 0)

-x-axis: if (lx < 0)

+y-axis: if (ly > 0)

-y-axis: if (ly > 0)

Fire button: Left mouse button (rgbButtons[0])

Special button: Right mouse button (rgbButtons[1])

Keyboard Mapping

+x-axis: Right arrow key

-x-axis: Left arrow key

+y-axis: Up arrow key

-y-axis: Down arrow key

Fire button: Ctrl key

Special button: Esc key

Joystick Mapping (assume a range of –1024 to +1024 on both axes, with a 10 per-
cent dead zone)

+x-axis: lX > 32

-x-axis: lX < 32

+y-axis: lY > 32

-y-axis: lY < -32

Fire button: rgbButtons[0]

Special button: rgbButtons[1]

Now that you know the mappings, make up an appropriate data structure to hold the
result:

typedef struct INPUT_EVENT_TYP
{
int dx; // the change in x
int dy; // the change in y
int fire; // the fire button
int special; // the special button
} INPUT_EVENT, *INPUT_EVENT_PTR;

1272313618 CH09 10/26/99 10:25 AM Page 577

DirectX and 2D Fundamentals

578 PART II

Using a simple function and logic, you’re going to filter all the input into a structure
of this type. First, assume that you have retrieved the device data from all input
devices with something like this:

// keyboard
if (FAILED(lpdikey->GetDeviceState(256,

(LPVOID)keystate)))
{ /* error */ }

// mouse
if (FAILED(lpdimouse->GetDeviceState(sizeof(DIMOUSESTATE),

(LPVOID)mousestate)))
{ /* error */ }

// joystick

If (FAILED(lpdijoy->Poll()))
{ /* error */ }

if (FAILED(lpdijoy->GetDeviceState(sizeof(DIJOYSTATE),
(LPVOID)joystate)))

{ /* error */ }

At this point, you have the structures keystate[], mousestate, and joystate ready
to go. Here’s a function that would do the job:

void Merge_Input(INPUT_EVENT_PTR event_data, // the result
UCHAR *keydata, // keyboard data
LPDIMOUSESTATE mousedata, // mouse data
LPDIJOYSTATE joydata) // joystick data

{
// merge all the data together

// clear the record to be safe
memset(event_data,0,sizeof(INPUT_EVENT));

// first the fire button
if (mousedata->rgbButtons[0] || joydata->rgbButtons[0] ||

keydata[DIK_LCONTROL])
event_data->fire = 1;

// now the special button
if (mousedata->rgbButtons[1] || joydata->rgbButtons[1] ||

keydata[DIK_ESCAPE])
event_data->special = 1;

// now the x-axis
if (mousedata->lX > 0 || joydata->lX > 32 ||

keydata[DIK_RIGHT])
event_data->dx = 1;

1272313618 CH09 10/26/99 10:25 AM Page 578

CHAPTER 9
Uplinking with DirectInput and Force Feedback

579

// now the -x-axis
if (mousedata->lX < 0 || joydata->lX < -32 ||

keydata[DIK_LEFT])
event_data->dx = -1;

// and the y-axis
if (mousedata->lY > 0 || joydata->lY > 32 ||

keydata[DIK_DOWN])
event_data->dy = 1;

// now the -y-axis
if (mousedata->lY < 0 || joydata->lY < -32 ||

keydata[DIK_UP])
event_data->dy = -1;

} // end Merge_Data

Killer, huh? Of course, you can make this much more sophisticated by checking if the
device is actually online, scaling the data, and so on, but you get the idea.

Going Deeper with Force Feedback
Force feedback is really a massive topic. I had no idea how complex it was until I
tried playing with it. Alas, I’m not going to go into it in any depth. A whole book
could be written just about force feedback (and DirectMusic for that matter, but that’s
another story). However, I am going to give you an idea of what it is, and you’ll set
up a teeny-weeny force demo.

Force feedback describes the next generation of input devices, which have actuators,
motors, and so forth that can exert forces on your hand, or your whole body for that
matter. (“Cybersex” is going to take on a whole new meaning in a couple of years.)
You’ve probably seen or may even own a force feedback device, such as the Microsoft
Force Feedback joystick or some other similar device.

Programming these devices is very complex. Not only is a good understanding of
force, spring, and motion needed, but the devices and the forces events, or effects,
have a very close relationship to musical notes. That is, they can have an envelope that
modulates the forces as they are applied to the various motors and actuators on the
joystick. Thus, values like rate, frequency, timing, and so on all play a role in using
and programming force feedback. In fact, creating effects to play or command the
force feedback device is so complex that there are third-party tools you can use to cre-
ate them, such as Microsoft’s Force Factory. Luckily, you aren’t going to need to use
anything that fancy for this demo.

1272313618 CH09 10/26/99 10:26 AM Page 579

DirectX and 2D Fundamentals

580 PART II

The Physics of Force Feedback
Force feedback devices let you set up two types of effects: motive forces and condi-
tions. Motive forces are like active forces that are always in flux, whereas conditions
are in response to an event. In either case, you control the amount of force N (in
Newtons) and the properties of the force, such as its direction, duration, and so forth.

Setting Up Force Feedback
The first step in creating a force feedback device is to find one and get its GUID. If you
recall how you scanned for standard joystick GUIDs, you’re going to do the same thing
for force feedback devices. However, when you do the device enumeration, you’re
going to call it like this:

GUID fjoystickGUID; // used to hold GUID for force joystick

// enumerate attached joystick devices only with
// DInput_Enum_Joysticks() as the callback function
if (FAILED(lpdi->EnumDevices(

DIDEVTYPE_JOYSTICK, // joysticks only
DInput_Enum_Joysticks, // enumeration function
&fjoystickGUID, // send guid back in this var
DIEDFL_ATTACHEDONLY | DIEDFL_FORCEFEEDBACK)))

{ /* error */ }

Once you have the GUID, you create the device as usual. However, you must make
sure that the cooperation level is set for DISCL_EXCLUSIVE mode (no one else can use
force feedback while you’re using it), and you must use the version 2.0 data format.
Here’s all the code:

LPDIRECTINPUTDEVICE lpdijoy_temp; // joystick device interface

// version 2 interface pointer
LPDIRECTINPUTDEVICE2 lpdijoy;

// create the joystick with GUID
if (FAILED(lpdi->CreateDevice(joystickGUID, &lpdijoy_temp,

NULL)))
{ /* error */ }

// query for the new interface from the old one
lpdijoy_temp->QueryInterface(IID_IDirectInputDevice2,

(void **) &lpdijoy);

// release the old interface
lpdijoy_temp->Release();

if (FAILED(lpdijoy->SetCooperativeLevel(
main_window_handle,

1272313618 CH09 10/26/99 10:26 AM Page 580

CHAPTER 9
Uplinking with DirectInput and Force Feedback

581

DISCL_BACKGROUND | DISCL_EXCLUSIVE)))
{ /* error */ }

// set data format
if (FAILED(lpdijoy->SetDataFormat(&c_dfDIJoystick2)))

{ /* error */ }

Okay, now you have a force feedback device set up and ready to go. So what should
you do with it?

A Force Feedback Demo
If you like, you can just use the force feedback device like a normal joystick.
However, the data packet sent back is now DIJOYSTATE2 rather than DIJOYSTATE. The
explanation of the code would take too long, so you’re going to have to figure it out
based on the comments and the demo program.

However, the code basically sets up an effect that is composed of an envelope and a
periodic description. Moreover, the effect is connected to the joystick fire trigger, so it
starts when the trigger is held. Here’s the code that will set up the force feedback
effect, assuming you have the GUID of the device and have set up the force feedback
joystick as shown previously:

// force feedback setup
DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
LONG lDirection[2] = { 0, 0 };

DIPERIODIC diPeriodic; // type-specific parameters
DIENVELOPE diEnvelope; // envelope
DIEFFECT diEffect; // general parameters

// setup the periodic structure
diPeriodic.dwMagnitude = DI_FFNOMINALMAX;
diPeriodic.lOffset = 0;
diPeriodic.dwPhase = 0;
diPeriodic.dwPeriod = (DWORD) (0.05 * DI_SECONDS);

// set the modulation envelope
diEnvelope.dwSize = sizeof(DIENVELOPE);
diEnvelope.dwAttackLevel = 0;
diEnvelope.dwAttackTime = (DWORD) (0.01 * DI_SECONDS);
diEnvelope.dwFadeLevel = 0;
diEnvelope.dwFadeTime = (DWORD) (3.0 * DI_SECONDS);

// set up the effect structure itself
diEffect.dwSize = sizeof(DIEFFECT);
diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
diEffect.dwDuration = (DWORD) INFINITE; // (1 * DI_SECONDS);

// set up details of effect
diEffect.dwSamplePeriod = 0; // = default

1272313618 CH09 10/26/99 10:26 AM Page 581

DirectX and 2D Fundamentals

582 PART II

diEffect.dwGain = DI_FFNOMINALMAX; // no scaling
diEffect.dwTriggerButton = DIJOFS_BUTTON0; // connect effect

// to trigger button
diEffect.dwTriggerRepeatInterval = 0;
diEffect.cAxes = 2;
diEffect.rgdwAxes = dwAxes;
diEffect.rglDirection = &lDirection[0];
diEffect.lpEnvelope = &diEnvelope;
diEffect.cbTypeSpecificParams = sizeof(diPeriodic);
diEffect.lpvTypeSpecificParams = &diPeriodic;

// create the effect and get the interface to it
lpdijoy2->CreateEffect(GUID_Square, // standard GUID

&diEffect, // where the data is
&lpdieffect, // where to put interface pointer
NULL); // no aggregation

For a demo of this in action, check out DEMO9_4.CPP. It basically takes your little cen-
tipede demo and adds a machine gun to it! Of course, you need a force feedback joy-
stick for the demo to work.

The force feedback code shown previously is based on the example in
the DirectX SDK, so you can refer there for a much more in-depth expla-
nation.

Note

Writing a Generalized Input System:
T3DLIB2.CPP

Writing a simple set of wrapper functions around DirectInput is almost a no-brainer.
Well, it takes some brains, but for the most part it’s fairly easy. All you need to do is
create an API with a very simple interface and very few parameters that

• Initializes the DirectInput system.

• Sets up and acquires the keyboard, mouse, and joystick (or any subset).

• Reads data from any of the input devices.

• Shuts down, unacquires, and releases everything.

I have created such an API, and it’s available in T3DLIB2.CPP|H on the CD. The API
does everything you need to initialize DirectInput and read any device. However, I
didn’t do any input merging, as shown in the example a few sections previous. Rather,
you will still receive input in terms of standard DirectInput device state(s) structures,
and you’ll process the various fields within each device state structure (keyboard,
mouse, and joystick). However, this gives you the most freedom.

1272313618 CH09 10/26/99 10:26 AM Page 582

CHAPTER 9
Uplinking with DirectInput and Force Feedback

583

Before reviewing the functions, take a look at Figure 9.15. It depicts the relationship
between each device and the data flow.

Mouse
state

Keyboard
state

Joy
state

Game
App

Code API
Input devices Data

Joystick

Keyboard

Mouse

Joystick interface
Init ()
Read ()

Keyboard interface
Init ()
Read ()

Mouse interface
Init ()
Read ()

Compiler files

T3DLib2.cpp
T3DLib2.H

DInput.lib
DInput.lt

Figure 9.15
The DirectInput soft-

ware system.

Here are the globals for the library:

LPDIRECTINPUT lpdi; // dinput object
LPDIRECTINPUTDEVICE lpdikey; // dinput keyboard
LPDIRECTINPUTDEVICE lpdimouse; // dinput mouse
LPDIRECTINPUTDEVICE2 lpdijoy; // dinput joystick
GUID joystickGUID; // guid for main joystick
char joyname[80]; // name of joystick

// all input is stored in these records
UCHAR keyboard_state[256]; // contains keyboard state table
DIMOUSESTATE mouse_state; // contains state of mouse
DIJOYSTATE joy_state; // contains state of joystick
int joystick_found; // tracks if stick is plugged in

Input from the keyboard is placed in keyboard_state[], the mouse data is stored in
mouse_state, and the joystick data is stored in joy_state by the input system. The
structures of these records are the standard DirectInput device state structures. But in
general, the mouse and joystick are roughly equivalent as far as the x,y position goes.
That is, you access them via the fields lX and lY, and the buttons are BOOLEANs in
rgbButtons[].

1272313618 CH09 10/26/99 10:26 AM Page 583

DirectX and 2D Fundamentals

584 PART II

Let’s get to the functions. The variable joystick_found is a Boolean that is set when
you request joystick access. If a joystick is found, it is True; otherwise, it is False.
With it, you can conditionally block out code that uses the joystick. So without further
ado, here is the new API.

Function Prototype:

int DInput_Init(void);

Purpose:

DInput_Init() initializes the DirectInput input system. It creates the main COM
object and returns True if successful, False otherwise. And of course, the global lpdi
will be valid. The function does not create any devices, though. Here’s an example of
initializing the input system:

if (!DInput_Init())
{ /* error */ }

Function Prototype:

void DInput_Shutdown(void);

Purpose:

DInput_Shutdown() releases all the COM objects and any resources allocated during
the call to DInput_Init(). Normally, you would call DInput_Shutdown() at the very
end of your application, after you have released all the input devices themselves.
We’ll get to that shortly. Anyway, here’s an example of shutting down the input sys-
tem:

DInput_Shutdown();

Function Prototype:

DInput_Init_Keyboard(void);

Purpose:

DInput_Init_Keyboard() initializes and acquires the keyboard. This should always
work and return True, unless another DirectX application has taken over in a really
uncooperative way. Here’s an example:

if (!DInput_Init_Keyboard())
{ /* error */ }

Function Prototype:

int DInput_Init_Mouse(void);

1272313618 CH09 10/26/99 10:26 AM Page 584

CHAPTER 9
Uplinking with DirectInput and Force Feedback

585

Purpose:

DInput_Init_Mouse() initializes and acquires the mouse. The function takes no para-
meters and returns True if successful and False otherwise. But it should always work,
unless a mouse isn’t plugged in or there’s another DirectX application that has totally
taken over! If everything goes well, lpdimouse becomes the valid interface pointer.
Here’s an example:

if (!DInput_Init_Mouse()) { /* error */ }

Function Prototype:

int DInput_Init_Joystick(int min_x=-256, // min x range
int max_x=256, // max x range
int min_y=-256, // min y range
int max_y=256, // max y range
int dead_zone=10); // dead zone in percent

Purpose:

DInput_Init_Joystick() initializes the joystick device for use. The function takes
five parameters, which define the X-Y range of motion of the data sent back from the
joystick and the dead zone as a percentage. If you want to use the defaults of -256 to
256 and a 10 percent dead zone for each axis, you need not send parameters because
they have default values (it’s a C++ thing).

If the call returns back a True, a joystick was found and has been set up, initialized,
and acquired. After the call, the interface pointer lpdijoy will be valid if you need it
for anything. In addition, the string joyname[] will contain the “friendly” name of the
joystick device, such as Microsoft Sidewinder Pro and so on.

Here’s an example of initializing the joystick and setting its X-Y ranges to -1024 to
1024, with a 5 percent dead zone:

if (!DInput_Init_Joystick(-1024, 1024, -1024, 1024, 5))
{ /* error */ }

Function Prototype(s):

void DInput_Release_Joystick(void);
void DInput_Release_Mouse(void);
void DInput_Release_Keyboard(void);

Purpose:

DInput_Release_Joystick(), DInput_Release_Mouse(), and
DInput_Release_Keyboard() release each of those respective input devices when
you’re done with them. The functions can be called even if you haven’t initialized
those respective devices, so you can just call them all at the end of your application if
you want. Here’s a complete example of starting up the DirectInput system, initializ-
ing all the devices, and then releasing them and shutting down:

1272313618 CH09 10/26/99 10:26 AM Page 585

DirectX and 2D Fundamentals

586 PART II

// initialize the DirectInput system
DInput_Init();

// initialize all input devices and acquire them
DInput_Init_Joystick();
DInput_Init_Mouse();
DInput_Init_Keyboard();

// input loopdo work here
// now done...

// first release all devices, order is unimportant
DInput_Release_Joystick();
DInput_Release_Mouse();
DInput_Release_Keyboard();

// shutdown DirectInput
DInput_Shutdown();

Function Prototype:

int DInput_Read_Keyboard(void);

Purpose:

DInput_Read_Keyboard() scans the keyboard state and places the data in
keyboard_state[], which is an array of 256 bytes. This is the standard DirectInput
keyboard state array, so you must use the DirectInput key constant DIK_* if you want
to make sense of it. If a key is pressed, the array value will be 0×80. Here’s an exam-
ple of testing if the right and left keys are down using the manifest constants in
DirectInput (which you can look up in the SDK or the abridged Table 9.4):

// read the keyboard
if (!DInput_Read_Keyboard())

{ /* error */ }

// now test the state data
if (keyboard_state[DIK_RIGHT]

{ /* move ship right */ }
else
if (keyboard_state[DIK_LEFT]

{ /* move ship left */ }

Function Prototype:

int DInput_Read_Mouse(void);

Purpose:

DInput_Read_Mouse() reads the relative mouse state and stores the result in
mouse_state, which is a DIMOUSESTATE structure. The data is in relative delta mode.
In most cases you’ll only need to look at mouse_state.lX, mouse_state.lY, and

1272313618 CH09 10/26/99 10:26 AM Page 586

CHAPTER 9
Uplinking with DirectInput and Force Feedback

587

rgbButtons[0..2], which are Booleans for the three mouse buttons. Here’s an exam-
ple of reading the mouse and using it to move a cursor around and draw:

// read the mouse
if (!DInput_Read_Mouse())

{ /* error */ }

// move cursor
cx+=mouse_state.lX;
cy+=mouse_state.lY;

// test if left button is down
if (mouse_state.rgbButtons[0])

Draw_Pixel(cx,cy,col,buffer,pitch);

Function Prototype:

int DInput_Read_Joystick(void);

Purpose:

DInput_Read_Joystick() polls the joystick and then reads the data into joy_state,
which is a DIJOYSTATE structure. Of course, if there isn’t a joystick plugged in, the
function returns False and joy_state will be invalid, but you get the idea. If it’s suc-
cessful, joy_state contains the state information of the joystick. The data returned
will be in the range you previously set for each axis, and the button values are
Booleans in rgbButtons[]. For example, here’s how you would use the joystick to
move a ship right and left, and use the first button to fire:

// read the joystick data
if (!DInput_Read_Joystick())

{ /* error */ }

// move the ship
ship_x+=joy_state.lX;
ship_y+=joy_state.lY;

// test for trigger
if (joy_state.rgbButtons[0])

{ // fire weapon // }

Of course, your joystick may have a lot of buttons and multiple axes. In that case, you
can use the other fields of joy_state as defined in the DIJOYSTATE DirectInput struc-
ture.

Even though you’re using the IDIRECTINPUTDEVICE2 interface, you don’t
need to use the DIJOYSTATE2 structure; that’s only for force feedback
devices.

Note

1272313618 CH09 10/26/99 10:26 AM Page 587

DirectX and 2D Fundamentals

588 PART II

The T3D Library at a Glance
At this point, you have two main .CPP|H modules that make up the T3D library:

• T3DLIB1.CPP|H—DirectDraw plus graphics algorithms.

• T3DLIB2.CPP|H—DirectInput.

Keep this in mind when you’re compiling programs. If you want to compile a demo
program, call it DEMOX_Y.CPP and then look at its .H includes. If it includes either of
the related .H library modules, you’ll obviously need to include the .CPP files too.

As an example of using the new library functions in T3DLIB2.CPP|H, I have rewritten
the three demos created in this chapter, DEMO9_1.CPP, DEMO9_2.CPP, and
DEMO9_3.CPP, as DEMO9_1a.CPP, DEMO9_2a.CPP, and DEMO9_3a.CPP, respectively.
Therefore, you can see how much code can be chucked out when you use the library
functions.

To compile any of the programs, make sure to include both of the library source files,
as well as all of the DirectX .LIB files. And please, for God’s sake, set your compiler
to Win32 .EXE. I have received over 30 emails today from people asking how to set
the compiler! I’m a scientist, Jim, not a technical support agent for Microsoft!

Summary
This chapter has been fairly fun, don’t you think? It covered DirectInput, keyboards,
mice, joysticks, input data massaging, and a little force feedback, and you added
another piece to your library. You learned that DirectX supports all input devices
through a common interface, and there are just a few steps (all similar) to communi-
cating with any device. Not bad, baby boy (or baby girl). However, you still aren’t out
of the woods with the DirectX foundation systems. In the next chapter you’ll tackle
DirectSound and a bit of DirectMusic. After that, you can get to some serious game
programming!

1272313618 CH09 10/26/99 10:26 AM Page 588

Sounding Off with
DirectSound and
DirectMusic

Historically, creating sound and music on the PC has been a
nightmare. However, with the advent of DirectSound and
DirectMusic, it’s all too easy. This chapter will cover the follow-
ing topics:

• Fundamentals of sound

• Digital sound versus synthesized sound

• Sound hardware

• DirectSound API

• Sound file formats

• DirectMusic API

• Adding sound support to your library

Sound Programming on the PC
Sound programming is one of those things that always gets put
off until the end. Writing a sound system is difficult because not
only do you have to understand sound and music, but you have

CHAPTER 10

1372313618 CH10 10/26/99 10:28 AM Page 589

DirectX and 2D Fundamentals

590 PART II

to make sure the sound system works on every single sound card. Here lies the prob-
lem. In the past, most game programmers used a third-party sound library such as the
Miles Sound System, Diamondware Sound Toolkit, or something similar. Each system
has its pros and cons, but the biggest problem is price. A sound library that works for
DOS and Windows can cost thousands of dollars.

You don’t have to worry about DOS anymore, but you do have to worry about
Windows. It’s true that Windows has sound and multimedia support, but it was never
designed to have the ultra-high performance needed for a real-time video game.
Thankfully, DirectSound and DirectMusic solve all these problems and more. Not
only are DirectSound and DirectMusic free, but they are extremely high performance,
have support for a million different sound cards, and have extensions to do as little or
as much as you need.

For example, DirectSound has 3D support under DirectSound3D, and DirectMusic
can do a whole lot more than play MIDI files. DirectMusic is a new real-time music
composing and playback technology based on DLS (Downloadable Sounds) data.
This means that not only will music sound the same on every single sound card, but
DirectMusic can create music on-the-fly for your game based on preprogrammed tem-
plates, motifs, and personalities that you supply. Getting DirectMusic’s AI to compose
for you takes a lot of work, but it may be worth it for games in which you want to
change the mood based on the gameplay but don’t want to compose 10-20 different
versions of each song yourself. With that in mind, let’s learn a little about sound.

And Then There Was Sound…
Sound is one of those physical manifestations that has a circular definition. If you
went out on the street and asked people what sound is, most of them would probably
reply with, “Hmmm, stuff you hear with your ears, like sounds and noises.” (Go
ahead, try it…) That’s true, but it still doesn’t get you closer to the actual physics of
sound, and that’s important if you’re going to record, manipulate, and play sound.

Sound is a mechanical pressure wave emitted from a source, as shown in Figure 10.1.
Sound can exist only in an environment such as our atmosphere, which is filled with
gases such as nitrogen, oxygen, helium, etc. Sound can travel in water also, but it
moves at a much higher velocity than in air because the medium’s increased density
makes it more conductive. Sort of. Close enough. :)

A sound wave is really the motion of molecules. When a speaker moves in and out, it
moves the surrounding air in and out mechanically, that is, by contact with the mole-
cules, and at some point the sound wave makes its way to your ears. However,
because sound travels by a wave propagating through the air via mechanical colli-
sions, it takes time to get to you. That’s why sound travels so slowly, relatively speak-
ing. You can see something happen, such as a car crash, and not hear it for a second or

1372313618 CH10 10/26/99 10:28 AM Page 590

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

591

two if it’s happening far enough away. This is because a mechanical wave in air, or
sound wave, can only travel at about 600 MPH or 344 m/s (meters per second), more
or less depending on the density and temperature of the air. Table 10.1 lists the veloci-
ties of sound in air, seawater, and steel, for average temperatures.

Sound source

P1

P1

P2

P2

Frequency

Frequency

344 m/s in air
Mechanical wave propagation
compression of air molecules

Wave moves by kinetic
energy transfer

02 02 02

f

Figure 10.1
A sound wave.

TABLE 10.1 Velocity of Sound in Various Materials

Material/Medium Approximate Velocity of Sound

Air 344 m/s

Seawater 1,478 m/s

Steel 5,064 m/s

Looking at Table 10.1, you can see why sonar works so well underwater but sucks in
air (it’s too slow, for one thing). A sonar pulse, or ping, travels underwater at 1,478
m/s or, roughly, 14.78 m/s × 3.2 ft/m × 1 mi/5280 ft × 3,600 seconds/1 hour = 3,224.7
miles per hour! This, compared to the average of 750 miles per hour for sound in air,
should tell you why sonar scans are almost instantaneous for objects that are moving
underwater and within reasonable distance.

Tip If you’re interested, the velocity of sound c (not to be confused
with C the note, or c the speed of light) is equal to the frequency ×
wavelength, or f*λ. In addition, the velocity can be computed based on
factors like tension and density of the medium with this equation:

c = sqrt(tension factor/density factor)

where the tension and density are context-sensitive and only a loose
starting point. In real life, there are a number of versions of this equa-
tion for gases, solids, and liquids.

1372313618 CH10 10/26/99 10:28 AM Page 591

DirectX and 2D Fundamentals

592 PART II

Moving on, sound is a mechanical wave that travels through air at a constant veloc-
ity—the speed of sound. There are two parameters a traveling sound wave can have:
amplitude and frequency. The amplitude of the sound is how much air volume is
moved. A large speaker (or someone with a big mouth) moves a lot of air, so the
sounds are stronger or more intense. The frequency of the sound is how many com-
plete waves or cycles per second are emanating from the source, and is measured in
hertz, or Hz. Most humans can hear in the range of 20-20,000Hz.

Furthermore, the average male has a voice that ranges from 20-2,000Hz, while a
female voice ranges from 70-3,000Hz. Men have more bass, and women have more
treble. Figure 10.2 shows the amplitude and frequency of some standard waveforms.

One cycle

One cycle

One cycle

One cycle
1

0

–1
0.5 ms 1.0 ms 1.5 ms 2.0 ms 2.5 ms

1

0

–1

1

0

–1

1

0

–1

Sine wave
f = 1000 Hz
P – P = 2v

Square wave
f = 2000 Hz
P – P = 2v

Sawtooth wave
f = 1000 Hz
P – P = 1v

Half rectified sine wave
f = 500 Hz
P – P = 1 v

f: Frequency
P – P: Peak to Peak v

ray

A
m

pl
itu

de
 in

 v
ol

ts

Figure 10.2
Various waveforms.

A waveform can be thought of as the shape of a sound’s amplitude changes. Some
sounds change smoothly, while other sounds rise up and then sharply fall off. Even if
two sounds have the same amplitude and frequency, their particular shapes will make
them sound different to us.

Lastly, we hear sound with our ears, which may seem simple enough, but here’s the
real story (like I’m going to lie). Your ears have a sensing array of little hair-like struc-
tures called cilia. Each of these cilia can detect a different frequency range. When a
sound enters your ear as a wave train of pressure pulses, these cilia oscillate and res-
onate based on the sound and send signals to your brain. Your brain then processes
these signals into the conscious perception of sound. However, on some planets the

1372313618 CH10 10/26/99 10:28 AM Page 592

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

593

creatures might “see” sound, so remember that this whole sound thing is totally sub-
jective. The only thing that is constant in the universe is how sound travels and the
physics of sound. However, this is only true for regions of space that aren’t warped,
like near a black hole or on the freeways in California.

In review, a sound is a pressure wave that is expanding or contracting and moves air
around. The rate of these contractions or expansions is called the frequency, and the
amount of air moved is related to the relative amplitude or volume of the sound. Also,
there are different waveforms of sound, such as sine waves, square wave, saw tooth
waves, and so on. Humans can hear in the range of 20-20,000Hz, and the average
human voice is about 2,000Hz. However, this is not the whole truth.

A single pure tone will always have the shape of a sine wave, but it can have any fre-
quency and amplitude. Single tones sound like electronic toys or touch-tone phone
tones (technically, touch-tone phones make two tones per button or DTMF, but close
enough). The point is that in the real world, most sounds, like voices, music, and the
ambient noises of the outdoors, are composed of hundreds or even thousands of pure
tones all mixed together. Hence, sounds have a spectrum.

Tip The most basic waveform in the universe is the sine wave—SIN(t).
All other waveforms can be represented by a linear combination or col-
lection of one or more sine waves. This can be proven mathematically
with the Fourier Transform, which is a method of breaking a waveform
down into its sinusoidal components. And it’s also a way of giving math
majors serious headaches!

The spectrum of a sound is its frequency distribution. Figure 10.3 shows the fre-
quency distribution for my voice. As you can see, my voice has many different fre-
quencies in it, but most of them are low. The point is, to make truly realistic sounds,
you must understand that sounds are composed of many simple pure tones at different
frequencies and amplitudes.

That’s all great, but your goal is to make the computer produce sounds. No problem;
the computer can control a speaker with electrical signals, forcing it to move in and
out at any rate, with any force (within reason). Let’s see how.

1372313618 CH10 10/26/99 10:29 AM Page 593

DirectX and 2D Fundamentals

594 PART II

Digital versus MIDI—Sounds Great, Less Filling
There are two kinds of sounds that a computer can make: digital and synthesized.
Digital sounds are basically recordings of sounds, while synthesized sounds are pro-
grammed reproductions of sounds based on algorithms and hardware tone generators.
Digital sounds are usually used for sound effects, like explosions and people talking,
while synthesized sounds are used for music. And in most cases these days, synthe-
sized sounds are only used for music and not sound effects. However, back in the
’80s, game programmers used FM synthesizers and tone generators to make the
sounds of engines, explosions, gunshots, drums, sirens, and so forth. Granted, they
didn’t sound as good as digitized sound effects, but they worked back then.

Digital Sound—Let the Bits Begin
Digital sound involves digitization, which means to encode data in the digital form of
ones and zeros, such as 110101010110. Just as an electrical signal can create sounds
by causing a magnetic field to move the speaker’s cone magnet, talking into a speaker
creates the opposite effect. That is, the speaker generates an electrical signal based on
the vibrations it senses. This electrical signal has the sound information encoded in it
as an analog or linear voltage, as shown in Figure 10.4.

With the proper hardware, this linear voltage with the sound information encoded in it
can be sampled and digitized. This is exactly how your CD player works. The infor-
mation on CDs is in digital form, whereas information on tapes is analog. Digital
information is much easier to process and is the only information that digital comput-
ers can process (there’s a surprise). So for a computer to process sound, that sound
must be converted into a digital data stream with an analog-to-digital converter, as
shown in section A of Figure 10.5.

1V

0.5V

0 1 kHz 2.0 kHz 3.0 kHz 4.0 kHz

(frequency in kiloHertz 1 × 103 Hz)

Note peaks at low frequencies

Amplitude
(normalized to 1.0V)

Figure 10.3
Frequency spectrum
for the average male

voice.

1372313618 CH10 10/26/99 10:29 AM Page 594

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

595

Once the sound is recorded into the memory of the computer, it can be processed or
played back with a digital-to-analog converter (D/A), as shown in section B of Figure
10.5. The point is, you need to convert the sound information to digital format before
you can work with it. But recording digital sound is a bit tricky. Sound has a lot of
information in it. If you want to sample sound realistically, there are two factors that
you must consider: frequency and amplitude.

The number of samples you record of a sound per second is called the sample rate.
It must be at least twice the frequency of the original sound if you want to reproduce
it exactly. In other words, if you’re sampling a human voice that has a range of
20-2,000Hz, you must sample the sound at 4,000Hz!

The reasoning for this is mathematical and based on the fact that all sounds are com-
posed of sine waves. Thus, if you can sample the highest frequency sine wave con-
tained in a sound, you can sample all the lower ones that compose that sound. But to
sample a sine wave of frequency f, you must sample it at a rate of 2*f. At a rate of
only f, you can’t tell if you’re on the upward crest of a wave or the downward crest of
a wave per cycle. In other words, it takes two points to reconstruct any sine wave.
This is called Shannon’s Theorem, and the minimal sampling rate is called the Nyquist
frequency—were they roommates or something?

Mechanical
wave

Mechanical to
electrical

conversion
Amplification Digitization Processing

Computer reads and
digitizes data

I/O portADC

Analog to digital convertor

Large voltage
5V p-p

Amplifier (6)

≈ 1 × 106

Gain

Mic/sensorSound
source

Small signal voltage
≈ 100 µ p-p

Figure 10.4
The conversion of

sound.

Figure 10.5
A/D and D/A conver-

sion (16-bit).

A. A to D conversion

B. D to A conversion

16-bit A/D
Analog to Digital

Convertor

d0
d1
d2

d15

d0
d1
d2

d15

16-bit converted data
0 – 65535

Computer
processing

+ 5 V

– 5 V

Input

Analog voltage
from real world

16-bit data stream

Voice/sound/music

Gain Output

Speaker
Analog voltage

16-bit DAC
Digital to Analog

Convertor

1600
–238

25000

396

Amp

1372313618 CH10 10/26/99 10:29 AM Page 595

DirectX and 2D Fundamentals

596 PART II

Anyway, the second sampling parameter is the amplitude resolution—meaning, how
many different values are there for the amplitude? If you have only eight bits per sam-
ple, that means there are only 256 different possible amplitudes. This is enough for
games, but for reproduction of professional sounds and music you need at least 16
bits of resolution, giving 65,536 different possible values.

So that’s digital sound for you. Basically, it is a recording or sampling of sound that
has been converted to digital form from an analog signal. Digital sound is great for
sound effects and short sounds, but it’s bad for long sounds because of its memory
requirements—a 16-bit, 44.1 KHz, CD-quality sound uses about 88KB a second. On
the other hand, if your game is going on CD, you can spare a couple hundred megs
for pure digital music. Finally, digital sound sounds far better than synthesized sound
99 percent of the time, but under DirectMusic, synthesized music sounds almost as
good.

Synthesized Sound and MIDI
Although digital sound is currently the best-sounding, synthesized sound has been
around a long time and is getting better and better. Synthesized sound isn’t digitally
recorded; it’s a mathematical reproduction of a sound based on a description.
Synthesizers use hardware and algorithms to generate sounds on-the-fly from a
description of the desired sound. For example, let’s say you wanted to hear a 440Hz
pure concert A note. You could design a piece of hardware that generated a pure ana-
log sine wave of any frequency from 0-20,000Hz and then instruct it to create a
440Hz tone. This is the basis of synthesis.

The only problem is that most people want to hear more than a single tone (unless
you’re listening to a musical birthday card), so hardware is needed that supports at
least 16-32 different tones at the same time, as shown in Figure 10.6. This isn’t bad,
and a number of different video game consoles used something like this back in the
’70s and ’80s. But people still weren’t satisfied. The problem is that most sounds have
many frequencies in them; they have undertones, overtones, and harmonics (multiples
of each frequency). This is what makes them sound textured and full.

Normally, I wouldn’t use the words textured and full to describe sound
because it lowers my public cool factor, but I had to because they’re
common terms used by music people. So please bear with me.

Warning

The first attempt at better sound was FM synthesis. Remember the old Ad-Lib card?
It was the precursor of the Sound Blaster and the first PC card to support multiple-
channel FM synthesis. (The FM stands for frequency modulation.) An FM synthesizer
can alter not only the amplitude of a sine wave sound, but also the frequency of
the wave.

1372313618 CH10 10/26/99 10:29 AM Page 596

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

597

FM synthesis operates on the mathematical basis of feedback. An FM synthesizer
feeds the output of the signals back into themselves, thereby modulating the signals
and creating harmonics and phase-shifted tones from the original single sine wave.
The bottom line is that they sound very real compared to single tones.

It’s MIDI Time!
At about the same time all this FM synthesis stuff came out, a file format for music
synthesis was catching on called MIDI (Musical Instrument Digital Interface). MIDI
is a language that describes musical compositions as a function of time. Instead of
digitizing a sound, a MIDI piece describes it as keys, instruments, and special codes.
For example, a MIDI file might look like this:

Turn on Channel 1 with a B flat.
Turn on Channel 2 with a C sharp.
Turn off Channel 1.
.
.
.
Turn all channels off.

Of course, this information is encoded in a binary serial stream, but you get the pic-
ture. Moreover, each channel in the MIDI specification is connected to a different
instrument or sound. You might have 16 channels, each one representing a different
instrument such as piano, drums, guitar, bass, flute, trumpet, and so on. So MIDI is an
indirect method of encoding music.

Figure 10.6
Crude sound synthesis

with multiple chan-
nels.

100 Hz

200 Hz

400 Hz

Tone enabler I/O
port

From
program

Sine wave, square, triangle

Wave select

Summation/mixing node Output

Amp

Amplifier

Filters
signal

processing

Speaker

Tone generator
bank

0

1

2

1 kHz
3

2 kHz
4

fmax Hz
5

C
on

tr
ol

 b
us

1372313618 CH10 10/26/99 10:29 AM Page 597

DirectX and 2D Fundamentals

598 PART II

However, it leaves the synthesis up to the hardware and records only the actual musi-
cal notes and timing. Alas, MIDI on one computer may sound completely different
than on another, due to the method of synthesis and the instrument data. On the other
hand, a MIDI file for an hour of music might only be a few hundred kilobytes of
memory, instead of requiring megabytes for the same music in digital form! So it’s
been worth it, in many cases.

The only problem with MIDI and FM synthesis is that they are only good for music.
Sure, you can design FM synthesizers to create white noise for explosions or laser
blasts, but the sounds will always be simple and won’t have the organic feel that digi-
tized sound has. So more advanced methods of hardware synthesis have been created,
such as wave table and wave guide technology.

Sound Hardware
There are three major classes of sound synthesis these days: FM, wave table (software
versions, too), and wave guide. You’ve already learned about FM, so let’s take a look
at the wave table and wave guide models for a minute.

Wave Table Synthesis
Wave table synthesis is a mix between synthesis and digital recording. It works like
this: The wave table has a number of real, sampled digital sounds within it. This data
is then processed by a DSP (Digital Signal Processor), which takes the real sample
and plays it back at any frequency and amplitude that you need. Hence, you can sam-
ple a real piano and then play any note on that piano using wave table synthesis. It
sounds almost as good as digital, but you still have to have the original sources sam-
pled. Again, that takes memory. The Creative Labs AWE32 is a good example of this.

In addition to hardware wave table, there are software synthesizer-based wave table
systems, such as the MOD format for Amigas and the DLS system used in
DirectMusic. Computers are so fast now that if you just have a D-to-A converter that
plays digital sound, you can use it to synthesize digital sound based on software sam-
ples of real instruments much like the wave table does. As long as you can make the
DSP happen in real-time and can perform frequency, amplitude, and other processing
functions, you don’t need any hardware! This is exactly how DirectMusic works.

Wave Guide Synthesis
Wave guide synthesis is the ultimate synthesis technology. Through the use of DSP
chips and very special hardware, the sound synthesizer can actually generate a mathe-
matical model of an instrument virtually and then simply play it! This may seem like
science fiction, but it’s a fact. With this technology, the human ear can’t perceive the
difference between a sampled instrument, the real one, and the wave guide simulated

1372313618 CH10 10/26/99 10:29 AM Page 598

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

599

instrument. Thus, you can create MIDI files that control a wave table or wave guide
synthesizer and get great results. The Creative Labs AWE64 Gold has this technology.

So the verdict is, a synthesizer can create music as real as real can get, but the musical
piece still must be encoded as MIDI. Also, if you want speech or special sound
effects, they’re hard to do with synthesizers, and even with wave guide technology
you’ll need special software.

However, with DirectMusic you can program instruments with digitized sounds and
play them like notes, so that problem is solved. Thus, you can use digital sound for all
your sound effects and DirectMusic for the music. Granted, there may be a little more
work involved than just playing a wave file, but DirectMusic sounds the same on all
machines, is free, can read standard MIDI files, and has a ton of features if you want
to use them. Therefore, you may decide to use a mix of both: DirectSound for sound
effects and DirectMusic for music.

Digital Recording: Tools and Techniques
Before I finish off the sound and music preceptor program, I want to give you some
hints on recording sound and music for your games because I get millions of emails
on the topic all the time. There are at least three ways to create digital samples:

• Sample them from the real world with a microphone or outside input.

• Buy sampled sounds in digital or analog format and download or record them
for use.

• Synthesize digital sounds with a waveform synthesizer like Sound Forge.

The third method may seem a little backwards, but it’s useful if you want to create
pure tones with digital hardware and you don’t have a sound source that you can
record. But the first two methods are the most important for us.

If you’re making a game that has a lot of speech in it, you’re probably going to have
to sample your own voice (or the voice of a friend), tweak it with a piece of software,
and then use it in your game. For games that use standard explosions, doors, growls,
and so on, you can probably get away with generic sound clips. For example, just
about everybody in this business has a copy of the Sound Ideas General 6000/7000+
sound library. It’s about 40 CDs full of thousands of sound effects, and it’s used for
movies, so it has it all. But if I hear the Doom/Quake door sound one more time in a
full release movie, I’m going to rip my ears off!

The only problem with professional sound libraries is the cost—about $2,500 for a
decent license. So what should you do? Any computer store will have $5 CDs of
sound effects. You may have to buy a few, but two or three will usually give you

1372313618 CH10 10/26/99 10:29 AM Page 599

DirectX and 2D Fundamentals

600 PART II

enough samples to work with—some cars, spaceships, monsters, and so on. However,
since I’m a nice guy, I’m going to supply you with a complete set of cool sounds
from one of my games. They’re on this book’s CD in the directory called SOUNDS\.
They’re all in .WAV format, so you can use them directly in your games, but you might
want to resample and tweak them because they’re mutant sounds from a number of
different game products.

Recording Sounds
If you record your own sounds, I suggest the following settings: Create your originals
with 16 bits per sample in 22KHz mono. Remember, no stereo. DirectSound works
best with mono sound, so recording in stereo won’t help. Also, most sounds you can
make or record will be mono anyway, so recording in stereo will be a waste of
memory.

If you’re recording from a microphone plugged into your sound card, buy a good one.
A good one will feel heavy. There is truth to the old saying, “If it’s heavy, then it’s
good.” Also, do your recording in an enclosed room without background noise or
interruptions. If you’re recording direct from a device, such as a CD player or radio,
make sure that the connections are good and use high-quality audio connectors.

Finally, give your sound files reasonable names. Don’t be cryptic; you’ll never
remember what’s what unless you’re organized. And for God’s sake, it’s almost the
21st century—use long filenames!

Processing Your Sounds
Once you’ve sampled your sounds with Sound Forge or a similar piece of software,
you’ll probably want to post-process those sounds. Again, Sound Forge or a similar
package can do all the processing. During processing you’ll want to crop out all the
dead air, normalize the volumes, remove noise, add echoes, etc. However, I suggest
that when you perform this step, you make backups of your sounds and don’t mess
with the originals. Rename the processed sounds with numbers appended at the end or
something. Once they’re gone, they’re gone!

While you’re processing sound, experiment with frequency shifting, echoes, distor-
tion, and various other effects. When you find a cool effect, make sure to write down
the formula to reproduce the effect. I can’t tell you how many times I had the perfect
female computer voice (processed from mine) and I lost the formula.

Finally, when you’re done with all your sounds, write them all out in the same format,
such as 22- or 11KHz mono with 8- or 16-bit. This will help DirectSound tremen-
dously when it’s processing your sounds. If you have sounds with different sample
rates and bits per sample, DirectSound will always have to convert to its native rate of
22KHz 8-bit.

1372313618 CH10 10/26/99 10:29 AM Page 600

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

601

DirectSound on the Mic
DirectSound is composed of a number of components or interfaces, just like
DirectDraw. However, this is a book on game programming, so we only have time to
look at the most important ones. Hence, I won’t be discussing the 3D sound compo-
nent, DirectSound3D, or the sound capturing interface, DirectSoundCapture. I’m
going to focus on the primary interfaces of DirectSound and that’s it. Believe me,
that’s enough to keep you busy.

Figure 10.7 illustrates the relationship of DirectSound to the rest of the Windows sub-
systems. Notice that it is very similar to DirectDraw. However, DirectSound has a
really cool feature that DirectDraw doesn’t—if you don’t have a DirectSound driver
for your sound card, DirectSound will still work, but it will use emulation and the
Windows DDI instead. So as long as you ship your product with the DirectSound
.DLLs, your code will work even if the user doesn’t have DirectSound drivers for his
card. It won’t be as fast, but it will still work. This is very cool.

Technically, DirectSound’s native format is 22 KHz 8-bit stereo. But most
sounds are mono in nature, and sending stereo data to DirectSound is a
waste unless you’re recording with two microphones placed at different
locales or have real stereo data.

Win32/DirectX app

Direct soundWindows
midi/wav

extentions

Device
driver

interface

Sound hardware
awe 64/built-in speaker

DDI

Direct sound
works without
a direct sound

HAL driver
HAL

HEL

Figure 10.7
DirectSound’s place

in Windows.

DirectSound has two components as far as we are concerned:

• A run-time .DLL that is loaded when you use DirectSound.

• A compile-time library and header named DSOUND.LIB and DSOUND.H,
respectively.

Tip

1372313618 CH10 10/26/99 10:29 AM Page 601

DirectX and 2D Fundamentals

602 PART II

To create a DirectSound application, all you need to do is include these files in your
application and everything should be fine.

To use DirectSound, you must create a DirectSound COM object and then request the
various interfaces from the main object. Figure 10.8 illustrates the main interfaces of
DirectSound:

• IUnknown—The base COM object of all COM objects.

• IDirectSound—The main COM object of DirectSound. This represents the
audio hardware itself. If you have one or more sound cards in your computer,
you’ll need a DirectSound object for each of them.

• IDirectSoundBuffer—This represents the mixing hardware and actual sounds.
There are two kinds of DirectSound buffers: primary and secondary (see how
DirectSound is similar to DirectDraw?). There is only a single primary buffer,
and it represents the sound that is currently playing and is mixed either by hard-
ware (hopefully) or software. Secondary buffers represent sounds that are stored
for playback. They may exist in system memory or SRAM (sound RAM) on the
sound card. In either case, you can play as many secondary buffer sounds as
you want as long as you have the horsepower and memory to do so. Figure 10.9
represents the relationship between the primary sound buffer and secondary
sound buffers.

• IDirectSoundCapture—You’re not going to use this interface, but like I said,
it’s used to record and capture sounds. You could use it to allow the player to
record his name, or, if you’re more of a techno-freak, it can be used to capture
speech in real-time for voice recognition.

• IDirectSoundNotify—This interface is used to send messages back to
DirectSound. You might need this in a game with a complex sound system, but
you can get along without it.

To use DirectSound, you first create the main DirectSound object, create one or more
secondary sound buffers, load them with sounds, and then play any sound you want.
DirectSound will take care of the details, such as mixing. So let’s start with creating
the main DirectSound object itself.

Starting Up DirectSound
The main DirectSound object represents a sound card(s). If you have more than one
sound card, you’ll have to enumerate, detect, and request their GUIDs (Globally
Unique Identifiers). But if you just want to connect to the default sound device, you
don’t have to mess with detection; you can simply create a DirectSound object that
represents the main sound card. Here’s the interface pointer that represents a
DirectSound object:

1372313618 CH10 10/26/99 10:29 AM Page 602

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

603

LPDIRECTSOUND lpds; // directsound interface pointer

To create a DirectSound object, you must make a call to DirectSoundCreate(),
prototyped here:

HRESULT DirectSoundCreate(
LPGUID lpGuid, // guid of sound card

// NULL for default device
LPDIRECTSOUND *lpDS, // interface ptr to object
IUnknown FAR *pUnkOuter) // always NULL

The preceding call is very similar to the one used to create the main DirectDraw
object. In general, this stuff all looks alike; once you’ve mastered one part of DirectX,
you’ve mastered them all. The problem is that Microsoft keeps adding new interfaces
as fast as you can learn them! Anyway, to create a DirectSound object, do this:

LPDIRECTSOUND lpds; // pointer to directsound object

// create DirectSound object
if (DirectSoundCreate(NULL, &lpds, NULL)!=DS_OK)

{ /* error */ }

IDirectSoundCapture

IUnknownIDirectSoundBuffer IDirectSoundNotify

IDirectSound
Figure 10.8

The interfaces of
DirectSound.

Direct sound secondary buffers (SRam or system memory)

Software
or hardware

miker

4 sec

3 sec

5 sec

Output

Speaker

Primary buffer (SRam)

Figure 10.9
Sound buffers.

1372313618 CH10 10/26/99 10:29 AM Page 603

DirectX and 2D Fundamentals

604 PART II

Notice that the success value is now DS_OK (DirectSound OK) rather than DD_OK
(DirectDraw OK). However, that was just an example to show you the new OK code.
Check for success/failure like you’ve been doing using the FAILURE() and SUCCESS()
macros, like this:

// create DirectSound object
if (FAILED(DirectSoundCreate(NULL, &lpds, NULL)))

{ /* error */ }

And of course, when you’re done with the DirectSound object, you must release it
like this:

lpds->Release();

This step occurs during the shutdown stage of your application.

Understanding the Cooperation Level
After you create the main DirectSound object, it’s time to set the cooperation level of
DirectSound. DirectSound is a little trickier than DirectDraw as far as cooperation
level is concerned. You can’t be as brutal when taking over the sound system as you
can with graphics. Well, you can if you want, but Microsoft advises that you don’t, so
take their advice.

There are a number of cooperation levels that DirectSound can be set to. They are
divided into two groups: settings that give you control over the primary sound buffer,
and settings that don’t. Remember, the primary sound buffer represents the actual
mixing hardware (or software) that is mixing sounds at all times and sending them out
to the speaker. If you mess with the primary buffer, DirectSound will want you to
make sure you know what you’re doing because it could crash or distort not only your
application’s sound, but others as well. Here’s a general briefing on each cooperation
level:

• Normal Cooperation—This is the most cooperative of all the settings. While
your application has the focus, it will be able to play sounds, but so will other
applications. Furthermore, you don’t have write permission to the primary
buffer, and DirectSound will create a default primary buffer of 22 KHz, stereo,
8-bit for you. I suggest using this setting most of the time.

• Priority Cooperation—With this setting you have first access to all the hard-
ware, you can change the setting of the primary mixer, and you can request the
sound hardware to perform advanced memory operations such as compaction.
This setting is only necessary if you must change the data format of the primary
buffer—which you might do if you wanted to play 16-bit samples, for example.

• Exclusive Cooperation—Same as Priority, but your application will be audible
only when it’s in the foreground.

1372313618 CH10 10/26/99 10:29 AM Page 604

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

605

• Write_Primary Cooperation—This is the highest priority. You have total con-
trol and must control the primary buffer yourself to hear anything. You would
only use this mode if you were writing your own sound mixer or engine—I
think only John Miles uses this one. :)

Setting the Cooperation Level
In my opinion, you should use the normal priority level until you get the hang of
DirectSound. It’s the easiest to get working and has the smoothest operation. To set
the cooperation level, use the SetCooperativeLevel() function from the interface of
the main DirectSound object. Here’s the prototype:

HRESULT SetCooperativeLevel(HWND hwnd, // window handle
DWORD dwLevel); // cooperation level setting

The function returns DS_OK if successful and something else otherwise. But make sure
to check for errors because it’s more than possible that another application has taken
control of the sound card. Table 10.2 lists the flag settings for the various cooperation
levels.

TABLE 10.2 Settings for DirectSound SetCooperativeLevel()

Value Description

DSSCL_NORMAL Sets normal cooperation.

DSSCL_PRIORITY Sets priority cooperation level, allowing you to set the data
format of the primary buffer.

DSSCL_EXCLUSIVE Gives you priority cooperation, in addition to exclusive control
when your application is in the foreground.

DSSCL_WRITEPRIMARY Gives you total control of the primary buffer.

Here’s how you would set the cooperation level to normal after creating the
DirectSound object:

if (FAILED(lpds->SetCooperativeLevel(main_window_handle,
DSSCL_NORMAL)))

{ /* error setting cooperation level */ }

Cool, huh? Take a look at DEMO10_1.CPP|EXE on the CD. It creates a DirectSound
object, sets the cooperation level, and then releases the object on exit. It doesn’t make
any sound, though—that’s next!

When you’re compiling programs from this chapter, make sure to
include DSOUND.LIB in your project.

Tip

1372313618 CH10 10/26/99 10:29 AM Page 605

DirectX and 2D Fundamentals

606 PART II

Primary and Secondary Sound Buffers
The DirectSound object that represents the sound card itself has a single primary
buffer. The primary buffer represents the mixing hardware (or software) on the card
and processes all the time, like a little conveyor belt. Manual primary buffer mixing is
very advanced, and luckily you don’t have to do it. DirectSound takes care of the pri-
mary buffer for you as long as you don’t set the cooperation level to the highest prior-
ity. In addition, you don’t need to create a primary buffer because DirectSound creates
one for you, as long as you set the cooperation level to one of the lower levels, such
as DSSCL_NORMAL.

The only drawback is that the primary buffer will be set for 22 KHz stereo in 8-bit. If
you want 16-bit sound or a higher playback rate, you’ll have to at least set the cooper-
ation level to DSSCL_PRIORITY and then set a new data format for the primary buffer.
But for now, just use the default because it makes life much easier.

Working with Secondary Buffers
Secondary buffers represent the actual sounds that you want to play. They can be any
size that you want, as long as you have the memory to hold them. However, the
SRAM on the sound card can only hold so much sound data, so be careful when
you’re requesting sounds to be stored on the sound card itself. But sounds that are
stored on the sound card itself will take much less processing power to play, so keep
that in mind.

Now there are two kinds of secondary buffers—static and streaming. Static sound
buffers are sounds that you plan to keep around and play over and over. These are
good candidates for SRAM or system memory. Streaming sound buffers are a little
different. Imagine that you want to play an entire CD with DirectSound. I don’t think
you have enough system RAM or SRAM to store all 650MB of audio data in mem-
ory, so you’d have to read the data in chunks and stream it out to a DirectSound
buffer. This is what streaming buffers are for. You continually feed them with new
sound data as they are playing. Sound tricky? Take a look at Figure 10.10.

Amp
Output

Speaker

Write cursor Read cursor

Controlled by direct sound

Sound buffer

DirectSoundWin32 app

Streaming data flow

Data source

Disk, CD, DVD, etc.

Figure 10.10
Streaming audio data.

1372313618 CH10 10/26/99 10:29 AM Page 606

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

607

In general, all secondary sound buffers can be written to static or streaming. However,
because it’s possible that the sound will be playing as you’re trying to write to it,
DirectSound uses a scheme to take this into consideration: circular buffering. This
means that each sound is stored in a circular data array that is continually read from at
one point by the play cursor and written to at another point (slightly behind the first
point) by the write cursor. Of course, if you don’t need to write to your sound buffers
as they are playing, you don’t have to worry about this, but you will when you’re
streaming audio.

To facilitate this complex, buffered real-time writing capability, the data access func-
tions for sound buffers might return a memory space that’s broken up into two pieces
because the data block you’re trying to write exists at the end of the buffer and over-
flows into the beginning of the buffer. The point is, you need to know this fact if
you’re going to stream audio. However, in most games all this is moot, because as
long as you keep all the sound effects to a few seconds each and the musical tracks
are all loaded on demand, you can usually fit everything into a few megabytes of
RAM. Using 2-4MB of storage for sound in a 32MB+ machine isn’t too much of a
problem..

Creating Secondary Sound Buffers
To create a secondary sound buffer, you must make a call to CreateSoundBuffer()
with the proper parameters. If successful, the function creates a sound buffer, initial-
izes it, and returns an interface pointer to it of this type:

LPDIRECTSOUNDBUFFER lpdsbuffer; // a directsound buffer

However, before you make the call to CreateSoundBuffer(), you must set up a
DirectSoundBuffer description structure, which is similar to a DirectDrawSurface
description. The description structure is of the type DSBUFFERDESC and is shown here:

typedef struct
{
DWORD dwSize; // size of this structure
DWORD dwFlags; // control flags
DWORD dwBufferBytes; // size of the sound buffer in bytes
DWORD dwReserved; // unused
LPWAVEFORMATEX lpwfxFormat; // the wave format
} DSBUFFERDESC, *LPDSBUFFERDESC;

The dwSize field is the standard DirectX structure size, dwBufferBytes is how big
you want the buffer to be in bytes, and dwReserved is unused. The only fields of real
interest are dwFlags and lpwfxFormat. dwFlags contains the creation flags of the
sound buffer. Take a look at Table 10.3, which contains a partial list of the more basic
flag settings.

1372313618 CH10 10/26/99 10:29 AM Page 607

DirectX and 2D Fundamentals

608 PART II

TABLE 10.3 DirectSound Secondary Buffer Creation Flags

Value Description

DSBCAPS_CTRLALL The buffer must have all control capabilities.

DSBCAPS_CTRLDEFAULT The buffer should have default control options. This is the
same as specifying the DSBCAPS_CTRLPAN,
DSBCAPS_CTRLVOLUME, and DSBCAPS_CTRLFREQUENCY flags.

DSBCAPS_CTRLFREQUENCY The buffer must have frequency control capability.

DSBCAPS_CTRLPAN The buffer must have pan control capability.

DSBCAPS_CTRLVOLUME The buffer must have volume control capability.

DSBCAPS_STATIC Indicates that the buffer will be used for static sound data.
Most of the time you’ll create these buffers in hardware mem-
ory if possible.

DSBCAPS_LOCHARDWARE Use hardware mixing and memory for this sound buffer if
memory is available.

DSBCAPS_LOCSOFTWARE Forces the buffer to be stored in software memory and use
software mixing, even if DSBCAPS_STATIC is specified and
hardware resources are available.

DSBCAPS_PRIMARYBUFFER Indicates that the buffer is a primary sound buffer. Only set
this if you want to create a primary buffer and you’re a sound
god.

In most cases you’ll set the flags to DSBCAPS_CTRLDEFAULT | DSBCAPS_STATIC |
DSBCAPS_LOCSOFTWARE for default controls, static sound, and system memory, respec-
tively. If you want to use hardware memory, use DSBCAPS_LOCHARDWARE instead of
DSBCAPS_LOCSOFTWARE.

The more capabilities you give a sound, the more stops (software filters)
it has to go through before being heard. This means more processing
time. Alas, if you don’t need volume, pan, and frequency shift ability,
forget DSBCAPS_CTRLDEFAULT and just use the capabilities that you
absolutely need.

Note

Now let’s move on to the WAVEFORMATEX structure. It contains a description of the
sound that you want the buffer to represent (it’s a standard Win32 structure also).
Parameters like playback rate, number of channels (1-mono or 2-stereo), bits per sam-
ple, and so forth are recorded in this structure. Here it is for your review:

typedef struct
{
WORD wFormatTag; // always WAVE_FORMAT_PCM
WORD nChannels; // number of audio channels 1 or 2

1372313618 CH10 10/26/99 10:29 AM Page 608

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

609

DWORD nSamplesPerSec; // samples per second
DWORD nAvgBytesPerSec; // average data rate
WORD nBlockAlign; // nchannels * bytespersmaple
WORD wBitsPerSample; // bits per sample
WORD cbSize; // advanced, set to 0
} WAVEFORMATEX;

Simple enough. Basically, WAVEFORMATEX contains the description of the sound. In
addition, you need to set up one of these as part of DSBUFFERDESC. Let’s see how to do
that, beginning with the prototype of the CreateSoundBuffer() function:

HRESULT CreateSoundBuffer(
LPCDSBUFFERDESC lpcDSBuffDesc, // ptr to DSBUFFERDESC
LPLPDIRECTSOUNDBUFFER lplpDSBuff,// ptr to sound buffer
IUnknown FAR *pUnkOuter); // always NULL

And here’s an example of creating a secondary DirectSound buffer at 11KHz mono
8-bit with enough storage for two seconds:

// ptr to directsound
LPDIRECTSOUNDBUFFER lpdsbuffer; buffer

DSBUFFERDESC dsbd; // directsound buffer description
WAVEFORMATEX pcmwf; // holds the format description

// set up the format data structure
memset(&pcmwf, 0, sizeof(WAVEFORMATEX));
pcmwf.wFormatTag = WAVE_FORMAT_PCM; // always need this
pcmwf.nChannels = 1; // MONO, so channels = 1
pcmwf.nSamplesPerSec = 11025; // sample rate 11khz
pcmwf.nBlockAlign = 1; // see below

// set to the total data per
// block, in our case 1 channel times 1 byte per sample
// so 1 byte total, if it was stereo then it would be
// 2 and if stereo and 16 bit then it would be 4

pcmwf.nAvgBytesPerSec =
pcmwf.nSamplesPerSec * pcmwf.nBlockAlign;

pcmwf.wBitsPerSample = 8; // 8 bits per sample
pcmwf.cbSize = 0; // always 0

// set up the directsound buffer description
memset(dsbd,0,sizeof(DSBUFFERDESC));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags= DSBCAPS_CTRLDEFAULT | DSBCAPS_STATIC |

DSBCAPS_LOCSOFTWARE ;

dsbd.dwBufferBytes = 22050; // enough for 2 seconds at
// a sample rate of 11025

dsbd.lpwfxFormat = &pcmwf; // the WAVEFORMATEX struct

1372313618 CH10 10/26/99 10:29 AM Page 609

DirectX and 2D Fundamentals

610 PART II

// create the buffer
if (FAILED(lpds->CreateSoundBuffer(&dsbd,&lpdsbuffer,NULL)))

{ /* error */ }

If the function call is successful, a new sound buffer is created and passed in lpds-
buffer, which is ready to be played. The only problem is that there isn’t anything in
it! You must fill the sound buffer with data yourself. You can do this by reading in a
sound file data stored in .VOC, .WAV, .AU, or whatever, and then parse the data and fill
up the buffer. Or you could generate algorithmic data and write into the buffer your-
self for a test. Let’s see how to write the data into the buffer, and later I’ll show you
how to read sound files from disk.

Writing Data to Secondary Buffers
As I said, secondary sound buffers are circular in nature, and hence are a little more
complex to write to than a standard linear array of data. For example, with
DirectDraw surfaces, you just locked the surface memory and wrote to it. (This is
only possible because there is a driver living down there that turns nonlinear memory
to linear.) DirectSound works in a similar fashion: You lock it, but instead of getting
one pointer back, you get two! Therefore, you must write some of your data to the
first pointer and the rest to the second. Take a look at the prototype for Lock() to
understand what I mean:

HRESULT Lock(
DWORD dwWriteCursor, // position of write cursor
DWORD dwWriteBytes, // size you want to lock
LPVOID lplpvAudioPtr1, // ret ptr to first chunk
LPDWORD lpdwAudioBytes1,// num bytes in first chunk
LPVOID lplpvAudioPtr2, // ret ptr to second chunk
LPDWORD lpdwAudioBytes2,// num of bytes in second chunk
DWORD dwFlags); // how to lock it

If you set dwFlags to DSBLOCK_FROMWRITECURSOR, the buffer will be locked from the
current write cursor of the buffer. If you set dwFlags to DSBLOCK_ENTIREBUFFER, the
entire buffer will be locked. This is the way to go. Keep it simple.

For example, say you create a sound buffer that has enough storage for 1,000 bytes.
When you lock the buffer for writing, you’ll get two pointers back along with the
length of each memory segment to write to. The first chunk might be 900 bytes long,
and the second might be 100 bytes long. The point is that you have to write your first
900 bytes to the first memory region and the second 100 bytes to the second memory
region. Take a look at Figure 10.11 to clarify this.

1372313618 CH10 10/26/99 10:29 AM Page 610

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

611

And here’s an example of locking the 1,000-byte sound buffer:

UCHAR *audio_ptr_1, // used to retrieve buffer memory
*audio_ptr_2;

int audio_length_1, // length of each buffer section
audio_length_2;

// lock the buffer
if (FAILED(lpdsbuffer->Lock(0,1000,

(void **)&audio_ptr_1, &audio_length_1,
(void **)&audio_ptr_2, &audio_length_2,
DSBLOCK_ENTIREBUFFER)))

{ /* error / }

Once you’ve locked the buffer, you’re free to write into the memory. The data can be
from a file or can be generated algorithmically. When you’re done with the sound
buffer, you must unlock it with Unlock(). Unlock() takes both pointers and both
lengths, like this:

if (FAILED(lpdsbuffer->Unlock(audio_ptr_1,audio_length_1,
audio_ptr_2,audio_length_2)))

{ /* problem unlocking */}

And as usual, when you’re done with the sound buffer, you must destroy it with
Release(), like this:

lpdsbuffer->Release();

However, don’t destroy the sound until you don’t need it anymore. Otherwise you’ll
have to load it again.

Now let’s see how to play sounds with DirectSound.

1000 bytes total

audio_ptr_2 audio_ptr_1

100 bytes
Beginning
of buffer

900 bytes
End

of buffer

Sound buffer (SRam or system memory)

Note: ptrs are descending order

audio_length_1 = 900 bytes
audio_length_2 = 100 bytes

Figure 10.11
Locking a sound

buffer.

1372313618 CH10 10/26/99 10:29 AM Page 611

DirectX and 2D Fundamentals

612 PART II

Rendering Sounds
Once you’ve created all your sound buffers and loaded them with sounds, you’re
ready to rock. (Of course, you’re allowed to create and destroy sounds on-the-fly if
you want.) DirectSound has a number of control functions to play sounds and alter
their parameters as they play. You can change the volume, frequency, stereo panning,
and so forth.

Playing a Sound
To play a sound buffer, use the Play() function as prototyped here:

HRESULT Play(
DWORD dwReserved1, DWORD dwReserved2, // both 0
DWORD dwFlags); // control flags to play

The only flag that is defined is DSBPLAY_LOOPING. Setting this value will cause the
sound to loop. If you want it to play only once, set dwFlags to 0. Here’s an example
of playing a sound over and over:

if (FAILED(lpdsbuffer->Play(0,0,DSBPLAY_LOOPING)))
{ /* error */ }

Use looping for music and other stuff you want to repeat.

Stopping a Sound
Once you’ve started a sound, you may want to stop it before it’s finished playing. The
function to do this is Stop(). Here’s its prototype:

HRESULT Stop(); // that’s easy enough

Here’s how you would stop the sound you just started in the previous example:

if (FAILED(lpdsbuffer->Stop()))
{ /* error */ }

Now you have enough for a complete demo of DirectSound. Check out
DEMO10_2.CPP|EXE on the CD. It creates a DirectSound object and a single secondary
sound buffer, and then loads the buffer with a synthesized sine wave and plays it. It’s
simple, but it effectively shows you everything you need to know to play a sound.

Controlling the Volume
DirectSound lets you manipulate the volume or amplitude of a sound. However, this
isn’t free. If your hardware doesn’t support volume changes, DirectSound will have to
remix the sound with the new amplitude. This can require a little more processing
power. In any case, here’s the prototype:

HRESULT SetVolume(LONG lVolume); // attenuation in decibels

1372313618 CH10 10/26/99 10:29 AM Page 612

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

613

SetVolume() works differently than you would expect. Instead of instructing
DirectSound to increase or decrease the amplitude, SetVolume() controls the attenua-
tion (or anti-gain, if you will). If you send a 0, which is equal to DSBVOLUME_MAX, the
sound will be played without attenuation—that is, at full volume. A value of -10,000
or DSBVOLUME_MIN will set the attenuation to maximum -100dB (decibels) and you
won’t hear a thing.

The best thing to do is create a wrapper function around this so you can send a value
from 0-100 or something more natural. The following macro transformation will do
the job:

#define DSVOLUME_TO_DB(volume) ((DWORD)(-30*(100 - volume)))

Here, volume is from 0-100, with 100 being full volume and 0 being totally silent.
Here’s an example that will play sound at 50 percent of full volume:

if (FAILED(lpdsbuffer->SetVolume(DSVOLUME_TO_DB(50))))
{ /* error */ }

If you’re wondering what a decibel is, it’s a measure of sound or power
based on the bel, named after Alexander Graham Bell. In electronics,
many things are measured logarithmically, and the decibel scale is one
example. In other words, 0 dB means no attenuation, -1 dB means the
sound is 1/10 its original value, -2 dB means it’s 1/100 the original value,
and so on. Therefore, a sound that’s attenuated -100 dB couldn’t be
heard by an ant!

Note that on some scales, dB is also scaled by a factor of 10 (or even 2).
So -10 dB would be 1/10 and -20 dB would be 1/100. It’s one of those
things that everybody has their own version of: engineers, mathemati-
cians, physicists…

Freaking with the Frequency
One of the coolest manipulations you can apply to a sound is to change its playback
frequency. This changes the sound’s pitch (sort of), and you can make it slow and evil
or fast and happy (yuck). You can make yourself sound like a chipmunk or Darth
Vader in real-time! To change the frequency of playback, use the SetFrequency()
function as shown below:

HRESULT SetFrequency(
DWORD dwFrequency); // new frequency from 100-100,000Hz

Here’s how you would make a sound play faster:

if (FAILED(lpdsbuffer->SetFrequency(22050)))
{ / * error */ }

Note

1372313618 CH10 10/26/99 10:30 AM Page 613

DirectX and 2D Fundamentals

614 PART II

If the original sound was sampled at 11,025Hz (11KHz), the new sound would play
twice as fast and have twice the pitch and play for half as long. Get it? Got it? Then
get rid of it!

Panning in 3D
The next killer thing you can do with a sound is change the stereo pan, or the amount
of power coming from each speaker. For example, if you play a sound at the same
volume in both speakers (or headphones), it will seem like it’s right in front of you.
But if you shift the volume to the right speaker, the sound will seem like it’s moving
to the right. This is called panning and can help you create localized 3D sounds (in a
crude manner).

The function to set the stereo panning is called SetPan(), and here’s its prototype:

HRESULT SetPan(LONG lPan); // the pan value -10,000 to 10,000

The pan value is logarithmic again: A value of 0 is dead center, a value of -10,000
means the right channel is attenuated by -100 dB, and a value of 10,000 means that
the left channel is attenuated by -100 dB. Stupid, huh? Anyway, here’s how you
would attenuate the right channel by -5 dB:

if (FAILED(lpdsbuffer->SetPan(-500)))
{ /* error */ }

Making DirectSound Talk Back
You may be wondering if there is any way to query DirectSound for information
about the sound system or a sound that is playing, like finding out whether the sound
is done. Of course there is! DirectSound has a number of functions to do stuff like
that. First, here’s the general DirectSound capability function to determine the capa-
bilities of your hardware:

HRESULT GetCaps(LPDSCAPS lpDSCaps); // ptr to DSCAPS structure

The function simply takes a pointer to a DSCAPS structure and fills it in. Here’s the
DSCAPS structure for your reference (you’ll have to refer to the DirectX SDK for more
complete descriptions of these fields, but most of them are decipherable by their
names):

typedef {
DWORD dwSize;
DWORD dwFlags;
DWORD dwMinSecondarySampleRate;
DWORD dwMaxSecondarySampleRate;
DWORD dwPrimaryBuffers;
DWORD dwMaxHwMixingAllBuffers;
DWORD dwMaxHwMixingStaticBuffers;

1372313618 CH10 10/26/99 10:30 AM Page 614

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

615

DWORD dwMaxHwMixingStreamingBuffers;
DWORD dwFreeHwMixingAllBuffers;
DWORD dwFreeHwMixingStaticBuffers;
DWORD dwFreeHwMixingStreamingBuffers;
DWORD dwMaxHw3DAllBuffers;
DWORD dwMaxHw3DStaticBuffers;
DWORD dwMaxHw3DStreamingBuffers;
DWORD dwFreeHw3DAllBuffers;
DWORD dwFreeHw3DStaticBuffers;
DWORD dwFreeHw3DStreamingBuffers;
DWORD dwTotalHwMemBytes;
DWORD dwFreeHwMemBytes;
DWORD dwMaxContigFreeHwMemBytes;
DWORD dwUnlockTransferRateHwBuffers;
DWORD dwPlayCpuOverheadSwBuffers;
DWORD dwReserved1;
DWORD dwReserved2;

} DSCAPS, *LPDSCAPS;

You would call the function like this:

DSCAPS dscaps; // hold the caps

if (FAILED(lpds->GetCaps(&dscaps)))
{ /* error */ }

Then you can test any of the fields you want and determine what capabilities your
sound hardware has. There’s also a similar function for a DirectSound buffer that
returns a DSBCAPS structure:

HRESULT GetCaps(LPDSBCAPS lpDSBCaps); // ptr to DSBCAPS struct

Here, a DSBCAPS structure looks like this:

typedef struct {
DWORD dwSize; // size of structure, you must set this
DWORD dwFlags; // flags buffer has
DWORD dwBufferBytes; // size of buffer
DWORD dwUnlockTransferRate; // sample rate
DWORD dwPlayCpuOverhead; // percentage of processor needed

// to mix this sound
} DSBCAPS, *LPDSBCAPS;

Here’s how you would check out the sound buffer lpdsbuffer that you’ve been using
in the examples:

DSBCAPS dsbcaps; // used to hold the results

// set up the struct
dsbcaps.dwSize = sizeof(DSBCAPS); // ultra important

// get the caps
if (FAILED(lpdsbuffer->GetCaps(&dsbcaps)))

{ /* error */ }

1372313618 CH10 10/26/99 10:30 AM Page 615

DirectX and 2D Fundamentals

616 PART II

That’s all there is to it. Of course, there are functions to retrieve the volume, pan set-
ting, frequency, etc. of any sound buffer, but I’ll let you look those up yourself.

The last get function I want to show you is used to determine the status of a playing
sound buffer:

HRESULT GetStatus(LPDWORD lpdwStatus); // ptr to result

Just call the function from the interface pointer of the sound buffer you’re interested
in with a pointer to the DWORD where you want the status to be stored, like this:

DWORD status; // used to hold status

if (FAILED(lpdsbuffer->GetStatus(&status)))
{ / * error */ }

The data in the status will be one of the following:

• DSBSTATUS_BUFFERLOST—Something happened to the buffer. Very bad.

• DSBSTATUS_LOOPING—The sound is playing in looped mode.

• DSBSTATUS_PLAYING—The sound is currently playing. If this bit isn’t set, the
sound is not playing at all.

Reading Sounds from Disk
Unfortunately, DirectSound has no support for loading sound files. I mean no support.
No .VOC loader, no .WAV loader, no nothing! It’s a darn shame. So, you’ll have to
write one yourself. The problem is that sound files are extremely complex, and it
would take half a chapter to do a good job of explaining them. So what I’m going to
do is give you a .WAV loader and explain how it works in general.

The guys at Microsoft got sick of writing their own .WAV loaders, along
with a lot of other utility functions, so they wrote one that you can use
if you want. The only problem is, the API isn’t standard and will proba-
bly change. But if you’re interested, check out all the goodies in DDU-
TIL*.CPP|H, located in one of the SOURCE directories of the SDK install,
usually in the SAMPLES or EXAMPLES directory.

The .WAV Format
The .WAV format is a Windows sound format based on the .IFF format originally cre-
ated by Electronic Arts. IFF stands for Interchange File Format. It’s a standard that
allows many different file types to be encoded using a general header/data structure
with nesting. The .WAV format uses this encoding, and although it’s very clean and
logical, it’s a pain to read the files in. You must parse a lot of header information,
which takes a lot of code, and then you have to extract the sound data.

Tip

1372313618 CH10 10/26/99 10:30 AM Page 616

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

617

The parsing is so difficult that Microsoft created a set of functions called the
multimedia I/O interface (MMIO) to help you load .WAV files and other similar types.
All the functions of this library are prefixed with mmio*. The moral of the story is that
writing a .WAV file reader isn’t that easy, and it’s tedious programming that has noth-
ing to do with game programming. So, I’m just going to give you a heavily com-
mented .WAV loader and a little explanation. If you want more, find a good reference
on sound file formats.

Reading .WAV Files
The .WAV file format is based on chunks—ID chunks, format chunks, and data chunks.
In essence, you need to open up a .WAV file and read in the header and format infor-
mation, which then tells you how many channels there are, the bits per channel, the
playback rate, and so forth, along with the length of the sampled sound. Then you
load the sound.

Now, to help facilitate loading and playing sounds, you’re going to create a sound
library API, and hence a set of globals and wrapper functions around all this
DirectSound stuff to make things easy. Let’s begin with a data structure that will hold
a virtual sound, which you’ll use instead of the lower-level DirectSound stuff:

// this holds a single sound
typedef struct pcm_sound_typ
{
LPDIRECTSOUNDBUFFER dsbuffer; // the ds buffer containing the sound
int state; // state of the sound
int rate; // playback rate
int size; // size of sound
int id; // id number of the sound
} pcm_sound, *pcm_sound_ptr;

This nicely contains the DirectSound buffer associated with a sound, along with a
copy of the important information about the sound. Now let’s create an array to hold
all the sounds in the system:

pcm_sound sound_fx[MAX_SOUNDS]; // the array of secondary sound buffers

So, when you load a sound, the idea is to find an open space and set up a pcm_sound
structure. This is exactly what the following DSound_Load_WAV() function does:

int DSound_Load_WAV(char *filename, int control_flags = DSBCAPS_CTRLDEFAULT)
{
// this function loads a .wav file, sets up the directsound
// buffer and loads the data into memory, the function returns
// the id number of the sound

HMMIO hwav; // handle to wave file
MMCKINFO parent, // parent chunk

child; // child chunk

1372313618 CH10 10/26/99 10:30 AM Page 617

DirectX and 2D Fundamentals

618 PART II

WAVEFORMATEX wfmtx; // wave format structure

int sound_id = -1, // id of sound to be loaded
index; // looping variable

UCHAR *snd_buffer, // temporary sound buffer to hold voc data
*audio_ptr_1=NULL, // data ptr to first write buffer
*audio_ptr_2=NULL; // data ptr to second write buffer

DWORD audio_length_1=0, // length of first write buffer
audio_length_2=0; // length of second write buffer

// step one: are there any open id’s ?
for (index=0; index < MAX_SOUNDS; index++)

{
// make sure this sound is unused
if (sound_fx[index].state==SOUND_NULL)

{
sound_id = index;
break;
} // end if

} // end for index

// did we get a free ID?
if (sound_id==-1)

return(-1);

// set up chunk info structure
parent.ckid = (FOURCC)0;
parent.cksize = 0;
parent.fccType = (FOURCC)0;
parent.dwDataOffset = 0;
parent.dwFlags = 0;

// copy data
child = parent;

// open the WAV file
if ((hwav = mmioOpen(filename, NULL, MMIO_READ | MMIO_ALLOCBUF))==NULL)

return(-1);

// descend into the RIFF
parent.fccType = mmioFOURCC(‘W’, ‘A’, ‘V’, ‘E’);

if (mmioDescend(hwav, &parent, NULL, MMIO_FINDRIFF))
{
// close the file
mmioClose(hwav, 0);

// return error, no wave section
return(-1);

1372313618 CH10 10/26/99 10:30 AM Page 618

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

619

} // end if

// descend to the WAVEfmt
child.ckid = mmioFOURCC(‘f’, ‘m’, ‘t’, ‘ ‘);

if (mmioDescend(hwav, &child, &parent, 0))
{
// close the file
mmioClose(hwav, 0);

// return error, no format section
return(-1);
} // end if

// now read the wave format information from file
if (mmioRead(hwav, (char *)&wfmtx, sizeof(wfmtx)) != sizeof(wfmtx))

{
// close file
mmioClose(hwav, 0);

// return error, no wave format data
return(-1);
} // end if

// make sure that the data format is PCM
if (wfmtx.wFormatTag != WAVE_FORMAT_PCM)

{
// close the file
mmioClose(hwav, 0);

// return error, not the right data format
return(-1);
} // end if

// now ascend up one level, so we can access data chunk
if (mmioAscend(hwav, &child, 0))

{
// close file
mmioClose(hwav, 0);

// return error, couldn’t ascend
return(-1);
} // end if

// descend to the data chunk
child.ckid = mmioFOURCC(‘d’, ‘a’, ‘t’, ‘a’);

if (mmioDescend(hwav, &child, &parent, MMIO_FINDCHUNK))
{
// close file
mmioClose(hwav, 0);

1372313618 CH10 10/26/99 10:30 AM Page 619

DirectX and 2D Fundamentals

620 PART II

// return error, no data
return(-1);
} // end if

// finally!!!! now all we have to do is read the data in and
// set up the directsound buffer

// allocate the memory to load sound data
snd_buffer = (UCHAR *)malloc(child.cksize);

// read the wave data
mmioRead(hwav, (char *)snd_buffer, child.cksize);

// close the file
mmioClose(hwav, 0);

// set rate and size in data structure
sound_fx[sound_id].rate = wfmtx.nSamplesPerSec;
sound_fx[sound_id].size = child.cksize;
sound_fx[sound_id].state = SOUND_LOADED;

// set up the format data structure
memset(&pcmwf, 0, sizeof(WAVEFORMATEX));

pcmwf.wFormatTag = WAVE_FORMAT_PCM; // pulse code modulation
pcmwf.nChannels = 1; // mono
pcmwf.nSamplesPerSec = 11025; // always this rate
pcmwf.nBlockAlign = 1;
pcmwf.nAvgBytesPerSec = pcmwf.nSamplesPerSec * pcmwf.nBlockAlign;
pcmwf.wBitsPerSample = 8;
pcmwf.cbSize = 0;

// prepare to create sounds buffer
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags = control_flags | DSBCAPS_STATIC |

DSBCAPS_LOCSOFTWARE;
dsbd.dwBufferBytes = child.cksize;
dsbd.lpwfxFormat = &pcmwf;

// create the sound buffer
if (lpds->CreateSoundBuffer(&dsbd,

&sound_fx[sound_id].dsbuffer,NULL)!=DS_OK)
{
// release memory
free(snd_buffer);

// return error
return(-1);
} // end if

// copy data into sound buffer
if (sound_fx[sound_id].dsbuffer->Lock(0,

1372313618 CH10 10/26/99 10:30 AM Page 620

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

621

child.cksize,
(void **) &audio_ptr_1,
&audio_length_1,
(void **)&audio_ptr_2,
&audio_length_2,
DSBLOCK_FROMWRITECURSOR)!=DS_OK)

return(0);

// copy first section of circular buffer
memcpy(audio_ptr_1, snd_buffer, audio_length_1);

// copy last section of circular buffer
memcpy(audio_ptr_2, (snd_buffer+audio_length_1),audio_length_2);

// unlock the buffer
if (sound_fx[sound_id].dsbuffer->Unlock(audio_ptr_1,

audio_length_1,
audio_ptr_2,
audio_length_2)!=DS_OK)

return(0);

// release the temp buffer
free(snd_buffer);

// return id
return(sound_id);

} // end DSound_Load_WAV

You simply pass the filename and the standard DirectSound control flags to the func-
tion, such as DSBCAPS_CTRLDEFAULT or whatever. After that, here’s what happens:

1. The function opens up the .WAV file from the disk and extracts the important
information about it.

2. The function proceeds to create a DirectSound buffer and fills it in.

3. The function stores the information in an open slot in the sound_fx[] array and
returns the index, which I refer to as the ID of the sound.

4. Finally, the rest of your API will use the ID number to refer to the sound, and
you can do whatever you want with it, such as play it. Here’s an example:

// load the sound
int id = DSound_Load_WAV(“test.wav”);

// manually play the sound buffer, later we will wrapper this
sound_fx[id].lpdsbuffer->Play(0,0,DSBPLAY_LOOPING);

Make sure to check out DEMO10_3.CPP on the disk. (Remember to link with
DSOUND.LIB, and WINMM.LIB.) It’s a complete demo of DirectSound and the
Dsound_Load_WAV() function. In addition, the program lets you manipulate the sound

1372313618 CH10 10/26/99 10:30 AM Page 621

DirectX and 2D Fundamentals

622 PART II

in real-time with scrollbars, so not only is it cool, but you can see how to add scroll-
bar controls to your applications!

Of course, I’m going to take all this DirectSound stuff and show you the complete
library (T3DLIB3.CPP|H), but first let’s take a look at DirectMusic.

DirectMusic: The Great Experiment
DirectMusic is one of the most exciting components of DirectX. As I said before,
writing digital sound software is hard, but writing software that plays MIDI files is
gnarly! DirectMusic plays MIDI files, and it does a whole lot more. Here’s a list of its
capabilities:

• Supports DLS instruments (downloadable sounds). This means that when you
play a MIDI file using DirectMusic, it will always sound the same no matter
what kind of hardware you have.

• Supports on-the-fly composition of music using the Interactive Music Engine.
DirectMusic allows you to set up templates, personalities, and variations of
mood for your songs. Then DirectMusic will take your song data and rewrite the
music in real-time and generate more music!

• Supports an unlimited number of MIDI channels, limited only by the processing
power of your PC. Normal MIDI supports 16 channels, or 16 individual sounds,
at once. There are 65,536 channel groups under DirectMusic, so you have
almost unlimited tracks that can be played at the same time.

• Uses hardware acceleration if available, but the Microsoft software synthesizer
is default and sounds as good as wave table or wave guide synthesis.

The only bad news about DirectMusic is that it is as complex as Direct3D! I have read
the online documents for it (around 500 pages), and I can tell you one thing: They
didn’t have simplicity in mind, but they did have power in mind. Luckily, all you want
to do is play a darn MIDI file, so I’m going to show you exactly how to do that and
create an API around DirectMusic so you can load and play MIDI files.

DirectMusic Architecture
DirectMusic is rather large, so I’m not going to go into any detail about it. It’s a topic
for an entire book. However, I’m going to talk about the interfaces that you’re going
to work with. Take a look at Figure 10.12 for DirectMusic’s main interfaces.

1372313618 CH10 10/26/99 10:30 AM Page 622

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

623

The descriptions of these interfaces are as follows:

IDirectMusic—This is the main interface of DirectMusic, but unlike DirectDraw and
DirectSound, you don’t necessarily need it to use DirectMusic. It is created by default
and hidden away when you create a DirectMusic performance object—thank God.

IDirectMusicPerformance—This is the main interface as far as you’re concerned.
The performance object controls and manipulates the playback of all musical data. In
addition, it creates an IDirectMusic object when it is created.

IDirectMusicLoader—This is used to load all data, including MIDI, DLS, and so
forth. You use this to load your MIDI files from disk. So you have a MIDI loader—
what a relief!

IDirectMusicSegment—This represents a chunk of musical data; each MIDI file you
load will be represented by this interface.

IDirectMusicSegmentState—This is linked to a segment, but it’s related to the cur-
rent state of the segment rather than the data.

IDirectMusicPort—This is where the digital data representing your MIDI music is
streamed out to. In most cases it will be the Microsoft Software Synthesizer, but you
can always enumerate other possible ports that are hardware-accelerated.

Generally speaking, DirectMusic is a MIDI-to-digital real-time converter with DSP
(Digital Signal Processing) abilities. As I mentioned in the DirectSound discussion on
MIDI, the problem with MIDI is that it can sound different from one machine to the
next based on the hardware and the instrument patches. DirectMusic gets around this
by using pure digital samples of the instruments in the form of DLS files. Therefore,
whenever you make a song, you can use the default DLS file or create your own
instrument file. The catch is that the instruments are digital in nature and come with
your music. Digital sound always plays the same through a D/A, so the music always
sounds the same. Take a look at Figure 10.13 to see this.

IDirectMusicPort
synthesis

IDirectMusic
virtual object

IDirectMusicPerformance
control

IDirectMusicSegmentState
state of segment

IDirectMusicSegment
music data

IDirectMusicLoader
mid files

Figure 10.12
The main interfaces

of DirectMusic.

1372313618 CH10 10/26/99 10:30 AM Page 623

DirectX and 2D Fundamentals

624 PART II

You’re probably going “What the heck?” right about now. I know, I know, it always
seems that everything is more complicated than it needs to be. But complexity is good
because it allows future technology and innovation to fit in. That is the basis of
DirectMusic.

Starting Up DirectMusic
DirectMusic is the first component of DirectX that is totally pure COM (Component
Object Model), meaning that there aren’t any helper functions in an import library to
create the COM objects for you. Alas, you must create the COM objects yourself with
calls to the COM library. So the only files any application needs are the DirectMusic
header files. There isn’t any import .LIB file. The header files are

dmksctrl.h
dmusici.h
dmusicc.h
dmusicf.h

Just make sure to include these in your applications, and COM will take care of the
rest. Let’s take a look at the entire sequence.

Initializing COM
First you have to initialize COM with a call to CoInitialize():

// initialize COM
if (FAILED(CoInitialize(NULL)))

{
// Terminate the application.
return(0);
} // end if

Direct music

DSP processing

DLS data
pure digital

Midi data
Audio port
software or

hardware D/A

Roland, GM etc.

Key to direct music

Instrument data

Music

Even with minimum
sound hardware DLS
sounds the same.

Figure 10.13
DirectMusic relies on
digital samples rather

than synthesis.

The default DLS instruments that are available on every machine loaded
with DirectMusic are the Roland GM/GS (General MIDI). They sound
great, but you can’t modify them in any way—Roland doesn’t want you
making them look bad!

Note

1372313618 CH10 10/26/99 10:30 AM Page 624

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

625

This should happen at the beginning of your application, before you make any direct
COM calls. If you have other pure COM calls and already have called it, don’t worry
about it.

Creating the Performance
The next step is to create the master interface, which is the DirectMusic performance.
Creation of this interface will also create an internal IDirectMusic interface, but you
won’t need it, so it’s hidden away. To create an interface based on pure COM, use the
CoCreateInstance() function with the interface ID and the class ID, along with stor-
age for the new interface pointer. Take a look at the following call:

// the directmusic performance manager
IDirectMusicPerformance *dm_perf = NULL;

// create the performance
if (FAILED(CoCreateInstance(CLSID_DirectMusicPerformance,

NULL,
CLSCTX_INPROC,
IID_IDirectMusicPerformance,
(void**)&dm_perf)))

{
// return null
return(0);
} // end if

Looks a bit cryptic, but within reason. After this call, dm_perf is ready to go and you
can make calls to the interface functions. The first call you need to make is to initial-
ize the performance with IDirectMusicPerformance::Init(). Here’s the prototype
for it:

HRESULT Init(IDirectMusic** ppDirectMusic,
LPDIRECTSOUND pDirectSound,
HWND hWnd);

ppDirectMusic is the address of the IDirectMusic interface if you explicitly created
one. You haven’t, so make it NULL. pDirectSound is a pointer to the IDirectSound
object.

This is important, so read carefully: If you want to use DirectSound and
DirectMusic together, you must start up DirectSound first and then pass
the IDirectSound object in the call to Init(). However, if you’re using
DirectMusic alone, pass NULL and DirectMusic will create an IDirectSound
object itself. This is needed because DirectMusic ultimately goes through
DirectSound, as shown in Figure 10.14.

Warning

1372313618 CH10 10/26/99 10:30 AM Page 625

DirectX and 2D Fundamentals

626 PART II

The moral of the story is that you must pass the main DirectSound object pointer, or
NULL if you aren’t using DirectSound. You’ll do the later for illustrative purposes.
Finally, you must send the window handle. That’s pretty easy—here’s the code:

// initialize the performance, check if directsound is on-line if so, use
// the directsound object, otherwise create a new one
if (FAILED(dm_perf->Init(NULL, NULL, main_window_handle)))

{
return(0);// Failure — performance not initialized
} // end if

Adding a Port to the Performance
The next step to get DirectMusic up and running is creating a port for the digital data
to be streamed to. If you like, you can query DirectMusic via enumeration for all
valid ports, or you can just use the Microsoft Software Synthesizer as the default.
That’s my style—keep it simple. To add a port to the performance, use the
IDirectMusicPerformance::AddPort(). Its prototype is shown here:

HRESULT AddPort(IDirectMusicPort* pPort);

Here, pPort is a pointer to a previously created port that you want to play from.
However, just use NULL and the default software synthesizer will be used:

// add the port to the performance
if (FAILED(dm_perf->AddPort(NULL)))

{
return(0);// Failure — port not initialized
} // end if

Loading a MIDI Segment
The next step in setting up DirectMusic is creating a IDirectMusicLoader object so
that you can load your MIDI files. This is accomplished with a low-level COM call
again, but it’s not bad.

Direct sound

Primary buffer

22 kHz 8 bit

Direct music

Needs direct sound's
primary buffer

Always does
sound rendering

Pure digital

Output

Figure 10.14
Relationship between

DirectMusic and
DirectSound.

1372313618 CH10 10/26/99 10:30 AM Page 626

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

627

Creating the Loader
The following code creates the loader:

// the directmusic loader
IDirectMusicLoader*dm_loader = NULL;

// create the loader to load object(s) such as midi file
if (FAILED(CoCreateInstance(

CLSID_DirectMusicLoader,
NULL,
CLSCTX_INPROC,
IID_IDirectMusicLoader,
(void**)&dm_loader)))

{
// error
return(0);
} // end if

Interestingly enough, a number of interfaces have been created internally—including
an IDirectMusic object and an IDirectMusicPort object—and you didn’t even know.
In most cases, you would never need to make calls to the functions of these interfaces,
so it’s cool, baby.

Loading the MIDI File
To load the MIDI file, you have to tell the loader where to look and what to look for
(type of file), and then tell it to create a segment and load the file into it. I have cre-
ated a function to do this along with some data structure, so I might as well show it to
you now. First, the data structure that’s going to hold each musical MIDI segment
(DirectMusic likes to call data chunks segments) is called DMUSIC_MIDI and is shown
here:

typedef struct DMUSIC_MIDI_TYP
{
IDirectMusicSegment *dm_segment; // the directmusic segment
IDirectMusicSegmentState *dm_segstate; // the state of the segment
int id; // the id of this segment
int state; // state of midi song

} DMUSIC_MIDI, *DMUSIC_MIDI_PTR;

This is used to hold each MIDI segment. But you may have more than a few songs for
a whole game, so let’s make an array of them:

DMUSIC_MIDI dm_midi[DM_NUM_SEGMENTS];

Here, DM_NUM_SEGMENTS is defined as

#define DM_NUM_SEGMENTS 64 // number of midi segments that can be cached in memory

1372313618 CH10 10/26/99 10:30 AM Page 627

DirectX and 2D Fundamentals

628 PART II

Okay, with that all in mind, take a look at the DMusic_Load_MIDI() function that fol-
lows. It’s heavily commented, so take your time, and also pay attention to the funky
wide character strings that the DirectMusic functions use:

int DMusic_Load_MIDI(char *filename)
{
// this function loads a midi segment

DMUS_OBJECTDESC ObjDesc;
HRESULT hr;
IDirectMusicSegment* pSegment = NULL;

int index; // loop var

// look for open slot for midi segment
int id = -1;

for (index = 0; index < DM_NUM_SEGMENTS; index++)
{
// is this one open
if (dm_midi[index].state == MIDI_NULL)

{
// validate id, but don’t validate object until loaded
id = index;
break;
} // end if

} // end for index

// found good id?
if (id==-1)

return(-1);

// get current working directory
char szDir[_MAX_PATH];
WCHAR wszDir[_MAX_PATH];

if(_getcwd(szDir, _MAX_PATH) == NULL)
{
return(-1);;
} // end if

MULTI_TO_WIDE(wszDir, szDir);

// tell the loader were to look for files
hr = dm_loader->SetSearchDirectory(GUID_DirectMusicAllTypes,

wszDir, FALSE);

if (FAILED(hr))
{
return (-1);
} // end if

1372313618 CH10 10/26/99 10:30 AM Page 628

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

629

// convert filename to wide string
WCHAR wfilename[_MAX_PATH];
MULTI_TO_WIDE(wfilename, filename);

// setup object description
DD_INIT_STRUCT(ObjDesc);
ObjDesc.guidClass = CLSID_DirectMusicSegment;
wcscpy(ObjDesc.wszFileName, wfilename);
ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

// load the object and query it for the IDirectMusicSegment interface
// This is done in a single call to IDirectMusicLoader::GetObject
// note that loading the object also initializes the tracks and does
// everything else necessary to get the MIDI data ready for playback.

hr = dm_loader->GetObject(&ObjDesc,IID_IDirectMusicSegment,
(void**) &pSegment);

if (FAILED(hr))
return(-1);

// ensure that the segment plays as a standard MIDI file
// you now need to set a parameter on the band track
// Use the IDirectMusicSegment::SetParam method and let
// DirectMusic find the trackby passing -1
// (or 0xFFFFFFFF) in the dwGroupBits method parameter.

hr = pSegment->SetParam(GUID_StandardMIDIFile,-1, 0, 0, (void*)dm_perf);

if (FAILED(hr))
return(-1);

// This step is necessary because DirectMusic handles program changes and
// bank selects differently for standard MIDI files than it does for MIDI
// content authored specifically for DirectMusic.
// The GUID_StandardMIDIFile parameter must
// be set before the instruments are downloaded.

// The next step is to download the instruments.
// This is necessary even for playing a simple MIDI file
// because the default software synthesizer needs the DLS data
// for the General MIDI instrument set
// If you skip this step, the MIDI file will play silently.
// Again, you call SetParam on the segment,
// this time specifying the GUID_Download parameter:

hr = pSegment->SetParam(GUID_Download, -1, 0, 0, (void*)dm_perf);

if (FAILED(hr))
return(-1);

// at this point we have MIDI loaded and a valid object

1372313618 CH10 10/26/99 10:30 AM Page 629

DirectX and 2D Fundamentals

630 PART II

dm_midi[id].dm_segment = pSegment;
dm_midi[id].dm_segstate = NULL;
dm_midi[id].state = MIDI_LOADED;

// return id
return(id);

} // end DMusic_Load_MIDI

The function isn’t too bad. It basically looks for an open slot in your dm_midi[] array
to load the new MIDI segment, sets the search path, creates the segment, loads the
segment, and bails. The function takes the filename of the MIDI file and then returns
an ID to the array index containing the segment in your data structure.

Manipulating MIDI Segments
A number of interface functions (methods) are available to the IDirectMusicSegment
interface that represents a loaded MIDI segment. You can look them up in the SDK if
you’re interested, but the two functions that should seem most important to you are
the ones that play and stop a segment, right? Ironically, these are part of the
IDirectMusicPerformance interface rather than the IDirectMusicSegment interface.
This makes sense if you think about it: The performance object is like the ringmaster,
and everything has to go through him. Like my girlfriend says, “Whatever.”

Playing a MIDI Segment
Assuming that you’ve loaded a segment using the DMusic_Load_MIDI(), or done so
manually, let dm_segment be the interface pointer to the segment. Then, to play it with
the performance object, use IDirectMusicPerformance::PlaySegment(), prototyped
here:

HRESULT PlaySegment(
IDirectMusicSegment* pSegment, // segment to play
DWORD dwFlags, // control flags
_int64 i64StartTime, // when to play
IDirectMusicSegmentState** ppSegmentState); // state holder

In general, set the control flags and start time to 0. The only parameters to worry
about are the segment and segment state. Here’s an example of playing dm_segment
and storing the state in dm_segstate:

dm_perf->PlaySegment(dm_segment, 0, 0, &dm_segstate);

Here, dm_segstate is of the type IDirectMusicSegmentState and is used to track the
segment playing. There is a copy of this in each array element of the dm_midi[], but
if you do all this yourself, remember to send one yourself.

1372313618 CH10 10/26/99 10:30 AM Page 630

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

631

Stopping a MIDI Segment
To stop a segment during play, use the IDirectMusicPerformance::Stop() function
shown here:

HRESULT Stop(
IDirectMusicSegment* pSegment, // segment to stop
IDirectMusicSegmentState* pSegmentState, // state
MUSIC_TIME mtTime, // when to stop
DWORD dwFlags); // control flags

Similar to Play(), you don’t need to worry about most of the parameters, but just the
segment itself. Here’s an example of stopping dm_segment:

dm_perf->Stop(dm_segment, NULL, 0, 0);

If you want to stop all segments that are playing, make dm_segment NULL.

Checking the Status of a MIDI Segment
Many times you want to know if a song is done playing. To test this, use the
IDirectMusicPerformance::IsPlaying() function. It simply takes the segment to
test and returns S_OK if the segment is still playing. Here’s an example:

if (dm_perf->IsPlaying(dm_segment,NULL) == S_OK)
{ /* still playing */ }

else
{ /* not playing */ }

Releasing a MIDI Segment
When you’re done with a segment, you have to release the resources. The first step is
to unload the DLS instrument data with a call to IDirectMusicSegment::SetParam()
and then release the interface pointer itself with Release(). Here’s how:

// unload the instrument data
dm_segment->SetParam(GUID_Unload, -1, 0, 0,(void*)dm_perf);

// Release the segment and set to null
dm_segment->Release();
dm_segment = NULL; // for good measure

Shutting Down DirectMusic
When you’re all done with DirectMusic, you have to close down and release the per-
formance object, release the loader, and release all the segments (see the preceding
code). Finally, you must close down COM unless it’s done elsewhere. Here’s an
example of the process:

// If there is any music playing, stop it. This is
// not really necessary, because the music will stop when
// the instruments are unloaded or the performance is

1372313618 CH10 10/26/99 10:30 AM Page 631

DirectX and 2D Fundamentals

632 PART II

// closed down.
if (dm_perf)

dm_perf->Stop(NULL, NULL, 0, 0);

// *** delete all the midis if they already haven’t been

// CloseDown and Release the performance object.
if (dm_perf)

{
dm_perf->CloseDown();
dm_perf->Release();
} // end if

// Release the loader object.
if (dm_loader)

dm_loader->Release();

// Release COM
CoUninitialize();

A Little DirectMusic Example
As an example of using DirectMusic without DirectSound or any other DirectX com-
ponent, I have created a program called DEMO10_4.CPP|EXE on the CD. It basically
loads a single MIDI file and then plays it. Take a look at it and experiment. When
you’re done, come back and see how easy all this is with the latest installment of the
library, T3DLIB3.CPP|H.

The T3DLIB3 Sound and Music Library
I have taken all the sound and music technology that we’ve been building and used it
to create the next component to your game engine, T3DLIB3. It is composed of two
main source files:

• T3DLIB3.CPP—The main C/C++ source

• T3DLIB3.H—The header file

You’ll also need to include the DirectSound import library, DSOUND.LIB, to make any-
thing link. However, DirectMusic doesn’t have an import library because it’s pure
COM, so there isn’t a DMUSIC.LIB. On the other hand, you still need to point your
compiler to the DirectSound and DirectMusic .H header files so it can find them dur-
ing compilation. Just to remind you, they are

DSOUND.H
DMKSCTRL.H
DMUSICI.H
DMUSICC.H
DMUSICF.H

1372313618 CH10 10/26/99 10:30 AM Page 632

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

633

With all that in mind, let’s take a look at the main elements of the T3DLIB3.H header
file.

The Header
The header file T3DLIB3.H contains the types, macros, and externals for T3DLIB3.CPP.
Here are the #defines you’ll find in the header:

// number of midi segments that can be cached in memory
#define DM_NUM_SEGMENTS 64

// midi object state defines
#define MIDI_NULL 0 // this midi object is not loaded
#define MIDI_LOADED 1 // this midi object is loaded
#define MIDI_PLAYING 2 // this midi object is loaded and playing
#define MIDI_STOPPED 3 // this midi object is loaded, but stopped

#define MAX_SOUNDS 256 // max number of sounds in system at once

// digital sound object state defines
#define SOUND_NULL 0 // “ “
#define SOUND_LOADED 1
#define SOUND_PLAYING 2
#define SOUND_STOPPED 3

Not much for macros; just a macro to help convert from 0-100 to the Microsoft deci-
bels scale and one to convert multibyte characters to wide:

#define DSVOLUME_TO_DB(volume) ((DWORD)(-30*(100 - volume)))

// Convert from multibyte format to Unicode using the following macro
#define MULTI_TO_WIDE(x,y) MultiByteToWideChar(CP_ACP,MB_PRECOMPOSED,
y,-1,x,_MAX_PATH)

The column width of this book is too small to fit the whole macro, so
the definition is on two lines. This is a no-no in real life. Macros must be
on a single line!

Warning

Next are the types for the sound engine.

The Types
First is the DirectSound object. There are only two types for the sound engine: one to
hold a digital sample, and the other to hold a MIDI segment:

// this holds a single sound
typedef struct pcm_sound_typ

{
LPDIRECTSOUNDBUFFER dsbuffer; // the directsound buffer

// containing the sound

1372313618 CH10 10/26/99 10:30 AM Page 633

DirectX and 2D Fundamentals

634 PART II

int state; // state of the sound
int rate; // playback rate
int size; // size of sound
int id; // id number of the sound
} pcm_sound, *pcm_sound_ptr;

And now the DirectMusic segment type:

// directmusic MIDI segment
typedef struct DMUSIC_MIDI_TYP
{
IDirectMusicSegment *dm_segment; // the directmusic segment
IDirectMusicSegmentState *dm_segstate; // the state of the segment
int id; // the id of this segment
int state; // state of midi song

} DMUSIC_MIDI, *DMUSIC_MIDI_PTR;

Both sounds and MIDI segments, respectively, will be stored by the engine in the pre-
ceding two structures. Now let’s take a look at the globals.

Global Domination
T3DLIB3 contains a number of globals. Let’s take a look. First are the globals for the
DirectSound system:

LPDIRECTSOUND lpds; // directsound interface pointer
DSBUFFERDESC dsbd; // directsound description
DSCAPS dscaps; // directsound caps
HRESULT dsresult // general directsound result
DSBCAPS dsbcaps; // directsound buffer caps

pcm_sound sound_fx[MAX_SOUNDS]; // array of sound buffers
WAVEFORMATEX pcmwf; // generic waveformat structure

And here are the globals for DirectMusic:

// direct music globals
// the directmusic performance manager
IDirectMusicPerformance *dm_perf ;
IDirectMusicLoader *dm_loader; // the directmusic loader

// this hold all the directmusic midi objects
DMUSIC_MIDI dm_midi[DM_NUM_SEGMENTS];
int dm_active_id; // currently active midi segment

The highlighted lines show the arrays that hold sounds and MIDI seg-
ments.

Note

1372313618 CH10 10/26/99 10:30 AM Page 634

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

635

You shouldn’t have to mess with any of these globals, except to access the interfaces
directly if you want to do so. In general, the API will handle everything for you, but
the globals are there if you want to tear them up.

There are two parts to the library: DirectSound and DirectMusic. Let’s take a look at
DirectSound first, and then DirectMusic.

The DirectSound API Wrapper
DirectSound can be simple or complicated, depending on how you use it. If you want
a “do it all” API, you’re going to end up using most of the DirectSound functions
themselves. But if you want a simpler API that allows you to initialize DirectSound
and load and play sounds of a specific format, that’s a lot easier to wrap up into a few
functions.

So what I’ve done is take much of your work in the DirectSound part of this chapter
and formalize it into functions for you. In addition, I’ve created an abstraction around
the sound system, so you refer to a sound with an ID (same for the DirectMusic part)
that is given to you during the loading process. Thus, you can use this ID to play the
sound, check its status, or terminate it. This way there aren’t any ugly interface point-
ers that you have to mess with. The new API supports the following functionality:

• Initializing and shutting down DirectSound with single calls.

• Loading .WAV files with 11 KHz 8-bit mono format.

• Playing a loaded sound file.

• Stopping a sound.

• Testing the play status of a sound.

• Changing the volume, playback rate, or stereo panning of a sound.

• Deleting sounds from memory.

Let’s take a look at each function one by one.

Unless otherwise stated, all functions return TRUE (1) if successful and
FALSE (0) if not.

Note

Function Prototype:

int DSound_Init(void);

Purpose:

DSound_Init() initializes the entire DirectSound system. It creates the DirectSound
COM object, sets the priority level, and so forth. Just call the function at the begin-
ning of your application if you want to use sound. Here’s an example:

1372313618 CH10 10/26/99 10:30 AM Page 635

DirectX and 2D Fundamentals

636 PART II

if (!DSound_Init(void))
{ /* error */ }

Function Prototype:

int DSound_Shutdown(void);

Purpose:

DSound_Shutdown() shuts down and releases all the COM interfaces created during
DSound_Init(). However, DSound_Shutdown() will not release all the memory allo-
cated to all the sounds. You must do this yourself with another function. Anyway,
here’s how you would shut down DirectSound:

if (!DSound_Shutdown())
{ /* error */ }

Function Prototype:

int DSound_Load_WAV(char *filename);

Purpose:

DSound_Load_WAV() creates a DirectSound buffer, loads the sound data file into mem-
ory, and prepares the sound to be played. The function takes the complete path and
filename of the sound file to be loaded (including the extension .WAV) and loads the
file from the disk. If successful, the function returns a non-negative ID number. You
must save this number because it is used as a handle to reference the sound. If the
function can’t find the file, or too many sounds are loaded, it will return -1. Here’s an
example of loading a .WAV file named FIRE.WAV:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);

// test for error
if (fire_id==-1)

{ /* error */}

Of course, it’s up to you how you want to save the IDs. You might want to use an
array or something else.

Finally, you might wonder where the sound data is and how to mess with it. If you
really must, you can access the data within the pcm_sound array sound_fx[], using
the ID you get back from either load function as the index. For example, here’s how
you would access the DirectSound buffer for the sound with ID sound_id:

sound_fx[sound_id].dsbuffer

Function Prototype:

int DSound_Replicate_Sound(int source_id); // id of sound to copy

1372313618 CH10 10/26/99 10:31 AM Page 636

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

637

Purpose:

DSound_Replicate_Sound() is used to copy a sound without copying the memory
used to hold the sound. For example, let’s say you have a gunshot sound and you want
to fire three gunshots, one right after another. The only way to do this right now
would be to load three copies of the gunshot sound into three different DirectSound
memory buffers, which would be a waste of memory.

Alas, there is a solution—it’s possible to create a duplicate (or replicant, if you’re a
Blade Runner fan) of the sound buffer, excluding for the actual sound data. Instead of
copying it, you just point a pointer to it, and DirectSound is smart enough to be used
as a “source” for multiple sounds using the same data. If you wanted to play a gun-
shot up to eight times, for example, you would load the gunshot once, make seven
copies of it, and acquire a total of eight unique IDs. Replicated sounds work exactly
the same as normal sounds, except that instead of using DSound_Load_WAV() to load
and create them, you copy them with DSound_Replicate_Sound(). Get it? Good! I’m
starting to get dizzy! Here’s an example of creating eight gunshots:

int gunshot_ids[8]; // this holds all the id’s

// load in the master sound
gunshot_ids[0] = Load_WAV(“GUNSHOT.WAV”);

// now make copies
for (int index=1; index<8; index++)

gunshot_ids[index] = DSound_Replicate_Sound(gunshot_ids[0]);

// use gunshot_ids[0..7] anyway you wish, they all go bang!

Function Prototype:

int DSound_Play_Sound(int id, // id of sound to play
int flags=0, // 0 or DSBPLAY_LOOPING
int volume=0, // unused
int rate=0, // unused
int pan=0); // unused

Purpose:

DSound_Play_Sound() plays a previously loaded sound. You simply send the ID of
the sound along with the play flags—0 for a single sound, or DSBPLAY_LOOPING to
loop—and the sound will start playing. And if the sound is already playing, it will
restart at the beginning. Here’s an example of loading and playing a sound:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);
DSound_Play_Sound(fire_id,0);

Or, you can leave out the 0 for flags entirely because its default parameter is 0:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);
DSound_Play_Sound(fire_id);

1372313618 CH10 10/26/99 10:31 AM Page 637

DirectX and 2D Fundamentals

638 PART II

Either way the FIRE.WAV sound will play once and then stop. To make it loop, send
DSBPLAY_LOOPING for the flags parameter.

Function Prototype:

int DSound_Stop_Sound(int id);
int DSound_Stop_All_Sounds(void);

Purpose:

DSound_Stop_Sound() is used to stop a single sound from playing (if it’s playing
already). You simply send the ID of the sound and that’s it.
DSound_Stop_All_Sounds() will stop all the sounds currently playing. Here’s an
example of stopping the fire_id sound:

DSound_Stop_Sound(fire_id);

And at the end of your program, it’s a good idea to stop all the sounds from playing
before exiting. You could do this with separate calls to DSound_Stop_Sound() for each
sound, or a single call to DSound_Stop_All_Sounds(), like this:

//...system shutdown code
DSound_Stop_All_Sounds();

Function Prototype:

int DSound_Delete_Sound(int id); // id of sound to delete
int DSound_Delete_All_Sounds(void);

Purpose:

DSound_Delete_Sound() deletes a sound from memory and releases the DirectSound
buffer associated with it. If the sound is playing, the function will stop it first.
DSound_Delete_All_Sounds() deletes all previously loaded sounds. Here’s an exam-
ple of deleting the fire_id sound:

DSound_Delete_Sound(fire_id);

Function Prototype:

int DSound_Status_Sound(int id);

Purpose:

DSound_Status_Sound() tests the status of a loaded sound based on its ID. All you do
is pass the ID number of the sound to the function, and the function will return one of
these values:

• DSBSTATUS_LOOPING—The sound is currently playing and is in loop mode.

• DSBSTATUS_PLAYING—The sound is currently playing and is in single-play
mode.

1372313618 CH10 10/26/99 10:31 AM Page 638

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

639

If the value returned from DSound_Status_Sound() is neither of the these constants,
the sound is not playing. Here’s a complete example that waits until a sound has fin-
ished playing and then deletes it:

// initialize DirectSound
DSound_DSound_Init();

// load a sound
int fire_id = DSound_Load_WAV(“FIRE.WAV”);

// play the sound in single mode
DSound_Play_Sound(fire_id);

// wait until the sound is done
while(DSound_Sound_Status(fire_id) &

(DSBSTATUS_LOOPING | DSBSTATUS_PLAYING));

// delete the sound
DSound_Delete_Sound(fire_id);

// shutdown DirectSound
DSound_DSound_Shutdown();

Pretty cool, huh? A lot better than the couple hundred or so lines of code required to
do it manually with DirectSound!

Function Prototype:

int DSound_Set_Sound_Volume(int id, // id of sound
int vol); // volume from 0-100

Purpose:

DSound_Set_Sound_Volume() changes the volume of a sound in real-time. Send the
ID of the sound, along with a value from 0-100, and the sound will change instantly.
Here’s an example of reducing the volume of a sound to 50 percent of what it was
loaded as:

DSound_Set_Sound_Volume(fire_id, 50);

You can always change the volume back to 100 percent, like this:

DSound_Set_Sound_Volume(fire_id, 100);

Function Prototype:

int DSound_Set_Sound_Freq(
int id, // sound id
int freq); // new playback rate from 0-100000

1372313618 CH10 10/26/99 10:31 AM Page 639

DirectX and 2D Fundamentals

640 PART II

Purpose:

DSound_Set_Sound_Freq() changes the playback frequency of the sound. Because all
sounds must be loaded at 11 KHz mono, here’s how you would double the perceived
playback rate:

DSound_Set_Sound_Freq(fire_id, 22050);

And to make you sound like Darth Vader, do this:

DSound_Set_Sound_Freq(fire_id, 6000);

Function Prototype:

int DSound_Set_Sound_Pan(
int id, // sound id
int pan); // panning value from -10000 to 10000

Purpose:

DSound_Set_Sound_Pan() sets the relative intensity of the sound on the right and left
speakers. A value of -10,000 is hard left, and 10,000 is hard right. If you want equal
power, set the pan to 0. Here’s how you would set the pan all the way to the right
side:

DSound_Set_Sound_Pan(fire_id, 10000);

The DirectMusic API Rapper—Get It?
The DirectMusic API is even simpler than the DirectSound API. I have created func-
tions to initialize DirectMusic and created all the COM objects for you to allow you
to focus on loading and playing MIDI files. Here’s the basic functionality list:

• Initializing and shutting down DirectMusic with single calls.

• Loading MIDI files from disk.

• Playing a MIDI file.

• Stopping a MIDI that is currently playing.

• Testing the play status of a MIDI segment.

• Automatically connecting to DirectSound if it’s already initialized.

• Deleting MIDI segments from memory.

Let’s take a look at each function one by one.

Unless otherwise stated, all functions return TRUE (1) if successful and
FALSE (0) if not.

Note

1372313618 CH10 10/26/99 10:31 AM Page 640

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

641

Function Prototype:

int DMusic_Init(void);

Purpose:

DMusic_Init() initializes DirectMusic and creates all necessary COM objects. You
make this call before any other calls to the DirectMusic library. In addition, if you
want to use DirectSound, make sure to initialize DirectSound before calling
DMusic_Init(). Here’s an example of using the function:

if (!DMusic_Init())
{ /* error */ }

Function Prototype:

int DMusic_Shutdown(void);

Purpose:

DMusic_Shutdown() shuts down the entire DirectMusic engine. It releases all COM
objects in addition to unloading all loaded MIDI segments. Call this function at the
end of your application, but before the call to shut down DirectSound (if you have
DirectSound support). Here’s an example:

if (!DMusic_Shutdown())
{ /* error */ }

// now shutdown DirectSound…

Function Prototype:

int DMusic_Load_MIDI(char *filename);

Purpose:

DMusic_Load_MIDI() loads a MIDI segment into memory and allocates a record in
the midi_ids[] array. The function returns the ID of the loaded MIDI segment, or -1
if unsuccessful. The returned ID is used as a reference for all other calls. Here’s an
example of loading a couple MIDI files:

// load files
int explode_id = DMusic_Load_MIDI(“explosion.mid”);
int weapon_id = DMusic_Load_MIDI(“laser.mid”);

// test files
if (explode_id == -1 || weapon_id == -1)

{ /* there was a problem */ }

Function Prototype:

int DMusic_Delete_MIDI(int id);

1372313618 CH10 10/26/99 10:31 AM Page 641

DirectX and 2D Fundamentals

642 PART II

Purpose:

DMusic_Delete_MIDI() deletes a previously loaded MIDI segment from the system.
Simply supply the ID to delete. Here’s an example of deleting the previously loaded
MIDI files in the preceding example:

if (!DMusic_Delete_MIDI(explode_id) ||
!DMusic_Delete_MIDI(weapon_id))

{ /* error */ }

Function Prototype:

int DMusic_Delete_All_MIDI(void);

Purpose:

DMusic_Delete_All_MIDI() simply deletes all MIDI segments from the system in
one call. Here’s an example:

// delete both of our segments
if (!DMusic_Delete_All_MIDI())

{ /* error */ }

Function Prototype:

int DMusic_Play(int id);

Purpose:

DMusic_Play() plays a MIDI segment from the beginning. Simply supply the ID of
the segment you want to play. Here’s an example:

// load file
int explode_id = DMusic_Load_MIDI(“explosion.mid”);

// play it
if (!DMusic_Play(explode_id))

{ /* error */ }

Function Prototype:

int DMusic_Stop(int id);

Purpose:

DMusic_Stop() stops a currently playing segment. If the segment is already stopped,
the function has no effect. Here’s an example:

// stop the laser blast
if (!DMusic_Stop(weapon_id))

{ /* error */ }

1372313618 CH10 10/26/99 10:31 AM Page 642

CHAPTER 10
Sounding Off with DirectSound and DirectMusic

643

Function Prototype:

int DMusic_Status_MIDI(int id);

Purpose:

DMusic_Status() tests the status of any MIDI segment based on its ID. The status
codes are

#define MIDI_NULL 0 // this midi object is not loaded
#define MIDI_LOADED 1 // this midi object is loaded
#define MIDI_PLAYING 2 // this midi object is loaded and playing
#define MIDI_STOPPED 3 // this midi object is loaded, but stopped

Here’s an example of changing state based on a MIDI segment completing:

// main game loop
while(1)

{
if (DMusic_Status(explode_id) == MIDI_STOPPED)

game_state = GAME_MUSIC_OVER;

} // end while

For a demo of using the library, check out DEMO10_5.CPP|EXE and DEMO10_6.CPP|EXE.
The first program is a demo of DirectMusic using the new library, which allows you
to pick a MIDI file from a menu and instantly play it. The second demo is a mixed-
mode application that uses both DirectSound and DirectMusic at the same time. The
important detail of the second demo is that DirectSound must be initialized first. The
sound library detects this and then connects to DirectSound. Otherwise, the sound
library would create its own DirectSound object.

Both DEMO10_5.CPP and DEMO10_6.CPP use external cursor, icon, and
menu resources contained in DEMO10_5.RC and DEMO10_6.RC, respectively.
So make sure to include these files in the projects when you’re trying to
compile. And you need to include T3DLIB3.CPP|H to compile, but you
knew that!

Warning

Summary
This chapter has covered a lot of ground. You learned a bit about the nature of sound
and music, how synthesis works, and how to record sound. Then you learned about
DirectSound and DirectMusic, created a library, and saw a lot of demos. I would have
loved to have gone into DirectSound3D, not to mention more advanced DirectMusic,
but that’s up to you. Now you know everything you need to make a game, and that‘s
the mission for the next chapter!

1372313618 CH10 10/26/99 10:31 AM Page 643

1372313618 CH10 10/26/99 10:31 AM Page 644

Hardcore Game
Programming

Chapter 11
Algorithms, Data Structures, Memory Management, and
Multithreading 647

Chapter 12
Making Silicon Think with Artificial Intelligence 713

Chapter 13
Playing God: Basic Physics Modeling 797

Chapter 14
Putting It All Together: You Got Game! 875

PART III

1472313618 Part 3 8/27/99 8:18 AM Page 645

1472313618 Part 3 8/27/99 8:18 AM Page 646

Algorithms, Data
Structures, Memory
Management, and
Multithreading

“You think I can get a hug after this?”
—Bear, Armageddon

This chapter is going to talk about all those little details that slip
through the cracks in any game programming book (even mine).
We’re going to discuss everything from writing games so they
can be saved, to making demos, to optimization theory! This
chapter will help you with some of those lingering details. Then,
when we cover artificial intelligence in the next chapter, you
should have all the general game programming concepts under
control so the 3D math doesn’t make you crack!

Here’s what’s in store in this chapter:

• Data structures

• Algorithm analysis

• Optimization theory

• Mathematical tricks

CHAPTER 11

1572313618 CH11 10/26/99 10:34 AM Page 647

Hardcore Game Programming

648 PART III

• Mixed-language programming

• Saving games

• Implementing multiple players

• Multithreaded programming techniques

Data Structures
Probably one of the most frequent questions I’m asked is, “What kind of data struc-
tures should be used in a game?” The answer is: the fastest and most efficient data
structures possible. However, in most cases you won’t need the most advanced, com-
plex data structures that computer science has to offer. Rather, you should try to keep
things simple. And speed is more important than memory these days, so you should
sacrifice memory before you sacrifice speed!

With that in mind, I want to take a look at a few of the most common data structures
used in games and give you some insight into when and how to use them.

Static Structures and Arrays
The most basic of all data structures is, of course, a single occurrence of a data item
such as a single structure or class. For example:

typedef struct PLAYER_TYP // tag for forward references
{
int state; // state of player
int x,y; // position of player
// ...
} PLAYER, *PLAYER_PTR;

Tip In C++, you no longer need to use typedef on structure definitions
to create a type; a type is automatically created for you when you use
the keyword struct. In addition, C++ structs can have methods and
even public and private sections.

PLAYER player_1, player_2; // create a couple players

In this case, a single data structure along with two statically defined records does the
job. On the other hand, if there were three or more players, it would probably be a
good idea to use an array like this:

PLAYER players[MAX_PLAYERS]; // the players of the game

Here you can process all the players with a simple loop. Okay, great, but what if you
don’t know how many players or records there are going to be until the game runs?

1572313618 CH11 10/26/99 10:34 AM Page 648

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

649

When this situation arises, I figure out the maximum number of elements that the
array would have to hold. If it’s reasonably small number, like 256 or less, and each
element is also reasonably small (less than 256 bytes), I will usually statically allocate
it and use a counter to count how many of the elements are active at any time.

You may think that this is a waste of memory, and it is, but a preallocated array of a
fixed size is easier and faster to traverse than a linked list or more dynamic structure.
The point is, if you know the number of elements ahead of time and there aren’t that
many of them, go ahead and preallocate an array statically by making a call to
malloc() or new() during startup.

Don’t get carried away with static arrays. For example, if you have a
structure that is 4KB and there may be from 1 to 256 static arrays, you
definitely need a better strategy than allocating 1MB in case there may
be 256 of them at some point. In this case, it might be better to use a
linked list or to dynamically reallocate the array and increase its size on
demand.

Warning

Linked Lists
Arrays are fine for simple data structures that can be precounted or estimated at com-
pilation or startup, but data structures that can grow or shrink during run-time should
use some form of linked lists. Figure 11.1 depicts a standard abstract linked list. A
linked list consists of a number of nodes, each node containing information and a link
to the next node in the list.

Figure 11.1
A linked list.

Node 0 Node 1 Node n

Tail

Data DataHead

Null

L
i
n
k

L
i
n
k

L
i
n
k

Or circularly point back to head

Linked lists are cool because you can insert a node anywhere in the list, and you can
delete a node from anywhere in the list. Take a look at Figure 11.2 to see this graphi-
cally. The capability to insert and delete nodes (and hence, information) during run-
time makes linked lists very attractive as data structures for games.

1572313618 CH11 10/26/99 10:34 AM Page 649

Hardcore Game Programming

650 PART III

The only bad thing about linked lists is that you must traverse them node by node to
find what you’re looking for (unless other secondary data structures are created to
help with the searching). For example, say that you want the 15th element in an array.
You would access it like this:

players[15]

But with linked lists, you need a traversal algorithm to traverse the list to find the 15th
element. This means that the searching of linked lists can take a number of iterations
equal to the length of the list (in the worst case). That is, O(n)—read “Big O of n.”
This means that there are on the order of n operations for n elements. Of course, there
are optimizations and secondary data structures that you can employ to maintain a
sorted indexed list that allows access almost as fast as the simple array.

Creating a Linked List
Let’s take a look at how you would create a simple linked list, add a node, delete a
node, and search for an item with a given key. Here’s the basic node:

typedef struct NODE_TYP
{
int id; // id number of this object
int age; // age of person
char name[32]; // name of person
NODE_TYP *next; // this is the link to the next node

// more fields go here
} NODE, *NODE_PTR;

50 9021

50

100

421

Head Tail

Node to insert
Null

Null

A. Before insertion

9021

100

421

Head Tail

Node is inserted
in list and pointers
fixed up.

Null

B. After insertion (in order)

Temp

Temp

Figure 11.2
Inserting into a linked

list.

1572313618 CH11 10/26/99 10:34 AM Page 650

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

651

To start the list off, you need a head pointer and a tail pointer that point to the head
and tail of the list, respectively. However, the list is empty, so the pointers start off
pointing to NULL:

NODE_PTR head = NULL,
tail = NULL;

Some programmers like to start off a linked list with a dummy node
that’s always empty. This is mostly a choice of taste. However, this
changes some of the initial conditions of the creation, insertion, and
deletion algorithms, so you might want to try it.

Note

Traversing a Linked List
Ironically, traversing a linked list is the easiest of all operations:

1. Start at the head pointer.

2. Visit the node.

3. Link to the next node.

4. If it’s not NULL, repeat step 2.

And here’s the code:

void Traverse_List(NODE_PTR head)
{
// this function traverses the linked list and prints out
// each node

// test if head is null
if (head==NULL)

{
printf(“\nLinked List is empty!”);
return;
} // end if

// traverse while nodes
while (head!=NULL)

{
// visit the node, print it out, or whatever...
printf(“\nNode Data: id=%d”, head->id);
printf(“\nage=%d,head->age);
printf(“\nname=%s\n”,head->name);

// advance to next node (simple!)
head = head->next;
} // end while

print(“\n”);

} // end Traverse_List

1572313618 CH11 10/26/99 10:34 AM Page 651

Hardcore Game Programming

652 PART III

Pretty cool, huh? Next, let’s take a look at how you would add a node.

Adding a Node
The first step in adding a node is creating it. There are two ways to approach this: You
could send the new data elements to the insertion function and let it build up a new
node, or you could build up a new node and then pass it to the insertion function.
Either way is basically the same.

Furthermore, there are a number of ways to insert a node into a linked list. The brute-
force method is to add it to the front or the end. This fine if you don’t care about the
order, but if you want the list to remain sorted, you should use a more intelligent
insertion algorithm that maintains either ascending or descending order—an insertion
sort of sorts. This will make searching much faster.

For simplicity’s sake, I’m going to take the easy way out and insert at the end of the
list, but inserting with sorting is not that much more complex. You first need to scan
the list, find where the new element should be inserted, and insert it. The only prob-
lem is keeping track of the pointers and not losing anything.

Anyway, here’s the code to insert a new node at the end of the list (a bit harder than
inserting at the front of the list). Notice the special cases for empty lists and lists with
a single element:

// access the global head and tail to make code easier
// in real life, you might want to use ** pointers and
// modify head and tail in the function ???

NODE_PTR Insert_Node(int id, int age, char *name)
{
// this function inserts a node at the end of the list
NODE_PTR new_node = NULL;

// step 1: create the new node
new_node = (NODE_PTR)malloc(sizeof(NODE)); // in C++ use new operator

// fill in fields
new_node->id = id;
new_node->age = age;
strcpy(new_node->name,name); // memory must be copied!
new_node->next = NULL; // good practice

// step 2: what is the current state of the linked list?

if (head==NULL) // case 1
{
// empty list, simplest case
head = tail = new_node;

// return new node

1572313618 CH11 10/26/99 10:34 AM Page 652

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

653

return(new_node);
} // end if

else
if ((head != NULL) && (head==tail)) // case 2

{
// there is exactly one element, just a little
// finesse...
head->next = new_node;
tail = new_node;

// return new node
return(new_node);
} // end if

else // case 3
{
// there are 2 or more elements in list
// simply move to end of the list and add
// the new node
tail->next = new_node;
tail = new_node;

// return the new node
return(new_node);
} // end else

} // end Insert_Node

As you can see, the code is rather simple. But it’s easy to mess up because you’re
dealing with pointers, so be careful! Also, the astute programmer will very quickly
realize that with a little thought, cases two and three can be combined, but the code
here is easier to follow. Now let’s remove a node.

Deleting a Node
Deleting a node is more complex than inserting a node because pointers and memory
have to be shuffled. The problem with deletion is that, in most cases, you want to
delete a specific node. The node might be at the head, tail, or middle, so you must
write a very general algorithm that takes all these cases into consideration. If you’re
careful, deletion isn’t a problem. If you don’t take all the cases into consideration and
test them, though, you’ll be sorry!

In general, the algorithm must search the linked list for the key in question, remove
the node from the list, and release its memory. In addition, the algorithm has to fix up
the pointers that pointed to the node and that the node pointed to. Take a look at
Figure 11.3 to see this.

1572313618 CH11 10/26/99 10:34 AM Page 653

Hardcore Game Programming

654 PART III

In any event, here’s the code that implements the deletion based on removing the node
with key ID:

// again this function will modify the globals
// head and tail (possibly)

int Delete_Node(int id) // node to delete
{
// this function deletes a node from
// the linked list given its id
NODE_PTR curr_ptr = head, // used to search the list

prev_ptr = head; // previous record

// test if there is a linked list to delete from
if (!head)

return(-1);

// traverse the list and find node to delete
while(curr_ptr->id != id && curr_ptr)

{
// save this position
prev_ptr = curr_ptr;
curr_ptr = curr_ptr->next;
} // end while

// at this point we have found the node
// or the end of the list
if (curr_ptr == NULL)

return(-1); // couldn’t find record

// record was found, so delete it, but be careful,

50 9021 100 421

Head Tail

Node to remove Null

A. Before removal of key “50”

50

9021 100 421

Head TailFix links

Remove from heap Null

Null
Free (temp);

Temp

B. After removal of key “50”

Figure 11.3
Removing a node
from a linked list.

1572313618 CH11 10/26/99 10:34 AM Page 654

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

655

// need to test cases
// case 1: one element
if (head==tail)

{
// delete node
free(head);

// fix up pointers
head=tail=NULL;

// return id of deleted node
return(id);
} // end if

else // case 2: front of list
if (curr_ptr == head)

{
// move head to next node
head=head->next;

// delete the node
free(curr_ptr);

// return id of deleted node
return(id);

} // end if
else // case 3: end of list
if (curr_ptr == tail)

{
// fix up previous pointer to point to null
prev_ptr->next = NULL;

// delete the last node
free(curr_ptr);

// point tail to previous node
tail = prev_ptr;

// return id of deleted node
return(id);

} // end if
else // case 4: node is in middle of list

{
// connect the previous node to the next node
prev_ptr->next = curr_ptr->next;

// now delete the current node
free(curr_ptr);

// return id of deleted node

1572313618 CH11 10/26/99 10:34 AM Page 655

Hardcore Game Programming

656 PART III

return(id);

} // end else

} // end Delete_Node

Note that there are a lot of special cases in the code. Each case is simple, but you have
to think of everything—which I hope I did!

Finally, you may have noticed the dramarama involved with deleting nodes from the
interior of the list. This is due to the fact that once a node is traversed, you can’t get
back to it. Hence, I had to keep track of a previous NODE_PTR to keep track of the last
node. This problem, along with others, can be solved by using a doubly linked list, as
shown in Figure 11.4.

Node 1 Node 2 Node n

Data Data Data
n
e
x
t

n
e
x
t

n
e
x
t

p
r
e
v

p
r
e
v

p
r
e
v

LinksHead Tail

Figure 11.4
A doubly linked list.

The cool things about doubly linked lists are that you can traverse them in both direc-
tions from any point and insertions and deletions are much easier. And the only
change to the data structure is another link field, as shown here:

typedef struct NODE_TYP
{
int id; // id number of this object
int age; // age of person
char name[32]; // name of person
// more fields go here
NODE_TYP *next; // link to the next node
NODE_TYP *prev; // link to previous node

} NODE, *NODE_PTR;

With a doubly linked list, you always move forward or backward from any node, so
the tracking code is simplified for insertions and deletions. For an example of imple-
menting a simple linked list, take a look at the console application
DEMO11_1.CPP|EXE. It allows you to add, delete, and traverse a linked list.

1572313618 CH11 10/26/99 10:34 AM Page 656

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

657

Algorithmic Analysis
Algorithm design and algorithmic analysis are usually senior-level computer science
material. However, we can at least touch upon some common-sense techniques and
ideas to help you when you start writing more complex algorithms.

First, a good algorithm is better than all the assembly language or optimization in the
world. For example, you saw that just changing the order of your data can reduce the
amount of time it takes to search for a data element by orders of magnitude. So the
moral of the story is to select a solid algorithm that fits the problem and the data, but
at the same time to pick a data structure that can be accessed and manipulated with a
good algorithm.

For example, if you always use linear arrays, you’re never going to get better than lin-
ear search time (unless you use secondary data structures). But if you use sorted
arrays, you can get logarithmic search time.

The first step in writing good algorithms is having some clue about how to analyze
them. The art of analyzing algorithms is called asymptotic analysis and is usually cal-
culus-based. I’m not go to go into it too much, but I’ll skim some of the concepts.

The basic idea of analyzing an algorithm is computing how many times the main loop
is executed for n elements, whatever n happens to be. This is the most important idea.
Of course, how long it takes for each execution, plus the overhead of setup, can also
be important once you have a good algorithm, but the place to start is the general
counting of how many times the loop executes. Let’s take a look at two examples:

for (int index=0; index<n; index++)
{
// do work, 50 cycles
} // end for index

In this case, the loop is going to execute for n iterations, so the execution time is of
the order n, or O(n). This is called Big O notation and is an upper bound, or very
rough upper estimate, of execution time. Anyway, if you want to be more precise, you
know that the inner computation takes 50 cycles, so the total execution time is

n*50 cycles

DEMO11_1.CPP is a console application, rather than the standard
Windows .EXE application that you’ve been working with, so make sure
to set the compiler for Console Application before trying to compile it.
And obviously, there is no DirectX, so you don’t need any of the DirectX
.LIB files.

Note

1572313618 CH11 10/26/99 10:34 AM Page 657

Hardcore Game Programming

658 PART III

Right? Wrong! If you’re going to count cycles, you’d better count the cycles that it
takes for the loop itself. This consists of an initialization of a variable, a comparison,
and increment, and a jump each iteration. Adding these gives you something like this:

Cyclesinitialization+(50+Cyclesinc+Cyclescomp+Cyclesjump)*n

This is a much better estimate. Of course, Cyclesinc, Cyclescomp, and Cyclesjump are the
number of cycles for the increment, comparison, and jump, respectively, and are each
around 1-2 on a Pentium-class processor. Therefore, in this case the loop itself con-
tributes just as much to the overall time of the inner loop as the work the loop does!
This is a key point.

For example, many game programmers write a pixel-plotting function as a function
instead of a macro or inline code. Because a pixel-plotting function is so simple, the
call to the function takes more time than the pixel plotting! So make sure that you do
enough work in your loop to warrant one, and that the work “drowns out” the loop
mechanics themselves.

Now let’s see another example that has a much worse running time than n:

// outer loop
for (i=0; i<n; i++)

{
// inner loop
for (j=1; j<2*n; j++)
{

// do work
} // end for j

} // end for i

This time, I’m assuming the work part takes much more time than the actual code that
supports the loop mechanics, so I’m not interested in it. What I am interested in is
how many times this loop executes. The outer loop executes n times and the inner
loop executes 2*n-1 times, so the total amount of time the inner code will be
executed is

n*(2*n-1) = 2*n2-n

Let’s look at this for a moment, because there are two terms. The 2*n2 term is the
dominate term and will drown out the n term as n gets large. Take a look at Figure
11.5 to see this.

For a small n, say 2, the n term is relevant:

2*(2)2 - 2 = 6

In this case, the n term contributes to subtracting 25 percent of the total time away,
but take a look when n gets large. For example, n = 1000:

2*(1000)2 - 1000 = 1999000

1572313618 CH11 10/26/99 10:34 AM Page 658

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

659

In this case, the n term contributes a decrease of only .05 percent; hardly important.
You can see that the dominate term is indeed the 2*n2 term, or more simply the n2

itself. Hence, this algorithm is O(n2). This is very bad. Algorithms that run in n2 time
will just kill you, so if you come up with an algorithm like this, try, try again!

That’s it for asymptotic analysis. The bottom line is that you must be able to roughly
estimate the run-time of your loops, which will help you pick out the algorithms and
recode areas that need work.

Recursion
The next subject I want to talk about is recursion—did you just get a stomach ache?
This may or may not be familiar to you. Recursion is simply a technique of solving a
problem by induction—sorta. The basis of recursion is that many problems can be
broken down into simpler problems of the same form, until at some point you can
actually solve the problem. Then you assemble the large problem by combining the
smaller problems. Sounds good, huh?

0

10

20

30

40

50

60

70

80

90

100 fn = (2 • n2) Dominant term

1 2 3 4 5 6 7 8 9 10 11 12

fn = (2 • n2 – n)

fn = (n)

n n 2 • n2 2 • n2 – n

0 0 0 0
1 1 2 1
2 2 8 6
3 3 18 15
4 4 32 28
5 5 50 45
6 6 72 66
7 7 98 91
8 8 128 120
9 9 102 153
10 10 200 190

Figure 11.5
Rates of growth for
the term of 2*n2-n.

1572313618 CH11 10/26/99 10:35 AM Page 659

Hardcore Game Programming

660 PART III

In computer programming, we usually use recursive algorithms for searching, sorting,
and some mathematical operations. The premise is simple: You write a function that
has the potential to call itself to solve the problem. Sound weird? Well, the key is that
when a function calls itself, a new set of local variables are created on the stack, so
it’s really like another function is being called. The only things you have to worry
about are that the function doesn’t overflow the stack and that there is a terminal case
at which the function terminates, whereby it can “unwind” the stack via multiple
return()s. Let’s jump into it with a standard example: the computation of a factorial.

The factorial of a number written as n! (“n bang”) has the following meaning:

n! = n*(n-1)*(n-2)*(n-3)*…(2)*(1)

And 0! = 1! = 1,

Thus, 5! is 5*4*3*2*1.

Let’s code this the normal way:

// assume integers
int Factorial(int n)
{
int sum = 1; // hold result

// accumulate product
while(n > 1)

{
sum*=n;

// decrement n
n--;

} // end while

// return the result
return(sum);

} // end Factorial

Looks pretty basic. If you send in a 0 or 1, you get 1. If you send it a 3, the following
sequence occurs:

sum = sum * 3 = 1 * 3 = 3
sum = sum * 2 = 3 * 2 = 6
sum = sum * 1 = 6 * 1 = 6

Which is correct because 3! = 3*2*1.

Now here’s the recursive version:

int Factorial_Rec(int n)
{

1572313618 CH11 10/26/99 10:35 AM Page 660

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

661

// test for terminal cases
if (n==0 || n==1) return(1);
else

return(n*Factorial_Rec(n-1));

} // end Factorial_Rec

Tell me that isn’t cool, my little leprechaun! So let’s see what happens here when n is
equal to 0 or 1. In these cases, the first if statement is TRUE, 1 is returned, and the
function exits. But the cool stuff happens when n > 1. In this case, the else executes
and the value returned is n times the function itself called with (n-1). This is recur-
sion.

The state of the current function’s variables remains on the stack, and the call is made
to the function again as if it were another function with a new working set of vari-
ables. The code of the first return statement can’t be completed until another call is
made, and that return can’t be completed until that call is made, and so on, until the
terminal case is hit.

With that in mind, let’s take a look at the n = 3 case with actual numbers replacing
the variable n each iteration:

1. Initial Call to Factorial_Rec(3)

The function falls to the return statement:

return(3*Factorial_Rec(2));

2. Second call to Factorial_Rec(2)

The function again falls to the return statement:

return(2*Factorial_Rec(1));

3. Third call to Factorial_Rec(1)

This time the terminal case is true and a 1 is returned:

return(1);

Now for the magic. The 1 is returned to the second call of Factorial_Rec() that
looked like this:

return(2*Factorial_Rec(1));

This resolves to

return(2*1);

This then returns to the first call of Factorial_Rec() that looked like this:

return(3*Factorial_Rec(2));

1572313618 CH11 10/26/99 10:35 AM Page 661

Hardcore Game Programming

662 PART III

This resolves to

return(3*2);

And presto, the function can finally return with 6—which is indeed 3! That’s recur-
sion. Now, you might ask which method is better—recursion or non-recursion?
Obviously, the straightforward method is faster because there aren’t any function calls
or stack manipulation, but the recursive way is more elegant and better reflects the
problem. This is the reason why we use recursion. Some algorithms are recursive in
nature, trying to write non-recursive algorithms is tedious, and in the end they become
recursive simulations that use stacks themselves! So use recursion if it’s appropriate
and simplifies the problem. Otherwise, use straight linear code.

For an example of recursion, take a look at DEMO11_2.CPP|EXE. It implements the fac-
torial algorithm. Note how quickly factorial can overflow! See if the computer can
beat your calculator’s max factorial. Most calculators can compute up to 69! No lie.

For you math people, try implementing a recursive Fibonacci algorithm.
Remember, the nth Fibonacci number fn = fn-1 + fn-2, f0=0, and f1=1.
Hence, f2 = f1 + f0 = 1 + 0 = 1, and f3 = f2 + f1 = 1 + 1 = 2. Therefore, the
Fibonacci sequence looks like 0, 1, 1, 2, 3, 5, 8, 13… Count the number
of seeds in each of the consecutive rings of a sunflower plant, and they
will be the Fibonacci sequence!

Trees
The next class of advanced data structures, trees, are processed by recursive algo-
rithms, so that’s why I took the preceding detour. Anyway, take a look at Figure 11.6
to see a number of different tree-like data structures.

Trees were invented to help with the storage and searching of large amounts of data.
The most popular kind of tree is the binary tree, AKA B-tree or BST (Binary Search
Tree), a tree data structure emanating from a single root that is composed of a collec-
tion of nodes. Each node has one or two children nodes (siblings) descending from it;
hence the term binary. Moreover, we can talk of the order or number of levels of a
tree, meaning how many layers it has. The B-trees in Figure 11.7 are shown with their
various orders.

The interesting thing about trees is how fast the information can be searched. Most
B-trees use a single search key to order the data. Then a searching algorithm searches
the tree for the data. For example, say you wanted to create a B-tree that contained
records of game objects, each with a number of properties. You could use the time of
creation as the key, or you could make each node represent a person in a database.
Here’s the data structure that you would use to hold a single person node:

1572313618 CH11 10/26/99 10:35 AM Page 662

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

663

typedef struct TNODE_TYP
{
int age; // age of person
char name[32]; // name of person

A binary tree A trie

A graph

Figure 11.6
Some tree topologies.

5 20

50

10

30

20

10

2 15

60

155

10

A. Order 1 tree B. Order 2 tree

C. Order 3 tree

Root

Level 1

Root

Level 1

Level 2

Root

Level 1

Level 2

Level 3

=

=

Figure 11.7
Some binary trees and

their orders.

1572313618 CH11 10/26/99 10:35 AM Page 663

Hardcore Game Programming

664 PART III

NODE_TYP *right; // link to right node
NODE_TYP *left; // link to left node
} TNODE, *TNODE_PTR;

Of course, the data in this example can be anything you want.Note

Notice the similarity between the tree node and the linked list node! The only differ-
ence is the way you use the data structure and build up the tree. Continuing with the
example, let’s say that you have five objects (people) with the following ages: 5, 25,
3, 12, and 10. Figure 11.8 depicts two different B-trees that contain this data.
However, there are more you could create that would maintain the properties of a
B-tree depending on the order that the data is presented to the insertion algorithm.

A. One possible tree

B. Another possible tree

3

5

10

25

12

25

12

10

5

3

Figure 11.8
B-tree encoding of

data set
age{5,25,3,12,10}.

Notice that I have used the convention that any right child is greater than or equal to
its parent and any left child is less than its parent. You can use a different convention,
as long as you stick to it.

1572313618 CH11 10/26/99 10:35 AM Page 664

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

665

Binary trees can hold enormous amounts of data, and that data can be searched very
quickly with a binary search. This is a manifestation of the binary structure of the
tree. For example, if you have a tree with one million nodes, at most it will take about
20 comparisons to find the data! Is that crazy or what? The reason for this is that dur-
ing each iteration of your search, you cut half the nodes out of the search space.
Basically, if there are n nodes, the average search will take log2 n; the run-time is
O(log2 n).

The statement about search time is only true for balanced trees—trees
that have an equal number of right and left children per level. If a tree
is unbalanced, it degrades into a linked list and search time degrades
into a linear function.

Note

The next cool thing about B-trees is that if you take a branch (sub-tree) and process it
separately, it maintains the properties of a B-tree. Hence, if you know where to look,
you can search a sub-tree just for whatever it is you’re looking for. Thus, you can cre-
ate trees of trees or index tables that contain sub-trees so you don’t need to process
the whole tree. This is important in 3D world modeling. You might have one large tree
of the entire world, but there are hundreds of sub-trees that represent rooms in the
world. Thus, you might have yet another tree that represents a spatially sorted list of
pointers into the sub-trees, as shown in Figure 11.9. More on this later in the book…

House

Room 1 Room 2

House

Special rooms list index

Room 2

Room 1

Study

Bathroom

Bathroom

Quick access

Cellar StudyCloset

Figure 11.9
Using a secondary

index table on
a B-tree.

1572313618 CH11 10/26/99 10:35 AM Page 665

Hardcore Game Programming

666 PART III

Finally, let’s address when to use trees. I suggest using tree-like structures when the
problem or data is tree-like to begin with. If you find yourself drawing out the prob-
lem and you see branches to the left and right, a tree is definitely for you.

Building BSTs
This subject is rather complex due to the recursive nature of all the algorithms that
apply to B-trees. Let’s take a quick look at some of the algorithms, write some code,
and finish with a demo.

Similar to linked lists, there are a couple of ways to start off a BST: You can have a
dummy root or a real root. I’ll pick the real root because I prefer it. Hence, an empty
tree has nothing in it but a root pointer pointing to NULL:

TNODE_PTR root = NULL;

Okay, to insert data into the BST, you have to decide what you’re going to use as the
insertion key. In this case, you can use the person’s age or name. Use the person’s age
because these examples have been using age. However, using the name is just as easy;
you would just use a lexicographic comparison function such as strcmp() to deter-
mine the order of the names. In any event, here’s the code to insert into the BST:

TNODE_PTR root = NULL; // here’s the initial tree

TNODE_PTR BST_Insert_Node(TNODE_PTR root, int id, int age, char *name)
{
// test for empty tree
if (root==NULL)

{
// insert node at root
root = new(TNODE);
root->id = id;
root->age = age;
strcpy(root->name,name);

// set links to null
root->right = NULL;
root->left = NULL;

printf(“\nCreating tree”);

} // end if

// else there is a node here, lets go left or right
else
if (age >= root->age)

{
printf(“\nTraversing right...”);
// insert on right branch

1572313618 CH11 10/26/99 10:35 AM Page 666

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

667

// test if branch leads to another sub-tree or is terminal
// if leads to another subtree then try to insert there, else
// create a node and link
if (root->right)

BST_Insert_Node(root->right, id, age, name);
else

{
// insert node on right link
TNODE_PTR node = new(TNODE);
node->id = id;
node->age = age;
strcpy(node->name,name);

// set links to null
node->left = NULL;
node->right = NULL;

// now set right link of current “root” to this new node
root->right = node;

printf(“\nInserting right.”);

} // end else

} // end if
else // age < root->age

{
printf(“\nTraversing left...”);
// must insert on left branch

// test if branch leads to another sub-tree or is terminal
// if leads to another subtree then try to insert there, else
// create a node and link
if (root->left)

BST_Insert_Node(root->left, id, age, name);
else

{
// insert node on left link
TNODE_PTR node = new(TNODE);
node->id = id;
node->age = age;
strcpy(node->name,name);

// set links to null
node->left = NULL;
node->right = NULL;

// now set right link of current “root” to this new node
root->left = node;

printf(“\nInserting left.”);
} // end else

1572313618 CH11 10/26/99 10:35 AM Page 667

Hardcore Game Programming

668 PART III

} // end else

// return the root
return(root);

} // end BST_Insert_Node

Basically, you first test for an empty tree and then create the root, if needed, with this
first item. Hence, the first item or record inserted into the BST should represent some-
thing that is in the middle of the search space so that the tree is nicely balanced.
Anyway, if the tree has more than one node, you traverse it, taking branches to the
right or left depending on the record that you’re trying to insert. When you find a leaf
or terminal branch, you insert the new node there:

root = BST_Insert_Node(root, 4, 30, “jim”);

Figure 11.10 shows an example of inserting “Jim” into a tree.

Cathy

Bob

Andre Brandon

Rick

Cathy

Bob

Andre Brandon Jim

Rick

Jim

A. Before insertion B. After insertion

Node to insert

Goes Here

“Jim” > “Cathy”

“Jim” < “Rick”

Figure 11.10
Inserting into a BST.

The run-time performance of an insertion into the BST is the same as searching it, so
an insertion will take O(log2 n) on average and O(n) in the worst case (when the keys
happen to fall in linear order).

Searching BSTs
Once the BST is generated, searching it is a snap. However, this is where you need to
use a lot of recursion, so watch out, dog. There are three ways to search a BST:

• Preorder—Visit the node, search the left sub-tree preorder, and then search the
right sub-tree preorder.

• Inorder—Search the left sub-tree in order, visit the node, and then search the
right-sub tree in order.

• Postorder—Search the left sub-tree postorder, search the right sub-tree pos-
torder, and then visit the node.

1572313618 CH11 10/26/99 10:35 AM Page 668

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

669

Take a look at Figure 11.11. It shows a basic tree and the three search orders.

Right and left are arbitrary; the point is the order of visiting and search-
ing.

Note

A

B

D E F

G

H I

C

= = = = =

= = = =

Pre-order: A B D E C F G H I
In order: D B E A F H G I C
Post order: D E B H I G F C A

Figure 11.11
The order of node vis-

itation for preorder,
inorder, and postorder

searches.

With that in mind, you can write very simple recursive algorithms to perform the tra-
versals. Of course, the point of traversing a BST is to find something and return it.
However, the following function just performs the traversals. You could add stopping
code to the functions to stop them when they found a desired key; nevertheless, the
way you search for the key is what you’re interested in at this point:

void BST_Inorder_Search(TNODE_PTR root)
{
// this searches a BST using the inorder search

// test for NULL
if (!root)

return;

// traverse left tree
BST_Inorder_Search(root->left);

// visit the node
print(“name: %s, age: %d”, root->name, root->age);

// traverse the right tree
BST_Inorder_Search(root->right);

1572313618 CH11 10/26/99 10:35 AM Page 669

Hardcore Game Programming

670 PART III

} // end BST_Inorder_Search

And here’s the preorder search:

void BST_Preorder_Search(TNODE_PTR root)
{
// this searches a BST using the preorder search

// test for NULL
if (!root)

return;

// visit the node
print(“name: %s, age: %d”, root->name, root->age);

// traverse left tree
BST_Inorder_Search(root->left);

// traverse the right tree
BST_Inorder_Search(root->right);

} // end BST_Preorder_Search

And finally, the postorder search:

void BST_Postorder_Search(TNODE_PTR root)
{
// this searches a BST using the postorder search

// test for NULL
if (!root)

return;

// traverse left tree
BST_Inorder_Search(root->left);

// traverse the right tree
BST_Inorder_Search(root->right);

// visit the node
print(“name: %s, age: %d”, root->name, root->age);

} // end BST_Postorder_Search

That’s it—like magic, huh? So if you had a tree, you would do the following to tra-
verse it in order:

BST_Inorder_Search(my_tree);

I can’t tell you how important tree-like structures are in 3D graphics, so
make sure you understand this material. Otherwise, when you build
binary space partitions to help solve rendering problems, you’re going
to be in pointer-recursion hell. :)

Tip

1572313618 CH11 10/26/99 10:35 AM Page 670

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

671

You’ll note that I have conveniently left out how to delete a node. This was inten-
tional. It’s a rather complex subject because you could kill a sub-tree’s parent and dis-
connect all the children. Alas, deletion of nodes is left as an exercise for you to
discover on your own. I suggest a good data structures text, such as Algorithms in
C++ by Sedgewick, published by Addison Wesley, for a more in-depth discussion of
trees and the associated algorithms.

Finally, for an example of BSTs, check out DEMO11_3.CPP|EXE. It allows you to create
a BST and traverse it using the three algorithms. Again, this is a console application,
so compile it appropriately.

Optimization Theory
No other programming has the kind of performance requirements that games do.
Video games have always pushed the limits of hardware and software and will con-
tinue to do so. Enough is never enough. Game programmers always want to add more
creatures, effects, and sounds, better AI, and so on. Hence, optimization is of utmost
importance.

In this section, I’m going to cover some optimization techniques to get you started. If
you have further interest, there are a number of good books on the subject, such as
Inner Loops by Rick Booth, published by Addison Wesley; Zen of Code Optimization
by Mike Abrash, published by Coriolis Group; and Pentium Processor Optimization
by Mike Schmit, published by AP Press.

Using Your Head
The first key to writing optimized code is understanding the compiler, the data types,
and how your C/C++ is finally transformed into executable machine language. The
idea is to use simple programming and simple data structures. The more complex and
contrived your code is, the harder it will be for the compiler to convert it into machine
code, and thus the slower it will execute (in most cases). Here are some basic rules to
keep in mind:

• Use 32-bit data as much as possible. 8-bit data may take up less space, but Intel
processors like 32-bit data and are optimized to access it.

• Use inline functions for small functions that you call a lot.

• Use globals as much as possible, without making ugly code.

• Avoid floating-point numbers for addition and subtraction because the integer
unit is generally faster for these operations.

• Use integers whenever possible. Although the floating-point processor is almost
as fast as the integer processor, integers are exact. So if you don’t need decimal
accuracy, use integers.

1572313618 CH11 10/26/99 10:35 AM Page 671

Hardcore Game Programming

672 PART III

• Align all data structures to 32-byte boundaries. You can do this manually, with
compiler directives on most compilers, or within code using #pragmas.

• Never pass data to functions as value if it is anything other than a simple type.
Always use a pointer.

• Don’t use the register keyword in your code. Although Microsoft says it
makes faster loops, it starves the compiler of registers and ends up making the
worst code.

• If you’re a C++ programmer, classes and virtual functions are okay. Just don’t
go crazy with inheritance and layers of software.

• The Pentium-class processors use an internal data and code cache. Be aware of
this, and try to keep the size of your functions relatively small so they can fit
into the cache (16KB-32KB+). In addition, when you’re storing data, store it in
the way it will be accessed. This will minimize cache thrashing and main mem-
ory or secondary cache access, which is 10 times slower than the internal cache.

• Be aware that Pentium class processors have RISC-like cores, so they like sim-
ple instructions and allow two or more instructions to execute in more than one
execution unit. Don’t write contrived code on a single line; it’s better to write
simpler code that’s longer, even though you can mash the same functionality
into the same line.

Mathematical Tricks
Because a great deal of game programming is mathematical in nature, it pays to know
better ways to perform math functions. There are a number of general tricks and
methods that you can use to speed things up:

• Always use integers with integers and floats with floats. Conversion from one to
another kills performance. Hence, hold off on the conversion of data types to the
very last minute.

• Integers can be multiplied by any power of two by shifting to the left. And like-
wise, they can be divided by any power of two by shifting to the right.
Multiplication and division by numbers other than powers of two can be accom-
plished by using sums or differences of shifts. For example, 640 is not a power
of two, but 512 and 128 are, so here’s the best way to multiply a number by 640
using shifts:

product=(n<<7) + (n<<9); // n*128 + n*512 = n*640

However, if the processor can multiply in 1-2 cycles, this optimization is worth-
less.

• If you use matrix operations in your algorithms, make sure to take advantage of
their sparseness—that is, zero entries.

1572313618 CH11 10/26/99 10:35 AM Page 672

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

673

• When you’re creating constants, make sure that they have the proper casts so
that the compiler doesn’t reduce them to integers or interpret them incorrectly.
The best idea is to use the new C++ const directive. For example:

const float f=12.45;

• Avoid square roots, trigonometric functions, or any complex mathematical func-
tions. In general, there is always a simpler way to do it by taking advantage of
certain assumptions or making approximations. However, if worse comes to
worst, you can always make a look-up table, which I’ll get to later.

• If you have to zero out a large array of floats, use a memset(), like this:

memset((void *)float_array,0,sizeof(float)*num_floats);

However, this is the only time that you can do this, because floats are encoded
in IEEE format and the only integer and float values that are the same are 0.

• When you’re performing mathematical calculations, see if you can reduce the
expressions manually before coding them. For example, n*(f+1)/n is equivalent
to (f+1) because the multiplication and division of n cancel out.

• If you perform a complex mathematical operation and you know you’ll need it
again a few lines down, cache it. For example:
// compute term that is used in more than one expression
float n_squared = n*n;

// use term in two different expressions
pitch = 34.5*n_squared+100*rate;
magnitude = n_squared / length;

• Last, but not least, make sure to set the compiler options to use the floating-
point processor and create code that is fast rather than small.

Fixed-Point Math
A couple of years ago, most 3D engines used fixed-point mathematics for much of the
transformation and mathematical operations in 3D. This was due to the fact that the
floating-point support wasn’t as fast as the integer support, even on the Pentium.
However, these days the Pentium II, III, and Katmai have much better floating-point
capabilities, and fixed-point is no longer as important.

However, in many cases the conversion from floating-point to integers for rasteriza-
tion still is slow, so sometimes it’s still a good idea to try fixed-point in inner loops
that use addition and subtraction operations. These operations are still faster than
floating-point operations on the lower-level Pentiums, and you can use tricks to
quickly extract the integral part of a fixed-point number rather than making a conver-
sion from float to int, as you would if you stuck to floating-point.

1572313618 CH11 10/26/99 10:35 AM Page 673

Hardcore Game Programming

674 PART III

In any case, this is all very iffy, and using floating-point for everything is usually the
best way to do things these days. But it doesn’t hurt to know a little about fixed-point
math. My philosophy is to use floating-point for all data representations and transfor-
mations, and then to try both floating- and fixed-point algorithms for low-level poly-
gon rasterization to see which is fastest. Of course, this is even more irrelevant if
you’re using pure hardware acceleration. If so, just stick to floating-point all the way.

With all that in mind, let’s take a look at fixed-point representations.

Representing Fixed-Point Numbers
All fixed-point math really is based on scaled integers. For example, let’s say that you
want to represent the number 10.5 with an integer. You can’t; there isn’t a decimal
place. You could truncate the number to 10.0 or round it to 11.0, but 10.5 isn’t an inte-
ger. But what if you scale the number by 10? Then 10.5 becomes 105.0, which is an
integer. This is the basis of fixed-point. You scale numbers by some factor and that
make sure to take this scale into consideration when doing mathematics.

Because computers are binary, most game programmers like to use 32-bit integers, or
ints, to represent fixed-point numbers in a 16.16 format. Take a look at Figure 11.12
to see this graphically.

1 1
2248163264• • • • • • • • • • • •+

–
1
4

1
8

1
16

Sign bit

+ 32768–

16 bit whole part 16 bit decimal part

Virtual fixed point

Maximum accuracy = 1 = 1 = .000015
216 65536

Figure 11.12
A 16.16 fixed-point

representation.

You put the whole part in the upper 16 bits and the decimal part in the lower 16 bits.
Hence, you’re scaling all numbers by 216, or 65,536. Moreover, to extract the integer
portion of a fixed-point number, you shift and mask the upper 16 bits, and to get to
the decimal portion, you shift and mask the lower 16 bits.

Here’s some working types for fixed-point math:

#define FP_SHIFT 16 // shifts to produce a fixed-point number
#define FP_SCALE 65536 // scaling factor

typedef int FIXPOINT;

Conversions to and from Fixed-Point
There are two types of numbers you need to convert to fixed-point: integers and float-
ing-point numbers. You must consider each one differently. For integers, the binary
representation is in straight 2’s complement, so you can use shifts to multiply the
number and convert it to fixed-point. On the other hand, floats use a IEEE format,

1572313618 CH11 10/26/99 10:35 AM Page 674

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

675

which has a mantissa and an exponent stored in those four bytes, so shifting will
destroy the number. You must use standard floating-point multiplication to make the
conversion.

2’s complement is a method of representing binary integers so that both
positive and negative numbers can be represented and mathematical
operations are closed on the set—that is, they work! The 2’s comple-
ment of a binary number means computing by inverting the bits and
adding 1. Mathematically, let’s say you want to find the 2’s complement
of 6—that is, –6. It would be –6+1 or ~0110 + 0001 = 1001 + 0001 =
1010, which is 10 in normal binary but –6 in 2’s complement.

Here’s a macro that converts an integer to fixed-point:

#define INT_TO_FIXP(n) (FIXPOINT((n << FP_SHIFT)))

For example:

FIXPOINT speed = INT_TO_FIXP(100);

And here’s a macro to convert floating-point numbers to fixed-point:

#define FLOAT_TO_FIXP(n) (FIXPOINT((float)n * FP_SCALE))

For example:

FIXPOINT speed = FLOAT_TO_FIXP(100.5);

Extracting a fixed-point number is simple too. Here’s a macro to get the integral por-
tion in the upper 16 bits:

#define FIXP_INT_PART(n) (n >> 16)

And to get the decimal portion in the lower 16 bits, you simply need to mask the inte-
gral part:

#define FIXP_DEC_PART(n) (n & 0x0000ffff)

Of course, if you’re smart, you might forget the conversions and just use pointers that
are SHORTs to access the upper and lower parts instantly, like this:

FIXPOINT fp;
short *integral_part = &(fp+2), *decimal_part = &fp;

The pointers integral_part and decimal_part always point to the 16 bits that
you want.

1572313618 CH11 10/26/99 10:35 AM Page 675

Hardcore Game Programming

676 PART III

Accuracy
A question should be popping up in your head right now: “What the heck does the
decimal part mean?”. Well, usually you won’t need it; it’s just there to be used in the
computations. Normally, you just want the whole part in a rasterization loop or some-
thing, but because you’re in base 2, the decimal part is just a base 2 decimal, as shown
in Figure 11.12. For example, the numbers

1001.0001 is 9 + 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 = 9.0625

This brings us to the concept of accuracy. With four digits of base 2, you’re only
accurate to about 1.5 decimals base 10 digits, or +-.0625. With 16 digits, you’re accu-
rate to 1/216 = 1/65536 = .000015258, or about one part in 10,000. That’s not bad and
will suffice for most purposes. On the other hand, you only have 16 bits to hold the
integer part, meaning that you can hold signed integers -32767 to +32768 (or non-
signed up to 65535). This might be an issue in a large universe or numerical space, so
watch out for overflow!

Addition and Subtraction
Addition and subtraction of fixed-point numbers is trivial. You can use the standard +
and – operators:

FIXPOINT f1 = FLOAT_TO_FIX(10.5),
f2 = FLOAT_TO_FIX(-2.6),
f3 = 0; // zero is 0 no matter what baby

// to add them
f3 = f1 + f2;

// to subtract them
f3 = f1 – f2

You can work with both positive and negative numbers without a prob-
lem because the underlying representation is 2’s complement.

Note

Multiplication and Division
Multiplication and division are a little more complex than addition and subtraction.
The problem is that the fixed-point numbers are scaled; when you multiply them, you
not only multiply the fixed-point numbers but also the scaling factors. Take a look:

f1 = n1 * scale
f2 = n2 * scale
f3 = f1 * f2 = (n1 * scale) * (n2 * scale) = n1*n2*scale2

See the extra factor of scale? To remedy this, you need to divide or shift out the one
factor of scale^2. Hence, here’s how to multiply two fixed-point numbers:

1572313618 CH11 10/26/99 10:35 AM Page 676

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

677

f3 = ((f1 * f2) >> FP_SHIFT);

Division of fixed-point numbers has the same scaling problem as multiplication, but
in the opposite sense. Take a look at this math:

f1 = n1 * scale
f2 = n2 * scale

Given this, then

f3 = f1/f2 = (n1*scale) / (n2*scale) = n1/n2 // no scale!

Note that you’ve lost the scale factor and thus turned the quotient into a non-fixed-
point number. This is useful in some cases, but to maintain the fixed-point property,
you must prescale the numerator like this:

f3 = (f1 << FP_SHIFT) / f2;

The problem with both multiplication and division is overflow and
underflow. In the case of multiplication, the result might be 64-bit in the
worst case. Similarly, in the case of division, the upper 16 bits of the
numerator are always lost, leaving only the decimal portion. The solu-
tion? Use a 24.8-bit format or use full 64-bit math. This can be accom-
plished with assembly language because the Pentium+ processors
support 64-bit math. Or, you can alter the format a little and use 24.8.
This will allow multiplication and division to work better because you
won’t lose everything all the time, but your accuracy will fall apart.

Warning

For an example of fixed-point mathematics, try DEMO11_4.CPP|EXE. It allows you to
enter two decimal numbers and then perform fixed-point operations on them and view
the results. Pay attention to how multiplication and division seem not to work at all.
This is a result of using 16.16 format without 64-bit math. To fix this, you can recom-
pile the program to use 24.8 format rather than 16.16. The conditional compilation is
controlled by two #defines at the top of the code:

// #define FIXPOINT16_16
// #define FIXPOINT24_8

Uncomment the one you want to use and the compiler will do the rest. Finally, this is
a console application, so like Spike says, do the right thing…

Unrolling the Loop
The next optimization trick is loop unrolling. This used to be one of the best opti-
mizations back in the 8/16-bit days, but today it can backfire on you. Unrolling the
loop means taking apart a loop that iterates some number of times and manually cod-
ing each line. Here’s an example:

1572313618 CH11 10/26/99 10:35 AM Page 677

Hardcore Game Programming

678 PART III

// loop before unrolling
for (int index=0; index<8; index++)

{
// do work
sum+=data[index];
} // end for index

The problem with this loop is that the work section takes less time than the loop does
for the increment, comparison, and jump. Hence, the loop code itself doubles or
triples the amount of time the code takes! You can unroll the loop like this:

// the unrolled version
sum+=data[0];
sum+=data[1];
sum+=data[2];
sum+=data[3];
sum+=data[4];
sum+=data[5];
sum+=data[6];
sum+=data[7];

This is much better. There are two caveats:

• If the loop body is much more complex than the loop mechanics itself, there is
no point in unrolling it. For example, if you’re computing square roots in the
work section of the loop, a few more cycles each iteration isn’t going to help
you.

• Because the Pentium processors have internal caches, unrolling a loop too much
might prevent it from fitting in the internal cache anymore. This is disastrous
and will bring your code to a halt. I suggest unrolling 8-32 times, depending on
the situation.

Look-Up Tables
This is my personal favorite optimization. Look-up tables are precomputed values of
some computation that you know you’ll perform during run-time. You simply com-
pute all possible values at startup and then run the game. For example, say you
needed the sine and cosine of the angles from 0-359 degrees. Computing them using
sin() and cos() would kill you if you used the floating-point processor, but with a
look-up table your code will be able to compute sin() or cos() in a few cycles
because it’s just a look-up. Here’s an example:

// storage for look up tables
float SIN_LOOK[360];
float COS_LOOK[360];

// create look-up table
for (int angle=0; angle < 360; angle++)

{

1572313618 CH11 10/26/99 10:35 AM Page 678

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

679

// convert angle to radians since math library uses
// rads instead of degrees
// remember there are 2*pi rads in 360 degrees
float rad_angle = angle * (3.14159/180);

// fill in next entries in look-up tables
SIN_LOOK[angle] = sin(rad_angle);
COS_LOOK[angle] = cos(rad_angle);
} // end for angle

As an example of using the look-up table, here’s the code to draw a circle of
radius 10:

for (int ang = 0; ang<360; ang++)
{
// compute the next point on circle
x_pos = 10*COS_LOOK[ang];
y_pos = 10*SIN_LOOK[ang];

// plot the pixel
Plot_Pixel((int)x_pos+x0, (int)y_pos+y0, color);
} // end for ang

Of course, look-up tables take up memory, but they are well worth it. “If you can pre-
compute it, put it in a look-up table,” that’s my motto. How do you think DOOM,
Quake, and my personal favorite, Half-Life, work?

Assembly Language
The final optimization I want to talk about is assembly language. You’ve got the killer
algorithm and good data structures, but you just want a little bit more. Handcrafted
assembly language doesn’t make code go 1,000 times faster like it did with 8/16-bit
processors, but it can get you 2-10 times more speed, and that’s definitely worth it.

However, make sure to only convert sections of your game that need converting.
Don’t mess with the menu program, because that’s a waste of time. Use a profiler or
something to see where all of your game’s CPU cycles are being eaten up (probably
in the graphics sections), and then target those for assembly language. I suggest Vtune
by Intel for profiling.

In the old days (a few years ago), most compilers didn’t have inline assemblers, and if
they did, they sucked! Today, the inline assemblers that come with the compilers from
Microsoft, Borland, and Watcom are just about as good as using a standalone assem-
bler for small jobs that are a few dozen to a couple hundred lines. Therefore, I suggest
using the inline assembler if you want to do any assembly language. Here’s how you
invoke the inline assembler when using Microsoft’s VC++:

_asm
{
.. assembly language code here
} // end asm

1572313618 CH11 10/26/99 10:35 AM Page 679

Hardcore Game Programming

680 PART III

The cool thing about the inline assembler is that it allows you to use variable names
that have been defined by C/C++. For example, here’s how you would write a 32-bit
memory fill function using inline assembly language:

void qmemset(void *memory, int value, int num_quads)
{
// this function uses 32 bit assembly language based
// and the string instructions to fill a region of memory
_asm

{
CLD // clear the direction flag
MOV EDI, memory // move pointer into EDI
MOV ECX, num_quads // ECX hold loop count
MOV EAX, value // EAX hold value
REP STOSD // perform fill
} // end asm

} // end qmemset

To use the new function, all you would do is this:

qmemset(&buffer, 25, 1000);

And 1,000 quads would be filled with the value 25 starting at the address of buffer.

If you’re not using Microsoft VC++, take a look at your particular com-
piler’s Help to see the exact syntax needed for inline assembly. In most
cases, the changes are nothing more than an underscore here and there.

Note

Making Demos
So you’ve got this killer game, and you need a demo mode. There are two main ways
to implement a demo mode: You can play the game yourself and record your moves,
or you can use an AI player. Recording your own gameplay turns out to be the most
common choice. Writing an AI player that can play as good as a human is difficult,
and it’s hard to tell the AI that it needs to play the game in a “cool” way because it
needs to make a good impression on potential buyers. Let’s take a brief look at how
each of these methods is implemented.

Prerecorded Demos
To record a demo, basically you record the states of all the input devices each cycle as
you create the demo, write the data to a file, and then play back the demo as if it were
the input of the game. Take a look at Figure 11.13 to see this graphically. The idea is
that the game doesn’t know whether the input is from the keyboard (input device) or
from a file, so it simply plays the game back.

1572313618 CH11 10/26/99 10:36 AM Page 680

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

681

For this to work, you have to have a deterministic game: If you play the game again
and do the exact same things, the game creatures will do the exact same things. This
means that as well as recording the input devices, you must record the initial random
number seed so that the starting state of a recording game is recorded as well as the
input. This ensures that the game will play back the exact same way as you
recorded it.

The best approach to recording a game is not to sample the input at timed intervals,
but at each frame. Hence, if the game is played on a slower or faster computer, the
playback data won’t get out of synchronization with the game. What I usually do is
merge all the input devices into a single record, one for each frame, and then make a
file of these records. At the beginning of the file, I place any state information or ran-
dom numbers that I played the demo with so that these values can be loaded back in.
Therefore, the playback file might look something like this:

Initial State Information

Frame 1: Input Values
Frame 2: Input Values
Frame 3: Input Values
.
.
Frame N: Input Values

Once you have the file, simply reset the game and start back it up. Then read the file
as if it were the input devices. The game doesn’t know the difference!

Figure 11.13
Demo playback.

Input devices

Pre-recorded
input

AI bot
plays

Game engine

Game engine

Game engine

A. Normal gamplay: input from player

B. Pre-recorded data feed to engine

C. Artificial intelligence plays game
?

Same

File

Record

1572313618 CH11 10/26/99 10:36 AM Page 681

Hardcore Game Programming

682 PART III

AI-Controlled Demos
The second method of recording a game is by writing an AI bot to play it, much like
people do for Internet games like Quake. The bot plays the game while in demo
mode, just like one of the AI characters in the game. The only problem with this
method (other than the technical complexity) is that the bot might not necessarily
show off all the cool rooms, weapons, and so on, because it doesn’t know that it’s
making a demo. On the other hand, the cool thing about having a bot play is that each
demo is different and the “attract mode” of the game will never get boring.

Implementing a bot to play your game is the same as with any other AI character. You
basically connect it to the input port of your game and override the normal input
stream, as shown in Figure 11.13. Then you write the AI algorithms for the bot and
give it some main goals, like finding its way out of the maze, killing everything in
sight, or whatever. Then you simply let the bot loose to demonstrate the game until
the player wants to play.

Strategies for Saving the Game
One of the biggest pains in the butt is writing a save game feature. This is one of
those things that all game programmers do last, and do by the seat of their pants in
most cases. The key is to write your game with the idea that you’re going to want to
give the player a save game option at some point. That way you won’t paint yourself
into a corner.

To save at any point in the game means to record the state of every single variable and
every single object in the game. Hence, you must record all global variables in a file
along with the state of every single object. The best way to approach this is with an
object-oriented thought process. Instead of writing a function that writes out the state
of each object and all the global variables, a better idea is to teach each object how to
write and read its own state to a disk file.

The single worst mistake that you can make is sampling the input at the
wrong time when you’re writing out records. You should make
absolutely certain that the input you sample and record is the actual
input that the game uses for that frame. A common mistake that new-
bies make is to sample the input for the demo mode at a point in the
event loop before or after the normal input is read. Hence, they’re sam-
pling different data! It’s possible that the player might have the fire but-
ton down in one part of the event loop and not in another, so you must
sample at the same point you read the input for the game normally.

Warning

1572313618 CH11 10/26/99 10:36 AM Page 682

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

683

To save a game, all you need to do is write the globals and then create a simple func-
tion that tells each game object to write out its state. Then, to load the game back in,
all you need to do is read the globals back into the system and then load the states of
all the objects back into the game.

This way, if you add another object or object type, the loading/saving process is local-
ized in the object itself rather than strewn about all over the place.

Implementing Multiple Players
The next little bit of game programming legerdemain is implementing multiple play-
ers. Of course, if you want to implement a networked game, that’s a whole other
story, although DirectPlay makes the communication part easy, at least. However, if
all you want to do is let two or more players play your game at the same time or take
turns, that requires nothing more than some extra data structures and a bit of house-
keeping.

Taking Turns
Implementing turn-taking is easy and hard at the same time. It’s easy because if you
can implement one player, implementing two or more only requires having more than
one player record. It’s hard because you must save the game for each player when
switching players. Hence, usually you need to implement a save game option if you
want to have turn-taking. Obviously, the players shouldn’t know that the game is
being saved as they take turns, but that’s what’s really going on.

With that in mind, here’s a list of the steps that you would follow to allow two players
to play, one after another:

1. Start game; player 1 starts.

2. Player 1 plays until she dies.

3. The state of player 1’s game is saved; player 2 starts.

4. Player 2 plays until he dies.

5. The state of player 2’s game is saved (here comes the transition).

6. The previously saved player 1 game is reloaded, and player 1 continues.

7. Go back to step 2.

As you can see, step 5 is where the action starts happening and the game starts ping-
ing back and forth between players. If you want more than two players, simply play
them one at a time until you’re at the end of the list, and then start over.

1572313618 CH11 10/26/99 10:36 AM Page 683

Hardcore Game Programming

684 PART III

Split-Screen Setups
Enabling two or more players to play on the same screen is a little harder than swap-
ping because you have to write the game a little more generally as far as gameplay,
collision, and interaction between the players are concerned. Moreover, with multiple
players in the game at the same time, you must allocate a specific input device for
each player. This usually means a joystick for each player, or maybe one player uses
the keyboard and one uses the joystick.

The other problem with putting multiple players in the game at the same time is that
some games just aren’t good for it. In a scrolling game, for example, one player might
want to go one way while the other wants to go another way. This can cause a con-
flict, and you’ll have to plan for this. Thus, the best games for multiple players are
single-screen fighting games, or games in which the players stay relatively near each
other for one reason or another.

But if you want to allow the players to roam around freely, you can always create a
split-screen display, as shown in Figure 11.14.

Figure 11.14
Split-screen game

display.

The only problem with the split-screen display is—the split-screen display! You must
generate two or more views of the game, which can be technically challenging.
Moreover, there might not be enough room on the screen to fit the two or more views,
and the players might find it hard to see what’s going on. But the bottom line is, if
you can pull it off, it’s a cool option…

1572313618 CH11 10/26/99 10:36 AM Page 684

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

685

Multithreaded Programming Techniques
Up to this point, all the demos in this book have used a single threaded event loop and
programming model. The event loop reacts to the player’s input and renders the game
at a rate of 30+ fps. Along with reacting to the player, the game performs millions of
operations per second, along with processing dozens if not hundreds of small tasks,
such as drawing all the objects, retrieving input, making music, and so on. Figure
11.15 shows the standard game loop that you’ve been using.

Sound &
music Digital

Midi

Collision
detection

Physics

Environment

Object

Animation

Translation

Color

Motion

Get input

Initialization
&

database load

Keyboard

Mouse

Joystick

CPU

Reader
frame Draw polys

Clear z-buff

Main game loop

Single tasking – DOS

Execution is linear
 & deterministic to
 time

tn

Figure 11.15
Standard DOS single-

tasking game loop.

As you can see from Figure 11.15, the game logic performs all the tasks of the game
in a serial/sequential manner. Of course, there are exceptions to this, including inter-
rupts that can perform simple logic such as music and input control, but for the most
part, a game is one long sequence of function calls that repeat forever.

1572313618 CH11 10/26/99 10:36 AM Page 685

Hardcore Game Programming

686 PART III

What makes a game seem fluid and real is the fact that even though everything is per-
formed in sequence, step by step, the computer is so fast that it all seems as if it’s
happening at once. Hence, the model that most game programmers use is a single
tasking execution thread that performs many operations in series to arrive at the
desired output for each frame. This is one of the best ways to do things and is a side
effect of DOS game programming.

However, the days of DOS are over, so it’s time that you start using the multithreaded
abilities of Windows 95/98/NT/2000 and, well, liking it!

This section is going to cover the threads of execution under Windows 95/98/NT.
These threads allow you to run multiple tasks within the same application with very
little drama. Now, before you get started, let’s cover a little terminology so that this
simple subject isn’t alien to you.

Multithreaded Programming Terminology
There are a number of “multi-” words in the computer lexicon that mean various
things. Let’s begin by talking about multiprocessors and multiprocessing, and then
finish up with multithreading.

A multiprocessor computer is one that has more than one processor. The Cray and the
Connection Machine are both good examples. The Connection Machine can have up
to 64,000 processing cores (a hypercube network), and each one can be executing
code.

Back down on Earth, you can purchase a quad processor Pentium III+ machine and
run Windows NT on it. These are usually SMP (symmetrical multiprocessing) sys-
tems, meaning that all four processors will run tasks symmetrically. Actually, that is
not totally true because the OS kernel will only run only one of the processors (sorta),
but as far as processes go, they will run equally well on either processor. So the idea
of a multiprocessor computer is to have more than one processor to split the work-
load.

On some systems, only one task or process can run on each processor, while on other
systems, such as Windows NT, thousands of tasks can run on each processor. This is
basically multiprocessing, the running of multiple tasks on a single- or multiple-
processor machine.

The last concept is multithreading, which is the what you’re interested in today. A
process under Windows 95/98/NT/2000 is really a whole program; although it may or
may not run by itself, most of the time it is an application. It can have its own address
space and context, and it exists by itself.

1572313618 CH11 10/26/99 10:36 AM Page 686

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

687

A thread, on the other hand, is a much simpler entity. Threads are created by
processes and have very little identity of their own. They run in the address space of
the process that created them, and they are very simple. The beauty of threads is that
they get as much processor time as anything else does, and they exist in the same
address space as the parent process that created them.

This means that communicating to and from threads is very simple. In essence, they
are exactly what you want as a game programmer: a thread of execution that does
something in parallel with your other main program tasks, that you don’t have to
babysit, and that has access to the variables in your program.

Along with the “multi-” words, there are a few more concepts that you need to know
about. First, Windows 95, 98, NT, and 2000 are multitasking/preemptive operating
systems. This means that no task, process, or thread can take control of the computer;
each one will be preempted at some point and blocked, and the next thread of execu-
tion will get to run. This is completely different from Windows 3.1, which was not
preemptive. If you didn’t call GetMessage(...) each cycle, other processes didn’t
run. In Windows 95/98/NT/2000, you can sit in a FOR loop forever if you like and do
nothing, and the OS will still run the other tasks.

Also, under Win95/98/NT/2000, each process or thread has a priority that dictates
how long it gets to run before being preempted. So, if there are 10 threads that all
have the same priority, they will all get equal time or be processed in a round-robin
fashion. However, if one thread has kernel-level priority, it will of course run for more
time in each cycle. Take a look at Figure 11.16 to see this.

Finally, this question arises: “What are the differences between Windows
95/98/NT/2000 multithreading?” Well, there are some differences, but for the most
part you can use the Windows 95 OS model and be safe on all platforms. It’s the low-
est common denominator. Although 98 and NT are much more robust, I’ll use a
Windows 95 machine for most of the examples in this section.

Why Use Threads in a Game?
The answer to this question should be obvious by now. As a matter of fact, I think you
could create a list of about 1,000 things that you could do with threads right off the
bat. However, if you’re just coming down from a Mountain Dew high (or Sobe, which
is my new poison), here are some common uses for threads:

• Updating animation

• Creating ambient sound effects

• Controlling small objects

• Querying input devices

1572313618 CH11 10/26/99 10:36 AM Page 687

Hardcore Game Programming

688 PART III

• Updating global data structures

• Creating pop-up menus and controls

Multitasking
kernel

winaslat

Thread
6

Thread
7

Thread
8

Thread
9

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Round robin execution
(most of the time)

The kernel runs
each thread for
a time slice and
then pre-empts
and runs the next.

Time in milliseconds

T
hr

ea
d

ID

Case 1: Equal priorities, priority (0 – 9) = x

Case 2: Priority (0 = x + 1, (1 – 9) = x)

0 1 2 3 4 5 6 7 8 9 0

0 0 1 0 2 0 3 0 4 0 5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 11.16
Round-robin thread

execution with equal
and unequal thread

priorities.

That last use is one of my favorites. It’s always a pain to put up menus and let the
user make changes while the game is running, but with threads it’s much simpler.

Now, I still haven’t answered the question of why you should use threads in a game,
as opposed to just making a huge loop and calling functions. Well, threads do the
same thing, basically, and when you start creating more and more object-oriented
software, at some point you’ll come up with structures that are like automatons.
These are objects that represent game characters that you want to be able to create
and destroy without having logical side effects on the main game loop. This can be
accomplished in the coolest way with C++ classes along with threads.

Before you get started creating your first thread, let’s make something totally clear
here: On a single processor computer, only one thread can execute at a time. So you
still get nothing for free, but it seems that way from a software point of view, so just

1572313618 CH11 10/26/99 10:36 AM Page 688

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

689

assume you do to make your programming easier and more correct. Figure 11.17
shows an example of a main process and three threads that are executing along
with it.

CPU
kernel

Shares time
between primary &
secondary threads
equally unless priorities
are changed form default.

One time slice

One time slice

One time slice

One time slice

Spawns (3) children threads

Primary
thread

Thread
0

Thread
1

Thread
2

Figure 11.17
Primary process
spawning three

secondary threads.

The timetable in the figure shows the various threads that have control of the proces-
sor, in milliseconds. As you can see, the threads run one at a time, but they can run
out of order and for different amounts of time based on their priority.

Enough foreplay. Let’s get to the code!

Conjuring a Thread from the Plasma Pool
You’ll be using console applications for the examples that follow, so once again,
please compile the programs correctly. (I’m only belaboring this because every hour I
get 30-60 emails on various books I’ve written from people using the VC++ compiler
wrong. Doesn’t anyone read the introductions?)

However, there is one more caveat: You must use the multithreaded libraries for these
examples. You do this by going into the main menu in MS DEV Studio, under Build,
Settings, Code Generation, and setting the library to multithreaded. This is also shown
in Figure 11.18. Also, make sure to turn optimization off. It can confuse the multi-
threaded synchronization code sometimes, so better safe than sorry.

1572313618 CH11 10/26/99 10:36 AM Page 689

Hardcore Game Programming

690 PART III

All righty then, let’s get started. Creating a thread is easy; it’s keeping it from
destruction that’s the hard part! The Win32 API call is as follows:

Figure 11.18
Creating a console

application with
multithreaded

libraries.

I just had deja vu. Or was it really deja vu, or just a glitch in the simula-
tion?

If you didn’t get that, you won’t know what it was you didn’t get so it
won’t matter anyway. :)

Note

1572313618 CH11 10/26/99 10:36 AM Page 690

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

691

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,

// pointer to thread security attributes
DWORD dwStackSize, // initial thread stack size, in bytes
LPTHREAD_START_ROUTINE lpStartAddress,

// pointer to thread function
LPVOID lpParameter, // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId); // pointer to returned thread identifier

lpThreadAttributes points to a SECURITY_ATTRIBUTES structure that specifies the
security attributes for the thread. If lpThreadAttributes is NULL, the thread is created
with a default security descriptor and the resulting handle is not inherited.

dwStackSize specifies the size, in bytes, of the stack for the new thread. If 0 is speci-
fied, the stack size defaults to the same size as that of the primary thread of the
process. The stack is allocated automatically in the memory space of the process, and
it is freed when the thread terminates. Note that the stack size grows, if necessary.

CreateThread tries to commit the number of bytes specified by dwStackSize, and
fails if the size exceeds available memory.

lpStartAddress points to the application-supplied function to be executed by the
thread and represents the starting address of the thread. The function accepts a single
32-bit argument and returns a 32-bit exit value.

lpParameter specifies a single 32-bit parameter value passed to the thread.

dwCreationFlags specifies additional flags that control the creation of the thread. If
the CREATE_SUSPENDED flag is specified, the thread is created in a suspended state and
will not run until the ResumeThread() function is called. If this value is zero, the
thread runs immediately after creation.

lpThreadId points to a 32-bit variable that receives the thread identifier.

If the function succeeds, the return value is a handle to the new thread. If the function
fails, the return value is NULL. To get extended error information, call
GetLastError().

The function call might look a bit complex, but it’s really not. It just allows a lot of
control. You won’t use much of its functionality in most cases.

When you’re done with a thread, you need to close its handle; in other words, let the
operating system know that you’re done using the object. This is done with the
CloseHandle() function call, which uses the handle returned by CreateThread() and
reduces the reference count in the kernel object that refers to the thread by 1.

1572313618 CH11 10/26/99 10:36 AM Page 691

Hardcore Game Programming

692 PART III

You need to do this for every thread when you’re done with it. This does not kill the
thread; it just tells the OS that the thread is dead. The thread must terminate itself, be
told to terminate (with TerminateThread()), or be terminated by the OS when the
main thread or primary thread terminates. We’ll get to all that later, but for now, just
realize that this is a clean-up call that needs to be done before you exit a multi-
threaded app. Here is the function prototype:

BOOL CloseHandle(HANDLE hObject); // handle to object to close

hObject identifies an open object handle. If the function succeeds, the return value is
TRUE. If the function fails, the return value is FALSE. To get extended error informa-
tion, call GetLastError(). Furthermore, CloseHandle() closes handles to the follow-
ing objects:

• Console input or output

• Event files

• File mappings

• Mutexes

• Named pipes

• Processes

• Semaphores

• Threads

Basically, CloseHandle() invalidates the specified object handle, decrements the
object’s handle count, and performs object retention checks. Once the last handle to
an object is closed, the object is removed from the operating system.

The new thread handle is created with full access to the new thread. If a
security descriptor is not provided, the handle can be used in any func-
tion that requires a thread object handle. When a security descriptor is
provided, an access check is performed on all subsequent uses of the
handle before access is granted. If the access check denies access, the
requesting process cannot use the handle to gain access to the thread.

Warning

Now let’s take a look at some code that could represent a thread you would pass for
processing to CreateThread():

DWORD WINAPI My_Thread(LPVOID data)
{
// .. do work

// return an exit code at end, whatever is appropriate for your app

1572313618 CH11 10/26/99 10:36 AM Page 692

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

693

return(26);
} // end My_Thread

Now you have everything you need to create your first multithreaded app. The first
example will illustrate the creation of a single thread, along with the primary thread of
execution (the main program). The secondary thread will print out the number 2, and
the primary thread will print out the number 1. DEMO11_5.CPP contains the complete
program and is shown here for reference:

// DEMO11_5.CPP - Creates a single thread that prints
// simultaneously while the Primary thread prints.

// INCLUDES //

#define WIN32_LEAN_AND_MEAN // make sure win headers
// are included correctly

#include <windows.h> // include the standard windows stuff
#include <windowsx.h> // include the 32 bit stuff
#include <conio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

// DEFINES //

// PROTOTYPES //

DWORD WINAPI Printer_Thread(LPVOID data);

// GLOBALS ///

// FUNCTIONS ///

DWORD WINAPI Printer_Thread(LPVOID data)
{
// this thread function simply prints out data
// 25 times with a slight delay

for (int index=0; index<25; index++)
{
printf(“%d “,data); // output a single character
Sleep(100); // sleep a little to slow things down
} // end for index

// just return the data sent to the thread function

return((DWORD)data);

1572313618 CH11 10/26/99 10:36 AM Page 693

Hardcore Game Programming

694 PART III

} // end Printer_Thread

// MAIN ///

void main(void)
{
HANDLE thread_handle; // this is the handle to the thread
DWORD thread_id; // this is the id of the thread

// start with a blank line
printf(“\nStarting threads...\n”);

// create the thread, IRL we would check for errors
thread_handle = CreateThread(NULL, // default security

0, // default stack
Printer_Thread, // use this thread function
(LPVOID)1, // user data sent to thread
0, // creation flags, 0=start now.
&thread_id); // send id back in this var

// now enter into printing loop, make sure this takes longer than thread,
// so thread finishes first
for (int index=0; index<50; index++)

{
printf(“2 “);
Sleep(100);
} // end for index

// at this point the thread should be dead
CloseHandle(thread_handle);

// end with a blank line
printf(“\nAll threads terminated.\n”);

} // end main

Sample output:

Starting threads...
2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2
2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2
2 2
All threads terminated.

As you can see from the sample output, each thread of execution runs for a short time,
and then the OS switches context to the next waiting thread. In this case, the OS sim-
ply toggles back and forth between the primary thread and the secondary thread.

Now let’s try to create multiple threads. You can make a slight modification to
DEMO11_5.CPP to add this functionality. All you need to do is call the CreateThread()
function multiple times, once for each thread. Also, the data sent to the thread will be
the value to print out each time so you can differentiate each thread from one another.

1572313618 CH11 10/26/99 10:36 AM Page 694

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

695

DEMO11_6.CPP|EXE contains the new modified multithreaded program and is listed
here for reference. Notice the use of arrays to hold the thread handles and IDs:

// DEMO11_6.CPP - A new version that creates 3
// secondary threads of execution
// INCLUDES ///

#define WIN32_LEAN_AND_MEAN // make sure certain headers
// are included correctly

#include <windows.h> // include the standard windows stuff
#include <windowsx.h> // include the 32 bit stuff
#include <conio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

// DEFINES ///

#define MAX_THREADS 3

// PROTOTYPES ///

DWORD WINAPI Printer_Thread(LPVOID data);

// GLOBALS ///

// FUNCTIONS //

DWORD WINAPI Printer_Thread(LPVOID data)
{
// this thread function simply prints out data
// 25 times with a slight delay
for (int index=0; index<25; index++)

{
printf(“%d “,(int)data+1); // output a single character
Sleep(100); // sleep a little to slow things down
} // end for index

// just return the data sent to the thread function
return((DWORD)data);

} // end Printer_Thread

// MAIN ///

void main(void)
{

HANDLE thread_handle[MAX_THREADS]; // this holds the
// handles to the threads

1572313618 CH11 10/26/99 10:36 AM Page 695

Hardcore Game Programming

696 PART III

DWORD thread_id[MAX_THREADS]; // this holds the ids of the threads

// start with a blank line
printf(“\nStarting all threads...\n”);

// create the thread, IRL we would check for errors
for (int index=0; index<MAX_THREADS; index++)

{
thread_handle[index] = CreateThread(NULL, // default security

0, // default stack
Printer_Thread, // use this thread function
(LPVOID)index, // user data sent to thread
0, // creation flags, 0=start now.
&thread_id[index]); // send id back in this var

} // end for index

// now enter into printing loop, make sure
// this takes longer than threads,
// so threads finish first, note that primary thread prints 4
for (index=0; index<75; index++)

{
printf(“4 “);
Sleep(100);
} // end for index

// at this point the threads should all be dead, so close handles
for (index=0; index<MAX_THREADS; index++)

CloseHandle(thread_handle[index]);

// end with a blank line
printf(“\nAll threads terminated.\n”);

} // end main

Sample output:

Starting all threads...
4 1 2 3 4 1 2 3 4 1 2 3 1 4 2 3 4 1 2 3 1 4 2 3 4
1 2 3 1 4 2 3 4 1 2 3 1 4 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4
4 4
All threads terminated.

Wow! Isn’t that cool? It’s so easy to create multiple threads. Now, if you’re astute,
you should be a little weary at this point, and you should question the fact that you
used the same function each time for the thread callback. The reason why this works
correctly is that all the variables in the code are created on the stack, and each thread
has its own stack. So it all works out. Take a look at Figure 11.19 to see this.

1572313618 CH11 10/26/99 10:36 AM Page 696

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

697

Figure 11.19 overlooks something that is very important: termination. Both threads
terminated on their own, but the primary thread had no control over this. In addition,
the primary thread really had no way to tell if the threads were complete and had ter-
minated (that is, if they had returned).

What you need is a way to communicate between threads and check the status of
threads from one another or from the primary thread itself. There is a brute-force way
to terminate a thread using TerminateThread(), but I suggest that you don’t use this.

Sending Messages from Thread to Thread
Let’s say that you want the primary thread to have control over the spawned threads
that it creates. For example, the primary thread may want to kill all the secondary
threads. How can you do this? Well, there are a couple of methods to terminate a
thread:

• Sending a message to the thread to tell it to terminate itself (the right way).

• Simply making a kernel-level call and killing the thread (the wrong way).

Although the wrong way might be needed in some cases, it is not safe because it sim-
ply pulls the carpet right from under the thread. If the thread needs to perform any
clean-up, it never will. This can create memory and resource leaks, so be careful.
Figure 11.20 illustrates the different methods to instruct a thread to terminate.

Primary
thread

Stack

Thread
0

Thread
1

Thread
2

Local stackLocal stackLocal stack

Global data

Shared by
all threads

Application process

Figure 11.19
Primary and sec-

ondary thread
memory and code

space allocation.

1572313618 CH11 10/26/99 10:36 AM Page 697

Hardcore Game Programming

698 PART III

Before you see an example of sending messages to the threads to notify them that
they should terminate, take a look at the TerminateThread() function call so you
know how to use it if the need arises:

BOOL TerminateThread(HANDLE hThread, // handle to the thread
DWORD dwExitCode); // exit code for the thread

hThread identifies the thread to terminate. The handle must have THREAD_TERMINATE
access.

dwExitCode specifies the exit code for the thread. Use the GetExitCodeThread()
function to retrieve a thread’s exit value.

If the function succeeds, the return value is TRUE. If the function fails, the return value
is FALSE. To get extended error information, call GetLastError().

TerminateThread() is used to cause a thread to exit. When this occurs, the target
thread has no chance to execute any user-mode code and its initial stack is not deallo-
cated. DLLs attached to the thread are not notified that the thread is terminating, and
that’s a bad thing. :)

To use TerminateThread(), simply call it with the handle to the thread you want to
terminate, along with a return code override, and it will be history. Now, don’t get me
wrong; the function wouldn’t exist if there wasn’t a use for it. Just make sure that you
know what you’re doing when you use it and that you’ve thought of everything.

Let’s move on to the message-passing method of terminating a thread. It works by set-
ting a global variable that the secondary threads watch. Then, when the secondary
threads see that the global termination flag has been set, they all terminate. But how
does the primary thread know when all the secondary threads have terminated? Well,
one way to accomplish the task is have another global variable that the threads decre-
ment when they terminate—a reference counter of sorts.

Secondary
thread

Primary
thread

Kernel

Global
variable

Secondary
thread

Kernel event Thread to terminate

Self terminate
return (. . .)

Terminate thread (. . .)

2

1

Figure 11.20
Thread termination

methods.

1572313618 CH11 10/26/99 10:36 AM Page 698

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

699

This counter can be tested by the primary thread, and when it’s equal to 0, all the sec-
ondary threads have terminated and the primary thread can be confident that it’s okay
to proceed with work and close the handles to the threads. This is almost true… We’ll
get to the “almost” part after you see a full example of this new message passing
system. DEMO11_7.CPP|EXE illustrates global message passing and is shown here:

// DEMO11_7.CPP - An example of global message passing to control
// termination of threads.

// INCLUDES ///

#define WIN32_LEAN_AND_MEAN // make sure certain headers
// are included correctly

#include <windows.h> // include the standard windows stuff
#include <windowsx.h> // include the 32 bit stuff
#include <conio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

// DEFINES //

#define MAX_THREADS 3

// PROTOTYPES //

DWORD WINAPI Printer_Thread(LPVOID data);

// GLOBALS ///

int terminate_threads = 0; // global message flag to terminate
int active_threads = 0; // number of active threads

// FUNCTIONS //

DWORD WINAPI Printer_Thread(LPVOID data)
{
// this thread function simply prints out data until it is told to terminate

for(;;)
{
printf(“%d “,(int)data+1); // output a single character
Sleep(100); // sleep a little to slow things down

// test for termination message
if (terminate_threads)

break;

} // end for index

1572313618 CH11 10/26/99 10:36 AM Page 699

Hardcore Game Programming

700 PART III

// decrement number of active threads
if (active_threads > 0)

active_threads--;

// just return the data sent to the thread function
return((DWORD)data);

} // end Printer_Thread

// MAIN //

void main(void)
{

HANDLE thread_handle[MAX_THREADS]; // this holds the
// handles to the threads

DWORD thread_id[MAX_THREADS]; // this holds the ids of the threads

// start with a blank line
printf(“\nStarting Threads...\n”);

// create the thread, IRL we would check for errors
for (int index=0; index < MAX_THREADS; index++)

{
thread_handle[index] = CreateThread(NULL, // default security

0, // default stack
Printer_Thread, // use this thread function
(LPVOID)index, // user data sent to thread
0, // creation flags, 0=start now.
&thread_id[index]);// send id back in this var

// increment number of active threads
active_threads++;

} // end for index

// now enter into printing loop, make sure this
// takes longer than threads,
// so threads finish first, note that primary thread prints 4

for (index=0; index<25; index++)
{
printf(“4 “);
Sleep(100);
} // end for index

// at this point all the threads are still running,
// now if the keyboard is hit
// then a message will be sent to terminate all the
// threads and this thread
// will wait for all of the threads to message in

while(!kbhit());

1572313618 CH11 10/26/99 10:37 AM Page 700

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

701

// get that char
getch();

// set global termination flag
terminate_threads = 1;

// wait for all threads to terminate,
// when all are terminated active_threads==0
while(active_threads);

// at this point the threads should all be dead, so close handles
for (index=0; index < MAX_THREADS; index++)

CloseHandle(thread_handle[index]);

// end with a blank line
printf(“\nAll threads terminated.\n”);

} // end main

Sample output:

Starting Threads...
4 1 2 3 4 2 1 3 4 3 1 2 4 2 1 3 4 3 1 2 4 2 1 3 4 2
3 1 4 2 1 3 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1
4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2
3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 2 3 1 3 2
1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2
3 3 2 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3 1 3 2
1 3 1 2 3 2 1 3 1 2 3 2 1
All threads terminated.

As you can see from the sample output, when the user hits a key, all threads are termi-
nated and the primary thread then terminates. There are two problems with this
method. The first problem is subtle. Here’s the scenario; read it a couple of times to
make sure you see the problem:

1. Assume that all but one of the secondary threads has terminated.

2. Assume that the last thread has processor control, and it decrements the global
variable that tracks the number of active threads.

3. At the instant this happens, there is a context switch to the primary process. It
tests the global variable and thinks that all the threads have terminated, but the
last thread still hasn’t returned!

In most cases this is not a problem, but it can be if there’s anything between the
decrement code and the return code. What you need is a function that can query if a
thread is terminated. This would help in many cases. There is a function group that
waits for signals, referred to as the Wait*() group, that can help.

The second problem is that you’ve created what is called a busy loop, or a polling
loop. This is normally fine in Win16/DOS, but in Win32 it’s a bad thing. Sitting in a

1572313618 CH11 10/26/99 10:37 AM Page 701

Hardcore Game Programming

702 PART III

tight loop, waiting on a variable, puts a lot of strain on the multitasking kernel and
makes the CPU usage shoot way up.

To see this, you can use SYSMON.EXE (part of the Windows 95/98 accessories), PERF-
MON.EXE (part of Windows NT) or a similar third-party CPU usage utility. These utili-
ties help you see what is happening with the threads and processor usage. Anyway,
let’s look at how the Wait*() class of functions can help you determine if a thread has
terminated.

Waiting for the Right Moment
Get ready for the most confusing explanation you’ve ever heard… but it’s not my
fault, really! Whenever any thread terminates, it becomes signaled to the kernel, and
when it is running, it is unsignaled. Whatever that means. And what is the price of
plastic zippers tomorrow? You don’t care! But what you do care about is how to test
for the signaling.

You can test for this event using the Wait*() class of functions, which allow you to
test for a single signal (tongue twister) or multiple signals (does that sound sexual to
you?). In addition, you can call one of the Wait*() functions to wait for the signal(s)
until it happens, but without a busy loop. Much better than polling a global, in most
cases. Figure 11.21 illustrates the mechanics of the Wait*() functions and their rela-
tionship to the running application and the OS kernel.

Thread 0

Thread 1

Thread 2

Primary
thread

Terminated

Signaled
Running

Running

Running

Running RunningWait . . . (. . .)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Terminated

Signaled
Terminated

Signaled

• At t3 Thread 0 becomes signaled

• At t5 Thread 1 becomes signaled

• At t6 primary thread enters wait . . . (. . .)

• At t9 Thread 2 becomes signaled and primary thread is released.

Figure 11.21
A timeline of signal-

ing using Wait*().

The two functions that you’re going to use are called WaitForSingleObject() and
WaitForMultipleObjects(),which are used to wait for a single signal or multiple
signals, respectively. Their definitions are

1572313618 CH11 10/26/99 10:37 AM Page 702

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

703

DWORD WaitForSingleObject(HANDLE hHandle, // handle of object to wait for
DWORD dwMilliseconds); // time-out interval in milliseconds

hHandle identifies the object.

dwMilliseconds specifies the time-out interval, in milliseconds. The function returns
if the interval elapses, even if the object’s state is nonsignaled. If dwMilliseconds is
zero, the function tests the object’s state and returns immediately. If dwMilliseconds
is infinite, the function’s time-out interval never elapses.

If the function succeeds, the return value indicates the event that caused the function
to return. If the function fails, the return value is WAIT_FAILED. To get extended error
information, call GetLastError().

The return value on success is one of the following values:

• WAIT_ABANDONED—The specified object is a mutex object that was not released
by the thread that owned it before the thread terminated. Ownership of the
mutex object is granted to the calling thread, and the mutex is set to
nonsignaled.

• WAIT_OBJECT_0—The state of the specified object is signaled.

• WAIT_TIMEOUT—The time-out interval has elapsed, and the object’s state is
nonsignaled.

Basically, the WaitForSingleObject() function checks the current state of the speci-
fied object. If the object’s state is nonsignaled, the calling thread enters an efficient
wait state. The thread consumes very little processor time while waiting for one of the
conditions of the wait to be satisfied. And here is the function used to wait for multi-
ple signals, or in this case multiple threads, to terminate:

DWORD WaitForMultipleObjects(DWORD nCount, // number of handles
// in handle array

CONST HANDLE *lpHandles, // address of object-handle array
BOOL bWaitAll, // wait flag
DWORD dwMilliseconds); // time-out interval in milliseconds

nCount specifies the number of object handles in the array pointed to by lpHandles.
The maximum number of object handles is MAXIMUM_WAIT_OBJECTS.

lpHandles points to an array of object handles. The array can contain handles of
objects of different types. Note for Windows NT: The handles must have SYNCHRONIZE
access.

bWaitAll specifies the wait type. If TRUE, the function returns when all objects in the
lpHandles array are signaled at the same time. If FALSE, the function returns when
any one of the objects is signaled. In the latter case, the return value indicates the
object whose state caused the function to return.

1572313618 CH11 10/26/99 10:37 AM Page 703

Hardcore Game Programming

704 PART III

dwMilliseconds specifies the time-out interval, in milliseconds. The function returns
if the interval elapses, even if the conditions specified by the bWaitAll parameter are
not satisfied. If dwMilliseconds is zero, the function tests the states of the specified
objects and returns immediately. If dwMilliseconds is infinite, the function’s time-out
interval never elapses.

If the function succeeds, the return value indicates the event that caused the function
to return. If the function fails, the return value is WAIT_FAILED. To get extended error
information, call GetLastError(). The return value upon success is one of the follow-
ing values in bold:

• WAIT_OBJECT_0 to (WAIT_OBJECT_0 + nCount - 1)—If bWaitAll is TRUE, the
return value indicates that the state of all specified objects is signaled. If
bWaitAll is FALSE, the return value minus WAIT_OBJECT_0 indicates the
lpHandles array index of the object that satisfied the wait. If more than one
object became signaled during the call, this is the array index of the signaled
object with the smallest index value of all the signaled objects.

• WAIT_ABANDONED_0 to (WAIT_ABANDONED_0 + nCount – 1)—If bWaitAll is
TRUE, the return value indicates that the state of all specified objects is signaled
and at least one of the objects is an abandoned mutex object. If bWaitAll is
FALSE, the return value minus WAIT_ABANDONED_0 indicates the lpHandles array
index of an abandoned mutex object that satisfied the wait.

• WAIT_TIMEOUT—The time-out interval elapsed and the conditions specified by
the bWaitAll parameter are not satisfied.

WaitForMultipleObjects() determines whether the conditions exist that satisfy the
wait. If the wait is not satisfied, the calling thread enters an efficient wait state, con-
suming very little processor time, while waiting for one of the conditions of the wait
to be satisfied.

Using Signaling to Synchronize Threads
These explanations are very technical. So, as an example of how to use these func-
tions, you’re going to make another slight change to the program you’ve been work-
ing with. For the next version, you’re going to remove the global termination signal
flag and create a main loop that simply calls WaitForSingleObject().

The only reason that you’re removing the global terminate message is to make the
program simpler. This is still the best way to tell threads to terminate; it’s just that sit-
ting in a busy loop is not the best way to test if they’ve actually terminated.

And that is why you’re going to use the WaitForSingleObject() call. This call sits in
a virtual wait loop that eats very little processor time. Also, because
WaitForSingleObject() can only wait for one signal, and thus one thread, to termi-
nate, this example will only have one secondary thread.

1572313618 CH11 10/26/99 10:37 AM Page 704

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

705

In a moment, you’ll rewrite the program to contain three threads, and you’ll use
WaitForMultipleObjects() to wait for all of them to terminate. Anyway,
DEMO11_8.CPP|EXE uses WaitForSingleObject() and creates one extra thread. Take a
look at the code:

// DEMO11_8.CPP - A single threaded example of
// WaitForSingleObject(...).

// INCLUDES //

#define WIN32_LEAN_AND_MEAN // make sure certain
// headers are included correctly

#include <windows.h> // include the standard windows stuff
#include <windowsx.h> // include the 32 bit stuff
#include <conio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

// DEFINES //

// PROTOTYPES //

DWORD WINAPI Printer_Thread(LPVOID data);

// GLOBALS ///

// FUNCTIONS //

DWORD WINAPI Printer_Thread(LPVOID data)
{ // this thread function simply prints out data 50
// times with a slight delay
for (int index=0; index<50; index++)

{
printf(“%d “,data); // output a single character
Sleep(100); // sleep a little to slow things down
} // end for index

// just return the data sent to the thread function
return((DWORD)data);

} // end Printer_Thread

// MAIN ///

void main(void)
{
HANDLE thread_handle; // this is the handle to the thread
DWORD thread_id; // this is the id of the thread

1572313618 CH11 10/26/99 10:37 AM Page 705

Hardcore Game Programming

706 PART III

// start with a blank line
printf(“\nStarting threads...\n”);

// create the thread, IRL we would check for errors
thread_handle = CreateThread(NULL, // default security

0, // default stack
Printer_Thread, // use this thread function
(LPVOID)1, // user data sent to thread
0, // creation flags, 0=start now.
&thread_id); // send id back in this var

// now enter into printing loop, make sure
// this is shorter than the thread,
// so thread finishes last
for (int index=0; index<25; index++)

{
printf(“2 “);
Sleep(100);
} // end for index

// note that this print statement may get
// interspliced with the output of the
// thread, very key!

printf(“\nWaiting for thread to terminate\n”);

// at this point the secondary thread so still be working,
// now we will wait for it
WaitForSingleObject(thread_handle, INFINITE);

// at this point the thread should be dead
CloseHandle(thread_handle);

// end with a blank line
printf(“\nAll threads terminated.\n”);

} // end main

Sample output:

Starting threads...
2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1
Waiting for thread to terminate
1 1
All threads terminated.

The program is very simple. As usual, you create the secondary thread and then, right
away, you enter into the printing loop. When it terminates, the
WaitForSingleObject() is called. If you had more work to do in the primary thread,
you would do it. But in this case you don’t, so you just enter into the wait function
and wait. If you run the program with SYSMON.EXE active, you’ll see that there is

1572313618 CH11 10/26/99 10:37 AM Page 706

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

707

almost no processor usage when the wait function is entered, whereas there would be
if you used a busy loop.

Before moving on to the next example and multiple threads, there is a little trick you
can do with WaitForSingleObject(). Let’s say that you want to know the status of a
thread at this moment, but you don’t want to wait for it to terminate. This can be done
by making a NULL call to WaitForSingleObject(), shown here:

//...code

DWORD state = WaitForSingleObject(thread_handle, 0); // get the status

// test the status
if (state==WAIT_OBJECT_0) { // thread is signaled, i.e. terminated }
else

if (state==WAIT_TIMEOUT) { // thread is still running }

//...code

Simple enough. This is a great way to test if a particular thread has terminated. This,
coupled with the global termination message, is a very robust method to terminate a
thread and check if it was actually terminated in a real-time loop when you don’t want
to wait for the termination until it happens.

Waiting for Multiple Objects
You’re almost done. The last Wait*() class function waits on multiple objects or
threads to signal. Let’s make a program that uses this function. All you need to do is
create an array of threads and then pass the array of handles to
WaitForMultipleObjects(), along with a couple of parameters.

When the function returns, if all went well, all the threads will have terminated.
DEMO11_9.CPP|EXE is similar to DEMO11_8.CPP|EXE, except that it creates multiple
threads and then the primary thread waits for all of them to terminate. Again, you
don’t use a global termination flag because you already know how to. Each secondary
thread simply runs a few cycles and then terminates. The source for DEMO11_9.CPP is
listed here for your review:

// DEMO11_9.CPP -An example use of
// WaitForMultipleObjects(...)

// INCLUDES ///

#define WIN32_LEAN_AND_MEAN // make sure certain headers
// are included correctly

#include <windows.h> // include the standard windows stuff
#include <windowsx.h> // include the 32 bit stuff
#include <conio.h>

1572313618 CH11 10/26/99 10:37 AM Page 707

Hardcore Game Programming

708 PART III

#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>

// DEFINES ///

#define MAX_THREADS 3

// PROTOTYPES ///

DWORD WINAPI Printer_Thread(LPVOID data);

// GLOBALS //

// FUNCTIONS //

DWORD WINAPI Printer_Thread(LPVOID data)
{
// this thread function simply prints out data 50
// times with a slight delay
for (int index=0; index<50; index++)

{
printf(“%d “,(int)data+1); // output a single character
Sleep(100); // sleep a little to slow things down
} // end for index

// just return the data sent to the thread function
return((DWORD)data);

} // end Printer_Thread

// MAIN //

void main(void)
{
HANDLE thread_handle[MAX_THREADS]; // this holds the

// handles to the threads
DWORD thread_id[MAX_THREADS]; // this holds the ids of the threads

// start with a blank line
printf(“\nStarting all threads...\n”);

// create the thread, IRL we would check for errors
for (int index=0; index<MAX_THREADS; index++)

{
thread_handle[index] = CreateThread(NULL, // default security

0, // default stack
Printer_Thread,// use this thread function
(LPVOID)index, // user data sent to thread
0, // creation flags, 0=start now.
&thread_id[index]); // send id back in this var

1572313618 CH11 10/26/99 10:37 AM Page 708

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

709

} // end for index

// now enter into printing loop,
// make sure this takes less time than the threads
// so it finishes first
for (index=0; index<25; index++)

{
printf(“4 “);
Sleep(100);
} // end for index

// now wait for all the threads to signal termination
WaitForMultipleObjects(MAX_THREADS, // number of threads to wait for

thread_handle, // handles to threads
TRUE, // wait for all?
INFINITE); // time to wait,INFINITE = forever

// at this point the threads should all be dead, so close handles
for (index=0; index<MAX_THREADS; index++)

CloseHandle(thread_handle[index]);

// end with a blank line
printf(“\nAll threads terminated.\n”);

} // end main

Sample output:

Starting all threads...
4 1 2 3 4 1 2 3 1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3
1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3
1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3
1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3 1 4 2 3 2 4 1 3
1 4 2 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1
3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1
3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3
All threads terminated.

The sample output is what you’d expect. All threads print along with the primary
thread (which prints 4’s for a bit), but when the loop in the primary thread is com-
plete, the secondary threads continue until they all finish. Once all the threads termi-
nate, the primary thread terminates because it is blocked from termination via the
WaitForMultipleObjects().

Multithreading and DirectX
Now you know something about multithreading. The next question is how you can
really use it in game programming and DirectX programs. Just do it—that’s all there
is to it. Of course, you must make sure to use the multithreaded libraries rather than
the single-threaded libraries when compiling. In addition, there are a lot of “critical
section” problems that might arise when you’re mucking with DirectX resources.

1572313618 CH11 10/26/99 10:37 AM Page 709

Hardcore Game Programming

710 PART III

Make sure that you use a global strategy for resources so that if more than one thread
accesses a resource, nothing will blow up. For example, let’s say that one thread locks
a surface, and then another thread executes and tries to lock the same surface. This
will cause a problem. These kinds of problems can be solved using sempahores,
mutexes, and critical sections. I don’t have time to cover any of these, but you can
always pick up a good book on the subject, like Multithreading Applications in Win32
by Jim Beveridge and Robert Weiner, published by Addison Wesley. This is the best
book I’ve seen on the topic.

To implement these types of resource management applications and to share threads
properly, you simply create variables that track if another thread is using the resource.
Then, any thread that wants a resource that other thread might be using tests this vari-
able before mucking with it. Of course, this can also be a problem unless the variable
can be tested and changed atomically, because you could be halfway through chang-
ing a variable and another thread could gain control.

You can minimize this by making these variables of the type volatile, which tells
the compiler not to make memory copies, for one thing. However, in the end you’ll
have to use semaphores (a simple counter like the global variable, but implemented
with atomic code in assembly that can’t be interrupted), mutexes (allows only one
thread to enter a critical section; a binary semaphore), critical sections (sections that
you indicate to the compiler with Win32 calls that are only supposed to allow one
thread at a time), and so forth, so read up on them. On the other hand, if each thread
is fairly independent in what it does, you won’t have to worry about this stuff as
much.

For an example of a DirectX application that uses threads, check out
DEMO11_10.CPP|EXE. It creates a number of alien BOBs (blitter objects) and moves
them around in the mainline. Also, an addition thread is created to animate the colors
of the BOBs. This is a very simple and safe example of multithreading. There aren’t
many problems with having another thread animate colors. Make sure to link with all
the DirectX .LIB files

However, if you had many threads all calling the same functions, the problem of reen-
trancy would come into play. Functions that are reentrant need to have state informa-
tion and can’t use globals that can be corrupted by preemptive threads coming in and
out of the code.

In addition, if you use threads to animate the DirectX blitter objects themselves, sur-
face contingency, timing, and synchronization will really wreak havoc on your code.
I suggest restricting the use of threads to processes that are for the most part indepen-

dent of others, exist in their own “state space,” and don’t have to run at a precise rate.

1572313618 CH11 10/26/99 10:37 AM Page 710

CHAPTER 11
Algorithms, Data Structures, Memory Management, and Multithreading

711

Advanced Multithreading
Well, this is a good place to stop because the next set of topics have to do with race
conditions, deadlocks, critical sections, mutexes, semaphores, and really big
headaches. All of these things (except the last one) help you write multithreaded pro-
grams that don’t step on each other. However, even without knowing about them, you
can still accomplish a lot of safe multithreaded programming just by using common
sense and remembering that any thread can interrupt any other thread. Just be careful
with how your threads access shared data structures.

Try to do everything as automatically as possible. Make sure that one thread doesn’t
alter a variable and then another thread uses this half-altered version! Also, there were
a few function calls left out of this chapter that are fairly basic, such as ExitThread()
and GetThreadExitCode(), but they’re fairly simple to understand and you can look
them up in your favorite API bible.

Summary
This has been a refreshing chapter, don’t you think? :) Nothing too technical; just a
potpourri of invaluable information in a scintillating format. Okay, I think I’ve had
one too many Power Bars! Seriously, though, we’ve covered a lot of ground: data
structures, memory management, recursion, analysis, fixed-point math, and multi-
threading.

These things may not seem to be game-related, but they are. To make a game, you
need to know every single topic in programming—it’s that complex! Anyway, go out
and rent 2001: A Space Odyssey, because it’s time to talk about artificial intelli-
gence…

1572313618 CH11 10/26/99 10:37 AM Page 711

1572313618 CH11 10/26/99 10:37 AM Page 712

Making Silicon Think
with Artificial Intelligence

“I’m sorry, Dave. I’m afraid I can’t do that…”

—HAL 9000, 2001: A Space Odyssey

This chapter is going to answer a lot of questions about the
black art of artificial intelligence. In fact, depending on how you
look at things, artificial intelligence is not artificial at all. It is an
intelligence of sorts based on logic, mathematics, probability,
and memory—and isn’t that all we are?

By the end of this chapter, you’ll be able to write code and algo-
rithms to make game creatures perform in a reasonable manner
and do almost anything that you want them to do. Here’s what’s
covered:

• Artificial intelligence primer

• Simple deterministic algorithms

• Patterns and scripts

• Behavioral state systems

• Memory and learning

• Planning and decision trees

CHAPTER 12

1672313618 CH12 10/26/99 10:45 AM Page 713

Hardcore Game Programming

714 PART III

• Pathfinding

• Advanced scripting languages

• Neural network basics

• Genetic algorithms

• Fuzzy logic

Artificial Intelligence Primer
Artificial intelligence, in the most academic sense of the phrase, has come to mean a
piece of hardware or software that enables a computer to “think” or process informa-
tion in a fashion somewhat similar to our own.

Applications in AI just started to surface a few years ago, but today AI and other
related fields, such as a-life (artificial life) and intelligent agents, are maturing at an
exponential rate. In fact, that little MS-Word paper clip agent keeps annoying me as I
write this sentence!

Today, systems exist that are “alive,” as far as anyone can define life. A number of
companies have created artificial lifeforms within the virtual domain of the computer
that live, die, explore, get sick, reproduce, evolve, get depressed, get hungry, and
so on.

This kind of technology has been made possible with artificial neural networks,
genetic algorithms, and fuzzy logic. Neural networks are crude approximations of a
human brain, and genetic algorithms are a set of techniques and suppositions used for
the evolution of software systems based on biological paradigms. Fuzzy logic is set
theory based on non-crisp suppositions, like “It’s sort of hot out.”

Sound far out? It is. But it’s real, and it’s only going to get better. Remember, cloning
used to be science fiction, but now it’s science fact.

Coming back down to Earth, you aren’t going to create anything as complex as
state-of-the-art AI for your games. Instead, you’re going to look at the most simplistic
and fundamental techniques that game programmers use to create intelligent crea-
tures—or at least creatures that seem intelligent. In fact, many game programmers are
still very behind on AI and haven’t begun to really embrace all that’s available in the
field. I suspect that AI and related technologies are going to make the same kind of
impact on the gaming world that the DOOM graphics technology made many years
ago.

Truthfully, 3D graphics are starting to slow down. Things are looking pretty real these
days, but they still act pretty dumb. The next killer game is going to look good, but
more importantly, it’s going to be as cunning and devious as the best of us.

1672313618 CH12 10/26/99 10:45 AM Page 714

CHAPTER 12
Making Silicon Think with Artificial Intelligence

715

Finally, as you read the following pages and experiment with the accompanying pro-
grams, remember that all these techniques are just that—techniques. There isn’t a
right way or a wrong way, just a way that works. If the computer-operated tank can
kick your butt, that’s all you need. If it can’t, you need to do more.

Regardless of how primitive the underlying AI techniques are, the human players will
always project personalities onto their virtual opponents. This is key—the player will
believe that the objects in the game really are plotting, planning, and thinking, as long
as they look like they are… Get it?

Deterministic AI Algorithms
Deterministic algorithms are behaviors that are predetermined or preprogrammed. For
example, if you take a look at the AI for the polygon Asteroids demo introduced in
Chapter 8, “Vector Rasterization and 2D Transformations” (shown in Figure 12.1), it’s
very simple.

+y

(x, y)

(x', y')

x' = x + Dx
y' = y + Dy

+y

Dy

Dx

Figure 12.1
The Asteroids AI.

The AI creates an asteroid and then sends it in a random direction with a random
velocity. This is a type of intelligence as shown here:

asteroid_x += asteroid_x_velocity;
asteroid_y += asteroid_y_velocity;

The asteroids have one goal: to follow their course. That’s it. The AI is simple—the
asteroids don’t process any outside input, make course changes, and so on. In a sense
they’re intelligent, but their intelligence is rather deterministic and predictable. This is
the first kind of AI I want to look at—the simple, predictable, programmable kind.
In this class of AI, there are a number of techniques that were born in the
Pong/Pac-Man era.

1672313618 CH12 10/26/99 10:45 AM Page 715

Hardcore Game Programming

716 PART III

Random Motion
Just one step above moving an object in a straight line or curve is moving an object or
changing its properties randomly, as shown in Figure 12.2.

+y

–y

+x–x

Flying saucer
from Area 51

(x0, y0) (x1, y1)

(x2, y2)

(x3, y3)

Figure 12.2
Random-motion AI.

For example, let’s say you wanted to model an atom, fly, or something similar that
doesn’t have a lot of brains, but does have a fairly predictable behavior—it bounces
around in an erratic way. Well, at least it looks that way.

For a starting AI model, you might try something like this to model a fly’s brain:

fly_x_velocity = -8 + rand()%16;
fly_y_velocity = -8 + rand()%16;

Then you could move the fly around for a few cycles:

int fly_count = 0; // fly new thought counter

// fly in the same direction for 10 ticks of time
while(++fly_count < 10)

{
fly_x+=fly_x_velocity;
fly_y+=fly+y_velocity;
} // end while

// .. pick a new direction and loop

1672313618 CH12 10/26/99 10:45 AM Page 716

CHAPTER 12
Making Silicon Think with Artificial Intelligence

717

In this example, the fly would pick a random direction and velocity, move that way
for a moment, and then pick another. That sounds like a fly to me! Of course, you
might want to add even more randomness, such as changing how long the motion
occurs instead of fixing it at 10 cycles. In addition, you might want to weigh certain
directions more heavily than others. For example, you might want to lean toward
westward directions to simulate the breeze or something.

In any case, I think you can see that it’s possible to make something seem intelligent
with very little code. As a working example, check out DEMO12_1.CPP|EXE on the CD.
It’s an example of the artificial fly in action.

Random motion is a very important part of the behavioral modeling of intelligent
creatures. I live in Silicon Valley, and I can attest that the people who drive on the
roads around here make random lane changes and even drive the wrong direction,
which is pretty similar to the fly’s brainless motion…

Tracking Algorithms
Although random motion can be totally unpredictable, it’s rather boring because no
matter what, it works the same way—that is, randomly. The next step up in the AI
evolutionary ladder are algorithms, which take into consideration something in the
environment and then react to it. As an example of this, I have chosen tracking algo-
rithms. A tracking AI takes into consideration the position of the object being tracked,
and then it changes the trajectory of the AI object so that it moves toward the object
being tracked.

The tracking can be literally vectored directly toward the object, or it can be a more
realistic model, turning toward the object much like a heat-seeking missile would do.
Take a look at Figure 12.3.

–y

+y

–y

+y

–x+x–x

Target (xt, yt)

Trajectory vector

A. Direct vector tracking B. Curved tracking

Curved
trajectory

(more realistic)

Figure 12.3
Tracking methods.

1672313618 CH12 10/26/99 10:45 AM Page 717

Hardcore Game Programming

718 PART III

For an example of the brute-force method, take a look at this algorithm:

// given: player is at player_x, player_y
// and game creature is at
// monster_x, monster_y

// first test x-axis
if (player_x > monster_x)

monster_x++;
if (player_x < monster_x)

monster_x--;

// now y -axis
if (player_y > monster_y)

monster_y++;
if (player_y < monster_y)

monster_y--;

If you dropped this AI into a simple demo, it would track you down in Terminator-like
fashion! The code is simple but effective. Pac-Man’s AI was written in much the same
way. Of course, Pac-Man could only make right-angle turns and had to move in a
straight line and avoid obstacles, but it’s in the same ballpark. For an example, check
out DEMO12_2.CPP|EXE on the CD. In it, you control a ghost with the keyboard arrow
keys while a bat tries to hunt you down.

This kind of tracking is great, but it’s a little artificial because the AI-controlled object
tracks the target precisely. A more natural approach to tracking might be to change the
trajectory vector of the tracking object in the direction defined from the center of the
tracking object to the center of the object being tracked. Take a look at Figure 12.4 to
see this.

–y

+y

+x–x

Target (x, y)

Tvx = (Target.x – Tracker.x)
Tvy = (Target.y – Tracker.y)

Tracker (x, y)

Normalized TV tracking vector

A. Before tracking cycle B. After updating tracking
vector with target position

TV

TV

New vector (TV + T)

Tracker's
velocity vector
T (xv, yv)

–y

+y

+x–x

Target (x, y)

Newly adjusted
tracking vector

After

Before

Figure 12.4
Tracking an object
based on trajectory

vectoring.

1672313618 CH12 10/26/99 10:45 AM Page 718

CHAPTER 12
Making Silicon Think with Artificial Intelligence

719

The algorithm works as follows: Assume that the AI-controlled object is called
tracker and has the following properties:

Position:(tracker.x, tracker.y)
Velocity:(tracker.xv, tracker.yv)

The object to be tracked is called target and has the following properties:

Position:(target.x, target.y)
Velocity:(target.xv, target.yv)

Based on those definitions, here is the general logic cycle that adjusts the velocity
vector of the tracker:

1. Compute the vector from the tracker to the target:

TV =(target.x – tracker.x, target.y – tracker.y) = (tvx, tvy), normalize TV—in
other words, divide (tvx, tvy)/Vector_Length(tvx,tvy) so that the max length
is 1.0, and call this TV*. Note that Vector_Length() just computes the length
of a vector from the origin (0,0), or in other words the sqrt(x2 + y2).

2. Adjust the current velocity vector of the tracker by adding TV* scaled by a
rate:
tracker.x+=rate*tvx;
tracker.y+=rate*tvy;

Note that as rate becomes larger than 1.0, the track vectoring converges more
swiftly, and the tracking algorithm tracks the target more closely and makes
changes to the target’s movements more quickly.

3. After the tracker’s velocity vector has been modified, there’s a possibility that
the vector velocity has overflowed a maximum rate. In other words, the tracker
continues to speed up in the direction of the target once it has a lock. As a
result, you should put an upper bound on this and slow the tracker down at
some point. Here’s an example:

// get magnitude of velocity vector
tspeed = Vector_Length(tracker.xv, tracker.yv);

// moving too fast?
if (tspeed > MAX_SPEED)

{
// shrink the velocity vector
tracker.xv*=0.75;
tracker.yv*=0.75;
} // end if

There are other choices—0.5 or 0.9—whatever. It’s even possible to compute the
exact overflow and then shrink the vector by that amount, if perfection’s your goal.

1672313618 CH12 10/26/99 10:45 AM Page 719

Hardcore Game Programming

720 PART III

I know we haven’t hit vector math yet, and yet I’ve been using the terminology in this
example, so I thought I would give an example of some tracking code that uses this
algorithm, ripped right out of a real game. This code makes these little mines track the
player. Look at how the real code performs all the previous steps in a real example:

// mine tracking algorithm

// compute vector toward player
float vx = player_x - mines[index].varsI[INDEX_WORLD_X];
float vy = player_y - mines[index].varsI[INDEX_WORLD_Y];

// normalize vector (sorta :)
float length = Fast_Distance_2D(vx,vy);

// only track if reasonable close
if (length < MIN_MINE_TRACKING_DIST)

{
vx=MINE_TRACKING_RATE*vx/length;
vy=MINE_TRACKING_RATE*vy/length;

// add velocity vector to current velocity
mines[index].xv+=vx;
mines[index].yv+=vy;

// add a little noise
if ((rand()%10)==1)

{
vx = RAND_RANGE(-1,1);
vy = RAND_RANGE(-1,1);
mines[index].xv+=vx;
mines[index].yv+=vy;
} // end if

// test velocity vector of mines
length = Fast_Distance_2D(mines[index].xv, mines[index].yv);

// test for velocity overflow and slow
if (length > MAX_MINE_VELOCITY)

{
// slow down
mines[index].xv*=0.75;
mines[index].yv*=0.75;
} // end if

} // end if
else

{
// add a random velocity component
if ((rand()%30)==1)

{
vx = RAND_RANGE(-2,2);
vy = RAND_RANGE(-2,2);

1672313618 CH12 10/26/99 10:45 AM Page 720

CHAPTER 12
Making Silicon Think with Artificial Intelligence

721

// add velocity vector to current velocity
mines[index].xv+=vx;
mines[index].yv+=vy;

// test velocity vector of mines
length = Fast_Distance_2D(mines[index].xv, mines[index].yv);

// test for velocity overflow and slow
if (length > MAX_MINE_VELOCITY)

{
// slow down
mines[index].xv*=0.75;
mines[index].yv*=0.75;

} // end if

} // end if

} // end else

Although it’s obvious that this code was hijacked from a for loop or something that
processed a number of mines, that’s irrelevant. It’s a good example of a clean imple-
mentation of the algorithm, but it also has some areas I want to bring to your atten-
tion. For example, there’s a section of the code that tests if the mine is within a certain
distance of the player. If not, the mine doesn’t track the player but has its trajectory
slightly modified with some random noise. In addition, even when the mine tracks the
player, I add some random noise to the result. This adds more realism to the tracking.
In space, water, air, or whatever, there are going to be changes in gravity, density, and
so forth that would slightly alter the physics. Thus, adding the noise makes things
more realistic.

For an example of this trajectory tracking algorithm, check out DEMO12_3.CPP|EXE on
the CD. It allows you to move a little ship around in a scrolling universe. Within this
universe are mines that follow you by using the previous algorithm. The controls are

Arrow Keys Controls ship

Ctrl Fires ship’s weapons

+/- Changes the tracking rate

H Toggles huds

S Toggles scanner

Notice how decreasing the tracking rate makes the tracking object look like it’s on ice.

This is a good example of a small game, so there’s a lot to learn. Study it well.

1672313618 CH12 10/26/99 10:45 AM Page 721

Hardcore Game Programming

722 PART III

Anti-Tracking: Evasion Algorithms
Starting to get little quantum disturbances in your brain—that is, ideas? Good! The
next AI technique is to enable creatures in the game to get away from you. Remember
how the ghosts in Pac-Man fled when you ate the powerups? Making an evasion AI
do the same thing is simple. In fact, you already have the code! The previous tracking
code is the exact opposite of what you want; just take the code and flip the equalities
around. Presto! You’ll have an evasion algorithm. Here’s the code after the inversions:

// given: player is at player_x, player_y
// and game creature is at
// monster_x, monster_y

// first test x-axis
if (player_x < monster_x)

monster_x++;
if (player_x > monster_x)

monster_x--;

// now y -axis
if (player_y < monster_y)

monster_y++;
if (player_y > monster_y)

monster_y--;

Because I’m using GDI to draw text, the text printing slows the game
down tremendously. I wanted you to see this. In a real game, you would
make your own font engine to draw text.

If you have a heartbeat, you should have noticed that there is no condi-
tional for equal to (==). This is because I don’t want the object to move
in this case. I want it to sit on the player. If you want, you can make the
== case do something else.

Note

Now you can create a fairly impressive AI system with just random motion, chasing,
and evasion. In fact, you have enough to make a Pac-Man brain. Not much, but good
enough to sell 100 million or so copies, so that’s not too bad! To check out evasion in
action, run DEMO12_4.CPP|EXE on the CD. It’s basically the same as DEMO12_2.CPP,
but with the evasion AI instead of the tracking AI. Now let’s move on to patterns.

Patterns and Basic Control Scripting
Algorithmic and deterministic algorithms are great, but sometimes you need to make
a game object follow a sequence of steps, or a script of sorts. For example, when you
start your car, there is a specific sequence of steps that you perform:

Tip

1672313618 CH12 10/26/99 10:45 AM Page 722

CHAPTER 12
Making Silicon Think with Artificial Intelligence

723

1. Get the keys out of your pocket.

2. Put the key in the door.

3. Open the door.

4. Get in the car.

5. Close the door.

6. Put the key in the ignition.

7. Turn the key.

8. Start the car.

The point is that there’s a sequence of steps that you don’t think much about. You just
replay them every time. Of course, if something goes wrong, you might change your
sequence, like pressing the gas pedal or jump-starting the car because you left the
lights on last night. Patterns are an important part of intelligent behavior, and even
humans, the epitome of intelligent life on this planet (yeah, right), use them.

Basic Patterns
Creating patterns for game objects can be simple, depending on the game object itself.
For example, motion control patterns are very simple to implement. Let’s say you’re
writing a shoot-’em-up game similar to Phoenix or Galaxian. The alien attackers must
follow a left-right pattern and then at some point attack you with a specific attack pat-
tern. This kind of pattern or scripted AI can be achieved using a number of different
techniques, but I think the easiest technique is based on interpreted motion instruc-
tions, as shown in Figure 12.5.

Finish

Finish

Start
Start Start

Pattern
processor

logic

Object motion
control

interface

Finish

Object

Pattern 1 Pattern 2 Pattern 3

Each pattern consists of a sequence of opcodes:
op-1, op-2, op-3, . . . , op-n
that define the pattern

Figure 12.5
The pattern engine.

1672313618 CH12 10/26/99 10:45 AM Page 723

Hardcore Game Programming

724 PART III

Each motion pattern is stored as a sequence of directions or instructions, as shown in
Table 12.1.

TABLE 12.1 A Hypothetical Pattern Language Instruction Set

Instruction Value

GO_FORWARD 1

GO_BACKWARD 2

TURN_RIGHT_90 3

TURN_LEFT_90 4

SELECT_RANDOM_DIRECTION 5

STOP 6

Along with each directional instruction might be another operand or piece of data that
further qualifies the instruction, such as how long to do it. As a result, the pattern lan-
guage instruction format might look like the following:

INSTRUCTION OPERAND

INSTRUCTION is from the previous list (usually encoded as a single number), and
OPERAND is another number that helps further define the behavior of the instruction.
With this simple instruction format, you create a program (sequence of instructions)
that defines the pattern. Then you write an interpreter that feeds from a source pattern
and controls the game creature appropriately.

For example, let’s say your pattern language is formatted so that the first number is
the instruction itself and the second number indicates how long to perform the
motion, in cycles. Creating a square pattern with a spin and stop, as shown in Figure
12.6, would be trivial.

Here’s an example of that in coded [INSTRUCTION, OPERAND] format:

int num_instructions = 6; // number of instructions in script pattern

// this holds the actual pattern script
int square_stop_spin[

1,30, 4,1, // go forward then turn right
1,30, 4,1, // go forward and turn right
1,30, 4,1, // go forward and turn right
1,30, // go forward and finish square
6,60, // stop for 60 cycles
4,8, }; // spin for 8 cycles

1672313618 CH12 10/26/99 10:45 AM Page 724

CHAPTER 12
Making Silicon Think with Artificial Intelligence

725

To process the pattern instructions, all you need is a big switch() statement that
interprets each instruction and tells the game creature what it’s supposed to do, like
this:

// points to first instruction (2 words per instruction)
int instruction_ptr = 0;

// first extract the number of cycles
int cycles = square_stop_spin[instruction_ptr+1];

// now process instruction
switch(square_stop_spin[instruction_ptr])
{
case GO_FORWARD: // move creature forward...

break;
case GO_BACKWARD: // move creature backward...

break;
case TURN_RIGHT_90: // turn creature 90 degrees right...

break;

+y

–y

–x +x

Rotate 90°cw
Forward S

Forward SForward x

Rotate 90°cw
Forward S

Rotate 90°cw
Forward S

S

S

S

Stop

Start

S

Figure 12.6
A detailed square

pattern.

Of course, you might want to use a better data structure than an array.
For example, try using a class or structure containing a list of records in
[INSTRUCTION, OPERAND] format, along with the number of instructions.
That way you could very easily create an array of these structures, each
containing a different pattern, and then select a pattern and pass it to
the pattern processor.

Note

1672313618 CH12 10/26/99 10:45 AM Page 725

Hardcore Game Programming

726 PART III

case TURN_LEFT_90: // turn creature 90 degrees left...
break;

case SELECT_RANDOM_DIECTION: // select random dir...
break;

case STOP: // stop the creature
break;

} // end switch

// advance instruction pointer (2 words per instruction)
instruction_ptr+=2;

// test if end of sequence has been detected...
if (instruction_ptr > num_instructions*2)

{ /* sequence over */ }

And, of course, you would add the logic to track the cycle counter and make the
motion happen.

There’s one catch to all this pattern stuff: reasonable motion. Because the game object
is feeding off a pattern, it might decide to select a pattern that forces the object to
smash into something. If the pattern AI doesn’t take this into consideration, patterns
will be followed blindly. As a result, you must have a feedback loop with your pattern
AI (as with any AI) that instructs the AI that it has done something illegal, impossible,
or unreasonable, and it must reset to another pattern or strategy. This is shown in
Figure 12.7.

Pattern 1

Pattern database

Feedback loop

Feedback loop

Program logic

Pattern
processor

Object motion
control

Environmental state
"outside forces”

Pattern 2

Pattern 3

...

Figure 12.7
Pattern engine with

feedback control.

1672313618 CH12 10/26/99 10:45 AM Page 726

CHAPTER 12
Making Silicon Think with Artificial Intelligence

727

Stop for a minute and think about the power of patterns. With them, you could record
hundreds of moves and flight patterns. Patterns that would be nearly impossible to
create in any reasonable amount of time using other AI techniques can be created in
minutes with a tool (that you would write), recorded in a file, and then played back in
your game. Using this technique, you can make a game creature look as if it’s
extremely intelligent. This technique is used by nearly all games, including most
fighting games such as Tekken, Soul Blade, Mortal Kombat, and so on.

Furthermore, there’s no need to stop with motion patterns. You could use patterns to
control weapon selection, animation control, and so on. There’s no limit to how they
can be applied. For an example of patterns in action, take a look at
DEMO12_5.CPP|EXE, which demonstrates a monster that moves around using a number
of patterns and selects a new pattern every so often.

Patterns with Conditional Logic Processing
Patterns are cool, but they’re extremely deterministic. That is, once the player has
memorized a pattern, it’s useless. Players can always beat your AI because they know
what’s going to happen next. The solution to this problem, and to other problems that
pop up with patterns, is to add a bit of conditional logic that selects patterns based on
more than random selection, taking into account the conditions of the game world and
the actual player. Take a look at Figure 12.8 to see this abstractly.

Pattern data instructions

Opcode 1: forward
Opcode 2: turn
Opcode 3: forward

Opcode n-1
Opcode n
End

Opcode i: "if" operand Operands following conditional
"if" operand are used as
parameters in logic statement
if (. . . conditions based on operands . . .)

{
———
code
———
}

Figure 12.8
Patterns with

conditional logic.

Patterns with conditional logic give you yet one more level of control over your AI
models—you can select patterns that contain conditional branches as well as the pat-
terns being selected based on conditional logic. For example, you might add a new
instruction to the pattern language that is a conditional logic test:

1672313618 CH12 10/26/99 10:45 AM Page 727

Hardcore Game Programming

728 PART III

TEST_DISTANCE 7

The TEST_DISTANCE conditional might work by testing the distance of the player from
the object performing the pattern. If the distance is too close, too far, or whatever, the
pattern AI engine might change what it’s doing, making for a seemingly more intelli-
gent opponent. For example, you might put a TEST_DISTANCE instruction every so
many instructions in a standard pattern, like this:

TURN_RIGHT_90, GO_FORWARD, STOP, ...TEST_DISTANCE,

...TURN_LEFT_90,...TEST_DISTANCE, ... GO_BACKWARD

The pattern does its thing, but every time a TEST_DISTANCE instruction is encountered,
the pattern AI uses the operand following the TEST_DISTANCE instruction as a measure
to test the player’s position. If the player is getting too far away, the pattern AI stops
the current pattern and branches to another pattern. Or possibly better yet, it switches
to a deterministic tracking algorithm to get closer to the player. Take a look at the fol-
lowing code:

if (instruction_stream[instruction_ptr] == TEST_DISTANCE)
{
// obtain distance, note that on the test
// instructions the operand is no

// longer a time or cycle count
// but becomes context dependent
int min_distance = instruction_stream[instruction_ptr];

// if test if player is too far
if (Distance(player, object) > min_distance)

{
// set system state to switch to track
ai_state = TRACK_PLAYER;

// .. or you might just switch to
// another pattern and hope
// that the object gets closer
} // end if

} // end if

There’s no limit to the complexity of the conditional tests that you can perform in the
pattern script. In addition, you may want to create patterns on-the-fly and then use
them. One such example is to mimic the player’s motion. You could sample what the
player does each time she kills one of your game characters, and then use the same
tactic against her!

In conclusion, technology like this (although much more sophisticated) is used in
many sports games, such as football, baseball, and hockey, as well as action and strat-
egy games. It allows the game objects to make predictable moves, while still allowing
them to “change their minds.”

1672313618 CH12 10/26/99 10:45 AM Page 728

CHAPTER 12
Making Silicon Think with Artificial Intelligence

729

As an example, DEMO12_6.CPP|EXE illustrates the conditional technique. You control a
bat creature with the arrow keys, and there is an AI skeleton on the screen. The skele-
ton follows randomly selected patterns until you get too far away, and then it gets
lonely and chases you because it wants your attention. (Reflect on what I just said… I
placed an emotional motive on 100 lines of computer code. But isn’t that what it
seems like, from a spectator’s point of view? Mr. Turing, are you there?)

Modeling Behavioral State Systems
At this point, you have seen quite a few finite state machines in various forms—code
to make lights blink, the main event loop state machines, and so forth. Now I want to
formalize how FSMs (finite state machines) are used to generate AIs that exhibit intel-
ligence.

To create a truly robust FSM, you need two properties:

• A reasonable number of states, each of which represents a different goal or
motive.

• Lots of input to the FSM, such as the state of the environment and the other
objects within the environment.

The premise of “a reasonable number of states” is easy enough to understand and
appreciate. We humans have hundreds, if not thousands, of emotional states, and
within each of these we may have further substates. The point is that a game character
should be able to move around in a free manner, at the very least. For example, you
may set up the following states:

State 1: Move forward.

State 2: Move backward.

State 3: Turn.

State 4: Stop.

State 5: Fire weapon.

State 6: Chase player.

State 7: Evade player.

States 1 to 4 are straightforward, but states 5, 6, and 7 might need substates to be
properly modeled. This means that there may be more than one phase to states 5, 6,
and 7. For example, chasing the player might involve turning and then moving for-
ward. Take a look at Figure 12.9 to see the concept of substates illustrated. However,
don’t assume that substates must be based on states that actually exist—they may be
totally artificial for the state in question.

1672313618 CH12 10/26/99 10:45 AM Page 729

Hardcore Game Programming

730 PART III

The point of this discussion of states is that the game object needs to have enough
variety to do “intelligent” things. If the only two states are stop and forward, there
isn’t going to be much action! Remember those stupid remote-control cars that went
forward and then reversed in a left turn? What fun was that?

Moving on to the second property of robust FSM AIs, you need to have feedback or
input from the other objects in the game world and from the player and environment.
If you simply enter a state and run it until completion, that’s pretty dumb. The state
may have been selected intelligently, but that was 100 milliseconds ago. Now things
have changed, and the player just did something that the AI needs to respond to. The
FSM needs to track the game state and, if needed, be preempted from its current state
into another one.

If you take all this into consideration, you can create an FSM that models commonly
experienced behaviors such as aggression, curiosity, and so on. Let’s see how this
works with some concrete examples, beginning with simple state machines and fol-
lowing up with more advanced personality-based FSMs.

Elementary State Machines
At this point, you should be seeing a lot of overlap in the various AI techniques. For
example, the pattern techniques are based on finite state machines at the lowest level
which perform the actual motions or effects. What I want to do now is take finite state
machines to another level and talk about high-level states that can be implemented

S3

S1

S2

S1

S2

S1

S2

Stop

Move
backward

Move
foreward

Fire
weapon

Evade
player

Attack
player

Main states

Sub states for
"fire weapon"

Sub states for
"attack player"

Sub states for
"evade player"

Figure 12.9
A master FSM with

substates.

1672313618 CH12 10/26/99 10:45 AM Page 730

CHAPTER 12
Making Silicon Think with Artificial Intelligence

731

with simple conditional logic, randomness, and patterns. In essence, I want to create a
virtual brain that directs and dictates to the creature.

To better understand what I’m talking about, let’s take a few behaviors and model
them with the aforementioned techniques. On top of these behaviors, we’ll place a
master FSM to run the show and set the general direction of events and goals.

Most games are based on conflict. Whether conflict is the main idea of the game or
it’s just an underlying theme, the bottom line is that most the time the player is run-
ning around destroying the enemies and/or blowing things up. As a result, we can
arrive at a few behaviors that a game creature might need to survive given the constant
onslaught of the human opponent. Take a look at Figure 12.10, which illustrates the
relationships between the following states:

Master State 1: Attack.

Master State 2: Retreat.

Master State 3: Move randomly.

Master State 4: Stop or pause for a moment.

Master State 5: Look for something—food, energy, light, dark, other computer-
controlled creatures.

Master State 6: Select a pattern and follow it.

Master state
selection

Attack Retreat

Food Light

Energy

Random

Stop
state

0

Evasion
logic

Object to
search for

Pattern
processor

Object
motion control

Select
pattern

Tracking
logic

Medium
level
logic

Low level
logic

Search
for

High level logic
"The will"

Figure 12.10
Building a better

brain.

You should be able to see the difference between these states and the previous exam-
ples. These states function at a much higher level, and they definitely contain possible
substates or further logic to generate. For example, states 1 and 2 can be accom-
plished using a deterministic algorithm, while states 3 and 4 are nothing more than a

1672313618 CH12 10/26/99 10:45 AM Page 731

Hardcore Game Programming

732 PART III

couple of lines of code. On the other hand, state 6 is very complex because it dictates
that the creature must be able to perform complex patterns controlled by the Master
FSM.

As you can see, your AI is getting fairly sophisticated. State 5 could be yet another
deterministic algorithm, or even a mix of deterministic algorithms and prepro-
grammed search patterns. The point is that you want to model a creature from the top
down; that is, first think of how complex you want the AI of the creature to be, and
then implement each state and algorithm.

If you refer back to Figure 12.10, you also see that in addition to the Master FSM,
which selects the states themselves, there’s another part of the AI model that’s doing
the selection. This is similar to the “will” or “agenda” of the creature. There are a
number of ways to implement this module, such as random selection, conditional
logic, or something else. For now, just know that the states must be selected in an
intelligent manner based on the current state of the game.

The following code fragment implements a crude version of the master state machine.
The code is only partially functional because a complete AI would take many pages,
but the most important structural elements are there. Basically, you fill in all the
blanks and details, generalize, and drop it into your code. For now, just assume that
the game’s world consists of the AI creature and the player. Here’s the code:

// these are the master states
#define STATE_ATTACK 0 // attack the player
#define STATE_RETREAT 1 // retreat from player
#define STATE_RANDOM 2 // move randomly
#define STATE_STOP 3 // stop for a moment
#define STATE_SEARCH 4 // search for energy
#define STATE_PATTERN 5 // select a pattern and execute it

// variables for creature
int creature_state = STATE_STOP, // state of creature

creature_counter = 0, // used to time states
creature_x = 320, // position of creature
creature_y = 200,
creature_dx = 0, // current trajectory
creature_dy = 0;

// player variables
int player_x = 10,

player_y = 20;

// main logic for creature
// process current state
switch(creature_state)

{
case STATE_ATTACK:

1672313618 CH12 10/26/99 10:45 AM Page 732

CHAPTER 12
Making Silicon Think with Artificial Intelligence

733

{
// step 1: move toward player
if (player_x > creature_x) creature_x++;
if (player_x < creature_x) creature_x—;
if (player_y > creature_y) creature_y++;
if (player_y < creature_y) creature_y—;

// step 2: try and fire cannon 20% probability
if ((rand()%5)==1)

Fire_Cannon();

} break;

case STATE_RETREAT:
{

// move away from player
if (player_x > creature_x) creature_x—;
if (player_x < creature_x) creature_x++;
if (player_y > creature_y) creature_y—;
if (player_y < creature_y) creature_y++;
} break;

case STATE_RANDOM:
{

// move creature in random direction
// that was set when this state was entered
creature_x+=creature_dx;
creature_y+=creature_dy;

} break;

case STATE_STOP:
{
// do nothing!
} break;

case STATE_SEARCH:
{
// pick an object to search for such as
// an energy pellet and then track it similar
// to the player
if (energy_x > creature_x) creature_x—;
if (energy_x < creature_x) creature_x++;
if (energy_y > creature_y) creature_y—;
if (energy_y < creature_y) creature_y++;
} break;

case STATE_PATTERN:
{
// continue processing pattern
Process_Pattern();
} break;

default: break;

1672313618 CH12 10/26/99 10:45 AM Page 733

Hardcore Game Programming

734 PART III

} // end switch

// update state counter and test if a state transition is
// in order
if (--creature_counter <= 0)

{
// pick a new state, use logic, random, script etc.
// for now just random
creature_state = rand()%6;

// now depending on the state, we might need some
// setup...
if (creature_state == STATE_RANDOM)

{
// set up random trajectory
creature_dx = -4+rand()%8;
creature_dy = -4+rand()%8;
} // end if

// perform setups on other states if needed

// set time to perform state, use appropriate method...
// at 30 fps, 1 to 5 seconds for the state
creature_counter = 30 + 30*rand()5;

} // end if

Let’s talk about the code. To begin with, the current state is processed. This involves
local logic, algorithms, and even function calls to other AIs, such as pattern process-
ing. After the state has been processed, the state counter is updated and the code tests
to see if the state is complete. If so, a new state is selected. If the new state needs to
be set up, the setup is performed. Finally, a new state count is selected using a random
number and the cycle continues.

There are a lot of improvements that you can make. You could mix the state transi-
tions with the state processing, and you might want to use much more involved logic
to make state transitions and decisions.

Adding More Robust Behaviors with Personality
A personality is nothing more than a collection of predictable behaviors. For example,
I have friend with a very “tough guy” personality. I can guarantee that if you say
something that he doesn’t like, he’ll probably let you know with a swift blow to the
head. Furthermore, he’s very impatient and doesn’t like to think that much. On the
other hand, I have another friend who’s very small and wimpy. He has learned that
due to his size, he can’t speak his mind because he might get smacked. So he has a
much more passive personality.

1672313618 CH12 10/26/99 10:46 AM Page 734

CHAPTER 12
Making Silicon Think with Artificial Intelligence

735

Of course, human beings are a lot more complex than these examples suggest, but
these are still adequate descriptions of those people. Thus, you should be able to
model personality types using logic and probability distributions that track a few
behavioral traits and place a probability on each. This probability graph can be used to
make state transitions. Take a look at Figure 12.11 to see what I’m talking about.

Attack

Retreat

Stop

Random

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0

S
ta

te
 (

be
ha

vi
or

)

Joel

Rex

Probability of state

Figure 12.11
Personality

distribution for basic
behavioral states.

There are four states or behaviors in this model:

State 1: Attack

State 2: Retreat

State 3: Stop

State 4: Random

Instead of selecting a new state at random as before, you create a probability distribu-
tion that defines the personality of each creature as a function of these states. For
example, Table 12.2 illustrates the probability distributions of my friends Rex (the
tough one) and Joel (the wimpy one).

1672313618 CH12 10/26/99 10:46 AM Page 735

Hardcore Game Programming

736 PART III

TABLE 12.2 Personality Probability Distributions

State Rex p(x) Joel p(x)

ATTACK 50% 15%

RETREAT 20% 40%

STOP 5% 30%

RANDOM 25% 15%

If you look at the hypothetical data, it seems to make sense. Rex likes to attack with-
out thinking, while Joel thinks much more and likes to run if he can. In addition, Rex
isn’t that much of a planner, so he does a lot of random things—smashes walls, eats
glass, and cheats on his girlfriend—whereas Joel knows what he’s doing most of the
time.

This entire example has been totally artificial, and Rex and Joel don’t really exist. But
I’ll bet that you have a picture of Rex and Joel in your head, or you know people like
them. Hence, my supposition is true—the outward behaviors of a person define their
personality as perceived by others (at least in a general way). This is a very important
asset to your AI modeling and state selection.

To use this technique of probability distribution, you simply set up a table that has,
say, 20-50 entries (where each entry is a state), and then fill the table so that the prob-
abilities are what you want. When you select a new state, you’ll get one that has a lit-
tle personality in it. For example, here’s Rex’s probability table in the form of a
20-element array—that is, each element has a 5 percent weight:

int rex_pers[20] = {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,4}

In addition to this technique, you might want to add radii of influence. This means
that you switch probability distributions based on some variable, like distance to the
player or some other object, as shown in Figure 12.12. The figure illustrates that when
the game creature gets too far away, it switches to a non-aggressive search mode
instead of the aggressive combat mode used when it’s in close quarters. In other
words, another probability table is used.

Modeling Memory and Learning with Software
Other elements of a good AI are memory and learning. As the AI-controlled creatures
in your game run around, they are controlled by state machines, conditional logic, pat-
terns, random numbers, probability distributions, and so forth. However, they always
think on-the-fly. They never look at past history to help make a decision.

1672313618 CH12 10/26/99 10:46 AM Page 736

CHAPTER 12
Making Silicon Think with Artificial Intelligence

737

For example, what if a creature was in attack mode, and the player kept dodging to
the right and the creature kept missing? You’d want the creature to track the player’s
motions and remember that the player moves right during every attack, and maybe
change its targeting a little to compensate.

As another example, imagine that your game forces creatures to find ammo just as the
player does. However, every time the creature wants ammo, it has to search randomly
for it (maybe with a pattern). Wouldn’t it be more realistic if the AI could remember
where ammo was found last and try that position first?

These are just a couple of examples of using memory and learning to make game AI
seem more intelligent. Frankly, implementing memory is easy to do, but few game
programmers ever do it because they don’t have time or feel it’s not worth it. No way!
Memory and learning is very cool, and your players will notice the difference. It’s
worth trying to find areas where simple memory and learning can be implemented
with reasonable ease and can have a visible effect on the AI’s decision-making.

That’s the general idea of memory, but how exactly do you use it in a game? It
depends on the situation. For example, take a look at Figure 12.13.

Object

Object

Object

Object

Object

Object

Radius 2

Radius 3

Radius 1

r2

r1

r0

Rx

AI object

"Radi of Influence"

A

R

S

R

0–Radius r0 use this graph

A

R

S

R

r0–r1 use this graph

A

R

S

R

r1–r2 use this graph

Probability distributions
are a function of Rx

Figure 12.12
Switching personality

probability
distributions based on

distance.

1672313618 CH12 10/26/99 10:46 AM Page 737

Hardcore Game Programming

738 PART III

Here you see a map of a game world, with a record attached to each room. These
records store the following information:

Kills

Damage from player

Ammo found

Time in room

Every time the creature runs through its AI and you want to have a more robust selec-
tion process based on memory and learning, you refer to the record of events—the
creature’s memory of the room. For example, when the creature enters a room, you
might check if the creature has sustained a great deal of damage in that room. If so, it
might back out and try another.

For another example, the creature might run out of ammo. Instead of hunting ran-
domly for more ammo, the creature could scan through its memory of all the rooms it
has been to and see which one had the most ammo lying around. Of course, the AI
has to update the memory every few cycles for this to work, but that’s simple to do.

In addition, you can let creatures exchange information! For example, if one creature
bumps into another in a hallway, they can merge memory records and learn about
each other’s travels. Or maybe the stronger creature could perform a force upload on
the weaker creature, since the stronger one obviously has a better set of probabilities
and experience and is a better survivor. Moreover, if one creature knows the player’s

Room 1

Room 2

Memory of Events

The Game Map

Dead bodies

Hallway

Room 3

AI controlled
object walking
around and
learning

Room: 1
Kills: 2
Ammo: 0
Damage: 30
Time: 300

Room: 2
Kills: 5
Ammo: 0
Damage: 40
Time: 500

Room: 3
Kills: 0
Ammo: 10
Damage: 0
Time: 900

AmmoAmmo

Ammo

Figure 12.13
Using geographical-

temporal memory.

1672313618 CH12 10/26/99 10:46 AM Page 738

CHAPTER 12
Making Silicon Think with Artificial Intelligence

739

last known position, it can influence the other creature’s memory with that informa-
tion and they can converge on the player.

There’s no limit to the kinds of things you can do with memory and learning. The
tricky part is working them into the AI in a fair manner. For example, it’s unfair to let
the game AI see the whole world and memorize it. The AI should have to explore it
just like the player does.

Many game programmers like to use bit strings or vectors to memorize
data. This is much more compact, and it’s easy to flip single bits, simulat-
ing memory loss or degradation.

As an example of memory, I’ve created a little a-life ant simulation,
DEMO12_7.CPP|EXE, shown in Figure 12.14.

Figure 12.14
An ant-based memory

demo.

The simulation starts off with a number of red ants and piles of green food. The ants
walk around randomly until they find a pile of food. When they do, they eat the food
until they’re full, and then they roam around again. When the ants get hungry again,
they remember where they last found food and then head for it (if there’s any left).

In addition, when two ants bump into each other, they exchange knowledge about
their travels. If an ant can’t find food in time, it dies a horrible death. (Watch the sim-
ulation; it’s a trip.) You can change the number of ants according to your system’s

Tip

1672313618 CH12 10/26/99 10:46 AM Page 739

Hardcore Game Programming

740 PART III

processing power. Right now there are 16, but there’s only enough room to display the
state information and memory images for the first 8. This information is shown on the
right side of the screen, detailing the current state, hunger level, hunger tolerance, and
a couple of the internal counters.

If you want to add something even more involved, enable the ants to leave waste and
create a cyclic system that won’t run out of food.

Planning and Decision Trees
Thus far, all the AI techniques have been fairly reactionary and immediate—meaning
that there isn’t much planning or high-level logic going on. Although you’ve learned
how to implement low-level AI, I want to talk about high-level AI. This is usually
referred to as planning.

A plan is simply a high-level set of actions that are carried out to arrive at a goal. The
actions are the steps that are performed in a certain order to arrive at the goal. In addi-
tion to the actions, there may be conditionals that must be satisfied before any particu-
lar action can be carried out. For example, the following list is an example plan for
going to the movies:

1. Look up the movie that you want to see.

2. Get in the car and drive to the theater at least 30 minutes before the movie
starts.

3. Once at the theater, buy the tickets.

4. Watch the movie. When it’s over, drive home.

Well, that looks like a reasonable plan. However, there are a lot of details I left out.
For example, where do you look up the movie? How do you drive the car? What if
you don’t have any money? And so forth. These details may or may not be needed
depending on how complex you want the plan to be, but in general there are condi-
tionals and subplans that you can use to specifically detail this plan so that there’s
absolutely no question about what to do.

Implementing planning algorithms for game AI is based on the same concept. You
have an object that’s AI-controlled, and you want it to follow some plan to reach some
goal. Therefore, you must model the plan with some kind of language—usually
C/C++, but you might use a special high-level script. In any case, in addition to mod-
eling the plan, you must model all the objects that are part of the plan: the actions, the
goals, and the conditionals for the actions and goals to take place. Each one of these
items might simply be a C/C++ structure or class and have a number of fields in it.
For example, a goal might look like this:

1672313618 CH12 10/26/99 10:46 AM Page 740

CHAPTER 12
Making Silicon Think with Artificial Intelligence

741

typedef struct GOAL_TYP
{
int class; // the class of goal
char *name; // the name of goal “kill leader”
int time; // time until goal expires
int *subgoals; // pointer to sub goal list that must be

// satisfied
int (* eval)(void); // function pointer to determine if

// goal has been satisfied

// more data

} GOAL, *GOAL_PTR;

Of course, this definition is just an example and yours might have many more fields,
but you get the idea. You have to create a structure that can generically represent any
goal in your game, from “blowing up the bridge” to “searching for food.”

The next structure you might need is a generic action structure that represents some-
thing an object must do as part of a plan to reach a goal. Again, this is up to you, but
it must reflect anything and everything you want the AI to be able to do. For example,
here’s a possible action structure:

typedef struct ACTION_TYP
{
int class; // class of action
int *name; // name of action
int time; // time allotted to perform action
RESOURCE *resource; // a link to a record that describes

// the resources that this action might
// need

CONDITIONS *cond; // a link to a record that describes
// all the conditions that must be met
// before this action can be made

UPDATES *update; // a link to a record that describes
// all the updates and changes that
// should be made when this action is
// complete

int (*action_functions)(void); // a function ptr(s) to an
// action function that does
// the work of the action

} ACTION, *ACTION_PTR;

As you can see, we’re getting pretty abstract here. The point is that these structures
may be completely different in your implementation. As long as they impart the func-
tionality of the plan, action, and goal, that’s all that matters.

1672313618 CH12 10/26/99 10:46 AM Page 741

Hardcore Game Programming

742 PART III

Coding Plans
There are a number of ways to code a plan. You might code it as pure hard code that
implements the actions, the goals, and the plan itself as pure C/C++. This was a very
common technique in the old days. A game programmer would just start writing code
that performed conditions, set variables, and called functions. This was in essence a
hard-coded plan.

A more elegant method of encoding a plan is to use production rules and decision
trees. A production rule is simply a logical proposition with a number of antecedents
and a consequence:

IF X OP Y THEN Z

X and Y are the antecedents, and Z is the consequence. OP could be any logical opera-
tion, like AND, OR, and so on. In addition, X or Y might be composed of other produc-
tion rules; that is, they might be nested. For example, take a look at the following
logic statement:

if (P > 20) AND (damage < 100) THEN consequence

Or, in C/C++ speak:

if (power > 20) && (damage < 100)
{
consequence();
} // end if

So a production rule is really a conditional statement. The hard-coded plan was really
just a bunch of production statements along with actions and goals, all mashed
together. The point of writing a “planner” is to model these things a little more
abstractly. Although you could use hard-code C/C++, it would be better to create a
structure that can read production rules, contain actions and goals, and represent a
plan.

One structure that may help you implement this system is called a decision tree. As
shown in Figure 12.15, a decision tree is nothing more than a tree structure in which
each node represents a production rule and/or an action.

However, instead of using hard code to implement the tree, the tree is built from a file
or data that is fed to the AI engine by the game programmer or the level designer.
This way the tree is generic and needs no recompilation to work. Let’s create a little
AI planning language to control a bot with some input variables and a set of actions.

1672313618 CH12 10/26/99 10:46 AM Page 742

CHAPTER 12
Making Silicon Think with Artificial Intelligence

743

Inputs that can be tested by the AI bot:

DISPLY Distance to player (0–1000)

FUEL Fuel left (0–100)

AMO Ammo left (0–100)

DAM The current damage (0–100)

TMR Current game time in virtual minutes

PLAYST The state of the player (attacking, not attacking)

Actions that the AI bot can perform:

FW Fire weapons at player

SD Self-destruct

SEARCH Search for player

EVADE Evade player

Now let’s make up the decision tree structure. Assume that one or two antecedents can
be tested with an AND, OR at each node, and that you can negate them with NOT. And
the antecedents themselves can be comparisons with >, <, ==, or != between inputs or
a constant. In addition, at any node there is a TRUE branch as well as a FALSE branch,
along with an action list that holds eight actions that can be performed. Refer to
Figure 12.15 to see this abstractly. Here’s a structure that might be used to implement
the node:

if x1 op y1

False True

if x4 op y4

False True

if x2 op y2

False True

False True False True

if x3 op y3 if x5 op y5

Figure 12.15
A decision tree

encoding production
rules.

1672313618 CH12 10/26/99 10:46 AM Page 743

Hardcore Game Programming

744 PART III

typedef struct DECNODE_TYP
{
int operand1, operand2; // the first operands
int comp1; // the comparison operator

int operator; // the conjuctive operator

int operand3, operand4 // the second pair of operands
int comp2; // the comparison to perform

ACTION *act_true; // action lists for true and false
ACTION *act_false;

DECNODE_PTR *dec_true; // branches to take if true or
// false

DECNODE_PTR *dec_false;

} DECNODE, *DECNODE_PTR;

As you can see, once again there are a lot of little details. If there is only one
antecedent:

if (DAM < 100) then…

Or the difference between variables and constants:

if (DAM == FUEL) then…

or

if (DAM == 20) then…

And determining if there are two antecedents or one:

if (DAM > 50) and (AMO < 30) then…

These are all relatively basic programming problems, so I’m not going to go into
them. Just be aware that you have to take them into consideration when you make the
engine read the decision nodes and process them. Anyway, now that you have your
language, write a little decision tree that can determine what to do in a number of set-
tings.

For example, let’s make a firing control tree. Remember that you aren’t really doing
full plans, but you can think of the next example as a plan because the implicit goal is
to determine when to fire. Granted, there isn’t a goal other than the firing itself. In any
case, here’s my rough plan in plain English:

If the player is close and damage is low then fire at player

If the player is far and fuel is high then search for player

If damage is high and player is close then evade player

If damage is high and ammo is 0 and player is close then self destruct

1672313618 CH12 10/26/99 10:46 AM Page 744

CHAPTER 12
Making Silicon Think with Artificial Intelligence

745

That’s my little AI pseudo-plan for the bot. Of course, a complete plan might have
dozens or hundreds of these clauses. But the cool thing is that the game designer
enters them with a graphical tool rather than having to program them in code! The
results of this plan have been converted into your planning language, and the final
decision tree is shown in Figure 12.16.

if (Display < 300)
False True

if (Fuel > 70)

Search FW

Evade SD

Path 1

Display ≥ 300

Path 2

True
if (Dam < 100)

FalseFalse True

if (Dam > 70)
False True

if (Display < 500)
False True

if (Amo = 0)
False True

=

=

= =

==

Figure 12.16
The final decision

tree for your planning
language.

Isn’t that neato? You just write a processor that follows the tree and performs the
branches, and that’s it. Now that you have an idea about how to create a decision
tree that can process decisions and carry out an action, let’s finish up with a formal
planning algorithm that takes goals into consideration and also performs planning
analysis.

Implementing a Real Planner
You’ve seen how you might implement the conditional part of a planner, and even the
action part. The goal part is really nothing more than formalizing that a particular
plan has a goal and then assigning the goal as the end point of the plan. Moreover,

1672313618 CH12 10/26/99 10:46 AM Page 745

Hardcore Game Programming

746 PART III

when a plan is completed, the goal must be tested before any remaining parts of the
plan can be executed. You may have subplans that run in parallel with a primary plan,
and they must all have their goals met to allow a master goal to be met.

For example, you may have a global plan that “All bots meet at waypoint (x,y,z).”
However, this goal can’t be reached until each bot executes the plan “Go to waypoint
(x,y,z).” Furthermore, if one of the bots can’t make it, the planner should figure this
out and respond. This is the idea of plan monitoring and analysis. I’ll talk more about
this later in this section. At this point, let’s take a look at how you might represent the
plans.

The plan itself might be represented implicitly in the decision/action tree, or it could
be a list of decisions/actions, each of which represents a tree or a sequence. It’s up to
you. The point is that you want to be able to formulate a plan, a sequence of actions,
and a goal. The actions themselves usually involve conditional logic and subactions
that are low-level, like moving from one (x,y,z) to another or firing a weapon. The
term actions, in the highest-level sense, means “kill the leader” or “take over the fort,”
whereas actions in a low-level sense are directly executable by the engine. Get it? I
hope so—I’m running out of Snapple. :)

So, assuming that a plan is made up of some sort of array or linked list and that you
can traverse it, a planner might look like this:

while(plan not empty and haven’t reached goal)
{
get the next action in the plan
execute the action
} // end while

Of course, you should understand that this is just an abstract implementation of the
planner. In a real program, this needs to occur in parallel with everything else. You
surely can’t sit in a while loop waiting for a single plan to reach its goal; you have to
implement the planner with a finite state machine or similar structure and keep track
of the plan as the game runs.

The problem with this planning algorithm is that it’s pretty stupid. It doesn’t take into
consideration that an action in the future may already be impossible to satisfy, and
thus the plan is useless. As a result, the planner needs to monitor or analyze the plan
and make sure that it makes sense. For example, if the plan is to blow up a bridge and
along the way someone else blows up the bridge, the planner needs to figure this out
and stop the plan. This can be accomplished by looking at the goals of the plan and
testing if any future goal has been attained by another process. If this goal negates the
plan or makes it futile, the plan should stop.

1672313618 CH12 10/26/99 10:46 AM Page 746

CHAPTER 12
Making Silicon Think with Artificial Intelligence

747

The planner should look at events or states that might make the plan impossible. For
example, at some point the plan may call for a blue key, but the blue key has been
lost. Thus, the goal of finding the blue key is moot. This kind of problem can be mon-
itored at the current level or the future level, meaning that the planner can look at the
situation where it is when it gets there, or it can project forward into the future. For
example, say that a plan is to “Walk 1,000 miles east and then blow up the fort.” I
don’t want to walk 1,000 miles to blow up a fort and then realize I’m out of bombs
when I get there! The planner should look at the goal, backtrack all the prerequisites,
and test if the object following the plan has bombs or could get them along the way.

On the other hand, this can backfire. Even though the bot may not have a bomb right
now, it may find one during the 1,000 mile trek, so terminating a plan prematurely
because of a lack of resources at the current point may be a bad idea. This leads us to
classifying prerequisites with priorities. For example, if I need the laser gun in the
future, and there’s only one in the game and it’s been destroyed, there’s no need to
continue with the plan. On the other hand, if I need 1,000 gold pieces and I only have
50, but I’m going to travel a long distance and there will be a lot of other ways to find
gold along the way, I want to keep moving on with my plan.

Finally, when a plan goes awry, you don’t necessarily need to terminate it. You can
replan, or maybe select a different plan. You might have three plans for each goal so
that there are two backup plans if the primary plan fails.

Planning is a very powerful AI tool and is totally applicable to any type of game.
Although you may write a Quake clone that is mostly shoot-’em-up, you still need a
global planner that influences the creatures with a general goal of “Stay in this area
and kill the player.” On the other hand, in a war simulation like Command and
Conquer, planning is the only way to write a game that makes any sense at all!

The best way to get planning to work in real game development is to write a planning
language and then give the designer a set of variables and objects that can be part of
the plans. This allows the designer to come up with things that you never would have
thought of—and surely wouldn’t want to hard-code!

Pathfinding
In the simplest terms, pathfinding is the computation and execution of a path from
point p1 to goal p2, as shown in Figure 12.17. If there are no obstacles, the simple AI
technique of vectoring toward the goal position will suffice. However, if there are
obstacles, obstacle avoidance will have to come into play. This is where things get dif-
ficult…

1672313618 CH12 10/26/99 10:46 AM Page 747

Hardcore Game Programming

748 PART III

Trial and Error
For simple obstacles that aren’t large and are mostly convex, you can usually get
away with an algorithm that, when the object hits an obstacle, backs it up, turns it
right or left 45-90 degrees, and then moves it forward again for some fixed amount
(AVOIDANCE_DISTANCE). When the object has moved that distance, the AI retargets the
goal, turns the object toward it, and tries again. The results of this algorithm are traced
out in Figure 12.18.

P2

P1

Goal
(gx, gy)

If there are
no obstacles

then vector
toward object

Starting
point

(x, y)

Figure 12.17
Finding a path from

point to point.

7

6

98

54

1

2

3

T4: Tank re-vectors to target,
rotate 45°

T1: Collision detached,
tank backs up
and tries a new
direction for a
moment

T2: Tank resumes
direct path

T3: 2nd collision
tank backs up
again

Source

Rotate 80°

No obstacles,
tank will reset goal

Direct path
has obstacles

Obstacles in path

Goal
P2

Figure 12.18
The “Bump-n-Grind”

object avoidance
algorithm.

1672313618 CH12 10/26/99 10:46 AM Page 748

CHAPTER 12
Making Silicon Think with Artificial Intelligence

749

Although this algorithm surely isn’t as robust as you’d like, it works because there’s a
randomness in the avoidance algorithm. It turns randomly each way to try again, so
sooner or later the object will find its way around the obstacle.

Contour Tracing
Another method of obstacle avoidance is contour tracing. Basically, this algorithm
traces the contour of the object that’s blocking the object’s path. You can implement
this by following the outline of the obstacle and periodically testing if a line from
your current position to the goal intersects the obstacle anymore. If not, you’re clear;
otherwise, continue tracing. A sample run of this algorithm is shown in Figure 12.19.

Obstacle

Projected
collision

Source

P1

Contour trace 1

Contour
trace 2

Obstacle

Goal
P2

Figure 12.19
Contour tracing in

action.

This works, but it looks a little stupid because the algorithm traces around things
instead of going through the obvious shortest path. But it works. So what you might
do is use the trial-and-error method first, and if that fails after a certain period of time,
switch to the contour tracing algorithm and get out!

Of course, the player usually can’t get a God’s-eye view of a 3D game like Quake, so
if the creatures don’t look that smart when they’re avoiding obstacles, it’s not going to
show up that much. It simply takes them longer than needed. On the other hand, a war
game with a top-down view is going to look really bad when the AI-controlled armies
look like they’re tracing. Let’s see if we can do better.

Collision Avoidance Tracks
In this technique, you create virtual tracks around objects, consisting of a series of
points or vectors that trace out a fairly intelligent path. The path can be computed
algorithmically using a shortest-path algorithm (which we will get to later) or manu-
ally created by you or your game designers with a tool.

1672313618 CH12 10/26/99 10:46 AM Page 749

Hardcore Game Programming

750 PART III

Around each large obstacle you create is an invisible track that only the pathfinding
bot AI can see. When a bot wants to get around an object, it asks for the nearest
avoidance path for that obstacle and then takes it. This ensures that the pathfinder will
always know how to get around obstacles. Of course, you might want to have more
than one avoidance path for each obstacle or add some tracing “noise” so the bots
don’t all follow the path perfectly. An illustration of this is shown in Figure 12.20.

2

1 Pick up
avoidance
path

Path
taken

Object 2

Path is free and
clear to goal

Object 3

Paths are
pre-computed
by algorithm
or entered
within tool

Object 1

Entry point (s)
exit

Avoidance path
P2
Goal

Figure 12.20
Object avoidance

paths.

This leads us to another idea: Why not have dozens or hundreds of precomputed paths
for all points of interest in the game? Then, when a bot wants to get from point pi to
pj, instead of navigating and performing obstacle avoidance, it just uses a precom-
puted full path.

Waypoint Pathfinding
Let’s say that you have a really complicated world and there are all kinds of obstacles.
Sure, you could make a creature with enough intelligence to navigate itself around
everything and get to a goal, but is all that necessary? No! You can set up a network
of paths that connect all points of interest in the game via a connected network of
nodes. Each node represents a waypoint, or point of interest, and the edges in the net-
work represent the vector direction and length to get to other nodes in the network.

1672313618 CH12 10/26/99 10:46 AM Page 750

CHAPTER 12
Making Silicon Think with Artificial Intelligence

751

For example, let’s say that you have a plan running and you need to move a bot from
its current location over the bridge and into the city. Doesn’t that sound like a lot of
drama? But if you have a network of paths and you can find a path that goes to the
city via the bridge, all you have to do is follow it! The bot is guaranteed to get there
and avoid all obstacles. Figure 12.21 shows a top-down view of a world, along with a
pathfinding network. The highlighted path is the one that you want to take.
Remember, this network not only avoids obstacles, but it also has paths for important
destinations. (Sorta like the wormhole network in our universe.)

Obstacle

Obstacle

Obstacle
ObstacleObstacle

Obstacle The castle

The blacksmith
The lakeThe bridge

Waypoint start

The mountains

The
mines

Off
limits

T
he

 r
iv

er

13

14

15

0

1

6

7

8

11

9

12

2

3

4

5

Figure 12.21
A pathfinding net-

work with a path
highlighted.

There are two problems with this grand scheme: 1) following the path, and 2) the
actual data structure that represents the network can be a bit tricky. First, let’s handle
following the path itself.

Assume for a moment that you have a path from p1 to p2 that consists of n nodes,
represented by the following structure:

typedef struct WAYPOINT_TYP
{
int id; // id of waypoint
char *name; // name of waypoint
int x,y; // the position of waypoint
int distance; // distance to next waypoint on path
WAYPOINT_TYP *next; // next waypoint in list
} WAYPOINT

This is just an example; you might use something completely different. Now assume
that there are five waypoints, including the start and end waypoints p1 and p2, as
shown in Figure 12.21. Here they are:

1672313618 CH12 10/26/99 10:46 AM Page 751

Hardcore Game Programming

752 PART III

WAYPOINT path[5] = { {0,”START”, x0, y0, d0 ,&path[1]},
{1,”ONPATH”, x1, y1,d1 ,&path[2]},
{2,”ONPATH”, x2, y2,d2 ,&path[3]},
{3,”ONPATH”, x3, y3,d3 ,&path[4]},
{4,”ONPATH”, x4, y4,d4 ,NULL}};

The first thing to note is that although I statically allocated an array to hold the
WAYPOINTs, I still linked their pointers together. Also, the last link is NULL because this
is the terminus.

To follow the path, you have a few things to consider. First, you have to get to the first
node of the path or a node along it. This can be a problem. Assuming that there are
sufficient path entry points on the game grid, you can assume that one of the nodes
from a desired path is within range. Therefore, you want to find the node that is clos-
est and vector toward it. During this initial path alignment, you may have to avoid
obstacles to get there! Once you’re at the starting node or a node on the interior of the
path, you’re ready to go.

Following the Path
The path is a series of points that are guaranteed to have no obstacles from one point
to another. Why? You made that path so you know this! As a result, you can simply
move the bot from the current WAYPOINT in the path toward the next one, and keep
doing so until you get to the last WAYPOINT, which is the goal:

find nearest WAYPOINT in desired path

while(not at goal)
{
compute trajectory from current waypoint to next
and follow it.

if reached next waypoint then update current
waypoint and next waypoint.

} // end while

Basically you’re just following a series of points until you run out of points. To find
the trajectory vector from one WAYPOINT to the next, you would use something like the
following:

// start off at beginning of path
WAYPOINT_PTR current = &path[0];

// find trajectory to next waypoint
trajectory_x = path->next.x – path->x;
trajectory_y = path0>next.y – path->y;

// normalize
normalize(&trajectory_x, &trajectory_y);

1672313618 CH12 10/26/99 10:46 AM Page 752

CHAPTER 12
Making Silicon Think with Artificial Intelligence

753

The normalization just makes sure that the length of trajectory is 1.0. This is done
by dividing each component by the length of the vector (look at Appendix C, “Math
and Trigonometry Review).” Just point the object in the direction of trajectory, wait
for it to get to the next WAYPOINT, and continue the algorithm. Of course, I’ve glossed
over the details about what happens when a WAYPOINT is reached. I suggest checking
the distance of the object to the WAYPOINT. If it’s within some delta, that’s close
enough, and it’s time to select the next WAYPOINT.

There are problems with having paths. First, finding a path to follow might be as diffi-
cult as trying to get from point to point! This is an issue, of course, but with the
proper network data structure, you can ensure that for any given game cell, a game
object needs to travel less than 100 units or so to pick up a path. Granted, the data
structure representing the path network will be complex because some links may be
used by other paths, but this is more of a data structure problem and depends on how
you want to do it. You may simply have 1,000 different paths that don’t reuse way-
points even if they’re the same for many paths.

Or you might use a connected graph that reuses waypoints, but has logic and data
links to follow a path and won’t switch tracks. This can be accomplished with clever
pointer arithmetic and logic to select the correct links that make up a specific path.

For example, take a look at Figure 12.22, which shows two paths through the same
waypoints. You might have to encode in a list the possible waypoints that can be
arrived at and the associated link to take—if you’re trying to get to goal HOUSE and
you’re on a path waypoint that has 16 outgoing links, take the one that has HOUSE on
its list of stops. Again, this is up to you, and your implementation will depend on the
circumstances of the game.

A Racing Example
A good example of using paths is in racing games. Imagine that you want to have a
number of cars on a racetrack, and you want them to drive around the track while
avoiding the player and looking somewhat intelligent. This is a good place for paths.

What you might do is create, say, eight or 16 different paths that follow the road.
Each of the paths might be equidistant or have slightly different properties, like “tight
and short” or “long and wide.” Each AI car starts off on a different path, and as the
game runs, it follows the path by vectoring toward it. If a car gets in a crash, it picks
up on the next nearest path, and so on.

In addition, if a car’s AI wants to change lanes to a more aggressive path, it does so.
This helps you because you don’t have to worry about keeping the cars from bunching
up as much, and you don’t have to make them steer as much because they’re on paths.
Controlling their speed and braking time will be more than enough to make them
seem real.

1672313618 CH12 10/26/99 10:46 AM Page 753

Hardcore Game Programming

754 PART III

For an example of this, take a look at DEMO12_8.CPP|EXE on the CD, which creates a
little racing demo with a single waypoint path. The cars try to avoid each other, but if
they touch they don’t crash. This is a DirectX application, so you need to add the
libraries and so forth to compile.

Robust Pathfinding
Last but not least, I want to talk a little about real pathfinding; in other words, using
computer science algorithms to find paths from p1 to p2. There are a number of algo-
rithms that can do this. The problem is that none of them are for real-time and thus
don’t lend themselves to games easily. However, you can use them in real-time if you
employ some tricks, and of course you can use them to compute paths for you in your
tools.

All of the algorithms work on graph-like structures, which are representations of your
game universe that consist of nodes, along with edges made up of nodes that can be
reached from any particular node. There’s usually a cost associated with each edge.
Figure 12.23 shows a typical graph.

Because you’re dealing with 2D and 3D games, you might decide that the graph is
just a grid laid down on the game field with each cell implicitly connected to its eight
neighbors, and that the cost is just the distance. This is shown in Figure 12.24.

Way point 3

Way point 2

Way points

Way point 1

Way point 4

Way point 0

Common path
way points

Normalized trajectory
vector length = 1.0

Figure 12.22
A path network with
common waypoints.

1672313618 CH12 10/26/99 10:47 AM Page 754

CHAPTER 12
Making Silicon Think with Artificial Intelligence

755

Node 7

Node 8

Node 4

Node 3

Node 0

Node 1

Node 2

Node 5

Node 6

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Uni-directional edge

Bi-directional edge

Cost = 35

Cost = 20

Cost = 40

Cost = 100

Cost = 200

Cost = 20

Cost = 15

Figure 12.23
A typical graph

network.

Edge Node

Possible
path

Possible
path

Goal

Start

A graph
laid out

on a
regular

grid

P2

P1

Obstacle

Figure 12.24
Creating a graph by
using a regular grid

network on the game
universe.

1672313618 CH12 10/26/99 10:47 AM Page 755

Hardcore Game Programming

756 PART III

In any case, once you’ve come up with a way to represent the game world that is
graph-like, you can run the algorithm(s) on the problem of finding a short path, or the
shortest path, from p1 to p2 that avoids obstacles. Obstacles aren’t allowed in the
graph, so they can’t possibly be part of the path—that’s a relief <G>.

There are a number of pathfinding algorithms that are well known in computer sci-
ence. They’re shown in the following list and are briefly described in more detail:

• Breadth-first search

• Bidirectional breadth-first search

• Depth-first search

• Dijkstra’s search

• A* search

Breadth-First Search
This search fans out in all directions at the same time, visiting each node one unit
away, then two units away, then three units away, and so on—a growing circle. It’s
crude because it doesn’t focus on the actual direction of the goal. See Figure 12.25
and the algorithm that follows:

void BreadthFirstSearch(NODE r)
{
NODE s; // used to scan
QUEUE q; // this is a first in first out structure FIFO

// empty the queue
EmptyQ(q);

// visit the node
Visit(r);
Mark(r);

// insert the node r into the queue
InsertQ(r, q);

// while queue isn’t empty loop
while (q is not empty)

{
NODE n = RemoveQ(q);

for (each unmarked NODE s adjacent to n)
{
// visit the node
Visit(s);
Mark(s);

// insert the node s into the queue
InsertQ(s, q);

1672313618 CH12 10/26/99 10:47 AM Page 756

CHAPTER 12
Making Silicon Think with Artificial Intelligence

757

} // end for

} // end while
} // end BreadthFirstSearch

4

4

4

4

3

3

3

3

3
3

3

3

3

3

3

3

3

3

2

2

2

2
2

2

2

2

1

Shortest path to goal

Goal

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Root

*Breadth-first radiates out
in all directions. All nodes at distance
1 from root, then distance 2 from root.
3 from root, etc. are visited in that order.

Figure 12.25
Breadth-first search in

action.

Bidirectional Breadth-First Search
The bidirectional breadth-first search is similar to the breadth-first search, except that
two different searches are started: one at the start and one at the goal. When they
overlap, the shortest path is computed. See Figure 12.26.

Depth-First Search
This is the converse of the breadth-first search. The depth-first search searches one
direction all the way until it runs out of space or finds the goal. Then it searches the
next direction, and so on. The problem with depth-first is that it needs a stopping limit
that says, “If the goal is 100 units away and you’ve already tried a path that has a cost
1000, it’s time to try another path.” See Figure 12.27 and the algorithm that follows.

void DepthFirstSearch(NODE r)
{
NODE s; // used to scan

// visit and mark the root node
visit(r);
mark(r);

1672313618 CH12 10/26/99 10:47 AM Page 757

Hardcore Game Programming

758 PART III

// now scan along from root all the nodes adjacent
while (there is an unvisited vertex s adjacent to r)

{
DepthFirstSearch(s);
} // end while

} // end DepthFirstSearch

Root 2
Root 2

Shortest path from R1 – R2

Subgraph 1 Subgraph 2

Search 1 started from Root 1 Search 2 started from Root 2

Order of visitation: 1, 2, 3, . . .

Intersection point

1
1

2

2

2

2

2

2

2
2

2

2 2

3 3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

Figure 12.26
Bidirectional breadth-
first search in action.

Root

Search order: 1, 2, 3, . . . 17

Goal

10

11

1

14

16

12

13

2

6

15

17

8

7

3

5
9

4

Figure 12.27
Depth-first search in

action.

1672313618 CH12 10/26/99 10:47 AM Page 758

CHAPTER 12
Making Silicon Think with Artificial Intelligence

759

Dijkstra’s Search
Dijkstra’s search stems from the same algorithm used to find the minimum spanning
tree of a graph. At each iteration, the algorithm determines what the shortest path to
the next point is and then works on it rather than shooting out blindly in a random
direction.

A* Search
The A* search (pronounced A-star) is similar to Dijkstra’s search, except that it uses a
heuristic that not only looks at the cost from the start to the current node, but also
makes an estimate to the goal from the current node, even though it hasn’t visited the
nodes along the way.

Of course, there are modifications and mixtures of these algorithms that have mutated
names, but you get the picture. Their actual implementations are well documented in
many other books, so I’ll leave it up to you to find them.

Genetic algorithms can also be used to search for a best path. They may
not be as real-time as you’d like, but they’re definitely more natural
than any of these algorithms.

Advanced AI Scripting
At this point, you should be quite the AI expert and things should be starting to gel.
I’ve waited to talk about advanced AI scripting until now so you can see what I’m
getting at with more of a foundation.

You already saw that a scripted instruction language can be used for AI when you
learned about using a simple [OPCODE OPERAND] language and a virtual interpreter
earlier in the chapter. This is a form of scripting, of course. Then I showed you yet
another way to create decision trees with a scripted language based on logical produc-
tions and a set of inputs, operators, and action functions. This technology can be
taken to any limits you want. QUAKE C is a good example, as well as UNREAL
Script. Both of these actually allow you to program game code with a high-level
English-like language that is processed by the engine.

Designing the Scripting Language
The design of the scripting language is based on the functionality that you want to
give it. Here are some questions that you might ask yourself:

• Will the scripting language be used for AI only, or will it be used for the entire
game?

• Will the scripting language be compiled or interpreted?

Trick

1672313618 CH12 10/26/99 10:47 AM Page 759

Hardcore Game Programming

760 PART III

• Will the scripting language be ultra-high-level, with an almost English-like syn-
tax, or will it be a lower-level programming-like language with functions, vari-
ables, conditional logic, and so on?

• Will all the gameplay be designed using the scripting language? That is, will the
programmers do any hard-code game design, or will the entire game run with
scripts?

• What level of complexity and power do you want to give the scripters/game
designers? Will they have access to system and engine variables?

• What’s the level of the game designers who will use the scripting language? Are
they HTML coders, entry-level programmers, or professional software engi-
neers?

These are the kinds of questions that you should think about before you start design-
ing the language. Once you’ve answered these and any other questions, it’s time to
implement the language and really design the entire game.

This is a very important phase. If your game is going to be completely controlled by a
scripting language, you’d better make it really open-ended, robust, extensible, and
powerful. For example, the language should be able to model an airplane that flies by
every now and then, as well as a monster that attacks you!

In any case, remember that the idea of a scripting language is to create a high-level
interface to the engine so that low-level C/C++ code doesn’t need to be programmed
to control the objects in the game. Instead, an interpreted or compiled pseudo-English
language can be used to describe actions in the game. This is shown in Figure 12.28.

Game engine

Hard coded
logic

No longer
needed

Scripts control game play
rather than hard coded logic

Written
in a pseudo

language usually

Script 1

Script
interpreter

Game
objects

Script 2

Script 3

Figure 12.28
The relationship

between the engine
and scripting

language.

1672313618 CH12 10/26/99 10:47 AM Page 760

CHAPTER 12
Making Silicon Think with Artificial Intelligence

761

For example, here’s a script for an imaginary scripting language to control a street
light:

OBJECT: “Street Light”, SL

VARIABLES:

TIMER green_timer; // used to track time

// called when object of this type is created
ONCREATE()
BEGIN

// set animation to green
SL.ANIM = “GREEN”

END

// this is the main script
BEGINMAIN

// is anything near the streetlight
IF EVENT(“near”,”Street Light”)) AND

TIMER_STATE(green_timer) EQUAL OFF THEN
BEGIN
SL.ANIM = “RED”
START_TIMER(green_timer,10)
ENDIF

// has the timer expired yet
IF EVENT(green_timer,10) THEN

BEGIN
SL.ANIM = “GREEN”
ENDIF

ENDMAIN

I just threw this together right now, so it may have some holes in it, but the point is
that it’s very high-level. There are a million little details about setting animations,
checking proximity, and so forth, but with this language anyone can make a traffic
light program.

The code starts up and sets the light to green with ONCREATE(), and then it tests if
anything is close by with the EVENT() test and turns the light red. After the light has
been red for awhile, it turns back. The language looks a little like C, Basic, and Pascal
all mixed together—yup!

This is the kind of language you need to design and implement to control a game—
something that is neutral and knows how to operate on any object. For example, when
you say BLOWUP(“whatever”), the language processor better know how to make that

1672313618 CH12 10/26/99 10:47 AM Page 761

Hardcore Game Programming

762 PART III

work for any object in the game. Even though the call to blow up a blue monster
might be TermBMs3(), and the call to blow up a wall might be
PolyFractWallOneSide(), you just want to say BLOWUP(“BLUE”) and
BLOWUP(“wall”). Get the point?

You’re probably wondering how to implement one of these scripting languages. It’s
not easy. You have to decide whether you want an interpreted or compiled language—
is the language going to compile into straight code, be interpreted by an interpreter in
the game engine, or something in between? Then you have to write the language, a
parser, a code generator, and a P-code interpreter, or make the code generator create
straight PentiumX machine code or maybe translate to C/C++. These are all compiler
design issues and you’re on your own here, but you’ve already written a couple of
baby interpreters.

Some tools to help you are LEX and YACC, which stand for Lexical Analyzer and Yet
Another Compiler Compiler. These are language parsing and definition tools to help
you implement the recursive decent parser and complex state machines needed for a
compiler or interpreter. If you still have my book Sams Teach Yourself Game
Programming in 21 Days in the attic, there I show how to do a little language parsing.
It may save you a trip to the store or the Internet.

I have a trick that you can use to get started without needing to write a full-blown lan-
guage compiler/interpreter. Hold onto your hat!

Using the C/C++ Compiler
The nice thing about using an interpreted language is that the engine can read it and
the game doesn’t need to be recompiled. If you don’t mind your game designers com-
piling (they should know how to anyway), you can use an old trick to make a crude
game-scripting language: Use the C/C++ preprocessor to translate your scripting lan-
guage for you. It takes nothing more than header files and the C/C++ source, which
have nothing to do with compiler design.

The C/C++ preprocessor is really an amazing tool. It enables you to perform symbolic
referencing, substitutions, comparisons, math, and a lot more. If you don’t mind using
C/C++ as the root language and compiling your scripts, you might be able to write
your scripting language by means of a clever design, a lot of text substitutions, a lot
of canned functions, identifiers to refer to objects, and a good object-oriented design.

Of course, under it is going to be real C/C++, but you don’t have to tell your game
designers that (if you have any). Or you can force them to use only the pseudo-
language and not use all the real C/C++ functionality.

The best way to show you this is with a very simple example (that’s all I have time
for). First, the scripting language will be compiled and each script will be run when-

1672313618 CH12 10/26/99 10:47 AM Page 762

CHAPTER 12
Making Silicon Think with Artificial Intelligence

763

ever the object it refers to is created. The script will be terminated when the object it
refers to dies. The scripting language you’re going to write is based on C, so I’m not
going to go over everything there. But I am going to use text substitutions for a lot of
new keywords and data types.

A script consists of these parts:

Globals section—This is where any global variables that are used in the script are
defined. There are only two types of data type: REAL and INTEGER. REAL holds real
numbers like the C-type float, and INTEGER is similar to the C-type int.

Functions section—This section is composed of functions. Functions all have this
syntax:

data_type FUNCNAME(data_type parm1, data_type parm2…)
BEGIN
// code
ENDFUNC

Main section—The main of the program is where execution begins, and it will
continue to loop here until the object is dead:

BEGINMAIN
// code
ENDMAIN

As for variable assignment and comparison, only the following operators will be
valid:

Assignment variable = expression;

Equality (expression EQUALS expression)

Not Equal (expression NOTEQUAL expression)

Comparisons—Greater than, less than, greater than or equal to, and less than or equal
to all use the same C standard, which follows:

(expression > expression)
(expression < expression)
(expression >= expression)
(expression <= expression)

Conditionals—The form of conditional statements is the same as C, except that the
code that executes when the statement is TRUE must be contained within a BEGIN
ENDIF block. Look at the following example:

if (a EQUALS b)
BEGIN
// code
ENDIF

else
BEGIN

1672313618 CH12 10/26/99 10:47 AM Page 763

Hardcore Game Programming

764 PART III

// code
ENDELSE

Similarly, the else block must be contained within a BEGIN ENDELSE block as well as
the elseif.

There are no switch statements in this language, and there’s only one kind of loop in
the language, called a WHILE loop:

WHILE(condition)
BEGIN
// code
ENDWHILE

Next, there’s a GOTO keyword that jumps from one point in the code to another. The
jump must be labeled with a name of the form:

LBL_NAME:

where NAME can be any character string up to 16 characters in length. See the follow-
ing example:

LBL_DEAD:

if (a EQUALS b) BEGIN
GOTO LBL_DEAD;
ENDIF

You probably get the point by now. Of course, you’d want to add dozens or even hun-
dreds of high-level helper functions that could perform tests on objects. For example,
for objects that have a health or life state, you could have a function called HEALTH():

if (HEALTH(“alien1”) > 50)
BEGIN
// code
ENDIF

Moreover, you might create events that could be tested with a text string parameter:

if (EVENT(“player dead”)
BEGIN
// code here
ENDIF

All this magic is accomplished by using clever global state variables and making sure
to expose enough generic events to the scripts, along with system state variables (via
functions) and a lot of text substitution via the preprocessor. Leaving out some of
those details to keep things simple, let’s take a look at what you need for text substitu-
tions thus far. Referring to Figure 12.29, each script that is compiled will be processed
first through the C/C++ preprocessor.

1672313618 CH12 10/26/99 10:47 AM Page 764

CHAPTER 12
Making Silicon Think with Artificial Intelligence

765

This is where you’re going to make all those text substitutions and convert your little
script language back to C/C++. To make it work, you tell the scripter to save all the
files with the extension script .SCR or something, and when the file is imported into
your main C/C++ file for compilation, you make sure to first include the script trans-
lation header. Here’s the script translator for what you’ve so far:

SCRIPTTRANS.H

// variable translations
#define REAL static float
#define INTEGER static int

// comparisons
#define EQUALS ==
#define NOTEQUAL !=

// block starts and ends
#define BEGIN {
#define END }
#define BEGINMAIN {

#define ENDIF }
#define ENDWHILE }
#define ENDELSE }
#define ENDMAIN }

// looping
#define GOTO goto

Game engine

Game.cpp
Game.H

Linker

Compiler +
pro-processor

Game.exe

Script language
translation header

Script.H Script.cpp

Scripts are "compiled"
into game code

In pseudo
symbolic

c/c++ code

Script 1

———

Script 2

———

.

.

.

.

.

.

.

.

.

.

.

+ ~
~

~
~

Figure 12.29
Using the C/C++ pre-
processor for a script
language interpreter.

1672313618 CH12 10/26/99 10:47 AM Page 765

Hardcore Game Programming

766 PART III

Then you include the following in your game code:

#include “SCRIPTTRANS.H”

Then you include the actual script file somewhere in your game engine at the proper
moment. You can do it at the beginning, or even in a function:

Main_Game_Loop()
{
#include “script1.scr”

// more code

} // end main game loop

This part is up to you. The point is that the code the scripter writes must be compiled
somehow, and it must be able to access the globals, see events, and make calls to the
function set you expose. For example, here’s a crude script that fires an event (which I
didn’t define at the count of 10):

// the variables
INTEGER index;

index = 0;

// the main section
BEGINMAIN

LBL_START:

if (index EQUALS 10)
BEGIN
BLOWUP(“self”);
ENDIF

if (index < 10)
BEGIN
index = index + 1;
GOTO LBL_START;
ENDIF

ENDMAIN

Obviously, you would have to define BLOWUP(), but you get the picture. This code
would be translated by the preprocessor into the following:

{
static int index;
index = 0;

LBL_START:

1672313618 CH12 10/26/99 10:47 AM Page 766

CHAPTER 12
Making Silicon Think with Artificial Intelligence

767

if (index == 10)
{
BLOWUP(“self”);
}

if (index < 10)
{
index = index + 1;
goto LBL_START;
}

}

Cool, huh? Of course, I’m leaving out a lot of details, like problems with variable
names colliding, accessing globals, debugging, making sure the script doesn’t sit in an
endless loop, and so forth. However, I think that you have an idea about using the
compiler as a building block of a scripting language.

You can tell the Visual C++ compiler to output the preprocessed C/C++
file with the compiler directive /P.

Artificial Neural Networks
Neural networks are one of those things that you keep hearing about but never seem
to show up. Well, I can tell you for a fact that in the past 3-5 years, we’ve made leaps
and bounds in the area of artificial neural networks. Not because there has been any
major breakthrough, but because people are taking an interest in them, experimenting
with them, and using them. In fact, there are a number of games that use extremely
advanced neural networks: Creatures, Dogz, Fin Fin, and others.

A neural network is a model of the human brain. The brain consists of 10-100 billion
brain cells. Each of these cells can both process and send information. Figure 12.30 is
a model of a human brain cell or neuron.

There are three main parts to a neuron: the soma, the axon, and dendrites. The soma
is the main cell body and performs the processing, while the axon transmits the sig-
nals to the dendrites, which then pass the signals to other neurons.

Each neuron has a fairly simple function: to process input and fire or not fire. Firing
means sending an electrochemical signal. Neurons have a number of inputs, a single
output (which may be distributed), and some rule for processing the inputs and gener-
ating an output. The rules for processing are extremely complex, but suffice it to say
that a summation of signals occurs and the results of this summation cause the neuron
to fire.

Tip

1672313618 CH12 10/26/99 10:47 AM Page 767

Hardcore Game Programming

768 PART III

Well, that’s great, but how can you use this to make games appear to think? Well,
instead of trying to create something as bold as thought or consciousness, maybe you
can start by modeling simple memory, pattern recognition, and learning with some
computer models. Our brains are very good at these tasks, while computers are very
bad. It’s intriguing to explore the biological computers we have in our heads and see
if we can take some ideas from them.

This is exactly what artificial neural networks (or simply neural networks) do. They’re
simple models that can process information in parallel, just like our brains. Let’s take
a look at the most basic kinds of artificial neurons or neurodes.

The first artificial neural networks were created in 1943 by McCulloch and Pitts, two
electrical engineers who wanted to model electronic hardware after the human brain.
They came up with what they called a neurode, as shown on the left side of Figure
12.31. Today the form of the neurode hasn’t changed much, as shown on the right
side of Figure 12.31.

A neurode consists of a number of inputs, X(i), that are scaled by weights, w(i),
summed up, and then processed by an activation function. This activation function
may be a simple threshold, as in the McCulloch-Pitts (MP) model, or a more complex
step, linear, or exponential function. In the case of the MP model, the sum is com-
pared to a threshold value. If the sum is greater than a threshold theta, the neurode
fires. Otherwise it doesn’t. Mathematically, we have the following:

Soma

Dendrite

Axom from another neuron

Signals from other neurons

Signals to
other neurons

Dendrites
from other
neurons

Synaptic gaps

Figure 12.30
A basic neuron.

1672313618 CH12 10/26/99 10:47 AM Page 768

CHAPTER 12
Making Silicon Think with Artificial Intelligence

769

McCulloch-Pitts Neurode Summation Function

n
Output Y = Σ Xi * wi

i=1

General Neurode with Bias

n
Output Y = B*b + Σ Xi * wi

i=1

To see how a basic neurode works, assume that you have two inputs, X1, and X2, that
can take on the binary values 0 and 1. Then set your threshold at 2 and w1=1 and
w2=1. The summation function looks like this:

Y = X1*w1 + X2*w2

Compare the result to the threshold theta of 2. If Y is greater than or equal to 2, the
neurode fires and outputs a 1.0. Otherwise, it outputs a 0. Table 12.3 is a truth table
that shows what this single-neurode network does.

TABLE 12.3 Truth Table for Single Neurode Network

X1 X2 Sum Y Final Output

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

If you stare at this for a moment, you’ll realize it’s an AND circuit. Cool, huh? So a
simple little neurode can perform an AND operation. In fact, with neurodes you can
build any logic circuit you want. For example, Figure 12.32 shows an AND, an OR, and
an XOR.

wb

x1

x2

b

y

B. A more contemporary
neurode mode 1 with bias.

Output

"bias"
models long
term memory

Inputs

x1

x2

w1

w2

y

A. The McCulloch-Pitts
neurode 1940's

OutputInputs

Figure 12.31
Basic artificial

neurons.

1672313618 CH12 10/26/99 10:47 AM Page 769

Hardcore Game Programming

770 PART III

Real neural networks are much more complex, of course. They can have multiple lay-
ers, complex activation functions, and hundreds or thousands of neurodes. But now at
least you understand their fundamental building blocks. Neural networks are bringing
a new level of competition and AI to games that you’ve never seen before. Soon
games will be able to make decisions and learn!

This is an important area of interest, but I have to watch my page count so I don’t
have time to cover it properly here. However, the ARTICLES\AI\NETWARE\ directory on
the CD contains an article on neural networks that will give you a more solid founda-
tion on the topic. It covers all the various types of networks, shows you learning algo-
rithms, and illustrates just what they can do. You’ll find all the source code, an
executable, and both an MS-Word .DOC version and an Adobe Acrobat .PDF version
of the text.

Genetic Algorithms
Genetic algorithms are a method of computing that relies on biological models to
evolve solutions (if you’re reading this, Dr. Koza, don’t have a heart attack based on

x1

x2

w1 = 1

w2 = 1

y

"AND"
a.

OutputInputs

Ø = 2

y

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Truth table

x1

x2

w1 = 1

w2 = 1

y

"OR"
b.

OutputInputs

Ø = 1

y

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

Truth table

y1

y2x2

w5 = 1

w6 = 1

z1

"XOR"
c.

Output

x1

x2

w1 = 1

w4 = 1

w3 = 1

w2 = –1

Inputs

Ø = 1

Ø = 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Truth table

H. Open layer

MP actuation function: FMP (x) = { 1, if x ≥ Ø
0, if x ≤ Ø

Figure 12.32
Basic logic circuits.

1672313618 CH12 10/26/99 10:47 AM Page 770

CHAPTER 12
Making Silicon Think with Artificial Intelligence

771

my loose definitions). Nature is great at evolution, and genetic algorithms try to cap-
ture some of the essence of natural selection and genetic evolution in computer mod-
els to help solve problems that normally couldn’t be solved by standard means of
computing.

Basically, genetic algorithms work like this: You take a number of informational indi-
cators and string them all together into a bit vector, just like a strand of DNA, as
shown in Figure 12.33.

0110 1100 0000 100 . . . 1 011 . . . 0 . . . 1

State info type count . . .

Object 1

x y counter.1 . . .

Object 2

Object 3

11011 011 . . . 10 . . . 1 10 . . . 1 . . .

1000 . . . 1 001 . . . 1 0001 01111 10 . . . 11 . . .

Binary
encoded
genetic
 information

Figure 12.33
Binary encoding of

genetic information.

This bit vector represents the strategy or coding of an algorithm or solution. You need
a few of these bit vectors to start with. Then you process the bit string and whatever it
represents by some objective function that scores its fitness. The results are its score.
The bit vector is really a concatenation of various control variables or settings for
some algorithm, and you manually come up with a few experimental sets of values to
start with based on intuition or prior knowledge (if available). Then you run each set
and you get the score of each. You may find that out of the five you created manually,
two of them did really well and the other three did really poorly. Here’s where the
genetic algorithm comes in.

You could tweak the solution from there, knowing that you’re on the right track, or
you could let genetic algorithms do it for you. Mix the two solutions or control vec-
tors together to create two new offspring, as shown in Figure 12.34.

To add a little bit of uncertainty, during the crossover process you flip a bit here and
there to simulate mutation. Try your new solutions, along with the last generation’s
best solutions, and see what happens with the scores. Pick the best results out of this
generation and do it again. This is the process of genetic evolution. Amazingly, the
best possible solution will slowly evolve, and the result might be something you never
imagined.

1672313618 CH12 10/26/99 10:47 AM Page 771

Hardcore Game Programming

772 PART III

The key things about genetic algorithms are that they try new ideas (patterns) and they
can search a very large search space that normally couldn’t be searched if you went
one by one. This is due to mutation, which represents completely random evolution-
ary events that may or may not lead to better adaptation.

So how do you use this in a game? There are millions of ways, but I’m going to give
you just one to get you started. You can use the probability settings of your AI as the
genetic source for digital DNA, and then take the creatures in your game that have
survived the longest and merge and evolve their probabilities, thus giving the best
traits to future generations. Of course, you would only do this when you needed to
spawn a new creature, but you get the idea.

Fuzzy Logic
Fuzzy logic is the last technology I’m going to cover and perhaps one of the most
interesting. It has to do with making deductions about the fuzzy set theory. In other
words, fuzzy logic is a method of analyzing sets of data such that the elements of the
sets can have partial inclusion. Most people are used to crisp logic, where something
is either included or not. For example, if I created the sets child and adult, I would fall
into the adult category and my three-year-old nephew would be part of the child cate-
gory. That’s crisp logic.

0 1 1 0 1 0 0 1Parent 1 digital DNA

Before mating

1 1 0 0 0 0 1 0Parent 2 digital DNA

Crossover point

8 bits

0 1 1 0 1 0 1 1

Parent 1 DNA

Offspring

Parent 2 DNA

Parent 2 DNAParent 1 DNA

0 1 0 0 0 0 1 0

Figure 12.34
Digital sex.

1672313618 CH12 10/26/99 10:47 AM Page 772

CHAPTER 12
Making Silicon Think with Artificial Intelligence

773

Fuzzy logic, on the other hand, allows objects to be contained within a set even if they
aren’t totally in the set. For example, I might say that I’m 10% part of the child set
and 100% part of the adult set. Similarly, my nephew might be 2% part of the adult
set and 100% part of the child set. These are fuzzy values. Also, you’ll notice that
they don’t have to add up to 100%—they can be more or less—because they don’t
represent probabilities, but rather inclusion in different classes. However, the probabil-
ities of an event or state in different classes still must add up to 1.0.

The cool thing about fuzzy logic is that it enables you to make decisions based on
fuzzy or error-ridden data that are usually correct. You can’t do this with a crisp logic
system: If you’re missing a variable or input, it won’t work. But a fuzzy logic system
can still function well with missing variables, just like a human brain. I mean, how
many decisions do you make each day that feel fuzzy to you? You don’t have all the
facts, but you’re still fairly confident about the decisions.

That’s the two-cent tour of fuzzy logic. Its applications to AI in the areas of decision
making, behavioral selections, and input/output filtering should be obvious. With that
in mind, let’s take a look at the various ways fuzzy logic is implemented and used.

Normal Set Theory
A normal set is simply a collection of objects. To write a set, use a capital letter to
represent it and then place the elements contained in it between braces, separated by
commas. Sets can consist of anything: names, numbers, colors, whatever. Figure
12.35 illustrates a number of normal sets.

3 4

5

20

A

1

9

3

B

1

4

9

3

5

20

1

4

9

3

5

20

1 3

C

A B: A union B

A B: A intersection B

C A: C is a subset of A

Figure 12.35
Some simple sets.

1672313618 CH12 10/26/99 10:47 AM Page 773

Hardcore Game Programming

774 PART III

For example, set A = {3,4,5,20} and set B = {1,3,9}. There are many operations that
you can perform on these sets:

Element of (ε)—When talking about a set, you might want to know if an object is
contained within the set. This is called set inclusion. Hence, if you wrote “is 3 ε
A,” or “is 3 an element of A,” that would be true. But “2 ε B” is not.

Union (∪)—This operator takes all the objects that exist in both sets and adds
them into a new set. If an object appears in both sets initially, it is only added to
the new set once. As a result, A ε B = {1,3,4,5,9,20}.

Intersection (∩)—This operator takes only the objects that the two sets have in
common. Therefore, A ∩ B = {3}.

Subset of ()—Sometimes you want to know if one set is wholly contained in
another. This is called set inclusion or subset of. Therefore, {1,3} B, which reads
“the set {1,3} is a subset of B.” However, A B, which reads “A is not a subset of
B.”

Usually a slash (/) or prime (‘) symbol means NOT or complement, invert,
etc.

Okay, that’s a little set theory for you. Nothing complicated, just some terminology
and symbols. Everyone works with set theory every day; they just don’t know it. The
one thing I want you to get from this section is that normal sets are exact. It’s either a
fruit or it’s not. Either 5 is in the set or it’s not. This is not the case with fuzzy
set theory.

Fuzzy Set Theory
The problem with computers is that they’re exact machines, yet we continually use
them to solve inexact or fuzzy problems—or at least we try to. In the ’70s, computer
scientists started applying a technique of mathematics called fuzzy logic, or uncer-
tainty logic, to software programming and problem solving. The fuzzy logic that
we’re talking about here is really the application of fuzzy set theory and its properties.
Let’s take a look at the fuzzy set theory version of everything you just learned about
with normal set theory.

With fuzzy set theory, you don’t focus so much on the objects in the set anymore; the
objects are in the set, but you focus on the degree of membership a particular object
has within a certain class. For example, let’s create a fuzzy class or category called
Computer Special FX. Then take a few of your favorite movies (mine, at least) and
estimate how much each of them fits in this fuzzy class. See Table 12.4.

⊃
⊃

⊃

1672313618 CH12 10/26/99 10:48 AM Page 774

CHAPTER 12
Making Silicon Think with Artificial Intelligence

775

TABLE 12.4 Degree of Membership for Computer Special FX class

Movie Degree of Membership in Class

Antz 100%

Forrest Gump 20%

The Terminator 75%

Aliens 50%

The Matrix 90%

Do you see how fuzzy all this is? Although The Matrix had some really killer com-
puter-generated effects, the entire movie Antz was computer-generated, so I have to be
fair. However, do you agree with all these percentages? Antz is totally computer-
generated and is an hour and 20 minutes, and Forrest Gump has only five minutes
total of computer-enhanced imagery. Is it fair to rate Gump at 20 percent? I don’t
know. That’s why we’re using fuzzy logic.

Anyway, you write each fuzzy degree of membership as an ordered pair of the form
“{candidate for inclusion, degree of membership}”. Therefore, for the movie example
you would write “{ANTZ, 1.00}, {Forrest Gump, 0.20}, {Terminator, 0.75}, {Aliens,
0.50}, {The Matrix, 0.9}”. Finally, if you had the fuzzy class Rainy, what would you
include today as? Where I live, for example, it’s “{today, 1.00}”!

Now you can add a little more abstraction and create a full fuzzy set. In most cases,
this is an ordered collection of the degrees of membership (DOM) of a set of objects
in a specific class. For example, in the class Computer Special FX, you have the set
composed of the degrees of membership: A = {1.0, 0.20, 0.75, 0.50, 0.90}. There’s
one entry for each movie—each variable represents the DOM of each movie as listed
in Table 12.4, so the order counts!

Now, suppose that you have another set of movies that all have their own degrees of
membership: B = {0.2, 0.45, 0.5, 0.9, 0.15}. Let’s apply some of the set operations
you’ve learned about and see the results. Before you do, there’s one caveat: Because
we’re talking about fuzzy sets that represent degrees of membership, or fitness vectors
of a set of objects, many set operations must have the same number of objects in each
set. This will become more apparent when you see what the fuzzy set operators do
below.

Fuzzy union ()—The union of two fuzzy sets is the MAX of each element from the
two sets. For example, with fuzzy sets:

A={1.0, 0.20, 0.75, 0.50, 0.90}
B={0.2, 0.45, 0.5, 0.9, 0.15}

Ô

1672313618 CH12 10/26/99 10:48 AM Page 775

Hardcore Game Programming

776 PART III

The resulting fuzzy set would be the MAX of each pair:

A B = {MAX(1.0,0.2), MAX(0.20,0.45),
MAX(0.75,0.5), MAX(0.90,0.15)} = {1.0,0.45,0.75, 0.90}

Fuzzy intersection (Ô)—The intersection of two fuzzy sets is just the MIN of each
element from the two sets. For example, with fuzzy sets:

A={1.0, 0.20, 0.75, 0.50, 0.90}
B={0.2, 0.45, 0.5, 0.9, 0.15}
A B = {MIN(1.0,0.2), MIN(0.20,0.45),

MIN(0.75,0.5), MIN(0.90,0.15)} = {0.2,0.20,0.5, 0.15}

Subsets and elements have less meaning with fuzzy sets than with standard sets, so
I’m skipping them. However, the complement of a fuzzy value or set is of interest.
The complement of a fuzzy variable with degree of membership x is (1-x), so the
complement of A, written A’, is computed as

A = {1.0, 0.20, 0.75, 0.50, 0.90}

Therefore:

A’ = {1.0 - 1.0, 1.0 - 0.20, 1.0 - 0.75, 1.0 - 0.50, 1.0 - 0.90}
= {0.0, 0.8, 0.25, 0.5, 0.1}

I know this is killing you, but bear with me.

Fuzzy Linguistic Variables and Rules
All righty, then! Now that you have an idea about how to refer to fuzzy variables and
sets, let’s take a look at how you’re going to use them in game AI. You’re going to
create an AI engine that uses fuzzy rules, applies fuzzy logic to inputs, and outputs
fuzzy or crisp outputs to the game object being controlled. Take a look at Figure
12.36 to see this graphically.

De-fuzz.fiction

Crisp outputs

Fuzzy rule
base and
inferenceFuzz.fictionFuzzy

inputs
"crisp"

Fuzzy
outputs

Figure 12.36
The fuzzy I/O system.

When you put together normal conditional logic, you create a number of statements,
or a tree with propositions of the form

if X AND Y then Z

or

if X OR Y then Z

Ô

1672313618 CH12 10/26/99 10:48 AM Page 776

CHAPTER 12
Making Silicon Think with Artificial Intelligence

777

The X and Y variables are called the antecedents, and Z is called the consequence.
However, with fuzzy logic, X and Y are fuzzy linguistic variables, or FLVs.
Furthermore, Z can also be an FLV or a crisp value. The key to all this fuzzy stuff is
that X and Y represent fuzzy variables, so they’re not crisp. Fuzzy propositions of this
form are called rules, and ultimately they’re evaluated in a number of steps. You don’t
evaluate them like this:

if EXPLOSION AND DAMAGE then RUN

and execute the RUN consequence if EXPLOSION is TRUE and DAMAGE is TRUE. With
fuzzy logic, the rules are only part of the final solution. The fuzzification and defuzzi-
faction are what produce the final result.

FLVs represent fuzzy concepts that have to do with a range. For example, let’s say
that you want to classify the distance between the player and the AI object with three
different fuzzy linguistic variables (names, basically). Take a look at Figure 12.37. It
shows a fuzzy manifold or surface, which is composed of three different triangular
regions that I have labeled as follows:

NEAR Domain range (0 to 300)

CLOSE Domain range (250 to 700)

FAR Domain range (500 to 1000)

1.0

.8

.6
DOM

Degree of
Membership

.4

.2

Near Close Far

Five: Fuzzy linquistic variable

Input: Range to target

100 200

200 475

300 400 500 600 700 800 900 1000

OverlapOverlap

Figure 12.37
A fuzzy manifold

composed of range
FLVs.

The input variable is shown on the x-axis and can range from 0 to 1000. This is called
the domain. The output of the fuzzy manifold is the y-axis and ranges from 0.0 to 1.0.
For any input value xi (which represents range to player in this example), you

1672313618 CH12 10/26/99 10:48 AM Page 777

Hardcore Game Programming

778 PART III

compute the degree of membership (DOM) by striking a line vertically, as shown in
Figure 12.38, and computing the Y value(s) at the intersection(s) with each fuzzy lin-
guistic variable’s triangular area.

1.0

.8

.6
Degree of

Membership

.4

.2

.9

.7

.5

.3

.1

Near Close Far

Input domain range 0 . . . 1000

100 200 300 400 500 600 700 800 900 1000

Input Input Input

close ≈ .55

far ≈ .28

close ≈ .49

near ≈ .17

xi xi xi

Figure 12.38
Computing the degree

of membership of a
domain value in one

or more FLVs.

Each triangle in the fuzzy surface represents the area of influence of each fuzzy lin-
guistic variable (NEAR, CLOSE, FAR). In addition, the regions overlap a little—usually
10-50 percent. This is because when NEAR becomes CLOSE and CLOSE becomes FAR,
you don’t want the value to instantly switch. There should be a little overlap to model
the fuzziness of the situation. This is the idea of fuzzy logic.

You’ve already seen a similar technique used to select states in a previ-
ous FSM example (in the section Patterns with Conditional Logic
Processing, earlier in this chapter). The range to a target was checked,
which forced the FSM to switch states, but in the example with FSMs
you used crisp values without overlap or fuzzy computations. There was
an exact range where the crisp FSM AI switched from EVADE to ATTACK or
whatever. But with fuzzy logic, it’s a bit blurry.

Note

Let’s recap for a moment. We have rules that are based on fuzzy inputs from the game
engine, environment, and so on. These rules may look like normal conditional logic
statements, but they must be computed using fuzzy logic because they’re really FLVs
that classify the input(s) with various degrees of membership.

1672313618 CH12 10/26/99 10:48 AM Page 778

CHAPTER 12
Making Silicon Think with Artificial Intelligence

779

Furthermore, the final results of the fuzzy logic process may be converted into dis-
crete crisp values, such as “fire phasers,” “run,” or “stand still,” or converted into a
continuous value such as a power level from 0-100. Or you might leave it fuzzy for
another stage of fuzzy processing.

Fuzzy Manifolds and Membership
It’s all coming together, so just hang in there. Now you know that you’re going to
have a number of inputs in your fuzzy logic AI system. These inputs are going to be
classified into one or more (usually more) fuzzy linguistic variable FLVs (which rep-
resent some fuzzy range), and then you’re going to compute the degree of member-
ship for each input in each of the FLV’s ranges. In general, at range input xi, what is
the degree of membership in each fuzzy linguistic variable NEAR, CLOSE, and FAR?

Thus far, the fuzzy linguistic variables are areas defined by symmetrical triangles.
However, you can use asymmetrical triangles, trapezoids, sigmoid functions, or what-
ever. Take a look at Figure 12.39 to see other possible FLV geometries.

.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1.0

Triangle Trapezoid Sigmoid/exponential
Shouldered
trapezoid

Common
shape

Rare
shape

Common
shape

Very
common
shape

Notes: Shapes do not have to be symmetrical

Figure 12.39
Typical fuzzy

linguistic variable
geometries.

In most cases, symmetrical triangles (symmetrical about the x-axis) work fine. You
might want to use trapezoids, though, if you need a range in the FLV that is always
1.0. In any case, to compute the degree of membership (DOM) for any input xi in a
particular FLV, you take the input value xi and then project a line vertically and see
where it intersects the triangle representing the FLV on the y-axis. This is the DOM.

Computing this value in software is easy. Let’s assume that you’re using a triangular
geometry for each FLV, with the left and right starting points defining the triangle
labeled min_range, max_range, as shown in Figure 12.40.

1672313618 CH12 10/26/99 10:48 AM Page 779

Hardcore Game Programming

780 PART III

To compute the DOM of any given input xi, the following algorithm can be used:

// first test if the input is in range
if (xi >= min_range && xi <= max_range)

{
// compute intersection with left edge or right
// always assume height of triangle is 1.0

float center_point = (max_range + min_range)/2;

// compare xi to center
if (xi <= center_point)

{
// compute intersection on left edge
// dy/dx = 1.0/(center – left)
slope = 1.0/(center_point – min_range);

degree_of_membership = (xi – min_range) * slope;

} // end if
else

{
// compute intersection on right edge
// dy/dx = 1.0/(center – right)
slope = 1.0/(center_point – max_range);

degree_of_membership = (xi – max_range) * slope;

} // end else

Degree of
Membership
normalized

to 1.0

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x

Dom = slop * (max_range – xi

Slope = 1/(center_point_min_range)

Slope = 1/(max_range_center_point)

xi xi

Doms

Other flvs
. . .

Other flvs
 . . .

Center_point: (min_range + max_range)/2

Min_range (min_range + max_range) max_range
2

1.0

.8

.6

.4

.2

.9

.7

.5

.3

.1

Figure 12.40
The details of

computing DOM for
an FLV.

1672313618 CH12 10/26/99 10:48 AM Page 780

CHAPTER 12
Making Silicon Think with Artificial Intelligence

781

} // end if
else // not in range

degree_of_membership = 0.0;

Of course, the function can be totally optimized, but I wanted you to see what was
going on. If you had used a trapezoid instead, there would be three possible intersec-
tion regions to compute: the left edge, the plateau, and the right edge.

In most cases, you should have at least three fuzzy linguistic variables. If you have
more than three, try to keep the number odd so there’s always one variable that is cen-
tered. Otherwise you might have a trough or hole in the center of the fuzzy space.

In any case, let’s take a look at some examples of computing the degree of member-
ship of your previous fuzzy manifold, shown in Figure 12.37. Basically, for any input
xi, you project a line vertically and determine where it intersects each of the FLVs in
the fuzzy manifold. The line might intersect more than one FLV, and this needs to be
resolved. But first, let’s get some DOMs.

Assume that you have input ranges xi = {50,75,250,450, 550,800}, as shown in Figure
12.41.

1.0

.8

.6
.66

DOM
Degree of

Membership
.4

.2

.9
.88

.7

.5

.3
.33

.1

Near
center = 150

Close
center = 475

Far
center = 750

100 200 300 400 500 600 700 800 900 1000

xi = 50 xi = 250 xi = 450

xi = 800
xi = 550xi = 75

150

Figure 12.41
Your range manifold

with a number of
inputs.

In that case, the degrees of membership for each FLV—NEAR, CLOSE, FAR—can be
computed with the algorithm or read off graphically. They’re listed in Table 12.5.

1672313618 CH12 10/26/99 10:48 AM Page 781

Hardcore Game Programming

782 PART III

TABLE 12.5 Computations of Degree of Membership for Range Manifold

Degree of Membership
Input “Range to target” xi NEAR CLOSE FAR

50 0.33 0.0 0.0

75 0.5 0.0 0.0

250 0.33 0.0 0.0

450 0.0 0.88 0.0

550 0.0 0.66 0.20

800 0.0 0.0 0.80

Studying the values, there are a number of interesting properties. First, note that for
any input value xi, the results of membership don’t add up to 1.0. Remember, these
are degrees of membership, not probabilities, so this is okay.

Secondly, for some xi’s the DOM falls within one or two different fuzzy variables.
There could have easily been cases where an input fell into all three regions (if I made
the triangles big enough). The process of selecting the size (range) of each triangle is
called tuning, and sometimes you may have to do this repeatedly to get the results you
want. I tried to pick ranges that worked out nicely for examples, but in real life you
may need more than three FLVs. And they may not have nice endpoints that are all
multiples of 50!

For an example of creating a fuzzy manifold for some input and a number of FLVs,
check out DEMO12_9.CPP|EXE on the CD. It enables you to create a number of fuzzy
linguistic variables—that is, categories for some input domain. Then you can input
numbers and it gives you the degree of membership for each input. It’s a console
application, so compile appropriately. The data printed for membership is also nor-
malized to 1.0 each time. This is accomplished by taking each DOM and dividing by
the sum of DOMs for each category.

At this point you know how to create a fuzzy manifold for an input xi that is com-
posed of a number of ranges, each of which is represented by a fuzzy linguistic vari-
able. Then you select an input in the range, compute the degree of membership for
each FLV in the manifold, and come up with a set of numbers for that particular
input. This is called fuzzifaction.

The real power of fuzzy logic comes into play when you fuzzify two or more vari-
ables, connect them with if rules, and see the output. To accomplish this step, first you
have to come up with another input to fuzzify—let’s call it the power level of the AI
bot that you’re moving around. Figure 12.42 shows the fuzzy manifold for the power
level input.

1672313618 CH12 10/26/99 10:48 AM Page 782

CHAPTER 12
Making Silicon Think with Artificial Intelligence

783

The fuzzy linguistic variables are as follows:

WEAK Domain range (0.0 to 3.0)

NORMAL Domain range (2.0 to 8.0)

ENERGIZED Domain range (6.0 to 10.0)

Notice that this fuzzy variable domain is from 0 to 10.0, rather than 0 to 1000 as is
the range to player variable. This is totally acceptable. You could have added more
than three FLVs, but three makes the problem symmetrical. To process both fuzzy
variables, you need to construct a rule base and then create a fuzzy associate matrix,
so let’s talk about that next.

Fuzzy Associative Matrices
Fuzzy associative matrices, or FAMs, are used to infer a result from two or more
fuzzy inputs and a given rule base and output a fuzzy or crisp value. Figure 12.43
shows this graphically.

In most cases, FAMs deal with only two fuzzy variables because this can be laid out
in a 2D matrix; one variable represents each axis. Each entry in the matrix is the logi-
cal proposition “if Xi AND Yi then Zi,” where Xi is the fuzzy linguistic variable on
the x-axis, Yi is the fuzzy linguistic variable on the y-axis, and Zi is the outcome—
which may be a fuzzy variable or crisp value.

1.0

.8

.6
DOM

Degree of
Membership

.4

.2

.9

.7

.5

.3

.1

Weak Normal Energized

1.0 2.0
1.5

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Power level input

Figure 12.42
The fuzzy manifold
for the power level.

1672313618 CH12 10/26/99 10:48 AM Page 783

Hardcore Game Programming

784 PART III

To build the FAM, you need to know the rules and the outputs to put in each of the
matrix entries. In other words, you need to make a rule base and decide on an output
variable that is either crisp or linear. A crisp output would be {“ATTACK”, “WAN-
DER”, “SEARCH”}, while a linear output might be a thrust level from (0 to 10).
Obtaining either one is relatively the same; in both cases, you have to defuzzify the
output of the FAM and find the output.

You’re going to see examples of both a crisp singular output that selects a class and
one that simply outputs a value in a range. Much of the setup is the same. First, let’s
see the example that computes a range as the final output:

1. Select your inputs, define the FLVs, and build your manifolds.

The inputs to your fuzzy system are going to be the range to the player and the
power level of the AI-controlled bot.

Input X Range to player.

Input Y Power level of self

Refer again to Figures 12.37 and 12.42—these are the fuzzy manifolds that
you’re using.

2. Create a rule base for the inputs that tie them to an output.

If x1 and y1
then z11

If x2 and y2
then z21

If x3 and y3
then z31

If x1 and y2
then z21

If x2 and y2
then z22

If x3 and y2
then z32

If x1 and y3
then z31

If x2 and y3
then z32

If x2 and y3
then z33

y1

y3

y2

x1 x2

Input x

In
pu

t y

x3

Figure 12.43
Using a fuzzy asso-

ciative matrix.

1672313618 CH12 10/26/99 10:48 AM Page 784

CHAPTER 12
Making Silicon Think with Artificial Intelligence

785

The rule base is nothing more than a collection of logical propositions of the
form “if X AND Y then Z” or “if X OR Y then z.” This makes a difference
when you’re computing the FAM outputs. A logical AND means “minimum of the
set,” while a logical OR means “maximum of the set” when dealing with fuzzy
set theory. For now, use all ANDs, but I’ll explain how to use ORs later.

In general, if you have two fuzzy inputs and each input has m FLVs, the fuzzy asso-
ciative matrix will have dimension m×m. And since each element represents a logical
proposition, this means you need nine rules (3× 3 = 9) that define all possible logical
combinations and the output for each.

However, this is not necessary. If you only have four rules, the other outputs are just
set to 0.0 in the FAM. Nevertheless, I will use up all nine slots in our example to
make it more robust. For an output, I’m going to use the fuzzy output thrust level,
which I’m going to make a fuzzy variable that is made up of the following fuzzy cate-
gories (FLVs):

OFF Domain range (0 to 2)

ON HALF Domain range (1 to 8)

ON FULL Domain range (6 to 10)

The fuzzy manifold for these FLVs is shown in Figure 12.44.

1.0

.8

.6
DOM

Degree of
Membership

.4

.2

.9

.7

.5

.3

.1

Off On half

FLUs

On full

1 2 3 4 5 6 7 8 9 10

Input: Thrust level
Domain Range (0 . . . 10)

Figure 12.44
The output fuzzy
manifold for the

thrust level.

1672313618 CH12 10/26/99 10:48 AM Page 785

Hardcore Game Programming

786 PART III

Note that the output could have more categories, but I decided to pick three. Here are
my somewhat arbitrary rules:

Input 1: Distance to player.

NEAR

CLOSE

FAR

Input 2: Power level of self.

WEAK

NORMAL

ENERGIZED

Output: Internal navigational thrust level (speed).

OFF

ON HALF

ON FULL

Rules: Somewhat made up (I’m a doctor, not a magician).

if NEAR AND WEAK then ON HALF
if NEAR AND NORMAL then ON HALF
if NEAR AND ENERGIZED then ON FULL

if CLOSE AND WEAK then OFF
if CLOSE AND NORMAL then ON HALF
if CLOSE AND ENERGIZED then ON HALF

if FAR AND WEAK then OFF
if FAR AND NORMAL then ON FULL
if FAR AND ENERGIZED then ON FULL

These rules are heuristic in nature, imparting knowledge from an “expert” about what
the AI should do in these conditions. Although the rules may seem somewhat contra-
dictory, I did think about them for about two minutes! Seriously, now that you have
the rules, you can finally fill in the fuzzy associative matrix completely, as shown in
Figure 12.45.

1672313618 CH12 10/26/99 10:48 AM Page 786

CHAPTER 12
Making Silicon Think with Artificial Intelligence

787

Processing the FAM with the Fuzzified Inputs
To use the FAM, do the following:

1. Get the crisp inputs for each fuzzy variable and fuzzify them by computing their
DOM for each FLV. For example, let’s say that you have the following inputs:

Input 1 Distance to player = 275

Input 2 Power level = 6.5

To fuzzify these, input them into the two fuzzy manifolds and compute the
degree of membership for each fuzzy variable for each input. Refer to Figure
12.46.

For Input 1 = 275, the degree of membership of each FLV is as follows:

NEAR 0.16

CLOSE 0.11

FAR 0.0

For Input 2 = 6.5, the degree of membership of each FLV is as follows:

WEAK 0.0

NORMAL 0.5

ENERGIZED 0.25

And And And

And And And

And And And

On half Off Off

On half On half On full

On full On half On full

Weak

Energized

Normal

Near Close

Input 1 = Distance to player

In
pu

t 2
: P

ow
er

 le
ve

l o
f s

el
f

Far

Figure 12.45
The FAM, complete

with all the rules.

1672313618 CH12 10/26/99 10:48 AM Page 787

Hardcore Game Programming

788 PART III

At this point, refer to the fuzzy associative matrix and test the rule in each cell to see
what its output value is based on in the preceding fuzzy values. Of course, many of
the FAM’s cells will be 0.0 because two of the FLVs (one from each input) are 0.0.
Anyway, take a look at Figure 12.47, which depicts your FAM along with all the cells
that have non-zero outputs shaded in.

Now here comes the tricky part… Each one of those cells in the FAM represents a
rule. For example, the upper-left cell represents

if NEAR AND WEAK then ON HALF

To evaluate this rule, take the antecedents and test them using a MIN() rule for the
logical AND. In this case, you have that NEAR = 0.16 and WEAK = 0.0, hence:

if (0.16) AND (0.0) then on HALF

This is computed using the MIN() function as

(0.16) (0.0) = (0.0)

1.0

.8

.6
DOM

Degree of
Membership

.4

.2.16

.9

.7

.5

.3

.1

Near Close Far

Input 2: Distance to player

Range to target

100 200

275

300 400 500 600 700 800 900 1000

DOM
= .16

DOM
= .11

DOM
= 0

1.0

.8

.6
DOM

Degree of
Membership

.4

.2
.25

.9

.7

.5

.3

.1

Weak Normal Energized

Input 1: Power level

Power level

0 2
6.5

3 4 5 6 7 8 9 10

DOM
= 0

DOM
= .5

DOM
= .25

Figure 12.46
Some inputs plugged

into the fuzzy
variables.

1672313618 CH12 10/26/99 10:48 AM Page 788

CHAPTER 12
Making Silicon Think with Artificial Intelligence

789

Thus, the rule doesn’t fire at all. On the other hand, let’s take a look at the rule

if CLOSE AND ENERGIZED then ON HALF

This means

if (0.11) AND (0.25) then ON HALF

which, computed using the MIN() function, is

(0.11) (0.25) = (0.11)

A-ha! The rule ON HALF fires at a level of 0.11, so you place that value in the FAM
associated with the rule ON HALF at the intersection of CLOSE and ENERGIZED.
Continue this process for the whole matrix until you’ve found all nine entries. This is
shown in Figure 12.47.

At this point, you’re finally ready to defuzzify the FAM. This can be accomplished in
a number of ways. Basically, you need a final crisp value that represents the thrust
level from (0.0 to 10.0). There are two main ways to compute this: You can use the
disjunction or MAX() method to find the value, or you can use an averaging technique
based on the fuzzy centroid. Let’s take a look at the MAX() method first.

0 and .16 = 0
0 ^ .16 = 0
min (0, .16) = 0

Output: On half
Value: 0

0 and .11 = 0
0 ^ .11 = 0
min (0, .11) = 0

Output: Off
Value: 0

0 and 0 = 0
0 ^ 0 = 0
min (0, 0) = 0

Output: Off
Value: 0

.5 and .16 = .16

.5 ^ .16 = .16
min (.5, .16) = .16

Output: *On half
Value: .16

.5 and .11 = .11

.5 ^ .11 = .11
min (.5, .11) = .11

Output: *On half
Value: .11

.5 and 0 = 0

.5 ^ 0 = 0
min (.5, 0) = 0

Output: On full
Value: 0

.25 and .16 = .16

.25 ^ .16 = .16
min (.25, .16) = .16

Output: *On full
Value: .16

.25 and .11 = .11

.25 ^ .11 = .11
min (.25, .11) = .11

Output: *On half
Value: .11

.25 and 0 = 0

.25 ^ 0 = 0
min (.25, 0) = 0

Output: On full
Value: 0

* – means this rule fire S

Weak = 0

Energized = .25

Normal = .5

Near = .16 Close = .11

Input 2 = 275

In
pu

t 2
 =

 6
.5

Far = 0

Figure 12.47
The fuzzy associative
matrix showing active
cells and their values.

1672313618 CH12 10/26/99 10:48 AM Page 789

Hardcore Game Programming

790 PART III

Method 1: The MAX Technique
If you look at the FAM data, you have the following fuzzy outputs:

OFF (0.0)

ON HALF {0.16, 0.11, 0.16}, use sum which is 0.43

ON FULL (0.16)

Note that the rule ON HALF has fired within three different outputs, so you have to
decide what you want to do with the results. Should you add them, average them, or
max them? It’s really up to you. For this example, choose sum: 0.16+0.11+0.16 = .43.

This is still fuzzy, but looking at the data, it looks like ON HALF has the strongest
membership. So it makes sense to just go with that:

output = MAX(OFF, ON HALF, ON FULL)
= MAX(0.0, 0.43, 0.16) = 0.43

Using the disjunction operator v:

(0.0) v (0.43) v (0.16) = (0.43)

And that’s it. Simply multiply (0.43) times the scale of the output, and that’s the
answer:

(0.43) * (10) = (4.3)
Set the thrust to (4.3).

The only problem with this method is that even though you’re taking the variable that
has the highest membership, its total area of influence in the fuzzy space may be very
small. For example, a 40% NORMAL is definitely stronger than a 50% WEAK. See my
point? It might be better to plug some of the values into the output fuzzy manifold for
(OFF, ON HALF, ON FULL), compute the area of influence, and then compute the cen-
troid of the whole thing and use that as the final output.

Method 2: The Fuzzy Centroid
To find the fuzzy centroid, you take the fuzzy values for each FLV in the output:

OFF (0.0)

ON HALF (0.14) {average}

ON FULL (0.16)

Plug them into the y-axis of the FLV diagram and fill in the area for each. This is
shown in Figure 12.48.

1672313618 CH12 10/26/99 10:48 AM Page 790

CHAPTER 12
Making Silicon Think with Artificial Intelligence

791

2

.5

1.0

Additive
composite

4 6 8 10

2

.5

1.0

Overlapped
composite

4 6 8 10

2

.5

1.0

4 6 8 10

On full = .16

2

.5

1.0

4 6 8 10

On half= .43

2

.5

1.0

4 6 8 10

Off = 0

.43.43

.16.16

Fuzzy
Doms

A.

B.

 FLUsFigure 12.48
Finding the area and

the centroids
of the fuzzy manifold

graphically.

1672313618 CH12 10/26/99 10:48 AM Page 791

Hardcore Game Programming

792 PART III

Add the areas up and find the centroid of the resulting geometric shape. As you can
see, there are two ways to add the areas up: overlap and additive. Overlapping loses a
bit of information, but it’s easier sometimes. The additive technique is more accurate.

The centroids of each method have been computed and are shown in Figure 12.48.
That’s great, but the computer isn’t a piece of graph paper. How do you compute the
centroid?

To compute a centroid, perform a numerical integration (that’s a calculus term). All
this means is that to find the center of area of this fuzzy area object you need to sum
up each piece of the object and its contribution to the total and then divide by the total
area:

Domain
Σ di * domi
i

Domain
Σ domi
i

di is the input value for the domain, and domi is the degree of membership of that
value. This is much easier to explain with real examples. In this example, the output
domain is from 0.0 to 10.0. This represents the thrust level.

You need a loop variable di that loops from 0 to 10. At each interval of the loop,
you’re going to compute the degree of membership that this particular di is in the
merged geometry shown in Figure 12.49.

Because each triangle has a certain height now that was cut off by the original values,
you have to compute the degree of membership with a trapezoid rather than a triangle
(but that’s not too bad):

OFF (0.0)

ON HALF (0.14)

ON FULL (0.16)

Here’s the pseudo-code:

sum = 0.0;
total_area = 0.0;

for (int di = 0; di<=10; di++)
{
// compute next degree of membership and add to
// total area
total_area = total_area + degree_of_membersip(di);

1672313618 CH12 10/26/99 10:48 AM Page 792

CHAPTER 12
Making Silicon Think with Artificial Intelligence

793

// add next contribution of the shape at position di
sum = sum + di * degree_of_membersip(di);

} // end for

// finally compute centroid
centroid = sum/total_area;

1.0

.8

.6

.4

.2

.9

.7

.5

.3

.1

On half

Overlapped composite's average (centroid)

On full

Sub = centroid line = crisp output

1 2

Area A

Area B

3 4 5 6 7 8 9 10

.16
.16

.43.43
Composite area

Area A = Area B

Figure 12.49
Computing the final

crisp output from the
fuzzy centroid.

The thing to remember is that the function degree_of_membership() is taking the
generic values (0..10) and plugging them into the merged output fuzzy manifold,
which results from plugging the following fuzzy values into the output variable and
finding the area of influence of each one:

OFF (0.0)

ON HALF (0.14)

ON FULL (0.16)

As you can see, using the MAX() method sure is a lot easier, and most of the time it
works just as well as the centroid.

As for computing a crisp value for the final output rather than a linear value, that’s
easy. Just use the MAX() method and pigeonhole the output. Or you could select the
output domain to be 0,1,2,3,4 and have exactly five crisp output commands. It’s all
about scale.

1672313618 CH12 10/26/99 10:49 AM Page 793

Hardcore Game Programming

794 PART III

Warm and Fuzzy
That about wraps up the topic of fuzzy logic. The idea of fuzzy logic is simple; it’s
the actual implementation that’s detailed. There’s no demo this time, but look on the
Internet. There are lots of commercial fuzzy logic experimentation programs. They’re
a lot better than anything I can write in 20 minutes, which is all the time I have left to
write this chapter!

Building Real AI for Games
That’s about all there is to the basic AI techniques used in games. I’ve shown you a
few techniques to get you started, but you might not be totally sure about which tech-
niques to use and how to mix different techniques to make new models. Here are
some basic guidelines:

• Use simple deterministic AIs for objects that have simple behaviors, like rocks,
missiles, and so on.

• For objects that are supposed to be smart but are part of the environment rather
than the main action (such as birds that fly around or a space ship that flies by
once), use deterministic AI coupled with patterns and a bit of randomness.

• For your important game characters that interact with the player, you definitely
need FSMs coupled with the other supporting techniques. However, some crea-
tures don’t have to be as smart as others, such as the FSMs for your basic crea-
tures, and they don’t need to have probability distributions for personality
coupled with memory for learning.

• Finally, the main character(s) in the game should be very smart. You should
integrate everything together. The AI should be state-driven, with a lot of condi-
tional logic, probability, and memory for controlling state transitions. In addi-
tion, the AI should be able to change from one state to another if conditions
exist that make the change necessary (even if the state hasn’t come to comple-
tion).

You don’t need to go all out on a randomly moving rock, but for a tank that plays
against the player, you should. A model that works well for me is an AI that has at its
highest level a set of conditionals and probabilities that select states. The states emu-
late a number of behaviors, usually about 5-10. I like to use a memory to track key
elements in the game and make better decisions. Also, I like to throw in random num-
bers in a lot of the decisions, even if they’re totally simple. This adds a little uncer-
tainty to the AI.

1672313618 CH12 10/26/99 10:49 AM Page 794

CHAPTER 12
Making Silicon Think with Artificial Intelligence

795

Next, I definitely like to have scripted patterns available to create the illusion of com-
plex thought. However, again I throw random events in the patterns themselves. For
example, if my AI moved into a pattern state and selected a circle, fine. But some-
times as it’s doing the circle, it makes an egg shape! The point is, people aren’t per-
fect, and sometimes we make mistakes. This quality is very important in game AI, so
coin-tossing helps to shake things up.

Finally, a very complex system can evolve from very simple constituents. In other
words, even though the AI for each individual creature might not be that complex,
their interaction will create an emergent behavioral system that seems to go beyond its
programming. Just look at your own brain, where each cell is hardly aware of itself.
It’s important to help facilitate this with some kind of sharing or merging of informa-
tion between creatures, such as when they get close enough or at specific intervals.
This helps with the sharing of “knowledge” in the simulation.

Summary
This chapter has been an eye-opener, huh? We covered a lot of ground. A lot of weird
stuff, too. Makes you wonder about intelligence, doesn’t it? Anyway, you should have
a good grasp of AI now. Both ad hoc and robust techniques have been covered. We
talked about deterministic algorithms, decision trees, planning, scripting languages,
neural networks, genetic algorithms, and fuzzy logic. And I would venture to say that
you could give any professional game programmer a run for his/her money on the
subject of AI, if not blow them away!

1672313618 CH12 10/26/99 10:49 AM Page 795

1672313618 CH12 10/26/99 10:49 AM Page 796

Playing God: Basic Physics
Modeling

“Follow the white rabbit.”

—Morpheus, The Matrix

There wasn’t a whole lot of physics involved in the video games
in the ’70s and ’80s. For the most part, games were shoot-
’em-ups, search-and-destroy games, adventure games, and so on.
However, beginning with the ’90s and the “3D era,” physics
modeling became much more important. You simply can’t get
away with having objects in games move in non-realistic ways—
the motion of the objects has to at least approximate what you’d
expect in the real world. This chapter covers fundamental
non-calculus-based physics modeling. Then, in the second vol-
ume I’ll cover more rigid, calculus-based 2D and 3D modeling.
Here are the topics you’ll see in this chapter:

• Fundamental laws of physics

• Gravity

• Friction

• Collision response

• Forward kinematics

CHAPTER 13

1772313618 CH13 10/26/99 10:53 AM Page 797

Hardcore Game Programming

798 PART III

• Particle systems

• Playing God

If the universe is just a simulation in some unbelievably advanced computer, God is
one heck of a programmer! The point is, the laws of physics work perfectly at all lev-
els, from the quantum level to the cosmological level. The beauty of physics is that
there aren’t that many laws that govern the whole universe. Granted, our knowledge
of physics and mathematics is that of a Cabbage Patch doll, but we do know enough
to create computer simulations that can fool just about anyone.

Most computer simulations and games that use physics models use models based on
standard Newtonian physics—a class of physics that works reasonably well on motion
and objects that are within reasonable limits of size and mass. That is, speeds much
less than the speed of light, and objects that are much bigger than a single atom, but
much smaller than a galaxy. However, even modeling reality with basic Newtonian-
based physics can take a lot of computing power. A simple simulation like rainfall or
a pool table (if done correctly) would bring a Pentium III+ to its knees.

Nonetheless, we have all seen rainfall and pool games on everything from the Apple
II to the PC. So how did they do it? The programmers of these games understand the
physics that they’re trying to model and within the budget of the system they’re pro-
gramming on, create models that are close enough to what the player would expect in
real life. This programming consists of a lot of tricks, optimizations, and most of all
assumptions and simplifications about the systems that are being modeled. For exam-
ple, it’s a lot easier figuring out how two spheres will react after collision than it is to
calculate the result of the collision of two irregular asteroids, thus a programmer
might approximate all the asteroids in a game with simple spheres (as far as the
physics calculations go).

In a state-of-the-art game, physics would take about 10,000 pages because it’s not
only the physics, but the math that needs to be learned, so I’m just going to cover
some of the most fundamental physics models. From them you should be able to
model everything you need in your first 2D/3D games. Most of this stuff should be
more than familiar from High School physics—or Junior High School!

Fundamental Laws of Physics
Let’s begin our physics journey by covering some of the basic concepts of physics and
the properties of time, space, and matter. These fundamental concepts will give you a
vocabulary to understand the more advanced topics that follow.

1772313618 CH13 10/26/99 10:53 AM Page 798

CHAPTER 13
Playing God: Basic Physics Modeling

799

Mass (m)
All matter has mass. Mass is a measure of how much matter or actual atomic mass
units. It doesn’t have anything to do with weight. Many people have mass and weight
confused. For example, they might incorrectly say that they weigh 75 kilograms (165
pounds) on Earth. First, kilograms (kg) are a metric measure of mass, that is, how
much matter an object has. Pounds is a measure of force, or, more loosely, weight
(mass in a gravity field). The measure of weight or force in the English system is a
pound (lb.) and in the metric system is called a Newton (N). Matter has no weight per
se; it only can be acted upon by a gravitational field to produce what we refer to as
weight. Hence, the concept of mass is a much more pure idea than weight (which
changes planet to planet).

In games, the concept of mass is only used abstractly (in most cases) as a relative
quantity. For example, I might set the spaceship equal to 100 mass units and the aster-
oid equal to 10,000. I could use kilograms, but unless I’m doing a real physics simu-
lation it really doesn’t matter. All I need to know is an object that has a mass of 100
has twice as much matter as an object that has 50 mass units. I’ll revisit mass in a bit
when I talk about force and gravity. Mass is the measure of how much matter an
object is made of and is measured in kilograms in the metric system or—ready for
this—slugs in the English system.

Everything that I am about to say is not entirely true at the quantum or
the cosmological level. However, the statements I’m going to make are
true enough for our discussions. In addition, I’m going to lean toward
the metric system since the English system is about 200 years antiquated
and the only people that use it are the general population of the United
States. The scientific community and the rest of the world all use the
metric system. Seriously; 12 inches to a foot, 3 feet to a yard, 2 yards to
a fathom, 5,280 feet to a mile. Was somebody smoking crack or what?

Warning

Mass is also thought of as a measure of the resistance an object has to
change in its velocity—Newton’s First law. Basically, Newton’s First law
states that an object at rest remains at rest, and an object in motion
remains in motion (at a constant velocity) until an exterior force acts on
the object.

Time (t)
Time is an abstract concept. Think about it. How would you explain time without
using time itself in the explanation? Time is definitely an impossible concept to

1772313618 CH13 10/26/99 10:53 AM Page 799

Hardcore Game Programming

800 PART III

convey without using circular definitions and a lot of hand waving. Luckily, everyone
knows what time is, so I won’t go into it, but I do want to talk about how it relates to
time in a game.

Time in real life is usually measured in seconds, minutes, hours, and so forth. Or if
you need to be really accurate then it’s measured in milliseconds (ms 10-3 seconds),
microseconds (µs 10-6), nano (10-9), pico (10-12), femto (10-15), etc. However, in a
video game (most games), there isn’t a really close correlation to real-time.
Algorithms are designed more around the frame rate than real time and seconds
(except for time modeled games). For example, most games consider one frame to be
one virtual second, or in other words, the smallest amount of time that can transpire.
Thus, most of the time, you won’t use real seconds in your games and your physics
models, but virtual seconds based on a single frame as the fundamental time step.

On the other hand, if you’re creating a really sophisticated 3D game then you proba-
bly will use real time. All the algorithms in the game track in real time, and invariant
of the frame rate, they adjust the motion of the objects so that a tank can move at, say,
100 feet per second even if the frame rate slows down to 2 frames per second or runs
at 60 frames per second. Modeling time at this level of accuracy is challenging, but
absolutely necessary if you want to have ultra-realistic motion and physical events
that are independent of frame rate changes. In any case, we’ll measure time in sec-
onds (s) in the examples or in virtual seconds, which simply means a single frame.

Position (s)
Every object has an (x,y,z) position in 3D space or an (x,y) position in 2D space or an
x in 1D or linear space (also sometimes referred to as an s). Figure 13.1 shows exam-
ples of all these dimensional cases. However, sometimes it’s not clear what the posi-
tion of an object is even if you know where it is. For example, if you had to pick one
single point that locates the position of a sphere then you would probably pick its cen-
ter as shown in Figure 13.2. But what about a hammer? A hammer is an irregular
shape, so most physicists would use its center of mass, or balancing point, as the posi-
tion to locate it, as shown in Figure 13.3.

-y

0

C. 3 Dimensional case

(x, y, z) = (4, 5, -4)

+x-x -5 -4 -3 -2 -1 0

A. 1 Dimensional case

Position x = 3

1 2 3 4 5 6 +x -x -4 -3 -2 -1 -1
-2
-3
-4
-5

-y

0

B. 2 Dimensional case

(x, y) = (4, 2)

1
2
3
4
5
6
+y +y

2 3 4 5 +x -x

-z

+zFigure 13.1
The concept of

position.

1772313618 CH13 10/26/99 10:53 AM Page 800

CHAPTER 13
Playing God: Basic Physics Modeling

801

The concept of position and the physically correct location of the position when it
comes to games is usually rather lax. Most game programmers place a bounding box,
circle, or sphere around all the game objects as shown in Figure 13.4 and simply use
the center of the bounding entity as the center of the object. This works for most
cases, where most of the mass of the object is located at the center of the object by
luck, but if that’s not the case then any physics calculations that use this artificial cen-
ter will be incorrect.

-x

-y

0 (x0, y0, z0)

Center of spere is
center of mass

+y

r

+x

Figure 13.2
Picking the center.

Figure 13.3
Picking the center of

an irregular object.

–y

+y

iron

–x +x

wood

center of mass
(xm, ym, zm)

1772313618 CH13 10/26/99 10:53 AM Page 801

Hardcore Game Programming

802 PART III

The only way to solve the problem is to pick a better center that takes the virtual mass
of the object into consideration. For example, you could create an algorithm that
scanned the pixels making up the object and the more pixels that were in an area, the
more that area would be weighted to be the center. Or if the object is a polygon-based
object then you could attach a weight to each vertex and compute the real center of
mass of the object. Assuming that there are n vertices and each vertex position is
labeled by (xi,yi) with a mass of mI, then the center of mass is

center
center

Truck

Person

center

Asteriod

R

(x0, y0)

(x2, y2)

(x1, y1)Figure 13.4
Collision contour

shapes.

The ∑ fi symbol just means “sum of.” It’s like a for loop that sums the
values fi for each value of i.

Velocity (v)
Velocity is the instantaneous rate of speed of an object and is usually measured in
meters per second (m/s) or in the case of the automobile, miles per hour, or mph.
Whatever units you prefer, velocity is the change in position per change in time.
Stated mathematically in a 1 dimensional case, this reads:

Velocity = v = ds/dt.

1772313618 CH13 10/26/99 10:53 AM Page 802

CHAPTER 13
Playing God: Basic Physics Modeling

803

In other words, the instantaneous change in position (ds) with respect to time (dt). As
an example, say you are driving down the road and you just drove 100 miles in one
hour, then your average velocity would be

v = ds/dt = 100 miles/1 hour = 100 mph.

In a video game the concept of velocity is used all the time, but again the units are
arbitrary and relative. For example, in a number of the demos I have written I usually
move objects at 4 units in the x- or y-axis per frame with code something like the fol-
lowing:

x_position = x_position + x_velocity;
y_position = y_position + y_velocity;

That translates to 4 pixels/frame. But frames aren’t time, are they? Actually, they are
as long as the frame rate stays constant. In the case of 30 fps, which is equal to 1/30th

of a second per frame, the 4 pixels per frame translate to:

Virtual Velocity = 4 pixel / (1/30) seconds
= 120 pixels per second.

Hence, the objects in our game have been moving with velocities measured in
pixels/second. If you wanted to get crazy then you could estimate how many virtual
meters were in one pixel in your game world and perform the computation in
meters/second in cyberspace. In either case, now you know how to gauge where an
object will be at any given time or frame if you know the velocity. For example, if an
object was currently at position x0 and it was moving at 4 pixels/frame, and 30 frames
go by, the object would be at

new position = x0 + 4 * 30 = x0 + 120 pixels.

This leads us to our first important basic formula for motion:

New Position = Old Position + Velocity * Time
= xt = x0 + v*t.

This formula states that an object moving with velocity v that starts at location x0 and
moves for t seconds will move to a position equal to its original position plus the
velocity times the time. Take a look at Figure 13.5 to see this more clearly. As an
example of constant velocity I have created a demo DEMO13_1.CPP|EXE that moves a
fleet of choppers from left to right on the screen.

Before
object at t0

Velocity = V0

t = (t1 — t0)

x0

time = t0 time = t1

x1 = x0 = v0 (t2 — t1)

After
object at t1

Figure 13.5
Constant velocity

motion.

1772313618 CH13 10/26/99 10:53 AM Page 803

Hardcore Game Programming

804 PART III

Acceleration (a)
Acceleration is similar to velocity, but it is the measure of the rate of change of veloc-
ity rather than the velocity itself. Take a look at Figure 13.6; it illustrates an object
moving with a constant velocity and one with a changing velocity. The object moving
with a constant velocity has a flat line (slope of 0) for its velocity as a function of
time, but the accelerating object has a slope of non-zero because its velocity is chang-
ing as a function of time.

I always amaze my friends by telling them how long it will take to get
to an off-ramp or some other location when we’re in the car. The Trick is
simple; just look at the speed and use the fact that at 60 mph it takes 1
minute to go 1 mile. So if the driver is driving 60 and the off ramp is in
2 miles then it will take 2 minutes. On the other hand, if the on ramp is
in 3.5 miles then it would take 3 minutes and 30 seconds. And if the dri-
ver isn’t driving 60 mph then use the closest plus or minus 30 mph. For
example, if they’re going 80 then do you calculations with 90 mph (1.5
miles per minute) and then shrink your answer a bit.

ve
lo

ci
ty

time t

ve
lo

ci
ty

time t

ve
lo

ci
ty

time t

A. Constant velocity (a = 0) B. Acceleration (A = constant) C. Non-constant acceleration
a = f(t)

A = 0
A = slope A = f(t)

Figure 13.6
Velocity versus

acceleration.

Figure 13.6 illustrates constant acceleration. There is also non-constant acceleration.
In this case the line would be a curve in part C of Figure 13.6. Pressing the accelera-
tor in your car will give you the feeling of non-constant acceleration and jumping off
a cliff will give you the feeling of constant acceleration. Mathematically, acceleration
is the rate of change of velocity with respect to time:

Acceleration = a = dv/dt.

The units of acceleration are a little weird. Since velocity is already in units of dis-
tance per second, acceleration is in units of distance per second*second, or in the met-
ric system, m/s2. If you think about this it makes sense because acceleration is the
change of velocity (m/s) per second. Furthermore, our second motion law relates the
velocity, time, and acceleration, which states that the new velocity at some time, t, in

Trick

1772313618 CH13 10/26/99 10:53 AM Page 804

CHAPTER 13
Playing God: Basic Physics Modeling

805

the future equals the starting velocity plus the acceleration times the amount of time
the object has been accelerating for:

New Velocity = Old Velocity + Acceleration * Time
= vt = v0 + a*t.

Acceleration is a fairly simple concept and can be modeled in a number of ways, but
let’s take a look at a simple example. Imagine that an object is located at (0,0) and it
has a starting velocity of 0. If you were to accelerate it at a constant velocity of 2 m/s,
you could figure out the new velocity each second simply by adding the acceleration
to the last velocity, as shown in Table 13.1.

TABLE 13.1 Velocity as a Function of Time for Acceleration 2 m/s2

Time Acceleration Velocity
(t = s) (a = m/s2) (v = m/s)

0 2 0

1 2 2

2 2 4

3 2 6

4 2 8

5 2 10

Taking the data in the table into consideration, the next step is to figure out the rela-
tionship between position, velocity, acceleration, and time. Unfortunately, this takes a
bit of calculus, so I’ll just give you the results in terms of position at some time t:

xt = x0 + v0*t + 1/2*a*t2

This equation states that the position of an object at some time t is equal to its initial
position, plus its initial velocity, times time, plus one half the acceleration, times time
squared. The 1/2*a*t2 term is basically the time integral of the velocity. Let’s see if
you can use the equation in your game world of pixels and frames. Refer to Figure
13.7.

Assume these initial conditions: The object is at x=50 pixels, the initial velocity is 4
pixels/frame, and the acceleration is 2 pixels/frame2. Finally, assume that these are the
conditions at frame 0. To find the position of the object at any time in C/C++, use the
following:

x = 50 + 4*t + (0.5)*2*t*t;

Where t is simply the frame number. Table 13.2 lists some examples for t = 0,1,2…5.

1772313618 CH13 10/26/99 10:53 AM Page 805

Hardcore Game Programming

806 PART III

TABLE 13.2 An Object Moving with Constant Acceleration

Time/Frame (t) Position (x) Delta (x)=xt-xt-1

0 50 0

1 50+4*1+(0.5)*2*12 = 55 5

2 50+4*2+(0.5)*2*22 = 62 7

3 50+4*3+(0.5)*2*32 = 71 9

4 50+4*4+(0.5)*2*42 = 82 11

5 50+4*5+(0.5)*2*52 = 95 13

There’s a lot of interesting data in Table 13.2, but maybe the most interesting data is
the change in position each time the frame is constant and equal to 2. Now this
doesn’t mean that the object moves 2 pixels per frame, it means that the change in
motion each frame gets larger or increases by 2 pixels. Thus on the first frame the
object moves 5 pixels, then on the next frame it moves 7, then 9, 11, then 13, and
so on. And the delta between each change in motion is 2 pixels, which is simply
the acceleration!

ve
lo

ci
ty

 in
 p

ix
el

s/
fr

am
e

2

time in frames

v

1

2

0

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7

1 frame = f

Position of K:

500

50 55 62 71 82 95

70 80 90 100

dt
1

dv 2

slope = acceleration = dv/dt =
2/1 = 2 pixels/frame2

 f f f f f

60

Figure 13.7
An acceleration in

pixels/frame2.

1772313618 CH13 10/26/99 10:53 AM Page 806

CHAPTER 13
Playing God: Basic Physics Modeling

807

The next step is to model acceleration with C/C++ code. Basically, here’s the trick:
you set up an acceleration constant and then with each frame you add it to your veloc-
ity. This way you don’t have to use the long equation shown earlier—you simply
translate your object with the given velocity. Here’s an example:

int acceleration = 2; // 2 pixels per frame
velocity = 0, // start velocity off at 0
x = 0; // start x position of at 0 also

// ...
// then you would execute this code each
// cycle to move your object
// with a constant acceleration

// update velocity
velocity+=acceleration;

// update position
x+=velocity;

Of course this example is one-dimensional. You can upgrade to two
dimensions simply by adding a y position (and y velocity and accelera-
tion if you wish).

Note

To see acceleration in action, I have created a demo named DEMO13_2.CPP|EXE that
allows you to fire a missile that accelerates as it moves forward. Press the spacebar to
fire the missile, the up and down arrow keys to increase and decrease the acceleration
factor, and the A key to toggle the acceleration on and off. Look at the difference
acceleration makes to the motion of the missile and how acceleration gives the missile
a sense of “mass.”

Force (F)
One of the most important concepts in physics is force. Figure 13.8 depicts one way
to think of force. If an object with mass m is sitting on a table with gravity pulling it
toward the center of the Earth, the acceleration is a=g (force of gravity). This gives
the mass m weight and if you try to pick it up you will feel a pain in your lower back.

The relationship between force, mass, and acceleration is Newton’s Second Law:

F=m*a

In other words, the force exerted on an object is equal to its mass times the accelera-
tion of the object. Or, rearranging terms:

a = F/m

1772313618 CH13 10/26/99 10:53 AM Page 807

Hardcore Game Programming

808 PART III

This states that an object will accelerate an amount equal to the force you place on it
divided by its mass. Now let’s talk about the units of measure. But instead of just
blurting it out, let’s see where it comes from in the metric system. Force is equal to
mass times acceleration or kilograms multiplied by m/s2 (m stands for meters, not
mass). Hence, a possible unit of force is

F = kg*m/s2—kilogram–meters per second squared

This is a bit long, so Newton just called it—a Newton (N). As an example, imagine
that a mass m equal to 100 kg is accelerating at a rate of 2 m/s2. The force that is
being applied to the mass is exactly equal to F = m*a = 100 kg * 2 m/s2 = 200N.

This gives you a bit of a feel for a Newton. A 100 kg mass is roughly equivalent to
the force of 220 lbs. on Earth, and 1 m/s2 is a good accelerating run.

In a video game the concept of force is used for many reasons, but a few that come to
mind are

• You want to apply artificial forces like explosions to an object and compute the
resulting acceleration.

• Two objects collide and you want to compute the forces on each.

• A game weapon only has a certain force, but it can fire different virtual mass
shells and you want to find the acceleration the shells would experience when
fired.

Forces in Higher Dimensions
Of course forces can act in all three dimensions, not just in a straight line. For exam-
ple, take a look at Figure 13.9, which depicts 3 forces acting on a particle in a 2D
plane. The resulting force that the particle p “feels” is simply the sum of the forces
that are acting on it. However, in this case it’s not as simple as adding scalar numbers
together since the forces are vectors. Nevertheless, vectors can be decomposed into

normal force, equal and opposite
fn = –m.g

f = m.A = g = Gravity

surface

mass m

gravity
fg = m.g

Net force = fn + fg = –m.g + m.g = 0 .
.
 . no motion

Figure 13.8
Force and weight.

1772313618 CH13 10/26/99 10:53 AM Page 808

CHAPTER 13
Playing God: Basic Physics Modeling

809

their x, y, and z components and then the forces acting in each axis can be computed.
The result is the sum of the forces acting on the particle.

–y

+y

f3

f2

f1

 ft = f1 + f2 + f3

–x +x

0

add forces using vectors

ft
mass m

Figure 13.9
Forces acting on a

particle in 2D.

In the example shown in Figure 13.9 there are three forces; F1, F2, and F3. The final
force Ffinal=<fx, fy> that object p feels is simply the sum of these forces:

fx = f1x + f2x + f3x
fy = f1y + f2y + f3y

Plugging in the values from the example in the figure, you get

fx = (x+x+x) = x.x
fy = (y+y+y) = y.y

With that in mind, it doesn’t take much to deduce that in general the final force F on
an object is just the vector sum of forces, or mathematically:

Ffinal = F1+F2+…+Fn

Where each force Fi can have 1, 2, or 3 components, that is, each vector can be a 1D
(scalar), 2D, or 3D.

Momentum (P)
Momentum is one of those quantities that’s hard to define verbally. It’s basically the
property that objects in motion have. Momentum was invented as a measure of both
the velocity and mass of an object. Momentum is defined as the product of mass (m)
and the velocity (v) of an object:

1772313618 CH13 10/26/99 10:54 AM Page 809

Hardcore Game Programming

810 PART III

P = m*v

And the units of measure are kg*m/s, kilogram–meters per second. Now the cool
thing about momentum is its relationship to force—watch this:

F = m*a

or substituting, p for m:

F = (p*a)/v

But, a = dv/dt, thus:

Or in English, force is the time rate change of momentum per unit time. Hmmm…
interesting. That means if the momentum of an object changes a lot then so must the
force acting on the object. Now here’s the clincher. A pea can have as much momen-
tum as a train—how? A pea may have mass of 0.001 kg and a train have a mass of
1,000,000 kg. But if the train is going 1 m/s and the pea is going 100,000,000,000 m/s
(that’s one fast pea) then the pea will have more momentum:

mpea*vpea = 0.001 kg * 10,000,000,000 m/s = 10,000,000 kg*m/s
mtrain*vtrain = 1,000,000 kg * 1 m/s = 1,000,000 kg*m/s

And thus if either of these objects came to an abrupt stop, hit something for example,
that object would feel a whole lot of force! That’s why a bee hitting you on a motor-
cycle is so dangerous. It’s not the mass of the bee, but the velocity of the bee that gets
you in this example. The resulting momentum is huge and can literally throw a 200-
pound guy off the bike.

I was on an FZR600 one time, going about 155 mph, and a bee hit my
visor. Not only did it crack the visor, but it felt like someone threw a
baseball at me! Lesson to be learned—only speed in designated bee-free
areas!

This brings us to conservation of momentum and momentum transfer.

The Physics of Linear Momentum: Conservation
and Transfer

Now that you have an idea about what momentum is, let’s talk briefly about some of
the physics involved when an object strikes another. Later I will go into true collision
response in more depth, but for now let’s keep it simple.

Note

1772313618 CH13 10/26/99 10:54 AM Page 810

CHAPTER 13
Playing God: Basic Physics Modeling

811

Remember in the game DOOM when you shot a barrel, it would explode and cause
the barrels and/or bad guys in the area to move and/or explode? Wasn’t that cool
splattering a bad guy against a wall! That was just momentum transfer, but believe
me, doing it correctly is no picnic!

In general, if two objects collide there are two things that can happen: a perfectly
elastic collision and a not so perfectly elastic collision. In a perfectly elastic collision,
as shown in Figure 13.10, a ball hits a wall with velocity vi, and when it bounces off it
still has velocity vi.. Thus, the momentum was conserved. Therefore, the collision was
totally elastic. However, in real life this isn’t usually the case. Most collisions aren’t
elastic, they are less than perfect. When collisions that are less than perfectly elastic
occur, some energy is converted into heat, work to deform the objects colliding, etc.
Thus the resulting momentum of the object(s) after collision is less than when the col-
lision started.

A. Before collision

mass = m

wall

p = mvi

|velocity| = vi

vi

B. After collision

mass = m

wall

p = mvi

|velocity| = vi

–vi

Figure 13.10
A perfectly elastic

collision of a ball and
wall.

However, I’m not interested in this kind of imperfect world. Since we are gods of the
virtual world, we might as well make things easy. Hence, I’m going to talk about per-
fectly elastic collisions in 1-dimension right now, then later we’ll do it in 2D and get
medieval with the math! Let’s begin.

Figure 13.11 has two block objects A, B with mass ma and mb and velocity vai and vbi,

respectively. The question is what happens after they hit, assuming no friction (we’ll
get to that later) and a perfectly elastic collision? Well, let’s start with the conserva-
tion of momentum. It states that the total momentum before the collision will be the
same as after the collision. Or mathematically:

Equation 1: Conservation of momentum

ma*vai + mb*vbi = ma*vaf + mb*vbf

1772313618 CH13 10/26/99 10:54 AM Page 811

Hardcore Game Programming

812 PART III

All right, you know ma, mb, vai, and vbi, but you want the final velocities vaf and vbf.
The problem is that you only have one equation and two unknowns. This is obviously
a bad thing. If you knew the velocity of one of the masses, you could figure the other
one out. But, is there a way to figure out both velocities without any further knowl-
edge? The answer is yes! You can use another property of physics to come up with
another equation. The property is the conservation of kinetic energy.

Kinetic energy is like momentum, but is independent of direction. It’s like a magni-
tude of sorts that gauges the amount of total energy that a system has. Now, energy is
the ability to do work and that’s all I’m going to say, we are getting a little too quan-
tum here. However, computing kinetic energy is trivial, the formula is

Equation 2: Kinetic Energy

ke =1/2*m*v2

Momentum was just m*v, so you should see that kinetic energy is very similar, but
it’s always positive and measured in kg*m2/s2, which in the Meter-Kilogram-Second
system we just call Joules (J). The cool part is that the kinetic energy of any system is
always the same before and after a collision, elastic, or not. Of course you would have
to compute the energies lost due to deformation, heat, etc. to account for all the
energy, but when assuming a perfectly elastic collision, the kinetic energy before and
after can be computed by just knowing the velocities of the objects:

Equation 3: Total kinetic energy of collision

_*ma*vai2 + 1/2*mb*vbi2 = 1/2*ma*vaf2 + 1/2*mb*vbf2

Combining this with equation 1 results in:

ma*vai + mb*vbi = ma*vaf + mb*vbf
_*ma*vai2 + _*mb*vbi2 =1/2*ma*vaf2 + 1/2*mb*vbf2

At this point, you have two equations and two unknowns and both vaf and vbf can be
computed; however, the math is rather complex, so I will just give you the results:

vai

ma mb

vbi

A. Before collision

vaf

ma mb

vbf

B. After collision

momentum is conserved

mavai + mbvbi = mavaf + mavbf

Figure 13.11
The collision response

of two blocks in 1D.

1772313618 CH13 10/26/99 10:54 AM Page 812

CHAPTER 13
Playing God: Basic Physics Modeling

813

Equation 4: The final velocities of each ball

vaf = (2*mb*vbi + vai*(ma – mb))/(ma + mb)
vbf = (2*ma*vai - vbi*(ma – mb))/(ma + mb)

Finally, referring back to Figure 13.11, you can figure out the final velocities after the
collision of the blocks:

ma = 2 kg
mb = 3 kg

vai = 4 m/s
vbi = -2 m/s

Therefore,

vaf = (2*3*(-2) + 4*(2 – 3))/(2 + 3)
= (2*mb*vbi + vai*(ma – mb))/(ma + mb)
= 1.6 m/s

vbf = (2*ma*vai - vbi*(ma – mb))/(ma + mb)
= (2*2*4 – (-2)*(2 – 3))/(2 + 3)
= 2.4 m/s

Interestingly enough, object A had so much momentum it turned object B around and
they both went off in the positive X direction as shown in part B of Figure 13.11.

What you just did shows how to use momentum and kinetic energy to help solve
kinetic/dynamic problems. However, they get much more complex in 2 and 3 dimen-
sions. The study of such collisions is called collision response, and it’s covered later
in the chapter, along with the complete 2D results for perfect and imperfect collisions!
For now, though, just think about momentum.

Modeling Gravity Effects
One of the most common effects that a game programmer needs to model in a game is
that of gravity. Gravity is the force that attracts every object in the universe to every
other. It is an invisible force and unlike magnetic fields can’t be blocked.

In reality, gravity isn’t really a force. That’s simply how we perceive it. Gravity is
caused by the curvature of space. When any object is positioned in space it creates a
bending of the surrounding space, as shown in Figure 13.12. This bending creates a
potential energy difference and hence any object near the gravity well “falls down”
toward the object—weird, huh? That’s really what gravity is. It’s a manifestation of
the bending of the space-time fabric.

1772313618 CH13 10/26/99 10:54 AM Page 813

Hardcore Game Programming

814 PART III

You won’t need to worry about space-time curvature and what gravity really is; you
just want to model it. There are really two cases that you need to consider when mod-
eling gravity, as shown in Figure 13.13:

• Case 1: Two or more objects with relatively the same mass.

• Case 2: Two objects where the mass of one object is much greater than the
other.

normal space-time

no mass present

curved space-timeFigure 13.12
Gravity and space-

time.

m1 ~ m2~

A. Relatively the same mass

m1 m2

m1 >> m2

B. One mass is much larger than
 the other

m2

m1

Figure 13.13
The two general cases

of gravity.

Case 2 is really a sub-case of Case 1. For example, in school you may have learned
that if you drop a baseball and a refrigerator off a building they both fall at the same
rate. The truth of the matter is they don’t, but the difference is so infinitesimal (on the
order 10-24) that you could never see the difference. Of course, there are other forces
that might make a difference, like wind shear and friction, hence a baseball is going
to fall faster than a piece of paper because the paper is going to feel a lot of wind
resistance.

Now that you know a little bit about what gravity is, let’s take a look at the math
behind it. The gravitational force between any two objects with mass m1 and m2 is

F = G*m1*m2 / r2.

1772313618 CH13 10/26/99 10:54 AM Page 814

CHAPTER 13
Playing God: Basic Physics Modeling

815

where G is the gravitational constant of the universe equal to 6.67x10-11 N*m2 * kg -2.
Also, the masses must be in kilograms and the distance r in meters. Say that you want
to find out what the gravitational attraction is between two average sized people of 70
kg (155 lbs.) at a distance of 1 meter:

F = 6.67x10-11*70kg*70kg/(1 m)2 = 3.26x10-7 N.

That’s not much is it? However, let’s try the same experiment with a person and the
planet Earth at 1 meter given that the Earth has a mass of 5.98×1024 kg:

F = 6.67x10-11*70 kg*5.98x1024 kg/(1 m)2 = 2.79x1016 N.

Obviously, 1016 Newtons would crush you into a pancake, so you must be doing
something wrong. The problem is that you’re assuming that the Earth is a point mass
that is 1.0 meters away. A better approximation would be to use the radius of the
Earth (the center of mass) as the distance, which is 6.38×106 m:

You may assume that any spherical mass of radius r is a point mass as
long as the matter the sphere is made of is homogenous and any
calculations must place the other object at a distance greater than or
equal to r.

F = 6.67x10-11 * 70 kg * 5.98x1024 kg / (6.38x106 m)2

= 685.93 N.

Now that seems more reasonable. As a sanity check, on Earth 1 lb. is equal to 4.45 N,
so converting the force to lbs. produces

685.93 N / (4.45 N / 1 lb.) = 155 lbs.

And this was the starting weight! Anyway, now that you know how to compute the
force between two objects you can use this simple model in games. Or course, you
don’t have to use the real gravity constant G = 6.67×10-11, you can use whatever you
like—remember, you are god. The only thing that’s important is the form of the equa-
tion that states that the gravity between two objects is proportional—to a constant
times the product of their masses divided by the distance squared between the objects’
centers.

Modeling a Gravity Well
By using the formulation explained in the preceding section, you might, say, model a
black hole in a space game. For example, you might have a ship that is flying around
on the screen near a black hole, and want the ship to get sucked in if it gets too close.
Using the gravitational equation is a snap. You would make up a constant G that
worked well in the virtual game world (based on screen resolution, frame rate, etc.)

1772313618 CH13 10/26/99 10:54 AM Page 815

Hardcore Game Programming

816 PART III

and then simply set an arbitrary mass for the ship and one for the black hole that was
much larger. Then you would figure out the force and convert the force to acceleration
with F=m*a. You would simply vector or fly the ship directly toward the black hole
each frame. As the ship got closer the force would increase until the player couldn’t
get free!

As an example of a black hole simulation (which is nothing more than two masses,
one much larger than another) take a look at DEMO13_3.CPP|EXE. It’s a space simulator
that allows you to navigate a ship around the screen, but there’s a black hole in the
middle that you have to deal with! Use the arrows keys to control the ship. Try to see
if you can get into an orbit!

The next use of gravity in games is to simply make things fall from the sky or off
buildings at the proper rate. This is really the special case that we talked about before,
that is, one object has a mass much greater than the other. However, there’s one more
constraint and that is that one object is fixed—the ground. Take a look at Figure
13.14; it depicts the situation that I’m describing.

mass 2
Restrained: Earth for Example

mass
1

Gravity field

Gravity field (Gravitons)

Unrestrained object

f = G . m1
.
 m2 = negligible

 R2

f = m . a = m . g

Figure 13.14
Gravitational

attraction.

1772313618 CH13 10/26/99 10:54 AM Page 816

CHAPTER 13
Playing God: Basic Physics Modeling

817

In this case, there are a number of assumptions that we can make that will make the
math work out simpler. The first is that the acceleration due to gravity is constant for
the mass that is being dropped, which is equal to 9.8 m/s2 or 32 ft/s2. Of course, this
isn’t really true, but is true to about 23 decimal places. If we know that the accelera-
tion of any object is simply 9.8 m/s2 then we can just plug that into our old motion
equation for velocity or position. Thus, the formula for velocity as a function of time
with Earth gravity is

V(t) = v0 + 9.8 m/s2*t.

And position is

y(t) = y0 + v0*t + 1/2 * 9.8m/s2 * t2.

In the case of a ball falling off a building we can let the initial position x0 be equal to
0 and the initial velocity v0 also equal 0. This simplifies the falling object model to:

y(t) = 1/2 * 9.8m/s2 * t2.

Furthermore, you are free to change the constant 9.8 to anything you like and t repre-
sents the frame number (virtual time) in a game. Taking all that into consideration,
here’s how you would make a ball fall from the top of the screen:

int y_pos = 0, // top of screen
y_velocity = 0, // initial y velocity
gravity = 1, // do want to fall too fast

// do gravity loop until object hits
// bottom of screen at SCREEN_BOTTOM
while(y_pos < SCREEN_BOTTOM)

{
// update position
y_pos+=y_velocity;

// update velocity
y_velocity+=gravity;
} // end while

I used the velocity to modify the position rather than modifying the
position directly with the position formula. This is simpler.

You may be asking how to make the object fall with a curved trajectory. This is
simple—just move the x position at a constant rate each cycle and the object will
seem like it was thrown off rather then just dropped. The code to do this follows:

Tip

1772313618 CH13 10/26/99 10:54 AM Page 817

Hardcore Game Programming

818 PART III

int y_pos = 0, // top of screen
y_velocity = 0, // initial y velocity
x_velocity = 2, // constant x velocity
gravity = 1, // do want to fall too fast

// do gravity loop until object hits
// bottom of screen at SCREEN_BOTTOM
while(y_pos < SCREEN_BOTTOM)

{
// update position
x_pos+=x_velocity;
y_pos+=y_velocity;

// update velocity
y_velocity+=gravity;
} // end while

Modeling Projectile Trajectories
Falling objects are fairly exciting, but let’s see if we can do something a little more
appropriate for video game programming! How about computing trajectory paths?
Take a look at Figure 13.15, which shows the general setup for the problem. We have
a ground plane, call it y=0, and a tank located at x=0, y=0, with a barrel pointed at an
angle of inclination θ (theta) with the x-axis. The question is, if we fire a projectile
with mass m at a velocity vI, what will happen?

xhit = vix . viy/g

Tank

+y

+x

Angle of inclination

vi
vix = vi . cos 0

viy = vi . sin 0

g = gravity, 9.8m/s2

 32 ft/s2

vy = 0 at apex
t = viy . sin
 g

0

0

Figure 13.15
The trajectory

problem.

We can solve the problem by breaking it up into its x,y components. First, let’s break
the velocity into an (x,y) vector:

Vix = V*cos θ
Viy = V*sin θ

1772313618 CH13 10/26/99 10:54 AM Page 818

CHAPTER 13
Playing God: Basic Physics Modeling

819

Trust me.

Okay, now forget about the x part for a minute, and think about the problem. The pro-
jectile is going to go up and down and hit the ground. How long will this take? Take a
look at our previous gravity equations:

V(t) = v0 + 9.8 m/s2*t.

The position for the y-axis is

y(t) = y0 + v0*t + 1/2 * 9.8m/s2 * t2.

The first one tells us the velocity relative to time. That’s what we need. We know that
when the projectile reaches its maximum height, the velocity will be equal to 0.
Furthermore, the amount of time that the projectile takes to reach this height will be
the same amount of time it takes to fall to the ground again. Take a look at Figure
13.15. Plugging in our values for initial y velocity of our projectile and solving for
time t, we have

Vy(t) = Viy - 9.8 m/s2*t

Note that I flipped the sign of the acceleration due to gravity because down is nega-
tive and matters in this case, and in general, when the velocity equals 0:

0 = V*sin θ - a*t (a is just the acceleration)

Solving for time t, we get

t = Viy * (sin θ)/a

Now the total time of flight is just time up + time down which equals t+t=2*t since
the projectile must go up, then down. Therefore, we can revisit the x component now.
We know that the total flight time is 2*t and we can compute t from (Viy * (sin θ)/a).
Therefore, the distance that the projectile travels in the x-axis is just:

X(t) = vix*t

Plugging in our values, this results in

xhit = (V*cos θ) * (V*(sin θ)/a)

or

xhit = Vix * Viy/a

Neat, huh?

1772313618 CH13 10/26/99 10:54 AM Page 819

Hardcore Game Programming

820 PART III

That’s the physics behind everything, but how do you model it in a program? Well, all
you do is apply constant x-axis velocity to the projectile and gravity in the y-axis and
test for when the projectile hits the ground or something else. Of course, in real life
the X and Y velocities would diminish due to air resistance, but throwing that out the
algorithm I just described works great. Here’s the code to do it:

// Inputs
float x_pos = 0, // starting point of projectile

y_pos = SCREEN_BOTTOM, // bottom of screen
y_velocity = 0, // initial y velocity
x_velocity = 0, // constant x velocity
gravity = 1, // do want to fall too fast
velocity = INITIAL_VEL, // whatever
angle = INITIAL_ANGLE; // whatever, must be in radians

// compute velocities in x,y
x_velocity = velocity*cos(angle);
y_velocity = velocity*sin(angle);

// do projectile loop until object hits
// bottom of screen at SCREEN_BOTTOM
while(y_pos < SCREEN_BOTTOM)

{
// update position
x_pos+=x_velocity;
y_pos+=y_velocity;

// update velocity
y_velocity+=gravity;
} // end while

That’s all there is to it! If you want to add a wind force, just model it as a small accel-
eration in the direction opposing the X-motion, and assume that the wind force creates
a constant acceleration against the projectile. As a result, you simply need to add this
line of code in the projectile loop:

x_velocity-=wind_factor;

Where wind_factor would be something like 0.01—something fairly small.

As a demo of all this trajectory stuff, check out DEMO13_4.CPP|EXE on the CD.
A screen shot is shown in Figure 13.16. The demo allows you to aim a virtual
cannon and fire a projectile.

Note that I replaced the 9.8 value of acceleration with a. I did this to re-
enforce that the acceleration is just a number, and you can make it
whatever you wish.

1772313618 CH13 10/26/99 10:54 AM Page 820

CHAPTER 13
Playing God: Basic Physics Modeling

821

Here are the controls:

Key Action

Up, down Controls the angle of the tank’s cannon.

Right, left Controls the velocity of the projectile.

G, B Controls the gravity.

W, E Controls the wind speed.

Ctrl Fires the cannon!

The Evil Head of Friction
The next topic of discussion is friction. Friction is any force that retards or consumes
energy from another system. For example, automobiles use internal combustion to
operate; however, a whopping 30–40 percent of the energy that is produced is eaten
up by thermal conversion or mechanical friction. On the other hand, a bicycle is about
80–90 percent efficient and is probably the most efficient mode of transportation in
existence.

Basic Friction Concepts
Friction is basically resistance in the opposite direction of motion and hence can be
modeled with a force usually referred to as the frictional force. Take a look at Figure
13.17; it depicts the standard frictional model of a mass m on a flat plane.

Figure 13.16
The projectile demo.

1772313618 CH13 10/26/99 10:54 AM Page 821

Hardcore Game Programming

822 PART III

If you try to push the mass in a direction parallel to the plane you will encounter a
resistance or frictional force that pushes back against you. This force is defined math-
ematically as:

Ffstatic = m*g*µs.

where m is the mass of the object, g is the gravitational constant (9.8 m/s2) and µs is
the static frictional coefficient of the system that depends on the conditions and mate-
rials of the mass and the plane. If the force F you apply to the object is greater than
Ff, then the object will begin to move. Once the object is in motion its frictional coef-
ficient usually decreases to another value, which is referred to as the coefficient of
kinetic friction, µk.

Ffkinetic = m*g*µk.

When you release the force, the object slowly decelerates and comes to rest because
friction is always present.

To model friction on a flat surface all you need do is apply a constant negative veloc-
ity to all your objects that is proportional to the friction that you want.
Mathematically, this is

Velocity New = Velocity Old - friction.

Figure 13.17
Basic friction model.

f static

n = –m . g

w = m . g

f push

v = 0

f static = µs . n

A. Static case, no motion

m

f kinetic

n = –m . g

w = m . g

f push

v > 0

f kinetic = µk . n ≤ ms
. n

B. Kinetic case, block is moving

m

1772313618 CH13 10/26/99 10:54 AM Page 822

CHAPTER 13
Playing God: Basic Physics Modeling

823

The result is objects that slow down at a constant rate once you stop moving them. Of
course, you have to watch out for letting the sign of the velocity go negative or in the
other direction, but that’s just a detail. Here’s an example of an object that is moved to
the right with an initial velocity of 16 pixels per frame and then slowed down at a rate
of 1 pixel per frame due to virtual friction:

int x_pos = 0, // starting position
x_velocity = 16, // starting velocity
friction = -1; // frictional value

// move object until velocity <= 0
while(x_velocity > 0)

{
// move object
x_pos+=x_velocity;

// apply friction
x_velocity+=friction;
} // end while

The first thing you should notice is how similar the model for friction is to gravity.
They are almost identical. The truth is that both gravitational forces and frictional
forces act in the same way. In fact, all forces in the universe can be modeled in the
exact same way. Also, you can apply as many frictional forces to an object as you
want. Just sum them up.

As an example of friction I have written a little air hockey demo named
DEMO13_5.CPP|EXE, shown in Figure 13.18. The program lets you fire a hockey puck
on a virtual air hockey table in a random direction every time you press the spacebar.
The puck then bounces around off the borders of the table until it comes to rest due to
friction. If you want to change the frictional coefficient of the table, use the arrow
keys. See if you can add a paddle and a computer controlled opponent to the simula-
tion!

Friction on an Inclined Plane (Advanced)
That wasn’t too bad huh? The bottom line is that friction can be modeled as a simple
resistive force or a negative velocity on an object each cycle. However, I want to show
you the math and derivation of friction on an inclined plane since this will give you
the tools you need to analyze much more complex problems. Be warned, though: I’m
going to use a lot of vectors, so if you’re still rusty or having trouble then take a look
back when I talked about them in Chapter 8, “Vector Rasterization and 2D
Transformations,” or pick up a good linear algebra book.

1772313618 CH13 10/26/99 10:54 AM Page 823

Hardcore Game Programming

824 PART III

Figure 13.19 shows the problem we’re trying to solve. Basically, there is a mass m on
an inclined plane. The plane has frictional coefficients µs and µk for the static and
kinetic (moving) cases respectively. The first thing we need to do is write the formulas
that describe the mass in its equilibrium position, that is, not moving. In this case, the
sum of the forces in the x-axis are 0 and the sum of the forces in the y-axis are 0.

To begin the derivation we must first touch on a new concept called the normal force.
This is nothing more than the force that the inclined plane pushes the object back
with, or in other words, if you weigh 200 lbs., then there is a normal force of –200
lbs. pushing back (due to the surface tension of ground you’re standing on) at you. We
usually refer to the normal force as η, and it is equal in magnitude to

Figure 13.18
The hockey demo.

y1 n

+y

m . g . sinθ

m . g . cosθ
m . g = w

x1

Block/plane coordinate system

+x

m

±x

θ

θ

Figure 13.19
The inclined plane

problem.

1772313618 CH13 10/26/99 10:54 AM Page 824

CHAPTER 13
Playing God: Basic Physics Modeling

825

η = m*g.

Interesting huh? But if you lay a coordinate system down, then the gravity force must
be opposite the normal force, or

η - m*g = 0.

This is why everything doesn’t get sucked into the ground. Okay, now that we know
that, let’s derive the motion equations of this block mass. First, we lay down an x,y
coordinate system on the incline plane with +X parallel to the plane and in the down-
ward sliding direction; this helps the math. Then we write the equilibrium equations
for the x and y axes. For the x-axis we know that the component of gravity pushing
the block is

force due to gravity = m*g*sin θ.

And the force due to friction holding the block from sliding is

force due to friction = -η*µs.

The negative sign is because the force acts in the opposite direction. When the object
isn’t sliding we know that the sum of these forces are equal to 0. Mathematically, we
have

force due to gravity + force due to friction = 0

Or, the sum of forces in the x-axis is

∑ Fx = m*g*sin θ - η*µs = 0.

We have to do the same for the y-axis, but this is fairly easy because the only forces
are the weight of gravity and the normal force:

∑ Fy = η - m*g*cos θ

Note that I use sine and cosine to resolve the x,y components of the
force. I’m basically just breaking the force vectors into components,
nothing more.

All right, so all together we have

∑ Fx = m*g*sin θ - η*µs = 0.
∑ Fy = η - m*g*cos θ = 0.

But, what is η? From ∑ Fy, we once again see that:

η - m*g*cos θ = 0.

1772313618 CH13 10/26/99 10:54 AM Page 825

Hardcore Game Programming

826 PART III

Hence,

η = m*g*cos θ,

therefore we can write:

∑ Fx = m*g*sin θ - (m*g*cos θ)*µs = 0.

This is what we need. From it we can derive the following results:
m*g*sin θ = (m*g*cos θ)*µs

µs = (m*g*sin θ)/(m*g*cos θ) = tan θ

Or canceling out the m*g and replacing sin/cos by tan,

θcritical = tan-1 µs

Now listen carefully. This tells us that there is an angle called the critical angle
(θcritical) at which the mass starts to slide. It is equal to the inverse tangent of the static
coefficient of friction. If we didn’t know the frictional coefficient of a mass and some
incline plane, we could find it this way by tilting the plane until the mass starts to
move. But this doesn’t help us with the x-axis, or does it? The equation tells us that
the mass won’t slide until the angle θcritical is reached. When it is reached the mass will
slide governed by:

∑ Fx = m*g*sin θ - (m*g*cos θ)*µs

Well, almost… There is one detail. When the mass starts to slide, the difference is
m*g*sin θ - (m*g*cos θ)*µs > 0, but in addition we need to change the frictional
coefficient to µk (the coefficient of kinetic friction) to be totally correct!

Fx = m*g*sin θ - (m*g*cos θ)*µk

You can just average µk and µs and use that value in all the calculations.
Because you’re making video games and not real simulations, it doesn’t
matter if you oversimplify the two frictional cases into one, but if you
want to be correct, you should use both frictional constants at the
appropriate times.

With all that in mind let’s compute the final force along the x-axis. We know that
F=m*a, therefore:

Fx = m*a = m*g*sin θ - (m*g*cos θ)*µk

And dividing by m we get:

a = g*sin θ - (g*cos θ)*µk

a = g*(sin θ - µk*cos θ)

Trick

1772313618 CH13 10/26/99 10:54 AM Page 826

CHAPTER 13
Playing God: Basic Physics Modeling

827

You can use this exact model to move the block mass, that is, each cycle you can
increase the velocity of the block in the positive X-direction by g*(sin θ - µk*cos θ).
There’s only one problem: This solution is in our rotated coordinate system! There’s a
trick to getting around this: You know the angle of the plane, and hence you can fig-
ure out a vector along the downward angle of the plane:

xplane = cos θ
yplane = -sin θ

Slide_Vector = (cos θ, -sin θ)

The minus sign is on the Y-component because we know it’s in the –Y direction. With
this vector we can then move the object in the correct direction each cycle—this is a
hack, but it works. Here’s the code to perform the translation and velocity tracking:

// Inputs
float x_pos = SX, // starting point of mass on plane

y_pos = SY,
y_velocity = 0, // initial y velocity
x_velocity = 0, // initial x velocity
x_plane = 0, // sliding vector
y_plane = 0,
gravity = 1, // do want to fall too fast
velocity = INITIAL_VEL, // whatever

// must be in radians and it must be greater
// than the critical angle
angle = PLANE_ANGLE, // compute velocities in x,y

frictionk = 0.1; // frictional value

// compute trajectory vector
x_plane = cos(angle);
y_plane = sin(angle); // no negative since +y is down

// do slide loop until object hits
// bottom of screen at SCREEN_BOTTOM
while(y_pos < SCREEN_BOTTOM)

{
// update position
x_pos+=x_velocity;

y_pos+=y_velocity;

// update velocity
x_vel+=x_plane*gravity*(sin(angle) - frictionk *cos(angle));
y_vel+=y_plane*gravity*(sin(angle) - frictionk *cos(angle));

} // end while

The point of physics modeling sometimes is just to understand what the underlying
physics are so you can model them in a somewhat convincing manner. In the case of

1772313618 CH13 10/26/99 10:54 AM Page 827

Hardcore Game Programming

828 PART III

the incline plane, basically all that math just boiled down to the concept that accelera-
tion is a function of the angle (we knew this from common sense). However, in
Volume II of the book I’m going to cover much more realistic physics using numeri-
cal integration, and in those cases, you need to know the real models and real forces
on everything.

Basic Ad Hoc Collision Response
As I explained earlier in the chapter, two kinds of collisions exist: elastic and non-
elastic. Elastic collisions are collisions where both kinetic energy and momentum are
conserved in the colliding objects while non-elastic collisions don’t conserve these
values and energy is converted to heat and/or used for mechanical deformations.

Most video games don’t even try to mess with non-elastic collisions and stick to sim-
plified elastic collisions since they themselves are hard enough to compute. Before I
show you the real way to do it let’s use the other side of our brains. Game program-
mers that don’t know anything about elastic or inelastic collisions have been faking
collisions for years and we can do the same.

Simple x,y Bounce Physics
Take a look at Figure 13.20. It depicts a fairly common collision problem in games,
that is, bouncing an object off the boundaries of the screen. Given the object has ini-
tial velocity (xv,yv), the object can hit any of the 4 sides of the screen. If one object
collides with another object that has mass much greater than the colliding object, then
the collision is much simplified since we only need to figure out what happened to the
single object that’s doing the colliding rather than two objects. A pool table is a good
example of this. The balls have very small mass in comparison to the pool table.

When a ball hits one of the sides then it always reflects off the side at an angle equal
and opposite to its initial trajectory, as shown in Figure 13.20. Thus all we need to do
to bounce an object off a pool table-like environment that consists of hard edges that
have large mass is to compute the normal vector direction, the direction that the object
struck at, and then reflect the object at the same angle as shown in Figure 13.21.

Although this isn’t as complex as the general elastic collision, it still takes a bit of
trigonometry, so there’s got to be a simpler way! And of course there is. The trick is
to understand the physics model that you’re trying to model. Then the idea is to see if
you can solve the problem in some other way since you have exact knowledge of all
the conditions. Here’s the trick: Instead of thinking in terms of angles and all that,
think in terms of results. The bottom line is if the object hits a wall to the east or west

1772313618 CH13 10/26/99 10:54 AM Page 828

CHAPTER 13
Playing God: Basic Physics Modeling

829

then you want to reverse its X velocity while leaving its Y velocity alone. And simi-
larly on the north and south walls, you want to reverse the Y velocity and leave the X
velocity alone. Here’s the code:

// given the object is at x,y with a velocity if xv,yv
// test for east and west wall collisions
if (x > EAST_EDGE || x < WEST_EDGE)

xv=-xv; // reverse x velocity

// now test for north and south wall collisions
if (y > SOUTH_EDGE || y < NORTH_EDGE)

yv=-yv; // reverse y velocity

mass mnormal vectors

Rectangular containment volume

Angle of reflectant equals
angle of incidence

θ1 θ1

θ2

θ2

θ3 θ3 θf θi

θi = θf

Figure 13.20
The bouncing ball.

Figure 13.21
Bouncing a ball off an

irregular object with
flat facets.

Normal vectors

Polygon contour

Ball: mass m

θi = θf

θf

θi

Vi = VfVf

Vi

1772313618 CH13 10/26/99 10:55 AM Page 829

Hardcore Game Programming

830 PART III

And amazingly the object will bounce off the walls. Of course, this simplification
only works well for horizontal and vertical barriers. You’ll have to use the more gen-
eral angle calculation for walls or barriers that aren’t co-linear with the x and y axes.

If you want to use the preceding technique as a quick cheat to make
objects bounce off of each other, simply assume that each object is a
bounding rectangle from the other object’s point of view. Enact the
collision and then re-compute the velocities. Figure 13.22 illustrates this.

As an example of using these techniques, I have created a demo named
DEMO13_6.CPP|EXE that models a pool table with balls that never stop bouncing.
Figure 13.23 shows a screen shot of the game in action. Note that when running the
simulation the balls don’t hit each other, just the edges of the pool table.

Computing the Collision Response with Planes of Any
Orientation

Using rectangles as bounding collision volumes works okay if you write pong games,
but this is the 21st century, baby, and we need just a little bit more! What we need to
do is derive the reflection equations for a vector reflecting off a flat plane. This is
shown in part A of Figure 13.24 in 2D (the 3D case is the same). To solve the prob-
lem first we have to make an assumption about what will happen when an object
that’s very small and perfectly elastic hits a wall. I think we can already come to the
conclusion that it will bounce off the wall at the same angle it arrived at. Therefore,
the angle of reflection (the angle of departure by the object after the collision) equals
the angle of incidence (the incoming angle before the collision) relative to the normal,
or perpendicular to the wall. Now, let’s see the math…

Object 1
Irregular

A. Before collision

V

Object 2
Regular

Object 2 Object 1

Bounding box
used for collision

B. After collision

θi = θf

θf

θi

V

Figure 13.22
A simple cheat

for object-to-object
collisions.

Trick

1772313618 CH13 10/26/99 10:55 AM Page 830

CHAPTER 13
Playing God: Basic Physics Modeling

831

Solving the problem requires nothing more than a vector geometry construction, but
it’s not totally trivial.

Figure 13.23
Simple collision pool

table model.

A. The abstract problem B. The reflectance problem labeled

Collision plane (3D), line (2D)

n’: unit normal vector

P

N

F = ?
I

L

F = 2 . N + I

N = (—I . N’) N’

Figure 13.24
The vector reflection

problem illustrated.

If you ever try to get a game programming job, I can almost guarantee
they will ask you this question on the interview because it’s deceptively
complex. Luckily, you can just read this section and blurt out the answer,
and they’ll think you’re a genius! Let’s get started.

Tip

1772313618 CH13 10/26/99 10:55 AM Page 831

Hardcore Game Programming

832 PART III

Part B of Figure 13.24 depicts the problem. Note that there isn’t an x,y axis. It’s
unnecessary since we’re using vectors and I want the problem to be totally general.

The problem can be stated like this:

Given the initial vector direction I and the normal to the plane N’, find F.

Before we get crazy, let’s talk about the normal vector. The normal vector N’ is just
the normalized version of P, but what is P? N is just the perpendicular to the plane or
line that the ball is hitting that we want the ball to bounce off of. We can determine P
in a number of ways; we might have pre-computed it and stored it in a data structure
or we can figure it out on-the-fly.

There are a number of ways to do this depending on the representation of the “wall.”
If the wall is a plane in 3D then we can extract P based on the point-normal form of a
plane:

nx(x – x0) + ny(y – y0) + nz(z – zo) = 0

The normal vector is just P=<nx, ny, nz>. To make sure the normal is normalized or a
unit vector then you divide each element by the total length—remember?

N’ = <nx, ny, nz >/|P|

Where |P| is the length and is computed like this:

|P| = sqrt(nx2 + ny2 + nz2)

In general, the length of a vector is the square root of the sum of squares of its com-
ponents.

On the other hand if your collision line is a line in 2D or a segment then you can
compute the normal or perpendicular by finding any vector that is perpendicular to
the line. Thus if the line is in the form of 2 endpoints in 2D as shown in Figure 13.25
like this:

Given: p1(x1,y1), p2(x2,y2)

The vector from p1 to p2 (remember endpoint minus initial) is

V12 = <x2 – x1, y2 – y1> = <vx, vy>

The perpendicular can be found with this trick:

P12 = <nx, ny> = <-vy, vx>

1772313618 CH13 10/26/99 10:55 AM Page 832

CHAPTER 13
Playing God: Basic Physics Modeling

833

This trick is based on the definition of dot product, which states that a vector dotted
with its normal equals 0, thus:

V12 . N12 = 0
<vx, vy> . <nx, ny> = 0

or

vx*nx + vy*ny = 0

And what makes this true is nx = -vy, ny = vx:

vx*(-vy) + vy*(vx) = -vx*vy+vx*vy = 0

Nice, huh?

All right, so you know how to get the normal vector and of course you need to nor-
malize it and make sure it has length 1.0, so N’, = P/|P| which is equal to:

N’ = <-vy, vx>/sqrt((-vy)2 + vx2)

Now back to the derivation… At this point we have the normal vector N’, which
shouldn’t be confused with N in the figure since N is along N’, but not related to the
length of P in any way. N is the projection of I along N’. Okay, that sounds like
voodoo—and it is. A projection is like a shadow. If I were to shine light from the left
side of the figure in the left to right direction then N would be the shadow or projec-
tion that I casts on the N’ axis. This projection is the N we need. Once we have N
then we can find F with a little vector geometry. First, here’s N:

N = (-I . N’)*N’

n12 = (–3, 5)

perpendicular

+y

–y

–x +x

5

P1(x1, y1) = (0, 0)

P2(x2, y2) = (5, 3)

v12 = p2 – p1 = (5, 3) – (0, 0) = (5, 3) = (vx, vy)

–3

line

n12 = (–vy, vx)
= (–3, 5)

Figure 13.25
Computing the per-
pendicular to a line.

1772313618 CH13 10/26/99 10:55 AM Page 833

Hardcore Game Programming

834 PART III

This states that N (which is the vector projection of I on N’) is equal to the dot prod-
uct of –I and N’ and then multiplied by the vector N’. Let’s take this apart in two
chunks. First the term (-I . N’) is just a scalar length like 5; it’s not a vector. This is a
handy thing about dot products: If you want to find the shadow of one vector (projec-
tion) then you can dot it with the unit version of the vector in question, thus you can
resolve the components of a vector into any direction you want. Basically, you can
ask, “What’s R in the V’ direction?” Where V’ is normalized. Therefore, the first
part (-I . N’) gives you a number (the –1 is just to flip the direction of I). But, you
need a vector N, so all you do is multiply the number by the unit vector N’ (vector
multiplication) and, whammo, you have N.

Once you have N it’s all bedrock, baby, just do some vector geometry and you can
find F:

L = N + I

and

F = N + L

substituting L into F,

F = N + (N + I)

Therefore,

F = 2*N + I

Burn that last line into your skull. It could be the difference between Burger King and
DreamWorks Interactive—right, Rich?

An Example of Vector Reflection
When I used to study mathematics, I used to read things like “R is a closed ring with
an isomorphism on Q’s kernel.” I wouldn’t be as nutty as I am today if they just gave
me an example once in a while! Alas, I don’t want you to end up running naked in the
streets with a cape—one naked super hero game programmer is enough, so let’s try a
real example.

Figure 13.26 shows the setup of the problem. I have made the bounce plane co-linear
with the x-axis to make things easier.

The initial velocity vector of our object is I=<4,-2>, N’=<0,1>, and we want to find
F. Let’s plug everything into our equation:

F = 2*N + I
= 2*(-I . N’)*N’ + I
= -2*(<4,-2> . <0,1>)*<0,1> + <4,-2>
= -2*(4*0 + -2*1)*<0,1> + <4,-2>
= 4*<0,1> + <4,-2>

1772313618 CH13 10/26/99 10:55 AM Page 834

CHAPTER 13
Playing God: Basic Physics Modeling

835

= <0,4> + <4,-2>
= <4,2>

+y

—x +x

I = (—4, 2)

N

L L (4, 2)

F = ?

n’ = normal = (0, 1)

F = 2. N + I
= 2 * (—I . n’) * n’ + I
= —2 * (<4, —2> — <0, 1>) * (0, 1) + (4, —2)
= 4 . (0, 1) + (4, —2)
= (4, 2)

Figure 13.26
A numerical example

of vector reflection.

Lo and behold, if you look at Figure 13.26, that’s the correct answer! Now, there’s
only one detail that we’ve left out of all this: determining when the ball or object
actually hits the plane or line.

Intersection of Line Segments
You could probably figure this one out, but I’ll give you a hand. The problem is basi-
cally a line intersection computation. But the surprise is that we are intersecting line
segments, not lines; there’s a difference. A line goes to infinity in both directions,
while a line segment is finite, as shown in Figure 13.27.

The problem boils down to this: As an object moves with some velocity vector Vi, we
want to detect whether the vector pierces through the collision plane or line. Why?
Well, if an object is moving at velocity Vi then one frame or time click later it will be
located at its current position (x0,y0)+Vi, or in terms of components:

x1 = x0 + vix
y1 = y0 + viy

1772313618 CH13 10/26/99 10:55 AM Page 835

Hardcore Game Programming

836 PART III

Therefore, you can think of the velocity vector as a line segment that leads the way to
wherever the object we are drawing is going. In other words, we want to determine
whether there is an intersection point (x,y) of the line segments. Here’s the setup:

Object Vector Segment: S1 = <p1(x1,y1) – p0(x0,y0)>

Boundary Line Segment: S2 = <p3(x3,y3) – p2(x2,y2)>

You need the exact intersection point (x,y), so that when you compute the reflection
vector F you start its initial position at (x,y). This is shown in Figure 13.28. The prob-
lem seems simple enough, but it’s not as easy as you think. Intersecting two lines is as
easy as solving a system of 2 equations, but determining if two line segments intersect
is a little harder. That’s because that although the segments are lines, they are finite,
so even if the lines that the segments run along intersect, the segments may not. This
is shown in Figure 13.29. Therefore, you need to not only determine where the lines
that the segments define intersect, you need to see if this point is within both seg-
ments! This is the hard part.

–x +x

+y

–y

b2

m2

m1

p2

p1

p3 p4

b1

Lines are infinite

y1 = m1x1 + b1

Line segments (finite)

y2 = m2x2 + b2

Figure 13.27
Lines and line

segments are very
different.

1772313618 CH13 10/26/99 10:55 AM Page 836

CHAPTER 13
Playing God: Basic Physics Modeling

837

The trick to solving the problem is using a parametric representation of each line seg-
ment. I’ll call U the position vector of any point on S1 and V the position vector of
any point on S2:

Equation 1: U= p0 + t*S1

Equation 2: V= p2 + s*S2

with the constraint that (0 <= t <= 1), (0 <= s <= 1).

Figure 13.30 shows what these two equations represent.

Referring to the figure, we see that as t varies from 0 to 1 the line segment from p0 to
p1 is traced out and similarly as s varies from 0 to 1, the line segment from p2 to p3 is
traced out. Now we have all we need to solve the problem. We solve equations 1 and
2 for s,t and then plug the values back in to either equation and find the (x,y) of the
intersection. Moreover, when we find (s,t) if either of them is not in the range (0 to 1)

(xi, yi)

Intersection point

Line 1
segment

Line segment 2

Figure 13.28
Intersection and

reflection.

These segments
do not intersect
even though
the lines they
define do

–x +x

–y

+y

p1

p3

p2

p4

p5

p6
p7

p8

Figure 13.29
Intersecting and non-

intersecting segments.

1772313618 CH13 10/26/99 10:55 AM Page 837

Hardcore Game Programming

838 PART III

then we know that the intersection was not within the segments. Pretty neat, huh? I’m
not going to every detail of the entire derivation since this is in about 100,000 math
books, but I’ll show you the important stuff:

+y

±y
±x +x

v = p2 + s * s2

u = Po + t • s1

u, v: position vectors
s, t: parameters (0..1)

p3 (x3, y3)

p2 (x2, y2)

p1 (x1, y1)

p0 (x0, y0)

s2

s1

Figure 13.30
The parametric

representation of U
and V.

Given:

U = p0 + t*S1
V = p2 + s*S2

solve for (s,t) when U = V,

p0 + t*S1 = p2 + s*S2

s*S2 – t*S1 = p0 – p2

Breaking the last equation into (x,y) components,

s*S2x – t*S1x = p0x – p2x
s*S2y – t*S1y = p0y – p2y

We have two equations, two unknowns, push into a matrix and solve for (s,t):

|S2x -S1x | |s| = |(p0x – p2x)|

|S2y -S1y | |t| |(p0y – p2y)|

A X = B

1772313618 CH13 10/26/99 10:55 AM Page 838

CHAPTER 13
Playing God: Basic Physics Modeling

839

Using Cramer’s Rule we have the following:

Cramer’s Rule states that you can solve a system of equations AX=B, by
computing xi = Det(Ai)/Det. Where Ai is the matrix formed by replacing
the ith column of A with B.

Multiplying all this stuff out, you get

s = (-S1y*(p0x–p2x) + S1x*(p0y–p2y))/(-S2x*S1y + S1x*S2y)
t = (S2x*(p0y–p2y) - S2y*(p0x–p2x))/(-S2x*S1y + S1x*S2y)

Then once you have found (s,t), you can plug either of them into

U = p0 + t*S1
V = p2 + s*S2

and solve for U(x,y) or V(x,y). However, for s,t to be valid both of them must be in
the range of (0..1). If either of them is out of range then there is NO intersection.
Referring to the worked example in Figure 13.31, let’s see if the math works:

p0=(4,7), p1=(16,3), S1=p1-p0=<12,-4>
p2=(1,1), p3=(17,10), S2=p3-p2=<16,9>

And we know that:

s = (-S1y*(p0x–p2x) + S1x*(p0y–p2y))/(-S2x*S1y + S1x*S2y)
t = (S2x*(p0y–p2y) - S2y*(p0x–p2x))/(-S2x*S1y + S1x*S2y)

Plugging in all the values we get

s = (4*(4-1) + 12*(7-1))/(17*4 + 12*10) = 0.44
t = (17*(7-1) – 10*(4-1))/ (17*4 + 12*10) = 0.383

Since both 0<=(s,t)<=1, we know that we have a valid intersection and thus either s or
t can be used to find the intersection point (x,y). Let’s use t, shall we?

U(x,y) = p0 + t*S1
= <7,7> + t*<12,-4>

The determinate (Det) of a matrix in general is rather complex, but for a
2×2 or 3×3 it is very simple to remember. Given a 2×2 matrix the deter-
minate can be computed as follows:

A = |a b| Det = (a*d – c*b)
|c d|

1772313618 CH13 10/26/99 10:55 AM Page 839

Hardcore Game Programming

840 PART III

Plugging in t=.44, we get

= <7,7> + 0.44*<12,-4> = (9.28, 5.24)

which is indeed the intersection. Isn’t math fun?

As for using all this technology, I have created a demo of a ball bouncing off the inte-
rior of an irregularly shaped polygonal 2D object. Take a look at DEMO13_7.CPP|EXE.
A screen shot is shown in Figure 13.32. Try editing the code and changing the shape
of the polygon.

+y

–y
–x +x

p3 (17, 10)

p2 (1, 1)

p1 (16, 3)

p0 (4, 7)

5

5

10

15

10 15

(x, y)

≈ (9.2, 5.2)

Intersection

Segment 2

Segment 1

S2 = p3 – p2 = (16, 9)

S1 = p1 – p0 = (12, –4)

Math:

u = p0 + t . s1 = (4, 7) + t . (12, –4)

v = p2 + s . s2 = (1, 1) + s . (17, 10)

plugging in and solving for s:
s = (–s1y . (p0x –p2x) + s1x . (p0x – p2y)) / (–s2x . s1y + s1x . s2y)
= [4 . (4–1) + 12 . (7–1)] / (17 . 4 + 12 . 10)
= 844/.88 = .44
similarly t = .383
plugging in (s . t) into u, v we get (x,y) = (9.28, 5.24)

p0

p2

s1

s2

Figure 13.31
A worked line seg-

ment intersection
example.

Finally, you may want to try another heuristic when finding a collision trajectory vec-
tor. In the previous example we used the velocity vector as one test segment.
However, it may make more sense to create a vector that is the length of the radius of
the ball and then drop it from the center perpendicular to the edge being tested. This
way you catch scathing collisions, but it’s a bit more complex and I’ll just leave it as
an exercise.

There’s no need to test for intersections of two lines segments if their
bounding boxes don’t overlap.

Trick

1772313618 CH13 10/26/99 10:55 AM Page 840

CHAPTER 13
Playing God: Basic Physics Modeling

841

Real 2D Object-to-Object Collision Response
(Advanced)

I put this section off a bit and moved it down here because I wanted you to really get
a handle on momentum and collision and the mathematics needed to work with both.
But like Dr. Brown said in Back to the Future, “Roads? Where we’re going, we don’t
need roads…” Alas, object-to-object collisions with a fairly realistic collision
response aren’t the easiest thing in the world to figure out. The final results aren’t bad,
but coming up with them is no picnic. Anyway, let’s get started.

Figure 13.33 depicts the general problem that we want to solve. There are two objects
modeled by 2D circles or 3D spheres, and each has a mass and an initial trajectory.
When they make contact we want to compute the final trajectory or velocity after the
collision. We’ve touched on this already in the section “The Physics of Linear
Momentum: Conservation and Transfer” when we came up with the following
equations:

Conservation of linear momentum:

ma*vai + mb*vbi = ma*vaf + mb*vbf

Conservation of kinetic energy:

1/2*ma*vai2 + 1/2*mb*vbi2 = 1/2*ma*vaf2 + 1/2*mb*vbf2

Figure 13.32
A bouncing ball

trapped in an irregu-
larly shaped polygon

demo.

1772313618 CH13 10/26/99 10:55 AM Page 841

Hardcore Game Programming

842 PART III

After combining them and solving for the final velocities, we get

vaf = (2*mb*vbi + vai*(ma – mb))/(ma + mb)
vbf = (2*ma*vai - vbi*(ma – mb))/(ma + mb)

These equations are true for perfectly elastic collisions. However, there’s a little
problem—as they stand they are only 1-dimensional. What we need to do is come up
with the 2D solution to the problem (something like a pool table) and this is a bit
more complex. Let’s start with what we know.

We know that each ball (2D representation) has some mass m; furthermore, the balls
are made of the same material throughout, so the center of mass is at the center of the
ball body. Next, we know that when real balls hit each other, the balls deform for a
moment, some of the kinetic energy is converted to heat, and mechanical work to
deform the balls, then the balls separate. This is called the impact event, which is
shown in Figure 13.34.

The impact event consists of two separate phases. The first phase: Deformation,
occurs when the balls make first contact and the balls move at the same velocity. At
the end of the deformation phase the restoration phase begins and continues until the
balls separate. The bottom line is that during the collision event a lot of really com-
plex physics happen that we can’t possibly model with a computer, so we have to
make some assumptions about the collision. The cool thing is that even with the
assumptions, when you see the simulation it will look pretty real! The assumptions
are the following:

–x +x

–y

+y

ball a

ball b

ma

mb
vai

vbi

vbf

vaf

n: normal vector

Line of collision vector

Local collision
axes n–t

t: tangential vector
no forces v's stay same

t̂

n̂

Figure 13.33
The central impact of
two masses problem.

1772313618 CH13 10/26/99 10:55 AM Page 842

CHAPTER 13
Playing God: Basic Physics Modeling

843

1. The time it takes for the collision event is very small; call it dt.

2. During the collision the positions of the balls do not change.

3. The velocity of the balls may change significantly.

4. There are no frictional forces acting during the collision.

Assumption 3 is the only one I need to clarify since I think the others are easy to
swallow. For assumption 3 to be true, a force has to be applied during the collision
that is almost instantaneous. This type of force is called an impulse force. This is the
key to solving the problem. When the balls hit there will be a very large, short timed
force that is created—an impulse. We can compute the impulses and from them come
up with another equation to help solve the problem in 2D. The math is advanced and
calculus based, so I will forgo it. The results are the generation of a coefficient that
models all the physics during the impact event:

Equation 1: Coefficient of restitution

vai

va

fd fd

vb

va vb

dx

dx + e

vai = vbi for ∆t

vbi

A B

A. Prior to collision

A B

B. Collision

C. Deformation phase

D. Restoration phase

E. After collision

A B

A B

vaf vbf

A B

no force no force

(dx, e) are very,
very small . . .
practically 0

FR FR

Figure 13.34
The phases of the

impact event.

1772313618 CH13 10/26/99 10:55 AM Page 843

Hardcore Game Programming

844 PART III

Equation 1 is referred to by e and called the coefficient of restitution. It models the
velocity before and after the collision and the loss of kinetic energy. If you set e=1
then the model is a perfectly elastic collision. On the other hand, e < 1 models a less
than perfect collision and the velocity of each ball after the collision and the linear
momentum will be less. Now where do you get e? e is something you set or look up.
The interesting thing is that if you combine the equation for e along with the conser-
vation of momentum equation:

ma*vai + mb*vbi = ma*vaf + mb*vbf

you get the following results:

Equation 2: Final Velocities

vaf = ((e+1)*mb*vbi + vai*(ma – e*mb))/(ma + mb)
vbf = ((e+1)*ma*vai - vbi*(ma – e*mb))/(ma + mb)

Isn’t that interesting? It’s almost identical to the formulas we got when we combined
the kinetic energy equations with the linear momentum equations. And in fact the
assumption we made when we combined the kinetic energy equations with the linear
momentum equations was that kinetic energy was conserved. If we assume that now
then we set e=1 and we get

vaf = ((1+1)*mb*vbi + vai*(ma – 1*mb))/(ma + mb)
vbf = ((1+1)*ma*vai - vbi*(ma – 1*mb))/(ma + mb)

or

vaf = (2*mb*vbi + vai*(ma – mb))/(ma + mb)
vbf = (2*ma*vai - vbi*(ma – mb))/(ma + mb)

These indeed are the equations with both kinetic energy and linear momentum con-
served! So it looks like we’re on the right track. We have equations 1 and 2, so we
should be able to solve the problem. But there’s a catch; the equations are still in 1D,
so we need to write them in 2D and then find a solution.

Referring back to Figure 13.33, you see there are two extra axes labeled—the n and t
axes. The n axis is in the direction of the line of collision and the t axis or tangential
axis is perpendicular to n. Assuming we have computed the vectors representing these
axes (I’ll show how a little later) then we can write some equations.

The first set of equations we’re going to write relates the tangential component of the
velocities before and after the collision. Since there are no frictional forces and no
impulsive forces acting tangentially to the line of collision (trust me), the tangential
linear momentum (and therefore the velocities) must be the same before and after,
right? If there are no forces then this must be true, thus we can write

1772313618 CH13 10/26/99 10:55 AM Page 844

CHAPTER 13
Playing God: Basic Physics Modeling

845

Equation 3: Relationship between initial and final tangential momentum/velocities

ma*(vai)t = ma(vaf)t
mb*(vbi)t = mb(vbf)t

And if you wish you can combine them like this:

ma*(vai)t + mb*(vbi)t = ma(vaf)t + mb(vbf)t

My notion is simple; (a,b) refers to the ball, (i,f) refers to initial or final,
and (n,t) refers to the component along the n or t axes.

Since the masses are the same before and after the collision we can deduce that the
velocities are the same by dividing the masses out:

Equation 4: Velocities after collision are equal in tangential direction

(vai)t = (vaf)t
(vbi)t = (vbf)t

Cool. Now that we have half the problem solved we know the final velocities of the
tangential components. Let’s find the final velocities of the normal components, or the
velocities in the line of collision n. We know that linear momentum is conserved
always because there are no outside forces acting on the balls when they hit, so we
can write:

Equation 5: Linear momentum is conserved in the n axis or line of collision

ma*(vai)n + mb*(vbi)n = ma*(vaf)n + mb*(vbf)n

And we can also write e in terms of the n axis:

Equation 6: The coefficient of restitution in the n axis

Now let’s take a look at what we have. If you look at equations 5 and 6, I have high-
lighted the variables that we don’t have: (vaf)n, and (vbf)n. Just the normal compo-
nents of the final velocity. Bingo! We have two equations and two unknowns, so we
can solve for them. But we already have the answer! Equation 2 still holds for any
particular axis, so I can rewrite it for the component along n:

1772313618 CH13 10/26/99 10:55 AM Page 845

Hardcore Game Programming

846 PART III

Equation 7: Final velocities in the normal direction

vaf = ((e+1)*mb*(vbi)n + (vai)n*(ma – e*mb))/(ma + mb)
vbf = ((e+1)*ma*(vai)n – (vbi)n*(ma – e*mb))/(ma + mb)

That’s it!

Resolving the n-t Coordinate System
Now that we have the final collision response, we need to figure out how to get the
initial values for (vai)n, (vai)t, (vbi)n, (vbi)t and then when the problem is solved we
have to convert the values in the n-t axes back into values in the x,y axes. Let’s begin
by first finding the vectors n and t.

To find n we want a vector that is unit length (length equal to 1.0) and along the line
from the center of ball A(xa0,ya0) to the center of ball B(xb0,yb0). Let’s begin by finding
a vector from ball A to B, calling it N, and then normalizing it:

Equation 8: Computation of n and t

N = B – A = <xb0 – xa0, yb0 – ya0>

Normalizing N to find n, we get

n = N/|N| = <nx,ny>

Now we need the tangential axis t which is perpendicular to n. We could find it again
using vector geometry, but there’s a trick we can use; if we rotate n 90 degrees clock-
wise, that’s what we want. However, when a 2D vector <x,y> is rotated in a plane 90
degrees clockwise, the rotated vector is just t=<-y, x>=<tx, ty>. Take a look at Figure
13.35.

Now that we have both n and t and they are both unit vectors (since n was unit, t is
unit also) we’re ready to go. We want to resolve the initial velocities of each ball into
terms of n and t for ball A and B, respectively:

vai=<xvai, yvai>
vbi=<xvbi, yvbi>

This is nothing more than a dot product. To find (vai)n, the component of the initial
velocity of ball A along axis n, here’s what you do:

(vai)n = vai . n = <xvai, yvai> . <nx,ny>
= (xvai*nx + yvai* ny).

Note the result is a scalar, as it should be. Computing the other initial velocities is the
same as shown in Equation 9.

1772313618 CH13 10/26/99 10:56 AM Page 846

CHAPTER 13
Playing God: Basic Physics Modeling

847

Equation 9: Components of vai along n and t:

(vai)n = vai . n = <xvai, yvai> . <nx,ny>
= (xvai*nx + yvai* ny)

(vai)t = vai . t = <xvai, yvai> . <tx,ty>
= (xvai*tx + yvai* ty)

Components of vbi along n and t:

(vbi)n = vbi . n = <xvbi, yvbi> . <nx,ny>
= (xvbi*nx + yvbi* ny)

(vbi)t = vbi . t = <xvbi, yvbi> . <tx,ty>
= (xvbi*tx + yvbi* ty)

Now we’re ready to solve the problem completely. Here are the steps:

1. Compute n and t (use equation 8).

2. Resolve all the components of vai and vbi into magnitudes along n and t (use
equation 9).

3. Plug values into final velocity shown in equation 7 and remember the tangential
components of the final velocities are the same as the initial.

4. The results to the problem are in terms of the coordinate axes n and t, so you
must transform back into x,y.

I’ll leave step 4 up to you. Now let’s talk about tensors. Just kidding, just kidding.
Let’s finish this bad boy off. At this point we have the final velocities:

+y

–y

–x +x

90'

(x, y)

v' = (–y, x)

θ

θ + 90

v

Rotation counter clockwise
produces a perpendicular

90'

Figure 13.35
Rotating a vector 90

degrees to find its
perpendicular.

1772313618 CH13 10/26/99 10:56 AM Page 847

Hardcore Game Programming

848 PART III

Final velocity for Ball A in terms of n,t:

(vaf)nt=<(vaf)n,(vaf)t>

Final velocity for Ball B in terms of n,t:

(vbf)nt=<(vbf)n,(vbf)t>

Now, let’s forget about collisions and think about vector geometry. Take a look at
Figure 13.36; it illustrates the problem we have.

–x +x

–y

+y

y2

y1

x1 x2

vyt̂

vxn̂

n̂

t̂

^ ^Basis: n + t

^ ^Basis: x + y
v (vx, vy)

(x, y) in terms of x–y axis?

v is in n – t coordinates
v = vxn + vyt

^ ^
^^

x = x1 + x2
y = y1 + y2

Figure 13.36
Transforming a vector

from basis to basis.

Stated in plain Vulcan, we have a vector in one coordinate system n-t that we want to
resolve into x,y. But how? Again, we are going to use dot products. Take a look at the
vector (vaf)nt in Figure 13.36, forgetting about the n,t axes. We just want (vaf)nt in
terms of the axis x,y. To compute this we’re going to need the contribution of (vaf)nt

along both the x- and y-axes. This can be found with dot products. All we need to do
are the following dot products:

1772313618 CH13 10/26/99 10:56 AM Page 848

CHAPTER 13
Playing God: Basic Physics Modeling

849

For Ball A, va in terms of n,t is

va = (vaf)n * n + (vaf)t * t
(vaf)n * <nx,ny> + (vaf)t * <tx,ty>

Therefore writing with dot products,

xaf = <nx,0> . (vaf)n + <tx,0> . (vaf)t
= nx*(vaf)n + tx*(vaf)t

yaf = <0,ny> . (vaf)n + <0,ty> . (vaf)t
= ny*(vaf)n + ty*(vaf)t

For Ball B:

vb = (vbf)n * n + (vbf)t * t
(vbf)n *<nx,ny> + (vbf)t * <tx,ty>

Therefore,

xbf = <nx,0> . (vbf)n + <tx,0> . (vbf)t
= nx*(vbf)n + tx*(vbf)t

ybf = <0,ny> . (vbf)n + <0,ty> . (vbf)t
= ny*(vbf)n + ty*(vbf)t

Send the balls off with the above velocities and you’re done! Wow, that was a whop-
per, huh? Now, since I think that the code is a lot easier to understand than the math, I
have listed the collision algorithm here from an upcoming demo:

void Collision_Response(void)
{
// this function does all the “real” physics to determine if there has
// been a collision between any ball and any other ball; if there is a
// collision, the function uses the mass of each ball along with the
// initial velocities to compute the resulting velocities

// from the book we know that in general
// va2 = (e+1)*mb*vb1+va1(ma - e*mb)/(ma+mb)
// vb2 = (e+1)*ma*va1+vb1(ma - e*mb)/(ma+mb)

// and the objects will have direction vectors co-linear to the normal
// of the point of collision, but since we are using spheres here as the
// objects, we know that the normal to the point of collision is just
// the vector from the centers of each object, thus the resulting
// velocity vector of each ball will be along this normal vector direction

// step 1: test each object against each other object and test for a
// collision; there are better ways to do this other than a double nested
// loop, but since there are a small number of objects this is fine;
// also we want to somewhat model if two or more balls hit simultaneously

for (int ball_a = 0; ball_a < NUM_BALLS; ball_a++)
{

1772313618 CH13 10/26/99 10:56 AM Page 849

Hardcore Game Programming

850 PART III

for (int ball_b = ball_a+1; ball_b < NUM_BALLS; ball_b++)
{
if (ball_a == ball_b)

continue;

// compute the normal vector from a->b
float nabx = (balls[ball_b].varsF[INDEX_X] –

balls[ball_a].varsF[INDEX_X]);
float naby = (balls[ball_b].varsF[INDEX_Y] –

balls[ball_a].varsF[INDEX_Y]);
float length = sqrt(nabx*nabx + naby*naby);

// is there a collision?
if (length <= 2.0*(BALL_RADIUS*.75))

{
// the balls have made contact, compute response

// compute the response coordinate system axes
// normalize normal vector
nabx/=length;
naby/=length;

// compute the tangential vector perpendicular to normal,
// simply rotate vector 90
float tabx = -naby;
float taby = nabx;

// draw collision
DDraw_Lock_Primary_Surface();

// blue is normal
Draw_Clip_Line(balls[ball_a].varsF[INDEX_X]+0.5,

balls[ball_a].varsF[INDEX_Y]+0.5,
balls[ball_a].varsF[INDEX_X]+20*nabx+0.5,
balls[ball_a].varsF[INDEX_Y]+20*naby+0.5,
252, primary_buffer, primary_lpitch);

// yellow is tangential
Draw_Clip_Line(balls[ball_a].varsF[INDEX_X]+0.5,

balls[ball_a].varsF[INDEX_Y]+0.5,
balls[ball_a].varsF[INDEX_X]+20*tabx+0.5,
balls[ball_a].varsF[INDEX_Y]+20*taby+0.5,
251, primary_buffer, primary_lpitch);

DDraw_Unlock_Primary_Surface();

// tangential is also normalized since
// it’s just a rotated normal vector

// step 2: compute all the initial velocities
// notation ball: (a,b) initial: i, final: f,
// n: normal direction, t: tangential direction

1772313618 CH13 10/26/99 10:56 AM Page 850

CHAPTER 13
Playing God: Basic Physics Modeling

851

float vait = DOT_PRODUCT(balls[ball_a].varsF[INDEX_XV],
balls[ball_a].varsF[INDEX_YV],
tabx, taby);

float vain = DOT_PRODUCT(balls[ball_a].varsF[INDEX_XV],
balls[ball_a].varsF[INDEX_YV],
nabx, naby);

float vbit = DOT_PRODUCT(balls[ball_b].varsF[INDEX_XV],
balls[ball_b].varsF[INDEX_YV],
tabx, taby);

float vbin = DOT_PRODUCT(balls[ball_b].varsF[INDEX_XV],
balls[ball_b].varsF[INDEX_YV],
nabx, naby);

// now we have all the initial velocities
// in terms of the n and t axes
// step 3: compute final velocities after
// collision, from book we have
// note: all this code can be optimized, but I want you

// to see what’s happening :)

float ma = balls[ball_a].varsF[INDEX_MASS];
float mb = balls[ball_b].varsF[INDEX_MASS];

float vafn = (mb*vbin*(cof_E+1) + vain*(ma - cof_E*mb))
/ (ma + mb);

float vbfn = (ma*vain*(cof_E+1) - vbin*(ma - cof_E*mb))
/ (ma + mb);

// now luckily the tangential components
// are the same before and after, so
float vaft = vait;
float vbft = vbit;

// and that’s that baby!
// the velocity vectors are:
// object a (vafn, vaft)
// object b (vbfn, vbft)

// the only problem is that we are in the wrong coordinate
// system! we need to // translate back to the original

x,y
// coordinate system; basically we need to
// compute the sum of the x components relative to
// the n,t axes and the sum of
// the y components relative to the n,t axis,
// since n,t may both have x,y
// components in the original x,y coordinate system

1772313618 CH13 10/26/99 10:56 AM Page 851

Hardcore Game Programming

852 PART III

float xfa = vafn*nabx + vaft*tabx;
float yfa = vafn*naby + vaft*taby;

float xfb = vbfn*nabx + vbft*tabx;
float yfb = vbfn*naby + vbft*taby;

// store results
balls[ball_a].varsF[INDEX_XV] = xfa;
balls[ball_a].varsF[INDEX_YV] = yfa;

balls[ball_b].varsF[INDEX_XV] = xfb;
balls[ball_b].varsF[INDEX_YV] = yfb;

// update position
balls[ball_a].varsF[INDEX_X]+=

balls[ball_a].varsF[INDEX_XV];
balls[ball_a].varsF[INDEX_Y]+=

balls[ball_a].varsF[INDEX_YV];

balls[ball_b].varsF[INDEX_X]+=
balls[ball_b].varsF[INDEX_XV];

balls[ball_b].varsF[INDEX_Y]+=
balls[ball_b].varsF[INDEX_YV];

} // end if

} // end for ball2

} // end for ball1

} // end Collision_Response

The code follows the algorithm almost identically. However, the code is from a demo
that simulates a pool table system, so added loops test all collision pairs. Once inside
the loop the code follows the math. To see the algorithm in action check out
DEMO13_8.CPP|EXE. A screen shot from it is shown in Figure 13.37. The demo starts
up with a number of randomly moving balls and then the physics takes over. At the
bottom of the screen the total kinetic energy is displayed. Try changing the coefficient
of restitution with the right and left arrows keys and watch what happens. For values
less than 1, the system loses energy, for values equal to 1, the system maintains
energy, and for values greater than 1, the system gains energy—I wish my bank
account did that!

1772313618 CH13 10/26/99 10:56 AM Page 852

CHAPTER 13
Playing God: Basic Physics Modeling

853

Simple Kinematics
The term kinematics means a lot of things. To a 3D artist it means one thing, to the
3D game programmer it means another, and to a physicist it means yet another.
However, in this section of the book it means the mechanics of moving linked chains
of rigid bodies. In computer animation there are two kinematic problems. The first is
called forward kinematics and the second is inverse kinematics. The forward kine-
matic problem is shown in Figure 13.38; here you see a 2D serially linked chain of
rigid bodies (straight arms). Each joint can freely rotate in the plane, thus there are 2
degrees of freedom in this example, θ1, and θ2. In addition, each arm has length l1 and
l2, respectively. The forward kinematic problem can be stated as follows:

Given θ1, θ2, l1, and l2, find the position of p2.

Why are we interested in this? Well, if you are going to write a 2D or 3D game and
want to have real-time models that have links that move around, then you better know
how to do this. For example, 3D animation is accomplished in two ways. The quick
and dirty method is to have a set of meshes that represent the 3D animation of an
object. The more flexible method is to have a single 3D mesh that has a number of
joints and arms and then to “play” motion data through the 3D model. However, to do
this you must understand the physics/mechanics of how to move a hand in relation to
the wrist, in relation to the elbow, in relation to the shoulder, in relation to the hips,
and so forth—see the problem?

Figure 13.37
The hyper-realistic
collision response

model.

1772313618 CH13 10/26/99 10:56 AM Page 853

Hardcore Game Programming

854 PART III

The second kinematic problem is the converse of the first:

Given the position of p2, find values θ1, θ2 that satisfy all the constraints l1, and l2 of
the physical model. This is much harder than you can imagine. Figure 13.39 shows an
example of why this is true.

+y

+x

θ1

Ø 2

+y
1

+x
1

L1

L2

Arm3

Arm2

p2 (x2, y2)

p1 (x1, y1)

Relative motion to p1

Figure 13.38
The forward kine-

matic problem.

Other possible solutions

+x

+y

+y

P2 (x, y)

L1

L2

θ2 = ?

θ1 = ?

Given: p2, L1, L2
Find θ, θ2?

Figure 13.39
The inverse kinematic

problem.

Referring to the figure, you see that there are two possible solutions that satisfy all the
constraints. I’m not going to tackle this problem in general since in most cases we
never need to solve it, and the math is gnarly, but I will give an example later in the
section of how to go about it.

Solving the Forward Kinematic Problem
What I want to do is show you how to solve the forward kinematic problem because
it’s almost trivial. Referring back to Figure 13.38, the problem is nothing more than
relative motions. If you look at the problem from joint 2, then locating p2 is nothing
more than a translation of l2 and a rotation of θ2. However, the point p2 itself is just

1772313618 CH13 10/26/99 10:56 AM Page 854

CHAPTER 13
Playing God: Basic Physics Modeling

855

located as a translation from p1 of l1 and a rotation of θ1. Thus, the solution of the
problem is nothing more than a series of translations and rotations from frame to
frame or link to link. Let’s solve the problem in pieces.

Forget about the first arm and just focus on the second, that is, let’s work our way
backward. The starting point is p1 and we want to move a distance l2 out on the x-axis
and then rotate an angle θ2 around the x,y plane (or the z-axis in 3D) to locate the
point p2. This is easy—all we need to do is the following transformation from p1:

p2 = p1*Tl2*Rθ2

But we don’t have p1? That’s okay—we assume that we do for the derivation.
Anyway, Tl2 and Rθ2 are the standard 2D translation and rotation matrices you learned
about in Chapter 8, “Vector Rasterization and 2D Transformations.” Therefore, we
have

|1 0 0| | cos θ2 sin θ2 0|

Tl2 = |0 1 0| Rθ2 = |-sin θ2 cos θ2 0|

|l1 0 1| | 0 0 1|

Therefore, p2 is the product:

|1 0 0| | cos θ2 sin θ2 0|

p2 = p1 * |0 1 0| * |-sin θ2 cos θ2 0|

|l2 0 1| | 0 0 1|

Okay, if we can compute p2 from p1, then p1 should be p0 transformed in the same
way, that is, translated by l1 and rotated by θ1. Or mathematically:

p2 = p0*Tl2*Rθ2*Tl1*Rθ1

where p0 = [0,0,1], that is, the origin in homogenous 2D coordinates (we could use
any point if we wanted, but basically this represents the base of the kinematic chain).
The reason for 3 components in a 2D system is so we can use homogenous transforms
and accomplish translation with matrices, hence that last 1.0 is a place holder. All
points are in the form (x,y,1). Furthermore, Tl1 and Rθ1 are of the same form as Tl2

and Rθ2, but with different values. Note the order of multiplication—since we’re
working backward, we must first transform p0 by Tl2*Rθ2 then by Tl1*Rθ1, so order
counts!

With all that in mind, we see that the point p2 is really just the starting point p0 multi-
plied by the matrices (Tl2*Rθ2) * (Tl1*Rθ1). This holds for as many links as needed, or
in general:

pn = p0 * Tn*Rn * Tn-1*Rn-1 * Tn-2*Rn-2 *…* T1*R1

for n links.

1772313618 CH13 10/26/99 10:56 AM Page 855

Hardcore Game Programming

856 PART III

This works because each matrix multiplication pair T*R transforms the coordinate
system relative to the link, hence, the products of these transforms is like a sequence
of changing coordinate systems that you can use to locate the end point. As an exam-
ple, let’s see if this mumbo jumbo works. Figure 13.40 depicts a carefully worked out
version of the problem on graph paper.

–x –7 –6 –5 –4 –3 –2 –1
–1

–2

–3

–4

–5

–6

–y

+y

+x

1 2 3 4 5 6 7 8 +x

6

5

4

3

2

1

p2 (–1.4, 5.6)

p1 (2.2, 2.2)

po (0, 0)

5.6

–1.4

L1 = 3
θ1 = 45°

L2 = 5
θ2 = 90°

Figure 13.40
A kinematic chain

worked out on paper.

I have labeled the points, angles, and so on, and using a compass and ruler computed
the position of p2 given the input values:

l1 = 3, l2 = 5
θ1 = 45, θ2 = 90
p0 = (0,0)

I roughly estimate from the figure that

p2 = (-1.4,5.6)

Now, let’s see if the math gives us the same answer.

|1 0 0| | 0 1 0| |1 0 0| | .707 .707 0|

p2 = [0,0,1]*|0 1 0|*|-1 0 0|* |0 1 0|*|-.707 .707 0|

|5 0 1| | 0 0 1| |3 0 1| | 0 0 1|

p0 Tl2 Rθ2 Tl1 Rθ1

1772313618 CH13 10/26/99 10:56 AM Page 856

CHAPTER 13
Playing God: Basic Physics Modeling

857

| 0 1 0| * | .707 .707 0|

= [0 0 1]*|-1 0 0| * |-.707 .707 0|

| 0 5 1| * |2.121 2.121 1|

p0 Tl2*Rθ2 Tl1*Rθ1

|-.707 .707 0|

= [0 0 1]*|.707 .707 0|

|-1.414 5.656 1|

p0 Tl2*Rθ2*Tl1*Rθ1

p2 =[-1.414, 5.656,1]

Discarding the 1.0 since [x,y,1] really means, x’ = x/1, y’=y/1, or x’=x, y’=y, we
have:

p2 =(-1.414, 5.656).

If you look at Figure 13.40, it looks pretty close! That’s all there is to forward kine-
matics in 2D. Of course, doing it in 3D is a bit more complex due to z-axis, but as
long as you pick a rotation convention then it all works out. I created
DEMO13_9.CPP|EXE shown in Figure 13.41, as an example of forward kinematics. It
lets you change the angle of the two links and then computes the positions p1, p2 and
displays them. The keys A, S, D, and F control the angles of link 1 and link 2, respec-
tively. See if you can add a restraint to the program, so the end effector at p2 can’t
drop below the y=0 axis, shown by the green line.

Figure 13.41
The kinematic chain

demo.

1772313618 CH13 10/26/99 10:56 AM Page 857

Hardcore Game Programming

858 PART III

Solving the Inverse Kinematic Problem
Solving inverse kinematics is rather complex in general, but I want to give you a taste
of it so you can at least know where to start. The previous section solved for p2 know-
ing p0, l1, l2, θ1, θ2. But what if you didn’t know θ1, and θ2, but knew p2? The solution
of the kinematic problem can be found by setting up a system of restraint equations
and then solving for the unknown angles. The problem is that you may have an under-
determined system, meaning that there is more than one solution. Thus, you must add
other heuristic or constraints to find the solution you want.

As an example, let’s try a simpler problem with only one link, so you can see the
process. Figure 13.42 shows one link l1 making an angle θ1 with the x-axis. Given
p1(x1,y1), what is θ1?

Given: (x1, y1, L1)
Find: θ1

θ1 = ?

L1: Fixed

p1 = (x, y):Fixed

+y

+x

Figure 13.42
A single link inverse

kinematic problem.

We can use the forward kinematic matrices to solve the problem like this:

p1 = p0*Tl1*Rθ1

|1 0 0| | cos θ1 sin θ1 0|

p1(x1,y1) =[0 0 1]*|0 1 0|*|-sin θ1 cos θ1 0|

|l1 0 1| | 0 0 1|

p0 Tl1 Rθ1

| cos θ1 sin θ1 0|

=[l1 0 1]*|-sin θ1 cos θ1 0|

| 0 0 1|

p0*Tl1 Rθ1

p1(x1,y1) = (l1*cos θ1, l1*sin θ1, 1)

Therefore,

x1 = l1*cos θ1
y1 = l1*sin θ1

1772313618 CH13 10/26/99 10:56 AM Page 858

CHAPTER 13
Playing God: Basic Physics Modeling

859

θ1 = cos –1 x1/l1

or,

θ1 = sin –1 y1/l1

I could have kept the entire problem in matrix form, but this is more
illustrative.

Okay, this system is overdetermined; in other words, once you select x or y then the
other is determined via θ1. This is interesting, but if you think about it then it makes
sense—the arm link l1 causes us to loose a degree of freedom therefore, you can’t
locate any point you wish (x,y) anymore, in fact, the only points that are valid any-
more are of the form:

x1 = l1*cos θ1
y1 = l1*sin θ1

If this had two links, then you would see that for any x,y there would be more than
one solution set θ1, θ2 that satisfied the equations along with a relationship between
θ1, and θ2.

Particle Systems
This is the hot topic. Everyone is always saying, “So, does it have particle systems?”
Well, particle systems can be very complex or very simple. Basically, particle systems
are physics models that model small particles. They are great for explosions, vapor
trails, and general light shows in your game. You have already learned a lot about
physics modeling and I’m sure can create your own particle system. However, just to
get you started, I’m going to show you how to create a very quick and simple system
based on pixel-sized particles.

Let’s say that we want to use particles for explosions, and maybe vapor trails. Since a
particle system is nothing more than n particles, let’s just focus on the model of a sin-
gle particle.

What Every Particle Needs
If you wanted, you could model collision response, momentum transfer, and all that
stuff, but most particle systems have extremely simple models. The following are the
general features of a garden variety particle:

1772313618 CH13 10/26/99 10:56 AM Page 859

Hardcore Game Programming

860 PART III

• Position

• Velocity

• Color/animation

• Life span

• Gravity

• Wind force

When you start a particle, you will want to give it a position, initial velocity, color,
and a life span at the very least. Also, the particle might be a glowing cinder, so there
might be color animation involved. Additionally, you may want to have some global
forces that act on all particles, like gravity and wind. You may want to have functions
that create collections of particles with the desired initial conditions that you’re look-
ing for, like explosions or vapor trails. And of course, you may want to give particles
the ability to bounce off objects with some physical realism. However, most of the
time particles just tunnel through everything and no one cares!

Designing a Particle Engine
To design a particle system you need three separate elements:

• The particle data structure.

• The particle engine that processes each particle.

• Functions to generate particular particle initial conditions.

Let’s begin with the data structure. I’ll assume an 8-bit display since, in animation,
it’s easier to work with bytes than RGB colors. Anyway, here’s a first attempt at a sin-
gle particle:

// a single particle
typedef struct PARTICLE_TYP

{
int state; // state of the particle
int type; // type of particle effect
float x,y; // world position of particle
float xv,yv; // velocity of particle
int curr_color; // the current rendering color of particle
int start_color; // the start color or range effect
int end_color; // the ending color of range effect
int counter; // general state transition timer
int max_count; // max value for counter

} PARTICLE, *PARTICLE_PTR;

Let’s add in some globals to handle external effects such as gravity in the Y direction
and wind force in the X direction.

1772313618 CH13 10/26/99 10:56 AM Page 860

CHAPTER 13
Playing God: Basic Physics Modeling

861

float particle_wind = 0; // assume it operates in the X direction
float particle_gravity = 0; // assume it operates in the Y direction

Let’s define some useful constants that we might need to accomplish some of the
effects:

// defines for particle system
#define PARTICLE_STATE_DEAD 0
#define PARTICLE_STATE_ALIVE 1

// types of particles
#define PARTICLE_TYPE_FLICKER 0
#define PARTICLE_TYPE_FADE 1

// color of particle
#define PARTICLE_COLOR_RED 0
#define PARTICLE_COLOR_GREEN 1
#define PARTICLE_COLOR_BLUE 2
#define PARTICLE_COLOR_WHITE 3

#define MAX_PARTICLES 128

// color ranges (based on my palette)
#define COLOR_RED_START 32
#define COLOR_RED_END 47

#define COLOR_GREEN_START 96
#define COLOR_GREEN_END 111

#define COLOR_BLUE_START 144
#define COLOR_BLUE_END 159

#define COLOR_WHITE_START 16
#define COLOR_WHITE_END 31

Hopefully, you can see my thinking here. I want to have particles that are either red,
green, blue, or white, so I took a palette and figured out the color indices for the
ranges. If you wanted to use 16-bit color then you would have to manually interpolate
RGB from the starting value to some ending value—I’ll keep it simple. Also, you see
that I’m counting on making two types of particles: fading and flickering. The fading
particles will just fade away, but the flickering ones will flicker away, like sparks.

Finally, I’m happy with our little particles, so let’s create storage for them:

PARTICLE particles[MAX_PARTICLES]; // the particles for the particle engine

So let’s start writing the functions to process each particle.

The Particle Engine Software
We need functions to initialize all the particles, start a particle, process all the parti-
cles, and then clean up all the particles when we’re done. Let’s start with the initial-
ization functions:

1772313618 CH13 10/26/99 10:56 AM Page 861

Hardcore Game Programming

862 PART III

void Init_Reset_Particles(void)
{
// this function serves as both an init and reset for the particles

// loop thru and reset all the particles to dead
for (int index=0; index<MAX_PARTICLES; index++)

{
particles[index].state = PARTICLE_STATE_DEAD;
particles[index].type = PARTICLE_TYPE_FADE;
particles[index].x = 0;
particles[index].y = 0;
particles[index].xv = 0;
particles[index].yv = 0;
particles[index].start_color = 0;
particles[index].end_color = 0;
particles[index].curr_color = 0;
particles[index].counter = 0;
particles[index].max_count = 0;
} // end if

} // end Init_Reset_Particles

Init_Reset_Particles() just makes all particles zeros and gets them ready for use.
If you wanted to do anything special, this would be the place to do it. The next func-
tion we need is something to start a particle with a given set of initial conditions. We
will worry how to arrive at the initial conditions in a moment, but for now I want to
hunt for an available particle, and if found, start it up with the sent data. Here’s the
function to do that:

void Start_Particle(int type, int color, int count,
float x, float y, float xv, float yv)

{
// this function starts a single particle

int pindex = -1; // index of particle

// first find open particle
for (int index=0; index < MAX_PARTICLES; index++)

if (particles[index].state == PARTICLE_STATE_DEAD)
{
// set index
pindex = index;
break;
} // end if

// did we find one
if (pindex==-1)

return;

// set general state info
particles[pindex].state = PARTICLE_STATE_ALIVE;

1772313618 CH13 10/26/99 10:56 AM Page 862

CHAPTER 13
Playing God: Basic Physics Modeling

863

particles[pindex].type = type;
particles[pindex].x = x;
particles[pindex].y = y;
particles[pindex].xv = xv;
particles[pindex].yv = yv;
particles[pindex].counter = 0;
particles[pindex].max_count = count;

// set color ranges, always the same
switch(color)

{
case PARTICLE_COLOR_RED:

{
particles[pindex].start_color = COLOR_RED_START;
particles[pindex].end_color = COLOR_RED_END;
} break;

case PARTICLE_COLOR_GREEN:
{
particles[pindex].start_color = COLOR_GREEN_START;
particles[pindex].end_color = COLOR_GREEN_END;
} break;

case PARTICLE_COLOR_BLUE:
{
particles[pindex].start_color = COLOR_BLUE_START;
particles[pindex].end_color = COLOR_BLUE_END;
} break;

case PARTICLE_COLOR_WHITE:
{
particles[pindex].start_color = COLOR_WHITE_START;
particles[pindex].end_color = COLOR_WHITE_END;
} break;

break;

} // end switch

// what type of particle is being requested
if (type == PARTICLE_TYPE_FLICKER)

{
// set current color
particles[index].curr_color
= RAND_RANGE(particles[index].start_color,

particles[index].end_color);

} // end if
else

{
// particle is fade type
// set current color

1772313618 CH13 10/26/99 10:56 AM Page 863

Hardcore Game Programming

864 PART III

particles[index].curr_color = particles[index].start_color;
} // end if

} // end Start_Particle

There is no error detection or even a success/failure sent back. The point
is that I don’t care; if we can’t create one teenie-weenie particle, I think
I’ll live. However, you might want to add more robust error handling.

Note

To start a particle at (10,20) with an initial velocity of (0, -5) (straight up), a life span
of 90 frames, colored a fading green, this is what you would do:

Start_Particle(PARTICLE_TYPE_FADE, // type
PARTICLE_COLOR_GREEN, // color
90, // count, lifespan
10,20, // initial position
0,-5); // initial velocity

Of course, the particle system has both gravity and wind that are always acting, so
you can set them anytime you want and they will globally affect all particles already
online as well as new ones. Thus if you want no wind force but a little gravity, you
would do this:

particle_gravity = 0.1; // positive is downward
particle_wind = 0.0; // could be +/-

Now we have to decide how to move and process the particle. Do we want to wrap
them around the screen? Or, when they hit the edges, should we kill them? This
depends on the type of game; 2D, 3D, scrolling, and so on. For now let’s keep it sim-
ple and agree that when a particle goes off a screen edge it’s terminated. In addition,
the movement function should update the color animation, test if the life counter is
expired, and kill particles that are off the screen. Here’s the movement function that
takes into consideration all that, along with the gravity and wind forces:

void Process_Particles(void)
{
// this function moves and animates all particles

for (int index=0; index<MAX_PARTICLES; index++)
{
// test if this particle is alive
if (particles[index].state == PARTICLE_STATE_ALIVE)

{
// translate particle
particles[index].x+=particles[index].xv;
particles[index].y+=particles[index].yv;

// update velocity based on gravity and wind

1772313618 CH13 10/26/99 10:56 AM Page 864

CHAPTER 13
Playing God: Basic Physics Modeling

865

particles[index].xv+=particle_wind;
particles[index].yv+=particle_gravity;

// now based on type of particle perform proper animation
if (particles[index].type==PARTICLE_TYPE_FLICKER)

{
// simply choose a color in the color range and
// assign it to the current color
particles[index].curr_color =
RAND_RANGE(particles[index].start_color,

particles[index].end_color);

// now update counter
if (++particles[index].counter >= particles[index].max_count)

{
// kill the particle
particles[index].state = PARTICLE_STATE_DEAD;

} // end if

} // end if
else

{
// must be a fade, be careful!
// test if it’s time to update color
if (++particles[index].counter >= particles[index].max_count)

{
// reset counter
particles[index].counter = 0;

// update color
if (++particles[index].curr_color >

particles[index].end_color)
{
// transition is complete, terminate particle
particles[index].state = PARTICLE_STATE_DEAD;

} // end if

} // end if

} // end else

// test if the particle is off the screen?
if (particles[index].x > screen_width ||

particles[index].x < 0 ||
particles[index].y > screen_height ||
particles[index].y < 0)
{
// kill it!
particles[index].state = PARTICLE_STATE_DEAD;
} // end if

1772313618 CH13 10/26/99 10:56 AM Page 865

Hardcore Game Programming

866 PART III

} // end if

} // end for index

} // end Process_Particles

The function is self-explanatory—I hope. It translates the particle, applies the external
forces, updates the counters and color, tests whether the particle has moved offscreen,
and that’s it. Next we need to draw the particles. This can be accomplished in a num-
ber of ways, but I’m assuming simple pixels and a back buffered display, so here’s a
function to do that:

void Draw_Particles(void)
{
// this function draws all the particles

// lock back surface
DDraw_Lock_Back_Surface();

for (int index=0; index<MAX_PARTICLES; index++)
{
// test if particle is alive
if (particles[index].state==PARTICLE_STATE_ALIVE)

{
// render the particle, perform world to screen transform
int x = particles[index].x;
int y = particles[index].y;

// test for clip
if (x >= screen_width || x < 0 || y >= screen_height || y < 0)

continue;

// draw the pixel
Draw_Pixel(x,y,particles[index].curr_color,

back_buffer, back_lpitch);

} // end if

} // end for index

// unlock the secondary surface
DDraw_Unlock_Back_Surface();

} // end Draw_Particles

Getting exited, huh? Want to try it out, don’t you? Well, we’re almost done. Now we
need some functions to create particle effects like explosions and vapor trails.

Generating the Initial Conditions
Here’s the fun part. You can go wild with your imagination. Let’s start off with a
vapor trail algorithm. Basically, a vapor trail is nothing more than particles that are

1772313618 CH13 10/26/99 10:56 AM Page 866

CHAPTER 13
Playing God: Basic Physics Modeling

867

emitted from a source positioned at (emit_x, emit_y) with slightly different life spans
and starting positions. Here’s a possible algorithm:

// emit a particle every with a change of 1 in 10
if ((rand()%10) == 1)
{
Start_Particle(PARTICLE_TYPE_FADE, // type

PARTICLE_COLOR_GREEN, // color
RAND_RANGE(90,150), // count, lifespan
emit_x+RAND_RANGE(-4,4), // initial x
emit_y+RAND_RANGE(-4,4), // initial y
RAND_RANGE(-2,2), // initial x velocity
RAND_RANGE(-2,2)); // initial y velocity

} // end if

As the emitter moves, so does the emitter source (emit_x, emit_y) and therefore a
vapor trail is left. If you want to get really real and give the vapor particles an even
more realistic physics model you should take into consideration that the emitter could
be in motion and thus any particle emitted would have final velocity = emitted
velocity + emitter velocity. You would need to know the velocity of the emitter
source, (call it (emit_xv, emit_yv)) and simply add it to the final particle velocity
like this:

// emit a particle every with a change of 1 in 10
if ((rand()%10) == 1)
{
Start_Particle(PARTICLE_TYPE_FADE, // type

PARTICLE_COLOR_GREEN, // color
RAND_RANGE(90,150), // count, lifespan
emit_x+RAND_RANGE(-4,4), // initial x
emit_y+RAND_RANGE(-4,4), // initial y
emit_xv+RAND_RANGE(-2,2), // initial x velocity
emit_yv+RAND_RANGE(-2,2)); // initial y velocity

} // end if

For something a little more exciting, let’s model an explosion. An explosion looks
something like Figure 13.43. Particles are emitted in a spherical shape in all direc-
tions.

That’s easy enough to model. All we need do is start up a random number of particles
from a common point with random velocities that are equally distributed in a circular
radius. Then if gravity is on, the particle will fall toward Earth and either go off the
screen or die out due to its individual life span. Here’s the code to create a particle
explosion:

1772313618 CH13 10/26/99 10:57 AM Page 867

Hardcore Game Programming

868 PART III

void Start_Particle_Explosion(int type, int color, int count,
int x, int y, int xv, int yv,
int num_particles)

{
// this function starts a particle explosion
// at the given position and velocity
// note the use of look up tables for sin,cos

while(--num_particles >=0)
{
// compute random trajectory angle
int ang = rand()%360;

// compute random trajectory velocity
float vel = 2+rand()%4;

Start_Particle(type,color,count,
x+RAND_RANGE(-4,4),y+RAND_RANGE(-4,4),
xv+cos_look[ang]*vel, yv+sin_look[ang]*vel);

} // end while

} // end Start_Particle_Explosion

Start_Particle_Explosion() takes the type of particle you want
(PARTICLE_TYPE_FADE, PARTICLE_TYPE_FLICKER), the color of the particles, the
desired number of particles, along with the position and velocity of the source. The
function then generates all the desired particles.

All particles thrown with velocities in some
range < max and in random directions

p4

p5

p6

p7

p1

p2

p3

(xo, yo)
emitter

Figure 13.43
The particles of an

explosion.

1772313618 CH13 10/26/99 10:57 AM Page 868

CHAPTER 13
Playing God: Basic Physics Modeling

869

To create other special effects, just write a function. For example, one of the coolest
effects that I like in movies is the ring-shaped shock wave when a spaceship is blown
away. Creating this is simple. All you need to do is modify the explosion function to
start all the particles out with exactly the same velocity, but at different angles. Here’s
that code:

void Start_Particle_Ring(int type, int color, int count,
int x, int y, int xv, int yv,
int num_particles)

{
// this function starts a particle explosion at the
// given position and velocity
// note the use of look up tables for sin,cos

// compute random velocity on outside of loop
float vel = 2+rand()%4;

while(--num_particles >=0)
{
// compute random trajectory angle
int ang = rand()%360;

//start the particle
Start_Particle(type,color,count,

x,y,
xv+cos_look[ang]*vel,
yv+sin_look[ang]*vel);

} // end while

} // end Start_Particle_Ring

Putting the Particle System Together
You now have everything you need to put together some cool particle effects. Just
make a call in the initialize phase of your game to Init_Reset_Particles(), then in
the main loop make a call to Process_Particles(). Each cycle and the engine will
do the rest. Of course, you have to call one of the generator functions to create some
particles! Lastly, if you want to improve the system you might want to add better
memory management so you can have infinite particles, and you might want to add
particle-to-particle collision detection and particle-to-environment collision detec-
tion—that would be really cool.

As a demo of using the particle system, take a look at DEMO13_10.CPP|EXE on the CD.
It is a fireworks display based on the tank projectile demo. Basically, the tank from
the previous demo fires projectiles now. Also, note in the demo I jacked the number of
particles up to 256.

1772313618 CH13 10/26/99 10:57 AM Page 869

Hardcore Game Programming

870 PART III

Playing God: Constructing Physics Models for
Games

This chapter has given you a lot of information and concepts to sift through. The key
is to use the concepts and some of the hard math to make working models that look
good. No one will ever know if they accurately simulate reality 100 percent, nor will
they care. If you can make an approximation then do it—as long as it’s worth it. For
example, if you’re trying to make a racing game and you want to race on road, ice,
and dirt, then you better have some frictional effects, otherwise, your cars will drive
like they’re on rails!

On the other hand, if you have an asteroid field that the player blows up and each
asteroid splits into two or more smaller asteroids then I don’t think the player is going
to care or know for that matter the exact trajectory that the smaller asteroids would
take—just pick them in a deterministic way so they look good.

Data Structures for Physics Modeling
One of the questions that I’m asked continuously (in addition to how to compile
DirectX programs with VC++) is what data structures to use for physics modeling.
There are no physics-data structures! Most physics models are based on the game
objects themselves—you simply need to add enough data elements to your primary
data structures to figure the physics out—get it? Nonetheless, you should keep track
of the following parameters and values in any physics engine for the universe and
objects:

• Position and velocity of the object.

• Angular velocity of the object.

• Mass, frictional coefficient, and any other physical properties of the object.

• Physics engine geometry for the object. This is simply a geometry that can be
used for the physics calculations. You may use rectangles, spheres, or whatever,
rather than the actual object geometry.

• External universal forces such as wind, gravity, and so on.

Now it’s up to you to represent all these values with whatever structures or types are
appropriate. For example, the realistic collision response demo used a model some-
thing like this:

Each Ball Object

float x,y; // position
float xv,yv; // velocity
float radius; // guess?
float coefficient_of_restitution; // just what it says

1772313618 CH13 10/26/99 10:57 AM Page 870

CHAPTER 13
Playing God: Basic Physics Modeling

871

Of course the data was hidden a little in some internal arrays in each of the BOBs
(blitter objects) that represented the balls, but the abstract data structure is what we’re
interested in.

Frame-Based Versus Time-Based Modeling
This is the final topic I want to talk about since it’s becoming more and more impor-
tant in 3D games. Thus far in the book, we have had a game loop that looks like
Figure 13.44. We have been assuming that the game will run at a constant rate of R
fps. If it doesn’t, then no big deal, everything will slow down on the screen. But what
if you didn’t want things to slow down on the screen? What if you wanted a ship to
move from a to b in two seconds no matter what the frame rate was? This is called
time-based modeling.

Erase

Initialize

Get input

Process input

Move objects

Render

Stal

Main event loop

StartupFigure 13.44
The game loop you’ve

learned to love.

Time-based modeling differs from frame-based modeling in that time t is used in all
the kinematic equations that move objects. For example, in a frame-based game if you
have the chunk of code:

1772313618 CH13 10/26/99 10:57 AM Page 871

Hardcore Game Programming

872 PART III

x = 0, y = 0;

x = x + dx;
y = y + dy;

and the game runs at 30 fps, then in 30 frames or 1 second, x,y will equal

x = 30*dx;
y = 30*dy;

If dx=1 and dy=0 then the object would move exactly 30 pixels in the x-direction.
And this is fine if you can always guarantee a constant frame rate. But what if the
frame rate drops to 10 fps? Then in 1 second, you will have:

x = 10*dx = 10
y = 10*dy = 0

x only changed one-third of what you wanted it to! If visual continuity is what you
are going for then this is unacceptable. In addition, this can wreak havoc on a network
game. In a network game you can either sync to the slowest machine and stay frame-
based, or you can let all the machine free run and use time modeling, which is the
more realistic and fair thing to do. I shouldn’t have to pay for someone else owning a
486 when I have a PIII 1000MHz.

To implement time-based motion and kinematics, you have to use time in all of your
motion equations. Then, when it’s time to move objects, you have to test the differ-
ence in time from the last movement and use this as the input into your equations.
Thus, as the game slows down a lot, it won’t matter because the time parameter will
convey this and cause a larger motion. Here’s an example game loop:

while(1)
{
t0 = Get_Time(); // assume this is in milliseconds

// work, work, work

// move objects
t1 = Get_Time();

// move all the objects
Move_Objects(t1 – t0);

// render
Render();

} // end while

With this loop we use the change in time or (t1-t0) as an input to the motion code.
Normally there would be no input; the motion code would just move. Let’s assume
that we want our object to move at 30 pixels per second, but since our time base is in
milliseconds, or 1x10-3 seconds, we need to scale this:

1772313618 CH13 10/26/99 10:57 AM Page 872

CHAPTER 13
Playing God: Basic Physics Modeling

873

dx = 30 pixels/1 sec = .03 pixels/1 millisecond

Can you see where I’m going? Let’s write the motion equation for x:

x = x + dx*t

Plugging everything in we get

x = x +.03*(t1 – t0)

That’s it. If a single frame takes one second then (t1 – t0) will be 1000 milliseconds
and the motion equation will equal

x = x + .03*1000 = 30, which is correct!

On the other hand, if the time for this frame takes three milliseconds then the motion
equation will look like:

x = x + .03*3 = .09, which is also correct!

Obviously you need to use floating point values for all this to work since you are
going to be tracking fractions of pixel motion, but you get the idea. This is so cool
because even if your game starts bogging down hardcore due to rendering, the motion
will stay the same.

As an example, check out DEMO13_11.CPP|EXE; it basically moves a little ship (with a
shadow!) from left to right and allows you to alter the delay of each frame using the
arrow keys to simulate processor load.

Notice that the ship moves at a constant rate. It may jump, but it will always travel a
total distance of 50 pixels/sec no matter what the frame rate. As a test, the screen is
640 pixels wide, plus the off-screen overlap of 160 pixels, thus the entire travel is 800
pixels. Since the ship is traveling at 50 pixels/sec that means that it should take
800/50=16 seconds to make one pass. Try changing the delay and note that this is
always true. If your game was designed to run at 60 fps and it slows to 15–30 then the
jumping won’t be that apparent and the game will look the same, but less smooth.
Without time modeling your game WILL slow down and look like it’s in slow
motion—I’m sure you have seen this many times. :)

Summary
I’m sure this chapter has been somewhat enlightening whatever your background is. It
gave me a headache writing it! We covered a lot of ground and learned various ways
to look at things. For example, we tried an ad hoc collision response algorithm that
worked great for a ball bouncing off a rectangle. This technique is perfect for any
kind of pong or breakout game. Then we looked more closely at the mathematics of
reflection and derived the correct way to do it in general. This is the point of physics
modeling in games—and you just learned how to do it.

1772313618 CH13 10/26/99 10:57 AM Page 873

1772313618 CH13 10/26/99 10:57 AM Page 874

Putting It All Together: You
Got Game!

“He slimed me!”

—Bill Murray, Ghostbusters

This is the last chapter of Volume I, and it’s just in time; I’m
starting to have a three-way conversation with myself. I admit I
talk to myself, but when two different people talk back, it’s time
to quit! Anyway, in this chapter I’m going to outline the design
and implementation of a simple game, Outpost, which I wrote
using the techniques that you have learned in the book.

The game took about five days to write, so don’t expect much.
However, it sports 3D-modeled sprites, particles, some game-
play, sound effects, and a few different enemies, and I think it
should be really easy for you to mess with if you want to. Here’s
what I’m going to cover:

• The initial design of Outpost

• The tools used to write the game

• The game universe: scrolling in space

• The player’s ship: the Wraith

CHAPTER 14

1872313618 CH14 10/26/99 11:00 AM Page 875

Hardcore Game Programming

876 PART III

• The asteroid field

• The enemies

• The power-ups

• The HUDs

• The particle system

• Playing the game

• Compiling Outpost

The Initial Design of Outpost
I wanted to create a game that was easy to write, looked good, had some rudimentary
gameplay, and used scrolling (if I had a dollar for every scrolling question I received,
I would be a millionaire). Thus, I picked an Asteroids-type space game because the
only background is black space. Plus, the artificial intelligence (AI) for Asteroids,
along with search-and-destroy AI for the enemies, is pretty simple, so it all sounded
like a good idea.

The Story
The story goes something like this: You are the pilot of the top-secret Wraith, a highly
armored attack fighter sent to sector Alpha 11 to rid the area of an alien incursion.
The aliens have infested the area with outposts that you must destroy. The only prob-
lem is that the sector is filled with heavy debris (the asteroids), alien warships, and
homing mines protecting each outpost. That’s about all there is to the story. (Sounds
like a great movie, huh?) Figures 14.1 and 14.2 show the game during startup and
gameplay.

Figure 14.1
Outpost starting up.

1872313618 CH14 10/26/99 11:00 AM Page 876

CHAPTER 14
Putting It All Together: You Got Game!

877

Although in most cases I think that creating the story of a game is one of the least
important things about writing a program, it does give you a point of reference to
build from and keeps the game semi-coherent.

Designing the Gameplay
Once I had the story down, I started designing the gameplay. This consisted of mak-
ing up the rules. Which object/control performs which function? What’s the goal? And
so forth. The game isn’t that advanced, so I basically thought up what the player can
do, what the enemies can do, how the player wins (or loses), what kind of AI every-
thing has, and so on. Because Outpost isn’t level-based and doesn’t have any kind of
strategy, there’s not much else to the design.

The Tools Used to Write the Game
I wanted to stick to 256 colors because I’ve used 256-color modes in the book to keep
things simple, but I still wanted a really clean look for the objects. Hence, I decided to
render almost everything. I used Caligari TrueSpace IV (TS4), which in my estima-
tion is the best 3D modeler in the world for its price. However, price aside, TS4 can
give 3D Studio Max a run for its money. There’s a demo copy of TS4 on the CD, so
make sure to check it out.

The 2D artwork and touchup was done using JASC Paint Shop Pro 5.1, which is a
killer paint package that supports plug-ins and has the easiest interface I have ever
seen. Again, there is a demo copy on the CD.

Figure 14.2
Outpost during game-

play.

1872313618 CH14 10/26/99 11:00 AM Page 877

Hardcore Game Programming

878 PART III

Finally, the sound effects were taken from various sources and processed with Sonic
Foundry’s Sound Forge XP, which is one of the best sound-editing packages for PCs.
You can also find a demo copy of Sound Forge on the CD. That’s just about all the
tools I used, in addition to VC++ 5.0, 6.0, and DirectX.

Table 14.1 lists all the game objects and how they were created.

TABLE 14.1 The Objects in Outpost

Object Technique

Asteroids Rendered with TS4

Player’s ship Hand-drawn with PSP

Outposts Rendered with TS4

Predator mines Rendered with TS4

Gunships Rendered with TS4

Power-ups Rendered with TS4

Plasma pulses Hand-drawn with PSP

Star field Single pixels

Explosions Digitized Pyrotechnics Stock Media

The meshes for all the 3D models were created by hand, and each took less than an
hour with TS4. The hand-drawn images took about an hour each. I rotated the player’s
ship using the software rotation algorithm in PSP rather than doing it manually. All
sounds were sampled down to 11 KHz, 8-bit mono.

The Game Universe: Scrolling in Space
I already covered how to implement scrolling, so I’m not going to cover it again.
However, there are a couple of interesting details about the scrolling in Outpost. First,
the player is always at the center of the screen. This makes things a bit easier, but
more importantly it gives the player the biggest game area possible to react in. If you
allowed the player’s character to get near the edges of the screen in a scrolling game,
it’s possible that an enemy could pop up and hit the player before he even had a few
milliseconds to react. By keeping the player in the center of the screen, you give him
good visibility of what’s around him at all times.

As for the size of the game universe, I chose 16000×16000, as shown here:

// size of universe
#define UNIVERSE_MIN_X (-8000)
#define UNIVERSE_MAX_X (8000)
#define UNIVERSE_MIN_Y (-8000)
#define UNIVERSE_MAX_Y (8000)

1872313618 CH14 10/26/99 11:00 AM Page 878

CHAPTER 14
Putting It All Together: You Got Game!

879

Universe size is always a hard thing to decide, but my standard technique is the fol-
lowing: Estimate how many frames per second the game is going to run at, estimate
the max speed the player can move, and then, based on that, decide how long you
want the player to take to get from one end of the universe to the other:

universe_size = player_velocity*fps*desired_time

Hence, if the player moves at a max of 32 pixel/frames per second, and you want to
run at 30 fps with a time of 10 seconds from one end to another, you have a universe
size of

universe_size = 32 pixels/frame * 30 fps * 10
= 9600 units

Here, each unit is a pixel. This is basically how I came up with the 16,000. Of course,
the final values in the game were slightly different, but this is how I came up with the
ballpark figures.

The other issue to consider when you’re making a scrolling space game is the sparse-
ness. You may think that a space of 10×10 seconds or 16000×16000 pixels isn’t that
big, but to populate it, you will need hundreds if not thousands of asteroids.
Otherwise, the player will be flying around forever looking for stuff to shoot! My
friend Jarrod Davis learned this when writing Astro3D, which you can find on the
CD.

As for the scrolling algorithm, there’s not much to it. The player’s position is used as
the center of a window to render from, as shown in Figure 14.3.

–y

+y

–x +x

+8000

+8000–8000

–8000

View window

Player's position
(player_x, player_y)Always

centered
around player

Game universe
16000 x 16000

Outpost

Video display

Mapped to
display

Figure 14.3
The scrolling window
algorithm for Outpost.

1872313618 CH14 10/26/99 11:00 AM Page 879

Hardcore Game Programming

880 PART III

The algorithm works by taking the player’s position, and then translating the player to
the origin (the screen center) and translating the objects to the player. The objects that
are within the window are rendered, and the others are not. The only objects that
aren’t drawn this way are the stars, which are basically pixels that wrap around as
they move off the edges of the screen. Hence, if you look carefully, you can see the
same stars in the same positions if you move slowly in the x- or y-axis.

The Player’s Ship: “The Wraith”
The player’s ship was hand-drawn. I was going to render it, but it had so much detail
that I decided to just draw it and then use Paint Shop Pro to light it and make it look
real. In addition, I only drew the Wraith facing north and then used PSP’s built-in
bitmap rotation to rotate the ship in 16 different angles. The artwork is shown in
Figure 14.4.

Figure 14.4
The artwork for the

Wraith.

The Wraith doesn’t do much except fly around and shoot, but the friction algorithm is
interesting. I wanted the Wraith to look like it was flying under gravity, so I wanted
some form of friction when it turned. I implemented this with the standard techniques
that you learned in previous chapters.

The Wraith has a velocity vector that is modified when the player thrusts in any par-
ticular direction. The nice thing about this approach is that you don’t have to worry
about things like, “If the ship is going east at this speed and the player thrusts north,
what should the ship do?” Instead, I let the vector math do it.

Here’s a portion of the control code for the Wraith:

1872313618 CH14 10/26/99 11:00 AM Page 880

CHAPTER 14
Putting It All Together: You Got Game!

881

// test if player is moving
if (keyboard_state[DIK_RIGHT])

{
// rotate player to right
if (++wraith.varsI[WRAITH_INDEX_DIR] > 15)

wraith.varsI[WRAITH_INDEX_DIR] = 0;

} // end if
else
if (keyboard_state[DIK_LEFT])

{
// rotate player to left
if (—wraith.varsI[WRAITH_INDEX_DIR] < 0)

wraith.varsI[WRAITH_INDEX_DIR] = 15;

} // end if

// vertical/speed motion
if (keyboard_state[DIK_UP])

{
// move player forward
xv = cos_look16[wraith.varsI[WRAITH_INDEX_DIR]];
yv = sin_look16[wraith.varsI[WRAITH_INDEX_DIR]];

// test to turn on engines
if (!engines_on)

DSound_Play(engines_id,DSBPLAY_LOOPING);

// set engines to on
engines_on = 1;

Start_Particle(PARTICLE_TYPE_FADE, PARTICLE_COLOR_GREEN, 3,
player_x+RAND_RANGE(-2,2),
player_y+RAND_RANGE(-2,2),
(-int(player_xv)>>3), (-int(player_yv)>>3));

} // end if
else
if (engines_on)

{
// reset the engine on flag and turn off sound
engines_on = 0;

// turn off the sound

DSound_Stop_Sound(engines_id);
} // end if

// add velocity change to player’s velocity
player_xv+=xv;
player_yv+=yv;

1872313618 CH14 10/26/99 11:00 AM Page 881

Hardcore Game Programming

882 PART III

// test for maximum velocity
vel = Fast_Distance_2D(player_xv, player_yv);

if (vel >= MAX_PLAYER_SPEED)
{
// recompute velocity vector by normalizing then rescaling
player_xv = (MAX_PLAYER_SPEED-1)*player_xv/vel;
player_yv = (MAX_PLAYER_SPEED-1)*player_yv/vel;
} // end if

// move player, note that these are in world coords
player_x+=player_xv;
player_y+=player_yv;

About the name Wraith. A long time ago I saw a movie called The
Wraith with Charlie Sheen. In the film, Charlie ended up in the trunk of
his car, falling off a cliff at 32 ft/sec2. He died and came back as a wraith,
which is an evil ghost that takes revenge on its killers. Anyway, he had
this cool car, a prototype Dodge Interceptor, and the movie is where I
got the name. I thought you should know. (Plus, guess who has the
Dodge Interceptor?)

Studying the code, you’ll notice there is some code to keep the Wraith from going too
fast. Basically, I continually check the length of the velocity vector against a MAX
length. If it’s too long, I shrink it. Another approach could have been to use a unit
direction vector and a speed scalar, and then translate the ship each frame an amount
equal to the unit vector scaled by the speed. Either way is about the same.

Lastly, the Wraith has a shield and a vapor trail. The shield is nothing more than a
bitmap that I overlay on the Wraith when something hits it, and the vapor trail is just
particles that I emit out randomly when the thrusters are on. The thruster effect is
achieved with two bitmaps for each direction of the Wraith: one with thrusters on and
one with thrusters off. When the thrusters are on, I randomly select the on/off image
and it looks like a Klingon impulse drive.

The Asteroid Field
The asteroid field consists of a large number of randomly moving asteroids of three
different sizes: small, medium, and large. The asteroids were rendered using TS4 with
real-time rendering enabled. Figures 14.5 shows the asteroids in the modeler, and
Figure 14.6 shows their rendered forms. Once I had the asteroids looking like aster-
oids and lit properly, I created a rotation animation and then a Targa (.TGA) movie of
each asteroid rotating, converting the .TGA movie files, image0000.tga,
image0001.tga, and so on, into bitmaps (.bmp) and importing them directly into the
game without templating them.

Tip

1872313618 CH14 10/26/99 11:00 AM Page 882

CHAPTER 14
Putting It All Together: You Got Game!

883

The physics model of the asteroids is rather simple. They just move in the same direc-
tion at a constant velocity until they’re fired upon. In addition, the asteroids rotate at
varying speeds to give a feel of mass. When an asteroid is fired upon, its size and
hardness determine how it’s blown up. You can hit a large asteroid so hard with a
blaster pulse that it’s completely obliterated, but sometimes it only splits. Splitting is

Figure 14.5
The 3D models for

the asteroids.

Figure 14.6
The rendered

asteroids.

1872313618 CH14 10/26/99 11:00 AM Page 883

Hardcore Game Programming

884 PART III

dictated by two factors: probability and availability. There are only so many medium
and small asteroids, so you can’t always split all the large ones.

In addition, I didn’t like the way that a large asteroid always split into two medium
ones, and a medium asteroid always split into two small ones. Therefore, sometimes a
large asteroid might split into one medium and two small ones, or two medium and
two small ones, and so on. I threw in some extra permutations based on probability to
make things more interesting. If you want to add more asteroids, you can change the
following define:

#define MAX_ROCKS 300

Try jacking it up to 1,000, or 10,000 if you have a Pentium III 550 MHz!

I have this love for the game Asteroids. I guess it was that $100 I won in
college on a bet. Some other computer science students bet me that I
couldn’t write an Asteroids game right in front of them in Pascal on an
IBM XT. They had seen other games I’d written and said I’d copied them.
Of course, these were your typical comp-sci students who couldn’t do
anything unless there was an API call for it.

I sat down and wrote Asteroids in about eight hours flat—an exact copy
of the vector version by Atari (no sound, though). I won the 100 bucks,
and then I slapped them all with a backhand and took their pocket pro-
tectors.

The point is that I have memorized the code for Asteroids after doing it
so many times, and I always like using it as an example. It’s like my
“Hello World” for game programming. :)

Finally, when an asteroid hits the edge of the game universe, it just wraps around by
resetting the x or y position variable. But what if you want to make it bounce off the
edge by reflecting the velocity vector’s sign?

The Enemies
The enemies in the game aren’t the smartest guys in the universe, but they get the job
done. For the most part they use the more introductory AI methods, such as determin-
istic logic and FSMs (finite state machines). However, there are a couple of cool tech-
niques that I used for tracking algorithms. You’ll see this later in the chapter when I
show you the code that makes the predator mines home in on the player’s position.
Anyway, take a look at how each enemy was created and implemented.

Tip

1872313618 CH14 10/26/99 11:00 AM Page 884

CHAPTER 14
Putting It All Together: You Got Game!

885

The Outposts
The model I used for the outposts was probably the most complex 3D model in the
whole game. It took me hours to build the model. The bummer is that the 3D model
has a ton of detail, as shown in Figures 14.7 and 14.8, but I lost all that detail when I
rendered the model and shrank it down.

Figure 14.7
The 3D model for an

outpost.

Figure 14.8
A rendered outpost.

1872313618 CH14 10/26/99 11:00 AM Page 885

Hardcore Game Programming

886 PART III

Anyway, the outposts don’t do much except sit there and rotate. They have no
weapons, no AI, nothing. However, they can detect damage, and when the player fires
on them they will start to explode. Particles and secondary explosions will occur until
the damage level of the outpost is so great that it explodes!

The Predator Mines
The predator mines are the protectors of the outposts. They hold position nearby until
you get within a specified range, and then they turn on and track you. The predator
mines were rendered with TS4 and are shown in Figures 14.9 and 14.10.

Figure 14.9
The 3D model for a

predator mine.

I wasn’t very happy with the final 3D model for them. Actually, I created another 3D
model, shown in Figure 14.11, but it looked more like a stationary mine than some-
thing that could attack you.

In any case, the AI for the predator mine is simple. It’s a finite state machine that
starts off in an idle or sleep state. It’s activated when you get within a specified range,
based on the following define:

#define MIN_MINE_ACTIVATION_DIST 250

If the player is within this range of a predator mine, it will activate and track using the
vector-tracking algorithm that I described and demonstrated when I covered artificial
intelligence and tracking algorithms in Chapter 12, “Making Silicon Think with
Artificial Intelligence.”

1872313618 CH14 10/26/99 11:00 AM Page 886

CHAPTER 14
Putting It All Together: You Got Game!

887

The predator mines don’t have any weapons; they simply try to track you and deto-
nate near you, causing damage to your ship.

Figure 14.10
A rendered predator

mine.

Figure 14.11
Another predator

mine concept.

1872313618 CH14 10/26/99 11:00 AM Page 887

Hardcore Game Programming

888 PART III

The Gunships
The gunships were modeled in TS4, as shown in Figures 14.12 and 14.13. They were
very detailed and looked great until I shrank them down and converted them to the
256-color palette. But that’s life.

Figure 14.12
The 3D model for a

gunship.

Figure 14.13
A rendered gunship.

1872313618 CH14 10/26/99 11:00 AM Page 888

CHAPTER 14
Putting It All Together: You Got Game!

889

The AI for the gunships is simple. They travel on the x-axis at a constant velocity. If
they get within a specified distance to the player, they adjust their y-axis position to
track the player, but at a slow rate. Hence, the player can always make a quick direc-
tional change to get away. The power of the gunships is in their heavy weapons. Each
gunship is equipped with three laser cannons that can be fired independently, as
shown in Figure 14.14.

Figure 14.14
The turret-tracking

algorithm for the gun-
ships.

+y

–y

+x–x

+y

–y

+x–x

Current turret direction

Potential new directions
“which one minimizes distance
from tip to target?”

Object being
tracked

Dist 1

Dist 2

If Dist 1 > Dist 2If Dist 2 > Dist 1

The tracking algorithm for the cannons is rather cool. It works by projecting a vector
in the direction that the turret is currently pointing, and another vector from the turret
to the player’s ship. Then the algorithm wants to minimize the distance from the head
of the turret to the player’s ship, so it tests both clockwise and counterclockwise rota-
tions to see which rotation minimizes the distance and then performs the rotation that
minimizes the distance.

The algorithm was written without trig or any complex vector calculations, just using
a distance calculation and a minimization algorithm. I came up with it by taking into
consideration how people’s heads track an object. We start turning in the direction of
the object, and when we feel that we’re looking in the right direction, we start slowing

1872313618 CH14 10/26/99 11:00 AM Page 889

Hardcore Game Programming

890 PART III

our head’s rotation rate and come to a stop. But sometimes we may overshoot and
have to readjust. This was the inspiration for the algorithm. Take a look here to see the
source for the tracking:

// first create a vector point in the direction of the turret

// compute current turret vector
int tdir1 = gunships[index].varsI[INDEX_GUNSHIP_TURRET];

float d1x = gunships[index].varsI[INDEX_WORLD_X] +
cos_look16[tdir1]*32;

float d1y = gunships[index].varsI[INDEX_WORLD_Y] +
sin_look16[tdir1]*32;

// compute turret vector plus one
int tdir2 = gunships[index].varsI[INDEX_GUNSHIP_TURRET]+1;

if (tdir2 > 15)
tdir2 = 0;

float d2x = gunships[index].varsI[INDEX_WORLD_X] +
cos_look16[tdir2]*32;

float d2y = gunships[index].varsI[INDEX_WORLD_Y] +
sin_look16[tdir2]*32;

// compute turret vector minus one
int tdir0 = gunships[index].varsI[INDEX_GUNSHIP_TURRET]-1;

if (tdir0 < 0)
tdir0=15;

float d0x = gunships[index].varsI[INDEX_WORLD_X] +
cos_look16[tdir0]*32;

float d0y = gunships[index].varsI[INDEX_WORLD_Y] +
sin_look16[tdir0]*32;

// now find the min dist
float dist0 = Fast_Distance_2D(player_x - d0x,

player_y - d0y);
float dist1 = Fast_Distance_2D(player_x - d1x,

player_y - d1y);
float dist2 = Fast_Distance_2D(player_x - d2x,

player_y - d2y);

if (dist0 < dist2 && dist0 < dist1)
{
// the negative direction is best
gunships[index].varsI[INDEX_GUNSHIP_TURRET] = tdir0;

} // end if
else
if (dist2 < dist0 && dist2 < dist1)

1872313618 CH14 10/26/99 11:00 AM Page 890

CHAPTER 14
Putting It All Together: You Got Game!

891

{
// the positive direction is best
gunships[index].varsI[INDEX_GUNSHIP_TURRET] = tdir2;
} // end if

You’ll notice that I am using a lot of distance calculations. However,
they’re based on the Fast_Distance2D() function, so they’re very fast
and amount to nothing more than a couple of shifts and adds.

The Power-Ups
The game felt a little “strategy-less” to me with infinite ammo and shields, so I
thought, “Why not have some power-ups?” With that in mind, I sat down with TS4
and started modeling power-ups. Then I realized I didn’t have a good idea of what to
model!

Power-ups usually aren’t very realistic. I mean, they say “AMMO” on them, float
with some kind of anti-gravity drive, and so on, but still they have to look right. In the
end, I decided on simple transparent spheres with the words “AMMO” and “SHLD”
glowing inside. The 3D model renderings are shown in Figure 14.15.

Figure 14.15
The rendered

power-ups.

Once I had the 3D models down, I rendered the power-ups and got ready to put them
in the game. I wanted the power-ups to appear as a result of destroying either an
asteroid or an enemy, and I decided that it made more sense to put the power-ups

Tip

1872313618 CH14 10/26/99 11:01 AM Page 891

Hardcore Game Programming

892 PART III

inside the asteroids. My argument was that when you destroy an asteroid, debris and
precious minerals (such as dilithium crystals) might be thrown out during the explo-
sion. Sounds reasonable. :)

When an asteroid is destroyed, it’s as if a 10-sided die is rolled. If the die lands on the
side labeled TRUE, a power-up is created (ammo or shields) and it moves away from
the explosion site at a low velocity. When you run through the power-up, you absorb
the material and either your shields or ammo increase.

At first, I just created the power-up and let it float off. But I soon realized that space
is vast, and the second I lost sight of the power-up, it was really hard to find. Sure, I
could have put a blip on the scanner, but it made more sense to give the power-up a
lifespan. Hence, when a power-up is spawned, it lives for 3-9 seconds and then dies.
This way there are an infinite number of power-ups, and if you lose one, it’s sure to
get recycled and not just lost in space.

The HUDS
The HUDS (Heads-Up Displays) for Outpost consist of two main components: a
scanner and some tactical information, including fuel, velocity, shields, ammo, num-
ber of ships left, and score. This is shown in Figure 14.16. It’s all rendered in a nice
alien green—I love green. The tactical information is simply GDI-rendered text, but
the scanner is DirectX-rendered via lines, bitmaps, and pixels.

Figure 14.16
The HUDs.

1872313618 CH14 10/26/99 11:01 AM Page 892

CHAPTER 14
Putting It All Together: You Got Game!

893

Take a look at the scanner code:

void Draw_Scanner(void)
{
// this function draws the scanner

int index,sx,sy; // looping and position

// lock back surface
DDraw_Lock_Back_Surface();

// draw all the rocks
for (index=0; index < MAX_ROCKS; index++)

{
// draw rock blips
if (rocks[index].state==ROCK_STATE_ON)

{
sx = ((rocks[index].varsI[INDEX_WORLD_X] –

UNIVERSE_MIN_X) >> 7) +
(SCREEN_WIDTH/2) –
((UNIVERSE_MAX_X - UNIVERSE_MIN_X) >> 8);

sy = ((rocks[index].varsI[INDEX_WORLD_Y] –
UNIVERSE_MIN_Y) >> 7) + 32;

Draw_Pixel(sx,sy,8,back_buffer, back_lpitch);
} // end if

} // end for index

// draw all the gunships
for (index=0; index < MAX_GUNSHIPS; index++)

{
// draw gunship blips
if (gunships[index].state==GUNSHIP_STATE_ALIVE)

{
sx = ((gunships[index].varsI[INDEX_WORLD_X] –

UNIVERSE_MIN_X) >> 7) +
(SCREEN_WIDTH/2) - ((UNIVERSE_MAX_X –
UNIVERSE_MIN_X) >> 8);

sy = ((gunships[index].varsI[INDEX_WORLD_Y] –
UNIVERSE_MIN_Y) >> 7) + 32;

Draw_Pixel(sx,sy,14,back_buffer, back_lpitch);
Draw_Pixel(sx+1,sy,14,back_buffer, back_lpitch);

} // end if

} // end for index

// draw all the mines
for (index=0; index < MAX_MINES; index++)

{

1872313618 CH14 10/26/99 11:01 AM Page 893

Hardcore Game Programming

894 PART III

// draw gunship blips
if (mines[index].state==MINE_STATE_ALIVE)

{
sx = ((mines[index].varsI[INDEX_WORLD_X] –

UNIVERSE_MIN_X) >> 7) +
(SCREEN_WIDTH/2) - ((UNIVERSE_MAX_X –
UNIVERSE_MIN_X) >> 8);

sy = ((mines[index].varsI[INDEX_WORLD_Y] –
UNIVERSE_MIN_Y) >> 7) + 32;

Draw_Pixel(sx,sy,12,back_buffer, back_lpitch);
Draw_Pixel(sx,sy+1,12,back_buffer, back_lpitch);

} // end if

} // end for index

// unlock the secondary surface
DDraw_Unlock_Back_Surface();

// draw all the stations
for (index=0; index < MAX_STATIONS; index++)

{
// draw station blips
if (stations[index].state==STATION_STATE_ALIVE)

{
sx = ((stations[index].varsI[INDEX_WORLD_X] –

UNIVERSE_MIN_X) >> 7) +
(SCREEN_WIDTH/2) - ((UNIVERSE_MAX_X –
UNIVERSE_MIN_X) >> 8);

sy = ((stations[index].varsI[INDEX_WORLD_Y] –
UNIVERSE_MIN_Y) >> 7) + 32;

// test for state
if (stations[index].anim_state == STATION_SHIELDS_ANIM_ON)

{
stationsmall.curr_frame = 0;
stationsmall.x = sx - 3;
stationsmall.y = sy - 3;
Draw_BOB(&stationsmall,lpddsback);

} // end if
else

{
stationsmall.curr_frame = 1;

stationsmall.x = sx - 3;
stationsmall.y = sy - 3;
Draw_BOB(&stationsmall,lpddsback);

} // end if
} // end if

} // end for index

// unlock the secondary surface

1872313618 CH14 10/26/99 11:01 AM Page 894

CHAPTER 14
Putting It All Together: You Got Game!

895

DDraw_Lock_Back_Surface();

// draw player as white blip
sx = ((int(player_x) - UNIVERSE_MIN_X) >> 7) + (SCREEN_WIDTH/2) –

((UNIVERSE_MAX_X - UNIVERSE_MIN_X) >> 8);
sy = ((int(player_y) - UNIVERSE_MIN_Y) >> 7) + 32;

int col = rand()%256;

Draw_Pixel(sx,sy,col,back_buffer, back_lpitch);
Draw_Pixel(sx+1,sy,col,back_buffer, back_lpitch);
Draw_Pixel(sx,sy+1,col,back_buffer, back_lpitch);
Draw_Pixel(sx+1,sy+1,col,back_buffer, back_lpitch);

// unlock the secondary surface
DDraw_Unlock_Back_Surface();

// now draw the art around the edges
hud.x = 320-64;
hud.y = 32-4;
hud.curr_frame = 0;
Draw_BOB(&hud,lpddsback);

hud.x = 320+64-16;
hud.y = 32-4;
hud.curr_frame = 1;
Draw_BOB(&hud,lpddsback);

hud.x = 320-64;
hud.y = 32+128-20;
hud.curr_frame = 2;
Draw_BOB(&hud,lpddsback);

hud.x = 320+64-16;
hud.y = 32+128-20;
hud.curr_frame = 3;
Draw_BOB(&hud,lpddsback);

} // end Draw_Scanner

I wanted you to see a typical scanner function because they tend to be a little messy.
Basically, a scanner represents the position of various objects in a game, usually
scaled and centered. The problem is making a huge space into a small space and
drawing image elements that look realistic. Thus, the scanner imagery usually consists
of a number of heterogeneous image elements.

Also, when you’re viewing a scanner, you want to be able to quickly pick out impor-
tant data such as where you are, the positions of the enemies, and so on, so color and
shape is very important. In the end, I decided to use one or more pixels to represent
enemies, single gray pixels to represent asteroids, and actual bitmaps to represent the
outposts. The player’s ship is represented by a glowing blob.

1872313618 CH14 10/26/99 11:01 AM Page 895

Hardcore Game Programming

896 PART III

Finally, the scanner itself is supposed to be some kind of holographic imaging system.
I wanted it to look cool, so I drew some nice bitmaps for the corners of it.

As for the workings of the scanner algorithm, take a look at the code. It does nothing
more than divide the position of each object by some constant so the results fit into
the window of the scanner.

The Particle System
The particle system for Outpost is exactly like the one from Chapter 13, “Playing
God: Basic Physics Modeling.” Particles can be created with various velocities and
colors, and there are functions to create sets of particles with specific properties to
mimic explosions and so forth. The important thing is not how particles work
(because you already know), but how I used them.

Particles are used for a lot of things in Outpost. I want all the enemies to leave vapor
trails when damaged. I want the player to leave plasma behind when flying around.
And when something is damaged or blown up, I want a lot of particles to be part of
the explosion in addition to the bitmap-animated explosions.

The cool thing about particles is that they’re so cheap and add so much to the visual
excitement of a game. Not to mention that vapor trails and particles can be used as
game elements themselves for tracking, or for other interpretations: food, footprints,
whatever.

Playing the Game
Playing Outpost is very simple: you just fly around and blow things up. However, if
there was a goal to the game, I would say that it’s to blow up all the outposts.

Here are the controls:

Right arrow, left arrow Rotate ship

Up arrow Thrust

Ctrl, spacebar Fire weapons

H Toggle tactical information

S Toggle scanner

Left Alt+right Alt+A Special

Esc Exit

1872313618 CH14 10/26/99 11:01 AM Page 896

CHAPTER 14
Putting It All Together: You Got Game!

897

Compiling Outpost
Compiling Outpost is no different than compiling any other demo you have created so
far. Figure 14.17 illustrates the components needed to compile and run the project.

DDRAW.LIB
DSOUND.LIB
DINPUT.LIB
WINMM.LIB

DirectX and Multimedia Files

T3DLIB1.CPP|H
T3DLIB2.CPP|H
T3DLIB3.CPP|H

Library Files

C++ COMPILIER

Run-Time Files

OUTPOST.EXE

OUTART\ OUTSOUND\

OUTPOST.CPP

Main Source File

C
om

pi
le

 T
im

e
F

ile
s

Figure 14.17
The software architec-

ture of Outpost.

Take a look in the next sections to see these components in more detail.

Compilation Files
Source Files:

OUTPOST.CPP The main game file.

T3DLIB1.CPP|H The first part of the game engine.

T3DLIB2.CPP|H The second part of the game engine.

T3DLIB3.CPP|H The third part of the game engine.

Library Files:

DDRAW.LIB MS DirectDraw.

DSOUND.LIB MS DirectSound.

DINPUT.LIB MS DirectInput.

WINMM.LIB The Win32 Multimedia library extensions.

1872313618 CH14 10/26/99 11:01 AM Page 897

Hardcore Game Programming

898 PART III

Runtime Files
Main .EXE:

OUTPOST.EXE This is the main .EXE of the game. It can exist anywhere
as long as the media directories are under it.

Runtime Media Directories:

OUTART\ The sound directory for the game. You need all of it.

OUTSOUND\ The sound directory for the game. You need all of it.

And of course, you need the DirectX run-time files on your system. Finally, all the 3D
models are in OUTMODELS\, so feel free to do what you want with them. But if I see
them in a Star Trek movie, I want royalties!

Epilogue
I’m speechless… Are we really done? Is it really over? Hell no. There’s also Volume
II, which covers nothing but 3D information, advanced physics, and really hard
math—yumm yumm.

However, the CD that comes with this book has a lot more information about game
programming, and even Direct 3D and General 3D. So whether you get Volume II or
not, make sure to read all the articles and the small 3D programming cyber-books by
Sergei Savchenko and Matthew Ellis contained on the CD. You can find out more
about the CD in the table of contents and in Appendix A. In addition, you might want
to check out the appendices for some cool stuff about resources, C++, and mathemat-
ics.

This book has been the hardest project I have ever put together. It started out as a
three-volume set on 3D game programming titled The Necronomicon de Gam, but we
decided to do a single book and bring back Tricks. Then, about halfway through the
book, we all realized that there was no way it was going to fit into less than 1,500-
2,000 pages, so we split it back up into two volumes. In retrospect, I guess I got my
way. Everything I wanted to say in this volume and the next is there, with no cuts to
save pages, so that’s a good thing. :)

You must include the DirectX library files in your project. Setting the
search path is not enough. In addition, you must set the search path to
find the DirectX .H header files in the DirectX SDK installation directory.

Tip

1872313618 CH14 10/26/99 11:01 AM Page 898

CHAPTER 14
Putting It All Together: You Got Game!

899

Although there aren’t any plans for another book after Volume II, there are two more
areas that I might want to write about: networked games and console game program-
ming. What do you think? I don’t know; the networked game stuff is cool because it’s
something that’s applicable to PCs, but console stuff is so expensive. On the other
hand, I think it would be cool to cover programming for Playstation I and II,
Dreamcast, and Game Boy—don’t you? Maybe I’ll do it, and maybe monkeys will fly
out of my butt—you never know.

After these two volumes, you may never see anything more out of me because writing
this has been a killer. I worked on these books more than 120 hours a week for around
a year non-stop. In the end, I think of the smiles on so many new game programmers’
faces when they first see the glow of the screen and a little blip moving around. That’s
the only real satisfaction I get.

I remember when I wrote the first Tricks of the Game Programming Gurus, and how
bad it was (I wrote it in two months). Now I think about how exciting it was, though.
I was flown to id Software in Texas to talk to John Carmack about DOOM. I also got
to hear John Romero rave about Quake. It was unreal, to say the least. I came home
and wrote like the wind. I think that book was the catalyst that helped a lot of people
discover the possibilities of creating 3D video games.

Although I didn’t cover polygon graphics, texture mapping, or a lot of other topics,
that book started me off on this crazy, non-stop roller coaster from hell. And to tell
you the truth, I guess I’ve had a good time. Sure beats working at a nine-to-five job!
And if there’s one piece of advice that I can give you, it would be this:

When you see a roller coaster, get on it, put your hands in the air, and ride it to the
very end. Life doesn’t remember you unless you kick, scream, and claw your way to
the top. There is nothing in the world that is impossible. If you believe that you can do
it, you will.

1872313618 CH14 10/26/99 11:01 AM Page 899

1872313618 CH14 10/26/99 11:01 AM Page 900

Appendixes
Appendix A

What’s on the CD 903

Appendix B
Installing DirectX and Using the C/C++ Compiler 907

Appendix C
Math and Trigonometry Review 911

Appendix D
C++ Primer 925

Appendix E
Game Programming Resources 949

Appendix F
ASCII Tables 955

PART IV

1972313618 Part 4 8/27/99 8:06 AM Page 901

1972313618 Part 4 8/27/99 8:06 AM Page 902

What’s on the CD
The CD-ROM contains all the source code, executables, sample
programs, stock art, software programs, sound effects, online
books, graphics engines, and bonus technical articles that make
up the book. Here’s the directory structure:

CD-DRIVE:\

T3DGAME\

SOURCE\
T3DCHAP01\
T3DCHAP02\

.

.
T3DCHAP14\

APPLICATIONS\

ARTWORK\
BITMAPS\
MODELS\

SOUND\
WAVES\
MIDI\

DIRECTX\

APPENDIX A

2072313618 APP A 8/27/99 8:05 AM Page 903

Appendixes

904 PART IV

GAMES\

GOODIES\

ARTICLES\

ENGINES\

ONLINEBOOKS\

Each main directory contains specific data that you’ll need. Here’s a more detailed
breakdown:

T3DGAME The root directory that contains all other directories. Be sure to
read the README.TXT for any last-minute changes.

SOURCE Contains all the source directories for the book, in chapter order.
Simply drag the entire SOURCE\ directory to your hard drive and
work from there.

APPLICATIONS Contains demo programs that various companies have so gra-
ciously allowed me to place on the CD.

ARTWORK Contains stock artwork that you may use in your games royalty-
free.

SOUND Contains stock sound effects and music that you may use in your
games royalty-free.

DIRECTX Contains the latest version of the DirectX SDK.

GAMES Contains a number of 2D and 3D shareware games that I think
are cool!

GOODIES Contains last-minute treats.

ARTICLES Contains articles for your edification, written by various gurus in
the field of game programming.

ENGINES Contains numerous 2D and 3D engines, including the Genesis
3D engine (with full docs), PowerRender, and the Digital FX
engine.

ONLINEBOOKS Contains two completely digital online books covering Direct3D
and General 3D graphics.

In addition, the ONLINEBOOKS\ directory contains complete coverage of
Direct3D and General 3D graphics, so don’t forget to check them out to
get a head start on Volume II.

Tip

2072313618 APP A 8/27/99 8:05 AM Page 904

APPENDIX A
What‘s on the CD

905

There isn’t a general installation program for the CD because so many different types
of programs and data exist. I’m leaving the installation to you. However, in most
cases you’ll simply copy the SOURCE\ directory to your hard drive and work within it.
As for the other programs and data, you can install them as you need them. Just drag
them to your hard drive or run the various setup or installation programs within each
directory.

When you copy files from a CD-ROM, many times the ARCHIVE bit
and/or the READ-ONLY bit are set. Make sure that any files you copy to
your hard drive have these bits reset. You can reset the bits in Windows
by selecting the files or directory(s) of interest, use the shortcut Ctrl+A
to select all of them, now press the right mouse button and select File
Properties. Once you have the Properties dialog up, reset the READ-
ONLY and ARCHIVE bits, and then press Apply to finish the job.

Warning

2072313618 APP A 8/27/99 8:05 AM Page 905

2072313618 APP A 8/27/99 8:05 AM Page 906

Installing DirectX and
Using the C/C++ Compiler

The most important part of the CD that you must install is the
DirectX SDK and run-time files. The installation program is
located within the DIRECTX\ directory, along with a README.TXT
file explaining any last-minute changes.

APPENDIX B

You must have the DirectX 6.1 SDK or better to work with this CD and
book. If you’re not sure that you have the latest files on your system,
run the installation and it will tell you.

Note

When you’re installing DirectX, pay attention to where the
installer places the SDK files. You will have to point your com-
piler’s LIB and HEADER search paths appropriately when you
want to compile.

In addition, when you install the DirectX SDK, the installer will
also ask if you want to install the DirectX run-time files. You
need the run-time files as well as the SDK to run the programs.
However, there are two versions of the run-time libraries:

2172313618 APP B 8/27/99 8:04 AM Page 907

Appendixes

908 PART IV

Debug This version has hooks for debugging and is the one that I
suggest you install for development. However, your DirectX
programs will run a little slower.

Retail This version is the full release retail consumer version that
you would expect a user to have. It’s faster than the Debug
version. You can always install this one on top of the Debug
version later if you want.

Attention Borland users (if there are any left): The DirectX SDK does
have Borland versions of the DirectX .LIB import libraries. You will
find these in the BORLAND\ directory of the DirectX SDK installation.
You must use these files when compiling. Also, make sure to go to
Borland’s Web site and read the README.TXT in the BORLAND\ directory
for any last-minute hints on compiling DirectX programs with Borland
compilers.

Note

Finally, by the time I finish this book, Microsoft will have approximately six more
versions of DirectX. Make sure to keep up-to-date with the SDK by visiting the
DirectX site from time to time:

http://www.microsoft.com/directx/

Also, DirectMedia is a high-level, browser-based DirectX system that you can control
via scripts, controls, and Java. You can actually make DirectX games in a browser!
Check it out at

http://www.microsoft.com/directx/overview/dxmedia/default.asp

Using the C/C++ Compiler
I have received over 17,000 emails in the last three years from people who don’t know
how to use the C/C++ compiler. I don’t want another email about compiler problems
unless blood is squirting from the screen and the computer is speaking in tongues!
Every single problem was a result of a rookie compiler user. You simply can’t expect
to use a piece of software as complex as a C/C++ compiler without reading the
manual—right, Jules? So please do so before trying to compile programs from
this book.

Anyway, here’s the deal about compiling: I used MS VC++ 5.0 and 6.0 for this book,
so everything works perfectly with those compilers. I’d also imagine that VC++ 4.0
would work, but don’t hold me to that (I heard there are some problems with DirectX
6.0 and VC++ 4.0). If you have a Borland or Watcom compiler, they should work
also, but you may have to do a bit of work to get the right setup to compile. My sug-
gestion is to save yourself the headache and get a copy of VC++ for $99.

2172313618 APP B 8/27/99 8:04 AM Page 908

APPENDIX B
Installing DirectX and Using the C/C++ Compiler

909

The bottom line is that the MS compiler is the best for Windows/DirectX programs,
and it just makes everything work better. I have used Borland and Watcom for other
things, but for Windows applications, I don’t know many professional game program-
mers who don’t use MS VC++. It’s just the right tool for the right job. (Note to Bill
Gates: My Bank of Cayman account number is 412-0300686-21. Thanks.)

Here are some hints for setting up the MS VC++ compilers. Other compilers
are similar:

Application Type—DirectX programs are Windows programs. More accurately,
they’re Win32 .EXE applications. Hence, set your compiler to Win32 .EXE applica-
tions for all DirectX programs. If I tell you that you’re making a console applica-
tion, set the compiler for console applications. Also, I suggest that you make a
single workspace and compile all your programs in it.

Search Directories—To compile DirectX programs, there are two things the com-
piler needs: the .LIB files and the .H files. Now, listen up: Set both search paths in
the compiler/linker options to search the DirectX SDK .LIB directory and .H direc-
tory so the compiler can find the files during compilation. However, this isn’t
enough! You must also make absolutely sure the DirectX paths are first in the
search tree. The reason for this is that VC++ comes with an old version of DirectX,
and you will end up linking DirectX 3.0 files if you aren’t careful. Furthermore,
make sure that you manually include the DirectX .LIB files in your projects. I
want to see DDRAW.LIB, DSOUND.LIB, DINPUT.LIB, and so on in the project! This is
very important!!!

Error-Level Setting—Make sure that you turn the error level on your compiler to
something reasonable, like level 1 or 2. Don’t turn it off, but don’t put it on full-
blast. The code in this book that I wrote is professional-level C/C++, and the com-
piler will think that there are a lot of things that I didn’t want to do that I intended
to do. Hence, turn the warning level down.

Typecast Errors—If the compiler gives you a typecast error on a line of code
(VC++ 6.0 users beware), just cast it! I have over 3,000 emails from people who
don’t know what a typecast is. If you don’t, look it up in a C/C++ book. But I will
tell you that some of my code may still be missing an explicit typecast here or
there. VC++ 6.0 might get belligerent. If you get one of these errors, look at what
the compiler expects and just put it in front of the rvalue in the expression to
fix it.

Optimization Settings—You aren’t making full release products yet, so don’t set
the compiler to a crazy optimization level. Just set it for standard optimizations that
prefer speed over size.

2172313618 APP B 8/27/99 8:04 AM Page 909

Appendixes

910 PART IV

Threading Models—99% of the examples in the book are single-threaded, so use
the single-threaded libraries. If you don’t know what that means, read a compiler
book. However, when I do use multithreaded libraries, I will tell you. For example,
to compile the examples on multithreading from Chapter 11, “Algorithms, Data
Structures, Memory Management, and Multithreading,” you must switch to the
multithreaded libraries.

Code Generation—This controls what kind of code the compiler generates. Set it
for Pentium. I haven’t seen a 486 in a long time, so don’t worry about being com-
patible.

Struct Alignment—This controls the “filling” between structures. PentiumX
processors like things that are in multiples of 32 bytes, so set the alignment as high
as possible. It will make the code a bit bigger, but also a lot faster.

Finally, when you’re compiling programs, make sure that you include all the source
files referenced in the main program. For example, if you see me include T3DLIB1.H,
chances are there’s a T3DLIB1.CPP that needs to be in the project—get it?

2172313618 APP B 8/27/99 8:04 AM Page 910

Math and Trigonometry
Review

I love math. Do you know why? Because it’s indisputable. I
don’t have to think of the best way to do something. It is what it
is, and that’s that!

This little math review is divided into sections, so feel free to
jump around. It’s like a little reference, so you can read it and
say, “Oh yeah, that’s right!”

Trigonometry
Trigonometry is the study of angles, shapes, and their relation-
ships. Most trigonometry is based on the analysis of a right tri-
angle, as shown in Figure C.1.

APPENDIX C

2272313618 APP C 8/27/99 8:02 AM Page 911

Appendixes

912 PART IV

Table C.1 lists the radian/degree values.

TABLE C.1 Radians vs. Degrees

360 degrees = 2*PI radians is approx. 6.28 radians

180 degrees = PI radians is approx. 3.14159 radians

360 degrees
2*PI radians

2*PI radians
360 degrees

Here are some trigonometric facts:

Fact 1: There are 360 degrees in a complete circle, or 2*PI radians. Hence, there are
PI radians in 180 degrees. The computer functions sin() and cos() work in radians,
not degrees—remember that! Table C.1 lists the values.

Fact 2: The sum of the interior angles theta1 + theta2 + theta3 = 180 degrees or PI
radians.

Fact 3: Referring to the right triangle in Figure C.1, the side opposite theta1 is called
the opposite side, the side below it is called the adjacent side, and the long side is
called the hypotenuse.

Figure C.1
The right triangle. +y

Hypotenuse = c = h = r

+x
ø

90°

c2 = a2 + b2, c = a2 + b2

Dx

Dy

Opposite side
= b = y

Adjacent side
= a = x

Also,

m = slope =
Dy
Dx

= tan Ø

Sin Ø =
y
H

Cos Ø =
x
H

Tan Ø =
Sin Ø
Cos Ø

=

y
H
x
H

=
y
x

= 1 radian is approx. 57.296 degrees

= 1 degree is approx. 0.0175 radians

2272313618 APP C 8/27/99 8:02 AM Page 912

APPENDIX C
Math and Trigonometry Review

913

Fact 4: The sum of the squares of the sides of a right triangle equals the square of the
hypotenuse. This is called the Pythagorean theorem. Mathematically, it’s written like
this:

hypotenuse2 = adjacent2 + opposite2

or sometimes using a, b, and c for dummy variables:

c2 = a2 + b2

Therefore, if you know two sides of a triangle, you can find the third.

Fact 5: There are three main trigonometric ratios that mathematicians like to use:
sine, cosine, and tangent. They are defined as

adjacent side x
cos(theta) = =

hypotenuse r

DOMAIN: 0 <= theta <= 2*PI
RANGE: -1 to 1

opposite side y
sin(theta) = =

hypotenuse r

DOMAIN: 0 <= theta <= 2*PI
RANGE: -1 to 1

sin(theta) opposite/hypotenuse
tan(theta) = =

cos(theta) adjacent/hypotenuse

opposite y
= = = slope = M

adjacent x

DOMAIN: -PI/2 <= theta <= PI/2
RANGE: -infinity to +infinity

Figure C.2 shows graphs of all the functions. Notice that they’re all periodic (repeat-
ing) and that sin(theta) and cos(theta) have periodicity of 2*PI, while tangent has
periodicity of PI. Also, notice that tan(theta) goes to +-infinity whenever theta mod PI
is PI/2.

2272313618 APP C 8/27/99 8:02 AM Page 913

Appendixes

914 PART IV

Now, there are about a gazillion trigonometric identities and tricks, and it would take
a math book to prove them all. I’m just going to show you the ones that a game pro-
grammer should know. Table C.2 lists some trigonometric ratios as well as some neat
identities.

TABLE C.2 Useful Trigonometric Identities

Cosecant: csc(theta) = 1/sin(theta)

Secant: sec(theta) = 1/cos(theta)

Cotangent: cot(theta) = 1/tan(theta)

Figure C.2
Graphs of basic

trigonometric
functions.

A. Sin Ø

–1

1

0 –3π
2

3π
2

–π π

2π–π
2

π
2

Domain: (–∞, ∞)
Range: [–1, 1]B. Cos Ø

–1

1

0
–3π

2
3π

2

–π π 2π–2π –π
2

π
2

Domain: (–∞, ∞)
Range: [–1, 1]

C. Tan Ø

–1

1

–3π
2

3π
2

–π π 2π–2π –π
2

π
2

Domain: All real #s except odd multiples of π/2

Range: [–∞, +∞]

You may note the use of the terms domain and range. These simply
mean the input and the output, respectively.

Note

2272313618 APP C 8/27/99 8:02 AM Page 914

APPENDIX C
Math and Trigonometry Review

915

Pythagorean Theorem in terms of trig functions:

sin(theta)2 + cos(theta)2 = 1

Conversion identity:

sin(theta1) = cos(theta1 – PI/2)

Reflection identities:

sin(-theta) = -sin(theta)

cos(-theta) = cos(theta)

Addition identities:

sin(theta1 + theta2) = sin(theta1)*cos(theta2) + cos(theta1)*sin(theta2)

cos(theta1 + theta2) = cos(theta1)*cos(theta2) - sin(theta1)*sin(theta2)

sin(theta1 - theta2) = sin(theta1)*cos(theta2) - cos(theta1)*sin(theta2)

cos(theta1 - theta2) = cos(theta1)*cos(theta2) + sin(theta1)*sin(theta2)

Of course, you could derive identities until you turned many shades of green. In gen-
eral, identities help you simplify complex trigonometric formulas into simpler ones so
you don’t have to do the math. Hence, when you come up with an algorithm based on
sin, cos, tan, and so on, always take a look in a trigonometry book to see if you can
simplify your math so that fewer computations are needed to get to the result.
Remember: speed, speed, speed!!!

Vectors
Vectors are a game programmer’s best friend. They’re basically nothing more than
line segments and are defined by a starting point and an end point, as shown in
Figure C.3.

Figure C.3
Vectors in the plane. 4

3

2

1

–1
–4

–2

–3

–3

–2

–4

–1 1 2 3 4 5 6 7 8 9

0

. . .

. . .
. . .

V = P3P4

P3(x3, y3)

P1(x1, y1)

P4(x4, y4)

P2(x2, y2)

U = P1P2

2272313618 APP C 8/27/99 8:02 AM Page 915

Appendixes

916 PART IV

Referring to Figure C.3, you see a vector U defined by the two points p1 (the initial
point) and p2 (the terminal point). The vector U=<ux,uy> is from p1(x1,y1) to
p2(x2,y2). To compute U, you simply subtract the initial point from the terminal
point:

U = p2 – p1 = (x2-x1, y2-y1) = <ux, uy>

Also, you usually represent vectors with boldface uppercase letters, like this: U. And
the components are written within angled brackets, like this: <ux,uy>.

Okay, so a vector represents a line segment from one point to another, but that seg-
ment can represent a lot of concepts, such as velocity, acceleration, or whatever. Be
warned: vectors, once defined, are always relative to the origin. Meaning that once
you create a vector from p1 to p2, the initial point in vector space is always at (0,0),
or (0,0,0) in 3D. This doesn’t matter because the math takes care of everything, but if
you think about it, it makes sense.

A vector is only two or three numbers in 2D and 3D space, so it really only defines an
endpoint in 2D or 3D space. This means the starting point is always thought of as the
origin. This doesn’t mean that you can’t translate vectors around and perform various
geometrical operations with the vectors themselves. It just means that you need to
keep in mind what a vector really is.

The cool thing about vectors is the operations that you can perform on them. Because
vectors are really sets of ordered numbers, you can perform many of the standard
mathematical operations on them by performing a mathematical operation on each
component independently.

Vectors can have any number of components. Usually, in computer
graphics you’ll deal with 2D and 3D vectors, or vectors of the form
A=<x,y>, B=<x,y,z>. An n-dimensional vector has the form C=<c1, c2, c3,
…, cn>. n-dimensional vectors are used to represent sets of variables
rather than geometrical space, because after 3D, you enter hyperspace.

Note

Vector Length
The first thing that will pop up time and time again when you’re working with vectors
is how to compute the length. The length of a vector is called the norm and is repre-
sented by two vertical bars, like this: |U|. This is read as “the length of U.”

The length is computed as the distance from the origin to the tip of the vector. Hence,
you can use the standard Pythagorean theorem to find the length. Therefore, |U| is
equal to

|U| = sqrt(ux2 + uy2)

2272313618 APP C 8/27/99 8:02 AM Page 916

APPENDIX C
Math and Trigonometry Review

917

And if U happened to be a 3D vector, the length would be

|U| = sqrt(ux2 + uy2 + uz2)

Normalization
Once you have the length of a vector, you can do something interesting with it. You
can normalize the vector, or shrink it to make sure that its length is 1.0. Unit vectors
have a lot of nice properties, just like the scalar 1.0 does, so your intuition probably
agrees with me. Given a vector N=<nx,ny>, the normalized version of N is usually
written in lowercase as n and is computed like this:

n = N/|N|

Very simple. The normalized version of a vector is simply the vector divided (multi-
plied by the inverse) by the length of a vector.

Scalar Multiplication
The first operation that you might want to perform on a vector is scaling. This is per-
formed by multiplying each component by a single scalar number. For example:

Let U=<ux, uy>
k*U = k*<ux, uy> = <k*ux, k*uy>

Figure C.4 shows the scaling operation graphically.

Figure C.4
Vector scaling.

+y

–y

–x +x

A. Before scaling by k

(ux, uy)

Length = 1.0

u

+y

–y

–x +x

B After scaling by k

u
| u | = 1

k

k

k • u = k < ux, uy>
= < k • ux, k • uy>

In addition, if you want to invert the direction of a vector, you can multiply any vector
by –1. This will invert the vector, as shown in Figure C.5.

2272313618 APP C 8/27/99 8:02 AM Page 917

Appendixes

918 PART IV

Mathematically:

Let U=<ux, uy>

The vector in the opposite direction of U is

-1*U = -1*<ux, uy> = <-ux, -uy>

Vector Addition
To add two or more vectors together, all you have to do is add the respective compo-
nents. Figure C.6 illustrates this graphically.

Figure C.5
Vector inversion.

–x +x

–y

y

(–ux, –uy)

(ux, uy)

–1.u

u

Figure C.6
Vector addition.

+y

–y

+x–x

+y

–y

+x–x

u

v

v

Move v to
tip of u u

u + v

Vector U is added to V, and the result is R. Notice how the addition was performed
geometrically. I took V and moved it to the terminal point of U, and then I drew the
other side of the triangle. Geometrically, this is equivalent to the following operation:

U + V = <ux, uy> + <vx, vy> = <ux+vx, uy+vy>

2272313618 APP C 8/27/99 8:02 AM Page 918

APPENDIX C
Math and Trigonometry Review

919

Thus, to add any number of vectors together on graph paper, you can simply add them
“tip to tail.” Then, when you add them all up, the vector from the origin to the last tip
is the result.

Vector Subtraction
Vector subtraction is really vector addition with the opposite pointing vector.
However, it is sometimes helpful to see subtraction graphically also. Take a look at
Figure C.7 to see U–V and V–U.

Figure C.7
Vector subtraction.

+y

–y

+x–x

+y

–y

+x–x

u

v

Draw a vector
from tip of v to u.
This is u – v.

u

v

u – v

Notice that the U–V is computed by drawing a vector from V to U, and V– U is
computed by drawing a vector from U to V. Mathematically, it’s

U - V = <ux, uy> + <vx, vy> = <ux-vx, uy-vy>

This may be easier to remember, but a piece of graph paper can sometimes be a much
better “computer” when you’re doing the math manually because you can visualize
the data more quickly. Hence, it’s a good idea to know how to add and subtract vec-
tors on graph paper when you’re rendering algorithms—trust me!

The Inner Product, or the “Dot” Product
At this point you might be asking, “Can you multiply two vectors together?” The
answer is yes, but as it turns out, the straight component-wise multiplication isn’t very
useful. In other words:

U * V = <ux*vx, uy*vy>

This doesn’t really mean anything in vector space. However, the dot product does. It’s
defined like this:

U . V = ux*vx + uy*vy

2272313618 APP C 8/27/99 8:02 AM Page 919

Errata

Errata
U - V = <Ux, Uy> + <Vx, Vy> = <Ux - vx, Uy - Vy>

Appendixes

920 PART IV

The dot product, usually represented by a dot (.), is computed by adding the products
of the individual terms. Moreover, the result is a scalar. Well, heck, how does that
help? There aren’t even vectors anymore! True, my young Jedi, but the dot product is
also equal to this expression:

U . V = |U|*|V|*cos θ

This states that U dot V is equal to the length of U multiplied by the length of V mul-
tiplied by the cosine of the angle between the vectors. If you combine the two differ-
ent expressions, you get this:

U . V = ux*vx + uy*vy
U . V = |U|*|V|*cos θ
ux*vx + uy*vy = |U|*|V|*cos θ

This is a very interesting formula; it basically gives you a way to compute the angle
between two vectors, as shown in Figure C.8, and that’s a really useful operation.

Figure C.8
The dot product.

+y

–y

+x–x

u

vø

(ux, uy)

(vx, vy)

u • v = | u | • | v | cos ø
= ux • vx + uy • vy

If you can’t see that, take a look at the equation after rearranging and taking the
inverse cosine of both sides:

θ = cos–1 (ux*vx + uy*vy/|U|*|V|)

Or, more compactly, assume that (U.V) means (ux*vx + uy*vy) and just write:

θ = cos–1 (U.V/|U|*|V|)

This is a very powerful tool and is the basis of many 3D graphics algorithms. The
cool thing is that if the length of U and V are already 1.0, their product is 1.0 and the
formula simplifies even more to

θ = cos–1 (U.V), for |U|=|V| = 1.0

2272313618 APP C 8/27/99 8:02 AM Page 920

APPENDIX C
Math and Trigonometry Review

921

And here are a couple interesting facts:

Fact 1: If the angle between U and V is 90 (perpendicular), U.V = 0.

Fact 2: If the angle between U and V is < 90 (acute), U.V > 0.

Fact 3: If the angle between U and V is > 90 (obtuse), U.V < 0.

Fact 4: If U and V are equal, U.V = |U|2 = |V|2.

These facts are all shown graphically in Figure C.9.

Figure C.9
Angles and their rela-

tionships to the dot
product.

u

v

v

v

u

u
ø

ø

ø

ø < 90, Acute
u • v > 0

ø = 90, Right angle
u • v = 0

ø > 90, Obtuse
u • v < 0

The Cross Product
The next type of multiplication that can be applied to vectors is called the cross prod-
uct. However, the cross product only makes sense on vectors with three or more com-
ponents, so let’s use 3D space vectors as an example. Given U=<ux, uy, uz> and
V=<vx, vy, vz>, the cross product written U X V is defined as

U X V = |U|*|V|*sin θ * n

All righty, then! Let’s take this apart piece by piece. |U| denotes the length of U, |V|
denotes the length of V, and sin θ is the sin of the angle between the vectors. Thus,
the product (|U|*|V|*sin θ) is a scalar; that is, a number. Then you multiply it by n.
But, what is n? n is a unit vector, which is why it’s in lowercase. In addition, n is a
normal vector, meaning that it’s perpendicular to both U and V. Figure C.10 shows
this graphically.

2272313618 APP C 8/27/99 8:02 AM Page 921

Appendixes

922 PART IV

So the cross product tells you something about the angle between U and V and the
normal vector to both U and V. But without another equation, you aren’t going to get
anywhere. The question is how to compute the normal vector from U and V so that
you can compute the sin θ term or whatever. The cross product is also defined as a
very special vector product. However, it’s hard to show without matrices, so bear with
me. Assume that you want to compute the cross product of U and V written U X V.
First you build a matrix like this:

|i j k |
|ux uy uz|
|vx vy vz|

Here, i, j, k are unit vectors parallel to the x, y, and z axes, respectively.

Then, to compute the cross product of U and V, you perform this multiplication:

N=(uy*vz-vy*uz)*i + (-ux*vz+vx*uz)*j + (ux*vy-vx*uy)*k

That is, N is just a linear combination of three scalars, each multiplied by mutually
orthogonal (perpendicular) unit vectors that are each parallel to the x, y, and z axes,
respectively. Thus, you can forget the i, j, k and rewrite the equation as

N=<uy*vz-vy*uz, -ux*vz+vx*uz, ux*vy-vx*uy>

N is the normal vector to both U and V. However, it’s not necessarily a unit vector (if
U and V were both unit vectors, N would be), so you must normalize it to find n.
Once that’s done, you can plug everything into your cross product equation and do
what you will.

Figure C.10
The cross product.

v

u

u × v x – z

+y

–z

+x

+z

3-spale

example

u × v is perpendicular to both u1 and v
if both u1 and v lie in the x – z plane
then u × v is parallel to the y axis

2272313618 APP C 8/27/99 8:02 AM Page 922

Errata
"3-spale" should be "3-space"

Errata

APPENDIX C
Math and Trigonometry Review

923

In practice, though, few people ever use the U X V = |U|*|V|*sin θ * n formula. They
simply use the matrix form to find the normal vector. Again, normal vectors are very
important in 3D graphics, and you will be computing a lot of them in Volume II!
Normals are not only great because they are normal to two vectors, but they are used
to define planes and to compare the orientation of polygons—useful for collision
detection, rendering, lighting, and so forth.

The Zero Vector
Although you probably won’t use the zero vector much, it’s still there. The
zero vector has zero length and no direction. It’s just a point, if you want to get
technical. Thus, in 2D the zero vector is <0,0>, in 3D it’s <0,0,0>, and so on for
higher dimensions.

Position Vectors
The next topic I want to talk about is position vectors. These are really useful when
you’re tracing out geometrical entities like lines, segments, curves, and so on. I used
them during clipping and during the computation of segment intersection in Chapter
13, “Playing God: Basic Physics Modeling,” so they’re important. Take a look at
Figure C.11, which depicts a position vector that can be used to represent a line
segment.

Figure C.11
Position vectors.

+y

–y

–x +x

P2

P1

t
P

| v | =
 1

P = P1 + t • v

2272313618 APP C 8/27/99 8:02 AM Page 923

Appendixes

924 PART IV

The line segment is from p1 to p2, V is the vector from p1 to p1, and v is a unit vec-
tor from p1 to p2. You then construct P to trace out the segment. P looks like this,
mathematically:

P = p1 + t*v

Here, t is a parameter that varies from 0 to |V|. If t=0, you have

P = p1 + 0*v = <p1> = <p1x, p1y>

Thus, at t=0, P is pointing to the beginning of the segment. On the other hand, when
t=|V|, you have

P = p1 + |V|*v = p1 + V = <p1+V>
= <p1x+Vx, p1y+Vy>
= p2 = <p2x, p2y>

Vectors as Linear Combinations
As you saw in the cross product calculation, vectors can also be written in this nota-
tion:

U = ux*i + uy*j + uz*k

Here, i, j, and k are unit vectors parallel to the x, y, and z axes. There’s nothing magi-
cal about this; it’s just another way to write vectors that you might need to know. All
the operations still work exactly the same. For example:

let U = 3i + 2j + 3k
let V = -3i – 5j + 12k

U + V = 3i + 2j + 3k – 3b – 5j + 12k
= 0i – 3j + 15k = <0, -3, 15>

Nothing but notation, really. The cool thing about thinking of vectors as linear combi-
nations of independent components is that as long as each component has its vector
coefficient, the components can never “mix,” Thus you can write very long expres-
sions and then collect terms and factor out the vectors.

That’s it for the math review, now read it once more!

2272313618 APP C 8/27/99 8:02 AM Page 924

C++ Primer
First, let’s get the pronunciation of “primer” out of the way. For
many years I pronounced “primer” so it rhymed with “timer,”
but the truth is, that’s wrong. My friend Mitch Waite (the
founder of Waite Group) has made a pretty good living off the
word “primer,” but he told me one day that a British author
working for him said that he was pronouncing the word wrong.
“Primer” actually rhymes with “trimmer.” “Primer,” the way we
were pronouncing it, means the stuff you put on something
before you paint it, or the first stage in an explosive process. In
any case, I don’t know if I will ever say it right. “PRIME-ER”
just sounds better!

APPENDIX D

What Is C++?
C++ is simply C upgraded with object-oriented (OO) technol-
ogy. Really, it’s nothing more than a superset of C. C++ has the
following major upgrades:

Tip If you’re a C++ programmer, you might be asking, “Why does André
always use C?”. The answer is simple—C is easier to understand, and
that’s all there is to it. C++ programmers obviously know C because it’s a
subset, and most game programmers learn C before C++.

2372313618 APP D 8/27/99 7:59 AM Page 925

Appendixes

926 PART IV

• Classes

• Inheritance

• Polymorphism

Let’s take a quick look at each of these. Classes are simply a way of combining data
and functions. Normally, when you program in C, you have data structures that hold
data and functions that operate on the data, as shown in part A of Figure D.1.
However, with C++, both the data and the functions to operate on the data are con-
tained within a class, as shown in part B of Figure D.1. Why is this good? Well, you
can think of a class as an object that has properties and that can perform actions. It’s
just a more abstract way of thinking.

Figure D.1
The structure of a

class.

x

y

z

Add (. . .)

Sub (. . .)

Length (. . .)

Vector struct

C structures hold data

x

y

z

Add (. . .)

Sub (. . .)

Length (. . .)

Data
part

Member
functions

Vector class

C++ classes hold data & functions

External functions operate on data

A. In C, the functions that operate on
structures are external to the structure.

B. In C++, both data & functions are
defined in the class.

The next cool thing about C++ is inheritance. Once you create classes, they give you
the abstract ability to create relationships between class objects and base one object or
class upon another. It’s done all the time in real life, so why not in software? For
example, you might have a class called person that contains data about the person and
maybe some class methods to operate on the data (don’t worry about that for now).

2372313618 APP D 8/27/99 7:59 AM Page 926

APPENDIX D
C++ Primer

927

The point is, a person is fairly generic. But the power of inheritance comes into play
when you want to create two different types of people—a software engineer and a
hardware engineer, for example. Let’s call them sengineer and hengineer.

Figure D.2
Class inheritance.

Age
Height
Weight

Person

Degree
Salary
Specialty

H engineer
“is a person”

S engineer
“is a person”

Degree
Salary
Operating system

Figure D.2 shows the relationship between person, sengineer, and hengineer. See
how the two new classes are based on person? Both sengineer and hengineer are
persons, but with extra data. Thus, you inherit the properties of a person but add new
ones to create sengineer and hengineer. This is the basis of inheritance. You build
up more complex objects from preexisting ones. In addition, there is multiple inheri-
tance, which enables you to build a new object as a set of subclasses.

The third and last big deal about C++ and OO programming is polymorphism,
meaning “many forms.” In the context of C++, polymorphism means that a function
or operator are different things depending on the situation. For example, you know
that the expression (a + b) in straight C means to add a and b together. You also
know that a and b must be built in types like int, float, char, short. In C, you can’t
define a new type and then say (a + b). In C++, you can! Therefore, you can over-
load operators like +,-,*,/, [], and so on and make them do different things depending
on the data.

Furthermore, you can overload functions. For example, let’s say you write a function
Compute() like this:

int Compute (float x, float y)
{
// code
}

2372313618 APP D 8/27/99 7:59 AM Page 927

Appendixes

928 PART IV

The function takes two floats, but if you send it integers, they’re simply converted to
floats and then passed to the function. Hence, you lose data. However, in C++ you can
do this:

int Compute (float x, float y)
{
// code
}

int Compute (int x, int y)
{
// code
}

Even though the functions have the same names, they take different types. The com-
piler thinks they’re completely different functions, so a call with integers calls the sec-
ond function while a call with floats calls the first. If you call the function with a float
and an integer, things get more complex. Promotion rules come into play, and the
compiler decides which one to call using those rules.

That’s really all there is to C++. Of course, there’s some added syntax and a lot of
rules about all this stuff, but for the most part all of it has to do with implementing
these three new concepts. Pretty easy explanation of what will become a very compli-
cated concept, huh?

The Minimum You Need to Know About C++
C++ is an extremely complex language, and using the new technologies too much and
too fast can create totally unreliable programs with all kinds of memory leaks, perfor-
mance issues, and so on. The problem with C++ is that it is a language of black
boxes. A number of processes go on behind the scenes, and you may never find bugs
that you have created. However, if you start off using just a little C++ here and there
and then add new features to your repertoire as you need them, you’ll be fine.

The only reason that I even wrote this appendix on C++ is that DirectX is based on it.
However, most of C++ is encapsulated in wrappers and COM interfaces that you com-
municate with via function pointer calls—that is, calls of the form interface->
function(). If you’ve gotten this far in the book, you must have just dealt with that
weird syntax. Moreover, the chapter on COM (Component Object Model) should have
eased your nerves on the subject. In any event, I am going to cover just the basics so
you can better understand C++, talk about it with your friends, and have a good work-
ing knowledge of what’s available.

I am going to cover some new types, conventions, memory management, stream I/O,
basic classes, and function and operator overloading, and that’s about it—but believe
me, that’s enough! So, let’s get started…

2372313618 APP D 8/27/99 7:59 AM Page 928

APPENDIX D
C++ Primer

929

New Types, Keywords, and Conventions
Let’s start off with something simple—the new comment operator (//). This has
become part of C, so you might already use it, but the // operator is a single-line
comment in C++.

Comments
// this is a comment

And you can still use the old comment style, /* */, if you like:

/* a C style multi line comment

every thing in here is a comment

*/

Constants
To create a constant in standard C, you can do one of two things:

#define PI 3.14

or

float PI = 3.14;

The problem with the first method is that PI isn’t a real variable with a type. It’s only
a symbol that the preprocessor uses to do a text replacement, so it has no type, no
size, etc. The problem with the second type definition is that it is writeable. Thus,
C++ has a new type called const, which is like a read-only variable:

const float PI = 3.14;

Now, you can use PI anywhere you want—its type is float, and its size is
sizeof(float)—but you can’t overwrite it. This is really a much better way to make
constants.

Referential Variables
In C,there will be many times when you want to change the value of a variable in a
function, so you pass a pointer like this:

int counter = 0;

void foo(int *x)
{
(*x)++;
}

2372313618 APP D 8/27/99 7:59 AM Page 929

Appendixes

930 PART IV

And if you make a call to foo(&counter), counter will be equal to 1 after the call.
Hence, the function changes the value of the sent variable. This is such a common
practice that C++ has a new type of variable to help make it easier to do. It’s called a
reference variable and is denoted by the address operator, &.

int counter = 0;

void foo(int &x)
{
x++;
}

Interesting, huh? But, how do you call the function? You do it like this:

foo(counter);

Notice that you don’t need to put the & in front of counter anymore. What happens is
that x becomes an alias for whichever variable is sent. Therefore, counter is x and no
& is needed during the call.

You can also create references outside of functions, like this:

int x;

int &x_alias = x;

x_alias is an alias to x. Wherever and however you use x, you can use x_alias—
they are identical. I don’t see much need for this, though.

Creating Variables On-the-Fly
One of the coolest new features of C++ is the ability to create variables within code
blocks and not just at the global or function level. For example, here’s how you might
write a loop in C:

void Scan(void)
{
int index;

// lots of code here…

// finally our loop
for (index = 0; index < 10; index++)

Load_Data(index);

// more code here…

} // end Scan

There’s nothing wrong with code. However, index is only used as a loop index in one
code segment. The designers of C++ saw this as non-robust and felt that variables
should be defined closer to where they’re used. Moreover, a variable that’s used in one

2372313618 APP D 8/27/99 7:59 AM Page 930

APPENDIX D
C++ Primer

931

code block shouldn’t be visible to other code blocks. For example, if you have a set of
code blocks like this:

void Scope(void)
{
int x = 1, y = 2; // global scope
printf(“\nBefore Block A: Global Scope x=%d, y=%d”,x,y);

{ // Block A
int x = 3, y = 4;
printf(“\nIn Block A: x=%d, y=%d”,x,y);
} // end Block A

printf(“\nAfter Block A: Global Scope x=%d, y=%d”,x,y);
{ // Block B
int x = 5, y = 6;
printf(“\nIn Block B: x=%d, y=%d”,x,y);
} // end Block B

printf(“\nAfter Block B: Global Scope x=%d, y=%d”,x,y);
} // end Scope

There are three different versions of x,y. The first x,y is globally defined. However,
once code block A is entered, they go out of scope in light of the locals x and y that
come into scope. Then, when code block A exits, the old x and y come back into
scope with their old values, and the same process occurs for block B. With block-level
scoping, you can better localize variables and their use. Moreover, you don’t have to
keep thinking up new variable names; you can continue to use x,y or whatever and
not worry about the new variables corrupting globals with the same name.

The really cool thing about this new variable scoping is that you can create a variable
on-the-fly in code. For example, take a look at the same for() loop based on index,
but using C++:

// finally our loop
for (int index = 0; index < 10; index++)

Load_Data(index);

Isn’t that the coolest? I defined index right as I used it rather than at the top of the
function. Just don’t get too carried away with it.

Memory Management
C++ has a new memory management system based on the operators new and delete.
They are equivalent to malloc() and free() for the most part, but are much smarter
because they take into consideration the type of data being requested and/or deleted.
Here’s an example:

In C, to allocate 1,000 ints from the heap:

int *x = (int*)malloc(1000*sizeof(int));

2372313618 APP D 8/27/99 7:59 AM Page 931

Appendixes

932 PART IV

What a mess! Here’s the same thing in C++:

int *x = new int[1000];

Much nicer, huh? You see, new already knows to send back a pointer to int—that is,
an int*—so you don’t have to cast it. Now, to release the memory in C, you would
do this:

free(x);

In C++, you would do this:

delete x;

They’re about the same, but the cool part is the new operator. Also, use either C or
C++ to allocate memory. Don’t mix calls to new with calls to free(), and don’t mix
calls to malloc() with calls to delete.

Stream I/O
I love printf(). Nothing is more pure than

printf(“\nGive me some sugar baby.”);

The only problem with printf() is all those format specifiers, like %d, %x, %u, and so
forth. They’re hard to remember. In addition, scanf() is even worse because you can
really mess things up if you forget to use the address of a variable for storage. For
example:

int x;

scanf(“%d”,x);

This is incorrect! You need the address of x or &x, so the correct syntax is

scanf(“%d”,&x);

I’m sure you have made this mistake. The only time you don’t have to use the address
operator is when you’re working with strings, because the name is the address. In any
case, this is why the new IOSTREAM class was created in C++. It knows the types of
the variables, so you don’t need to tell it anymore. The IOSTREAM class functions are
defined in IOSTREAM.H, so you need to include it in your C++ programs to use it.
Once you do, you will have access to the streams cin, cout, cerr, and cprn, as shown
in Table D.1.

2372313618 APP D 8/27/99 7:59 AM Page 932

APPENDIX D
C++ Primer

933

TABLE D.1 C++ I/O Streams

Stream Name Device C Name Meaning

cin Keyboard stdin Standard input

cout Screen stdout Standard output

cerr Screen stderr Standard error

cprn Printer stdprn Printer

Using the I/O streams is a bit weird because they’re based on the overloaded opera-
tors, << and >>. These normally signify bit shifting in C, but in the context of the I/O
streams, they’re used to send and receive data. Here are some examples of using the
standard output:

int i;
float f;
char c;
char string[80];

// in C
printf(“\nHello world!”);

// in C++
cout << “\nHello world!”;

// in C
printf(“%d”, i);

// in C++
cout << i;

// in C
printf(“%d,%f,%c,%s”, i, f, c, string);

// in C++
cout << i << “,” << f << “,” << c << “,” << string;

Isn’t that cool? You don’t need any type specifier because cout already knows the
type and does it for you. The only really weird thing about the syntax is the way C++
allows you to concatenate the << operator to the end of each operation. The reason for
this is that each operation returns a stream itself, so you can add << forever. The only
downside to using streams for simple printing is the way you have to separate vari-
ables and string constants, like the “,” that separates each variable. However, you can
put the << on each line if you wish, like this:

cout << i
<< “,”
<< f
<< “,”

2372313618 APP D 8/27/99 7:59 AM Page 933

Appendixes

934 PART IV

<< c
<< “,”
<< string;

Remember, in C and C++, whitespace is discarded, so this coding is legal.

The input stream works in much the same way, but with the >> operator instead. Here
are some examples:

int i;
float f;
char c;
char string[80];

// in C
printf(“\nWhat is your age?”);
scanf(“%d”,&i);

// in C++
cout << “\nWhat is your age?”;
cin >> i;

// in C
printf(“\nWhat is your name and grade?”);
scanf(“%s %c”, string, &c);

// in C++
cout << “\nWhat is your name and grade?”;
cin >> string >> c;

A little nicer than C, isn’t it? Of course, the IOSTREAM system has a million other
functions, so check it out.

Classes
Classes are the most important addition to C++ and give the language its OO zeal. As
I discussed before, a class is simply a container of both data and the methods (often
called member functions) that operate on that data.

The New Struct in Town
Let’s begin learning classes by starting with standard structures, with a little added
twist. In C, you defined a structure like this:

struct Point
{
int x,y;
};

then you could create an instance of a structure with this:

struct Point p1;

2372313618 APP D 8/27/99 7:59 AM Page 934

APPENDIX D
C++ Primer

935

This creates an instance or object of the structure Point and names it p1. In C++, you
don’t need to use the struct keyword anymore to create an instance, hence:

Point p1;

This creates an instance of the structure Point named p1. The reason for this is that C
programmers have been creating types so they didn’t have to type struct anymore,
like this:

typedef struct Point_tag
{
int x,y;
} Point;

Thus the syntax

Point p1;

Classes are similar to the new structures in that you don’t have to create a type. The
definitions themselves are the types.

Just a Simple Class
A class in C++ is defined with the keyword class. Here’s an example:

class Point
{
public:
int x,y;

};

Point p1;

This is almost identical to the struct version of Point; in fact, both versions of
p1 work in the exact same way. For example, to access data, you just use the
normal syntax:

p1.x = 5;
p1.y = 6;

And of course, pointers work the same way. So, if you defined something like this:

Point *p1;

then you would have to allocate memory for it first with malloc() or new:

p1 = new Point;

then you could assign values to x,y like this:

p1->x = 5;
p1->y = 6;

2372313618 APP D 8/27/99 7:59 AM Page 935

Appendixes

936 PART IV

The bottom line is that classes and structures are identical when accessing public data
elements. The key term is public—what does this mean? If you noticed in my previ-
ous example of the Point class, defined as

class Point
{
public:
int x,y;
};

there is a keyword public: at the top of the definition before any declarations. This
defines the visibility of the variables (and member functions). There are a number of
visibility options, but usually only two are used—public and private.

Public Versus Private
If you place the keyword public at the top of all your class definitions and have only
data in the classes, you have nothing more than a standard structure. That is, struc-
tures are classes with public visibility. Public visibility means that anyone can look at
the class data elements. As for code in the main, other functions, and member func-
tions, the data is not hidden or encapsulated. Private visibility, on the other hand, lets
you hide data that shouldn’t be altered by other functions that aren’t part of the class.
For example, take a look at this class:

class Vector3D
{
public:
int x,y,z; // anyone can mess with these

private:
int reference_count; // this is hidden

};

Vector3D has two different parts: the public data area and the private data area. The
public data area has three fields that can be changed by anyone: x,y,z. On the other
hand, there is a hidden field in the private section called reference_count. This field
is hidden to everything except the member functions of the class (there aren’t any
yet). Thus, if you were to write some code like this:

Vector3D v;

v.reference_count = 1; // illegal!

the compiler would give you an error! So the question is, what good are private vari-
ables if you can’t access them? Well, they’re great for writing something like a black
box class when you don’t want or need the user to alter internal working variables. In
that example, private is the way to go. However, to access the private members, you
need to add member functions or methods to the class—this is where we jump off the
deep end…

2372313618 APP D 8/27/99 7:59 AM Page 936

APPENDIX D
C++ Primer

937

Class Member Functions (A.K.A. Methods)
A member function, or method (depending who you’re talking to), is basically a func-
tion within a class that works only with the class. Here’s an example:

class Vector3D
{
public:
int x,y,z; // anyone can mess with these

// this is a member function
int length(void)

{
return(sqrt(x*x + y*y + z*z);
} // end length

private:
int reference_count; // this is hidden

};

Notice the highlighted member function length(). I have defined a function right in
the class! Weird, huh? Let’s see how to use it:

Vector3D v; // create a vector

// set the values
v.x = 1;
v.y = 2;
v.z = 3;

// here’s the cool part
printf(“\nlength = %d”,v.length());

You call a class member function just like you access an element. And if v were a
pointer, you would do this:

v->length();

Now, you might be saying, “I have about 100 functions that are going to have to
access the class data; I can’t possibly put them all in the class!” Well, you can if you
want, but I agree that it would get messy. However, you can define class member
functions outside the class definition. We’ll get to that in a minute. Right now, I want
to add another member function to show you how you might access that private data
member reference_count:

class Vector3D
{
public:
int x,y,z; // anyone can mess with these

// this is a member function
int length(void)

2372313618 APP D 8/27/99 7:59 AM Page 937

Appendixes

938 PART IV

{
return(sqrt(x*x + y*y + z*z);
} // end length

// data access member function
void addref(void)
{
// this function increments the reference count
reference_count++;

} // end addref

private:
int reference_count; // this is hidden

};

You talk to reference_count via the member function addref(). This may seem odd,
but if you think about it, it’s a good thing. Now the user can’t do anything stupid to
the data member. It always goes through your access function, which in this case
allows the caller only to increment the reference_count, as in:

v.addref();

The caller can’t change the reference count, multiply it by a number, and so on
because reference_count is private. Only member functions of the class can access
it—this is data hiding and encapsulation.

At this point, I think you’re seeing the power of classes. You can fill them with data-
like structure, add functions within the classes that operate on the data, and hide
data—pretty cool! But it gets even better!

Constructors and Destructors
If you’ve been programming C for over a week, there’s something that I’m sure
you’ve had to do about a million times—initialize a structure. For example, say that
you create a structure Person:

struct Person
{
int age;
char *address;
int salary;
};

Person people[1000];

Now, you need to initialize 1,000 people structures. Maybe all you want to do is this:

for (int index = 0; index < 1000; index++)
{

2372313618 APP D 8/27/99 7:59 AM Page 938

APPENDIX D
C++ Primer

939

people[index].age = 18;
people[index].address = NULL;
people[index].salary = 35000;

} // end for index

But what if you forget to initialize the data and then just use the structures? Well, you
might wind up seeing your old friend General Protection Fault. Similarly, during the
run of your program, what if you allocate memory and point the address field of a
person to the memory like this?

people[20].address = malloc(1000);

And then you use the memory , forget about it, and do this:

people[20].address = malloc(4000);

Oops! A thousand bytes of memory just went to never-never land. What you needed
to do, before allocating more memory, was release the old memory with a call to
free() like this:

free(people[20].address);

I think you’ve probably done this too. C++ solves these housekeeping problems by
giving you two new automatic functions that are called when you create a class: con-
structors and destructors.

Constructors are called when a class object is instantiated. For example, when this
code is executed:

Vector3D v;

the default constructor is called, which doesn’t do anything in this case. And similarly,
when v goes out of scope—that is, when the function that v was defined in terminates,
or if v is global when the program terminates—the default destructor is called, which
again doesn’t do anything. To see any action, you have to write a constructor and
destructor. You don’t have to if you don’t want to, and you can define one or both.

Writing a Constructor
Let’s use the person structure converted to a class as an example:

class Person
{
public:
int age;
char *address;
int salary;

// this is the default constructor
// constructors can take a void, or any other set of parms
// but they never return anything, not even a void

2372313618 APP D 8/27/99 7:59 AM Page 939

Appendixes

940 PART IV

Person()
{
age = 0;
address = NULL;

salary = 35000;
} // end Person

};

Notice that the constructor has the same name as the class, in this case Person. This is
not a coincidence—it’s a rule! Also, notice that the constructor returns nothing. This is
a must. However, the constructor can take parameters. In this case, there are no para-
meters, but you can have constructors with parameters. In fact, you can have an infi-
nite number of different constructors, each with a different calling list. This is how
you can create various types of Persons with different calls. Anyway, to create a
Person and have it automatically initialized, you just do this:

Person person1;

The constructor will be called automatically and the following assignments will occur:

person1.age = 0;
person1.address = NULL;
person1.salary = 35000;

Cool, huh? Now, the power of the constructor comes into play when you code some-
thing like this:

Person people[1000];

The constructor will be called for every single instance of Person, and all 1,000 of
them will be initialized without a single line of code on your part!

All right, now let’s get a little more advanced. Remember how I told you that func-
tions could be overloaded? Well, you can overload constructors too. Hence, if you
wanted a constructor for which you could set the age, address, and salary during its
creation, you could do this:

class Person
{
public:
int age;
char *address;
int salary;

// this is the default constructor
// constructors can take a void, or any other set of parms
// but they never return anything, not even void
Person()

{
age = 0; address = NULL; salary = 35000;
} // end Person

2372313618 APP D 8/27/99 7:59 AM Page 940

APPENDIX D
C++ Primer

941

// here’s our new more powerful constructor
Person(int new_age, char *new_address, int new_salary)
{
// set the age
age = new_age;

// allocate the memory for the address and set address
address = new char[strlen(new_address)+1];
strcpy(address, new_address);

// set salary
salary = new_salary;

} // end Person int, char *, int

};

Now you have two constructors, one that takes no parameters and one that takes three:
an int, a char *, and another int. Here’s an example of creating a person who is 24
years old, lives at 500 Maple Street, and makes $52,000 a year:

Person person2(24,”500 Maple Street”, 52000);

Isn’t that the coolest? Of course, you might think that you can initialize C structures
as well with a different syntax, something like:

Person person = {24, “500 Maple Street”, 52000};

However, what about the memory allocation? What about the string copying, and so
on? Straight C can do a blind copy, but that’s it. C++ gives you the power to also run
code and logic when an object is created. This gives you much more control.

Writing a Destructor
After you’ve created an object, at some point it must die. This is where you might
normally call a cleanup function in C, but in C++ the object cleans itself up via a call
to its destructor. Writing a destructor is even simpler than writing a constructor
because you have much less flexibility with destructors—they only have one form:

~classname();

No parameter, no return type—period. No exceptions! With this in mind, let’s add a
destructor to your Person class:

class Person
{
public:
int age;
char *address;
int salary;

// this is the default constructor

2372313618 APP D 8/27/99 7:59 AM Page 941

Appendixes

942 PART IV

// constructors can take a void, or any other set of parms
// but they never return anything, not even void
Person()

{
age = 0; address = NULL; salary = 35000;
} // end Person

// here’s our new more powerful constructor
Person(int new_age, char *new_address, int new_salary)
{
// set the age
age = new_age;

// allocate the memory for the address and set address
address = new char[strlen(new_address)+1];
strcpy(address, new_address);

// set salary
salary = new_salary;

} // end Person int, char *, int

// here’s our destructor
~Person()

{
free(address);
} // end ~Person

};

I’ve highlighted the destructor. Notice that there’s nothing special about the code
within it; I could have done anything that I wanted. With this new destructor, you
don’t have to worry about deallocating memory. For example, in C, if you created a
structure with internal pointers in a function and then exited the function without deal-
locating the memory pointed to by the structure, that memory would be lost forever.
That’s called a memory leak and is shown here with a C example:

struct
{
char *name;
char *ext;
} filename;

foo()
{
filename file; // here’s a filename

file.name = malloc(80);
file.ext = malloc(4);

} // end foo

2372313618 APP D 8/27/99 7:59 AM Page 942

APPENDIX D
C++ Primer

943

The structure file is destroyed, but the 84 bytes you allocated are lost forever! But in
C++, with your destructor, this won’t happen because the compiler makes sure to call
the destructor for you, which deallocates the memory.

Those are the basics about constructors and destructors, but there’s a lot more. There
are special constructors called copy constructors, assignment constructors, and so
forth. But you have enough to get started. As for destructors, there’s just one type, the
one I showed you, so you’re in good shape there.

The Scope Resolution Operator
There’s a new operator in C++ called the scope resolution operator, represented by a
double colon (::). It’s used to make reference to class functions and data members at
class scope. Don’t worry too much about what that means; I’m just going to show you
how to use it to define class functions outside the class.

Thus far you’ve been defining class member functions right inside the class definition.
Although this is totally acceptable for small classes, it gets to be a little problematic
for large classes. Hence, you’re free to write class member functions outside of the
class, as long as you define them properly and let the compiler know that they’re class
functions and not normal file-level functions. You do this with the scope resolution
operator and the following syntax:

return_type class_name::function_name(parm_list)
{
// function body
}

Of course, in the class itself, you must still define the function with a prototype
(minus the scope resolution operator and class name, of course), but you can hold off
on the body until later. Let’s try this with your Person class and see what you get.
Here’s the new class with the function bodies removed:

class Person
{
public:
int age;
char *address;
int salary;

// this is the default constructor
Person();

// here’s our new more powerful constructor
Person(int new_age, char *new_address, int new_salary);

// here’s our destructor

2372313618 APP D 8/27/99 7:59 AM Page 943

Appendixes

944 PART IV

~Person();

};

And here are the function bodies, which you would place with all your other functions
after the class definition:

Person::Person()
{
// this is the default constructor
// constructors can take a void, or any other set of parms
// but they never return anything, not even void
age = 0;
address = NULL;
salary = 35000;

} // end Person

///

Person::Person(int new_age,
char *new_address,
int new_salary)

{
// here’s our new more powerful constructor
// set the age
age = new_age;

// allocate the memory for the address and set address
address = new char[strlen(new_address)+1];
strcpy(address, new_address);

// set salary
salary = new_salary;

} // end Person int, char *, int

//

Person::~Person()
{
// here’s our destructor
free(address);
} // end ~Person

Most programmers place a capital C before class names. I usually do, but
I didn’t want to trip you out. Thus, if I was programming, I probably
would have called it CPerson instead of Person. Or maybe, CPERSON in
all caps.

Tip

2372313618 APP D 8/27/99 7:59 AM Page 944

APPENDIX D
C++ Primer

945

Function and Operator Overloading
The last topic I want to talk about is overloading, which comes in two flavors: func-
tion overloading and operator overloading. I don’t have time to explain operator over-
loading in detail, but I’ll give you a general example. Imagine that you have your
Vector3D class and you want to add two vectors, v1 + v2, and store the sum in v3.
You might do something like this:

Vector3D v1 = {1,3,5},
v2 = {5,9,8},
v3 = {0,0,0};

// define an addition function, this could have
// been a class function
Vector3D Vector3D_Add(Vector3D v1, Vector3D v2)
{
Vector3D sum; // temporary used to hold sum

sum.x = v1.x+v2.x;
sum.y = v1.y+v2.y;
sum.z = v1.z+v2.z;

return(sum);

}// end Vector3D_Add

Then, to add the vectors with the function, you would write the following code:

v3 = Vector3D_Add(v1, v2);

It’s crude, but it works. With C++ and operator overloading, you can actually overload
the + operator and make a new version of it to add the vectors! So you can write this:

v3 = v1+v2;

Cool, huh? The syntax of the overloaded operator function follows, but you’ll have to
read a C++ book for details:

class Vector3D
{
public:

int x,y,z; // anyone can mess with these

// this is a member function
int length(void) {return(sqrt(x*x + y*y + z*z); }

// overloaded the + operator
Vector3D operator+(Vector3D &v2)
{

2372313618 APP D 8/27/99 7:59 AM Page 945

Appendixes

946 PART IV

Vector3D sum; // temporary used to hold sum

sum.x = x+v2.x;
sum.y = y+v2.y;
sum.z = z+v2.z;

return(sum);
}

private:
int reference_count; // this is hidden

};

Notice that the first parameter is implicitly the object, so the parameter list has only
v2. Anyway, operator overloading is very powerful. With it, you can really create new
data types and operators so that you can perform all kinds of cool operations without
making calls to functions.

You’ve already seen function overloading when I was talking about constructors.
Function overloading is nothing more than writing two or more functions that have
the same name but different parameter lists. Let’s say you want to write a function
called plot pixel that has the following functionality: If you call it without parame-
ters, it simply plots a pixel at the current cursor position, but if you call it with an x,y,
it plots a pixel at the position x,y. Here’s how you would code it:

int cursor_x, cursor_y; // global cursor position

// the first version of Plot_Pixel
void Plot_Pixel(void)
{
// plot a pixel at the cursor position
plot(cursor_x, cursor_y);
}

////////////////////////////////

// the second version of Plot_Pixel
void Plot_Pixel(int x, int y)
{
// plot a pixel at the sent position and update
// cursor
plot(cursor_x=x, cursor_y=y);
}

You can call the functions like this:

Plot_Pixel(10,10); // calls version 2

Plot_Pixel(); // calls version 1

2372313618 APP D 8/27/99 7:59 AM Page 946

APPENDIX D
C++ Primer

947

Summary
Well that’s my whirlwind tour of C++. If Robert Lafore (the world’s best C++ author)
reads this, he would probably kill me for being so liberal, but all in all you should
have a working knowledge of the language now, and at least be able to follow C++
code, if not write it.

The compiler knows the difference because the real name of the func-
tion is created not only by the function name, but by a mangled version
of the parameter list, creating a unique name in the compiler’s name-
space.

Tip

2372313618 APP D 8/27/99 7:59 AM Page 947

2372313618 APP D 8/27/99 7:59 AM Page 948

Game Programming
Resources

The following is a potpourri of resources that you might find
useful in your endeavors as a game programmer.

Game Programming Sites
There are hundreds of great game programming sites, so I can’t
list them all here. These are some of my favorites:

GameDev.Net

http://www.gamedev.net/

The Game Programming Megasite

http://www.perplexed.com/

The Official MAME Page

http://mame.retrogames.com/

The Games Domain

http://www.gamesdomain.com/

APPENDIX E

2472313618 APP E 8/27/99 7:58 AM Page 949

Appendixes

950 PART IV

Top 50 Game Programming Sites

http://qbrpgt50.hypermart.net/top50/topsites.html

The Coding Nexus

http://www.gamesdomain.com/gamedev/gprog.html

The Computer Game Developers’ Conference

http://www.cgdc.com

Download Points
A game programmer needs to have access to cool games, tools, utilities, and stuff
like that. Here’s a list of places that I like to download from:

Happy Puppy http://www.happypuppy.com

Game Pen http://www.gamepen.com/topten.asp

Ziff Davis Net http://www.zdnet.com/swlib/games.html

Adrenaline Vault http://www.avault.com/pcrl/

Download.Com http://www.download.com/

pc/cdoor/0,323,0-17,00.html?

st.dl.fd.cats.cat17

Jumbo.Com http://www.jumbo.com/pages/games/

windows95/games2/

GT Interactive http://www.gtgames.com

Apogee http://www.apogee1.com

Epic Megagames http://www.epicgames.com

CNet http://www.cnet.com

WinFiles.com http://www.winfiles.com

eGames http://www.egames.com

2D/3D Engines
There’s one place on the Web that’s the focal point of all 3D engine development. It’s
called The 3D Engine List and contains 3D engines of varying levels of technology.
The amazing thing is that many of the authors will let you use their engines for free!
Here’s the address:

http://cg.cs.tu-berlin.de/~ki/engines.html

2472313618 APP E 8/27/99 7:58 AM Page 950

APPENDIX E
Game Programming Resources

951

In addition, here are some links to some specific 2D/3D engines that rock!

Genesis 3D Engine http://www.genesis3d.com

DigitalFX Engine http://www.fastprojects.com

SciTech MGL http://www.scitechsoft.com

Crystal Space http://crystal.linuxgames.com/

Game Programming Books
There are a lot of books on graphics, sound, multimedia, and game development, but
buying them all is too expensive. Therefore, here are some sites that review game-
related books and give you the lowdown:

Games Domain Bookstore

http://www.gamesdomain.com/gamedev/gdevbook.html

Opifex Bookstore

http://www.opifex.freeserve.co.uk/bookstore_com.html

Programmer’s Vault

http://www.chesworth.com/pv/vault/bookshop/game_programming.htm

Microsoft DirectX Multimedia Exposition
Undoubtedly, Microsoft has the biggest Web site in the world. There are thousands of
pages, sections, FTP sites, and so on. However, the page that you should be interested
in is the DirectX Multimedia Expo. It can be found at

http://www.microsoft.com/directx/

On this page you’ll find the latest news and downloads of the latest versions of
DirectX, DirectMedia, and any patches to previous versions. You could do worse than
to take an hour each week and read through this information. It will definitely keep
you up to date with the wonderful world of Microsoft and DirectX.

Usenet Newsgroups
I’ve never been much into Internet newsgroups because it’s such a slow way to com-
municate (it’s almost as bad as reading hard copy). But here are a few newsgroups
that might be worth checking out:

2472313618 APP E 8/27/99 7:58 AM Page 951

Appendixes

952 PART IV

alt.games

rec.games.programmer

comp.graphics.algorithms

comp.graphics.animation

comp.ai.games

If you’ve never read newsgroups before, read on… You’ll need a newsreader that can
download the information and allow you to read the message threads. Most Web
browsers, such as Netscape Navigator and Internet Explorer, have a built-in news-
reader. Just read the Help files and figure out how to set up your browser to read
newsgroups. Then log on to any of the newsgroups, such as alt.games, download all
the messages, and start reading!

Keeping Up with the Industry: Blues News
About 99.9% of the Internet is a complete waste of bandwidth. It’s mostly a bunch of
people babbling back and forth and communicating flights of fantasy. But there are a
couple of places that aren’t a total waste of your time. One of them, Blues News, is
basically a place where various industry icons and poseurs post their thoughts of the
day. Just log on to

http://www.bluesnews.com

and check out what’s happening on a daily basis.

Game Development Magazines
To my knowledge, there are only two game development magazines in the English
language. The first and largest is Game Developer, which is published monthly and
contains articles on game programming, art, 3D modeling, market trends, and more.
Its Web site is at

http://www.gdmag.com

For a laugh, you can visit its sister site, Gamasutra (the game programmer’s book of
sex), at

http://www.gamasutra.com

The second game development magazine is The Cursor, which is a grass-roots,
back-to-basics magazine that has more of a free form. The Web site is located at

http://www.thecursor.com

2472313618 APP E 8/27/99 7:58 AM Page 952

APPENDIX E
Game Programming Resources

953

Game Web Site Developers
The last thing that you may think of when you’re creating a game is its Web site! If
you’re trying to sell a game yourself as shareware, having a mini-site that shows off
the game is very important. You may know how to use FrontPage or the simple Web
editor in Netscape, but if you want a really cool Web site to show off your game and
make it look larger than life, you should have it done professionally. I have seen so
many really good games that have a horrible Web presence.

The company that I use is the Belm Design Group. They can help you make a site for
your game, usually from $500.00-$3,000. Here’s the URL:

http://www.belmdesigngroup.com

Xtreme Games LLC
The name of my company is Xtreme Games LLC. We develop and publish 2D/3D
games for the PC platform. You can check us out on the Web at

http://www.xgames3d.com

You’ll find articles on 3D graphics, artificial intelligence, physics, DirectX, and a lot
more. In addition, I’ll be posting any changes or additions to this book.

Xtreme Games LLC publishes games as well as developing them. So if you think you
have a good game, log on and check out the information about authoring games
through Xtreme. We also provide technical assistance to developers.

And last but not least, here’s my email address once more:

CEO@xgames3d.com

2472313618 APP E 8/27/99 7:58 AM Page 953

2472313618 APP E 8/27/99 7:58 AM Page 954

ASCII Tables
If there’s one thing that I’m always looking for, it’s an ASCII
chart. I think the only books in existence that have ASCII charts
are Peter Norton’s PC books! There should be an ASCII chart in
every computer book ever printed, and I’m at fault as much as
the next guy. But I’ve changed my evil ways. Behold, here are
the fully annotated ASCII charts for the characters 0-127,
127-255.

APPENDIX F

2572313618 APP F 8/27/99 9:29 AM Page 955

Appendixes

956 PART IV

2572313618 APP F 8/27/99 9:29 AM Page 956

APPENDIX F
ASCII Tables

957

2572313618 APP F 8/27/99 9:29 AM Page 957

Appendixes

958 PART IV

2572313618 APP F 8/27/99 9:29 AM Page 958

APPENDIX F
ASCII Tables

959

2572313618 APP F 8/27/99 9:29 AM Page 959

Appendixes

960 PART IV

2572313618 APP F 8/27/99 9:29 AM Page 960

Symbols

& (ampersand), 118

/* */ comment operator, 929

// comment operator, 929

:: operator, 943-944

<< operator, 933

>> operator, 934

5.6.5 bit encoding format, 290

8-bit bitmaps, loading, 353-354

8-bit windows modes, 398-399

16-bit bitmaps, loading, 354-355

16-bit high-color mode

bit encoding formats,
289-290

pixel formats

DDPIXELFORMAT
structure, 290-293

finding, 290

sample program, 293

writing to screen, 293-298

24-bit bitmaps, loading, 355-356

24-bit high-color mode, 299

32-bit high-color mode, 300-301

32-bit variables, 22

A

A* search, 759

absolute mode (mouse), 556

acceleration, 804-807

Acquire() function, 543

acquiring devices, 543

joysticks, 573

keyboard devices, 551

mouse devices, 559

reacquisition, 554-556

actions (AI), 741

addition. See also mathematics

fixed-point mathematics, 676

matrices, 449

vectors, 918-919

AddPort() function, 626

INDEX

2672313618 Index 8/27/99 9:26 AM Page 961

AddRef() function

962 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

AddRef() function, 221-222

AdjustWindowRectEx()
function, 396

AI (artificial intelligence),
713-715

design guidelines, 794-795

deterministic algorithms, 715

evasion algorithms, 722

random motion, 716-717

tracking algorithms,
717-721

FSMs (finite state machines),
729-730

example, 730-734

personality traits, 734-736

fuzzy logic, 772-773

FAMs (fuzzy associative
matrices), 783-793

FLVs (fuzzy linguistic
variables), 776-779

fuzzy set theory, 774-776

manifolds, 779-783

normal set theory,
773-774

genetic algorithms, 770-772

memory/learning, 736-740

neural networks, 767-770

McCulloch-Pitts neurode
summation() function,
768

truth table, 769

pathfinding, 747, 754-756

A* search, 759

bidirectional breadth-first
searches, 757

breadth-first searches,
756-757

collision avoidance
tracks, 749-750

contour tracing, 749

depth-first searches,
757-758

Dijkstra’s search, 759

racing game example,
753-754

trial-and-error algorithms,
748-749

waypoints, 750-753

patterns (control scripting),
722-723

conditional logic,
727-729

creating, 723-724

processing, 725-726

reasonable motion,
726-727

planning

actions, 741

decision trees, 742-745

goals, 740-741

hard-coded plans, 742

implementing, 745-747

production rules, 742

scripting, 759

C/C++ compiler, 762-767

Functions section, 763

Globals section, 763

Main section, 763

scripting language design,
759-762

AI-controlled demo mode, 682

algorithms, 24. See also
mathematics

asymptotic analysis, 657-659

Bresenham’s algorithm,
403-406

accuracy, 406

code listing, 407-409

optimization, 409

Cohen-Sutherland algorithm,
420-427

collision algorithm, 849-852

deterministic AI (artificial
intelligence) algorithms,
715

evasion algorithms, 722

random motion, 716-717

tracking algorithms,
717-721

Fibonacci algorithm, 662

genetic, 770-772

pathfinding, 747, 754-756

A* search, 759

bidirectional breadth-first
searches, 757

breadth-first searches,
756-757

collision avoidance
tracks, 749-750

contour tracing, 749

depth-first searches,
757-758

Dijkstra’s search, 759

racing game example,
753-754

trial-and-error algorithms,
748-749

waypoints, 750-753

recursion, 659-662

Run-Slicing algorithm, 409

Symmetric Double Step
algorithm, 411

allocating memory, 931

Alpha(8).8.8.8 bit encoding
format, 300

2672313618 Index 8/27/99 9:26 AM Page 962

INDEX
bits per pixel

963

Alpha.5.5.5 bit encoding format,
289

ampersand (&), 118

amplitude, 592, 596

analyzing algorithms (asymptotic
analysis), 657-659

AND operations, 769

angles

critical, 826

of incidence, 830

of reflection, 830

Animate_BOB() function, 534

animation

color animation, 373-379

double-buffering, 301-302

implementing, 303-305

optimizing, 304

sample program, 305-307

page flipping, 302-303

Flip() function, 311-313

sample program, 313-317

triple-buffering, 312

antecedents (production rules),
742

arcade games, 14

architecture (Windows)

event model, 53-54

multitasking, 51-52

multithreading, 51-53

arithmetic. See mathematics

arrays, 648-649

artificial intelligence. See AI

ASCII characters, 151, 955-960

assembly language, 679

asteroid field (Outpost game),
882-884

asymptotic analysis, 657-659

attaching color palettes to
surfaces, 272

audio. See sound

axons, 767

B

B-trees. See BSTs (binary search
trees)

back buffers, 243, 307-309

background color, 139-140

backups, 25

BeginPaint() function, 129-130

behavioral state systems. See
FSMs (finite state machines)

Belm Design Group, 953

bi-linear filtering, 371

bidirectional breadth-first
searches, 757

Big O notation, 657

big-endian format, 290

binary search trees. See BSTs

binary shifts, 24

bit encoding formats, 289-290,
300

BITMAPFILEHEADER
structure, 346

BITMAPINFO structure, 346

BITMAPINFOHEADER
structure, 346-347

bitmaps (.BMP files), 97

blitting, 317-319

Blit8x8() function,
319-320

Blt() function, 321-324

BltFast() function,
324-325

memory fills, 325-328

offscreen surfaces,
358-360, 365-366

surface to surface,
328-331

clipping, 332-339

IDirectDrawClipper
interface, 339-344

pixels, 332-333

file structure

BITMAPFILEHEADER,
346

BITMAPINFO, 346

BITMAPINFOHEADER,
346-347

DATA AREA, 347

functions, 519-522

loading

8-bit images, 353-354

16-bit images, 354-355

24-bit images, 355-356

LoadBitmap() function,
348

LoadImage() function,
348-349

Load_Bitmap_File()
function, 349-351

mapping

forward mapping, 368

inverse mapping, 369

reading manually, 348

rotating, 366-368

scaling, 366-373

templates, 352

unloading, 351-352

bits per pixel (bpp), 133

2672313618 Index 8/27/99 9:26 AM Page 963

black holes

964 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

black holes, simulating, 815-816

BLACKOUT.H header file
(FreakOut), 31-33

blinking lights animation,
374-379

Blink_Colors() function, 525

Blit8x8() function, 319-320

blitter, 317-319

bitmaps, copying from
surface to surface, 328-331

Blit8x8() function, 319-320

Blt() function

dwFlags parameter,
321-324

lpDDBltFx parameter,
321-322

lpDDSrcSurface parame-
ter, 321

lpDestRect parameter,
321

lpSrcRect parameter, 321

BltFast() function, 324-325

memory fills, 325-328

offscreen surfaces, 358-360,
365-366

Blitter Object engine. See BOB
engine

Blt() function

dwFlags parameter, 321-324

lpDDBltFx parameter,
321-322

lpDDSrcSurface parameter,
321

lpDestRect parameter, 321

lpSrcRect parameter, 321

BltFast() function, 324-325

Blues News Web site, 952

BMP files. See bitmaps

board games, 14

BOB (Blitter Object) engine,
527-528

Animate_BOB() function,
534

Collision_BOBS() function,
535

Create_BOB() function,
528-530

Destroy_BOB() function,
530

Draw_BOB() function,
530-531

Draw_Scaled_BOB() func-
tion, 531

Hide_BOB() function, 535

Load_Animation_BOB()
function, 532

Load_Frame_BOB()
function, 531

Move_BOB() function, 534

Set_Animation_BOB() func-
tion, 534

Set_Anim_Speed() function,
533

Set_Pos_BOB() function,
533

Set_Vel_BOB() function,
533

Show_BOB() function, 535

bouncing objects, modeling,
828-830

bounding boxes, 481-484

bounding circles, 478-481

bpp (bits per pixel), 133

brainstorming, 14-15

breadth-first searches, 756-757

Bresenham’s algorithm, 403-406

accuracy, 406

code listing, 407-409

optimization, 409

brushes (GDI), 172-173

BSTs (binary search trees),
662-666

building, 666-668

orders, 662

searching, 668-671

BS_3STATE button style, 191

BS_AUTO3STATE button style,
192

BS_AUTOCHECKBOX button
style, 192

BS_AUTORADIOBUTTON
button style, 192

BS_CHECKBOX button style,
191

BS_OWNERDRAW button
style, 192

BS_PUSHBUTTON button
style, 191

BS_RADIOBUTTON button
style, 191

buffered data mode
(DirectInput), 544

buffers (DirectSound)

execute buffers, 218

primary, 606

secondary

circular buffering, 607

creating, 607-610

locking, 610-611

releasing, 611

static, 606

streaming, 606

2672313618 Index 8/27/99 9:26 AM Page 964

INDEX
code optimization

965

unlocking, 611

writing to, 610-611

busy loops, 701

buttons

creating, 193

notification codes, 193-194

styles, 191-192

C

C++, 925-928

classes, 926, 934

constructors, 938-941

defining, 935-936

destructors, 939-943

member functions,
937-938, 945-946

public/private, 936

comments, 929

constants, 929

inheritance, 926-927

memory management,
931-932

operators

delete, 931-932

new, 931-932

overloading, 945-946

scope resolution, 943-944

polymorphism, 927-928

stream I/O (input/output),
932-934

structures, 934-935

variable

creating, 930-931

referential, 929-930

C/C++ compiler, 26, 762-767

configuring, 908

application types, 909

code generation, 910

error-level settings, 909

optimization settings, 909

search directories, 909

struct alignment, 910

threading models, 910

typecast errors, 909

directives, 60

calculations. See algorithms;
mathematics

Cartesian coordinate system, 174

cascading menus, 117

cbClsExtra field
(WNDCLASSEX structure),
70

cbSize field (WNDCLASSEX
structure), 67

cbWndExtra field
(WNDCLASSEX structure),
70

cell-based isometric engines,
496-498

centroids, calculating, 790-793

characters (ASCII), 955-960

child controls. See controls

cilia, 592

circles, drawing, 180-181

circular buffering, 607

class keyword, 935

classes, 934

constructors, 938-941

defining, 935-936

destructors, 939-943

inheritance, 926-927

IOSTREAM, 932

member functions, 937-938,
945-946

naming, 57

public/private, 936

Windows classes, 66

registering, 74

style flags, 67-68

WNDCLASS structure,
67

WNDCLASSEX struc-
ture, 67-74

client area (DirectDraw
windows), 395-397

client coordinates, 132

clip lists, 340-342

clipping, 332

bitmaps, 334-339

DirectX windows, 397-398

IDirectDrawClipper interface

clip lists, 340-342

creating, 339

sample program, 342-344

lines, 411-413, 419-420

Cohen-Sutherland algo-
rithm, 420-427

pixels, 332-333

triangles, 464

Clip_Line() function, 514

CloseHandle() function, 691-692

Close_Error_File() function, 518

CLUTs (color lookup tables),
136

CoCreateInstance() function,
225, 625

code optimization, 21-25,
671-672

algorithms, 24

assembly language, 679

2672313618 Index 8/27/99 9:26 AM Page 965

code optimization

966 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

backups, 25

binary shifts, 24

comments, 23

double-buffering, 304

fixed-point math, 673-674

accuracy, 676

addition, 676

converting to/from,
674-675

division, 676-677

multiplication, 676-677

representing numbers,
674

subtraction, 676

functions

inline, 22

mathematical, 672-673

look-up tables, 678-679

loop unrolling, 677-678

simplicity, 24-25

variables, 22

coefficient of restitution,
844-845

Cohen-Sutherland algorithm,
420-427

CoInitialize() function, 624

collisions, 810

2D object-to-object collision
response, 841-842

coefficient of restitution,
844-845

collision algorithm,
849-852

impact events, 843

impulse force, 843

n-t coordinate system,
846-849

avoidance tracks, 749-750

collision response, 813

conservation of momentum,
811

detecting

bounding boxes, 481-484

bounding circles, 478-481

point containment,
484-486

elastic vs. non-elastic, 828

kinetic energy, 812

line segment intersections,
835-840

vector reflection

calculating, 830-834

example, 834-835

x,y bounce physics, 828-830

Collision_BOBS() function, 535

Collision_Test() function, 526

color

animation, 373-379

CLUTs (color lookup tables),
136

color keys, 360-361

destination color keying,
364-365

source color keying,
361-363

depth, 133

DirectDraw palettes

attaching to surfaces, 272

color depths, 257

creating, 259-263

foreground/background,
139-140

high-color modes

16-bit, 289-298

24-bit, 299

32-bit, 300-301

computational speed, 288

memory bandwidth, 288

interfaces

IDirectDrawColor
Control, 382-383

IDirectDrawGamma
Control, 383

Outpost game, 877

palette functions, 522-525

palletized, 136-137

RBG (red, green, blue)
model, 135-137, 381

rotation (color shifting),
379-381

transforms, 381-382

color keys, 360-361

destination color keying,
364-365

source color keying, 361-363

color lookup tables (CLUTs),
136

COLORREF structures, 385

Color_Scan() function, 527

COM (Component Object
Model), 218-219

COM++, 238

DCOM (Distributed COM),
239

function pointers, 232-235

GUIDs (Globally Unique
Identifiers), 223

interfaces, 219-222

object creation, 224-226

sample program, 226-231

ComCreate() function, 225

comments, 23, 929

2672313618 Index 8/27/99 9:26 AM Page 966

INDEX
cursors

967

compiler, 26, 762-767

configuring, 908

application types, 909

code generation, 910

error-level settings, 909

optimization settings, 909

search directories, 909

struct alignment, 910

threading models, 910

typecast errors, 909

directives, 60

compiling

DirectX programs, 231-232

Outpost game

compilation files, 897

runtime files, 898

resources, 98, 114-116

complex surfaces, 309-310

Component Object Model. See
COM

conditional logic

AI (artificial intelligence)
patterns, 727-729

production rules, 742

configuring

C/C++ compiler, 909

DirectInput, 542

force feedback, 580-581

consequences (production rules),
742

conservation

of kinetic energy, 812

of momentum, 811

console applications, 59

const keyword, 57

constants

creating, 929

naming, 57

constructors, 938-941

contour tracing, 749

controls

buttons, 190-191

creating, 193

notification codes,
193-194

styles, 191-192

sending messages to,
195-197

cooperation levels

DirectDraw

control flags, 251-252

setting, 251-254

DirectInput

joysticks, 568

keyboard devices,
548-549

mouse devices, 558

setting, 543

DirectSound

exclusive, 604

normal, 604

priority, 604

setting, 605

Write_Primary, 605

coordinates

Cartesian system, 174

homogenous, 453

n-t coordinate system (colli-
sions), 846-849

polygons, 431

windows, 132

copying bitmaps. See blitter

cosines, 913

Cramer’s Rule, 839

CreateClipper() function, 339

CreateDevice() function, 542

CreateHatchBrush() function,
172-173

CreatePalette() function,
261-262

CreatePen() function, 169-170

CreateSolidBrush() function,
172

CreateSoundBuffer() function,
607-609

CreateSurface() function, 264

CreateThread() function,
690-691

CreateWindowEx() function,
75-76

Create_Bitmap() function, 520

Create_BOB() function, 528-530

critical angle, 826

critical sections, 710

cross products, 921-923

CS_DBLCLKS flag, 68

CS_HREDRAW flag, 67

CS_NOCLOSE flag, 68

CS_OWNDC flag, 68

CS_PARENTDC flag, 68

CS_SAVEBITS flag, 68

CS_VREDRAW flag, 68

CURSOR keyword, 102

Cursor, The, 952

cursors, 97

defining, 102-103

loading, 103-104

sample program, 104-106

setting, 104

2672313618 Index 8/27/99 9:26 AM Page 967

data formats

968 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

D

data formats

joysticks, 569

keyboard devices, 549-551

mouse devices, 558-559

setting, 543

data structures. See structures

data types, 503-505

dB (decibal), 613

DCOM (Distributed COM), 239

DDBLTFAST_
DESTCOLORKEY flag, 325

DDBLTFAST_NOCOLORKEY
flag, 325

DDBLTFAST_SRCCOLORKEY
flag, 325

DDBLTFAST_WAIT flag, 325

DDBLT_ASYNC flag, 324

DDBLT_COLKEYSRCO
VERRIDEORFILL flag, 323

DDBLT_COLORFILL flag, 323

DDBLT_DDFX flag, 323

DDBLT_DDROPS flag, 323

DDBLT_DEPTHFILL flag, 323

DDBLT_KEYDEST flag, 324

DDBLT_KEYDESTOVERRIDE
flag, 323

DDBLT_KEYSRC flag, 324

DDBLT_ROP flag, 323

DDBLT_ROTATIONANGLE
flag, 324

DDBLT_WAIT flag, 324

ddckCKDestBlt field
(DDSURFACE2 structure),

268

ddckCKSrcBlt field
(DDSURFACE2 structure),
268

DDCKEY_COLORSPACE flag,
363

DDCKEY_DESTBLT flag, 363

DDCKEY_DESTOVERLAY
flag, 363

DDCKEY_SRCBLT flag, 363

DDCKEY_SRCOVERLAY flag,
363

DDCOLORCONTROL struc-
ture, 383

DDERR_DIRECTDRAW
ALREADYCREATED return
code, 247

DDERR_GENERIC return code,
247

DDERR_INVALIDDIRECT-
DRAWGUID return code, 247

DDERR_INVALIDPARAMS
return code, 247

DDERR_NODIRECT-
DRAWHW return code, 247

DDERR_OUTOFMEMORY
return code, 247

DDPCAPS_1BIT control flag,
261

DDPCAPS_2BIT control flag,
261

DDPCAPS_4BIT control flag,
261

DDPCAPS_8BIT control flag,
261

DDPCAPS_8BITENTRIES
control flag, 262

DDPCAPS_ALLOW256 control
flag, 262

DDPCAPS_ALPHA control
flag, 262

DDPCAPS_INITIALIZE control
flag, 262

DDPCAPS_PRIMARY-
SURFACE control flag, 262

DDPCAPS_VSYNC control
flag, 262

ddpfPixelFormat field
(DDSURFACE2 structure),
268-269

DDPF_ALPHA flag, 291

DDPF_ALPHAPIXELS flag,
291

DDPF_LUMINANCE flag, 291

DDPF_PALETTEINDEXED1
flag, 291

DDPF_PALETTEINDEXED2
flag, 291

DDPF_PALETTEINDEXED4
flag, 291

DDPF_PALETTEINDEXED8
flag, 291

DDPF_PALETTEIN-
DEXEDTO8 flag, 291

DDPF_RGB flag, 291

DDPF_ZBUFFER flag, 291

DDPF_ZPIXELS flag, 291

DDPIXELFORMAT structure,
290-291

DDRAW.DLL file, 31

DDRAW.LIB file, 31

DDraw_Attach_Clipper()
function, 342-344, 508

DDraw_Create_Surface()
function, 508

DDraw_Fill_Surface() function,
509

DDraw_Flip() function, 508

DDraw_Init() function, 507

DDraw_Lock_Back_Surface()
function, 510

2672313618 Index 8/27/99 9:27 AM Page 968

INDEX
demo mode

969

DDraw_Lock_Primary_
Surface() function, 510

DDraw_Lock_Surface() func-
tion, 509

DDraw_Shutdown() function,
507

DDraw_Unlock_Surface() func-
tion, 510

DDraw_Wait_For_Vsync() func-
tion, 509

ddsCaps field (DDSURFACE2
structure), 270-271

DDSCAPS_BACKBUFFER
flag, 270

DDSCAPS_COMPLEX flag,
270

DDSCAPS_FLIP flag, 270

DDSCAPS_LOCALVIDMEM
flag, 270

DDSCAPS_MODEX flag, 270

DDSCAPS_NONLOCAL
VIDMEM flag, 270

DDSCAPS_OFFSCREEN-
PLAIN flag, 271

DDSCAPS_OWNDC flag, 271

DDSCAPS_PRIMARY-
SURFACE flag, 271

DDSCAPS_STANDARDVGAM
ODEflag, 271

DDSCAPS_SYSTEMMEMORY
flag, 271

DDSCAPS_VIDEOMEMORY
flag, 271

DDSCL_ALLOWMODEX flag,
251

DDSCL_ALLOWREBOOT flag,
251

DDSCL_EXCLUSIVE flag, 252

DDSCL_FPUSETUP flag, 252

DDSCL_FULLSCREEN flag,
252

DDSCL_MULTITHREADED
flag, 252

DDSCL_NORMAL flag, 252

DDSCL_NOWINDOW-
CHANGES flag, 252

DDSD_ALPHABITDEPTH
flag, 266

DDSD_BACKBUFFERCOUNT
flag, 266

DDSD_CAPS flag, 266

DDSD_CKDESTBLT flag, 266

DDSD_CKDESTOVERLAY
flag, 266

DDSD_CKSRCBLT flag,
266, 362

DDSD_CKSRCOVERLAY flag,
266

DDSD_HEIGHT flag, 266

DDSD_LINEARSIZE flag, 266

DDSD_LPSURFACE flag, 266

DDSD_MIPMAPCOUNT flag,
266

DDSD_PITCH flag, 266

DDSD_PIXELFORMAT flag,
266

DDSD_REFRESHRATE flag,
266

DDSD_TEXTURESTAGE flag,
266

DDSD_WIDTH flag, 266

DDSURFACEDESC2 data
structure

ddckCKDestBlt field, 268

ddckCKSrcBlt field, 268

ddpfPixelFormat field,
268-269

ddsCaps field, 270-271

dwBackBufferCount field,
268

dwFlags field, 266

dwHeight field, 266

dwSize field, 265

dwWidth field, 266

lPitch field, 266-267

lpSurface field, 268

DD_OK return code
(DirectDrawCreate() function),
247

deallocating memory, 932

decibels, 613

decision trees (AI), 742-745

declarators, 61

decomposition, 470-471

#define directives, 60, 501-502

defining

classes, 935-936

constructors, 939-941

cursors, 102-103

destructors, 941-943

icons, 100-101

degrees, compared to radians,
435

degrees of membership (DOM),
774-775

delete operator, 931-932

DeleteObject() function, 171

deleting

GDI (Graphics Device
Interface) objects, 171

timers, 186

demo mode

AI-controlled, 682

prerecorded, 680-682

2672313618 Index 8/27/99 9:27 AM Page 969

dendrites

970 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

dendrites, 767

depth-first searches, 757-758

design, 13

AI (artificial intelligence)
guidelines, 794-795

brainstorming, 14-15

design documents, 15

particle systems, 860-861

storyboards, 15-16

testing, 16

destination color keying,
364-365

Destroy_Bitmap() function, 520

Destroy_BOB() function, 530

destructors, 939-943

detecting collisions

bounding boxes, 481-484

bounding circles, 478-481

point containment, 484-486

determinates, 417

deterministic AI (artificial intelli-
gence) algorithms, 715

evasion algorithms, 722

random motion, 716-717

tracking algorithms

literal vectoring, 717-718

trajectory vectoring,
718-721

device contexts, 68, 130

devices (DirectInput), 539-541.
See also force feedback

cooperation levels, 543

creating, 542-543

data acquisition modes, 544

data formats, 543

DirectInput objects, creating,
544-546

generalized input system,
582-584

DInput_Init() function,
584

DInput_Init_Joystick()
function, 585

DInput_Init_Keyboard()
function, 584

DInput_Init_Mouse()
function, 585

DInput_Read_Joystick()
function, 587

DInput_Read_
Keyboard() function,
586

DInput_Read_Mouse()
function, 586

DInput_Release_
Joystick() function, 585

DInput_Release_
Keyboard() function,
585

DInput_Release_Mouse()
function, 585

DInput_Shutdown()
function, 584

modules, 588

GUIDs (globally unique
identifiers), 541-542

interfaces, 541-542

joysticks, 561-562

acquiring, 573

cooperation level, 568

creating, 567-568

data formats, 569

enumeration, 562-567

polling, 574

properties, 570-573

reading data from,
574-575

releasing, 575

keyboards

acquiring, 551

cooperation level,
548-549

creating, 546-548

data formats, 549-551

reading data from,
551-553

unacquiring, 553-554

merging input, 576-579

mouse

absolute mode, 556

acquiring, 559

cooperation level, 558

creating, 558

data format, 558-559

reading data from,
559-560

relative mode, 556

releasing, 560

polling, 543

properties, 543

reacquiring, 554-556

state, 544

dialog boxes, 97

DIENUM_CONTINUE con-
stant, 566

DIENUM_STOP constant, 566

DIERR_INPUTLOST error
code, 555

DIERR_INVALIDPARAM error
code, 555

DIERR_NOTACQUIRED error
code, 555

DIERR_NOTINITIALIZED
error code, 555

2672313618 Index 8/27/99 9:27 AM Page 970

INDEX
DirectDraw

971

digital sound, 594-596

Dijkstra’s search, 759

DIJOYSTATE structure, 550

DIJOYSTATE2 structure, 550

dimensions (matrices), 447

DIMOUSESTATE structure, 550

DInput_Init() function, 584

DInput_Init_Joystick() function,
585

DInput_Init_Keyboard() func-
tion, 584

DInput_Init_Mouse() function,
585

DInput_Read_Joystick() func-
tion, 587

DInput_Read_Keyboard()
function, 586

DInput_Read_Mouse() function,
586

DInput_Release_Joystick()
function, 585

DInput_Release_Keyboard()
function, 585

DInput_Release_Mouse() func-
tion, 585

DInput_Shutdown() function,
584

Direct3DIM, 218

Direct3DRM, 218

DirectDraw, 216, 241

bitmaps, 345

file structure, 346-348

loading, 348-356

mapping, 368-369

rotating, 366-368

scaling, 366-373

templates, 352

unloading, 351-352

blitter, 317-319

bitmaps, copying from
surface to surface,
328-331

Blit8x8() function,
319-320

Blt() function, 321-324

BltFast() function,
324-325

memory fills, 325-328

capability-testing functions

IDIRECTDRAW4::
GetCaps(), 386-388

IDIRECTDRAW-
PALETTE::GetCaps(),
389

IDIRECTDRAWSUR-
FACE4::GetCaps(), 388

clipping

bitmaps, 334-339

IDirectDrawClipper
interface, 339-344

pixels, 332-333

color

animation, 373-379

depths, 257

high-color modes,
288-301

keys, 360-365

palettes, 259-263, 272

rotation, 379-381

transforms, 381-382

cooperation levels

control flags, 251-252

setting, 251-254

double-buffering, 301-302

implementing, 303-305

optimizing, 304

sample program, 305-307

error handling, 246-247

full-screen mode, 250

interfaces, 242-245

accessing, 247-250

IDirectDraw, 242

IDirectDrawClipper,
243-244

IDirectDrawColor-
Control, 382-383

IDirectDrawGamma-
Control, 383

IDirectDrawPalette, 243

IDirectDrawSurface, 242

IIDs (interface IDs), 249

IUnknown, 242

objects, creating, 245-246

page flipping, 302-303

Flip() function, 311-313

sample program, 313-317

pixels, plotting, 272-280

resource management,
284-285

sample program, 280-283

surfaces, 263

back buffers, 307-309

complex, 309-310

creating, 264-272

filling, 325-328

locking, 275-276

offscreen, 356-360,
365-366

primary, 264

secondary, 264

unlocking, 277

triple-buffering, 312

video modes

changing, 256-257

resolutions, 255-256

2672313618 Index 8/27/99 9:27 AM Page 971

DirectDraw

972 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

sample program, 257-258

setting, 255

windows, 390-391

8-bit windowed modes,
250, 398-399

client area, 395-397

clipping, 397-398

creating, 391-392

drawing to, 392-395

DirectDraw interface

DDraw_Attach_Clipper()
function, 508

DDraw_Create_Surface()
function, 508

DDraw_Fill_Surface()
function, 509

DDraw_Flip() function, 508

DDraw_Init() function, 507

DDraw_Lock_Back_
Surface() function, 510

DDraw_Lock_Primary_
Surface() function, 510

DDraw_Lock_Surface()
function, 509

DDraw_Shutdown()
function, 507

DDraw_Unlock_Surface()
function, 510

DDraw_Wait_For_Vsync()
function, 509

DirectDrawCreate() function,
236, 245-247

DirectInput devices, 217,
539-541. See also force
feedback

cooperation levels, 543

creating, 542-543

data formats, 543

DirectInput objects, creating,
544-546

generalized input system,
582-584

DInput_Init() function,
584

DInput_Init_Joystick()
function, 585

DInput_Init_Keyboard()
function, 584

DInput_Init_Mouse()
function, 585

DInput_Read_Joystick()
function, 587

DInput_Read_
Keyboard() function,
586

DInput_Read_Mouse()
function, 586

DInput_Release_
Joystick() function, 585

DInput_Release_
Keyboard() function,
585

DInput_Release_Mouse()
function, 585

DInput_Shutdown()
function, 584

modules, 588

GUIDs (globally unique
identifiers), 541-542

interfaces, 541-542

joysticks, 561-562

acquiring, 573

cooperation level, 568

creating, 567-568

data formats, 569

enumeration, 562-567

polling, 574

properties, 570-573

reading data from,
574-575

releasing, 575

keyboards

acquiring, 551

cooperation level,
548-549

creating, 546-548

data formats, 549-551

reading data from,
551-553

unacquiring, 553-554

merging input, 576-579

mouse

absolute mode, 556

acquiring, 559

cooperation level, 558

creating, 558

data format, 558-559

reading data from,
559-560

relative mode, 556

releasing, 560

polling, 543

properties, 543

reacquiring, 554-556

state, 544

DirectInputCreate() function,
544-545

directives

#define, 60, 501-502

#include, 60

DirectMedia, 908

DirectMusic, 217

COM initialization, 624

interfaces, 622-623

MIDI files

loading, 626-630

playing, 630

releasing, 631

2672313618 Index 8/27/99 9:27 AM Page 972

INDEX
DISCL_FOREGROUND flag

973

shutting down, 631-632

status, checking, 631

stopping, 631

performances

creating, 625

initializing, 625-626

ports, 626

sound/music library, 632-633

DirectMusic API wrapper,
640-643

DirectSound API wrap-
per, 635-640

globals, 634-635

header file, 633

types, 633-634

DirectPlay, 217

DirectSetup, 218

DirectSound, 217, 601-602

cooperation levels

exclusive, 604

normal, 604

priority, 604

setting, 605

Write_Primary, 605

DirectSound objects, creat-
ing, 602-604

interfaces, 602

panning, 614

playback frequencies, 613

playing sounds, 612

primary buffers, 606

querying

GetCaps() function,
614-616

GetStatus() function, 616

secondary buffers

circular buffering, 607

creating, 607-610

locking, 610-611

releasing, 611

static, 606

streaming, 606

unlocking, 611

writing to, 610-611

sound/music library, 632-633

DirectMusic API wrapper,
640-643

DirectSound API wrap-
per, 635-640

globals, 634-635

header file, 633

types, 633-634

stopping sounds, 612

volume control, 612-613

.WAV loader, 616-622

DirectSound3D, 217

DirectSoundCreate() function,
603

DirectX, 11, 213-214

compile time, 231-232

Direct3DIM, 218

Direct3DRM, 218

DirectDraw, see DirectDraw

DirectInput, see DirectInput
devices

DirectMusic, 217

COM initialization, 624

interfaces, 622-623

MIDI files, 626-632

performances, 625-626

ports, 626

sound/music library,
632-643

DirectPlay, 217

DirectSetup, 218

DirectSound, 217, 601-602

cooperation levels,
604-605

interfaces, 602

objects, creating, 602-604

panning, 614

playback frequencies, 613

playing sounds, 612

primary buffers, 606

querying, 614-616

secondary buffers,
606-611

sound/music library,
632-643

stopping sounds, 612

volume control, 612-613

.WAV loader, 616-622

DirectSound3D, 217

GDI (Graphics Device
Interface), combining, 385

HAL (Hardware Abstraction
Layer), 216

HEL (Hardware Emulation
Layer), 216

installation, 907-908

interfaces

creating, 236-237

querying for, 237-238

multithreading, 709-710

Web site, 908

DISCARDABLE keyword, 116

DISCL_BACKGROUND flag,
548

DISCL_EXCLUSIVE flag, 548

DISCL_FOREGROUND flag,
548

2672313618 Index 8/27/99 9:27 AM Page 973

DISCL_NONEXCLUSIVE flag

974 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

DISCL_NONEXCLUSIVE flag,
548

DispatchMessage() function, 85

Distributed COM (DCOM), 239

division, 676-677

DMusic_Delete_All_MIDI()
function, 642

DMusic_Delete_MIDI()
function, 642

DMusic_Init() function, 641

DMusic_Load_MIDI() function,
641

DMUSIC_MIDI structure, 627

DMusic_Play() function, 642

DMusic_Shutdown() function,
641

DMusic_Status() function, 643

DMusic_Stop() function, 642

DOM (degrees of membership),
774-775

DOS, Hello World program, 58

dot products, 450, 919-921

double-buffering, 268, 301-302

implementing, 303-305

optimizing, 304

sample program, 305-307

doubly linked lists, 656

downloading games, 950

drawing, 26. See also
DirectDraw

circles, 180-181

ellipses (ovals), 180-181

lines, 175, 402-403

Bresenham’s algorithm,
403-409

FillRect() function,
178-179

FrameRect() function,
178

LineTo() function,
176-177

MoveToEx() function,
175

Rectangle() function,
177-179

Run-Slicing algorithm,
409

Symmetric Double Step
algorithm, 411

points, 173-175

polygons, 181-182, 430-432

quadrilaterals, 461-464

triangles, 461-464

flat bottom triangles,
467-470

flat top triangles, 465-467

overdraw, 464

drawing tools

brushes

creating, 172-173

defined, 167

deleting, 172

selecting, 172

pens

creating, 169

defined, 167

deleting, 171

line styles, 169-170

selecting, 170-171

stock objects, 168-169

DrawText() function, 137

Draw_Bitmap() function, 522

Draw_BOB() function, 530-531

Draw_Clip_Line() function, 513

Draw_Filled_Polygon2D() func-
tion, 512

Draw_Line() function, 407-409,
514

Draw_Particles() function, 866

Draw_Pixel() function, 515

Draw_QuadFP_2D() function,
512

Draw_Scaled_BOB() function,
531

Draw_Text_GDI() function, 516

Draw_Triangle_2D() function,
511

DSBCAPS structure, 615

DSBCAPS_CTRDEFAULT flag,
608

DSBCAPS_CTRLALL flag, 608

DSBCAPS_CTRLFRE-
QUENCY flag, 608

DSBCAPS_CTRLPAN flag, 608

DSBCAPS_CTRLVOLUME
flag, 608

DSBCAPS_LOCHARDWARE
flag, 608

DSBCAPS_LOCSOFTWARE
flag, 608

DSBCAPS_PRIMARYBUFFER
flag, 608

DSBCAPS_STATIC flag, 608

DSBUFFERDESC structure,
607-608

DSCAPS structure, 614-615

DSound_Delete_Sound() func-
tion, 638

DSound_Init() function, 635

DSound_Load_WAV() function,
617, 636

DSound_Play_Sound() function,
637-638

2672313618 Index 8/27/99 9:27 AM Page 974

INDEX
event handling

975

DSound_Replicate_Sound()
function, 637

DSound_Set_Sound_Freq()
function, 640

DSound_Set_Sound_Pan()
function, 640

DSound_Set_Sound_Volume()
function, 639

DSound_Shutdown() function,
636

DSound_Status_Sound() func-
tion, 638-639

DSound_Stop_Sound() function,
638

DSSCL_EXCLUSIVE flag, 605

DSSCL_NORMAL flag, 605

DSSCL_PRIORITY flag, 605

DSSCL_WRITEPRIMARY flag,
605

dwBackBufferCount field, 268

dwCreationFlags field
(CreateThread() function), 691

dwDevType field
(EnumDevices() function),
563-564

dwExStyle field
(CreateWindowEx() function),
75

dwFlags field

DDPIXELFORMAT struc-
ture, 291

DDSURFACE2 structure,
266

dwFlags parameter

Blt() function, 321-324

EnumDevices() function,
564

dwHeight field (DDSURFACE2
structure), 266

dwSize field

DDPIXELFORMAT struc-
ture, 291

DDSURFACE2 structure,
265

dwStyle parameter
(CreateWindowEx() function),
75

dwWidth field (DDSURFACE2
structure), 266

E

ecosystem simulation games, 14

elastic collisions, 828

Element Of operator, 774

Ellipse() function, 180

ellipses, drawing, 180-181

enemies (Outpost game)

gunships, 888-891

mines, 886-887

outposts, 885-886

energy, kinetic, 812

EnumDevices() function,
563-564

error handling

C/C++ compiler settings, 909

DirectDraw, 246-247

error codes, 555

evasion algorithms, 722

event handling, 77, 143

impact events, 843

keyboard input, 150

ASCII codes, 151

GetAsyncKeyState()
function, 151, 155-158

scan codes, 151

WM_CHAR message,
151-153

WM_KEYDOWN
message, 153-155

WM_KEYUP message,
154

main event loops, 84-89

menus, 122

sample program, 125-128

WinProc() function,
123-125

mouse input

WM_LBUTTON
DBLCLK message, 160

WM_LBUTTONDOWN
message, 160

WM_LBUTTONUP
message, 160

WM_MBUTTON-
DBLCLK message, 160

WM_MBUTTONDOWN
message, 160

WM_MBUTTONUP
message, 160

WM_MOUSEMOVE
message, 158-160

WM_RBUTTON-
DBLCLK message, 160

WM_RBUTTONDOWN
message, 160

WM_RBUTTONUP
message, 160

real-time event loops, 89-90

window manipulation mes-
sages, see messages

Windows event model, 53-54

2672313618 Index 8/27/99 9:27 AM Page 975

event handling

976 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

WinProc() function

message IDs, 79-80

parameters, 79

prototype, 78

sample program, 80-84

exclusive cooperation level
(DirectSound), 604

execute buffers, 218

E_PENDING error code, 555

F

FAILED macro, 246

falling objects, simulating,
816-818

FAMs (fuzzy associative
matrices), 783

examples, 784-786

processing, 787-789

centroids, 790-793

MAX() function, 790

Fast_Distance() function, 517

Fast_Distance_3D() function,
517

Fibonacci algorithm, 662

fighting games, 13

filename extensions

.RC, 97

.RES, 97

.WAV, 109

files

header files, 60

metafiles, 97

WAV

playing, 110-112

resource files, 109

sample program, 112-114

stopping, 112

filling

polygons, 458-459

surfaces, 325-328

FillRect() function, 178-179

filtering, 371

finding paths. See pathfinding

Find_Bounding_Box_Poly2D()
function, 518

finite state machines. See FSMs

firing neurons, 767

fixed camera view isometric
engines, 500

fixed-point mathematics,
673-674

accuracy, 676

addition, 676

converting to/from, 674-675

division, 676-677

multiplication, 676-677

representing numbers, 674

subtraction, 676

flat bottom triangles

defined, 459

drawing, 467-470

flat top triangles

defined, 459

drawing, 465-467

Flip() function, 311-313

Flip_Bitmap() function, 522

FLVs (fuzzy linguistic
variables), 776-779

FM synthesis, 596-597

fonts

changing, 182

creating, 183-184

monospaced, 183

force, 807-809

force feedback, 579

conditions, 580

configuring, 580-581

motive forces, 580

sample program, 581-582

foreground color, 139-140

forward kinematics, 853-857

forward mapping, 368

Fourier Transform, 593

frame-based modeling, 871

FrameRect() function, 178

FreakOut game, 29-31

BLACKOUT.H file, 31-33

DDRAW.DLL file, 31

DDRAW.LIB file, 31

FREAKOUT.CPP file, 33-46

frequencies (playback), 592, 613

friction

defined, 821-822

physics modeling, 822

air hockey example, 823

inclined planes, 823-828

FSMs (finite state machines),
729-730

example, 730-734

personality traits, 734-736

full fuzzy sets, 775

full-screen isometric engines,
498-500

full-screen mode (DirectDraw),
250

function pointers, 232-235

functions, 937-938

Acquire(), 543

AddPort(), 626

AddRef(), 221-222

2672313618 Index 8/27/99 9:27 AM Page 976

INDEX
functions

977

AdjustWindowRectEx(), 396

Animate_BOB(), 534

BeginPaint(), 129-130

Blink_Colors(), 525

Blit8x8(), 319-320

Blt(), 321-324

BltFast(), 324-325

Clip_Line(), 514

CloseHandle(), 691-692

Close_Error_File(), 518

CoCreateInstance(), 225, 625

CoInitialize(), 624

Collision_BOBS(), 535

Collision_Test(), 526

Color_Scan(), 527

ComCreate(), 225

constructors, 938-941

CreateClipper(), 339

CreateDevice(), 542

CreateHatchBrush(),
172-173

CreatePalette(), 261-262

CreatePen(), 169-170

CreateSolidBrush(), 172

CreateSoundBuffer(),
607-609

CreateSurface(), 264

CreateThread(), 690-691

CreateWindowEx(), 75-76

Create_Bitmap(), 520

Create_BOB(), 528-530

DDDraw_Create_Surface(),
508

DDDraw_Flip(), 508

DDraw_Attach_Clipper(),
342-344, 508

DDraw_Fill_Surface(), 509

DDraw_Init(), 507

DDraw_Lock_Back_
Surface(), 510

DDraw_Lock_Primary_
Surface(), 510

DDraw_Lock_Surface(), 509

DDraw_Shutdown(), 507

DDraw_Unlock_Surface(),
510

DDraw_Wait_For_Vsync(),
509

DeleteObject(), 171

Destroy_Bitmap(), 520

Destroy_BOB(), 530

destructors, 939-943

DInput_Init(), 584

DInput_Init_Joystick(), 585

DInput_Init_Keyboard(), 584

DInput_Init_Mouse(), 585

DInput_Read_Joystick(), 587

DInput_Read_Keyboard(),
586

DInput_Read_Mouse(), 586

DInput_Release_Joystick(),
585

DInput_Release_Keyboard(),
585

DInput_Release_Mouse(),
585

DInput_Shutdown(), 584

DirectDrawCreate(), 236,
245-247

DirectInputCreate(), 544-545

DirectSoundCreate(), 603

DispatchMessage(), 85

DMusic_Delete_All_MIDI(),
642

DMusic_Delete_MIDI(), 642

DMusic_Init(), 641

DMusic_Load_MIDI(), 641

DMusic_Play(), 642

DMusic_Shutdown(), 641

DMusic_Status(), 643

DMusic_Stop(), 642

DrawText(), 137

Draw_Bitmap(), 522

Draw_BOB(), 530-531

Draw_Clip_Line(), 513

Draw_Filled_Polygon2D(),
512

Draw_Line(), 407-409, 514

Draw_Particles(), 866

Draw_Pixel(), 515

Draw_QuadFP_2D(), 512

Draw_Scaled_BOB(), 531

Draw_Text_GDI(), 516

Draw_Triangle_2D(), 511

DSound_Delete_Sound(),
638

DSound_Init(), 635

DSound_Load_WAV(), 617,
636

DSound_Play_Sound(),
637-638

DSound_Replicate_Sound(),
637

DSound_Set_Sound_Freq(),
640

DSound_Set_Sound_Pan(),
640

DSound_Set_Sound_
Volume(), 639

DSound_Shutdown(), 636

DSound_Status_Sound(),
638-639

2672313618 Index 8/27/99 9:27 AM Page 977

functions

978 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

DSound_Stop_Sound(), 638

Ellipse(), 180

EnumDevices(), 563-564

Fast_Distance(), 517

Fast_Distance_3D(), 517

FillRect(), 178-179

Find_Bounding_Box_
Poly2D(), 518

Flip(), 311-313

Flip_Bitmap(), 522

FrameRect(), 178

Game_Init(), 206

Game_Main(), 206, 297-298

Game_Shutdown(), 207

GetAsyncKeyState(), 151,
155-158

GetCaps(), 614-616

IDIRECTDRAW4::
GetCaps(), 386-388

IDIRECTDRAW-
PALETTE::GetCaps(),
389

IDIRECTDRAWSUR-
FACE4::GetCaps(), 388

GetClientRect(), 132

GetDC(), 130(), 383-384

GetDeviceState(), 544, 551,
555

GetMessage(), 85

GetPixelFormat(), 290, 393

GetStatus(), 616

GetStockObject(), 72-73,
168

GetSystemInfo(), 198-199

GetSystemMetrics(),
199-203

GetTextMetrics(), 204-205

GetTickCount(), 187

GetWindowRect(), 392-393

Get_Clock(), 525

Get_Palette_Entry(), 523

Hide_BOB(), 535

HLine(), 515

Init_Reset_Particles(),
861-862

inline, 22

InvalidateRect(), 132-133

IsPlaying(), 631

KillTimer(), 186

LineTo(), 176-177

LoadBitmap(), 348

LoadCursor(), 71, 104

LoadIcon(), 70-71

LoadImage(), 348-349

LoadMenu(), 119-120

LoadString(), 108

Load_Animation_BOB(),
532

Load_Bitmap_File(),
349-351, 519

Load_Frame_BOB(), 531

Load_Image_Bitmap(), 521

Load_Palette_From_File(),
524

Lock(), 275-276, 610

MAX(), 790

memcpy(), 304

MessageBeep(), 65-66

MessageBox(), 63-64

MIN(), 788

MoveToEx(), 175

Move_BOB(), 534

naming, 56

Open_Error_File(), 518

overloading, 945-946

PeekMessage(), 89

Play(), 612

PlaySegment(), 630

PlaySound(), 110-111

Plot16(), 277

Plot8(), 277

Plot_Pixel16(), 294-295

Plot_Pixel_Fast16(), 295

Plot_Pixel_Faster16(), 296

pointers, 69

Poll(), 543

Polygon(), 181

PostMessage(), 161-163

printf(), 932

Process_Particles(), 864-866

QueryInterface(), 221, 238,
247

Rectangle(), 177-179

RegisterClass(), 74

RegisterClassEx(), 74

Release(), 222, 284-285

ReleaseDC(), 130, 384

Rotate_Colors(), 525

Rotate_Polygon2D(), 513

Save_Palette(), 524

Save_Palette_To_File(), 523

Scale_Polygon2D(), 513

scanf(), 932

Screen_Transition(), 516

SelectObject(), 170-171

SendMessage(), 161-163,
195-197

SetBkMode(), 140

SetClipper(), 342, 397

SetColorKey(), 361-364

SetCooperativeLevel(), 543,
548, 605

2672313618 Index 8/27/99 9:27 AM Page 978

INDEX
games

979

SetCooperativeLevel(),
251-252

SetCursor(), 104

SetDataFormat(), 543, 549

SetDisplayMode(), 293

SetEntries(), 354

SetFrequency(), 613

SetHWnd(), 397

SetMenu(), 120

SetPalette(), 272

SetPan(), 614

SetPixel(), 173-175, 234-235

SetProperty(), 543

SetTimer(), 185

SetVolume(), 613

Set_Animation_BOB(), 534

Set_Anim_Speed(), 533

Set_Palette(), 524

Set_Palette_Entry(), 522

Set_Pos_BOB(), 533

Set_Vel_BOB(), 533

ShowCursor(), 446

Show_BOB(), 535

Sleep(), 190

Start_Clock(), 526

Start_Particles(), 862-864

Stop(), 612

TerminateThread(), 698

TextOut(), 137

TranslateMessage(), 85

Translate_Polygon2D(), 512

Unacquire(), 553-554

Unload_Bitmap_File(),
351-352, 519

Unlock(), 277(), 611

UpdateWindow(), 77

ValidateRect(), 131

VLine(), 516

WaitForMultipleObjects(),
703-704, 707

WaitForSingleObject(),
702-704

Wait_Clock(), 526

WinMain(), 45, 59-62,
207-210

WinProc(), 78-84, 123-125

Write_Error(), 518

Functions section (scripts), 763

fuzzifaction, 782

fuzzy logic, 772-773

FAMs (fuzzy associative
matrices), 783

examples, 784-786

processing, 787-793

FLVs (fuzzy linguistic
variables), 776-779

fuzzy set theory

DOM (degrees of mem-
bership), 774-775

intersections, 776

unions, 775

manifolds, 779-783

normal set theory, 773-774

fuzzy set theory

DOM (degrees of member-
ship), 774-775

intersections, 776

unions, 775

fwdSound parameter
(PlaySound() function),
110-111

G

Gamasutra, 952

Game Developer, 952

games, overview of, 184

demo mode

AI-controlled, 682

prerecorded, 680-682

design, 13

brainstorming, 14-15

design documents, 15

storyboards, 15-16

testing, 16

FreakOut, 29-31

BLACKOUT.H header
file, 31-33

DDRAW.DLL file, 31

DDRAW.LIB file, 31

FREAKOUT.CPP source
file, 33-46

history, 9-13

loop architecture, 16-17

AI (artificial intelligence),
17

display synchronization,
18

example, 18-21

frame rendering, 18

initialization, 17

loops, 18

player input, 17

shutdown, 18

multiplayer

split-screen setup, 684

turn-taking, 683

2672313618 Index 8/27/99 9:27 AM Page 979

games

980 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

online resources

2D/3D engines, 950-951

Belm Design Group, 953

Blues News, 952

book reviews, 951

download sites, 950

game programming sites,
949-950

magazines, 952

Usenet newsgroups,
951-952

Outpost, 875-876

asteroid field, 882-884

colors, 877

compiling, 897-898

design, 876-877

gunships, 888-891

HUDs (Heads-Up
Displays), 892-896

mines, 886-887

outposts, 885-886

particle system, 896

player’s ship (Wraith),
880-882

playing, 896

power-ups, 891-892

rendering tools, 878

scrolling, 878-880

sound, 878

universe size, 878

saving, 682-683

T3D Game Console, 205

architecture, 206

Game_Init() function,
206

Game_Main() function,
206

Game_Shutdown() func-
tion, 207

WinMain() function,
207-210

types

arcase games, 14

ecosystem simulations, 14

fighting games, 13

first-person games, 13

interactive stories, 14

mechanical simulations,
14

puzzle/board games, 14

retro games, 14

sports games, 13

strategy games, 14

Game_Init() function, 206

Game_Main() function, 206,
297-298

Game_Shutdown() function, 207

gamma control, 383

gamma correction, 381

GDI (Graphics Device
Interface), 128, 165-166

brushes

creating, 172-173

defined, 167

deleting, 172

selecting, 172

color

palletized, 136-137

RGB (red, green, blue)
mode, 135-137

pens, 168

creating, 169

defined, 167

deleting, 171

line styles, 169-170

selecting, 170-171

stock objects, 168-169

shapes, drawing

circles, 180-181

ellipses (ovals), 180-181

lines, 175-177

points, 173-175

polygons, 181-182

rectangles, 177-179

text, printing

DrawText() function, 137

example, 140-141

fonts, 182-184

foreground/background
colors, 139-140

sample program
(DEMO3.5.CPP),
141-143

TextOut() function, 137

timing

low-level timing, 187-190

timers, 185-186

WM_TIMER message,
184-187

video displays, 133-135

2D acceleration, 134

3D acceleration, 134

color depth, 133

interlaced/noninterlaced,
134

pixels, 133

refresh rates, 134

resolution, 133

VRAM (video RAM),
134

2672313618 Index 8/27/99 9:27 AM Page 980

INDEX
graphics

981

Window controls

buttons, 191-194

sending messages to,
195-197

WM_PAINT message,
128-133

genetic algorithms, 770-772

genetic evolution, 771

GetAsyncKeyState() function,
151, 155-158

GetCaps() function, 614-616

IDIRECTDRAW4::
GetCaps(), 386-388

IDIRECTDRAW-
PALETTE::GetCaps(), 389

IDIRECTDRAW-
SURFACE4::GetCaps(),
388

GetClientRect() function, 132

GetDC() function, 130, 383-384

GetDeviceState() function, 544,
551, 555

GetMessage() function, 85

GetPixelFormat() function, 290,
393

GetStatus() function, 616

GetStockObject() function,
72-73, 168

GetSystemInfo() function,
198-199

GetSystemMetrics() function,
199-203

GetTextMetrics() function,
204-205

GetTickCount() function, 187

GetWindowRect() function,
392-393

Get_Clock() function, 525

Get_Palette_Entry() function,
523

global variables, 22

Globally Unique Identifiers
(GUIDs), 223, 541

Globals section (scripts), 763

graphics. See also GUIs (graphi-
cal user interfaces)

animation

color animation, 373-379

double-buffering, 301-307

page flipping, 302-303,
311-317

triple-buffering, 312

bitmaps, 97, 345

file structure, 346-347

functions, 519-522

loading, 348-356

mapping, 368-369

reading manually, 348

rotating, 366-368

scaling, 366-373

templates, 352

unloading, 351-352

blitter, 317-319

bitmaps, copying from
surface to surface,
328-331

Blit8x8() function,
319-320

Blt() function, 321-324

BltFast() function,
324-325

memory fills, 325-328

offscreen surfaces,
358-360, 365-366

circles, 180

clipping

bitmaps, 334-339

IDirectDrawClipper inter-
face, 339-344

pixels , 332-333

color, see color

device contexts, 68, 130

ellipses, 180-181

Graphics Device Interface,
see GDI

icons, 97-99

defining, 100-101

loading, 102

resource files, 99

lines

clipping, 411-413, 419-
427

drawing, 175-177, 402-
411

intersection of, calculat-
ing, 413-418

slopes, 404

matrices, 446-448

addition, 449

dimensions, 447

identity matrix, 448-449

multiplication, 449-452

rotation, 455-457

scaling, 455

subtraction, 449

transformations, 452-454

translation, 454

zero matrix, 449

points, 173-175

2672313618 Index 8/27/99 9:27 AM Page 981

graphics

982 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

polygons

collision detection,
478-486

convex vs. concave, 427

data structures, 428-430

drawing, 181-182,
430-432

filling, 458-459

functions, 511-513

local coordinates, 431

scaling, 445-446

world coordinates, 431

quadrilaterals, 459

drawing, 461-464

rasterizing, 472-473

triangulating, 473-477

rectangles, 177-179

rotation

accuracy, 444

matrices, 455-457

points in 2D planes,
439-441

polygons, 441-443

trigonometry, 435-439

scaling, 445-446, 455

software, 26

translation, 433-434, 454

triangles, 459

clipping, 464

decomposition, 470-471

drawing, 461-470

overdraw, 464

video displays, 133-135

2D acceleration, 134

3D acceleration, 134

color depth, 133

interlaced/noninterlaced,
134

pixels, 133

refresh rates, 134

resolution, 133

VRAM (video RAM),
134

Graphics Device Interface. See
GDI

gravity, physics modeling

black hole simulations,
815-816

falling objects, 816-818

gravitational force, 814-815

space-time curvature, 813

trajectory paths, 818-821

GUIDs (Globally Unique
Identifiers), 223, 541

GUIs (graphical user interfaces).
See also graphics; Windows
operating system

buttons

creating, 193

notification codes,
193-194

styles, 191-192

dialog boxes, 97

menus

cascading, 117

creating, 116-119

event handling, 122-125

hotkeys, 118

loading, 119-122

sample program, 125-128

message boxes

MessageBox() function,
63-64

sample program, 59-60

sounds, 65-66

multiplayer games

split-screen setup, 684

turn-taking, 683

window manipulation mes-
sages, see messages

windows, 390-391

8-bit windowed modes,
398-399

client area, 395-397

coordinates, 132

creating, 75-77

clipping, 397-398

creating, 391-392

drawing to, 392-395

multiple, 90-92

updating, 77

gunships (Outpost game),
888-891

H

HAL (Hardware Abstraction
Layer), 216

handles, 70

hard-coded plans (AI), 742

Hardware Abstraction Layer
(HAL), 216

Hardware Emulation Layer
(HEL), 216

hatch brushes, 172-173

2672313618 Index 8/27/99 9:27 AM Page 982

INDEX
icons

983

hbrBackground field (WND-
CLASSEX structure), 72

hCursor field (WNDCLASSEX
structure), 71

header files, 60

bitmap files, 346

T3DLIB3 sound/music
library, 633

Heads-Up Displays. See HUDs

hearing, physiology of, 592

HEL (Hardware Emulation
Layer), 216

Hello World program, 58-59

Hide_BOB() function, 535

high-color modes

16-bit

bit encoding formats,
289-290

pixel formats, 290-293

sample program, 293

writing to screen, 293-298

24-bit, 299

32-bit, 300-301

computational speed, 288

memory bandwidth, 288

high-level AI (artificial intelli-
gence)

actions, 741

decision trees, 742-745

goals, 740-741

hard-coded plans , 742

implementing, 745-747

production rules, 742

hInstance field

CreateWindowEx() function,
76

WNDCLASSEX structure,
70

hinstance parameter (WinMain()
function), 61

historical overview

gaming, 9-13

Windows operating system

Windows 1.0, 48

Windows 2.0, 48

Windows 3.x, 48-49

Windows 95, 49-50

Windows 98, 50

Windows NT, 50

HLine() function, 515

hMenu parameter
(CreateWindowEx() function),
76

hmod parameter (PlaySound()
function), 110

homogenous coordinates, 453

hotkeys, 118

hprevinstance parameter
(WinMain() function), 61

HUDs (Heads-Up Displays),
892-896

Hungarian notation

class naming, 57

constant naming, 57

function naming, 56

parameter naming, 58

prefix codes, 55-56

type naming, 57

variable naming, 56

hwnd parameter

MessageBox() function, 63

WinProc() function, 79

hWndParent parameter
(CreateWindowEx() function),
76

hypotenuse, 912

I

I/O (input/output)

DirectInput devices, 539-541

cooperation levels, 543

creating, 542-543

data acquisition modes,
544

data formats, 543

DirectInput objects,
creating, 544-546

generalized input system,
582-588

GUIDs (globally unique
identifiers), 541-542

interfaces, 541-542

joysticks, see joysticks

keyboards, see keyboard
devices

merging input, 576-579

mouse, 556-560

polling, 543

properties, 543

reacquiring, 554-556

state, 544

force feedback, 579

conditions, 580

configuring, 580-581

motive forces, 580

sample program, 581-582

input loops, 538

streams, 932-934

ICON keyword, 100

icons, 97-99

defining, 100-101

loading, 102

resource files, 99

2672313618 Index 8/27/99 9:27 AM Page 983

IDC_APPSTARTING value

984 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

IDC_APPSTARTING value, 71

IDC_ARROW value, 71

IDC_CROSS value, 71

IDC_IBEAM value, 71

IDC_NO value, 71

IDC_SIZEALL value, 72

IDC_SIZENESW value, 72

IDC_SIZENS value, 72

IDC_SIZENWSE value, 72

IDC_SIZEWE value, 72

IDC_UPARROW value, 72

IDC_WAIT value, 72

identifiers. See IDs

identity matrix, 448-449

IDirectDraw interface, 242

IDirectDrawClipper interface,
243-244

clip lists, 340-342

creating, 339

sample program, 342-344

IDirectDrawColorControl
interface, 382-383

IDirectDrawGammaControl
interface, 383

IDirectDrawPalette interface,
243

IDirectDrawSurface interface,
242

IDirectInput interface, 541

IDirectInputDevice interface,
541

IDirectInputDevice2 interface,
542

IDirectMusic interface, 623

IDirectMusicLoader interface,
623

IDirectMusicPerformance inter-
face, 623

IDirectMusicPort interface, 623

IDirectMusicSegment interface,
623

IDirectMusicSegmentState inter-
face, 623

IDirectSound interface, 602

IDirectSoundBuffer interface,
602

IDirectSoundCapture interface,
602

IDirectSoundNotify interface,
602

IDs

GUIDs (Globally Unique
Identifiers), 223

IIDs (Interface Identifiers),
223, 249

message IDs, 79

IFF (Interchange File Format),
616

IIDs (Interface Identifers), 223,
249

image-processing programs, 26

immediate mode

Direct3D, 218

DirectInput, 544

impact events, 843

impulse force, 843

inclined planes, 823-828

#include directives, 60

influence, radii of, 736

inheritance, 926-927

initialization, 17

Init_Reset_Particles() function,
861-862

inline() functions, 22

inorder searches (BSTs), 668

input devices. See DirectInput
devices

input/output. See I/O

installing DirectX, 907-908

integration, 792

intelligence. See AI (artificial
intelligence)

interactive stories, 14

Interchange File Format (IFF),
616

Interface Identifiers (IIDs), 223

interfaces, 219, 242-245

accessing, 247-250

creating, 236-237

IDirectDraw, 242

IDirectDrawClipper, 243-244

clip lists, 340-342

creating, 339

sample program, 342-344

IDirectDrawColorControl,
382-383

IDirectDrawGammaControl,
383

IDirectDrawPalette, 243

IDirectDrawSurface, 242

IDirectInput, 541

IDirectInputDevice, 541

IDirectInputDevice2, 542

IDirectMusic, 623

IDirectMusicLoader, 623

IDirectMusicPerformance,
623

IDirectMusicPort, 623

IDirectMusicSegment, 623

IDirectMusicSegmentState,
623

IDirectSound, 602

IDirectSoundBuffer, 602

IDirectSoundCapture, 602

2672313618 Index 8/27/99 9:27 AM Page 984

INDEX
libraries

985

IDirectSoundNotify, 602

IIDs (Interface IDs), 223, 249

IUnknown, 221-222, 242,
602

querying for, 237-238

interlaced video displays, 134

intersecting line segments (colli-
sions), 835-840

intersection of lines, calculating

general form, 416

matrix form, 416-418

Point Slope form, 413-415

Y-Intercept form, 416

intersection operator, 774

InvalidateRect() function,
132-133

inverse kinematics, 854, 858-859

inverse mapping, 369

IOSTREAM class, 932

ISO (isometric) engines

cell-based, 496-498

fixed camera view, 500

full-screen, 498-500

isometric engines

cell-based, 496-498

fixed camera view, 500

full-screen, 498-500

IsPlaying() function, 631

IUnknown interface, 242, 602

definition, 221

functions

AddRef, 221-222

QueryInterface, 221

Release, 222

J-K

joysticks, 561-562

acquiring, 573

cooperation level, 568

creating, 567-568

data formats, 569

enumeration, 562-567

polling, 574

properties, 570-573

reading data from, 574-575

releasing, 575

keyboard devices (DirectInput)

acquiring, 551

cooperation level, 548-549

creating, 546-548

data formats, 549-551

event handling, 150

ASCII codes, 151

GetAsyncKeyState()
function, 151, 155-158

scan codes, 151

WM_CHAR message,
151-153

WM_KEYDOWN mes-
sage, 153-155

WM_KEYUP message,
154

reading data from, 551-553

unacquiring, 553-554

keys, color, 360-361

destination color keying,
364-365

source color keying, 361-363

keywords

class, 935

const, 57

CURSOR, 102

DISCARDABLE, 116

ICON, 100

MENUITEM, 118

POPUP, 117

public, 936

struct, 648

WAVE, 109

KillTimer() function, 186

kinematics

forward, 853-857

inverse, 854, 858-859

kinetic energy, 812

L

laws of physics

Newton’s First Law, 799

Newton’s Second Law, 807

lbs. (pounds), 799

libraries

T3DLIB1

2D graphic functions,
513-516

2D polygon functions,
511-513

bitmap functions,
519-522

data types, 503-505

#defines directives,
501-502

DirectDraw interface,
507-510

engine architecture,
500-501

2672313618 Index 8/27/99 9:27 AM Page 985

libraries

986 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

globals, 506-507

macros, 502-503

math/error functions,
517-518

palette functions, 523-525

structures, 503-505

utility functions, 526-527

T3DLIB2, 582-584

DInput_Init() function,
584

DInput_Init_Joystick()
function, 585

DInput_Init_Keyboard()
function, 584

DInput_Init_Mouse()
function, 585

DInput_Read_Joystick()
function, 587

DInput_Release_
Joystick() function,
585-586

DInput_Release_
Keyboard() function,
585

DInput_Release_Mouse()
function, 585-586

DInput_Shutdown()
function, 584

modules, 588

T3DLIB3, 632-633

DirectMusic API wrapper,
641-642

DirectSound API wrap-
per, 635-640

globals, 634-635

header file, 633-634

lights, blinking, 374-379

line styles (pens), 169-170

lines

clipping, 411-413, 419-420

Cohen-Sutherland algo-
rithm, 420-427

drawing, 402-403

Bresenham’s algorithm,
403-409

LineTo() function,
176-177

MoveToEx() function,
175

Run-Slicing algorithm,
409

Symmetric Double Step
algorithm, 411

intersection of, calculating,
835-840

general form, 416

matrix form, 416-418

Point Slope form,
413-415

Y-Intercept form, 416

slopes, 404

LineTo() function, 176-177

linked lists, 649-650

creating, 650-651

doubly linked lists, 656

nodes

adding, 652-653

deleting, 653-655

traversing, 651-652

lists

clip lists, 340-342

linked lists, 649-650

creating, 650-651

doubly linked lists, 656

nodes, 652-655

traversing, 651-652

little-endian format, 290

LoadBitmap() function, 348

LoadCursor() function, 71, 104

LoadIcon() function, 70-71

LoadImage() function, 348-349

loading

bitmaps

8-bit images, 353-354

16-bit images, 354-355

24-bit images, 355-356

LoadBitmap() function,
348

LoadImage() function,
348-349

Load_Bitmap_File()
function, 349-351

cursors, 103-104

icons, 102

menus, 119-122

LoadMenu() function,
119-120

SetMenu() function, 120

MIDI files, 626-630

strings, 108

LoadMenu() function, 119-120

LoadString() function, 108

Load_Animation_BOB() func-
tion, 532

Load_Bitmap_File() function,
349-351, 519

Load_Frame_BOB() function,
531

Load_Image_Bitmap() function,
521

Load_Palette_From_File()
function, 524

local coordinates (polygons),
431

2672313618 Index 8/27/99 9:27 AM Page 986

INDEX
mathematics

987

Lock() function, 275-276, 610

locking

DirectDraw surfaces,
275-276

sound buffers, 610-611

look-up tables, 678-679

loops

architecture, 16-17

AI (artificial intelligence),
17

display synchronization,
18

example, 18-21

frame rendering, 18

initialization, 17

loops, 18

player input, 17

shutdown, 18

busy, 701

input loops, 538

main event loops, 84-89

real-time event loops, 89-90

unrolling, 677-678

low-level timing, 187-190

LOWORD macro, 123

lpcaption parameter
(MessageBox() function), 63

lpClassName parameter
(CreateWindowEx() function),
75

lpcmdline parameter
(WinMain() function), 61

lpCursorName field (WND-
CLASSEX structure), 71

lpDDBltFx parameter (Blt()
function), 321-322

lpDDSrcSurface parameter
(Blt() function), 321

lpDestRect parameter (Blt()
function), 321

lpfnWndProc field (WND-
CLASSEX structure), 68-69

lPitch field (DDSURFACE2
structure), 266-267

lpParam parameter
(CreateWindowEx() function),
76

lpParameter parameter
(CreateThread() function), 691

lpSrcRect parameter (Blt() func-
tion), 321

lpStackSize parameter
(CreateThread() function), 691

lpStartAddress parameter
(CreateThread() function), 691

lpSurface field (DDSURFACE2
structure), 268

lpszClassName field (WND-
CLASSEX structure), 73

lpszMenuName field (WND-
CLASSEX structure), 73

lptext parameter (MessageBox()
function), 63

lpThreadAttributes parameter
(CreateThread() function), 691

lpThreadId parameter
(CreateThread() function), 691

lpWindowName parameter
(CreateWindowEx() function),
75

M

macros

FAILED, 246

LOWORD, 123

MAKEINTRESOURCE, 102

SUCCEEDED, 246

T3DLIB1 library, 502-503

magazines, 952

Main section (scripts), 763

MAKEINTRESOURCE macro,
102

manifolds, fuzzy, 779-783

mapping bitmaps

forward mapping, 368

inverse mapping, 369

mass, 799

mathematics, 911. See also
algorithms

asymptotic algorithm analy-
sis, 657-659

code optimization, 672-673

fixed-point math, 673-674

accuracy, 676

addition, 676

converting to/from,
674-675

division, 676-677

multiplication, 676-677

representing numbers,
674

subtraction, 676

integration, 792

matrices, 446-448

addition, 449

dimensions, 447

FAMs (fuzzy associative
matrices), 783-793

identity matrix, 448-449

line intersections, calcu-
lating, 416-418

multiplication, 449-452

rotation, 455-457

scaling, 455

2672313618 Index 8/27/99 9:27 AM Page 987

mathematics

988 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

subtraction, 449

transformations, 452-454

translation, 454

zero matrix, 449

trigonometry, 435-439,
911-912

cosines, 913

identities, 438, 914-915

Pythagorean theorem, 913

sines, 913

tangents, 913

vectors, 915-916

addition, 918-919

cross products, 921-923

dot products, 919-921

length, 916-917

as linear combinations,
924

normalization, 917

position vectors, 923-924

scalar multiplication,
917-918

subtraction, 919

zero vectors, 923

matrices, 446-448

addition, 449

dimensions, 447

FAMs (fuzzy associative
matrices), 783

examples, 784-786

processing, 787-793

MAX() function, 790

identity matrix, 448-449

line intersections, calculating,
416-418

multiplication, 449-452

rotation, 455-457

scaling, 455

subtraction, 449

transformations, 452-454

translation, 454

zero matrix, 449

MAX() function, 790

MB_ABORTRETRYIGNORE
flag, 64

MB_DEFBUTTONn flag, 64

MB_ICONEXCLAMATION
flag, 64

MB_ICONINFORMATION
flag, 64

MB_ICONQUESTION flag, 64

MB_ICONSTOP flag, 64

MB_OK flag, 63

MB_OKCANCEL flag, 63

MB_RETRYCANCEL flag, 63

MB_YESNO flag, 63

MB_YESNOCANCEL flag, 63

McCulloch-Pitts neurode sum-
mation function, 768

mechanical simulation games, 14

member functions. See functions

memcpy() function, 304

memory

AI (artificial intelligence),
736-740

allocating, 931

deallocating, 932

high-color mode require-
ments, 288

leaks, 942

VRAM (video RAM), 134

MENUITEM keyword, 118

menus

cascading, 117

creating, 116-119

event handling, 122

sample program, 125-128

WinProc() function,
123-125

hotkeys, 118

loading, 119-122

LoadMenu() function,
119-120

SetMenu() function, 120

merging input device data,
576-579

message boxes

MessageBox() function,
63-64

sample program, 59-60

sounds, 65-66

MessageBeep() function, 65-66

MessageBox() function, 63-64

messages, 143

IDs, 79

passing to threads, 698-701

retrieving, 85

sending

to controls, 195-197

PostdMessage() function,
161-163

SendMessage() function,
161-163

testing for, 89

WM_ACTIVATE, 144-145

WM_ACTIVATEAPP, 144

WM_CHAR, 151-153

WM_CLOSE, 144-147

WM_KEYDOWN, 153-155

WM_KEYUP, 154

WM_LBUTTONDBLCLK,
160

2672313618 Index 8/27/99 9:27 AM Page 988

INDEX
multithreading

989

WM_LBUTTONDOWN,
160

WM_LBUTTONUP, 160

WM_MBUTTONDBLCLK,
160

WM_MBUTTONDOWN,
160

WM_MBUTTONUP, 160

WM_MOUSEMOVE,
158-160

WM_MOVE, 144, 149-150

WM_MOVING, 144

WM_PAINT, 128-133

WM_RBUTTONDBLCLK,
160

WM_RBUTTONDOWN,
160

WM_RBUTTONUP, 160

WM_SIZE, 144, 147-148

WM_SIZING, 144

WM_TIMER, 184-187

metafiles, 97

methods. See functions

metrics

system metrics

constants, 199-203

retrieving, 199

text metrics, 204-205

Microsoft Web site, 908, 951

MIDI (Musical Instrument
Digital Interface) files, 27,
597-598. See also DirectMusic

loading, 626-630

playing, 630

releasing, 631

sequencing programs, 27

status, checking, 631

stopping, 631

MIN() function, 788

mines (Outpost game), 886-887

MMIO (multimedia I/O inter-
face), 617

modeling. See physics modeling

modes

demo mode

AI-controlled, 682

prerecorded, 680-682

Direct3D

Immediate, 218

Retained, 218

DirectDraw

full-screen, 250

video modes, 255-258

windowed, 250

windowed modes,
390-399

DirectInput, 544

mouse devices, 556

momentum, 809-810

collision response, 813

conservation of, 811

monitors, 133-135

monospaced fonts, 183

motive forces, 580

mouse devices

absolute mode, 556

acquiring, 559

cooperation level, 558

creating, 558

data format, 558-559

event handling, 158, 160

reading data from, 559-560

relative mode, 556

releasing, 560

MoveToEx() function, 175

Move_BOB() function, 534

moving objects. See translation

multimedia. See also animation;
graphics; sound

multimedia I/O interface
(MMIO), 617

multiplayer games

split-screen setup, 684

turn-taking, 683

multiple inheritance, 927

multiplication

fixed-point mathematics,
676-677

matrices, 449-452

vectors

cross products, 921-923

dot products, 919-921

scalar multiplication,
917-918

multiprocessors, 686

multitasking

preemptive, 687

Windows, 51-52

multithreading, 685-686, 711

advantages, 687-689

defined, 687

DirectX, 709-710

priority levels, 687

sample programs, 693-696

threads

creating, 689-691

handles, closing, 691-692

with messages, 698-701

multiple objects, waiting
for, 707-709

signaling, 702-704

2672313618 Index 8/27/99 9:27 AM Page 989

multithreading

990 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

synchronizing, 704-707

terminating, 692, 697-698

Windows, 51-53

music. See sound

Musical Instrument Digital
Interface. See MIDI files

mutexes, 710

N

N (Newton), 799

n-t coordinate system (colli-
sions), 846-849

naming conventions, Hungarian
notation

class naming, 57

constant naming, 57

function naming, 56

parameter naming, 58

prefix codes, 55-56

type naming, 57

variable naming, 56

navigation, scrolling

homogeneous tile engines,
489-494

page scrolling engines,
488-489

sparse bitmap tile engines,
494-495

ncmdshow parameter
(WinMain() function), 61-62

neural networks (AI), 767-770

McCulloch-Pitts neurode
summation() function, 768

truth table, 769

neurodes, 768-770

neurons, 767

new operator, 931-932

newsgroups, 951-952

Newton (N), 799

Newton, Sir Isaac

Newton’s First Law, 799

Newton’s Second Law, 807

nHeight parameter
(CreateWindowEx() function),
76

nodes (linked lists)

adding, 652-653

deleting, 653-655

non-elastic collisions, 828

normal cooperation level
(DirectSound), 604

normal force, 824

normal set theory, 773-774

norms (vectors), 916

notations, Big O, 657

notification codes, 193

nWidth parameter
(CreateWindowEx() function),
76

Nyquist frequency, 595

O

objects. See also controls

BOB (Blitter Object) engine,
527-528

Animate_BOB() func-
tion, 534

Collision_BOBS() func-
tion, 535

Create_BOB() function,
528-530

Destroy_BOB() function,
530

Draw_BOB() function,
530-531

Draw_Scaled_BOB()
function, 531

Hide_BOB() function,
535

Load_Animation_BOB()
function, 532

Load_Frame_BOB()
function, 531

Move_BOB() function,
534

Set_Animation_BOB()
function, 534

Set_Anim_Speed()
function, 533

Set_Pos_BOB() function,
533

Set_Vel_BOB() function,
533

Show_BOB() function,
535

COM (Component Object
Model), 218-219

COM++, 238

creating, 224-226

DCOM (Distributed
COM), 239

function pointers,
232-235

GUIDs (Globally Unique
Identifiers), 223

interfaces, 219-222

sample program, 226-231

DirectDraw, 245-246

DirectInput, 544-546

DirectSound, 602-604

2672313618 Index 8/27/99 9:27 AM Page 990

INDEX
pathfinding

991

Graphics Device Interface,
See GDI

stock objects, 168-169

offscreen surfaces

blitting, 358-360, 365-366

creating, 356-358

Open_Error_File() function, 518

operators

>>, 934

<<, 933

delete, 931-932

Element Of, 774

intersection, 774

new, 931-932

overloading, 945-946

scope resolution, 943-944

Subset Of, 774

union, 774

optimizing code, 21-25, 671-672

algorithms, 24

assembly language, 679

backups, 25

binary shifts, 24

comments, 23

double-buffering, 304

fixed-point math, 673-674

accuracy, 676

addition, 676

converting to/from,
674-675

division, 676-677

multiplication, 676-677

representing numbers,
674

subtraction, 676

inline functions, 22

look-up tables, 678-679

loop unrolling, 677-678

mathematical functions,
672-673

simplicity, 24-25

variables, 22

Outpost game, 875-876

asteroid field, 882-884

colors, 877

compiling

compilation files, 897

runtime files, 898

design

gameplay, 877

story, 876-877

gunships, 888-891

HUDs (Heads-Up Displays),
892-896

mines, 886-887

outposts, 885-886

particle system, 896

player’s ship (Wraith),
880-882

playing, 896

power-ups, 891-892

rendering tools, 878

scrolling, 878-880

sound, 878

universe size, 878

outposts (Outpost game),
885-886

output. See I/O (input/output)

ovals, drawing, 180-181

overdraw, 464

overloading functions/operators,
945-946

P

page flipping, 302-303

Flip() function, 311-313

sample program, 313-317

page scrolling engines, 488-489

paint programs, 26

PALETTEENTRY structure,
139-140

palettes, 136, 522-525

palletized color, 136-137

panning, 614

parametric representations, 837

particle systems, 859-860

designing, 860-861

initial conditions, generating,
866-867, 869

Outpost game, 896

particle engine software

Draw_Particles() func-
tion, 866

Init_Reset_Particles()
function, 861-862

Process_Particles() func-
tion, 864-866

Start_Particles() function,
862-864

passing messages to threads,
698-701

pathfinding, 747

A* search, 759

bidirectional breadth-first
searches, 757

breadth-first searches,
756-757

collision avoidance tracks,
749-750

contour tracing, 749

2672313618 Index 8/27/99 9:27 AM Page 991

pathfinding

992 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

depth-first searches, 757-758

Dijkstra’s search, 759

racing game example,
753-754

trial-and-error algorithms,
748-749

waypoints, 750-753

patterns (AI), 722-723

conditional logic, 727-729

creating, 723-724

processing, 725-726

reasonable motion, 726-727

PC_EXPLICIT flag, 140

PC_NOCOLLAPSE flag, 140

PC_RESERVED flag, 140

PeekMessage() function, 89

pens (GDI)

creating, 169

defined, 167

deleting, 171

line styles, 169-170

selecting, 170-171

stock objects, 168-169

performances (DirectMusic),
625-626

personality traits (AI), 734-736

physics modeling, 797-798

acceleration, 804-807

collisions

2D object-to-object colli-
sion response, 841-852

elastic vs. non-elastic,
828

line segment intersec-
tions, 835-840

vector reflection, 830-835

x, y bounce physics,
828-830

data structures, 870-871

force, 807-809

frame-based, 871

friction

air hockey example, 823

defined, 821-822

inclined planes, 823-828

gravity effects

black hole simulations,
815-816

falling objects, 816-818

gravitational force,
814-815

space-time curvature, 813

trajectory paths, 818-821

kinematics

forward, 853-857

inverse, 854, 858-859

kinetic energy, 812

mass, 799

momentum, 809-810

collision response, 813

conservation of, 811

particle systems, 859-860

designing, 860-861

initial conditions, generat-
ing, 866-869

particle engine software,
861-866

position, 800-802

time-based, 799-800,
871-873

velocity, 802-803

pixels, 133

clipping, 332-333

drawing to windows,
392-395

formats, 290-293

plotting, 173, 293-298

plotting (DirectDraw),
272-280

planning (high-level AI)

actions, 741

decision trees, 742-745

goals, 740-741

hard-coded plans, 742

implementing, 745-747

production rules, 742

Play() function, 612

playing sounds

DirectSound, 612

MIDI files, 630

WAV files

examples, 111-112

PlaySound() function,
110-111

PlaySegment() function, 630

PlaySound() function, 110-111

Plot16() function, 277

Plot8() function, 277

plotting pixels, 173, 272-280,
293-298

Plot_Pixel16() function, 294-295

Plot_Pixel_Fast16() function,
295

Plot_Pixel_Faster16() function,
296

point containment, 484-486

Point Slope form, 413-415

pointers, 69

function pointers, 232-235

requesting, 221

2672313618 Index 8/27/99 9:27 AM Page 992

INDEX
radians

993

points

drawing, 173-175

rotating, 439-441

Poll() function, 543

polling devices, 543, 574

polling loops, 701

Polygon() function, 181

polygons

collision detection

bounding boxes, 481-484

bounding circles, 478-481

point containment,
484-486

convex vs. concave, 427

data structures, 428-430

drawing, 181-182, 430-432

filling, 458-459

functions, 511-513

local coordinates, 431

quadrilaterals, 459

drawing, 461-464

rasterizing, 472-473

triangulating, 473-477

rotating, 441-443

scaling, 445-446

triangles, 459

clipping, 464

decomposition, 470-471

drawing, 461-470

overdraw, 464

world coordinates, 431

polymorphic functions, 170

polymorphism, 927-928

POPUP keyword, 117

ports (DirectMusic), 626

position vectors, 923-924

PostMessage() function,
161-163

postorder searches (BSTs), 668

pounds (lbs), 799

power-ups (Outpost game),
891-892

predator mines (Outpost game),
886-887

preemptive multitasking, 687

preorder searches (BSTs), 668

preprocessor directives

#define, 60, 501-502

#include, 60

prerecorded demo mode,
680-682

primary buffers (DirectSound),
606

primary surfaces (DirectDraw),
242

creating

capabilities control set-
tings, 270-271

code listing, 271-272

CreateSurface() function,
264

DDSURFACEDESC2
data structure, 265-270

defined, 264

locking, 275-276

unlocking, 277

printf() function, 932

printing text

DrawText() function, 137

example, 140-141

foreground/background
colors, 139-140

sample program, 141-143

TextOut() function, 137

priority

AI (artificial intelligence)
plans, 747

cooperation level
(DirectSound), 604

threads, 687

private classes, 936

Process_Particles() function,
864-866

production rules (AI), 742

pszSound parameter
(PlaySound() function), 110

public classes, 936

public keyword, 936

puzzle games, 14

pvRef parameter
(EnumDevices() function), 564

Pythagorean theorem, 437, 913

Q-R

quadrilaterals, 459

drawing, 461-464

rasterizing, 472-473

triangulating, 473-477

querying

DirectSound

GetCaps() function,
614-616

GetStatus() function, 616

interfaces, 237-238

QueryInterface() function, 221,
238, 247

racing games, 753-754

radians, 435, 912

2672313618 Index 8/27/99 9:27 AM Page 993

radii of influence

994 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

radii of influence, 736

RAM, VRAM (video RAM),
134

random motion, 716-717

rasterization, 134

Bresenham’s algorithm,
403-406

accuracy, 406

code listing, 407-409

quadrilaterals, 472-473

Run-Slicing algorithm, 409

Symmetric Double Step algo-
rithm, 411

.RC filename extension, 97

reading

bitmap files, 348

input device data

joysticks, 574-575

keyboards, 551-553

mouse devices, 559-560

reasonable motion, 726-727

recording

demos

AI-controlled demos, 682

prerecorded demos,
680-682

sound, 599-600

Rectangle() function, 177-179

rectangles, drawing

FillRect() function, 178-179

FrameRect() function, 178

Rectangle() function,
177-179

recursion, 659-662

red, green, blue (RGB) color
model, 135-137, 381

referential variables, 929-930

reflection equations

calculating, 830-834

example, 834-835

refresh rates, 134

RegisterClass() function, 74

RegisterClassEx() function, 74

registering Windows classes, 74

relative mode (mouse), 556

Release() function, 222, 284

ReleaseDC() function, 130, 384

releasing

input devices, 545

joysticks, 575

mouse, 560

MIDI files, 631

sound buffers, 611

rendering sounds, 612

.RES filename extension, 97

resolution, 133

amplitude resolution, 596

DirectDraw video modes,
255-256

resource compiler, 97

restitution, coefficient of,
844-845

Retained Mode (Direct3D), 218

retro games, 14

return codes

DirectDrawCreate() function,
247

MessageBox() function, 64

RGB (red, green, blue) color
model, 135-137, 381

RGNDATAHEADER structure,
341

right triangles, 912, 915. See
also trigonometry

Rotate_Colors() function, 525

Rotate_Polygon2D() function,
513

rotation

accuracy, 444

bitmaps, 366-368

matrices, 455-457

points in 2D planes, 439-441

polygons, 441-443

trigonometry, 435-439

Run-Slicing algorithm, 409

runtime files (Outpost game),
898

S

sample rates, 595

Save_Palette() function, 524

Save_Palette_To_File() function,
523

saving games, 682-683

scalar multiplication, 917-918,
450

Scale_Polygon2D() function,
513

scaling, 445-446

bitmaps, 366-373

matrices, 455

scan codes, 151

scanf() function, 932

Screen_Transition() function,
516

scripts (AI)

C/C++ compiler, 762-767

Functions section, 763

Globals section, 763

2672313618 Index 8/27/99 9:27 AM Page 994

INDEX
shapes

995

Main section, 763

scripting language design,
759-762

scrolling

homogeneous tile engines,
489-494

Outpost game, 878-880

page scrolling engines,
488-489

sparse bitmap tile engines,
494-495

searching

BSTs (binary search trees),
668-671

pathfinding, 747

A* search, 759

bidirectional breadth-first
searches, 757

breadth-first searches,
756-757

collision avoidance
tracks, 749-750

contour tracing, 749

depth-first searches,
757-758

Dijkstra’s search, 759

racing game example,
753-754

trial-and-error algorithms,
748-749

waypoints, 750-753

secondary buffers (DirectSound)

circular buffering, 607

creating, 607-610

locking, 610-611

releasing, 611

static, 606

streaming, 606

unlocking, 611

writing to, 610-611

secondary surfaces
(DirectDraw), 242, 264

SelectObject() function, 170-171

semaphores, 710

sending messages

to controls, 195-197

PostMessage() function,
161-163

SendMessage() function,
161-163

SendMessage() function,
161-163, 195-197

set inclusion, 774

SetBkMode() function, 140

SetClipper() function, 342, 397

SetColorKey() function,
361-364

SetCooperativeLevel() function,
251-252, 543, 548, 605

SetCursor() function, 104

SetDataFormat() function, 543,
549

SetDisplayMode() function, 293

SetEntries() function, 354

SetFrequency() function, 613

SetHWnd() function, 397

SetMenu() function, 120

SetPalette() function, 272

SetPan() function, 614

SetPixel() function, 173-175,
234-235

SetProperty() function, 543

SetTimer() function, 185

SetVolume() function, 613

Set_Animation_BOB() function,
534

Set_Anim_Speed() function, 533

Set_Palette() function, 524

Set_Palette_Entry() function,
522

Set_Pos_BOB() function, 533

Set_Vel_BOB() function, 533

Shannon’s Theorem, 595

shapes

circles, 180-181

ellipses (ovals), 180-181

lines

clipping, 411-413,
419-427

drawing, 402-411,
175-177

intersection of, calculat-
ing, 413-418

points, 173-175

polygons, 181-182

collision detection,
478-486

convex vs. concave, 427

data structures, 428-430

drawing, 430-432

filling, 458-459

functions, 511-513

local coordinates, 431

rotating, 441-443

scaling, 445-446

world coordinates, 431

rectangles

FillRect() function,
178-179

FrameRect() function,
178

Rectangle() function,
177-179

2672313618 Index 8/27/99 9:27 AM Page 995

shapes

996 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

quadrilaterals, 459

drawing, 461-464

rasterizing, 472-473

triangulating, 473-477

triangles, 459. See also
trigonometry

clipping, 464

decomposition, 470-471

drawing, 461-470

overdraw, 464

right triangles, 912, 915

ships (Outpost game)

gunships, 888-891

player’s ship (Wraith),
880-882

ShowCursor() function, 446

Show_BOB() function, 535

shutting down DirectMusic,
631-632

signaled threads, 702-704

sines, 593, 913

SIZE_MAXHIDE flag, 147

SIZE_MAXIMIZED flag, 147

SIZE_MAXSHOW flag, 147

SIZE_MINIMIZED flag, 147

SIZE_RESTORED flag, 147

Sleep() function, 190

slopes (lines), 404

SM_ARRANGE constant, 199

SM_CLEANBOOT constant,
199

SM_CMOUSEBUTTONS
constant, 199

SM_CXBORDER constant, 199

SM_CXCURSOR constant, 199

SM_CXDOUBLECLK constant,
200

SM_CXDRAG constant, 200

SM_CXEDGE constant, 200

SM_CXFIXEDFRAME con-
stant, 200

SM_CXFULLSCREEN
constant, 200

SM_CXHSCROLL constant,
200

SM_CXHTHUMB constant, 200

SM_CXICON constant, 200

SM_CXICONSPACING con-
stant, 201

SM_CXMAXIMIZED constant,
201

SM_CXMAXTRACK constant,
201

SM_CXMENUCHECK con-
stant, 201

SM_CXMENUSIZE constant,
201

SM_CXMIN constant, 201

SM_CXMINIMIZED constant,
201

SM_CXMINSPACING constant,
201

SM_CXMINTRACK constant,
201

SM_CXSCREEN constant, 201

SM_CXSIZE constant, 201

SM_CXSIZEFRAME constant,
201

SM_CXSMICON constant, 202

SM_CXSMSIZE constant, 202

SM_CXVSCROLL constant,
202

SM_CYCAPTION constant, 202

SM_CYCURSOR constant, 199

SM_CYDOUBLECLK constant,
200

SM_CYDRAG constant, 200

SM_CYEDGE constant, 200

SM_CYFIXEDFRAME
constant, 200

SM_CYFULLSCREEN con-
stant, 200

SM_CYHSCROLL constant,
200

SM_CYICON constant, 200

SM_CYICONSPACING con-
stant, 201

SM_CYKANJIWINDOW
constant, 202

SM_CYMAXIMIZED constant,
201

SM_CYMAXTRACK constant,
201

SM_CYMENU constant, 202

SM_CYMENUCHECK con-
stant, 201

SM_CYMENUSIZE constant,
201

SM_CYMIN constant, 201

SM_CYMINIMIZED constant,
201

SM_CYMINSPACING constant,
201

SM_CYMINTRACK constant,
201

SM_CYSCREEN constant, 201

SM_CYSIZE constant, 201

SM_CYSIZEFRAME constant,
201

SM_CYSMCAPTION constant,
202

SM_CYSMICON constant, 202

SM_CYSMSIZE constant, 202

SM_CYVSCROLL constant,
202

2672313618 Index 8/27/99 9:27 AM Page 996

INDEX
sound

997

SM_CYVTHUMB constant, 202

SM_DBCSENABLED constant,
202

SM_DEBUG constant, 202

SM_MENUDROPALIGNMENT
constant, 202

SM_MIDEASTENABLED con-
stant, 202

SM_MOUSEPRESENT con-
stant, 202

SM_MOUSEWHEELPRESENT
constant, 202

SM_NETWORK constant, 202

SM_PENWINDOW constant,
202

SM_SECURE constant, 203

SM_SHOWSOUNDS constant,
203

SM_SLOWMACHINE constant,
203

SM_SM_CYBORDER constant,
199

SM_SWAPBUTTON constant,
203

SND_ASYNC value, 110

SND_FILENAME value, 110

SND_LOOP value, 110

SND_MEMORY value, 110

SND_NODEFAULT value, 110

SND_NOSTOP value, 111

SND_NOWAIT value, 111

SND_PURGE value, 110

SND_RESOURCE value, 110

SND_SYNC value, 110

software

3D modelers, 26

compilers, 26-29

DirectX, see DirectX

drawing programs, 26

image processing programs,
26

MIDI sequencing programs,
27

paint programs, 26

sound-processing programs,
26

solid brushes, 172

somas, 767

sound, 97, 589-590

decibels, 613

digital, 594

amplitude resolution, 596

sample rates, 595

DirectMusic, 217

COM initialization, 624

interfaces, 622-624

MIDI loader, 626-630

MIDI playback, 630-631

performances, 625-626

ports, 626

shutting down, 631-632

DirectSound, 217, 601-602

cooperation levels,
604-605

DirectSound objects, cre-
ating, 602-604

interfaces, 602

panning, 614

playback frequencies, 613

playing sounds, 612

primary buffers, 606

querying, 614-616

secondary buffers,
606-611

stopping sounds, 612

volume control, 612-613

.WAV loader, 616-622

DirectSound3D, 217

FM synthesis, 596-597

hearing, physiology of, 592

MessageBeep() function,
65-66

MIDI (Musical Instrument
Digital Interface) filesload-
ing, 626-630

playing, 630

releasing, 631

sequencing programs, 27

status, checking, 631

stopping, 631

Outpost game, 878

processing, 600

recording, 599-600

sound waves, 590-591

amplitude, 592

frequency, 592

velocity, 591

waveforms, 592-593

sound-processing software,
26

sound/music library
(T3DLIB3), 632-633

DirectMusic API wrapper,
640-643

DirectSound API wrap-
per, 635-640

globals, 634-635

header file, 633

types, 633-634

spectrum, 593

WAV files, 108-109, 616-617

playing, 110-112

reading, 617-622

2672313618 Index 8/27/99 9:27 AM Page 997

sound

998 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

resource files, 109

sample program, 112-114

stopping, 112

wave guide synthesis,
598-599

wave table synthesis, 598

source color keying, 361-363

space-time curvature, 813

spectrum of sound, 593

split-screen setup (multiplayer
games), 684

sport games, 13

Start_Clock() function, 526

Start_Particles() function,
862-864

state

DirectInput devices, 552

FSMs (finite state machines),
729-730

example, 730-734

personality traits, 734-736

static secondary buffers, 606

static structures, 648

statistics, retrieving

GetSystemInfo() function,
198-199

GetSystemMetrics() func-
tion, 199-203

GetTextMetrics() function,
204-205

stock objects, 168-169

Stop() function, 612

stopping

sounds

DirectSound, 612

MIDI files, 631

WAV files, 112

threads, 692, 697

with messages, 698-701

TerminateThread() func-
tion, 698

storyboards, 15-16

strategy games, 14

stream I/O (input/output),
932-934

streaming secondary buffers, 606

string resources, 97, 106

loading, 108

string tables, 107

struct keyword, 648

structures, 934-935

arrays, 648-649

BITMAPFILEHEADER, 346

BITMAPINFO, 346

BITMAPINFOHEADER,
346-347

BSTs (binary search trees),
662-666

building, 666-668

orders, 662

searching, 668-671

COLORREF, 385

DDCOLORCONTROL, 383

DDPIXELFORMAT,
290-291

DDSURFACEDESC2

ddckCKDestBlt field, 268

ddckCKSrcBlt field, 268

ddpfPixelFormat field,
268-269

ddsCaps field, 270-271

dwBackBufferCount
field, 268

dwFlags field, 266

dwHeight field, 266

dwSize field, 265

dwWidth field, 266

lPitch field, 266-267

lpSurface field, 268

DIJOYSTATE, 550

DIJOYSTATE2, 550

DIMOUSESTATE, 550

DMUSIC_MIDI, 627

DSBCAPS, 615

DSBUFFERDESC, 607-608

DSCAPS, 614-615

linked lists, 649-650

creating, 650-651

doubly linked lists, 656

nodes, adding/deleting,
652-655

traversing, 651-652

PALETTEENTRY, 139-140

physics modeling, 870-871

polygons, 428-430

RGNDATAHEADER, 341

static, 648

SYSTEM_INFO, 198

T3DLIB1 library, 503-505

TEXTMETRIC, 204-205

WAVEFORMATEX, 608-609

WNDCLASS, 67

WNDCLASSEX

cbClsExtra field, 70

cbSize field, 67

cbWndExtra field, 70

hbrBackground field, 72

hCursor field, 71

hInstance field, 70

initializing, 74

2672313618 Index 8/27/99 9:27 AM Page 998

INDEX
T3DLIB1 library

999

lpCursorName field, 71

lpfnWndProc field, 68-69

lpszClassName field, 73

lpszMenuName field, 73

style field, 67-68

style field (WNDCLASSEX
structure), 67-68

Subset Of operator, 774

subtraction

fixed-point mathematics, 676

matrices, 449

vectors, 919

SUCCEEDED macro, 246

surfaces, 307. See also manifolds

back buffers, 307-309

color palettes, attaching, 272

complex, 309-310

creating

capabilities control set-
tings, 270-271

code listing, 271-272

CreateSurface() function,
264

DDSURFACEDESC2
data structure, 265-270

filling, 325-328

locking, 275-276

offscreen

blitting, 358-360, 365-366

creating, 356-358

primary, 242, 264

secondary, 242, 264

unlocking, 277

SW_HIDE value, 62

SW_MAXIMIZE value, 62

SW_MINIMIZE value, 62

SW_RESTORE value, 62

SW_SHOW value, 62

SW_SHOWMAXIMIZED
value, 62

SW_SHOWMINIMIZED value,
62

SW_SHOWMINNOACTIVE
value, 62

SW_SHOWNA value, 62

SW_SHOWNOACTIVATE
value, 62

SW_SHOWNORMAL value, 62

Symmetric Double Step algo-
rithm, 411

synchronization, 486-488,
704-707

synthesized sound

FM synthesis, 596-597

MIDI (Musical Instrument
Digital Interface) files,
597-598

loading, 626-630

playing, 630

releasing, 631

status, checking, 631

stopping, 631

wave guide synthesis,
598-599

wave table synthesis, 598

system statistics, retrieving

GetSystemInfo() function,
198-199

GetSystemMetrics() func-
tion, 199-203

GetTextMetrics() function,
204-205

SYSTEM_INFO structure, 198

T

T3D Game Console, 205

architecture, 206

Game_Init() function, 206

Game_Main() function, 206,
297-298

Game_Shutdown() function,
207

WinMain() function,
207-210

T3DLIB1 library, 500

2D graphic functions

Clip_Line(), 514

Draw_Clip_Line(), 513

Draw_Line(), 514

Draw_Pixel(), 515

Draw_Text_GDI(), 516

HLine(), 515

Screen_Transition(), 516

VLine(), 516

2D polygon functions

Draw_Filled_
Polygon2D(), 512

Draw_QuadFP_2D(), 512

Draw_Triangle_2D(), 511

Rotate_Polygon2D(), 513

Scale_Polygon2D(), 513

Translate_Polygon2D(),
512

bitmap functions

Create_Bitmap(), 520

Destroy_Bitmap(), 520

Draw_Bitmap(), 522

Flip_Bitmap(), 522

Load_Bitmap_File(), 519

2672313618 Index 8/27/99 9:27 AM Page 999

T3DLIB1 library

1000 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

Load_Image_Bitmap(),
521

Unload_Bitmap_File(),
519

data types, 503-505

#defines directives, 501-502

DirectDraw interface func-
tions

DDraw_Attach_Clipper(),
508

DDraw_Create_Surface(),
508

DDraw_Fill_Surface(),
509

DDraw_Flip(), 508

DDraw_Init(), 507

DDraw_Lock_Back_
Surface(), 510

DDraw_Lock_Primary_
Surface(), 510

DDraw_Lock_Surface(),
509

DDraw_Shutdown(), 507

DDraw_Unlock_
Surface(), 510

DDraw_Wait_For_
Vsync(), 509

engine architecture, 500-501

globals, 506-507

macros, 502-503

math/error functions

Close_Error_File(), 518

Fast_Distance(), 517

Fast_Distance_3D(), 517

Find_Bounding_Box_
Poly2D(), 518

Open_Error_File(), 518

Write_Error(), 518

palette functions

Blink_Colors(), 525

Get_Palette_Entry(), 523

Load_Palette_From_
File(), 524

Rotate_Colors(), 525

Save_Palette(), 524

Save_Palette_To_File(),
523

Set_Palette(), 524

Set_Palette_Entry(), 522

structures, 503-505

utility functions

Collision_Test(), 526

Color_Scan(), 527

Get_Clock(), 525

Start_Clock(), 526

Wait_Clock(), 526

T3DLIB2.CPP (generalized
input system), 582-584

functions

DInput_Init(), 584

DInput_Init_Joystick(),
585

DInput_Init_Keyboard(),
584

DInput_Init_Mouse(),
585

DInput_Read_Joystick(),
587

DInput_Release_
Joystick(), 585-586

DInput_Release_
Keyboard(), 585

DInput_Release_
Mouse(), 585-586

DInput_Shutdown(), 584

modules, 588

T3DLIB3 sound/music library,
632-633

DirectMusic API wrapper
functions

DMusic_Delete_All_
MIDI(), 642

DMusic_Delete_MIDI(),
642

DMusic_Init(), 641

DMusic_Load_MIDI(),
641

DMusic_Play(), 642

DMusic_Shutdown(), 641

DMusic_Status(), 643

DMusic_Stop(), 642

DirectSound API wrapper
functions

DSound_Delete_Sound(),
638

DSound_Init(), 635

DSound_Load_WAV(),
636

DSound_Play_Sound(),
637-638

DSound_Replicate_
Sound(), 637

DSound_Set_Sound_
Freq(), 640

DSound_Set_Sound_
Pan(), 640

DSound_Set_Sound_
Volume(), 639

DSound_Shutdown(),
636

DSound_Status_Sound(),
638-639

DSound_Stop_Sound(),
638

globals, 634-635

2672313618 Index 8/27/99 9:27 AM Page 1000

INDEX
trial-and-error pathfinding algorithms

1001

header file, 633

types, 633-634

tables

CLUTs (color lookup tables),
136

look-up tables, 678-679

string tables, 107

VTABLEs (Virtual() func-
tion Tables), 232

taking turns (multiplayer games),
683

tangents, 913

templates, 352

TerminateThread() function, 698

terminating threads, 692, 697

with messages, 698-701

TerminateThread() function,
698

testing game design, 16

text

ASCII character chart,
955-960

fonts

changing, 182

creating, 183-184

monospaced, 183

message boxes

MessageBox() function,
63-64

sample program, 59-60

sounds, 65-66

printing

DrawText() function, 137

example, 140-141

foreground/background
colors, 139-140

sample program,
141-143

TextOut() function,
137

text metrics, 204-205

TEXTMETRIC structure,
204-205

TextOut() function, 137

threads, 51, 686, 711

advantages, 687, 689

creating, 689-691

defined, 687

DirectX, 709-710

handles, closing, 691-692

multiple objects, waiting for,
707-709

multithreading, 51-53

priority, 687

sample programs, 693-696

signaling, 702-704

synchronizing, 704-707

terminating, 692, 697

with messages,
698-701

TerminateThread()
function, 698

tile-based scrolling engines

homogeneous tile engines,
489-494

sparse bitmap tile engines,
494-495

time-based modeling, 799-800,
871-873

timers

creating, 185

destroying, 186

timing, 184, 486-488

low-level, 187-190

time-based modeling,
799-800, 871-873

timers

creating, 185

destroying, 186

WM_TIMER message,
184-187

tracing object contours, 749

tracking algorithms

literal vectoring, 717-718

trajectory vectoring, 718-721

tracks, collision avoidance,
749-750

trajectory paths, 818-821

transformations, 432

matrices, 452-454

rotation

accuracy, 444

points in 2D planes,
439-441

polygons, 441-443

trigonometry, 435-439

scaling, 445-446

translation, 433-434

TranslateMessage() function, 85

Translate_Polygon2D() function,
512

translation, 433-434, 454

traversing linked lists, 651-652

trees, binary, 662-666

building, 666-668

orders, 662

searching, 668-671

trial-and-error pathfinding algo-
rithms, 748-749

2672313618 Index 8/27/99 9:27 AM Page 1001

triangles

1002 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

triangles, 459. See also
trigonometry

clipping, 464

decomposition, 470-471

drawing, 461-464

flat-bottom triangles,
467-470

flat-top triangles, 465-467

overdraw, 464

right triangles, 912, 915

triangulating quadrilaterals,
473-477

trigonometry, 435-439, 911-912

cosines, 913

identities, 438, 914-915

Pythagorean theorem, 913

sines, 913

tangents, 913

triple buffering, 268, 312

troubleshooting memory leaks,
942

truth table (neurode network),
769

tuning (fuzzifaction), 782

turn-taking (multiplayer games),
683

typecast errors, 909

types, 503-505

U

Unacquire() function, 553-554

unacquiring keyboard devices,
553-554

uncertainty logic. See fuzzy
logic

union operator, 774

Unload_Bitmap_File() function,
351-352, 519

unloading bitmaps, 351-352, 519

Unlock() function, 277, 611

unlocking

DirectDraw surfaces, 277

sound buffers, 611

unrolling loops, 677-678

unsignaled threads, 702-704

UpdateWindow() function, 77

updating windows, 77

Usenet newsgroups, 951-952

user input

keyboard, 150

ASCII codes, 151

event handling, 151-158

scan codes, 151

mouse, 158-161

utype parameter (MessageBox()
function), 63

V

ValidateRect() function, 131

variables

32-bit, 22

creating, 930-931

global, 22

naming, 56

referential, 929-930

VC++ compiler. See C/C++
compiler

vectors, 915-916

addition, 918-919

cross products, 921-923

dot products, 919-921

length, 916-917

as linear combinations, 924

lines

clipping, 411-413,
419-427

drawing, 175-177,
402-411

intersection of, calculat-
ing, 413-418

normalization, 917

polygons, 181-182

collision detection,
478-486

convex vs. concave, 427

data structures, 428-430

drawing, 430-432

filling, 458-459

functions, 511-513

local coordinates, 431

rotating, 441-443

scaling, 445-446

world coordinates, 431

position vectors, 923-924

scalar multiplication,
917-918

subtraction, 919

tracking algorithms

literal vectoring, 717-718

trajectory vectoring,
718-721

zero vectors, 923

velocity, 591, 802-803

video displays, 133-135

video modes (DirectDraw)

changing, 256-257

resolutions, 255-256

sample program, 257-258

setting, 255

2672313618 Index 8/27/99 9:27 AM Page 1002

INDEX
Windows operating system

1003

video RAM (VRAM), 134

virtual key codes, 154

VLine() function, 516

volume control, 612-613

VRAM (video RAM), 134

VTABLEs (virtual function
tables), 232

W

WaitForMultipleObjects()
function, 703-704, 707

WaitForSingleObject() function,
702-704

WAIT_ABANDONED value

WaitForMultipleObjects()
function, 704

WaitForSingleObject()
function, 703

Wait_Clock() function, 526

WAIT_OBJECT_0 value

WaitForMultipleObjects()
function, 704

WaitForSingleObject()
function, 703

WAIT_TIMEOUT value

WaitForMultipleObjects()
function, 704

WaitForSingleObject()
function, 703

WAV files, 616-617

loader, 616-622

playing

examples, 111-112

PlaySound() function,
110-111

reading, 617-622

resource files, 109

sample program, 112-114

stopping, 112

wave guide synthesis, 598-599

WAVE keyword, 109

wave table synthesis, 598

WAVEFORMATEX structure,
608-609

waveforms, 592-593

waves (sound), 590-593

amplitude, 592

frequency, 592

spectrum, 593

velocity, 591

waveforms, 592-593

waypoint pathfinding, 750-753

WA_ACTIVE flag, 144

WA_CLICKACTIVE flag, 144

WA_INACTIVE flag, 144

Web sites

Belm Design Group, 953

Blues News, 952

game programming
resources, 949-950

2D/3D engines, 950-951

book reviews, 951

download sites, 950

magazines, 952

Microsoft, 908, 951

Xtreme Games LLC, 953

Win-G, 11

WINAPI declarator, 61

windowed mode (DirectDraw),
250

windows

coordinates, 132

creating, 75-77

DirectDraw, 390-391

8-bit windowed modes,
398-399

client area, 395-397

clipping, 397-398

creating, 391-392

drawing to, 392-395

multiple, 90-92

updating, 77

Windows operating system

controls, 190

buttons, 191-194

sending messages to,
195-197

event handling, 77, 143

event model, 53-54

keyboard input, 150-158

main event loops, 84-89

mouse input, 158-161

real-time event loops,
89-90

window manipulation
messages, see messages

WinProc, 78-84

historical overview

Windows 1.0, 48

Windows 2.0, 48

Windows 3.x, 48-49

Windows 95, 49-50

Windows 98, 50

Windows NT, 50

Hungarian notation

class naming, 57

constant naming, 57

function naming, 56

parameter naming, 58

prefix codes, 55-56

2672313618 Index 8/27/99 9:27 AM Page 1003

Windows operating system

1004 TRICKS OF THE WINDOWS GAME PROGRAMMING GURUS

type naming, 57

variable naming, 56

message boxes

MessageBox() function,
63-64

sample program, 59-60

sounds, 65-66

multitasking, 51-52

multithreading, 51-53

programs, see programs, 58

scheduler, 51

windows

creating, 75-77

multiple, 90-92

updating, 77

Windows classes, 66

registering, 74

style flags, 67-68

WNDCLASS structure,
67

WNDCLASSEX struc-
ture, 67-74

WinMain() function, 45, 59

parameters

hinstance, 61

hprevinstance, 61

lpcmdline, 61

ncmdshow, 61-62

T3D Game Console, 207-210

WinProc() function

menus, 123-125

message IDs, 79-80

parameters, 79

prototype, 78

sample program, 80-84

wireframe polygons. See
polygons

WM_ACTIVATE message, 79,
144-145

WM_ACTIVATEAPP message,
144

WM_CHAR message, 151-153

WM_CLOSE message, 144-147

WM_CREATE message, 79-80

WM_DESTROY message, 79-80

WM_KEYDOWN message, 80,
153-155

WM_KEYUP message, 80, 154

WM_LBUTTONDBLCLK
message, 160

WM_LBUTTONDOWN
message, 160

WM_LBUTTONUP message,
160

WM_MBUTTONDBLCLK
message, 160

WM_MBUTTONDOWN
message, 160

WM_MBUTTONUP message,
160

WM_MOUSEMOVE message,
79, 158, 160

WM_MOVE message, 79, 144,
149-150

WM_MOVING message, 144

WM_PAINT message, 80,
128-133

WM_QUIT messages, 80

WM_RBUTTONDBLCLK
message, 160

WM_RBUTTONDOWN mes-
sage, 160

WM_RBUTTONUP message,
160

WM_SIZE message, 80, 144,
147-148

WM_SIZING message, 144

WM_TIMER message, 80,
184-187

WM_USER messages, 80

WNDCLASSEX structure

cbClsExtra field, 70

cbSize field, 67

cbWndExtra field, 70

hbrBackground field, 72

hCursor field, 71

hInstance field, 70

initializing, 74

lpCursorName field, 71

lpfnWndProc field, 68-69

lpszClassName field, 73

lpszMenuName field, 73

style field, 67-68

world coordinates, 431

Wraith (Outpost game), 880-882

Write_Error() function, 518

Write_Primary cooperation level
(DirectSound), 605

writing

pixels to screen, 293-298

to secondary buffers, 610-611

WS_BORDER value, 76

WS_CAPTION value, 76

WS_HSCROLL value, 77

WS_ICONIC value, 76

WS_MAXIMIZE value, 76

WS_MAXIMIZEBOX value, 76

WS_MINIMIZE value, 76

WS_MINIMIZEBOX value, 76

WS_OVERLAPPED value, 76

WS_OVERLAPPEDWINDOW
value, 76

2672313618 Index 8/27/99 9:27 AM Page 1004

INDEX
zero vectors

1005

WS_POPUP value, 76

WS_POPUPWINDOW value, 76

WS_SIZEBOX value, 77

WS_SYSMENU value, 76

WS_VISIBLE value, 76

WS_VSCROLL value, 77

Wu, Xialon, 411

X-Y-Z

x parameter (CreateWindowEx()
function), 75

X(8).8.8.8 bit encoding format,
300

X.5.5.5 bit encoding format, 289

Xtreme Games LLC Web site,
953

y parameter (CreateWindowEx()
function), 75

Y-Intercept form, 416

zero matrix, 449

zero vectors, 923

2672313618 Index 8/27/99 9:27 AM Page 1005

	Tricks of the Windows Game Programming Gurus
	Copyright •1999 by Sams
	Table of Contents

	Introduction
	PART I Windows Programming Foundations
	CHAPTER 1 Journey into the Abyss
	CHAPTER 2 The Windows Programming Model
	CHAPTER 3 Advanced Windows Programming
	CHAPTER 4 Windows GDI, Controls, and Last-Minute Gift Ideas

	PART II DirectX and 2D Fundamentals
	CHAPTER 5 DirectX Fundamentals and the Dreaded COM
	CHAPTER 6 First Contact: DirectDraw
	CHAPTER 7 Advanced DirectDraw and Bitmapped Graphics
	CHAPTER 8 Vector Rasterization and 2D Transformations
	CHAPTER 9 Uplinking with DirectInput and Force Feedback
	CHAPTER 10 Sounding Off with DirectSound and DirectMusic

	PART III Hardcore Game Programming
	CHAPTER 11 Algorithms, Data Structures, Memory Management, and Multithreading
	CHAPTER 12 Making Silicon Think with Artificial Intelligence
	CHAPTER 13 Playing God: Basic Physics Modeling
	CHAPTER 14 Putting It All Together: You Got Game!

	PART IV Appendixes
	APPENDIX A What's on the CD
	APPENDIX B Installing DirectX and Using the C/C++ Compiler
	APPENDIX C Math and Trigonometry Review
	APPENDIX D C++ Primer
	APPENDIX E Game Programming Resources
	APPENDIX F ASCII Tables

	INDEX

