Introduction to Design Patternsin C#

Copyright © 2002 by James W. Cooper
IBM T JWatson Research Center
February 1, 2002

Copyright © , 2002 by James W Cooper

1. What areDesign Patterns?ccccecveeeveciee s 21
Defining DeSIgN PaternsScccvieeieeienee e e 23
The Learning PrOCESS........cccuiirirene et 25
Studying DeSigN PatternsS.........cccveiiieeiieie e 26
Notes on Object-Oriented APProaches........ccooveereerenieneesiescee e 26
CH DESIQN PaterNS.....ceeieieieeeieeeeeeeter e 27
How This BOOK ISOrganizedcceovveeveeneeeseese e ee e 28

2. Syntax of the CHLanguagecccevvveeveeviiieiee et 29
Data TYPESveiieeeeeee e s 30
Converting Between Numbers and Strings.......cocveeeeeeveceeseeeseeseeneens 32
Declaring Multiple Variables...........ccoovveeiieieciececce e 32
NUMENTC CONSEANES.eeieeieiesieeie et 32
Character CONSIANTSccveveeeeieerie e nee s 33
VaADIES ... s 33

Declaring Variables as You Use Them........ccocceveieninninnencieseens 34
Multiple Equals Signs for Initialization...........cccceveveneneneneneneene 34
A SIMPIE CH PrograM.......c.ccveieeeeieesieseesreesie e seessesessseeseessessseesseens 34

Compiling & Running This Program...........cccccevveviienieeccecsee e, 36
ATTNMELIC OPEIELOS.......evieieeieeeeeeie ettt 36
Increment and Decrement OPEratorsScccvevvveereereeeieeseesie e seeneenns 37
Combining Arithmetic and Assignment Statements............ccccceveeenen. 37
Making DECISIONS IN CH......oovueeiiiienieeie e e 38
COompPariSON OPEIAIOLSccueeueeeeieieriesie sttt sbe s enens 39

Copyright © , 2002 by James W Cooper

Combining CoNAItIONSccceeiieiiceeceece e 39
The Most ComMMON MiStaKeccveiiriiiieereeee e 40
The SWItCh StaEemMENtc.ccoveveeeeeeee e e 41
CH COMMENES......coiiieieeeie e sne e sane e 41
The Ornery Ternary OPEralorcooeeeereerieneeseeiee e seesee e seeseeses 42
Looping StAEMENES IN CH.....ooveeeierieeiereeee s 42
The Whil€ LOOPc.eeeeeeiece ettt 42
The do-while StAtemMEeNt ..o 43
THE FOI LOOP ..ttt 43
Declaring Variables as Needed in FOr LOOPSccoevveeeeveenieeiieseeens 44
Commas in for LOOp StAEMENES.........ccveiieiieeiieie e 44
HOW C# DIfferS From C ..o 45
SUMIMIY ..ttt sr e e e nne e nnesaeenns 46
3. Writing Windows C# Programscccceeeeeveeveeseesesieeseeseessen e 47
ODJECES TN CH...e e a7
Managed Languages and Garbage Collection...........cccocceveevvrcnneennnns 48
Classes and NamespacesS iN CH.......ooveveerevieeseere e ee e 48
Building a C# APPlICALTIONocivieiie e 49
The Simplest Window Program in C..........cccceoeieieneneneneneseeeees 50
WiINAOWS CONIOIS ..ot 54
LADEIS ..t 55
TEXIBOX ..t 95
CRECKBOX....uveeeieiteeie et eie st ee st te e e s s e te e e sseennesneennenn 56

Copyright © , 2002 by James W Cooper

BULLONS ... e s 56
RadiO DULEONS ... 56
Listboxes and Combo BOXES.........cccccveeereereeenieseee s e 57
The 1[temS COHECHION.coiiiieiereee s 57
IMEBINUS......ceeieee e s s snne e 58

T OO TIPS, e ettt 58
Other WIindows CONIOIScoeiererenininieesesie e 59
The Windows ControlS Programcccceveveieeniecieesee e see e 59
SUMIMIY ...ttt n e 61
Programs on the CD-ROMcccceiieieiie e 47
4. Using Classesand ODbjectSin CH......cccceeveeeeviecce e 62
What DO We Use Classes FOr?......ooineeneeseeeeee e 62
A Simple Temperature Conversion Program...........ccccoeveeeneneseneene 62
Building a Temperature Class.........cccueveeeeieeieeieseese s 64
Converting to KEIVIN........ooiiieeeee e 67
Putting the Decisions into the Temperature Class.........c.ccooeverereennne. 67
Using Classes for Format and Value Conversion..........cccoceevveeeeeennnns 68
Handling Unreasonable ValUes...........cccooveeveeiiiivie s 71

A StriNg TOKENIZEN ClESS......cceeeeieierierie st 71
(=SS S-SR S @ o= £ 73
Class CONAINMENTeiirieieieie e 75
LT T2 (o] o SRR 76
Classes and Propartis.ot 77

Copyright © , 2002 by James W Cooper

Programming Styl€ in CH........occueeeeieeie e 79
SUMMIBIY ...ttt b e s e e e be e s s e e be e saneenneesnneeneens 80
Programs on the CD-ROM ... 62
5. INNEMTANCE. ... e 81
CONSITUCTONS ...ttt be e e e sne e ean e 81
Drawing and GraphiCSin CH........cccoiiiieninieeeeesese s 82
USING INNENTANCEccveeeeceeeie e 84
NAIMESPACES.eecreiecieeeciie e rtee e e sbe e sbe e sre e e nareas 85
Creating a Square From a Rectangle...........cooeieieiinineneneeeeees 86
Public, Private and Protectedccoeverenerieeieiesese e 88
(@77= 1 107=o 1 oo 1S 89
Virtual and Override KeyWOrdS..........ccoceeveeienienenie e 89
Overriding Methods in Derived Classes.........cveeeeeneneneneneseeeees 90
Replacing Methods USiNg NEWccveeeieeieciecece e 91
Overriding Windows CONtrolS.........cocoveererieneenienie e 92
1= =00 S 9
ADSITECE ClESSES ...t 95
Comparing Interfaces and Abstract Classes........cccccvvcvevieccieesee e, 97
SUMIMIY ...ttt e e n e 99
Programs on the CD-ROMcccccvieieiiee e 99
6. UML DIiaQrams........ccceiiiieiieie e ceesteeie s st eee e snne e ene e 100
INNENTTANCE.......eeieieieeeeee e ee s 102
1= =00 OSSR 103

Copyright © , 2002 by James W Cooper

(@0 10107015] (o] o S 103
N 070 = 4 o o RS TRR 105
WithClass UML Diagramscccooevenereneneeeeneeseesie s 106
CHPIOJECE FIIES.... ottt 106
7. Arrays, Filesand EXceptionSin C#cccccovervvnenenieneeneeene 107
ATTAYS. oo 107
ColleCtion ODJECES......cveieeiecee e 108
F N = Y S £ TSR 108
HaShtaDIES ..o s 109
SOMEOLISES ...t 110
(o= o]0 R 110
MUItIPIE EXCEPLIONS ...t 112
Throwing EXCEPLIONSccoueiiriirieriesie e 113
L= = o [o U 113
The File ODJECL........ooeeeee e 113
Reading TeXt File.....ooo s 114
WHHING @ TEXE FIlE...oueeieeecee e 114
Exceptions in File HaNAIiNG.........ccooveiieiece e 114
Testing for ENd of File.......cooiiieeeee e 115
A CSFIlE CIBSS....ceiieeee e 116
8. TheSimpleFactory Pattern........ccccoeveveeveese e 121
How a Simple Factory WOrKS..........ccooierineeneee e 121
SAMPIE COUR ... 122

Copyright © , 2002 by James W Cooper

The TWO Derived Classes. ... 122
Building the SImple Factory ... 123
USING the FaCIOTY......cceiieieieiesie s 124
Factory Patternsin Math Computation............cccceeeeveereeceseeseeeee 125
Programs on the CD-ROM ..o s 128
Thought QUESLIONSeeeiiieiiieie e 128
9. TheFactory Methodcccvveeiecieceesece e 129
The SWIMMEr ClaSS.......ooiiiiieee e 132
The EVENS ClaSSES......ccveierierieeieseesee ettt 132
Straight SEEAINGcceeceeeeeere e e 133
CIrcle SEEdiNGc.ccieeieceece e 134
Our Seeding Program...........coeeeneeieseeseeee e s 134
(@1 0Tc g =oi (0] == S 135
When to Use a Factory Methodcccooeeieccecce e 136
Thought QUESLION........ccuiiiiiieiee e 136
Programs on the CD-ROM ... 136
10. TheAbstract Factory Pattern........ccccoceveeceveeieeceeseese e 137
A GardenMaKer FaCtOryccecuveiieiie e 137
THEe PICTUrEBOX ...cueieeeiece et 141
Handling the RadioButton and Button Events............cccccccevveenee. 142
Adding More Classes........cccccueiieieiee e 143
Consequences of ADstract FaCtory..........oceovveerenienieeneee e 144
Thought QUESHION........ccueieeiieiiie e 144

Copyright © , 2002 by James W Cooper

Programs on the CD-ROMccccceviiiececeese e 144
11. The SIngleton Patterncocoveeienineee e 145
Creating Singleton Using a Static Method.............cccooevininencneeenne 145
EXceptions and INSLANCEScceeveeieiierieces e 146
Throwing the EXCEPLION.........cceeiiieiieeie e 147
Creating an Instance of the Class..........coverereeiererese e 147
Providing a Global Point of Accessto a Singleton...........ccccceevvveueenee. 148
Other Consequences of the Singleton Pattern...........cccccevvevcieenieenee. 149
Programs on Your CD-ROMcccoiiiiiiiinieecee e 149
12. TheBuilder Pattern.......cccoviiiienenireresese e 150
AN TNVESIMENE TTACKENcviiiieiieieeerie e 151
The StOCK FaCOrYcoiiiiiieeeeeeee e 154

The CheckChoiCe ClasS.......ccciveieriere e 155

The ListboXChOiCe ClaSS......cuoiiiiiinirieniieieeee et 156
Using the Items Collection in the ListBox Controlccccceeeeuennee. 157
PlOttiNG the Daa........coeeeeeieieiese s 158

The Final ChOICE.ccceiiieeee e 159
Consequences of the Builder Pattern...........cccocevveeveeveeiiiecieccieesies 160
Thought QUESLIONSeieiiieieeiee e 161
Programs on the CD-ROMccceviiieieeieseese e 161
13. ThePrototype PatterN......cccceveeveieceece e 162
ClONING 1N CH ..o e 163
USING the ProtOtYPe.......c.eeueeeeieie s 163

Copyright © , 2002 by James W Cooper

CloNiNG the ClasScccvieeice et 167
Using the Prototype Pattern............cccoveeienieneeneeee e 170
Dissimilar Classes with the Same Interface...........cccocvevvvcereeeenee. 172
Prototype ManNagErSccueeiiiieiiiee e 176
Consequences of the Prototype Pattern...........cccoocevveieneeinnienieeenne 176
Thought QUESHION........ccueieicieeeieie e 177
Programs on the CD-ROMccccciiieiecieseese e 177
Summary of Creational Patterns...........cccceeveevenvieevee e 178
14. The Adapter Pattern........ccooiiiiiiinieeeieee e 180
Moving Data BetWeen ListS.......ccoveveviereeie e 180
MaKing an AdaPLENccoeeieciece e e 182
USiNg the DataGridccooeeienieieeie e s 183
Detecting ROW SElECHON........ccoieiirerierieeee s 186
USING @ TIEEVIEW ..ottt s 186
The ClassS AQaPLEScceeieieeeeee e 188
TWO-Way APLENS......c.ooeieeeee e 190
Object Versus Class Adaptersin CH........ccceeeeeeveeneeceeseeseecee e 190
Pluggable Adapters........cooe e 191
Thought QUESHION........ecuiieiieeeeieie e 191
Programs on the CD-ROMccceviiieieeieseese e 191
15, TheBridgePattern........ccccoiieieeiececeece e 192
The ViISList Classes......ccoiiiiiiieeeeeeie et 195
The Class DIagram.........ccccceirinerese e 196

Copyright © , 2002 by James W Cooper

Extending the Bridgecoveeieeiece e 197
Windows FOrms aS BridgesScccuveererrineineeie e 201
Consequences of the Bridge Pattern.........c.ccoceeeveieneneseneseseeene 202
Thought QUESLION........ccueeieceeceee e 203
Programs on the CD-ROM ..o s 203
16. The Composite Pattern.......ccocoivereriiieeeee e 204
An Implementation of a COMPOSILE........c.ccereererieieereee e 205
COMPULING SAIAIMES......ccceeiiieiie e 206
The Employee Classes.........ooeiiiiieneeeeeeeeeee e 206
ThE BOSS ClaSS......ccuiiiiiiiiiicieie et 209
Building the EMpPIOYEE Tre.......cov e 210
SE-PrOMOtION. ..o e 213
Doubly LIiNKE LiSIS....cccuiiiieiiieriesie e 213
Consequences of the Composite Pattern............cccceeveveereececieesieennenn 215
A SIMPlIe COMPOSITE....cveiiiieieiiieie e 215
CompoSItES IN INET ... 216
Other Implementation ISSUEScccveveeeerecie e 216
Thought QUESLIONSccueiiiieie e e 216
Programs on the CD-ROM ... 217
17. The Decorator PatterN.......cccoeverireriieiesese e 218
Decorating a COOIBULLON............ccoviieiierieeie e 218
Handling events in @ DECOIatOrcoveieriereereeie e 220
Layout CONSIEIELIONScoouervereerienreriesierieeee e 221

Copyright © , 2002 by James W Cooper

Control Size and POSITION........ccoviiirineneniree e 221
MUItIPIE DECOIELONScveeeeeieeiee ettt 222
NONVISUl DECOIELOIS.civeeeeereerieeieseesieeiesseesieeeesseesseeeesseeseeeseesnes 225
Decorators, Adapters, and COMPOSILES.........ccceevveecieveeseeiieseese e 226
Consequences of the Decorator Pattern............cooceeveeeeneeinsieeniennene 226
Thought QUESLIONSeeeiiieiiieie e 226
Programs on the CD-ROMccccciiieiecieseese e 227

18. TheFagade Pattern........ccoiiiiiinireeee e 228
What 1S @ Dalabase?........ccovieeieeiene e 228
Getting Data Out Of Databases.........cccvevveeeereerieieereee e 230
Kinds Of DataDases.........ueeeieriinierise s 231
(@] 2 S 232
Dataase SITUCIUNEcceeeeeeeeeeerece e e 232
USING ADONET ..ottt s 233

Connecting to aDatabase...........covvreeiieiiee e 233

Reading Data from a Database Table. ... 234

dtable = dset. Tabl @S [0]] cireerrerererrierereeererereeereeeeeeeeerereeererereeeeeeens 235

EXECUtiNg @ QUENY.......ooiiiiiie ettt st e 235

Deleting the Contents of a Table..........cooovveeieeieiiieeeee 235
Adding Rows to Database Tables Using ADO.NETcccccevvvennnnee. 236
Building the Fagade Classescccevveveeiiecee e 237

Building the Price QUETY ... 239
Making the ADO.NET Fagade..........ccocereriririiieesesie e 239

Copyright © , 2002 by James W Cooper

The DBTaDIE ClESS......cceeieieieiesie e 242
Creating Classes for Each Tablec.ooooiieiiiiiee 244
Building the Price Tableccoiiiiiieeeeeeee e 246
Loading the Database TableS........ccoeveeveeieeeecece e 249
The Final APPlICALIONcoeiiieeeeesee e 251
What Constitutes the Fagade?............cccooeririnieneeee e 252
Consequences of the Fagade...........ccecvveeveece s 253
Thought QUESLION........ccueeiiieiie et 253
Programs on the CD-ROM ... 253

19. TheFlyweight Pattern.......ccccccoveeiecceseece e 254
DISCUSSION......oviiitisiisiie ettt sttt e e st st st sbenreesenneenean 255
EXaMPIE COUE......coouieieiieeieeee e 256

The Class DIagram.........cccceerineneseseseseeeeee s 261

Selecting @FOldercocveeee e 261
Handling the Mouse and Paint EVENtS...........cccooveiiveenenienceneeee 263
Flyweight USES N CH......ooeiieeeese e 264
Sharable ODJECESccueeieeeeceere e 265
CopY-0r-WIite ODJECLS......ccveeieeciiecee e 265
Thought QUESHION........ecuiieiieeeeieie e 266
Programs on the CD-ROMccceviiieieeieseese e 266

20. TheProxy PatterN.......cciieiicieceece et 267
SAMPIE COUR ... e 268
(0= 1 1 S 270

Copyright © , 2002 by James W Cooper

(@00 0)Y2T0] 0 B V1Y) (= S 271
Comparison with Related Patterns............coceveevenieneeneeie e 271
Thought QUESHION........ecuerieiieieie e 271
Programs on the CD-ROMccccoivieiececeece e 271
21. Chain of Responsibility........ccooeeiiiieiiiiineeeeee e 274
APPHCADIHTITY. ... 275
SAMPIE COUR ...t 276
The LISt BOXES....cociiiiiieeie et 280
Programming a Help System ... 282
Receiving the Help Commandccceevvievenie s 286

A ChaiN OF @TIEE? ..o 287
Kinds Of REQUESEScoiuiiieiierieeee e e 289
EXAMPIES TN CH ... 289
Conseguences of the Chain of Responsibilityc.ccccoovevviieiieenee. 290
Thought QUESLION........ccuiiiiiieiee e 290
Programs on the CD-ROM ... 291
22. TheCommand Pattern........cccvoinireniinieierese e 292
IMOLIVALTON. ...ttt e 292
Command ODJECES......c..eiuiriereeieere s 293
Building Command ODJECES..........cccceveeveeieeeeceee e 294
Consequences of the Command Pattern............cccceeveceeveececciesieennene, 297
The CommandHolder INnterfacecoovvereeienieneee e 297
Providing UNdO.........coeiiiiieieeseeseseee e 301

Copyright © , 2002 by James W Cooper

Thought QUESLIONSccueeiecieecieeie et ne s 309
Programs on the CD-ROMcccoiiiiiienineeseeie e s 310
23. Thelnterpreter Pattern......cininicieneese e 311
IMOTIVELION. ...ttt et s 311
APPHCADIHITY.....eeeeeie e 311
A Simple Report EXampleccooeiiinirieeeeee e 312
Interpreting the LangUagEcovevvreereeee s e esie e 314
Objects Used IN ParsiNg.......cccocceeieeiieeiie e ses e s 315
Reducing the Parsed Stack ... 319
Implementing the Interpreter Pattern...........cocevveeeveevecce e 321
The SYNEAX TrEE...c.eiceecece e s 322
Consequences of the Interpreter Pattern...........cocevveeeneeieneeneeeene 326
Thought QUESHION........couiieiiieiiierie s 327
Programs on the CD-ROMccccvevieieeieceeseee e 327
24, Thelterator PatterN.......cccoiiiiiinieiiee e 328
1Y Ko LY Z= (o] o T 328
Sample [terator COAEccveveerieriereee e 329
Fetching an [teratoroocvve e 330
FIltered ITEralorS.ooe e e 331
The Filtered ITeratorcooeeriiesesese e 331
Keeping Track of the Clubs...........cccovieieciecece e 334
Consequences of the Iterator Pattern...........ccoeeveeienieneeie e 335
Programs on the CD-ROM ... 336

Copyright © , 2002 by James W Cooper

25. TheMediator PatterN.......cocviieieninenieeeseese e 337
AN EXample SYStem........ooieeieeeeeee s 337
Interactions Between CONLIolS..........cccvevvreeveereeeeseese e seeseesee e 339
SAMPIE COUE ..ot 341

Initialization of the System ... 345
Mediators and Command ODJECES.........c.cevererieieneree e 345
Consequences of the Mediator Pattern.............cccoceevveceeneevesieesieennene, 347
Single Interface Mediators..........cooveviviiie e 348
IMPleMENtation [SSUES...........eoireeieierierie st 349
Programs on the CD-ROMccccciiieiecieseese e 349

26. TheMemento PatterN.......ccccoiiiinineniinie s 350
1Y KoL AV 7= (o] IO 350
IMPIEMENTALION ... 351
SAMPIE COUE ..ot 351

A CaUtioNary NOLEcocueiiiieeiece e s 358
Command Objects in the User Interface.........cccceeevvvenenenencneeene 358
Handling Mouse and Paint EVENtS...........cccccveveece e 360
Consequences of the Mementoccceieeiiieniee e 361
Thought QUESHION........ecuiieiieeeeieie e 361
Programs on the CD-ROMccceviiieieeieseese e 362

27. TheObserver PatterN ... 363
Watching Colors Changecooeieneeneneneee e 364
The Message to the Media.........ooeveiivenineeeeeee e 367

Copyright © , 2002 by James W Cooper

Consequences of the Observer Pattern............cccocoeeveveeeveece e sieenenn, 368
Programs on the CD-ROMcccoiiiiiieniineeseeie e 369
28, TheState PatterNcieereeieseere e 370
SAMPIE COUE ..ot 370
Switching BEtWEen SEALeS........cccvvieieeieceeeee e e 376
How the Mediator Interacts with the State Managerccocceeveene. 377
The ComdTo0oIBarBULION..........cccceierirenirieeeee e 378
Handling the Fill SEaecccoeveeiieiieee e 381
Handling the UNdo LiSt........ccoooiiiniiininieeeeee e 382
The VisRectangle and VisCircle Classes........cccoeereerevieeseesieseenens 385
Mediators and the GOd ClIaSS.........coueverireniinieeese e 387
Consequences of the State Pattern..........cccocceveeveeveneenense e 388
StAe TraNSIHiONS.eceeieeeieeeese et sre e e 388
Thought QUESLIONSccueeieieecieeiecee e nne s 389
Programs on the CD-ROMcccoiiiiininieneereeie e 389
29. TheStrategy PatterN. ... 390
IMOTIVELTION. ...ttt 390
SAMPIE COUR ...t 391
THE CONLEXL.......coveeieeeeeieee et nre s 392
The Program Commandsccceeveereerienieeseeseseesieesee e sseesaesseensens 393
The Line and Bar Graph Strategi€s.........cccoveveeveeeeieeie e 394
Drawing PlOLS TN CH.....ooueeieeeeieseee e 394
MaKiNg Bar PIOLSccooiiieiiierie s 395

Copyright © , 2002 by James W Cooper

MaKing LinE PlOLS........coeeieceeceee e 396
Consequences of the Strategy Pattern..........cccoccoveeieneneeienieeseeene 398
Programs on the CD-ROM ... 398

30. TheTemplate Method Patterncccocceveevveceiecceccee e, 399
1Y KoL AV 7= (o] IO 399
Kinds of Methods in a Template Class.........cccceveieienenenineneeees 401
SAMPIE COUR ...t 402

Drawing a Standard Trianglecccoveieeiieciee e 404

Drawing an 1S0SceleS TrHangleccvverereeieeieee e 404
The Triangle Drawing Program...........cccceeeereeresseeseesesseessessseseeseens 405
Templates and Callbacksccoveeeiieiiiiesececeee e 406
Summary and CONSEGUENCEScceereerrierreerieeeesieeseeseesseeseeseeseeeeens 407
Programs on the CD-ROM ... 408

31, TheVisStor Pattern ... 409
1Y Ko AV Z= (o] IO 409
When to Use the VISitor Pattern..........cocvevererieierenc e 411
SAMPIE COUR ...t 411
ViSiting the Classes.c.uvccieiie e 413
Visiting Several Classes.........cooeieiinirenieeeeeee e 414
Bosses Are EMPIOYEES, TOOc.eevvveierieriecieceese e 416
Catch-All Operations With VISItOrS........ccccceeveevecieceeceee e 417
Double DIiSPatChiNg.........cooerrieriereeiesie e 419
Why Are We DoiNg ThiS? ..o 419

Copyright © , 2002 by James W Cooper

Traversing a SerieS of ClasseSocvvvveieieeseece e 419
Consequences of the Visitor Pattern...........ccococeevenienenenie e 420
Thought QUESHION........ecuerieiieieie e 420
Programs on the CD-ROMccccoivieiececeece e 421
32. Bibliography ..o 422

Copyright © , 2002 by James W Cooper

19

Preface

Thisis apractical book that tells you how to write C# programs using
some of the most common design patterns. It aso serves as a quick
introduction to programming in the new C# language. The pattern
discussions are structured as a series of short chapters, each describing a
design pattern and giving one or more complete working, visual example
programs that use that pattern. Each chapter also includes UML diagrams
illustrating how the classes interact.

This book is not a"companion” book to the well-known Design Patterns
text. by the "Gang of Four." Instead, it is atutorial for people who want to
learn what design patterns are about and how to use them in their work.

Y ou do not have to have read Design Patterns to read this book, but when
you are done here you may well want to read or reread it to gain additional
insights.

In this book, you will learn that design patterns are frequently used ways
of organizing objects in your programs to make them easier to write and

modify. You'll also see that by familiarizing yourself with them, you've
gained some valuable vocabulary for discussing how your programs are

constructed.

People come to appreciate design patterns in different ways—from the
highly theoretical to the intensely practica—and when they finally see the
great power of these patterns, an “Ahal” moment occurs. Usuadly this
moment means that you suddenly have an internal picture of how that
pattern can help you in your work.

In this book, we try to help you form that conceptual idea, or gestalt, by
describing the pattern in as many ways as possible. The book is organized
into six main sections: an introductory description, an introduction to C#,
and descriptions of patterns, grouped as creational, structural, and
behavioral.

Copyright © , 2002 by James W Cooper

20

For each pattern, we start with a brief verbal description and then build
simple example programs. Each of these examplesis avisua program that
you can run and examine to make the pattern as concrete a concept as
possible. All of the example programs and their variations are on the
companion CD-ROM, where you run them, change them, and see how the
variations you create work.

Since each of the examples consists of a number of C# files for each of the
classes we use in that example, we provide a C# project file for each
example and place each example in a separate subdirectory to prevent any
confusion. This book is based on the Beta-2 release of Visua Studio.Net.
Any changes between this version and the final product will probably not
be great. Consult the AddisonWesley website for updates to any example
code.

If you leaf through the book, you'll see screen shots of the programs we
developed to illustrate the design patterns, providing yet another way to
reinforce your learning of these patterns. In addition, you’ Il see UML
diagrams of these programs, illustrating the interactions between classesin
yet another way. UML diagrams are just simple box and arrow
illustrations of classes and their inheritance structure, where arrows point
to parent classes, and dotted arrows point to interfaces. And if you're not
yet familiar with UML, we provide a simple introduction in the second
chapter.

When you finish this book, you'll be comfortable with the basics of design
patterns and will be able to start using them in your day-to-day C#
programming work.

James W. Cooper
Nantucket, MA
Wilton, CT
Kona, HI

Copyright © , 2002 by James W Cooper

21

1. What are Design Patterns?

Sitting at your desk in front of your workstation, you stare into space,
trying to figure out how to write a new program feature. Y ou know
intuitively what must be done, what data and what objects come into play,
but you have this underlying feeling that there is a more elegant and
genera way to write this program.

In fact, you probably don’t write any code until you can build a picturein
your mind of what the code does and how the pieces of the code interact.
The more that you can picture this “organic whole,” or gestalt, the more
likely you are to fed comfortable that you have developed the best
solution to the problem. If you don’t grasp this whole right away, you may
keep staring out the window for atime, even though the basic solution to
the problem is quite obvious.

In one sense you fed that the more elegant solution will be more reusable
and more maintainable, but even if you are the sole likely programmer,
you feel reassured once you have designed a solution that is relatively
elegant and that doesn’t expose too many internal inelegancies.

One of the main reasons that computer science researchers began to
recognize design patterns is to satisfy this need for elegant, but simple,
reusable solutions. The term “design patterns’” sounds a bit formal to the
uninitiated and can be somewhat offputting when you first encounter it.
But, in fact, design patterns are just convenient ways of reusing object-
oriented code between projects and between programmers. The idea
behind design patterns is simple—write down and catalog common
interactions between objects that programmers have frequently found
useful.

One of the frequently cited patterns from early literature on programming
frameworks is the Model-View-Controller framework for Smalltalk
(Krasner and Pope 1988), which divided the user interface problem into
three parts, as shown in Figure 1-1. The parts were referred to as a data

Copyright © , 2002 by James W Cooper

model, which contains the computational parts of the program; the view,
which presented the user interface; and the controller, which interacted
between the user and the view.

Controller View

Data Model

Figure1-1 - The Mode -View-Controller framework

Each of these aspects of the problem is a separate object, and each has its
own rules for managing its data. Communication among the user, the GUI,
and the data should be carefully controlled, and this separation of
functions accomplished that very nicely. Three objects talking to each
other using this restrained set of connectionsis an example of a powerful
design pattern.

In other words, design patterns describe how objects communicate without
become entangled in each other’ s data models and methods. Keeping this
separation has always been an objective of good OO programming, and if
you have been trying to keep objects minding their own business, you are
probably using some of the common design patterns already.

Design patterns began to be recognized more formally in the early 1990s
by Erich Gamma (1992), who described patterns incorporated in the GUI
application framework, ET++. The culmination of these discussions and a
number of technical meetings was the publication of the parent book in
this series, Design Patterns—Elements of Reusable Software, by Gamma,
Helm, Johnson, and Vlissides (1995). This book, commonly referred to as
the Gang of Four, or “GoF,” book, has had a powerful impact on those
seeking to understand how to use design patterns and has become an all-

Copyright © , 2002 by James W Cooper

23

time bestseller. It describes 23 commonly occurring and generally useful
patterns and comments on how and when you might apply them. We will
refer to this groundbreaking book as Design Patterns throughout this
book.

Since the publication of the original Design Patterns text, there have been
anumber of other useful books published. One closely related book is The
Design Patterns Smalltalk Companion (Alpert, Brown, and Woolf 1998),
which covers the same 23 patterns from the Smalltalk point of view. We'll
refer to this book throughout as the Smalltalk Companion. Finaly, we
recently published Java Design Patterns. a Tutorial, and Visual Basic
Design Patterns, which illustrate al of these patterns in those languages.

Defining Design Patterns

We all talk about the way we do things in our jobs, hobbies, and home life,
and we recognize repeating patterns all the time.

Sticky buns are like dinner rolls, but | add brown sugar and nut filling
to them.

Her front garden is like mine, but | grow astilbe in my garden.

This end table is constructed like that one, but in this one, there are
doors instead of drawers.

We see the same thing in programming when we tell a colleague how we
accomplished atricky bit of programming so he doesn’t have to recreate it
from scratch. We simply recognize effective ways for objects to
communicate while maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the literature
in this field has expanded.

“Design patterns are recurring solutions to design problems you see
over and over.” (The Smalltalk Companion)

Copyright © , 2002 by James W Cooper

24

“Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree 1994)

“Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design and
implementation.” (Coplien and Schmidt 1995)

“A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it.” (Buschmannet al.
1996)

“Patterns identify and specify abstractions that are above the level of
single classes and instances, or of components.” (Gammaet al., 1993)

But while it is helpful to draw analogies to architecture, cabinet making,
and logic, design patterns are not just about the design of objects but about
the interaction between objects. One possible view of some of these
patternsis to consider them as communication patterns.

Some other patterns deal not just with object communication but with
strategies for object inheritance and containment. It is the design of
simple, but elegant, methods of interaction that makes many design
patterns so important.

Design patterns can exist at many levels from very low-level specific
solutions to broadly generalized system issues. There are now hundreds of
patterns in the literature. They have been discussed in articles and at
conferences of al levels of granularity. Some are examples that apply
widely, and a few writers have ascribed pattern behavior to class
groupings that apply to just a single problem (Kurata 1998).

It has become apparent that you don’t just write a design pattern off the
top of your head. In fact, most such patterns are discovered rather than
written. The process of looking for these patternsis called “pattern
mining,” and it is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design
Patter ns book were those that had several known applications and that

Copyright © , 2002 by James W Cooper

25

were on amiddle level of generality, where they could easily cross
application areas and encompass several objects.

The authors divided these patterns into three types: creational, structural,
and behavioral.

Creational patterns create objects for you rather than having you
instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

Structural patterns help you compose groups of objects into larger
structures, such as complex user interfaces or accounting data.

Behavioral patterns help you define the communication between
objects in your system and how the flow is controlled in a complex
program.
We'll be looking at C# versions of these patterns in the chapters that
follow, and we will provide at least one complete C# program for each of
the 23 patterns. This way you can examine the code snippets we provide
and also run, edit, and modify the complete working programs on the

accompanying CD-ROM. You'll find alist of al the programs on the CD-
ROM at the end of each pattern description.

The Learning Process

We have found that regardless of the language, learning design patternsis
a multiple-step process.

1. Acceptance
2. Recognition
3. Internalization

First, you accept the premise that design patterns are important in your
work. Then, you recognize that you need to read about design patternsin
order to know when you might use them. Finally, you internalize the

Copyright © , 2002 by James W Cooper

26

patterns in sufficient detail that you know which ones might help you
solve a given design problem.

For some lucky people, design patterns are obvious tools, and these people
can grasp their essential utility just by reading summaries of the patterns.
For many of the rest of us, there is a slow induction period after we've
read about a pattern followed by the proverbia “Ahal” when we see how
we can apply them in our work. This book helps to take you to that final
stage of internalization by providing complete, working programs that you
can try out for yoursalf.

The examples in Design Patterns are brief and are in C++ or, in some
cases, Smalltalk. If you are working in another language, it is helpful to
have the pattern examples in your language of choice. This book attempts
to fill that need for C# programmers.

Studying Design Patterns

There are several aternate ways to become familiar with these patterns. In
each approach, you should read this book and the parent Design Patterns
book in one order or the other. We also strongly urge you to read the
Smalltalk Companion for completeness, since it provides aternative
descriptions of each of the patterns. Finally, there are a number of Web
sites on learning and discussing design patterns for you to peruse.

Notes on Object-Oriented Approaches

The fundamental reason for using design patterns is to keep classes
separated and prevent them from having to know too much about one
another. Equally important, using these patterns helps you avoid
reinventing the wheel and allows you to describe your programming
approach succinctly in terms other programmers can easily understand.

There are anumber of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly all
languages that have OO capabilities support inheritance. A class that
inherits from a parent class has access to al of the methods of that parent

Copyright © , 2002 by James W Cooper

27

class. It al'so has access to all of its nonprivate variables. However, by
starting your inheritance hierarchy with a complete, working class, you
may be unduly restricting yourself as well as carrying along specific
method implementation baggage. Instead, Design Patterns suggests that
you aways

Programto an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class
hierarchy with an abstract class or an interface, which implements no
methods but simply defines the methods that class will support. Then in all
of your derived classes you have more freedom to implement these
methods as most suits your purposes. And since C#6 only supports
interfaces and does not support inheritance, this is obviously very good
advice in the C# context.

The other major concept you should recognize is that of object
composition. Thisis simply the construction of objects that contain others:
encapsulation of several objects inside another one. While many beginning
OO programmers use inheritance to solve every problem, as you begin to
write more elaborate programs, you will begin to appreciate the merits of
object composition.Y our new object can have the interface that is best for
what you want to accomplish without having all the methods of the parent
classes. Thus, the second major precept suggested by Design Patterns is

Favor object composition over inheritance.

C# Design Patterns

Each of the 23 patternsin Design Patterns is discussed, at least one
working program example for that pattern is supplied. All of the programs
have some sort of visua interface to make them that much more
immediate to you. All of them also use class, interfaces, and object
composition, but the programs themselves are of necessity quite smple so
that the coding doesn’t obscure the fundamental elegance of the patterns
we are describing.

Copyright © , 2002 by James W Cooper

28

However, even though C# is our target language, thisisn't specificaly a
book on the C# language. There are lots of features in C# that we don'’t
cover, but we do cover most of what is central to C#. Y ou will find,
however, that thisis afairly useful tutorial in object-oriented
programming in C# and provides good overview of how to programin
C#NET.

How ThisBook |s Organized

We take up each of the 23 patterns, grouped into the general categories of
creational, structural, and behaviora patterns. Many of the patterns stand
more or less independently, but we do take advantage of already discussed
patterns from time to time. For example, we use the Factory and
Command patterns extensively after introducing them, and we use the
Mediator pattern several times after we introduce it. We use the Memento
again in the State pattern, the Chain of Responsibility in the Interpreter
pattern discussion, and the Singleton pattern in the Flyweight pattern
discussion. In no case do we use a pattern before we have introduced it
formally.

We also take some advantage of the sophistication of later patternsto
introduce new features of C#. For example, the Listbox, DataGrid, and
TreeView are introduced in the Adapter and Bridge patterns. We show
how to paint graphics objects in the Abstract Factory, We introduce the
Enumeration interface in the Iterator and in the Composite, where we also
take up formatting. We use exceptions in the Singleton pattern and discuss
ADO.NET database connections in the Fagade pattern. And we show how
to use C# timers in the Proxy pattern.

The overall .NET system is designed for fairly elaborate web-based client-
server interactions. However, in this book, concentrate on object-oriented
programming issues in genera rather than how to write Web-based
systems. We cover the core issues of C# programming and show simple
examples of how Design Patterns can help write better programs.

Copyright © , 2002 by James W Cooper

29

2. Syntax of the C# Language

C# has dl the features of any powerful, modern language. If you are
familiar with Java, C or C++, you'll find most of C# s syntax very
familiar. If you have been working in Visual Basic or related areas, you
should read this chapter to see how C# differs from VB. You'll quickly
see that every major operation you can carry out in Visual Basic.NET has
asimilar operation in C#.

The two mgjor differences between C# and Visua Basic are that C# is
case sensitive (most of its syntax is written in lowercase) and that every

statement in C# is terminated with a semicolon (;). Thus C# statements are
not constrained to a single line and there is no line continuation character.

In Visual Basic, we could write:

y =m* x +b ‘conpute y for given x

or we could write:

Y=M* X+ b ‘conpute y for given x

and both would be treated as the same. The variables Y, M, and X are the
same whether written in upper- or lowercase. In C#, however, caseis
significant, and if we write:

y =m* x + b; /lall |owercase
or.
Y=m* x + b; /1Y differs fromy

we mean two different variables: Y andy. While this may seem awkward
at first, having the ability to use case to make distinctions is sometimes
very useful. For example, programmers often capitalize symbolsreferring
to constants:

Const PI = 3.1416 As Single ‘in VB
const float Pl = 3.1416; /] in C#

Copyright © , 2002 by James W Cooper

The const modifier in C# means that the named value is a constant and
cannot be modified.

Programmers a so sometimes define data types using mixed case and
variables of that data type in lowercase:

class Tenperature { //begin definition of
/I new data type
Tenperature tenp; //tenp is of this new type

WEe'll classes in much more detail in the chapters that follow.

Data Types
The mgjor data types in C# are shown in Table 2-1.
Table2-1 - Datatypesin C#

bool true or false

byte unsigned 8-bit value
short 16-bit integer

int 32-hit integer

long 64-bit integer

float 32-hit floating point
double 64-bit floating point
char 16-bit character
string 16-bit characters

Note that the lengths of these basic types are irrespective of the computer
type or operating system. Characters and strings in C# are always 16 bits
wide: to allow for representation of characters in non-Latin languages. It
uses a character coding system called Unicode, in which thousands of
characters for most major written languages have been defined. Y ou can
convert between variable types in the usual simple ways.

Copyright © , 2002 by James W Cooper

31

Any wider data type can have a narrower data type (having fewer
bytes) assigned directly to it, and the promotion to the new type will
occur automatically. If y is of type float and | is of type int, then you

can write:
float y = 7.0f; /1y is of type float
int j; /1] is of type int
y =j; //convert int to float

to promote an integer to afloat.

Y ou can reduce awider type (more bytes) to a narrower type by
casting it. You do this by putting the data type name in parentheses
and putting it in front of the value you wish to convert:

j = (int)y; /lconvert float to integer
Y ou can also write legal statements that contain casts that might fail, such
as

fl oat x
int k =

= 1. OE45;
(int) x;

If the cast fails, an exception error will occur when the program is
executed.

Boolean variables can only take on the values represented by the reserved
words true and false. Boolean variables also commonly receive values as a
result of comparisons and other logical operations:

int k;
bool ean gt num

gtnum = (k > 6); /ltrue if k is greater than 6

Unlike C or C++, you cannot assign numeric values to a boolean variable
and you cannot convert between boolean and any other type.

Copyright © , 2002 by James W Cooper

32

Converting Between Numbersand Strings

To make a string from a number or a number from a string, you can use
the Convert methods. Y ou can usually find the right one by simply typing
Convert and a dot in the development enviroment, and the system will
provide you with a list of likely methods.

string s = Convert.ToString (x);

float y = Convert. ToSingle (s);

Note that “ Single” means a single-precision floating point number.
Numeric objects also provide various kinds of formatting options to
specify the number of decimal places:

float x = 12.341514325f;

string s =x.ToString ("###. ###"); /1 gives 12.342

Declaring Multiple Variables

Y ou should note that in C#, you can declare a number of variables of the
same type in a single statement:

int i, j;

float x, vy, z;

Thisisunlike VB6, where you had to specify the type of each variable as
you declare it:

Dmi As Integer, j As |nteger
Dmx As Single, y As Single, z As Single
Numeric Constants

Any number you type into your program is automatically of typeint if it
has no fractional part or type double if it does. If you want to indicate that
it isadifferent type, you can use various suffix and prefix characters:

float |oan = 1.23f; /1fl oat
long pig = 45L; /11 ong
int color = 0x12345; / / hexadeci nal

Copyright © , 2002 by James W Cooper

C# also has three reserved word constants: true, false, and null, where null
means an object variable that does not yet refer to any object. We' Il learn
more about objects in the following chapters

Character Constants

Y ou can represent individual characters by enclosing them in single
quotes:

char ¢ = 'q’;

C# follows the C convention that the white space characters (non printing
characters that cause the printing position to change) can be represented
by preceding specia characters with a backslash, as shown in Table 2-2.
Since the backdlash itself is thus a specia character, it can be represented
by using a double backslash

“\n” newline (line feed)
“\r’ carriagereturn
‘“\t’ tabcharacter

‘“\b* backspace

“\f’ form feed

‘\0* null character

“\”’ double quote

“\'’ single quote

“\\" backslash

Table 2-2 Representations of white space and special characters.

Variables

Variable names in C# can be of any length and can be of any combination
of upper- and lowercase letters and numbers, but like VB, the first
character must be a letter. Note that since case is significant in C#, the
following variable names all refer to different variables:

tenperature

Copyright © , 2002 by James W Cooper

Tenper at ure
TEMPERATURE

You must declare all C# variables that you use in a program before you
use them:

int j;

float tenperature

bool ean quit;

Declaring Variables as You Use Them

C# aso alows you to declare variables just as you need them rather than
requiring that they be declared at the top of a procedure:

int k =5;
float x =k + 3 * vy;

Thisis very common in the object-oriented programming style, where we
might declare a variable inside a loop that has no existence or scope
outside that local spot in the program.

Multiple Equals Signsfor Initialization
C#, like C, allows you to initialize a series of variables to the same vaue
in asingle statement
i =) =k =0;
This can be confusing, so don't overuse this feature. The compiler will
generate the same code for:

i =0, j =0, k=0
whether the statements are on the same or successive lines.

A Simple C# Program

Now let’s look at a very smple C# program for adding two numbers
together. This program is a stand-alone program, or application.

using System
cl ass add2

{

Copyright © , 2002 by James W Cooper

static void Main(string[] args)

{
double a, b, c; [//declare variables
a = 1.75; // assi gn val ues
b = 3. 46;
c = a+ b /1 add toget her
/[/print out sum
Console.WiteLine ("sum=" + c);

}

}

This is a complete program as it stands, and if you compile it with the C#
compiler and run it, it will print out the result:

sum = 5.21

Let’s see what observations we can make about this smple program: This
isthe way | want it.

1. You must use the using statement to define libraries of C# code
that you want to use in your program. This is similar to the imports
statement in VB, and similar to the C and C++ #include directive.

2. The program starts from a function called main and it must have
exactly the form shown here:
static void Main(string[] args)

3. Every program module must contain one or more classes.

4. The class and each function within the class is surrounded by
braces{ }.

5. Every variable must be declared by type before or by thetimeit is
used. You could just as well have written:

double a = 1.75;
double b = 3. 46;
double ¢c = a + b

Copyright © , 2002 by James W Cooper

36

6. Every statement must terminate with a semicolon. Statements can
go on for severa lines but they must terminate with the semicolon.

7. Comments start with // and terminate at the end of the line.

8. Like most other languages (except Pascal), the equals sign is used
to represent assignment of data.

9. You can use the + sign to combine two strings. The string *“sum ="
is concatenated with the string automatically converted from the
double precision variable c.

10. The writeLine function, which is a member of the Console classin
the System namespace, can be used to print values on the screen.

Compiling & Running This Program
Thissmple program is called add2.cs. Y ou can compile and execute it by
in the devel opment enviroment by just pressing F5.

Arithmetic Operators

The fundamental operators in C# are much the same as they are in most
other modern languages. Table 2-3 lists the fundamental operatorsin C#

+ addition

- subtraction, unary minus
* multiplication

/ division

% modulo (remainder after integer division)
Table2-3: C# arithmetic operators
The bitwise and logical operators are derived from C rather (see Table
2-4). Bitwise operators operate on individual bits of two words, producing
aresult based on an AND, OR or NOT operation. These are distinct from
the Boolean operators, because they operate on alogica condition which
evaluatesto true or false.

Copyright © , 2002 by James W Cooper

& bitwise And

| bitwise Or

A bitwise exclusive Or
~ one’' s complement
>>n right shift n places
<<n left shift n places

Table 2-4 Logical Operatorsin C#

I ncrement and Decrement Operators
Like Javaand C/C++ , C# alows you to express incrementing and
decrementing of integer variables using the ++and -- operators. You can
apply these to the variable before or after you use it:

i = 5;

j = 10;

X = i++; /Ix =5, theni =6
y = --j; /ly =9 and j =9
Z = ++i; /Ilz =7 and i =7

Combining Arithmetic and Assignment Statements

C# allows you to combine addition, subtraction, multiplication, and
division with the assignment of the result to a new variable:

X =X + 3; //can al so be witten as:
X += 3; //add 3 to x; store result in x

/lalso with the other basic operations:

temp *= 1. 80; //mult tenp by 1.80
z -=T; //subtract 7 fromz
y I=1.3; //divide y by 1.3

Thisis used primarily to save typing; it is unlikely to generate any
different code. Of course, these compound operators (as well asthe ++
and — operators) cannot have spaces between them.

Copyright © , 2002 by James W Cooper

38

Making Decisionsin C#

The familiar if-then-else of Visual Basic, Pascal and Fortran has its analog
in C#. Note that in C#, however, we do not use the then keyword:
if (y>0)

z =x1 vy,
Parentheses around the condition are required in C#. This format can be
somewhat deceptive; as written, only the single statement following the if
is operated on by the if statement. If you want to have several statements
as part of the condition, you must enclose them in braces:

if (y>0)
z =x1vy;
Console.witeLine(“z = + z)
}
By contragt, if you write:
if (y>0)
z =x1 vy,
Console.witeLine(“z = “ + z);

the C# program will always print out z= and some number, because the if
clause only operates on the single statement that follows. Asyou can see,
indenting does not affect the program; it does what you say, not what you
mean.

If you want to carry out either one set of statements or another depending
on a single condition, you should use the else clause aong with the if
statement:
if (y>0)

z =x1vy;

el se
z = 0;

and if the ese clause contains multiple statements, they must be enclosed
in braces, as in the code above.

Copyright © , 2002 by James W Cooper

39

There are two or more accepted indentation styles for bracesin C#
programs.

if (y >0)
{

z =x1vy;
}
The other style, popular anong C programmers, places the brace at the
end of the if statement and the ending brace directly under the if:
if (y>0) {
z =x1 vy,
Consol e.writeLine(“z=" + z);

}
Y ou will see both styles widely used, and of course, they compile to

produce the same resullt.

Comparison Operators

Above, we used the > operator to mean “ greater than.” Most of these
operators are the same in C# as they are in C and other languages. In Table
2-5, note particularly that “is equal to” requires two equal signs and that
“not equal” is different than in FORTRAN or VB.

> greater than

< less than

== isequa to

I = is not equal to

>= greater than or equal to
<= less than or equal to

Table 2-5: Comparison Operatorsin C#

Combining Conditions

When you need to combine two or more conditions in asingle if or other
logica statement, you use the symbols for the logical and, or, and not
operators (see Table 3-6). These are totally different than any other

Copyright © , 2002 by James W Cooper

languages except C/C++ and are confusingly like the bitwise operators
shown in Table 2-6.

&& logical And
| | logical Or
~ logical Not

Table 2-6 Boolean operatorsin C#

So, while in VB.Net we would write:
If (0 <x) Ad (x <= 24) Then

Console.witeLine (“Time is up”)
in C# we would write:

if ((0 <x) & (x <= 24))
Console.witeLine(“Tinme is up”);

TheMost Common Mistake

Since the is equal to operator is== and the assignment operator is= they
can easily be misused. If you write
if (x =0)

Console.witeLine(“x is zero");

instead of:

if (x == 0)

Console.writeLine(“x is zero");
you will get the confusing compilation error, “ Cannot implcitly convert
double to bool,” because the result of the fragment:

(x = 0)
is the double precision number O, rather than a Boolean true or false. Of
course, the result of the fragment:

(x == 0)
is indeed a Boolean quantity and the compiler does not print any error

message.

Copyright © , 2002 by James W Cooper

Vil

The switch Statement

The switch statement allows you to provide alist of possible values for a
variable and code to execute if each istrue. In C#, however, the variable
you compare in a switch statement must be either an integer or a character
type and must be enclosed in parentheses:
switch (j) {
case 12:
System out . printl n(“Noon”);
br eak;
case 13:
Systemout.println(“1l PM);
br eak;
defaul t:
Systemout.println(“some other tinme...");
}

Note particularly that a break statement must follow each case in the
switch statement. This is very important, as it says “go to the end of the
switch statement.” If you leave out the break statement, the code in the
next case statement is executed as well.

C# Comments

Asyou have already seen, comments in C# start with a double forward
slash and continue to the end of the current line. C# also recognizes C-
style comments which begin with /* and continue through any number of
lines until the */ symbols are found.

/1 C# single-line coment

/*other C# coment style*/

/* also can go on
for any nunber of |ines*/

Y ou can’'t nest C# comments; once a comment begins in one style it
continues until that style concludes.

Your initia reaction as you are learning a new language may be to ignore
comments, but they are just as important at the outset as they are later. A
program never gets commented at all unless you do it as you write it, and

Copyright © , 2002 by James W Cooper

42

if you ever want to use that code again, you'll find it very helpful to have
some comments to help you in deciphering what you meant for it to do.
For this reason, many programming instructors refuse to accept programs
that are not thoroughly commented.

The Ornery Ternary Operator

C# has unfortunately inherited one of C/C++ and Java's most opague
constructions, the ternary operator. The statement:

if (a>hb)
zZ = a;
el se
z = b;

can be written extremely compactly as:

z=(a>bh) ?a: b

The reason for the original introduction of this statement into the C
language was, like the post- increment operators, to give hints to the
compiler to allow it to produce more efficient code, and to reduce typing
when terminals were very slow. Today, modern compilers produce
identical code for both forms given above, and the necessity for this
turgidity is long gone. Some C programmers coming to C# find this an
“elegant” abbreviation, but we don’t agree and will not be using it in this
book.

L ooping Statementsin C#

C# has four looping statements: while, do-while, for and foreach. Each of
them provides ways for you to specify that a group of statements should
be executed until some condition is satisfied.

Thewhile Loop

The while loop is easy to understand. All of the statements inside the
braces are executed repeated as long as the condition is true.

i =0;
while (i < 100)

Copyright © , 2002 by James W Cooper

{

X = X + i++
}
Since the loop is executed as long as the condition is true, it is possible

that such aloop may never be executed at all, and of course, if you are not
careful, that such a while loop will never be completed.

The do-while Statement

The C# do-while statement is quite analogous, except that in this case the
loop must always be executed at least once, since the test is at the bottom

of the loop:
i =0;
do {

X += i ++

}
while (i < 100);

Thefor Loop

The for loop is the most structured. It has three parts: an initializer, a
condition, and an operation that takes place each time through the loop.
Each of these sections are separated by semicolons:
for (i = 0; i< 100; i++) {
X += i
}
Let’stake this statement apart:

for (i = 0; /linitialize i to O
i <100 ; //continue as long as i < 100
i ++) /lincrement i after every pass

In the loop above, i starts the first pass through the loop set to zero. A test
is made to make sure that i is less than 100 and then the loop is executed.
After the execution of the loop, the program returns to the top, increments
i and again teststo seeif it isless than 100. If it is, the loop is again
executed.

Copyright © , 2002 by James W Cooper

44

Note that this for loop carries out exactly the same operations as the while
loop illustrated above. It may never be executed and it is possible to write
afor loop that never exits.

Declaring Variables as Needed in For L oops

One very common place to declare variables on the spot is when you need
an iterator variable for afor loop. You can simply declare that variable
right in the for statement, as follows:

for (int i =0; i < 100; i++)

Such aloop variable exists or has scope only within the loop. It vanishes
once the loop is complete. This isimportant because any attempt to
reference such a variable once the loop is complete will lead to a compiler
error message. The following code is incorrect:
for (int i =0; i< 5; i++) {

x[i] =1i;
}

//the following statenent is in error
//because i is now out of scope
Systemout.printIn(“i=" +1i);

Commasin for Loop Statements

Y ou can initialize more than one variable in the initializer section of the
C# for statement, and you can carry out more than one operation in the
operation section of the statement. Y ou separate these statements with

commeas:
for (x=0, y= 0, i =0; i < 100; i++, y +=2)

{

X =i +vy;

} . P .
It has no effect on the loop’s efficiency, and it is far clearer to write:
X = 0;

y =0
for (i =0; i <100; i++)
{

Copyright © , 2002 by James W Cooper

X =i +vy;
y += 2

It is possible to write entire programs inside an overstuffed for statement
using these comma operators, but thisis only away of obfuscating the
intent of your program.

How C# DiffersFrom C

If you have been exposed to C, or if you are an experienced C
programmer, you might be interested in the main differences between C#

and C:
1.

C# does not usualy make use of pointers. You can only increment,
or decrement avariable asif it were an actual memory pointer
inside a specia unsafe block.

Y ou can declare variables anywhere inside a method you want to;
they don’'t have to be at the beginning of the method.

Y ou don’t have to declare an object before you use it; you can
define it just as you need it.

C# has a somewhat different definition of the struct types, and does
not support the idea of aunion at all.

C# has enumerated types, which allow a series of named values,
such as colors or day names, to be assigned sequential numbers, but
the syntax is rather different.

C# does not have hitfields: variables that take up less than a byte of
storage.

C# does not allow variable length argument lists. Y ou have to
define a method for each number and type of argument. However

Copyright © , 2002 by James W Cooper

C# dlows for the last argument of a function to be a variable
parameter array.

Summary

In this brief chapter, we have seen the fundamental syntax elements of the
C# language. Now that we understand the tools, we need to see how to use
them. In the chapters that follow, we'll take up objects and show how to
use them and how powerful they can be.

Copyright © , 2002 by James W Cooper

47

3. Writing Windows C# Programs

The C# language has its roots in C++, Visual Basic and Java. Both C# and
VB.Net utilize the same libraries and compile to the same underlying
code. Both are managed languages with garbage collection of unused
variable space and both can be used interchangeably. Both also use classes
with method names that are very similar to those in Java, so if you are
familiar with Java, you will have no trouble with C#.

Objectsin C#

In C#, everything istreated as an object. Objects contain data and have
methods that operate on them. For example, strings are now objects. They
have methods such as

Substring
ToLower Case
ToUpper Case
| ndexOf

I nsert

and so forth.

Integers, float and double variables are also objects, and have methods.

string s;

float x;

X 12. 3;

S X. ToString();

Note that conversion from numerical types is done using these methods
rather than external functions. If you want to format a number as a
particular kind of string, each numeric type has a Format method.

Copyright © , 2002 by James W Cooper

Managed L anguages and Gar bage Collection

C# and VB.Net are both managed languages. This has two mgjor
implications. First, both are compiled to an intermediate low-level
language, and a common language runtime (CLR) is used to execute this
compiled code, perhaps compiling it further first. So, not only do C# and
VB.Net share the same runtime libraries, they are to a large degree two
sides of the same coin and two aspects of the same language system. The
differences are that VB7 is more Visua Basic like and a bit easier for VB
programmers to learn and use. C# on the other hand is more C++ and
Java-like, and may appeal more to programmers aready experienced in
those languages.

The other mgjor implication is that managed languages are garbage-
collected. Garbage collected languages take care of releasing unused
memory: you never have to be concerned with this. As soon as the garbage
collection system detects that there are no more active references to a
variable, array or object, the memory is released back to the system. So
you no longer need to worry as much about running out of memory
because you allocated memory and never released it. Of course, it is still
possible to write memory-eating code, but for the most part you do not
have to worry about memory allocation and release problems.

Classes and Namespacesin C#

All C# programs are composed entirely of classes. Visua windows forms
are atype of class, aswe will see that al the program features we'll write
are composed of classes. Since everything is a class, the number of names
of class objects can get to be pretty overwhelming. They have therefore
been grouped into various functional libraries that you must specifically
mention in order to use the functions in these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names using the using statement, and
the functions in that library are available to you.

using System

Copyright © , 2002 by James W Cooper

49

usi ng System Dr awi ng;
using System Col | ecti ons;

Logicaly, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names which the
compiler will recognize after you declare that name space. Y ou can use
namespaces that contain identically named classes or methods, but you
will only be notified of a conflict if you try to use a class or method that is
duplicated in more than one namespace.

The most common namespace is the System namespace, and it is imported
by default without your needing to declare it. It contains many of the most
fundamental classes and methods that C# uses for access to basic classes
such as Application, Array, Console, Exceptions, Objects, and standard
objects such as byte, bool, string. In the simplest C# program we can
simply write a message out to the console without ever bringing up a
window or form:
class Hello {

static void Main(string[] args) {

} Consol e. WiteLine ("Hello C# World");

}
This program just writes the text “Hello C# World” to a command (DOS)

window. The entry point of any program must be a Main method, and it
must be declared as static.

Building a C# Application

Let’s start by creating a simple console application: that is, one without
any windows, that just runs from the command line. Start the Visual
Studio.NET program, and select File [New Project. From the selection
box, choose C# Console application as shown in Figure 3-1.

Copyright © , 2002 by James W Cooper

Rewpeatect |
Bruject Types: Tempistes: |ﬁ§_|
=] Veud Bemic Frojecks
-4 Ueua C# Projacds ﬁ‘ 3! hE
~] Vsud T4+ Bropscs -I_- 'g—'
- Set d Dlsphoryment: Projsct ASDNET iwiah ASPLRET Wb ‘wiab Coniral
-5 Dﬂ::‘ﬂr:bs e Foplcaton Serace Ubrary
== Viud Studio Soltiors —_—
R e @

L Whndiks Emply Profact
Fopbcgon Sernce -

A prolect For ereating 2 connancHng sppication

Mare: {Heln1
Locacon: |E:'pu:mwrm.|_-;lurpﬁuﬂmumof_1'mp ﬂ Erowes, .,
™ Bl bo Sohton % Cose Soluton
Propect ail Ee created of CilDoouments|osharplPrograms | Inbra CShar piHedlo
St EE -

Figure 3-1 - The New Project selection window. Selecting a console application.

Thiswill bring up a module, with Main already filled in. You can typein
the rest of the code as follows:

Consol e. WiteLine ("Hello C# World");

Y ou can compile this and run it by pressing F5.

When you compile and run the program by pressing F5, a DOS window
will appear and print out the message “Hello C# World” and exit.

The Smplest Window Program in C#

C# makes it very easy to create Windows GUI programs. In fact, you can
create most of it using the Windows Designer. To do this, start Visual
Sudio.NET and select File]New project, and select C# Windows
Application. The default name (and filename) is WindowsA pplicationl,
but you can change this before you close the New dialog box. This brings
up asingle form project, initially called Forml.cs. Y oucan then use the
Toolbox to insert controls, just as you can in Visua Basic.

Copyright © , 2002 by James W Cooper

51

The Windows Designer for a simple form with one text field and one
button is shown in Figure 3-2.

e g B meT B D) O R [RK BOe DO
H-o-sad " F Y T L Sme -

& iriikd
il B
R
& Harttan,
L
F Falaukn
" Gwohn
i P
L] Barad
T Cadaird
2 Inibn
2.3 Chah sl i
f Cominitin
B e
i Wi
L] ki
W e
TR Frvh iy
u 8 T
2 watm
f= R
i b
T [owam pices
[= oyt [[o
B i
vy

Figure 3-2 — The Windows designer in Visual Studio.NET

Y ou can draw the controls on the form by selecting the TextBox from the
Toolbox and dragging it onto the form, and then doing the same with the
button. Then to create program code, we need only double click on the
controls. In this simple form, we want to click on the “Hello” button and
it copies the text from the text field to the textbox we called txHi, and
clearsthe text field. So, in the designer, we double click on that button and
the code below is automatically generated:

private void btHello_Click(object sender, EventArgs e) {
;xHi .Text ="Hello there";

Note that the Click routine passes in a sender object and an event object
that you can query for further information. Under the covers, it also
connects the event to this method. The running program is shown in
Figure 3-3.

Copyright © , 2002 by James W Cooper

52
=T
IHeIIo there

Figure3-3 — The SimpleHello form after clicking the Say Hello button.

While we only had to write one line of code inside the above subroutine, it
isinstructive to see how different the rest of the code is for this program.
We first see that severa libraries of classes are imported so the program
can use them:

using System

usi ng System Dr awi ng;

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System W ndows. For ns;
usi ng Syst em Dat a;

Most significant is the Windows.Forms library, which is common to all
the .Net languages.

The code the designer generates for the controlsisilluminating. And it is
right there in the open for you to change if you want. Essentially, each
control is declared as a variable and added to a container. Here are the
control declarations. Note the event handler added to the btHello.Click
event.

private System W ndows. Forms. Text Box t xHi;
private System W ndows. Fornms. Button bt Hel | o;

private void InitializeConponent() {
this.btHello = new System W ndows. Forns. Button();
this.txH = new System W ndows. For nms. Text Box() ;

Copyright © , 2002 by James W Cooper

112);

t hi s. SuspendLayout () ;

/1

/1 btHello

/1

this.btHello.Location = new System Draw ng. Poi nt (80,
this.btHello.Name = "btHello";

this.btHello.Size = new System Drawi ng. Si ze(64, 24);
this.btHello. Tabl ndex = 1;

this.btHello. Text = "Hello";

this.btHello.Cick += new

Event Handl er (t hi s. bt Hel | o_Cl i ck);

48) ;

13);

/1

/1 txHi

/1

this.txH .Location = new System Draw ng. Poi nt (64,

this.txHi . Nane "txH";

this.txHi.Size new System Draw ng. Si ze(104, 20);
this.txHi . Tabl ndex = 0;

this.txH . Text = "";

/1

/1 Forml

/1

t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze(5,

this.dientSize = new System Draw ng. Si ze(240, 213);
thi s. Controls. AddRange(
new System W ndows. Forms. Control [] {
this.btHell o,

this.txHi });

this. Name = "Forml";
this.Text = "Hell o w ndow';
t hi s. ResuneLayout (fal se);

}

If you change this code manually instead of using the property page, the
window designer may not work any more. We'll look more at the power
of this system after we discuss objects and classes in the following
chapter.

Copyright © , 2002 by James W Cooper

Windows Controls

All of the basic Windows controls work in much the same way as the
TextBox and Button we have used so far. Many of the more common ones
are shown in the Windows Controls program in Figure 3-4.

il
File
IGTEE“”QS Push here I
Greetings
¥ Eold
12 -
Greetings [~ Grouping
Greetings 12
? £ Black
& Green
" Red

Figure 3-4 — A selection of basic Windows contrals.

Each of these controls has properties such as Name, Text, Font, Forecolor
and Borderstyle that you can change most conveniently using the
properties window shown at the right of Figure 3-2. Y ou can also change
these properties in your program code as well. The Windows Form class
that the designer generates always creates a Form1 constructor that calls
an InitializeComponent method like the one above. One that method has
been called, the rest of the controls have been created and you can change
their properties in code. Generally, we will create a private init() method
that is called right after the InitializeComponent method, in which we add
any such additional initialization code.

Copyright © , 2002 by James W Cooper

Labels

A label isafield on the window form that ssimply displays text. Usualy
programmers use this to label the purpose of text boxes next to them. Y ou
can't click on alabd or tab to it so it obtains the focus. However, if you
want, you can change the major propertiesin Table 3-1 either in the
designer or at runtime.

Property Value

Name At design time only

BackCol or A Color object

Border Styl e [None, FixedSingle or Fixed3D

Enabl ed true or false. If false, grayed out.

Font Set to a new Font object

For eCol or A Color object

| mge An image to be displayed within the label
I mageAl i gn | Wherein the labd to place the image
Text Text of the label

Vi si bl e true or false

Table 3-1 —Propertiesfor the Label Control

TextBox

The TextBox isasingle line or multiline editable control. You can set or
get the contents of that box using its Text property:

Text Box tbox = new Text Box();

t box. Text = "Hello there";

In addition to the propertiesin Table 3-1, the TextBox also supports the
propertiesin Table 3-2.

Property Value
Li nes An array of strings, one per line
Locked If true, you can’t type into the text box
Mil tiline true or false
ReadOnl y Same as locked. If true, you can till
select the text and copy it, or set values

Copyright © , 2002 by James W Cooper

from within code.

Wor dW ap true or false

Table 3-2 — TextBox properties

CheckBox

A CheckBox can either be checked or not, depending on the value of the
Checked property. You can set or interrogate this property in code as well
asin the designer. Y ou can create an event handler to catch the event
when the box is checked or unchecked, by double clicking on the
checkbox in the design mode.

CheckBoxes have a Appearance property which can be set to
Appearance.Normal or Appearance.Button. When the appearance is set to
the Button value, the control appears acts like a toggle button that stays
depressed when you click onit and becomes raised when you click on it
again. All the propertiesin Table 3-1 apply as well.

Buttons

A Button is usually used to send a command to a program. When you

click on it, it causes an event that you usualy catch with an event handler.
Like the CheckBox, you create this event handler by double clicking on
the button in the designer. All of the propertiesin Table 3-1 can be used as
well.

Buttons are also frequently shown with images on them. Y ou can set the
button image in the designer or at run time. The images can be in bmp, gif,
jpeg or icon files.

Radio buttons

Radio buttons or option buttons are round buttons that can be selected by
clicking on them. Only one of a group of radio buttons can be selected at a
time. If there is more than one group of radio buttons on a window form,
you should put each set of buttons inside a Group box as we did in the
program in Figure 3-1. As with checkboxes and buttons, you can attach

Copyright © , 2002 by James W Cooper

57

events to clicking on these buttons by double clicking on them in the
designer. Radio buttons do not always have events associated with them.
Instead, programmers check the Checked property of radio buttons when
some other event, like an OK button click occurs.

Listboxes and Combo Boxes

Both list boxes and Combo boxes contain an Items array of the elements
in that list. A ComboBox is a single line drop-down, that programmers use
to save space when selections are changed less frequently. ListBoxes
allow you to ser properties that allow multiple selections, but
ComboBoxes do not. Some of their properties include those in Table 3-3.

Property Value
Items A collection of itemsin the list
MultiColumn If true, the ColumnWidth property
describes the width of each column.
SelectionMode One, MultiSimple or MultiExtended. If

set to MultiSimple, you can select or
deselect multiple items with a mouse
click. If set to MultiExtended, you can
select groups of adjacent items with a

mouse.

Sel ectedl ndex Index of sdlected item

SelectedIndices Returns collection of selections when
list box selection mode is multiple.

Selecteditem Returns the item selected

Table3-3-The ListBox and ComboBox properties. SelectionMode and
MultiColumn do not apply to combo boxes.

The Items Collection

Y ou use the Items collection in the ListBox and ComboBox to add and
remove elements in the displayed list. It is essentialy an ArrayList, aswe
discuss in Chapter 8. The basic methods are shown in Table 3-4.

Method Value

Copyright © , 2002 by James W Cooper

Add Add object to list
Count Number in list

Item[i] Element in collection
RemoveAt(i) Remove element i

Table3-4 — Methods for the Items Collection

If you set a ListBox to a multiple selection mode, you can obtain a
collection of the selected items or the selected indexes by
Li st Box. Sel ect edl ndexCol | ection it =

new Li st Box. Sel ect edl ndexCol | ecti on (I sCommands) ;

Li st Box. Sel ect edObj ect Col | ecti on so =
new Li st Box. Sel ect edCbj ect Col | ecti on (| sConmands) ;

where IsCommands is the list box name.

Menus

Y ou add menus to awindow by adding a MainMenu controls to the
window form. Then, you can the menu control and edit its drop-down
names and new main item entries as you see in Figure 3-5.

[_TypeHere |

Figure 3-5- Adding a menu to a form.

Aswith other clickable controls, double clicking on one in the designer
creates an event whose code you can fill in.

ToolTips

A ToolTip is abox that appears when your mouse pointer hovers over a
control in awindow. This feature is activated by adding an (invisible)
Tool Tip control to the form, and then adding specific tool tips control and

Copyright © , 2002 by James W Cooper

59

text combinations to the control. In our example in Figure 3-4, we add
tooltips text to the button and list box using the tips control we have added
to the window.

tips.SetTool Tip (btPush, "Press to add text to list box");
tips.SetTool Tip (I sComands, "Click to copy to text box");

Thisisillustrated in Figure 3-6.

Puzh here |

|F‘ress ko add bext o lisk I:u:ux|
[Bald |

Greelings

Figure3-6 — A ToolTip over a button.

Other Windows Controls

We discuss how to use the Datagrid and TreeList in the Adapter and
Bridge pattern chapters, and the Toolbar in the State and Strategey pattern
chapters.

The Windows Controls Program

This program, shown in Figure 3-4, has the following features. The text in
the label changes whenever you change the

Font size from the combo box
Font color from the radio buttons

Font bold from the check box.

For the check box, we create a new font which is either bold or not

depending on the state of the check box:

private void ckBol d_CheckedChanged(obj ect sender, EventArgs e) {
if (ckBol d. Checked) {

| bText. Font =new Font ("Arial",
fontSi ze, Font Style. Bold);

Copyright © , 2002 by James W Cooper

el se {
| bText. Font = new Font ("Arial", fontSize);
}

}
When we create the form, we add the list of font sizes to the combo box:

private void init() {
fontSize = 12;

cbFont.Itenms. Add ("8");
cbFont.Itens. Add ("10")
cbFont.Itens. Add ("12")
cbFont.Itens. Add ("14");
cbFont.Itens. Add ("18");

| bText. Text ="Greetings";
tips. Set Tool Tip (btPush, "Press to add text to list box");
tips.SetTool Tip (I sComrands, "Click to copy to text box");

}

When someone clicks on a font size in the combo box, we convert that
text to a number and create afont of that size. Note that we just call the
check box changing code so we don’'t have to duplicate anything.
private void cbFont_Sel ect edl ndexChanged(

obj ect sender, EventArgs e) {

fontSi ze= Convert. Tolnt16 (chFont. Sel ectedltem);
ckBol d_CheckedChanged(nul |, null);

}
For each radio button, we click on it and insert color-changing code:

private void opG een_CheckedChanged(obj ect sender, EventArgs e) {
| bText . For eCol or =Col or. G een;
}

private void opRed_CheckedChanged(object sender, EventArgs e) {
| bText . ForeCol or =Col or. Red ;
}

private void opBl ack_CheckedChanged(obj ect sender, EventArgs e) {
| bText . ForeCol or =Col or. Bl ack ;
}

When you click on the ListBox, it copies that text into the text box, by
getting the selected item as an object and converting it to a string.

Copyright © , 2002 by James W Cooper

61

private void | sCommands_Sel ect edl ndexChanged(
obj ect sender, EventArgs e) {
t xBox. Text = | sCommands. Sel ectedltem ToString () ;

}

Finally, when you click on the File | Exit menu item, it closes the form,

and hence the program:

private void nmenulten2_Click(object sender, EventArgs e) {

this.ose ();
}

Summary

Now thet we' ve seen the basics of how you write programs in C#, we are
ready to talk more about objects and OO programming in the chapters that

follow.

Programs on the CD-ROM

Console Hello

\'I ntroCSharp\Hell o

Windows hdllo

\'I nt r oCShar p\ SayHel | o

Windows controls

\'I ntroCShar p\ WnControl s

Copyright © , 2002 by James W Cooper

62

4. Using Classes and Objects in C#

What Do We Use Classes For ?

All C# programs are composed of classes. The Windows forms we have
just seen are classes, derived from the basic Form class and all the other
programs we will be writing are made up exclusively of classes. C# does
not have the concept of global data modules or shared data that is not part
of classes.

Simply put, aclassisaset of public and private methods and private data
grouped inside named logical units. Usualy, we write each classin a
separate file, although thisis not a hard and fast rule. We have aready
seen that these Windows forms are classes, and we will see how we can
create other useful classesin this chapter.

When you create a class, it is not a single entity, but a master you can
create copies or instances of, using the new keyword. When we create
these instances, we pass some initializing datainto the class using its
constructor. A constructor is amethod that has the same name as the class
name, has no return type and can have zero or more parameters that get
passed into each instance of the class. We refer to each of these instances
asobjects.

In the sections that follow we'll create some simple programs and use
some instances of classes to simplify them.

A Simple Temperature Conversion Program

Suppose we wanted to write a visual program to convert temperatures
between the Celsius and Fahrenheit temperature scales. Y ou may
remember that water freezes at zero on the Celsius scale and boils at 100
degrees, while on the Fahrenheit scale, water freezes at 32 and boils at
212. From these numbers you can quickly deduce the conversion formula
that you may have forgotten.

Copyright © , 2002 by James W Cooper

The difference between freezing and boiling on once scale is 100 and on
the other 180 degrees or 100/180 or 5/9. The Fahrenheit scale is “ offset”
by 32, since water freezes at 32 on its scale. Thus,

C=(F-32)*5/9
and
F=9/5*C+ 32

In our visua program, we'll allow the user to enter a temperature and
select the scale to convert it to as we see in Figure 4-1.

in. Convert temperatures -10] x|
Enter temperature l35

= Select conversion
" to Celsiuz

* to Fahrenheit
Converted
temperature I i
Cloze |

Figure4-1—- Converting 35 Celsius to 95 Fahrenheit with our visual interface.

Using the visual builder provided in Visual Studio.NET, we can draw the
user interface in a few seconds and simply implement routines to be called
when the two buttons are pressed. If we double click on the Convert
button, the program generates the btConvert_Click method. Y ou can fill it
in to have it convert the values between temperature scales:
private void bt Conpute_Cick(object sender,

System Event Args e) {

float tenp, newTenp;
/I convert string to input val ue

Copyright © , 2002 by James W Cooper

tenmp = Convert.ToSingle (txEntry. Text);
//see which scale to convert to
i f (opFahr. Checked)
newlTenp = 9*tenp/5 + 32;
el se
newTenp = 5*(tenp-32)/9;
/lput result in |abel text
| bResul t. Text =newTenp. ToString ();
txEntry. Text =""; /lclear entry field

}

The above program is extremely straightforward and easy to understand,
and istypical of how some simple C# programs operate. However, it has
some disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data
handling are combined in a single program module, rather than being
handled separately. It is usually a good idea to keep the data manipulation
and the interface manipulation separate so that changing interface logic
doesn’t impact the computation logic and vice-versa.

Building a Temper ature Class

A classin C# isamodule that can contain both public and private
functions and subroutines, and can hold private data values as well. These
functions and subroutines in a class are frequently referred to collectively
as methods.

Class modules alow you to keep a set of data valuesin a single named
place and fetch those values using get and set functions, which we then
refer to as accessor methods.

Y ou create a class module from the C# integrated devel opment
environment (IDE) using the menu item Project | Add class module. When
you specify afilename for each new class, the IDE assigns this name as
the class name as well and generates an empty class with an empty
constructor. For example, if we wanted to create a Temperature class, the
IDE would generate the following code for us:

Copyright © , 2002 by James W Cooper

nanespace Cal cTenp

{
/1] <summary>
/1] Summary description for Tenperatur.
/1] <l summary>
public class Tenperature
{
public Tenperature()
{
I
/1 TODO Add constructor |ogic here
I
}
}
}

If you fill in the “summary description” special comment, that text will
appear whenever your mouse hovers over an instance of that class. Note
that the system generates the class and a blank constructor. If your class
needs a constructor with parameters, you can just edit the code.

Now, what we want to do is with this classis to move all of the
computation and conversion between temperature scales into this new
Temperature class. One way to design this classis to rewrite the calling
programs that will use the class module first. In the code sample below,
we create an instance of the Temperature class and use it to do whatever
conversions are needed:
private void bt Conmpute_Click(object sender, System EventArgs e) {

string newTenp;

/luse input value to create instance of class

Tenperature tenp = new Tenperature (txEntry. Text);

//use radio button to decide which conversion
newTenp = tenp. get ConvTenp (opCel s. Checked);

//get result and put in |abel text

| bResul t. Text =newTenp. ToString ();

txEntry. Text =""; /lclear entry field
}

The actual classis shown below. Note that we put the string value of the
input temperature into the class in the constructor, and that inside the class
it gets converted to afloat. We do not need to know how the data are

Copyright © , 2002 by James W Cooper

66

represented internally, and we could change that internal representation at

any time.

public class Tenperature {
private float tenp, newTenp;
I
/'l constructor for class
public Tenperature(string thisTenp)
tenp = Convert. ToSi ngl e(thi sTenp);

public string get ConvTenp(bool celsius){
if (celsius)

return getCel s();
el se

return getFahr();

private string getCels() {
newTenp= 5*(tenp- 32)/9;
return newTenp. ToString() ;

private string getFahr() {
newlTenp = 9*tenp/5 + 32;
return Convert. ToString(newTenp) ;
}
}

Note that the temperature variable temp is declared as private, so it cannot

be “seen” or accessed from outside the class. Y ou can only put data into
the class and get it back out using the constructor and the getConvTemp

method. The main point to this code rearrangement is that the outer calling
program does not have to know how the data are stored and how they are

retrieved: that is only known inside the class.

The other important feature of the classis that it actually holds data. You

can put data into it and it will return it at any later time. This class only
holds the one temperature value, but classes can contain quite complex

sets of data values.

Copyright © , 2002 by James W Cooper

67

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything
about how the data are stored, or how the conversions are performed

Converting to Kelvin

Absolute zero on the Celsius scale is defined as —273.16 degrees. Thisis
the coldest possible temperature, since it is the point at which dl
molecular motion stops. The Kelvin scale is based on absolute zero, but
the degrees are the same size as Celsius degrees. We can add a function

public string getKelvin() {
newTenp = Convert.ToString (getCels() + 273.16)

}
What would the setK elvin method look like?

Putting the Decisionsinto the Temperature Class

Now we are still making decisions within the user interface about which
methods of the temperature class. It would be even better if all that
complexity could disappear into the Temperature class. It would be nice if
we just could write our Conversion button click method as
private void bt Conpute_Click(object sender, System EventArgs e) {

Tenperature tenper =

new Tenperature(txEntry. Text , opCel s. Checked);
//put result in |abel text

| bResul t. Text = tenper. get ConvTenp();
txEntry. Text =""; /lclear entry field

}
This removes the decision making process to the temperature class and
reduces the calling interface program to just two lines of code.

The class that handles al this becomes somewhat nore complex, however,
but it then keeps track of what data as been passed in and what conversion
must be done. We pass in the data and the state of the radio button in the
constructor:

public Tenperature(string sTenp, bool toCels) {
tenp = Convert.ToSingle (sTenp);
cel sius = toCels;

Copyright © , 2002 by James W Cooper

}

Now, the celsius boolean tells the class whether to convert or not and
whether conversion is required on fetching the temperature value. The
output routine is smply
public string get ConvTenp() {
if (celsius)
return getCel s();

el se
return getFahr();

private string getCel s() {
newlTenp= 5*(tenp- 32)/9;
return newTenp. ToString() ;

private string getFahr() {
newTenp = 9*tenp/5 + 32;
return Convert. ToString(newlTenp) ;

}
In this class we have both public and private methods. The public ones are

callable from other modules, such as the user interface form module. The
private ones, getCels and getFahr, are used internally and operate on the
temperature variable.

Note that we now aso have the opportunity to return the output
temperature as either a string or a single floating point value, and could
thus vary the output format as needed.

Using Classesfor Format and Value Conversion

It is convenient in many cases to have a method for converting between
formats and representations of data. Y ou can use a class to handle and hide
the details of such conversions. For example, you might design a program
where you can enter an elapsed time in minutes and seconds with or
without the colon:

315. 20
3:15. 20

Copyright © , 2002 by James W Cooper

69

315.2

and so forth. Since al styles are likely, you'd like a class to parse the legal
possibilities and keep the datain a standard format within. Figure 4-2
shows how the entries “112" and “102.3" are parsed.

im, Enter times

Enter time |-| 023 Enter

P
P2
[
oo

Figure4-2 — A simple parsing program that usesthe Times class.

Much of the parsing work takes place in the constructor for the class.
Parsing depends primarily on looking for a colon. If there is no colon, then
values greater than 99 are treated as minutes.

public Format Ti me(string entry) {
errflag = fal se;
if (! testCharVals(entry)) {
int i = entry.lndexOh (":");
if (i >=0) {
mns = Convert.Tolnt32 (entry. Substring (O, i
secs = Convert.ToSingle (entry. Substring (i+1
if(secs >= 60.0F) {
errflag = true;
t = NT;

)
)

}

t = mns *100 + secs;
el se {

float fmns = Convert.ToSingle (entry) / 100;
mns = (int)fmns;

Copyright © , 2002 by James W Cooper

70

secs = Convert.ToSingle (entry) - 100 * m ns;
if (secs >= 60) {

errflag = true;

t = NT;
}

el se
t = Convert.ToSingle(entry);

}

Sinceillegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might
also have some non-numeric entries such as NT for no time or in the case
of athletic times, SC for scratch or DQ for disqualified. All of these are
best managed inside the class. Thus, you never need to know what
numeric representations of these values are used internally.

static public int NT = 10000;
static public int DQ = 20000;

Some of these are processed in the code represented by Figure 4-3.

i, Enter times
Enter time i” Enter
SCR
B]n]
MNT

Copyright © , 2002 by James W Cooper

71

Figure4-3 - Thetimeentry interface, showing the parsing of symbolsfor Scratch,
Disqualification and No Time.

Handling Unreasonable Values

A classis aso agood place to encapsulate error handling. For example, it
might be that times greater than some threshold value are unlikely and
might actually be times that were entered without a decimal point. If large
times are unlikely, then a number such as 123473 could be assumed to be

12:34.73"
public void setSingle(float tm {
t =tm
if((tm> mnVal) && (tm< NT)) {

t = tm/ 100.Of;

}
}

The cutoff value minVa may vary with the domain of times being
considered and thus should be a variable. Y ou can also use the class
constructor to set up default values for variables.
public class FormatTi ne {
public Format Ti ne(string entry) {
errflag = fal se;
m nVal = 1000;
t = 0;

A String Tokenizer Class

A number of languages provide a smple method for taking strings apart
into tokens, separated by a specified character. While C# does not exactly
provide a class for this feature, we can write one quite easily using the
Split method of the string class. The goal of the Tokenizer class will be to
pass in a string and obtain the successive string tokens back one at atime.
For example, if we had the smple string

Now is the tine
our tokenizer should return four tokens;

Now

Copyright © , 2002 by James W Cooper

72

is
t he
time

The critical part of this classisthat it holds the initial string and
remembers which token is to be returned next.

We use the Split function, which approximates the Tokenizer but returns
an array of substrings instead of having an object interface. The classwe
want to write will have a nextToken method that returns string tokens or a
zero length string when we reach the end of the series of tokens.

The whole class is shown below.

/1String Tokenizer class

public class StringTokenizer {
private string data, delimter;
private string[] tokens; //token array

private int index; //index to next token
[]-=-----ne--
public StringTokeni zer(string dataLine) {
init(dataLine, " ");
}
[]--eemmeam

/lsets up initial values and splits string

private void init(String dataLine, string delim {
delimter = delim
data = dat aLi ne
tokens = data.Split (delimter. ToCharArray());
index = 0;

public StringTokenizer(string dataLine, string delin) {
i nit(dataLine, delin;

public bool hashoreEl ements() {
return (index < (tokens.Length));

public string nextElenment() {
/1 get the next token
if(index < tokens.Length)
return tokens[index++];

Copyright © , 2002 by James W Cooper

73

el se

}

return ""; //or none

The classisillustrated in use in Figure 4-4.

iwi. Shiow tokenizer

Enter string ta tokenize

MHow iz the time for all good BEM=

R[]
is

the
time
far

all
good
BEM=

gTokenEeg

Figure 4-4— Thetokenizer in use.

The code that uses the Tokenizer classisjust:

//call tokenizer when button is clicked
private void bt Token_C i ck(object sender,
System Event Args e) {
StringTokeni zer tok =
new StringTokeni zer (txEntry. Text);
whi | e(t ok. hasMor eEl enents ()) {
| sTokens. Itens. Add (tok.nnextEl ement());
}

Classesas Objects
The primary difference between ordinary procedural programming ard
object-oriented (OO) programming is the presence of classes. A classis
just a module as we have shown above, which has both public and private
methods and which can contain data. However, classes are also uniquein
that there can be any number of instances of a class, each containing

Copyright © , 2002 by James W Cooper

74

different data. We frequently refer to these instances as objects. We'll see
some examples of single and multiple instances below.

Suppose as have afile of results from a swimming event stored in atext
data file. Such afile might look, in part, like this:

1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn M1l er 16 Ww 5:01. 35
3 Melissa Sckol nik 17 WwW 5:01. 58
4 Sarah Bowmran 16 CDEV 5:02. 44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Heal ey 16 MBM 5:03.62

where the columns represent place, names, age, club and time. If we wrote
a program to display these swimmers and their times, we'd need to read in
and parse thisfile. For each swimmer, we' d have a first and last name, an
age, aclub and atime. An efficient way to keep the data for each swimmer
grouped together is to design a Swimmer class and create an instance for
each swimmer.

Here is how we read the file and create these instances. As each instance is
created we add it into an ArrayList object:

private void init() {

ar = new ArraylList (); /lcreate array |ist
csFile fl = newcsFile ("500free.txt");
/lread in |liens

string s = fl.readLine ();

while (s !'= null) {
//convert to tokens in swi mer object
Swi mer swm = new Swi nmer (S);
ar. Add (swm;
s= fl.readLine ();

fl.close();
//add nanes to |ist box
for(int i=0; i < ar.Count ; i++) {
Swi nrer swm = (Swinmer)ar[i];
| sSwi nmrers. I tens. Add (swm get Nane ());

Copyright © , 2002 by James W Cooper

75

The Swimmer class itself parses each line of data from the file and stores
it for retrieval using getX XX accessor functions:
public class Swi mer {

private string frName, | Nane;

private string cl ub;

private int age;

private int place;

private FormatTine tnmns;

public Swimrer(String dataLine) {
StringTokeni zer tok = new StringTokeni zer (dataline);
place = Convert. Tol nt32 (tok.nextEl ement());
frNane = tok.nextEl enent ();
| Name = tok. nextEl enent ();
string s = tok.nextEl ement ();
age = Convert. Tolnt32 (s);
club = tok.nextEl ement ();
tms = new Format Ti me (tok. nextEl enent ());

public string getNane() {
return frName+" "+ Nane;

public string getTime() {
return tns.getTinme();
}

}

Class Containment

Each instance of the Swimmer class contains an instance of the
StringTokenizer class that it uses to parse the input string and an instance
of the Times class we wrote above to parse the time and return it in
formatted form to the calling program. Having a class contain other
classesis avery common ploy in OO programming and is one of the main
ways we can build up more complicated programs from rather simple
components.

The program that displays these swimmersis shown in Figure 4-5.

Copyright © , 2002 by James W Cooper

76

Siimmers
Erily Fern - Swimmer's time:
K.athryn Miller
Melizza Sckalnik X
Sarah Bowman 15'03'52
Caitlin Flick.
Caitlin Heale

Kim Richardzon
Beth Malinoweski
Patricia Finnerty

Carolyn Bowman

K.atie Martin

Lauren Dudley _ﬂ

Figure4-5—A list of swimmersand their times, using containment.

When you click on any swimmer, her time is shown in the box on the
right. The code for showing that time is extremely easy to write since al
the data are in the swimmer class:

private void | sSw mers_Sel ect edl ndexChanged(
obj ect sender, System EventArgs e) {
/1 get index of selected sw nmmrer
int i = 1sSw nmmers. Sel ect edl ndex ;
/1 get that sw mrer
Swi nrer swm = (Swimmrer)ar[i];
/1 display her tine
txTi me. Text =swm getTime ();

}
I nitialization
In our Swimmer class above, note that the constructor in turn calls the

constructor of the StringTokenizer class:

public Swi mrer (String dataline) {
StringTokeni zer tok =
new StringTokeni zer (datalLine);

Copyright © , 2002 by James W Cooper

Classes and Properties

Classes in C# can have Property methods as well as public and private
functions and subs. These correspond to the kinds of propertiesyou
associate with Forms, but they can store and fetch any kinds of values you
care to use. For example, rather than having methods called getAge and
setAge, you could have a single age property which then corresponds to a
get and a set method:
private int Age;
/1 age property
public int age {

get {

return Age;

set {
Age = val ue;
}

}
Note that a property declaration does not contain parentheses after the

property name, and that the special keyword value is used to obtain the
data to be stored.

To use these properties, you refer to the age property on the left side of an
equals sign to set the value, and refer to the age property on the right side

to get the value back.
age = sw. Age; /1 Get this swimer’s age
sw. Age = 12; /1 Set a new age for this sw mer

Properties are somewhat vestigial, since they originally applied more to
Formsin the Vb language, but many programmers find them quite useful.
They do not provide any features not already available using get and set
methods and both generate equally efficient code.

In the revised version of our SwimmerTimes display program, we convert
all of the get and set methods to properties, and then allow usersto vary
the times of each swimmer by typing in new ones. Here is the Swimmer
class

Copyright © , 2002 by James W Cooper

public
{

78

cl ass Swi nmer

private string frNane, | Nane;
private string cl ub;

private int Age;

private int place;

private FornmatTi ne tns;

R
public Swi mer (String dataline)
StringTokeni zer tok = new StringTokeni zer (dataline);
pl ace = Convert. Tolnt32 (tok.nextEl enent());
frNane = tok.nextEl enent ();
I Name = tok. nextEl enent ();
string s = tok.nextEl ement ();
Age = Convert.Tolnt32 (s);
club = tok.nextEl ement ();
tms = new Format Ti me (tok. nextEl enent ());
}
N
public string nane {
get {
return frName+" "+ Nane;
}
}
R
public string tinme {
get {
return tns.getTinme();
}
set {
tms = new Format Ti me (val ue);
}
}
I R TR
/l age property
public int age {
get {
return Age;
}
set {
Age = val ue;
}
}
}
}

Copyright © , 2002 by James W Cooper

79

Then we can type a new time in for any swimmer, and when the txTime
text entry field loses focus, we can store a new time as follows:
private void txTi me_OnLost Focus(

obj ect sender, System EventArgs e) {

/1 get index of selected swi nmer

int i = 1sSw mmers. Sel ect edl ndex ;

/1 get that sw nmer

Swi nmmrer swm = (Swimmer)ar[i];

swmtine =txTinme. Text ;

}

Programming Stylein C#
Y ou can develop any of a number of readable programming styles for C#.
The one we use here is partly influenced by Microsoft’s Hungarian
notation (named after its originator, Charles Simonyi) and partly on styles
developed for Java.

We favor using names for C# controls such as buttons and list boxes that
have prefixes that make their purpose clear, and will use them whenever
there is more than one of them on a single form:

Control name Prefix Example
Buttons bt btCompute
List boxes Is IsSwimmers
Radio (option buttons) op opFSex
Combo boxes cb cbCountry
Menus mnu mnuFile
Text boxes tx txTime

We will not generally create new names for labels, frames and forms when
they are never referred to directly in the code. We will begin class names
with capital letters and instances of classes with lowercase letters. We will
also spell instances and classes with a mixture of lowercase and capital
letters to make their purpose clearer:

swi mer Ti ne

Copyright © , 2002 by James W Cooper

Summary

In this chapter, we' ve introduced C# classes and shown how they can
contain public and private methods and can contain data. Each class can
have many instances and each could contain different data values. Classes
can also have Property methods for setting and fetching data. These
Property methods provide a smpler syntax over the usua getXXX and
setX X accessor methods but have no other substantial advantages.m

Programs on the CD-ROM

Termperature conversion \ Usi ngCl asses\ Cal cTenp
Temperature conversion using classes \ Usi ngCl asses\ Cl sCal cTenp
Temperature conversion using classes \ Usi ngCl asses\ Al | Cl sCal cTenp
Time conversion \ Usi ngCl asses\ For mat val ue
String tokenizer \ Usi ngCl asses\ TokenDeno
Swimmer times \ Usi ngCl asses\ Swi nmer Tokeni zer

Copyright © , 2002 by James W Cooper

81

5. Inheritance

Now we will take up the most important feature of OO languages like C#
(and VB.NET): inheritance. When we create a Windows form, such as our
Hello form, the IDE (VS.NET Integrated Development Environment)
creates a declaration of the following type:

public class Forml : System W ndows. For ns. Form

This says that the form we create is a child class of the Form class, rather
than being an instance of it. This has some very powerful implications.

Y ou can create visual objects and override some of their properties so that
each behaves a little differently. We'll see some examples of this below.

Constructors

All classes have specific constructors that are called when you create an
instance of a class. These constructors always have the same name as the
class. This applies to form classes as well as nonvisual classes. Here is
the constructor the system generates for our simple hello window in the
class Form1:

public class Forml {

public Forml(){ // constructor
InitializeConponent();
}

When you create your own classes, you must create constructor methods
to initialize them, and can pass arguments into the class to initialize class
parameters to specific values. If you do not specifically include a
constructor in any class you write, a constructor having no arguments is
generated for you under the covers.

The InitializeComponent method is generated by the IDE as well, and
contains code that creates and positions all the visual controlsin that
window. If we need to set up additional code as part of the initialization of

Copyright © , 2002 by James W Cooper

82

a Form class, we will always write a private init method that we call after
the InitializeComponent method call.
public Forml(){
InitializeConponent();
init();
}

private void init() {
x = 12.5f; //set initial value of x
}

Drawing and Graphicsin C#

In out first example, we'll write a program to draw arectanglein a
PictureBox on aform. In C#, controls are repainted by the Windows
system and you can connect to the paint event to do your own drawing
whenever apaint event occurs. Such a paint event occurs whenever the
window is resize, uncovered or refreshed. To illustrate this, we'll create a
Form containing a PictureBox, as shown in Figure 5-1.

I — =

Copyright © , 2002 by James W Cooper

Figure5-1 - Inserting a PictureBox on a Form

Then, we'll select the PictureBox in the designer, and select the Events
button (with the lightning icon) in the Properties window. This brings up a
list of al the events that can occur on a PictureBox as shown in Figure

Praperties

Ipic System, Windows,Forms. PictureBox ;l
A E =N =

Mouseleave

MouseMove

Mouselp
Mowe

£
|
|
|
|
|
5l |
ParentChanged _l
CueryAccessibilicyH !

|

CueryContinuelrag
Resize

Figure5-2 — Selecting the Paint Event for the PictureBox window.

Double clicking on the Paint event creates the following empty method in
the Form’s code:
private void pic_Paint(object sender, PaintEventArgs e) {

}
It also generates code that connects this method to the Paint event for that

picture box, inside the InitializeComponents method.

this. pic.Paint += new Pai nt Event Handl er (thi s. pi c_Paint);

The PaintEventArgs object is passed into the subroutine by the underlying
system, and you can obtain the graphics surface to draw on from that
object. To do drawing, you must create an instance of a Pen object and
define its color and, optionally its width. Thisisillustrated below for a
black pen with a default width of 1.

Copyright © , 2002 by James W Cooper

private void pic_Paint(object sender, PaintEventArgs e) {

Graphics g = e. Graphics; /1 get Graphics surface
Pen rpen = new Pen(Col or.Black); //create a Pen
g. drawLi ne(rpen, 10,20, 70, 80); //draw the |ine

}
In this example, we show the Pen object being created each time a paint

event occurs. We might also create the pen once in the window’s
constructor or in the init method we usualy call from within it.

Using Inheritance

Inheritance in C# gives us the ability to create classes which are derived
from existing classes. In new derived classes, we only have to specify the
methods that are new or changed. All the others are provided
automatically from the base class we inherit from. To see how this works,
lets consider writing a simple Rectangle class that draws itself on aform
window. This class has only two methods, the constructor and the draw
method.

nanespace Cshar pPats

public class Rectangle {
private int x, y, w h;
protected Pen rpen;

public Rectangle(int x_, int y_, int w, int h_)
{

X = X_; // save coordi nates

y =Y.

W= W ;

h =h_;

/lcreate a pen
rpen = new Pen(Col or. Bl ack);

public void drawm Graphics g) {
//draw the rectangle
g. DrawRectangl e (rpen, x, y, w, h);

Copyright © , 2002 by James W Cooper

Namespaces

We mentioned the System namespaces above. Visual Studio.Net also
creates a namespace for each project equal to the name of the project

itself. You can change this namespace on the property page, or make it
blank so that the project is not in a namespace. However, you can create
namespaces of your own, and the Rectangle class provides a good
example of areason for doing so. The System.Drawing namespace that
this program requires to use the Graphics object also contains a Rectangle
class. Rather than renaming our new Rectangle class to avoid this name
overlap or “collision,” we can just put the whole Rectangle classin its own
namespace as we show above.

Then, when we declare the variable in the main Form window, we can
declare it as a member of that namespace.

Cshar pPat s. Rect angl e rec;

In this main Form window, we create an instance of our Rectangle class.

private void init() {
rect = new CsharpPats. Rectangl e (10, 20, 70, 100);
}

R LR

public Forml() {
InitializeConponent();
init();

}

Then we add the drawing code to our Paint event handler to do the
drawing and pass the graphics surface on to the Rectangle instance.

private void pic_Paint(object sender, PaintEventArgs e) {
Graphics g = e. G aphics;
rect.draw (g);

}
This gives us the display we see in Figure 5-3.

Copyright © , 2002 by James W Cooper

o

Figure5-3 The Rectangle drawing program.

Creating a Square From a Rectangle

A sguareisjust aspecia case of arectangle, and we can derive a square
class from the rectangle class without writing much new code. Here is the
entire class:

nanmespace CsharpPats {
public class Square : Rectangle {
public Square(int x, int y, int w:base(x, y, w, w {

}
}
}

This Sguare class contains only a constructor, which passes the square
dimensions on to the underlying Rectangle class by calling the constructor
of the parent Rectangle class as part of the Square constructor.

base(x, y, w, w)

Copyright © , 2002 by James W Cooper

87

Note the unusua syntax: the call to the parent class' s constructor follows a
colon and is before the opening brace of the constructor itself.

The Rectangle class creates the pen and does the actual drawing. Note that
there is no draw method at all for the Square class. If you don’t specify a
new method the parent class' s method is used automatically, and thisis
what we want to have happen, here.

The program that draws both a rectangle and a square has a smple
constructor where instances of these objects are created:

private void init() {
rect = new Rectangle (10, 20, 70, 100);
sq = new Square (150, 100, 70);

}

and a paint routine where they are drawn.

private void pic_Paint(object sender, PaintEventArgs e) {
Graphics g = e. G aphics;
rect.draw (Qg);
sq.draw (g);

}

The display is shown in Figure 5-4 for the square and rectangle:

Copyright © , 2002 by James W Cooper

_ioix

Figure 5-4 — Therectangle class and the squar e class derived from it.

Public, Private and Protected

In C#, you can declare both variables and class methods as public, private
or protected. A public method is accessible from other classes and a
private method is accessible only inside that class. Usually, you make all
class variables private and write getXxx and seXxx accessor functions to
set or obtain their values. It is generally abad idea to allow variables
inside a class to be accessed directly from outside the class, since this
violates the principle of encapsulation. In other words, the class is the only
place where the actual data representation should be known, and you
should be able to change the algorithms inside a class without anyone
outside the class being any the wiser.

C# introduces the protected keyword as well. Both variables and methods
can be protected. Protected variables can be accessed within the class and
from any subclasses you derive from it. Similarly, protected methods are
only accessible from that class and its derived classes. They are not

Copyright © , 2002 by James W Cooper

89

publicly accessible from outside the class. If you do not declare any level
of accessibility, private accessibility is assumed.

Overloading

In C# as well as other object oriented languages, you can have several
class methods with the same name as long as they have different calling
arguments or signatures. For example we might want to create an instance
of a StringTokenizer class where we define both the string and the
Separator.

tok = new StringTokenizer("apples, pears", ",");

By declaring constructors with different numbers of arguments we say we
are overloading the constructor. Here are the two constructors.

public StringTokeni zer(string dataline) {
init(dataLine, " ");

public StringTokeni zer(string dataLine, string delim {
init(dataLine, delim;

private void init(string data, string delinm {
/...

}

Of course C# alows us to overload any method as long as we provide
arguments that allow the compiler can distinguish between the various
overloaded (or polymorphic) methods.

Virtual and Override Keywords

If you have a method in a base class that you want to alow derived classes
to override, you must declare it as virtual. This means that a method of the
same name and argument signature in a derived class will be called rather
than the one in the base class. Then, you must declare the method in the
derived class using the override keyword.

Copyright © , 2002 by James W Cooper

If you use the override keyword in a derived class without declaring the
base class's method as virtual the compiler will flag this as an error. If you
create a method in a derived class that is identical in name and argument
signature to one in the base class and do not declare it as overload, this
asoisan error. If you create a method in the derived class and do not
declare it as override and also do not declare the base class' s method as
virtual the code will compile with awarning but will work correctly, with
the derived class's method called as you intended.

Overriding Methodsin Derived Classes

Suppose we want to derive a new class called DoubleRect from Rectangle,
which draws a rectangle in two colors offset by afew pixels. We must
declare the base class draw method as virtual:

public virtual void draw(Graphics g) {
g. DrawRectangl e (rpen, x, y, w, h);

In the derived DoubleRect constructor, we will create ared pen in the
constructor for doing the additional drawing:

public class Doubl eRect: Rectangl e {
private Pen rdPen;
public DoubleRect(int x, int y, int w, int h):
base(x,y,w h) {
rdPen = new Pen (Col or.Red, 2);

}

This means that our new class DoubleRect will have to have its own draw
method. However, this draw method will use the parent class's draw
method but add more drawing of its own.

public override void drawm Graphics g) {

base. draw (g); //draw one rectangl e using parent class
g. DrawRect angl e (rdPen, x +5, y+5, w, h);

}
Note that we want to use the coordinates and size of the rectangle that was

specified in the constructor. We could keep our own copy of these parametersin
the DoubleRect class, or we could change the protection mode of these variables
in the base Rectangle class to protected from private.

Copyright © , 2002 by James W Cooper

91

protected int x, y, w, h;

The final rectangle drawing window is shown in Figure 5-5.

o

Figure5-5 - The DoubleRect classes.

Replacing M ethods Using New

Another way to replace a method in a base class when you cannot declare
the base class method as virtual isto use the new keyword in declaring the
method in the derived class. If you do this, it effectively hides any
methods of that name (regardless of signature) in the base class. In that
case, you cannot make calls to the base method of that name from the
derived class, and must put al the code in the replacement method.

public new void draw(Graphics g) {

g. DrawRectangl e (rpen, x, vy, w, h);
g. DrawRect angl e (rdPen, x +5, y+5, w, h);

Copyright © , 2002 by James W Cooper

92

Overriding Windows Controls

In C# we can easily make new Windows controls based on existing ones
using inheritance. We'll create a Textbox control that highlights all the
text when you tab into it. In C#, we can create that new control by just
deriving a new class from the Textbox class.

We Il start by using the Windows Designer to create a window with two
text boxes on it. Then we'll go to the Project|Add User Control menu and
add an object called HiTextBox. We'll change this to inherit from
TextBox instead of UserControl.

public class Hi TextBox : Textbox {

Then, before we make further changes, we compile the program. The new
HiTextBox control will appear at the bottom of the Toolbox on the left of
the development environment. Y ou can create visual instarces of the
HtextBox on any windows form you create. Thisis shown in Figure 5-6.

£33 PrintPreviewContral
& ErrorProvider

% PrintDocument

ﬂ PagesSetupDialog
@ CrystalReportviewer
£33 HiTextBox

Cliphoard Ring | - |

General

Figure 5-6 - The Toolbox, showing the new control we created and an
instance of the HiTextBox on the Windows Designer pane of a new
form.

Now we can modify this class and insert the code to do the highlighting.

public class Hi TextBox : System W ndows. For ns. Text Box

{

Copyright © , 2002 by James W Cooper

93

private Contai ner conponents = null;

private void init() {
//add event handler to Enter event
this. Enter += new System Event Handl er (highlight);

// event handl er for highlight event

private void highlight(object obj, System EventArgs e) {
this.SelectionStart =0;
this. Sel ectionLength =this. Text.Length ;

}

N R T

public Hi Text Box() {
InitializeConponent();
init();

}

And that’ s the whole process. We have derived a new Windows control in
about 10 lines of code. That’s pretty powerful. Y ou can see the resulting
program in Figure Figure 5-6. If you run this program, you might at first
think that the ordinary TextBox and the HiTextBox behave the same,
because tabbing between them makes them both highlight. Thisis the
“autohighlight” feature of the C# textbox. However, if you click inside the
Textbox and the HiTextBox and tab back and forth, you will seein Figure
5-7 that only our derived HiTextBox continues to highlight.

[Highlighted text dem _ (o]]
[Go
IN-::rmaI
Highlighted

Copyright © , 2002 by James W Cooper

Figure5-7 A new derived HiTextbox control and a regular Textbox control.

I nterfaces

An interface is a declaration that a class will contain a specific set of
methods with specific arguments. If a class has those methods, it is said to
implement that interface. It is essentially a contract or promise that a class
will contain all the methods described by that interface. Interfaces declare
the signatures of public methods, but do not contain method bodies.

If a class implements an interface called Xyz, you can refer to that classas
if it was of type Xyz aswell as by its own type. Since C# only alows a
single tree of inheritance, thisis the only way for a class to be a member
of two or more base classes.

Let’s take the example of a class that provides an interface to a multiple
select list like alist box or a series of check boxes.

/lan interface to any group of conponents
//that can return zero or nore selected itens
//the nanes are returned in an Arraylist
public interface Miultisel {
void clear();
Arrayli st getSel ected();
Panel get W ndow();
}

When you implement the methods of an interface in concrete classes, you
must declare that the class uses that interface, and, you must provide an
implementation of each method in that interface as well, as we illustrate
below.

/1l ListSel «class inplements MiltiSel interface
public class ListSel : Miltisel {

public ListSel () {
}

public void clear() {

}

public ArrayList getSelected() {
return new ArraylList ();

}

Copyright © , 2002 by James W Cooper

95

public Panel getWndow() {
return new Panel ();
}

}

WEe'll show how to use this interface when we discuss the Builder pattern.

Abstract Classes

An abstract class declares one or more methods but |eaves them
unimplemented. If you declare a method as abstract, you must also declare
the class as abstract. Suppose, for example, that we define a base class
called Shape. It will save some parameters and create a Pen object to draw
with. However, we'll leave the actual draw method unimplemented, since
every different kind of shape will need a different kind of drawing
procedure:

public abstract class Shape {
protected i nt height, width;
protected i nt xpos, ypos;
protected Pen bPen;

[]-----
public Shape(int x, int y, int h, int w {
width = w
hei ght = h;
Xpos = X;
ypos =Y,
bPen = new Pen(Col or. Bl ack);
}
[]-----
public abstract void draw Graphics g);
/]-----

public virtual float getArea() ({
return height * width;
}

}
Note that we declare the draw method as abstract and end it with a
semicolon rather than including any code between braces. We also declare
the overall class as abstract.

Copyright © , 2002 by James W Cooper

9%

Y ou can’t create an instance of an abstract class like Shape, though. You
can only create instances of derived classes in which the abstract methods
arefilled in. So, lets create a Rectangle class that does just that:

public class Rectangl e: Shape {
public Rectangle(int x, int y,int h, int w:
base(x,y, h,w {}

public override void draw(G aphics g) {
g. DrawRect angl e (bPen, xpos, ypos, w dth, height);
}
}

Thisis a complete class that you can instantiate. It has areal draw method.

In the same way, we could create a Circle class which hasits own draw
method:

public class Circle :Shape {
public Grcle(int x, int y, int r):
base(x,y,r,r) { }
[]-----

public override void drawm Graphics g) {
g. DrawEl | i pse (bPen, xpos, ypos, w dth, height);
}
}

Now, if we want to draw the circle and rectangle, we just create instances
of them in the init method we call from our constructor. Note that since
they are both of base type Shape we can treat them as Shape objects:
public class Forml : System W ndows. Forms. Form {

private PictureBox pictureBoxl;

private Contai ner conponents = null;
private Shape rect, circ;

1]-----

public Formi() {
InitializeConponent();
init();

private void init() {
rect new Cshar pPat s. Rectangl e (50, 60, 70, 100);
circ new Circle (100,60, 50);

Copyright © , 2002 by James W Cooper

97

Finally, we draw the two objects by calling their draw methods from the
paint event handler we create as we did above:

private void pictureBox1l Paint(object sender, PaintEventArgs e) {
Graphics g = e. Gaphics ;
rect.draw (Qg);
circ.draw (Qg);

}

We see this program executing in Figure 5-8

[® abstract class demo =10 x|

O

Figure5-8 — An abstract class system drawing a Rectangle and Circle

Comparing Interfaces and Abstract Classes

When you create an interface, you are creating a set of one or more
method definitions that you must write in each class that implements that
interface. There is no default method code generated: you must include it
yourself. The advantage of interfaces is that they provide a way for a class
to appear to be part of two classes: one inheritance hierarchy and one from

Copyright © , 2002 by James W Cooper

the interface. If you leave an interface method out of a class that is
supposed to implement that interface, the compiler will generate an error.

When you create an abstract class, you are creating a base class that might
have one or more complete, working methods, but at least one that is left
unimplemented, and declared abstract. Y ou can't instantiate an abstract
class, but must derive classes from it that do contain implementations of
the abstract methods. If all the methods of an abstract class are
unimplemented in the base class, it is essentially the same as an interface,
but with the restriction that you can’t make a class inherit from it as well
as from another class hierarchy as you could with an interface. The
purpose of abstract classes is to provide a base class definition for how a
set of derived classes will work, and then allow the programmer to fill
these implementations in differently in the various derived classes.

Another related approach is to create base classes with empty methods.
These guarantee that all the derived classes will compile, but that the
default action for each event isto do nothing at al. Here is a Shape class
like that:
public class Null Shape {

protected int height, w dth;

protected i nt xpos, ypos;

protected Pen bPen;
[]-----

public Shape(int x, int y, int h, int w {
width = w
hei ght = h;
Xpos = X;
ypos =Yy;
bPen = new Pen(Col or. Bl ack);

public void draw(G aphics g){}

[]-----

public virtual float getArea() ({
return height * wi dth;

}

Copyright © , 2002 by James W Cooper

%

Note that the draw method is now an empty method. Derived classes will
compile without error, but they won’t do anything much. And there will be
no hint what method you are supposed to override, as you would get from
using an abstract class.

Summary

WEe' ve seen the shape of most of the important features in C# in this
chapter. C# provides inheritance, constructors and the ability to overload
methods to provide aternate versions. This leads to the ability to create
new derived versions even of Windows controls. In the chapters that
follow, we'll show you how you can write design patterns in C#.

Programs on the CD-ROM

\'I nheritance\ Rect Draw Rectangle and Square
\ I nheri tance\ Doubl eRect DoubleRect
\Inhertance\ Hi t ext A highlighted textbox
\'I nheritance\ abstract Abstract Shape

Copyright © , 2002 by James W Cooper

100

6. UML Diagrams

We have illustrated the patterns in this book with diagrams drawn using
Unified Modeling Language (UML). This ssimple diagramming style was
developed from work done by Grady Booch, James Rumbaugh, and Ivar
Jacobson, which resulted in amerging of ideas into a single specification
and, eventually, a standard. Y ou can read details of how to use UML in
any number of books such as those by Booch et al. (1998), Fowler and
Scott (1997), and Grand (1998). We'll outline the basics you'll need in
this introduction.

Basic UML diagrams consist of boxes representing classes. Let’s consider
the following class (which has very little actua function).

public class Person {
private string nane;
private int age;
[l-----
public Person(string nm int ag) {
name = nm
age = ag;

}

public string makeJob() {
return "hired";

}

public int getAge() {
return age

public void splitNames() {

}
}

We can represent this classin UML, as shown in Figure 6-1.

Copyright © , 2002 by James W Cooper

101

Person

riame

age

Perzoninm ag) {constructor
makeJdaki)

getioel)

splithames()

Figure 6-1— The Person class, showing private, protected, and public variables, and
static and abstract methods

The top part of the box contains the class name and package name (if any).
The second compartment lists the class's variables, and the bottom
compartment lists its methods. The symbols in front of the names indicate
that member’s visibility, where “+” means public, “-” means private, and
“#" means protected. Static methods are shown underlined. Abstract
methods may be shown in italics or, as shown in Figure Figure 6-1, with
an “{abstract}” labdl.

You can aso show al of the type information in aUML diagram where
that is helpful, asillustrated in Figure 6-2a.

Person Person
-mame: string MEIme:
-gcjeint a0E
+Perzoninm,agq) {constructor} Person
+makedabl 1 string makeJokb
+oetigel Tint et Lige
+zplitMames 1void splitMames
a b

Figure6-2 - The Person class UML diagram shown both with and without the
method types

UML does not require that you show all of the attributes of a class, and it
isusua only to show the ones of interest to the discussion at hand. For
example, in Figure 6-2 b, we have omitted some of the method details.

Copyright © , 2002 by James W Cooper

102

Inheritance

Let’s consider aversion of Person that has public, protected, and private
variables and methods, and an Employee class derived from it. We will
also make the getJob method abstract in the base Person class, which
means we indicate it with the MustOverride keyword.

public abstract class Person {

protected string nane;
private int age;

[]-----

public Person(string nm int ag) {
name = nm
age = ag;

}

public string makeJdob() {
return "hired";
}

public int getAge() {
return age;

}
public void splitNames() {

}
public abstract string getJob(); //nust override
}
We now derive the Employee class from it, and fill in some code for the
getJob method.

public class Enployee : Person {
public Enpl oyee(string nm int ag):base(nm ag){

public override string getJob() {
return "Worker";
}

}
Y ou represent inheritance using a solid line and a hollow triangular arrow.

For the smple Employee class that is a subclass of Person, we represent
thisin UML, as shown in Figure 6-3

Copyright © , 2002 by James W Cooper

103

L e e e s ' Employee
| +Person foonstructor)

| +makedob]
; +getige : +Employee {constructar }
repiitNames :qr +getdob {override }

U getiob fabstract] ;

Figure6-3— The UML diagram showing Employee derived from Person

Note that the name of the Employee class is not in italics because it is now
a concrete class and because it includes a concrete method for the formerly
abstract getJob method. While it has been conventional to show the
inheritance with the arrow pointing up to the superclass, UML does not
require this, and sometimes a different layout is clearer or uses space more
efficiently.

I nterfaces

An interface looks much like inheritance, except that the arrow has a
dotted line tail, as shown in Figure 6-4. The name <<interface>> may
also be shown, enclosed in double angle brackets, or guillamets.

FileExit

e : FileE:xit
» Execute q SR Execute

Figure 6-4 — ExitCommand implements the Command interface.

Composition
Much of the time, a useful representation of a class hierarchy must include
how objects are contained in other objects. For example, a small company
might include one Employee and one Person (perhaps a contractor).

Copyright © , 2002 by James W Cooper

104

public class Conpany {
private Enpl oyee enp;
private Person prs;
publ i c Conpany() {

}
}
We represent thisin UML, as shown in Figure 6-5.

Company

Person -

f 3

Enployee 1

Figure 6-5 — Company containsinstances of Person and Employee.

The lines between classes show that there can be 0 to 1 instances of Person
in Company and 0 to 1 instances of Employee in Company. The diamonds
indicate the aggregation of classes within Company.

If there can be many instances of a class inside another, such asthe array
of Employees shown here

public class Conpany {
private Enpl oyee[] enps;
private Enpoyee enp;
private Person prs;
public Conpany() {

}
}

we represent that object composition as a single line with either a“*” on it
or “0, *” onit, as shown in Figure 6-6.

Copyright © , 2002 by James W Cooper

Person

Enployee

Company

Figure 6-6 — Company contains any number of instances of Employee.

ettipl *

105

Some writers have used hollow and solid diamond arrowheads to indicate

containment of aggregates and circle arrowhead for single object

composition, but thisis not required.

Annotation

You will aso find it convenient to annotate your UML or insert comments
to explain which class calls a method in which other class. Y ou can place

a comment anywhere you want in a UML diagram. Comments may be
enclosed in a box with aturned corner or just entered as text. Text

comments are usually shown along an arrow line, indicating the nature of
the method that is called, as shown in Figure 6-7.

VacationVisitor

-

Eniployee

wisit(Me)

wisit

accept(w)

¥

accept

Vialbar viaikts Emgpslayas

Copyright © , 2002 by James W Cooper

106

Figure 6-7 — A comment is often shown in a box with a turned-down corner.

UML is quite a powerful way of representing object relationships in
programs, and there are more diagram features in the full specification.
However, the preceding brief discussion covers the markup methods we
usein thistext.

WithClassUML Diagrams

All of the UML programs in this book were drawn using the WithClass
program from MicroGold. This program reads in the actual compiled
classes and generates the UML class diagrams we show here. We have
edited many of these class diagrams to show only the most important
methods and relationships. However, the complete WithClass diagram
filesfor each design pattern are stored in that pattern’s directory. Thus,
you can run your demo copy of WithClass on the enclosed CD and read in
and investigate the detailed UML diagram starting with the same drawings
you see here in the book.

C#Project Files

All of the programsin this book were written as projects using Visual
Studio.NET. Each subdirectory of the CD-ROM contains the project file
for that project so you can load the project and compile it as we did.

Copyright © , 2002 by James W Cooper

107

7. Arrays, Files and Exceptions in C#

C# makes handling arrays and files extremely easy and introduces
exceptions to simplify error handling.

Arrays
In C#, all arrays are zero based. If you declare an array as

int[] x = new int[10];

such arrays have 10 elements, numbered from 0 to 9. Thus, arrays arein
line with the style used in C, C++ and Java.
const int MAX = 10;
float[] xy = new float[MAX];
for (int i =0; i < M i++) {
xy[i] =i}
}

Y ou should get into the habit of looping through arrays to the array
bounds minus one as we did in the above example.

All array variables have a length property so you can find out how large
the array is:
float[] z = new float[20];
for (int j =0; j< z.Length ; j++) {

z[j] =1J;
Arraysin C# are dynamic and space can be reallocated at any time. To
create areference to an array and allocate it later within the class, use the

Syntax:
float z[]; /I decl are here
z = new float[20]; [lcreate |ater

Copyright © , 2002 by James W Cooper

108

Collection Objects

The System.Collections namespace contains a number of useful variable
length array objects you can use to add and obtain items in several ways.

ArrayLists

The ArrayList object is essentially a variable length array that you can add
items to as needed. The basic ArrayList methods allow you to add
elements to the array and fetch and change individual elements:

float[] z = {1.0f, 2.9f, 5.6f};

ArraylList arl = new ArraylList ();

for (int j =0; j< z.Length ; j++) {
arl.Add (z[j1);

}

The ArrayList has a Count property you can use to find out how many
elements it contains. Y ou can then move from O to that count minus oneto
access these elements, treating the ArrayList just as if it were an array:

for (j =0; j < arl.Count ; j++) {
Console. WitelLine (arl[j]);
}

Y ou can aso access the members of ArrayList object sequentially using
the foreach looping construct without needing to create an index variable
or know the length of the ArrayList:

foreach (float a in arl) {
Consol e. WitelLine (a);
}

Y ou can aso use the methods of the ArrayList shown in Table 7-1.

Cl ear Clears the contents of the
ArrayList

Cont ai ns(obj ect) Returns true if the ArrayList
contains that value

CopyTo(array) Copies entire ArrayList into a

Copyright © , 2002 by James W Cooper

109

one-dimensional array.
I ndexC (obj ect) Returns the first index of the vaue
I nsert (index, object) Insert the element at the specified
index.
Renove(obj ect) Remove dement from list.
RermoveAt (i ndex) Remove element from specified
position
Sort Sort ArrayList

Table7-1- ArrayList methods

An object fetched from an ArrayList is aways of type object. This means
you usually need to cast the object to the correct type before using it:

float x = (float) arl[j];

Hashtables

A Hashtable is avariable length array where every entry can be referred to
by akey value. Typically, keys are strings of some sort, but they can be
any sort of object. Each element must have a unique key, although the
elements themselves need not be unique. Hashtables are used to allow
rapid access to one of alarge and unsorted set of entries, and can also be
used by reversing the key and the entry values to create a list where each
entry is guaranteed to be unique.

Hasht abl e hash = new Hashtable ();

float freddy = 12. 3f;

hash. Add ("fred", freddy); //add to table
//get this one back out

float tenp = (float)hash["fred"];

Copyright © , 2002 by James W Cooper

110

Note that like the ArrayList, we must cast the values we obtain from a
Hashtable to the correct type. Hashtables also have a count property and
you can obtain an enumeration of the keys or of the values.

SortedLists

The SortedList class maintains two internal arrays, so you can obtain the
elements either by zero-based index or by a phabetic key.

float sammy = 44.55f;

SortedList slist = new SortedList ();

slist.Add ("fred", freddy);

slist.Add ("sanm', samy);

/1 get by index

float newFred = (float)slist.GetBylndex (0);

/1 get by key

float newSam = (float)slist["sanl];

You will aso find the Stack and Queue objects in this namespace. They
behave much as you' d expect, and you can find their methods in the
system help documentation.

Exceptions

Error handling in C# is accomplished using exceptions instead of other
more awkward kinds of error checking. The thrust of exception handling is
that you enclose the statements that could cause errorsin atry block and
then catch any errors using a catch statement.

try {
// Statenments

}
catch (Exception e) {

//do these if an error occurs

}
finally {

/1 do these anyway

}

Copyright © , 2002 by James W Cooper

111

Typicaly, you use this approach to test for errors around file handling
statements, although you can aso catch array index out of range
statements and a large number of other error conditions. The way this
works is that the statements in the try block are executed and if there is no
error, control passes to the finally statements if any, and then on out of the
block. If errors occur, control passes to the catch statement, where you can
handle the errors, and then control passes on to the finally statements and
then on out of the block.

The following example shows testing for any exception. Since we are
moving one element beyond the end of the ArrayL.ist, an error will occur:

try {
//note- one too nany
for(int i =0; i <= arl.Count ; i++)
Console. WiteLine (arl[i]);
}
catch(Exception e) {
Consol e. WiteLine (e. Message);
}

This code prints out the error message and the calling locations in the
program and then goes on.

01234567891 ndex was out of range.
Must be non-negative and |l ess than the size of the collection.
Paranmet er nane: index

at System Col | ections. ArrayList.get_lten(Int32 index)

at arr.Forml..ctor() in forml.cs:line 58

By contrast, if we do not catch the exception, we will get an error message
from the runtime system and the program will exit instead of going on.

Some of the more common exceptions are shown in Table 6-2.

AccessException Error in accessing a method or
field of aclass.
Argunent Excepti on Argument to a method is not

Copyright © , 2002 by James W Cooper

112

vaid.

Argunment Nul | Excepti on Argument is null

ArithmeticException Overflow or underflow

Di vi deByZer oExcepti on Division by zero

I ndexQut Of RangeExcepti on Array index out of range

Fi | eNot FoundExcepti on File not found

EndOf St reanException Access beyond end of input
stream (such asfiles)

Di r ect or yNot FoundExcepti on Directory not found

Nul I Ref erenceException The object variable has not been
initialized to areal value.

Multiple Exceptions

You can aso catch a series of exceptions and handle them differently in a
series of catch blocks.

try {
for(int i =0; i<= arl.Count ; i++) {
int k= (int)(float)arl[i];
Console. Wite(i +" "+ k [/ i);
}

}
catch(Di vi deByZer oException e) {
printZErr(e);

}
cat ch(1 ndexQut O RangeException e) {
printCErr(e);

}

catch(Exception e) {
printErr(e);

}

This gives you the opportunity to recover from various errors in different
ways.

Copyright © , 2002 by James W Cooper

113

Throwing Exceptions

You don't have to deal with exceptions exactly where they occur: you can
pass them back to the calling program using the Throw statement. This
causes the exception to be thrown in the calling program:

try {
/] statenents

}
catch(Exception e) {

throw(e); //pass on to calling program
}

Note that C# does not support the Java syntax throws, that alows you to
declare that a method will throw an exception and that you therefore must
provide an exception handler for it.

File Handling

The file handling objects in C# provide you with some fairly flexible
methods of handling files.

The File Object

The File object represents afile, and has useful methods for testing for a
file's existence as well as renaming and deleting a file. All of its methods
are static, which means that you do not (and cannot) create an instance of
File using the new operator. Instead, you use its methods directly.

if (File.Exists ("Foo.txt"))
File.Delete ("foo.txt");

Y ou can also use the File object to obtain a FileStream for reading and
writing file data:
/lopen text file for reading

StreanReader ts = File.OpenText ("fool.txt");

//open any type of file for reading
FileStreamfs = File.OpenRead ("foo02.any");

Some of the more useful File methods are shown in the table below:

Copyright © , 2002 by James W Cooper

114

Static method Meaning
File.Fil eExists(filenane) trueif file exists
File.Del ete(fil enane) Delete the file
Fil e. AppendText (Stri ng) Append t ext

File.Copy(fronFile, toFile) | Copy a file

File. Move(froniile, toFile) | Mve a file, deleting old
copy

Fil e. Get Ext ensi on(fil enamne) Return file extension

Fil e. HasExtension(filenane) |true if file has an

ext ensi on.

Reading Text File
To read atext file, use the File object to obtain a StreamReader object.
Then use the text stream’ s read methods:

StreanReader ts = File.OpenText ("fool.txt");
String s =ts.ReadLine ();

Writing a Text File

To create and write atext file, use the CreateText method to get a
StreamWriter object.
/lopen for witing

StreamWiter sw= File.CreateText ("foo3.txt");
sw.WiteLine ("Hello file");

If you want to apperd to an existing file, you can create a StreamWriter
object directly with the Boolean argument for append set to true:

/lappend to text file
StreanWiter asw = new StreanWiter ("fool.txt", true);

Exceptionsin File Handling
A large number of the most commonly occurring exceptions occur in
handling file input and output. Y ou can get exceptions for illegal
filenames, files that do not exist, directories that do not exigt, illegal
filename arguments and file protection errors. Thus, the best way to

Copyright © , 2002 by James W Cooper

115

handle file input and output is to enclose file manipulation code in Try
blocks to assure yourself that all possible error conditions are caught, and
thus prevent embarrassing fatal errors. All of the methods of the various
file classes show in their documentation which methods they throw. Y ou
can assure yourself that you catch all of them by just catching the generad
Exception object, but if you need to take different actions for different
exceptions, you can test for them separately.

For example, you might open text files in the following manner:

try {

//open text file for reading
StreanReader ts = File.OpenText ("fool.txt");
String s =ts.ReadLine ();

}
catch(Exception e) {

Consol e. WiteLine (e. Message);
}

Testing for End of File

There are two useful ways of making sure that you do not pass the end of a
text file: looking for a null exception and looking for the end of a data
stream. When you read beyond then end of atext file, no error occurs and
no end of file exception is thrown. However, if you read a string after the
end of afile, it will return asanull value. You can use thisto create an
end-of-file function in afile reading class:

private StreanReader rf;

private bool eof;

[T

public String readLine () {
String s = rf.ReadLine ();

if(s == null)
eof = true;

return s;

}

R R

public bool fEof() {
return eof;

}

Copyright © , 2002 by James W Cooper

116

The other way for making sure you don't read past then end of afileisto
peek ahead using the Stream’s Peek method. This returns the ASCII code
for the next character, or a—1 if no characters remain.
public String read_Line() {

String s = ""

if (rf.Peek() > 0) {
s = rf.ReadLi ne ();

}
el se
eof =t r ue;
return s;
}
A csFile Class

It is sometimes convenient to wrap these file methods in a smpler class
with easy to use methods. We have done that here in the csFile class.
WEe Il be using this convenience class in some of the examplesin later
chapters.

Ee can include the filename and path in the constructor or we can passit in
using the overloaded OpenForRead and OpenForWrite statements.

public class csFile
{
private string fil eNane;
St reanReader ts;
StreanmWiter ws;
private bool opened, witeGCpened;

R

public csFile() {
init();

}

R

private void init() {
opened = fal se;
writeOpened = fal se;

public csFile(string file_nane) {

Copyright © , 2002 by James W Cooper

117

fileName = fil e_nane;
init();

We can open afile for reading using either of two methods, once including
the filename and one which uses a filename in the argument.

public bool OpenForRead(string file_namne){
fileName = fil e_nane;
try {
ts = new StreanReader (fileNane);
opened=tr ue;

cat ch(Fi | eNot FoundException e) {
return fal se;
}

return true,

public bool OpenForRead() {
return QpenFor Read(fil eNane);
}

Y ou can then read data from the text file using a readLine method:

public string readLine() {
return ts. ReadLine ();
}

Likewise, the following methods allow you to open afile for writing and
write lines of text to it.

public void writeLine(string s) {
ws. WiteLine (s);
}

e
public bool OpenForWite() {
return QpenForWite(fileNane);

public bool OpenForWite(string file_nane) {
try{
ws = new StreanmWiter (file_nane);
fileName = fil e_nane;
witeQpened = true;
return true;

Copyright © , 2002 by James W Cooper

118

}

cat ch(Fi | eNot FoundException e) {
return fal se;

}

WEe'll use this smplified file method wrapper class in some of the
following chapters, whenever we need to read in afile.

Copyright © , 2002 by James W Cooper

119

Part 2. Creational Patterns

With the foregoing description of objects, inheritance, and interfacesin
hand, we are now ready to begin discussing design patterns in earnest.
Recall that these are merely recipes for writing better object-oriented
programs. We have divided them into the Gang of Four’s three groups:
creational, structural and behavioral. We'll start out in this section with the
creational patterns.

All of the creational patterns deal with ways to create instances of objects.
This is important because your program should not depend on how objects
are created and arranged. In C#, of course, the simplest way to create an
instance of an object is by using the new operator.

Fred fredl = new Fred(); /linstance of Fred class

However, thisreally amounts to hard coding, depending on how you
create the object within your program. In many cases, the exact nature of
the object that is created could vary with the needs of the program, and
abstracting the creation process into a specia “creator” class can meke
your program more flexible and general.

The Factory M ethod patter n provides a simple decision-making class
that returns one of several possible subclasses of an abstract base class,
depending on the data that are provided. We'll start with the Simple
Factory pattern as an introduction to factories and then introduce the
Factory Method Pattern as well.

The Abstract Factory pattern provides an interface to create and return
one of severa families of related objects.

The Builder pattern separates the construction of a complex object from
its representation so that several different representations can be created,
depending on the needs of the program.

Copyright © , 2002 by James W Cooper

120

The Prototype patter n starts with an instantiated class and copies or
clones it to make new instances. These instances can then be further
tailored using their public methods.

The Singleton pattern is a class of which there can be no more than one
instance. It provides a single global point of access to that instance.

Copyright © , 2002 by James W Cooper

121

8. The Simple Factory Pattern

One type of pattern that we see again and again in OO programs is the
Simple Factory pattern. A Simple Factory pattern is one that returns an
instance of one of several possible classes, depending on the data
provided to it. Usually al of the classes it returns have a common
parent class and common methods, but each of them performs a task
differently and is optimized for different kinds of data. This Simple
Factory is not, in fact, one of the 23 GoF patterns, but it serves here as
an introduction to the somewhat more subtle Factory Method GoF
pattern we'll discuss shortly.

How a Simple Factory Works

To understand the Simple Factory pattern, let’s look at the diagram in
Figure 8-1.

X

dolt() XFactory

+getClass(as Integer):X
Produces different instances of X
XZ

dolt() dolt()

XY

Figure8-1- A Simple Factory pattern

In thisfigure, X isabase class, and classes XY and XZ are derived
from it. The XFactory class decides which of these subclasses to

return, depending on the arguments you give it. On the right, we define
agetClass method to be one that passes in some value abc and that
returns some instance of the class x. Which one it returns doesn't
matter to the programmer, since they all have the same methods but
different implementations. How it decides which oneto return is

Copyright © , 2002 by James W Cooper

entirely up to the factory. It could be some very complex function, but
it is often quite smple.

Sample Code

Let's consider a ssimple C# case where we could use a Factory class.
Suppose we have an entry form and we want to alow the user to enter
his name either as “firstname lastname’ or as “lastname, firstname.”
WEe Il make the further simplifying assumption that we will always be
able to decide the name order by whether there is a comma between the
last and first name.

Thisisapretty smple sort of decision to make, and you could make it
with asmple if statement in asingle class, but let'suse it hereto
illustrate how a factory works and what it can produce. We'll start by
defining a smple class that takes the name string in using the
constructor and allows you to fetch the names back.
// Base class for getting split nanes

public class Naner {

/I parts stored here
protected string frName, | Naneg;

/lreturn first nane
public string getFrnane()
return frNang;

}

//return | ast nane

public string getLnanme() {
return | Nane;

}

}
Note that our base class has no constructor.

TheTwo Derived Classes

Now we can write two very simple derived classes that implement that
interface and split the name into two parts in the constructor. In the
FirstFirst class, we make the simplifying assumption that everything
before the last space is part of the first name.
public class FirstFirst : Namer {

public FirstFirst(string nane) {

int i = nanme.|lndexOf (" ");

if(i >0) {

frNanme = nane. Substring (0, i).Trim();

Copyright © , 2002 by James W Cooper

123

| Name = nane. Substring (i + 1).Trim();

}

el se {
| Name = nane;
frName = ""
}

}

}
And in the LastFirst class, we assume that a comma delimits the | ast

name. In both classes, we aso provide error recovery in case the space
or comma does not exist.

public class LastFirst : Naner {
public LastFirst(string name) {
int i = nanme.|ndexO>t (",");
if(i >0 {

| Nane = nane. Substring (0, i);
frName = nane. Substring (i + 1).Trim();

}
}

In both cases, we store the split name in the protected IName and
frName variables in the base Namer class. Note that we don’t even
need any getFrname or getl.name methods, since we have aready
written them in the base class.

Building the Smple Factory

Now our Simple Factory classis easy to write. We just test for the
existence of acomma and then return an instance of one class or the
other.
public class NaneFactory {

public NameFactory() {}

public Naner getName(string nane) {

int i = nanme.|ndexO™t (",");
if(i > 0)

return new LastFirst (name);
el se

return new FirstFirst (nane);

Copyright © , 2002 by James W Cooper

124

Using the Factory
Let’s see how we put this together. In response to the Compute button
click, we use an instance of the NameFactory to return the correct

derived class.
private void bt Compute_dick(
obj ect sender, System EventArgs e) {
Namer nm = naneFact. get Nane (txNane. Text);
txFirst. Text = nmgetFrnane ();
txLast. Text = nm getLname ();

}

Then we call the getFrname and getL name methods to get the correct
splitting of the name. We don’'t need to know which derived class this
is. the Factory has provided it for us, and all we need to know is that it
has the two get methods.

The complete class diagram is shown in Figure 8-2.

NameClass NameFactory
+getFirst(1. String +gethlamerinm):MameClass
+yetlasti): String

FirstFirst LastFirst

+Mewrnm) +Mewrnm)

Figure 8-2— The Namer factory program

We have constructed a simple user interface that allows you to enter
the names in either order and see the two names separately displayed.
Y ou can see this program in Figure 8-3.

Copyright © , 2002 by James W Cooper

125

=

Enter name

|Sandy Smith

First ISand_'.'
Lazt
ISmith

Compute

Figure 8-3 —The Namer program executing

Y ou type in a name and then click on the Get name button, and the
divided name appears in the text fields below. The crux of this program
is the compute method that fetches the text, obtains an instance of a
Namer class, and displays the results.

And that’ s the fundamental principle of the Simple Factory pattern.

Y ou create an abstraction that decides which of several possible classes
to return, and it returns one. Then you call the methods of that class
instance without ever knowing which subclass you are actually using.
This approach keeps the issues of data dependence separated from the
classes useful methods.

Factory Patternsin Math Computation

Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. Buit it is perfectly possible to
use them in programs that simply perform mathematical computations.
For example, in the Fast Fourier Transform (FFT), you evaluate the
following four equations repeatedly for a large number of point pairs

Copyright © , 2002 by James W Cooper

126

over many passes through the array you are transforming. Because of
the way the graphs of these computations are drawn, the following four
equations constitute one instance of the FFT “butterfly.” These are
shown as Equations 1-4.

R =R +R,co8(y)- I,sn(y) (D
R, =R - R,cog(y)+1,sn(y) (2
I, =1, +Rdn(y) +1,co8(y) (3)
I, =1, - R,sn(y) - 1,co8(y) (4
However, there are a number of times during each pass through the

data where the angley is zero. In this case, your complex math
evaluation reduces to Equations (5-8).

R=R+R,
R =R-R 9
=1,+1, @
Ié:|1' I2
(8)

We first define aclass to hold complex numbers:
public class Conpl ex {

float real;

float inmag;
R R
public Complex(float r, float i) {

real =r; img = i;
}
e
public void setReal (float r) { real =r;}
R e R R R TP PP
public void setlnmag(float i) {img=i;}
e R
public float getReal () {return real;}
e R T
public float getlmag() {return inmag;}
}

Our basic Buttefly classis an abstract class that can be filled in by one
of the implementations of the Execute command:

public abstract class Butterfly {

Copyright © , 2002 by James W Cooper

127

float vy;
public Butterfly() {

}
public Butterfly(float angle) {
y = angl e;

abstract public void Execute(Conplex x, Conplex y);
}

We can then make a simple addition Butterfly class which implements
the add and subtract methods of equations 5-8:

class addButterfly : Butterfly {
float oldrl, oldil;
public addButterfly(float angle) {
}

public override void Execute(Conplex xi, Conplex xj) {
oldrl = xi.getReal ();
oldil = xi.getlnmag();
xi.setReal (oldrl + xj.getReal ())
Xj.setReal (oldrl - xj.getReal ())
xi.setlmag(oldil + xj.getlmag())
Xj.setlmag(oldil - xj.getlmag())

}

}

The TrigBuitterfly class is analogous except that the Execute method
contains the actual trig functions of Equations 1-4:

public class TrigButterfly:Butterfly {
float y, oldrl, oldia3;
float cosy, siny;
float r2cosy, r2siny, i2cosy, i2siny;

public TrigButterfly(float angle) {
y = angl e;
cosy = (float) Math. Cos(y);
siny = (float)Math. Sin(y);

public override void Execute(Conplex xi, Conplex xj) {
oldrl = xi.getReal ();
oldil = xi.getlmg();

r2cosy = xj.getReal () * cosy;
r2siny = xj.getReal () * siny;
i 2cosy = Xj.getlnmag()*cosy;
i 2siny = xj.getlmag()*siny;

Xi.setReal (oldrl + r2cosy +i 2siny);
xi.setlmag(oldil - r2siny +i2cosy);
Xj .setReal (oldrl - r2cosy - i2siny);
Xj.setlmag(oldil + r2siny - i2cosy);

Copyright © , 2002 by James W Cooper

128

}
Then we can make a simple factory class that decides which class

instance to return. Since we are making Butterflies, we'll call our
Factory a Cocoon. We never really need to instantiate Cocoon, so we
will make its one method static:

public class Cocoon {
static public Butterfly getButterfly(float y) {
if (y!'=0)

return new TrigButterfly(y);
el se
return new addButterfly(y);

Programs on the CD-ROM

\ Fact or y\ Naner The name factory

\ Fact ory\ FFT A FFT example

Thought Questions

1. Consider apersona checkbook management program like Quicken.
It manages several bank accounts and investments and can handle
your bill paying. Where could you use a Factory pattern in
designing a program like that?

2. Suppose you are writing a progam to assist homeownersin
designing additions to their houses. What objects might a Factory
be used to produce?

Copyright © , 2002 by James W Cooper

129

9. The Factory Method

WEe've just seen a couple of examples of the ssimplest of factories. The
factory concept recurs all throughout object-oriented programming, and
we find afew examples embedded in C# itself and in other design patterns
(such asthe Builder pattern). In these cases a single class acts as atraffic
cop and decides which subclass of a single hierarchy will be instantiated.

The Factory Method pattern is a clever but subtle extension of this idea,
where no single class makes the decision as to which subclass to
instantiate. Instead, the superclass defers the decision to each subclass.
This pattern does not actually have a decision point where one subclass is
directly selected over another class. Instead, programs written to this
pattern define an abstract class that creates objects but lets each subclass
decide which object to create.

We can draw a pretty simple example from the way that swimmers are
seeded into lanes in a swim meet. When swimmers compete in multiple
heats in a given event, they are sorted to compete from slowest in the early
heats to fastest in the last heat and arranged within a heat with the fastest
swimmers in the center lanes. Thisis referred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the
event twice. During preliminaries everyone competes, and the top 12 or 16
swimmers return to compete against each other at finals. In order to make
the preliminaries more equitable, the top hesats are circle seeded: The
fastest three swimmers are in the center lane in the fastest three heats, the
second fastest three swimmers are in the next to center lane in the top
three heats, and so forth

So, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Event class.

public abstract class Event {
protected i nt nunlianes;
protected ArraylList sw nmers;

Copyright © , 2002 by James W Cooper

130

public Event(string filename, int |anes) {
nunLanes = | anes;
swimers = new ArraylList();
/lread in swimers fromfile
csFile f = new csFile(filenane);
f. OpenFor Read ();
string s = f.readLine();
while (s !'= null) {
Swi nmer sw = new Swi nmer (s);
swi mers. Add (sw);
s = f.readLine();

f.close();

public abstract Seeding get Seedi ng();
public abstract bool isPrelim));
public abstract bool isFinal();
public abstract bool isTi medFinal();

}

Note that this classis not entirely without content. Since all the derived
classes will need to read data from afile, we put that code in the base
class.

These abstract methods simply show the rest of a complete
implementation of and Event class. Then we can implement concrete
classes from the Event class, called PrelimEvent and TimedFinal Event.
The only difference between these classes is that one returns one kind of
seeding and the other returns a different kind of seeding.

We also define an abstract Seeding class with the following methods.

public abstract class Seeding {
protected int nunLanes;
protected int[] | anes;

public abstract |Enunerator getSw mers();
public abstract int getCount();

public abstract int getHeats();

protected abstract void seed();
R
protected void cal cLaneOrder () {

// conpl ete code on CD

Copyright © , 2002 by James W Cooper

}

}
Note that we actually included code for the calcLaneOrder method but

131

omit the code here for simplicity. The derived classes then each create an
instance of the base Seeding class to call these functions.

We can then create two concrete seeding subclasses: StraightSeeding and

CircleSeeding. The PrelimEvent class will return an instance of

CircleSeeding, and the TimedFinalEvent class will return an instance of
StraightSeeding. Thus, we see that we have two hierarchies: one of Events

and one of Seedings.

Events

+Mew(Filename lanes)
+getSwimmers()
+sPrelim()
+isFinall)
+izTimedFinali)
+yetzeeding)

A“‘;\.

TimedFinalEvent

Prelimevent

' getSeeding
s getHeat

s getCount :
L seed
| getSwimmers
'getHeats :
Xelele}

» calclaneCrder
1 Maw

Figure 9-1 —Seeding diagram showing Seeding interface and derived classes.

Copyright © , 2002 by James W Cooper

StraighfSEeding

CircleSeeding

132

In the Events hierarchy, you will see that both derived Events classes
contain a getSeeding method. One of them returns an instance of
StraightSeeding and the other an instance of CircleSeeding. So you see,
there is no real factory decision point as we had in our smple example.
Instead, the decision as to which Event class to instantiate is the one that
determines which Seeding class will be instantiated.

While it looks like there is a one-to-one correspondence between the two
class hierarchies, there needn’t be. There could be many kinds of Events
and only afew kinds of Seeding used.

The Swimmer Class

We haven't said much about the Swimmer class, except that it contains a
name, club age, seed time, and place to put the heat and lane after seeding.
The Event class reads in the Swimmers from some database (a file in our
example) and then passes that collection to the Seeding class when you
call the getSeeding method for that event.

The Events Classes

We have seen the previous abstract base Events class. In actual use, we
use it to read in the swimmer data and pass it on to instances of the
Swimmer class to parse.

The base Event class has empty methods for whether the event is a prelim,
final, or timed fina event. We fill in the event in the derived classes.

Our PrelimEvent class just returns an instance of CircleSeeding.

public class PrelinEvent: Event {
public PrelinEvent(string filenanme, int |anes):
base(fil enane, | anes) {}
/lreturn circle seeding
public override Seedi ng get Seeding() {
return new Circl eSeedi ng(swi nrers, numnlLanes);

public override bool isPrelinm) {
return true

Copyright © , 2002 by James W Cooper

}
public override bool isFinal() {
return fal se;

public override bool isTinedFinal () {
return fal se;
}
}

Our TimedFinalEvent class returns an instance of StraightSeeding.

public class TinedFinal Event: Event {

public TinedFi nal Event (string fil enane,
int |anes):base(filenane, |anes) {}
/lreturn Straight Seeding cl ass
public override Seeding getSeeding() {
return new Strai ght Seedi ng(swi mrers, nunianes);
}

public override bool isPrelim) {
return false;
}

public override bool isFinal() {
return false;

public override bool isTinedFinal () {
return true;
}

}

In both cases our events classes contain an instance of the base Events
class, which we use to read in the data files.

Straight Seeding
In actually writing this program, we'll discover that most of the work is
done in straight seeding. The changes for circle seeding are pretty
minimal. So we instantiate our StraightSeeding class and copy in the
Collection of swimmers and the number of lanes.

protected override void seed() {
//loads the swirs array and sorts it
sort Upwar ds() ;

Copyright © , 2002 by James W Cooper

133

134

int | astHeat = count % nunianes;
if (lastHeat < 3)
| ast Heat = 3; /11 ast heat nust have 3 or nore
int |astLanes = count - | astHeat;
nunHeats = count / nunlanes;
if (lastLanes > 0)
nunHeat s++;
int heats = nunHeats;
/I place heat and | ane in each swi nmer's object
/1 Add in |ast partial heat
//copy fromarray back into Arrayli st
//details on CDROM

}
This makes the entire array of seeded Swimmers available when you call

the getSwimmers method.

Circle Seeding

The CircleSeeding class is derived from StraightSeeding, so it starts by
calling the parent class's seed method and then rearranges the top heats

protected override void seed() {
int circle;
base. seed(); //do straight seed as default
if (numHeats >= 2) {
if (nunHeats >= 3)
circle = 3;
el se
circle = 2;
int i = 0;
for (int j =0; j < nunLanes; j++) {
for (int k =0; k <circle; k++) {
swnrs[i].setlLane(lanes[j]);
swnr s[i ++] . set Heat (nunHeats - k);

Our Seeding Program

In this example, we took alist of swimmers from the Web who competed
in the 500-yard freestyle and the 100-yard freestyle and used them to build

Copyright © , 2002 by James W Cooper

our TimedFinalEvent and PrelimEvent classes. Y ou can see the results of

these two seedings in Figure 9-2. In the left box, the 500 Free event is

selected, and you can see that the swimmers are seeded in strainght seeing

135

from slowest to fastest. In the right box, the 100 Free event is selected and
is circle seeded, with the last 3 heats seeded in a rotating fashion.

1100 Free 12 AEmip Fam WRAT 45554 - 12 3Enly Hamgan MES 5113 -
12 diathipn Hiler Whw' 5.5 600 Free 11 3 Taep Thekn FEoY S
12 2 el abiza Scduoki Whhar BINLGE 10 3Linckay Hokama Her i
12 5 5amsh Bowmen COEY S0gad 12 d.Jen Fliman LY FE
12 1 Caitin Klich MHEH 50259 11 4 &nnie Golditein Q5% SR
12 i Caithn Hadley MWEM GEEE2 10 4kda Bus POy SR
11 3Kim Fichandwon b 1 12 2K.aki udiey Wit 5606
11 dBeth Halinmaski Har 50477 11 2 Lindsoy Woodward 055 53
11 2 Falicsa Frnery Wit GETR 10 2 angarst Ramesy WEM B6d4
11 S Cankn Bowman COEw 50573 12 S alkei sl FCSC S6E3
11 1 Kalie Hatin COEY 5067 11 5§ Teiesa Roselli DELM SETH
11 B Lawen Dudap it GREE 10 8 Ashly MoLalan COEY G
10 Lo Schuanhaersr W SI0E2 12 1 dmards McCathy WA S6.E6
10 dEmrrm Huzley MEH 512119 111 5amantha Kely Gyl S5E8
10 2 Erllp Wiffat B 1 = | _"',_J 101 Ealie Brackdedlal E0 SR _"'J

Figure 9-2— Straight seeding of the 500 free and cir cle seeding of the 100 free

Other Factories

Now one issue that we have skipped over is how the program that reads in
the swimmer data decides which kind of event to generate. We finese this
here by ssmply creating the correct type of event when we read in the data.
This code is in our init method of our form:

private void init() {
/lcreate array of events
events = new ArraylList ();
| sEvents. ltens. Add ("500 Free");
| sEvents.ltens. Add ("100 Free");
/land read in their data
events. Add (new Ti nedFi nal Event ("500free.txt", 6));
events. Add (new PrelinEvent ("100free.txt", 6));

Copyright © , 2002 by James W Cooper

136

Clearly, thisis an instance where an EventFactory may be needed to
decide which kind of event to generate. This revisits the simple factory
with which we began the discussion.

When to Use a Factory M ethod
Y ou should consider using a Factory method in the following situations.

A class can't anticipate which kind of class of objects it must create.

A class uses its subclasses to specify which objects it creates.

Y ou want to localize the knowledge of which class gets created.
There are severa variations on the factory pattern to recognize.

1. Thebase classis abstract and the pattern must return a complete
working class.

2. The base class contains default methods and these methods are called
unless the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class
types to return. In this case the classes may share the same method
names but may do something quite different.

Thought Question

Seeding in track is carried out from inside to outside lanes. What classes
would you need to develop to carry out tracklike seeding as well?

Programson the CD-ROM
\ Fact or yMet hod\ Seeder Seeding program

Copyright © , 2002 by James W Cooper

137

10. The Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher than the
factory pattern. You can use this pattern when you want to return one of
several related classes of objects, each of which can return several
different objects on request. In other words, the Abstract Factory isa
factory object that returns one of several groups of classes. Y ou might
even decide which class to return from that group using a Simple Factory.

Common thought experiment-style examples might include automobile
factories. Y ou would expect a Toyota factory to work exclusively with
Toyota parts and a Ford factory to use Ford parts. Y ou can consider each
auto factory as an Abstract Factory and the parts the groups of related
classes.

A GardenMaker Factory

Let’s consider a practical example where you might want to use the
abstract factory in your application. Suppose you are writing a program to
plan the layout of gardens. These could be gardens consisting of annuals,
vegetables, or perennials. However, no matter which kind of garden you
are planning, you want to ask the same questions.

1. What are good border plants?

2. What are good center plants?

3.What plants do well in partial shade?

(And probably alot more plant questions that we won’'t get into here.)

We want a base C# Garden class that can answer these questions as class
methods.

public class Garden {
protected Plant center, shade, border;
protected bool showCenter, showShade, showBorder;
/'l sel ect which ones to display
public void setCenter() {showCenter = true;}

Copyright © , 2002 by James W Cooper

138

public void setBorder() {showBorder =true;}
public void set Shade() {showShade =true;}
/1 draw each pl ant

public void draw(G aphics g) {
if (showCenter) center.draw (g, 100, 100);

if (showShade) shade.draw (g, 10, 50);
i f (showBorder) border.draw (g, 50, 150):

}
}

Our Plant object sets the name and draws itself when its draw method is
caled.

public class Plant {
private string nane;
private Brush br;
private Font font;

public Plant(string pname) {
nane = pnane; / / save nane
font = new Font ("Arial", 12);
br = new Sol i dBrush (Col or. Bl ack);

public void drawm Graphics g, int x, int y) {
g.Drawstring (name, font, br, x, y);
}

}
In Design Patterns terms, the Garden interface is the Abstract Factory. It

defines the methods of concrete class that can return one of several
classes. Here, we return central, border, and shade- loving plants as those
three classes. The abstract factory could aso return more specific garden
information, such as soil pH or recommended moisture content.

In areal system, each type of garden would probably consult an elaborate
database of plant information. In our simple example we'll return one kind
of each plant. So, for example, for the vegetable garden we ssmply write
the following.

public class Veggi eGarden : Garden {

public Veggi eGarden() {
shade = new Pl ant("Broccoli");
border = new Pl ant ("Peas");

Copyright © , 2002 by James W Cooper

140

ol

—Garden type
" Annual BEroccoli
i+ egetable
" Perennial Zorm

FPeas

v Center W Border W Shade

Figure 10-2 — The user interface of the Gardener program

Each time upi seject anew garden type, the screen is cleared and the check
boxes unchecked. Then, as you select each checkbox, that plant typeis
drawn in.

Remember, in C# you do not draw on the screen directly from your code.
Instead, the screen is updated when the next paint evert occurs, and you
must tell the paint routine what objects to paint.

Since each garden (and Plant) knows how to draw itsdlf, it should have a
draw method that draws the appropriate plant names on the garden screen.
And since we provided check boxes to draw each of the types of plants,
we set a Boolean that indicates that you can now draw each of these plant

types.
Our Garden object contains three set methods to indicate that you can
draw each plant.

public void setCenter() {showCenter = true;}
public void setBorder() {showBorder =true;}
public void setShade() {showShade =true;}

Copyright © , 2002 by James W Cooper

141

The PictureBox

We draw the circle representing the shady areainside the PictureBox and
draw the names of the plants inside this box as well. Thisis best
accomplished by deriving a new GardenPic class from PictureBox and
giving it the knowledge to draw the circle and the garden plant names,
Thus, we need to add a paint method not to the main GardenM aker
window class but to the PictureBox it contains. This thus overrides the
base OnPaint event of the underlying Control class.
public class GdPic : System W ndows. Fornms. Pi ct ureBox {

private Contai ner conponents = null;

private Brush br;

private Garden gden;

[T

private void init () {
br = new Sol i dBrush (Color.LightGay);

}

[leemm oo -

public GdPic() {
InitializeConponent();
init();

}

I

public void setGarden(Garden garden) {
gden = garden;
}

R
protected override void OnPaint (PaintEventArgs pe){
G aphics g = pe. G aphics;
g.FillEllipse (br, 5 5, 100, 100);
if(gden !'= null)
gden. draw (Q);
}

Note that we do not have to erase the plant name text each time because
OnPaint is only called when the whole picture needs to be repainted.

Copyright © , 2002 by James W Cooper

142

Handling the RadioButton and Button Events

When one of the three radio buttons is clicked, you create a new garden of
the correct type and pass it into the picture box class. Y ou also clear all the
checkboxes.

private void opAnnual _CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Annual Garden ());

private void opVeget abl e_CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Veggi eGarden ());

private void opPerenni al _CheckedChanged(
obj ect sender, EventArgs e) {
set Garden(new Perenni al Garden ());

}

[]-----

private void setGarden(Garden gd) {
garden = gd; // save current garden
gdPi cl. set Garden (gd); /1tell picture bos
gdPi cl. Refresh (); /lrepaint it
ckCent er. Checked =fal se; [lclear all
ckBor der. Checked = fal se; //check
ckShade. Checked = fal se; / I boxes

}

When you click on one of the check boxes to show the plant names, you
simply call that garden’s method to set that plant name to be displayed and
then call the picture box’s Refresh method to cause it to repaint.

private void ckCenter_CheckedChanged(
obj ect sender, System EventArgs e) {
garden. setCenter ();
gdPi cl. Refresh ();
}
[]-----
private void ckBorder_CheckedChanged(
obj ect sender, System EventArgs e) {
gar den. set Border () ;
gdPi cl. Refresh ();

Copyright © , 2002 by James W Cooper

143

}
[]-----

private voi d ckShade_CheckedChanged(
obj ect sender, System EventArgs e) {
gar den. set Shade ();
gdPi cl. Refresh ();

}
The final C# Gardener class UML diagram is shown in Figure 10-3.
Garden
+Hilew()
+showCenter()
Gardenmaker +showBorder()
- +showShade()
1 gden 17| +clear()
+irau()
GardenPic I
1—* den
PerennialGarden AnnualGarden VegetahleGarden
+hl e] +hlel +hlEl

Figure 10-3 — The UML diagram for the Gardener program.

Adding More Classes

One of the great strengths of the Abstract Factory is that you can add new
subclasses very easily. For example, if you needed a GrassGarden or a
WildFlowerGarden, you can subclass Garden and produce these classes.
The only real change you' d need to make in any existing code is to add
some way to choose these new kinds of gardens.

Copyright © , 2002 by James W Cooper

144

Conseguences of Abstract Factory

One of the main purposes of the Abstract Factory is that it isolates the
concrete classes that are generated. The actual class names of these classes
are hidden in the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange these
product class families freely. Further, since you generate only one kind of
concrete class, this system keeps you from inadvertently using classes
from different families of products. However, it is some effort to add new
class families, since you need to define new, unambiguous conditions that
cause such a new family of classes to be returned.

While al of the classes that the Abstract Factory generates have the same
base class, there is nothing to prevent some subclasses from having
additional methods that differ from the methods of other classes. For
example, a BorsaiGarden class might have a Height or
WateringFrequency method that is not in other classes. This presents the
same problem that occurs in any subclass: Y ou don’'t know whether you
can call a class method unless you know whether the subclass is one that
allows those methods. This problem has the same two solutions as in any
similar case: You can either define all of the methods in the base class,
even if they don't aways have an actual function, or, you can derive a new
base interface that contains all the methods you need and subclass that for
al of your garden types.

Thought Question

If you are writing a program to track investments, such as stocks, bonds,
metal futures, derivatives, and the like, how might you use an Abstract
Factory?

Programs on the CD-ROM

\ Abst ract Fact or y\ Gar denPl anner | The Gardener program

Copyright © , 2002 by James W Cooper

145

11. The Singleton Pattern

The Singleton pattern is grouped with the other Creational patterns,
although it is to some extent a pattern that limits the creation of classes
rather than promoting such creation. Specifically, the Singleton assures
that there is one and only one instance of a class, and provides a global
point of access to it. There are any number of cases in programming
where you need to make sure that there can be one and only one
instance of a class. For example, your system can have only one
window manager or print spooler, or asingle point of accessto a
database engine. Y our PC might have several seria ports but there can
only be one instance of “COM1.”

Creating Singleton Using a Static Method

The easiest way to make a class that can have only one instance is to
embed astatic variable insde the class that we set on the first
instance and check for each time we enter the constructor. A static
variable is one for which there is only one instance, no matter how
many instances there are of the class. To prevent instantiating the class
more than once, we make the constructor private so an instance can
only be created from within the static method of the class. Then we
create amethod called getSpooler that will return an instance of
Spooler, or null if the class has aready been instantiated.

public class Spool er

private static bool instance_flag= fal se
private Spooler() {

}
public static Spool er getSpooler() {
if (! instance_flag)
return new Spooler ();
el se
return null

}
}
One mgjor advantage to this approach is that you don’t have to worry

about exception handling if the singleton already exists-- you simply
get a null return from the getSpooler method.

Spool er sp = Spool er. get Spool er () ;

Copyright © , 2002 by James W Cooper

146

if (sp!=null)

Console. WiteLine ("Got 1 spooler");
Spool er sp2 = Spool er. get Spool er ();
if (sp2 == null)

Console. WiteLine ("Can\'t get spooler");
}

And, should you try to create instances of the Spooler class directly,
this will fail at compile time because the constructor has been declared
asprivate.

/[/fails at conpiler tinme
Spool er sp3 = new Spooler ();

Finally, should you need to change the program to allow two or three
instances, this class is easily modified to alow this.

Exceptionsand | nstances

The above approach has the disadvantage that it requires the
programmer to check the getSpooler method return to make sure it is
not null. Assuming that programmers will always remember to check
errorsis the beginning of a dippery sope that many prefer to avoid.

Instead, we can create a class that throws an Exception if you attempt
to instantiate it more than once. This requires the programmer to take
action and is thus a safer approach. Let’s create our own exception
classfor this case:

public class SingletonException: Exception {

/I new exception type for singleton classes

public SingletonException(string s): base(s) {
} }
Note that other than calling its parent classes through the base
constructor, this new exception type doesn’t do anything in particular.
However, it is conveniert to have our own named exception type so
that the runtime system will warn us if this type of exception is thrown
when we attempt to create an instance of Spooler.

Copyright © , 2002 by James W Cooper

147

Throwing the Exception

Let’s write the skeleton of our PrintSpooler class-- we'll omit all of the
printing methods and just concentrate on correctly implementing the

Singleton pattern:

public class Spool er {
static bool instance_flag = false; //true if one instance
public Spooler() {
if (instance_fl ag)
t hrow new Si ngl et onExcepti on(
"Only one printer allowed");

el se {
i nstance_flag = true; /1set flag
Consol e. WiteLine ("printer opened");

}

Creating an Instance of the Class

Now that we' ve created our simple Singleton pattern in the
PrintSpooler class, let’s see how we use it. Remember that we must
enclose every method that may throw an exceptioninatry - catch
block.

public class singleSpooler
static void Main(string[] args) {
Spool er prl, pr2;
/1 open one printer--this should al ways work
Consol e. WitelLine ("Qpening one spooler");

try {
prl = new Spooler();

}
catch (Singl etonException e) {
Consol e. WitelLine (e. Message);

//try to open another printer --should fai
Consol e. WitelLine ("Opening two spool ers");
try {

}
catch (SingletonException e) {
Consol e. WitelLine (e. Message);
}

pr2 = new Spooler();

Then, if we execute this program, we get the following results:

Copyright © , 2002 by James W Cooper

148

Qpeni ng one spool er
printer opened

Openi ng two spool ers
Only one spool er all owed

where the last line indicates than an exception was thrown as expected.

Providing a Global Point of Accessto a Singleton

Since a Singleton is used to provide a single point of global accessto a
class, your program design must provide for away to reference the
Singleton throughout the program, even though there are no global
variables in C#.

One solution is to create such singletons at the beginning of the
program and pass them as arguments to the major classes that might
need to use them.

prl = i Spool er.Instance();
Cust oners cust = new Custoners(prl);

The disadvantage is that you might not need all the Singletons that you
create for a given program execution, and this could have performance
implications.

A more elaborate solution could be to create a registry of al the
Singleton classes in the program and make the registry generally
available. Each time a Singleton is instantiated, it notes that in the
Registry. Then any part of the program can ask for the instance of any
singleton using an identifying string and get back that instance
variable.

The disadvantage of the registry approach is that type checking may be
reduced, since the table of singletons in the registry probably keeps all
of the singletons as Objects, for example in a Hashtable object. And, of
course, the registry itself is probably a Singleton and must be passed to
all parts of the program using the constructor or various set functions.

Probably the most common way to provide a global point of accessis
by using static methods of a class. The class name is always available
and the static methods can only be called from the class and not from
its instances, so there is never more than one such instance no matter
how many places in your program call that method..

Copyright © , 2002 by James W Cooper

149

Other Consequences of the Singleton Pattern

1. It can bedifficult to subclass a Singleton, since this can only work
if the base Singleton class has not yet been instantiated.

2. You can easlly change a Singleton to allow a small number of
instances where this is allowable and meaningful.

Programson Your CD-ROM

\SingletonSinglePrinter Shows how print spooler could be
written thowing exception

\Singleton\I nstancePrinter Creates one instance or returns
null

Copyright © , 2002 by James W Cooper

150

12. The Builder Pattern

In this chapter we'll consider how to use the Builder pattern to construct
objects from components. We have already seen that the Factory pattern
returns one of several different subclasses, depending on the data passed in
arguments to the creation methods. But suppose we don’t want just a
computing algorithm but a whole different user interface because of the
data we need to display. A typical example might be your e-mail address
book. Y ou probably have both individual people and groups of peoplein
your address book, and you would expect the display for the address book
to change so that the People screen has places for first and last name,
company, e-mail address, and phone number.

On the other hand, if you were displaying a group address page, you'd like
to see the name of the group, its purpose, and alist of members and their
e-mail addresses. Y ou click on a person and get one display and on a
group and get the other display. Let’s assume that all e-mail addresses are
kept in an object called an Address and that people and groups are derived
from this base class, as shown in Figure 12-1.

Address

Person Group

Figure 12-1 — Both Person and Group are derived from Address.

Depending on which type of Address object we click on, we'd liketo see a
somewhat different display of that object’s properties. Thisis alittle more
than just a Factory pattern because we aren’t returning objects that are

Copyright © , 2002 by James W Cooper

151

simple descendants of a base display object but totally different user
interfaces made up of different combinations of display objects. The
Builder pattern assembles a number of objects, such as display controls, in
various ways, depending on the data. Furthermore, by using classes to
represent the data and forms to represent the display, you can cleanly
separate the data from the display methods into simple objects.

An Investment Tracker

Let’s consider a somewhat simpler case where it would be useful to have a
class build our Ul for us. Suppose we are going to write a program to keep
track of the performance of our investments. We might have stocks,

bonds, and mutual funds, and we'd like to display alist of our holdingsin
each category so we can select one or more of the investments and plot
their comparative performance.

Even though we can’t predict in advance how many of each kind of
investment we might own at any given time, we'd like to have a display
that is easy to use for either alarge number of funds (such as stocks) or a
small number of funds (such as mutual funds). In each case, we want some
sort of a multiple-choice display so that we can select one or more funds to
plot. If there are a large number of funds, we'll use a multichoice list box,
and if there are three or fewer funds, we'll use a set of check boxes. We
want our Builder class to generate an interface that depends on the number
of items to be displayed and yet have the same methods for returning the
results.

Our displays are shown in Figure 12-2. The top display contains alarge
number of stocks, and the bottom contains a small number of bonds.

Copyright © , 2002 by James W Cooper

=% Pick fund type

tAutual funds

I[=] E3

.i.a List of funds:

Cizco

Coca Cola

GE

Harley Davidson
|Bk

Micrazoft

&M Fick furid bype

=10]]

Stocks

Mutual funds

Pliat |

I CT G0 2005
[NY GO 22
[~ GE Corp Bonds

152

Figure 12-2- Stocks with the list interface and bonds with the check box interface

Copyright © , 2002 by James W Cooper

153

Now let’s consider how we can build the interface to carry out this
variable display. We'll start with a multiChoice interface that defines the
methods we need to implement.

public interface Milti Choice

{
Arrayli st getSel ected();

void clear();
Panel get W ndow();
}

The getWindow method returns a Panel containing a multiple-choice
display. The two display panels we're using here — a check box panel or
alist box panel — implement this interface.

public class CheckChoice: Mul ti Choi ce {
or

public class ListChoice:MiltiChoice {

C# gives us considerable flexibility in designing Builder classes, since we
have direct access to the methods that allow us to construct a window
from basic components. For this example, we'll let each builder construct
a Panel containing whatever components it needs. We can then add that
Panel to the form and position it. When the display changes, you remove
the old Panel and add a new one. In C#, a Pandl is just a unbordered
container that can hold any number of Windows components. The two
implementations of the Panel must satisfy the MultiChoice interface.

We will create a base abstract class called Equities and derive the stocks,
bonds, and mutual funds from it.

public abstract class Equities {
protected ArraylList array;
public abstract string toString();

public ArraylList getNames() {
return array;

public int count() {

Copyright © , 2002 by James W Cooper

154

return array. Count ;
}

Note the abstract toString method. We'll use this to display each kind of
equity in the list box. Now our Stocks class will just contain the code to
load the ArrayList with the stock names.

public class Stocks:Equities {

public Stocks() {
array = new ArraylList();

array. Add ("Cisco");

array. Add ("Coca Col a");
array. Add ("GE");

array. Add ("Harl ey Davidson");
array. Add ("IBM);

array. Add ("M crosoft");

public override string toString() {
return "Stocks";
}

}

All the remaining code (getNames and count) is implemented in the base
Equities class. The Bonds and Mutuals classes are entirely analogous.

The Stock Factory

We need a little class to decide whether we want to return a check box
panel or alist box panel. We'll call this class the StockFactory class.
However, we will never need more than one instance of this class, so we'll
create the class so its one method is static.

public class StockFactory {
public static MiultiChoice getBuilder(Equities stocks) {
if (stocks.count ()<=3) {
return new CheckChoi ce (stocks);
}

el se {
return new Li st Choi ce(stocks);
}

}

Copyright © , 2002 by James W Cooper

155

We never need more than one instance of this class so we make the
getBuilder method static so we can call it directly without creating a class
instance. In the language of Design Patterns, this simple factory classis
called the Director, and the actual classes derived from multiChoice are
each Builders.

The CheckChoice Class

Our Check Box Builder constructs a panel containing 0 to 3 check boxes
and returns that panel to the calling program.

/lreturns a panel of 0 to 3 check boxes
public class CheckChoice: Mul ti Choice {
private Arraylist stocks;
private Panel panel;
private Arrayli st boxes;

[]-=-----
public CheckChoi ce(Equities stks) {
stocks = stks.getNames ();
panel = new Panel ();
boxes = new ArraylList ();
//add the check boxes to the panel
for (int i=0; i< stocks.Count; i++) {
CheckBox ck = new CheckBox ();
//position them
ck. Location = new Point (8, 16 + i * 32);
string stk = (string)stocks[i];
ck. Text =stk;
ck.Size = new Size (112, 24);
ck. Tabl ndex =0;
ck. Text Align = Content Ali gnnent. M ddl eLeft ;
boxes. Add (ck);
panel . Control s. Add (ck);
}
}
}

The methods for returning the window and the list of selected names are
shown here. Note that we use the cast the object type returned by an
ArrayList to the Checkbox type the method actually requires.

[]-=-----
//uncheck all check boxes

Copyright © , 2002 by James W Cooper

156

public wvoid clear() {
for(int i=0; i< boxes.Count; i++) {
CheckBox ck = (CheckBox)boxes[i];
ck. Checked =fal se;

/lreturn Iist of checked itens
public ArraylList getSelected() {
ArraylLi st sels = new ArrayList ();
for(int i=0; i< boxes.Count ; i++) {
CheckBox ck = (CheckBox)boxes[i];
if (ck.Checked) {
sel s. Add (ck. Text);
}
}

return sels;
}
[]-=-----
//return panel of checkboxes
public Panel getWndow() {
return panel;
}

The ListboxChoice Class

This class creates a multisalect list box, inserts it into a Panel, and loads
the names into the list.

public class ListChoice: MiltiChoice {
private Arraylist stocks;
private Panel panel;
private ListBox list;
[]------
//constructor creates and |oads the |ist box
public ListChoice(Equities stks) {
stocks = stks.getNames ();
panel = new Panel ();
list = new ListBox ();
list.Location = new Point (16, 0);
list.Size = new Size (120, 160);
|ist.Sel ecti onMbde =Sel ecti onMbde. Mul ti Ext ended ;
i st. Tabl ndex =0;
panel . Control s. Add (list);

Copyright © , 2002 by James W Cooper

157

for(int i=0; i< stocks.Count ; i++) {
list.Items. Add (stocks[i]);
}

}
Since thisis amultiselect list box, we can get al the selected itemsin a

single Selectedl ndices collection. This method, however, only works for a
multiselect list box. It returns a—1 for asingle-select list box. We use it to
load the array list of selected names as follows.

//returns the Panel

public Panel getWndow() ({
return panel;

/lreturns an array of selected el enents
[l------
public ArrayList getSelected() {
ArraylList sels = new ArraylList ();
Li st Box. Sel ect edbj ect Col | ecti on
coll = list.Selectedltens
for(int i=0; i< coll.Count; i++) {
string item= (string)coll[i];
sels. Add (item);

return sels;

//clear selected el enents
public void clear() {

list.ltens.dear();
}

Using the Items Collection in the ListBox Control

You are not limited to populating a list box with strings in C#. When you
add data to the Items collection, it can be any kind of object that has a
toString method.

Since we created our three Equities classes to have a toString method, we
can add these classes directly to the list box in our main program’s
constructor.

public class WalthBuilder : Form {

Copyright © , 2002 by James W Cooper

158

private ListBox |sEquities;
private Container conponents = null;
private Button btPlot;
private Panel pnl;
private Milti Choice nthoice;
private void init() {
I sEquities.ltens. Add (new Stocks());
| sEquities.ltens. Add (new Bonds());
I sEquities.ltenms. Add (new Mutual s());

}

public Weal t hBui | der () {
InitializeConponent();
init();

}

Whenever we click on aline of the list box, the click method obtains that
instance of an Equities class and passes it to the MultiChoice factory,
which in turn produces a Panel containing the items in that class. It then
removes the old panel and adds the new one.
private void | sEquities_Sel ect edl ndexChanged(obj ect sender,
Event Args e) {

int i = |sEquities. Sel ectedlndex ;

Equities eq = (Equities)lsEquities.ltens[i];

nthoi ce= St ockFactory. getBuil der (eq);

this. Control s. Remove (pnl);

pnl = nthoi ce. get Wndow ();
set Panel ();

}

Plotting the Data

We don't really implement an actual plot in this example. However, we
did provide a getSelected method to return the names of stocks from either
MultiSelect implementation. The method returns an ArrayList of selected
items. In the Plot click method, we load these names into a message box
and display it:

private void btPlot_Cick(object sender, EventArgs e) {

//display the selected itens in a nessage box

if(nmchoice '= null) {
ArrayList ar = nthoice.getSelected ();

Copyright © , 2002 by James W Cooper

159

string ans = ""

for(int i=0; i< ar.Count ; i++) {
ans += (string)ar[i] +" "

}

MessageBox. Show (nul |l , ans,
"Sel ected equities", MessageBoxButtons. K);

The Final Choice

Now that we have created al the needed classes, we can run the program.
It starts with a blank panel on the right side, so there will aways be some
panel there to remove. Then each time we click on one of the names of the
Equities, that panel is removed and a new one is added in its place. We see
the three cases in Figure 12-3.

Tt Buier NT=TET =k
| LCEcn
Bond: onis L Loy
Pl bl Furd s Wl lunds GE
H-zrl=y D srvickon
|
Micizk

L — - .
Shockr
Wue e F Cran s T G0 2005, GE Corp bonds,
I~ MY GO 2mz
[1GE Coip bz

o

Copyright © , 2002 by James W Cooper

160

Figure 12-3- The WealthBuilder program, showingthelist of equitites, thelistbox,
the checkboxes and the plot panel.

Y ou can see the relationships between the classes in the UML diagram in

Figure 12-4.

...... e iMultiChoice]
Equities]
y : whBuilder ek e i
femoo - PR e ! HgetSelected!) Araylist |
P HoStng():String m +eleaif) :
vgethames)) Arraylist o mchaice 1 +getWindow) ;
vroount():integer e
____________ G ﬁ:z

! i ! | |

Bonds Mutuals Stocks ListChoice CheckChoice

Figure 12-4 — Theinheritance relationshipsin the Builder pattern

Consequences of the Builder Pattern

1. A Builder lets you vary the internal representation of the product it
builds. It also hides the details of how the product is assembled.

2. Each specific Builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other
Builders relatively smple.

3. Because each Builder constructs the final product step by step,
depending on the data, you have more control over each final product
that a Builder constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both
return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns a family of related
classes, the Builder constructs a complex object step by step, depending
on the data presented to it.

Copyright © , 2002 by James W Cooper

161

Thought Questions

1. Some word-processing and graphics programs construct menus
dynamically based on the context of the data being displayed. How
could you use a Builder effectively here?

2. Not al Builders must construct visual objects. What might you
construct with a Builder in the personal finance industry? Suppose you
were scoring a track meet, made up of five or six different events.
How can you use a Builder there?

Programs on the CD-ROM

\ Bui | der s\ St ocks Basic equities Builder

Copyright © , 2002 by James W Cooper

162

13. The Prototype Pattern

The Prototype pattern is another tool you can use when you can specify
the general class needed in a program but need to defer the exact class
until execution time. It is similar to the Builder in that some class decides
what componerts or details make up the final class. However, it differsin
that the target classes are constructed by cloning one or more prototype
classes and then changing or filling in the details of the cloned class to
behave as desired.

Prototypes can be used wherever you need classes that differ only in the
type of processing they offer—for example, in parsing of strings
representing numbers in different radixes. In this sense, the prototype is
nearly the same as the Examplar pattern described by Coplien (1992).

Let’s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as
result set, you might like to manipulate it to produce other answers
without issuing additional queries.

In a case like the one we have been working on, we'll consider a database
of alarge number of swimmersin aleague or statewide organization.
Each swimmer swims several strokes and distances throughout a season.
The “best times’ for swimmers are tabulated by age group, and even
within a single four- month season many swimmers will pass their
birthdays and fall into new age groups. Thus, the query to determine
which swimmers did the best in their age group that season is dependent
on the date of each meet and on each swimmer’s birthday. The
computational cost of assembling thistable of timesis therefore fairly
high.

Once we have a class containing this table sorted by sex, we could
imagine wanting to examine this information sorted just by time or by
actual age rather than by age group. It would not be sensible to recompute

Copyright © , 2002 by James W Cooper

163

these data, and we don’t want to destroy the original data order, so some
sort of copy of the data object is desirable.

Cloning in C#

The idea of cloning a class (making an exact copy) is not adesigned-in
feature of C#, but nothing actually stops you from carrying out such a
copy yourself. The only place the Clone method appearsin C#isin ADO
DataSet manipulation. Y ou can create a DataSet as a result of a database
guery and move through it arow at atime. If for some reason you need to
keep references to two places in this DataSet, you would need two
“current rows.” The simplest way to handle thisin C# isto clone the
DataSet.

Dat aSet cl oneSet;
cl oneSet = myDat aSet. Cl one();

Now this approach does not generate two copies of the data. It just
generates two sets of row pointers to use to move through the records
independently of each other. Any change you make in one clone of the
DataSet is immediately reflected in the other because there isin fact only
one data table. We discuss a similar problem in the following example.

Using the Prototype

Now let’s write a simple program that reads data from a database and then
clones the resulting object. In our example program, we just read these
data from afile, but the origina data were derived from alarge database,
as we discussed previoudy. That file has the following form.

Kristen Frost, 9, CAT, 26.31, F

Ki mberly Watcke, 10, CDEv, 27.37, F

Jaclyn Carey, 10, ARAC, 27.53, F
Megan Crapster, 10, LEHY, 27.68, F

WEe'll use the csFile class we developed earlier.

Copyright © , 2002 by James W Cooper

164

First, we create a class called Swimmer that holds one name, club name,
sex, and time, and read them in using the csFile class.

public class Sw nmer {
private string nane; /I name
private string | nane, frnane;//split nanes
private int age; /| age
private string club; /lclub initials
private float tinme; //tinme achieved
private bool fenale; /] sex

I

public Swimer(string line) {
StringTokeni zer tok = new StringTokenizer(line,",");
split Name(tok);
age = Convert. Tol nt 32 (tok.next Token());
club t ok. next Token();
time Convert. ToSi ngl e (tok. next Token());
string sx = tok.nextToken().ToUpper ();
femal e = sx. Equals ("F");

}
I
private void splitName(StringTokenizer tok) {
nanme = tok. next Token();
int i = name.|ndexOf (" ");
if(i >0) {
frname = nane. Substring (0, i);
I name = name. Substring (i+1).Trim();

public bool isFemale() {
return fenale;

}

[FEEEEE R

public int getAge() {
return age

}

[EEEE TR

public float getTine() {
return tine;

public string getNane() {
return nane;
}

Copyright © , 2002 by James W Cooper

public

}
}

string getd ub() {
return club;

165

Then we create a class called SwimData that maintains an ArrayL.ist of the

Swimmers we

read in from the database.

public class Sw nData {
protected ArrayLi st swdata;
private int index;

public

Swi nDat a(string fil enane) {
swdata = new ArraylList ();
csFile fI = new csFile(filenane);
fl.OpenForRead ();
string s = fl.readLine ();
while(s !'= null) {
Swi nmer sw = new Swi nmer (s);
swdat a. Add (sw);
s = fl.readLine ();
}

fl.close ();

void moveFirst() {
index = 0;

bool hasMoreEl enents() {
return (index < swdata.Count-1);

void sort() {

Swi mrer get Swi nmer () {
i f(index < swdata. Count)

return (Sw mrer)swdat af i ndex++] ;
el se

return null;

Copyright © , 2002 by James W Cooper

166

We can then use this class to read in the swimmer data and display it in a
list box.

private void init() {
swdata = new Swi nmData ("swi mers.txt");
rel oad();

private void reload() {
IsKids.ltens.Cear ();
swdat a. noveFirst ();
whi | e (swdat a. hasMbr eEl enents()) {
Swi nmer sw = swdat a. get Swi nmer () ;
I sKids.ltens. Add (sw. getName());
}
}
Thisisillustrated in Figure 13-1.

Esipleprototype ol

Frigten Frost -
Kimber W atcke

Jaclyn Carey

kegan Crapster

K.aitlyn Arment

Jackie Rogers

Erin MLaughlin e
Emnily Ferrier o
Aurora Lee

k.ate lszelee

Luke Mester

Stephen Cozme ;I

Figure 13-1 — A simple prototype program

When you click on the “->” button, we clone this class and sort the data
differently in the new class. Again, we clone the data because creating a
new class instance would be much slower, and we want to keep the data in
both forms.

Copyright © , 2002 by James W Cooper

private void btC one_Cick(object sender,
Swi nDat a newSd = (Sw nDat a) swdat a. d one ();

newsd. sort ();

whi | e(newsd. hasMor eEl emrents()) {

Swi mrer sw = (Swi nmrer) newSd. get Swi mmrer () ;

Event Args e) {

| sNewKi ds. I tems. Add (sw. get Name());

}

We show the sorted resultsin Figure 13-2

ﬂgﬁimple Prototype

Frigten Frost
Kimber W atcke
Jaclyn Carey
kegan Crapster
K.aitlyn Arment
Jackie Rogers
Erin MLaughlin
E mily Ferrier
Aurora Lee
k.ate lszelee
Luke Mester
Stephen Cozme

i

=10 x|

k.aitlyn Arment
Charlesz B aker
Jaclyn Carey
Stephen Cozme
kegan Crapster
b atthew Donch
Ernily Ferrier
Fristen Frost
k.ate |zzeles
Aurora Lee
David Liebovitz
Enn McLaughlin

Figure 13-2 — The sorted results of our Prototype program.

Cloning the Class
While it may not be strictly required, we can make the SwimData class

implement the |Cloneable interface.
public class Sw nData: | Cl oneabl e {

167

All this means is that the class must have a Clone method that returns an

object:

public object done() {

Copyright © , 2002 by James W Cooper

168

Swi nDat a newsd = new Sw nDat a(swdat a) ;
return newsd;

}

Of course, using this interface implies that we must cast the object type
back to the SwimData type when we receive the clone:

Swi mDat a newSd = (Swi nDat a) swdat a. Cl one () ;

as we did above.

Now, let’s click on the”< " button to reload the left-hand list box from the
origina data. The somewhat disconcerting result is shown in Figure 13-3.

=

K.aitlyn Amment
Charles B aker
Jaciyn Carey
Stephen Cosme
kegan Crapster
kd atthews Donich
Emily Ferrier
Krigten Frost
k.ate |zzelee
Aurora Lee
David Liebovvitz

K.aitlyn Amment
Charles B aker
Jaciyn Carey
Stephen Cosme
kegan Crapster
kd atthews Donich
Emily Ferrier
Krigten Frost
k.ate |zzelee
Aurora Lee
David Liebovvitz

Erin McLaughlin LI Erin McLaughlin LI

Figure 13-3 — The Prototype showing the disconcertin re-sort of the left list box.
Why have the names in the left-hand list box aso been re-sorted? Our sort
routine looks like this:

public void sort() {
/lsort using | Conparable interface of Sw mer
swdat a. Sort (0, swdata. Count ,null);

Copyright © , 2002 by James W Cooper

169

Note that we are sorting the actual ArrayList in place. This sort method
assumes that each element of the ArrayList implements the |Comparable
interface,

public class Sw mrer: | Conparabl e {

All this means is that it must have an integer CompareTo method which
returns—1, 0 or 1 depending on whether the comparison between the two
objects returns less than, equal or greater than. In this case, we compare
the two last names wsing the string class's CompareTo method and return
that:
public int ConpareTo(object swo) {

Swi nmrer sw = (Swi mrer) swo;

return | nane. ConpareTo (sw. getLNanme());

}
Now we can understand the unfortunate result in Figure 14-3. The origind

array is resorted in the new class, and there is really only one copy of this
array. This occurs because the clone method is a shallow copy of the
original class. In other words, the references to the data objects are copies,
but they refer to the same underlying data. Thus, any operation we
perform on the copied data will also occur on the original datain the
Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to
make a deep copy of the data, you must write a deep cloning routine of
your own as part of the class you want to clone. In this smple class, you
just create anew ArrayList and copy the elements of the old class's
ArrayList into the new one.

public object Cone() {
/lcreate a new ArraylLi st
ArraylLi st swd = new ArrayList ();
//copy in sw nmer objects
for(int i = 0; i < swdata.Count ; i++)
swd. Add (swdataf[i]);
//create new Swi nData object with this array
Swi nDat a newsd = new Swi nData (swd);
return newsd;

Copyright © , 2002 by James W Cooper

170

Using the Prototype Pattern

Y ou can use the Prototype pattern whenever any of a number of classes
might be created or when the classes are modified after being created. As
long as all the classes have the same interface, they can actually carry out
rather different operations.

Let’'s consider a more elaborate example of the listing of swimmers we
just discussed. Instead of just sorting the swimmers, let’ s create subclasses
that operate on that data, modifying it and presenting the result for display
in alist box. We start with the same basic class SwimData.

Then it becomes possible to write different derived SwimData classes,
depending on the application’ s requirements. We always start with the
SwimData class and then clone it for various other displays. For example,
the SexSwimData class resorts the data by sex and displays only one sex.
Thisis shown in Figure 13-4.

_loix

Fristen Frost - = Fristen Frost
Kirnberh Watcke = Kirnberh Watcke
Jaclyn Carey Jaclyn Carey
began Crapster R began Crapster
K.aitlyn Arment v F K.aitlyn Arment
Jackie Rogers M Jackie Rogers
Enin McLaughlin Enin McLaughlin
E mily Ferrier T E mily Ferrier
Aurora Lee Aurora Lee
k.ate lzzelee

Luke Mester forn

Stephen Cozme _‘ﬂ

Figure 13-4 — The OneSexSwimData class displays only one sex on theright.

In the SexSwimData class, we sort the data by name but retur n them for
display based on whether girls or boys are supposed to be displayed. This
class has this polymorphic sort method.

Copyright © , 2002 by James W Cooper

171

public void sort(bool isFemale) {
ArrayLi st swd = new ArrayList();

for (int i =0; i < swdata.Count ; i++) {
Swi nmer sw =(Swi nmer) swdat ali];
if (isFemale == sw.isFemale()) {
swd. Add (sw);
}
}
swdata = swd;

}
Each time you click on the one of the sex option buttons, the classis given

the current state of these buttons.

private void btC one_Cick(object sender, System EventArgs e) {
SexSwi nDat a newSd = (SexSwi nmDat a) swdat a. Cl one ();
newSd. sort (opFenal e. Checked);
| sNewKi ds. Itens. Cl ear() ;
whi | e(newsd. hasMor eEl emrent s()) {
Swi mrer sw = (Swi mer) newSd. get Swi mmer () ;
| sNewKi ds. | tems. Add (sw. get Narme());

}

Note that the btClone_Click event clones the general SexSwimdata class
instance swdata and casts the result to the type SexSwimData. This means
that the Clone method of SexSwimData must override the general
SwimData Clone method because it returns a different data type:

public object Cone() {
//create a new Arrayli st
ArraylList swd = new ArraylList ();
/'l copy in sw nmer objects
for(int i=0; i< swdata.Count ; i++)
swd. Add (swdata[i]);
/lcreate new Swi nData object with this array
SexSwi nDat a newsd = new SexSwi nData (swd);
return newsd;

}

Thisis not very satisfactory, if we must rewrite the Clone method each
time we derive anew highly similar class. A better solution is to do away
with implementing the | Cloneable interface where each class has a Clone

Copyright © , 2002 by James W Cooper

172

method, and reverse the process where each receiving class clones the data
inside the sending class. Here we show arevised portion of the SwimData
class which contains the cloneMe method. It takes the data from another
instance of SwimData anc copiesit into the ArrayList inside this instance
of the class:

public class Sw nData {
protected ArrayLi st swdat a;
private int index;

public void cl oneMe(Swi nData swdat) {
swdata = new ArraylList ();
Arrayli st swd=swdat.getData ();
//copy in swi mmer objects
for(int i=0; i < swd.Count ; i++)
swdat a. Add (swd[i]);

}
This approach then will work for al child classes of SwimData without
having to cast the data between subclass types.

Dissimilar Classes with the Same Interface

Classes, however, do not have to be even that similar. The AgeSwimData
class takes the cloned input data array and creates a simple histogram by
age. If you click on “F,” you see the girls' age distribution and if you click
on “M,” you see the boys' age distribution, as shown in Figure 13-5

Copyright © , 2002 by James W Cooper

173

Eriglar Fio el

Enn el aighln

Emely Fanem
Le=

e |siefee

Luks Mesiz
ety Siadbun

Emeat Yemrico
Staphen Cosme

AT
Kinberdp Wacke CDEV

WA
HIMST
HMIL
FRLY
HKIL
D] Linbirdiz Wi
GrwD
Fpen Rprazemski 4050
SHES
Ok
Wlatthew Doncky PR

Fieliesh I

| ¥

& F
|

o ‘

Figure 13-5— The AgeSwimData class displays an age distribution.

Thisis an interesting case where the AgeSwimData class inherits the
cloneMe method from the base SwimData class, but overrides the sort
method with one that creates a proto-swimmer with a name made up of the
number of kidsin that age group.

public class AgeSw nDat a: Swi nDat a {
ArraylLi st swd;

public
}
[]-=---
public
public
[]-=---
public
}
[]-----
public

AgeSwi nData() {
swdata = new ArraylList ();

AgeSwi mDat a(string filenanme): base(fil enane){}
AgeSwi nDat a(ArrayLi st ssd): base(ssd){}
override void cloneMe(Sw nData swdat) {

swd = swdat.getData ();

override void sort() {
Swimer[] sws = new Swi mmrer[swd. Count];
//copy in swi nmer objects

for(int i=0; i < swd.Count ; i++) {
sws[i] = (Swi nmer)swd[i];
/lsort into increasing order

Copyright © , 2002 by James W Cooper

174

for(int i=0; i< sws.Length ; i++) {
for (int j =1i; j< sws.Length ; j++) {
if (sws[i].getAge ()>sws[j].getAge ())
Swi nmer sw = sws[i];
sws[i]=sws[]];
sws[]]=sw,

}
}
int age = sws[0].getAge ();
int agecount = O;
int kK = 0;
swdata = new ArraylList ();
bool quit = false;

while(k < sws.Length & ! quit) {
whi | e(sws[k].get Age() ==age && ! quit) {
agecount ++;
if(k < sws.Length -1)
k++;
el se
quit= true;
}
//create a new Swimer with a series of X's for a nane
/1 for each new age
string name = "";

for(int j = 0; j < agecount; j++)
name +="X";

Swi mmer sw = new Swi nmer (age. ToString() + " " +
nane + "," + age.ToString() +
", club,0,F);

swdat a. Add (sw);
agecount = 0;

if(quit)
age = 0;
el se
age = sws[Kk].getAge ();

}

Now, since our original classes display first and last names of selected
swimmers, note that we achieve this same display, returning Swimmer

Copyright © , 2002 by James W Cooper

175

objects with the first name set to the age string and the last name set to the

histogram.

I

SwimData

init

Clone
setData
sort
MoveFirst

hasMoreElements
getNextSwimmer

T~

SexSwimData

TimeSwimData

SwimData_Clone

SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sortb

SwimData_getNextSwimmer
SwimData_hasMoreElements

SwimData_Clone
SwimData_getNextSwimmer
SwimData_hasMoreElements
SwimData_init
SwimData_MoveFirst
SwimData_setData
SwimData_sort

Figure13-6 — The UML diagram for the various SwimData classes

¢ =

Swimmer

init
getTime
getSex
getName
getClub
getAgebb

The UML diagram in Figure 13-6 illustrates this system fairly clearly. The

Swiminfo classisthe main GUI class. It keeps two instances of
SwimData but does not specify which ones. The TimeSwimData and
SexSwimData classes are concrete classes derived from the abstract

Copyright © , 2002 by James W Cooper

176

SwimData class, and the AgeSwimData class, which creates the
histograms, is derived from the SexSwimData class.

Y ou should also note that you are not limited to the few subclasses we
demonstrated here. It would be quite ssimple to create additional concrete
classes and register them with whatever code selects the appropriate
concrete class. In our example program, the user is the deciding point or
factory because he or she simply clicks on one of several buttons. In a
more elaborate case, each concrete class could have an array of
characteristics, and the decision point could be a class registry or
prototype manager that examines these characteristics and selects the most
suitable class. You could also combine the Factory Method pattern with
the Prototype, where each of several concrete classes uses a different
concrete class from those available.

Prototype Managers

A prototype manager class can be used to decide which of severa concrete
classes to return to the client. It can also manage several sets of prototypes
at once. For example, in addition to returning one of several classes of
swimmers, it could return different groups of swimmers who swam
different strokes and distances. It could a'so manage which of severd
types of list boxes are returned in which to display them, including tables,
multicolumn lists, and graphical displays. It is best that whichever
subclass is returned, it not require conversionto a new class type to be
used in the program. In other words, the methods of the parent abstract or
base class should be sufficient, and the client should never need to know
which actual subclassit is dealing with.

Consequences of the Prototype Pattern

Using the Prototype pattern, you can add and remove classes at run time
by cloning them as needed. Y ou can revise the internal data representation

Copyright © , 2002 by James W Cooper

177

of aclass at run time, based on program conditions. Y ou can also specify
new objects at run time without creating a proliferation of classes.

One difficulty in implementing the Prototype pattern in C# is that if the
classes aready exist, you may not be able to change them to add the
required clone methods. In addition, classes that have circular references
to other classes cannot really be cloned.

Like the registry of Singletons discussed before, you can also create a
registry of Prototype classes that can be cloned and ask the registry object
for alist of possible prototypes. Y ou may be able to clone an existing class
rather than writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finaly, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them
after cloning. This may require adding data access methods to these
prototype classes so that you can modify the data once you have cloned
the class.

Thought Question

An entertaining banner program shows a slogan starting at different places
on the screen at different times and in different fonts and sizes. Design the
program using a Prototype pattern.

Programs on the CD-ROM

\ Pr ot ot ype\ Agepl ot age plot

\ Pr ot ot ype\ DeepPr ot o deep prototype
\ Pr ot ot ype\ OneSex display by sex
\ Prot ot ype\ Si npl eProto shallow copy

Copyright © , 2002 by James W Cooper

178

\ Pr ot ot ype\ Twocl assAgePl ot age and sex display

Summary of Creational Patterns

The Factory pattern is used to choose and return an instance of a class
from a number of similar classes, based on data you provide to the factory.

The Abstract Factory pattern is used to return one of severa groups of
classes. In some cases, it actually returns a Factory for that group of
classes.

The Builder pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of
which way the objects are assembled is achieved using a Factory.

The Prototype pattern copies or clones anexisting class, rather than
creating a new instance, when creating new instances is more expensive.

The Singleton pattern is a pattern that ensures there is one and only one
instance of an object and that it is possible to obtain global access to that
one instance.

Copyright © , 2002 by James W Cooper

179

Part 3. Structural Patterns

Structural patterns describe how classes and objects can be combined to
form larger structures. The difference between class patterns and object
patterns is that class patterns describe how inheritance can be used to
provide more useful program interfaces. Object patterns, on the other
hand, describe how objects can be composed into larger structures using
object composition or the inclusion of objects within other objects.

For example, we'll see that the Adapter pattern can be used to make one
class interface match another to make programming easier. We'll also
look at a number of other structural patterns where we combine objects to
provide new functionality. The Composite, for instance, is exactly that—a
composition of objects, each of which may be either smple or itself a
composite object. The Proxy pattern is frequently a simple object that
takes the place of a more complex object that may be invoked later—for
example, when the program runs in a network environment.

The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state but stores it externally. This allows
efficient sharing of objects to save space when there are many instances
but only afew different types.

The Fagade pattern is used to make a single class represent an entire
subsystem, and the Bridge pattern separates an object’s interface from its
implementation so you can vary them separately. Finaly, we'll look at the
Decorator pattern, which can be used to add responsibilities to objects
dynamically.

You'll seethat there is some overlap among these patterns and even some
overlap with the behavioral patterns in the next chapter. We'll summarize
these similarities after we describe the patterns.

Copyright © , 2002 by James W Cooper

180

14. The Adapter Pattern

The Adapter pattern is used to convert the programming interface of one
class into that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty simple: We write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance and by object composition.
In the first case, we derive a new class from the nonconforming one and
add the methods we need to make the new derived class match the desired
interface. The other way is to include the original class inside the new one
and create the methods to trand ate calls within the new class. These two
approaches, called class adapters and object adapters, are both fairly easy
to implement.

Moving Data Between Lists

Let’s consider a simple program that allows you to select some names
from alist to be transferred to another list for a more detailed display of
the data associated with them. Our initial list consists of ateam roster, and
the second list the names plus their times or scores.

In this ssimple program, shown in Figure 14-1, the program readsin the
names from a roster file during initialization. To move names to the right-
hand list box, you click on them and then click on the arrow button. To
remove a name from the right-hand list box, click on it and then on
Remove. This moves the name back to the left- hand list.

Copyright © , 2002 by James W Cooper

181

iw. Adapter Display

Krizten Frost - K.aitlyr Amnent 28.20
Kimberly wWatcke 7| Jackie Rogers 2868
Sam Les Elizabeth MeLaughlin 28.80
Jaclyn Carey Ermily Ferrier 28.85
tegan Crapster Aurora Lee 28.88

K.aitlyrn Ament
Jackie Rogers
Elizabeth kcLaughliv

E il Ferrier |
m £ |

K.ate lzzeles

Luke Mester

Stephen Cozme

Jeffrey Sudbury _:l

Figure 14-1 — A simple program to choose names for display

Thisis avery simple program to write in C#. It consists of the visual
layout and action routines for each of the button clicks. When we read in
the file of team roster data, we store each child’s name and scorein a
Swimmer object and then store all of these objectsin an ArrayList
collection called swdata. When you select one of the names to display in
expanded form, you ssimply obtain the list index of the selected child from
the left-hand list and get that child’s data to display in the right-hand list.
private void btC one_Cick(object sender, EventArgs e) {
int i = |skids.Selectedl ndex ();

if(i >=0) {

Swi nmer sw = swdat a. get Swi nrer (i) ;

| snewKi ds. Item Add (sw. getNanme() +"\t"+sw. getTine ());
| ski ds. Sel ect edl ndex = -1;

}
}

In asimilar fashion, if we want to remove a name from the right-hand li<t,
we just obtain the selected index and remove the name.

private void putBack_Cick(object sender, EventArgs e) {
int i = |snewKids. Sel ectedl ndex ();
if(i >=0)

Copyright © , 2002 by James W Cooper

182

| sNewKi ds. | t ens. RenoveAt (i);
}
Note that we obtain the column spacing between the two rows using the

tab character. This works fine as long as the names are more or less the
same length. However, if one name is much longer or shorter than the
others, the list may end up using a different tab column, which is what
happened for the third name in the list.

Making an Adapter
Now it is alittle awkward to remember to use the Items collection of the
list box for some operations and not for others. For this reason, we might
prefer to have a class that hides some of these complexities and adaptsthe
interface to the ssimpler one we wish we had, rather like the list box
interface in VB6. We'll create a smpler interface in a ListAdapter class
which then operates on an instance of the ListBox class:

public class ListAdapter {

private ListBox |istbox; /'l operates on this one
public ListAdapter(ListBox |b) {
listbox = |b;
}
[]-----

public void Add(string s) {
listbox.Itens. Add (S);

public int Sel ectedl ndex() ({
return |istbox. Sel ect edl ndex;

public void dear() {
listbox.ltems.dear ();

}
[]-----
public void clearSelection() {
int i = Sel ectedl ndex();
if(i >=0) {
| i st box. Sel ect edl ndex =-1
}
}

Copyright © , 2002 by James W Cooper

183

Then we can make our program a little simpler:

private void btC one_Cick(object sender, EventArgs e) {
int i = |skids.Sel ectedlndex ();
if(i >=0) {
Swi nmer sw = swdat a. get Swi mmrer (i) ;
| snewKi ds. Add (sw. get Name() + "\t" + sw.getTine ());
| ski ds. cl ear Sel ection ();

}

Now, let’s recognize that if we are always adding swimmers and times
space apart like this, maybe there should be a method in our ListAdapter
that handles the Swimmer object directly:

public void Add(Swi mrer sw) {
listbox.ltenms. Add (sw. getNanme() + "\t" + sw getTinme());
}

This simplifies the click event handler even more:

private void btCl one_Cick(object sender, EventArgs e) {
int i = |skids.Selectedl ndex ();
if(i >=0) {
Swi mmer sw = swdat a. get Swi mrer (i);
| snewKi ds. Add (sw);
| skids. clearSelection ();

}

What we have done is create an Adapter class that contains a ListBox
class and simplifies how you use the ListBox. Next, we'll see how we can
use the same approach to create adapters for two of the more complex
visual controls.

Using the DataGrid

To circumvent the problem with the tab columns in the ssimple list box, we
might turn to a grid display. The grid table that comes with Visual
Studio.NET is called the DataGrid. It can be bound to a database or to an

Copyright © , 2002 by James W Cooper

184

in-memory data array. To use the DataGrid without a database, you create
an instance of the DataTable class and add DataColumns to it.
DataColumns are by default of string type, but you can define them to be
of any type when you create them. Here is the general outline of how you
create a DataGrid using a DataT able:

Dat aTabl e dTabl e = new Dat aTabl e("Ki ds");
dTabl e. M ni muntCapacity = 100;
dTabl e. CaseSensitive = fal se;

Dat aCol um col um =
new Dat aCol um(" Frnane", Syst em Type. Get Type(" System String"));
dTabl e. Col utms. Add(col umm) ;
colum = new Dat aCol um("Lnane",
System Type. Get Type("System String"));
dTabl e. Col utms. Add(col umm) ;
colum = new Dat aCol utm(" Age",
System Type. Get Type("System I nt16"));

dTabl e. Col utms. Add(col umm) ;

dGi d. Dat aSource = dTabl €;
dGid. CaptionVisible = fal se; /1 no caption
dG i d. RowHeadersVisible = false; //no row headers

dGid. Endlnit();

To add text to the DataTable, you ask the table for arow object and then
set the elements of the row object to the data for that row. If the types are
all String, then you copy the strings, but if one of the columnsis of a
different type, such as the integer age column here, you must be sure to
use that type in setting that column’s data. Note that you can refer to the
columns by name or by index number:

Dat aRow row = dTabl e. NewRow() ;

row "Frnane"] = sw. get Frnanme();

row 1] = sw. get LNane();

rowf 2] = sw.getAge(); //This one is an integer
dTabl e. Rows. Add(r ow) ;

dTabl e. Accept Changes();

Copyright © , 2002 by James W Cooper

However, we would like to be able to use the grid without changing our

code at all from what we used for the ssmple list box. We do this by
creating a GridAdapter which follows that same interface:

public interface LstAdapter {
voi d Add(Swi mer sw) ;
int Sel ectedl ndex()
void Clear() ;
voi d cl earSel ection() ;

}

The GridAdapter class implements this interface and is instantiated with

an instance of the grid.

public class GidAdapter: Lst Adapter {
private DataGid grid;
private DataTabl e dTabl e;
private int row,

public Gi dAdapter(DataGid grd) {
grid = grd;
dTabl e = (DataTabl e) gri d. Dat aSour ce;
gri d. MouseDown +=
new Syst em W ndows. For ms. MouseEvent Handl er
(Gid_dick);
row = -1;

public void Add(Swi mer sw) {
Dat aRow row = dTabl e. NewRow() ;
row "Frnanme"] = sw. get Frnane();
row 1] = sw get LName();
row 2] = sw.getAge(); //This one is an integer
dTabl e. Rows. Add(row) ;
dTabl e. Accept Changes() ;

public int Selectedlndex() {
return row

public void dear() {
int count = dTabl e. Rows. Count
for(int i=0; i< count; i++) {

Copyright © , 2002 by James W Cooper

186

dTabl e. Rows[i].Delete ();

public void clearSelection() {}

}

Detecting Row Selection

The DataGrid does not have a Selectedindex property and the rows do not
have Selected properties. Instead, you must detect a MouseDown event
with a MouseEvent handler and then get the HitTest object and see if the
user has clicked on a cell:

public void Gid_dick(object sender, MuseEventArgs e) {
DataGid.HtTestInfo hti = grid.H tTest (e.X e.Y);
if(hti.Type == DataGid.HitTestType.Cell){
row = hti.Row ;
}

}

Note that we can now simply call the GridAdapter class's Add method
when we click on the “->” button, regardless of which display control we

are using.

private void btC one_Click(object sender, System EventArgs e) {
int i = |skids.Sel ectedl ndex ();
if(i >=0) {

Swi nmer sw = swdat a. get Swi mrer (i) ;
| sNewKi ds. Add (sw);
| ski ds. cl ear Sel ection ();

}

Using a TreeView

If, however, you choose to use a TreeView control to display the data you
select, you will find that there is no convenient interface that you can use
to keep your code from changing.

For each node you want to create, you create an instance of the TreeNode
class and add the root TreeNode collection to another node. In our

Copyright © , 2002 by James W Cooper

187

example version using the TreeView, we'll add the swimmer’s name to
the root node collection and the swimmer’ s time as a subsidiary node.
Here is the entire TreeAdapter class.

public class TreeAdapter: Lst Adapter {
private TreeView tree;
[l------
public TreeAdapter(TreeView tr) {
tree=tr;
}
[]------

public void Add(Swi mrer sw) {

Tr eeNode nod;
//add a root node

nod = tree. Nodes. Add(sw. get Narme());
//add a child node to it
nod. Nodes. Add(sw. get Tine(). ToString ());
tree. ExpandAl | ();

public int Selectedlndex() {
return tree. Sel ect edNode. | ndex ;
}

[]-=-----
public void Cear() {
Tr eeNode nod,;
for (int i=0; i< tree.Nodes.Count ; i++) {
nod = tree. Nodes [i];
nod. Renove ();

}
}
[N EEEERE
public void clearSelection() {}
}

The TreeDemo program is shown in Figure 14-2.

Copyright © , 2002 by James W Cooper

188

i x|

Kristen Frost -

Kimberly '/ atcke = Kaitln Ament =
Sam Lee : L on

Jaclyn Carey : o *

tegan Crapster = EIT!I|_',' Ferrier

k.aitlyr Arnert - b 2BER

Jackie Rogers El ------ Jeffrey Sudbury

Elizabeth MecLaughlir P o om g

E mnily Ferrier 1] P :
TR o | | ©tueele =
Kate |zzelee e PR OAR

Luke Mester
Stephen Cozme
Jeffrey Sudbun ;I

Figure 14-2 — The TreeDemo program.

The Class Adapter

In the class adapter approach, we derive a new class from Listbox (or the
grid or tree control) and add the desired methods to it. In this class adapter
example, we create a new class called MyL.ist which is derived from the
Listbox class and which implements the following interface:
public interface ListAdapter {

void Add(Swi mer sw) ;

void Clear() ;
voi d cl ear Sel ection()

}
The derived MyList classis

public class MyList : System W ndows. Forns. Li st Box, ListAdapter {
private System Conponent Mbdel . Cont ai ner conponents = nul|;

[]-----
public MList() {
InitializeConponent();
}
1]-----

public void Add(string s) {

Copyright © , 2002 by James W Cooper

189

this.ltens. Add (s);

public void Add(Swi nmer sw) {
this.ltenms. Add (sw. get Name() +
"\t" + sw.getAge ().ToString ());

public void dear() {
this.Itenms.Oear ();

}

[]-----

public void clearSelection() {
this. Sel ectedl ndex = -1;

}

The class diagram is shown in Figure 14-3. The remaining code is much
the same as in the object adapter version.

Listhdapter -

Cadditenty T

s HListindesf) integer |

s +add Texd{sw) : i
e T System.Windows.Forms.Listhox
OurList LstClassDemo
+lewy 1 lIsMames 17 | init

+lispose FeadFile
HhnitializeComponent bioveit Click
+addText MY

+addltem ? lzkids 1‘ Dizpose
+Listindex InttializeComponent

Figure 14-3 — The class adapter approach to thelist adapter

Copyright © , 2002 by James W Cooper

190

There are also some differences between the class and the object adapter
approaches, although they are less significant than in C++.

The class adapter

Won't work when we want to adapt a class and al of its
subclasses, since you define the class it derives from when you
cregte it.

L ets the adapter change some of the adapted class's methods
but still allows the others to be used unchanged.

An object adapter

Could alow subclasses to be adapted by simply passing them
in as part of a constructor.

Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two-Way Adapters
The two-way adapter is a clever concept that allows an object to be
viewed by different classes as being either of type ListBox or type
DataGrid. Thisismost easily carried out using a class adapter, since all of
the methods of the base class are automatically available to the derived
class. However, this can only work if you do not override any of the base
class s methods with any that behave differently.

Object Versus Class Adaptersin C#

The C# List, Tree, and Grid adapters we previoudly illustrated are al
object adapters. That is, they are all classes that contain the visual
component we are adapting. However, it is equally easy to write a List or
Tree Class adapter that is derived from the base class and contains the new
add method.

In the case of the DataGrid, thisis probably not a good idea because we
would have to create instances of DataTables and Columns inside the

Copyright © , 2002 by James W Cooper

191

DataGrid class, which makes one large complex class with too much
knowledge of how other classes work.

Pluggable Adapters

A pluggable adapter is one that adapts dynamically to one of several
classes. Of course, the adapter can only adapt to classes it can recognize,
and usually the adapter decides which class it is adapting based on
differing constructors or setParameter methods.

Thought Question

How would you go about writing a class adapter to make the DataGrid
look like a two-column list box?

Programs on the CD-ROM

\ Adapt er\ Tr eeAdapt er Tree adapter
\ Adapt er\ Li st Adapt er List adapter
\ Adapt er\ Gri dAdapt er Grid adapter
\ Adapt er\ Cl assAdapt er Class-based list adapter

Copyright © , 2002 by James W Cooper

192

15. The Bridge Pattern

At first sight, the Bridge pattern looks much like the Adapter pattern in
that a classis used to convert one kind of interface to another. However,
the intent of the Adapter pattern is to make one or more classes’ interfaces
look the same as that of a particular class. The Bridge pattern is designed
to separate a class s interface from its implementation so you can vary or
replace the implementation without changing the client code.

The participants in the Bridge pattern are the Abstraction, which defines
the class' s interface; the Refined Abstraction, which extends and
implements that interface; the Implementor, which defines the interface
for the implementation classes; and the Concretel mplementors, which are
the implementation classes.

Suppose we have a program that displays alist of products in a window.
The simplest interface for that display is a simple Listbox. But once a
significant number of products have been sold, we may want to display the
products in atable along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the interface of
the Listbox to our smpler needs in this display. In simple programs, this
will work fine, but as we'll see, there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays from
our product data: a customer view that is just the list of products we've
mentioned and an executive view that also shows the number of units
shipped. W€ Il display the product list in an ordinary ListBox and the
executive view in an DataGrid table display. These two displays are the
implementations of the display classes, as shown in Figure 15-1.

Copyright © , 2002 by James W Cooper

193

i, The VB Factory
Cuztomer wigw Executive view

Brazz plated widgets Product | Qhy

Furled frammis .

Dlataiad ral bk Brazs plated .wu:lgets 1.000,076

Zero-based hex dumps FurIeFI frarnmmiz Fh.000

Anterior antelope collars Detailed rat brughes 700

‘washable softwear Zero-bazed hes dumps 80,000

Steeltoed wing-tips &nterior antelope colla 578
W ashable softwear 83,000
Steel-toed wing-tips 456 666

Figure 15-1 — Two displays of the same information using a Bridge pattern

Now we want to define a single interface that remains the same regardless
of the type and complexity of the actual implementation classes. We'll
start by defining a Bridger interface.

//Bridge interface to display list classes

public interface Bridger {
voi d addDat a(ArraylLi st col);

}
This class just recelves an ArrayList of data and passesit on to the display

classes.

We also define a Product class that holds the names and quantities and
parses the input string from the data file.
public class Product : |Conparable {

private string quantity;
private string namg;

[l-----

public Product(string |ine) {
int i = line.lndexCf ("--");
name =line.Substring (0, i).Trim();
quantity = line.Substring (i+2).Trim();

Copyright © , 2002 by James W Cooper

194

public string getQuantity() {
return quantity;

public string getNane() {
return nane;
}

}

On the other side of the bridge are the implementation classes, which
usually have a more elaborate and somewhat lower-level interface. Here
we |l have them add the data lines to the display one at atime.
public interface VisList {

//add a line to the display

voi d addLi ne(Product p);

//renove a line fromthe display
voi d renoveLi ne(i nt nunj;

The bridge between the interface on the left and the implementation on the
right is the listBridge class, which instantiates one or the other of the list
display classes. Note that it implements the Bridger interface for use of the
application program.

public class ListBridge : Bridger {

protected VisList vis;

[]------

public ListBridge(VisList v) {
Vis = v;

}

[l-----

public virtual void addData(ArraylList ar) {
for(int i=0; i< ar.Count ; i++) {

Product p = (Product)ar[i];
vi s. addLi ne (p);

Copyright © , 2002 by James W Cooper

195

Note that we make the VisList variable protected and the addData method
virtual so we can extend the class later. At the top programming level, we
just create instances of atable and alist using the listBridge class.

private void init() {
products = new ArraylList ();
readFi | e(products); //read in the data file
/Il create the product |ist
prodLi st = new ProductList(lsProd);
//Bridge to product VisList
Bridger |br = new ListBridge (prodList);
//put the data into the product |ist
| br. addDat a (products);
/lcreate the grid VisList
gridList = new GridList(grdProd);
//Bridge to the grid |ist
Bridger gbr = new ListBridge (gridList);
/Iput the data into the grid display
gbr. addDat a (products);

}

TheVisList Classes

The two VisList classes are really quite similar. The customer version
operates on a ListBox and adds the names to it.

/1A VisList class for the ListBox

public class ProductlList : VisList {
private ListBox list;
[1-----
public ProductList(ListBox Ist) {
list = |st;
}
[1-----

public void addLi ne(Product p) {
list.ltens. Add (p.getNane());

public void renoveLine(int nun) {
if(num>=0 & & num < list.ltens. Count){
list.ltems. Renove (num;
}

Copyright © , 2002 by James W Cooper

196

The ProductTable version of the visList is quite similar except that it adds
both the product name and quantity to the two columns of the grid.
public class GidList: VisList {

private DataGid grid;

private DataTabl e dtabl e;
private Gi dAdapter gAdapter;

public GidList(DataGid grd) {
grid = grd;
dtabl e = new Dat aTabl e("Products");
Dat aCol umm col um = new Dat aCol um(" Pr odNane") ;
dt abl e. Col utms. Add(col umm) ;
colum = new Dat aCol um("Qy");
dt abl e. Col ums. Add(col um);
gri d. Dat aSour ce = dtabl e;
gAdapter = new Gi dAdapter (grid);

public void addLi ne(Product p) {
gAdapt er. Add (p);

The Class Diagram

The UML diagram in Figure 15-2 for the Bridge class shows the
separation of the interface and the implementation quite clearly. The
Bridger class on the left is the Abstraction, and the listBridge classis the
implementation of that abstraction. The visList interface describes the
public interface to the list classes productList and productTable. The
visList interface defines the interface of the Implementor, and the Concrete
Implementors are the productList and productTable classes.

Note that these two concrete implementors are quite different in their
specifics even though they both support the visList interface.

Copyright © , 2002 by James W Cooper

197

Bridger ListBridge
addData Bridger_addData
init Bridger_init
sl
visList
addLine
removelLine
init
ProductTable ProductL ist
gridList
tabval Vi sLlst_addL| ne
tahChar visList_init
visList_addLine visList_removeLine
visList_init
visList_removelLine

Figure15-2 — The UML diagram for the Bridge pattern used in the two displays of
product information

Extending the Bridge

Now suppose we need to make some changes in the way these lists
display the data. For example, maybe you want to have the products
displayed in aphabetical order. Y ou might think you'd need to either
modify or subclass both the list and table classes. This can quickly get to
be a maintenance nightmare, especialy if more than two such displays are
needed eventually. Instead, we ssimply derive anew SortBridgeclass
similar to the listBridge class.

Copyright © , 2002 by James W Cooper

198

In order to sort Product objects, we have the Product class implement the
| Comparable interface which means it has a CompareTo method:
public class Product : |Conparable {

private string quantity;
private string nang;

[]-----
public Product(string line) {
int i =line.lndexOF ("--");
name =line. Substring (0, i).Trim();
quantity = line.Substring (i+2).Trim{();
}
[l-----

public string getQuantity() {
return quantity;

public string getNanme() {
return narme;

public int ConpareTo(object p) {
Product prod =(Product) p;
return nane. ConpareTo (prod.getName ());

}
With that change, sorting of the Product objects is much easier:
public class SortBridge:ListBridge {

[leenes

public override void addData(ArrayList ar) {
int max = ar. Count ;
Product[] prod = new Product[nax];
for(int i=0; i< max ; i++) {
prod[i] = (Product)ar[i];

for(int i=0; i < max ; i++) {
for (int j=i; j < max; j++) {
if(prod[i]. ConpareTo (prod[j])>0) {
Product pt = prod[i];
prodli]= prod[j];
prod[j] = pt;

Copyright © , 2002 by James W Cooper

199

}
} }
for(int i = 0; i< max; i++) {
vi s. addLine (prod[i]);
}
}
}

Y ou can see the sorted result in Figure 15-3.

¥ sorted bridge - O] x|

Customer view E xecutive view

Antenar antelope collars Prodt ame | Gty

Brazz plated widgetz 5
Detailed rat brushes Anterior antel 578

Furled frammis Brazs plated 1.000076
Steeltoed wing tips Detslled rath 700
Washisbls solivieat Furled frammi 75,000

Zer-bazed her dumps

Steeltoed wi 456 BEE
W' ashable zof 789,000
Zero-bazed b 80,000

Figure 15-3 — The sorted list generated using SortBridge class

This clearly shows that you can vary the interface without changing the
implementation. The converse is also true. For example, you could create
another type of list display and replace one of the current list displays
without any other program changes as long as the new list also implements
the VisList interface. Here is the TreeList class:
public class TreeList: VisList {

private TreeView tree;

private TreeAdapter gAdapter;

1-----

public TreelList(TreeViewtre) {
tree = tre;

Copyright © , 2002 by James W Cooper

gAdapter = new TreeAdapter (tree);

public void addLi ne(Product p) {
gAdapt er. Add (p);
}

200

Note that we take advantage of the TreeAdapter we wrote in the previous

chapter, modified to work on Product objects:

public class TreeAdapter {
private TreeView tree;

[l------

public TreeAdapter(TreeView tr) {
tree=tr;

}

[]------

public void Add(Product p) {

Tr eeNode nod;
//add a root node
nod = tree. Nodes. Add(p. get Name());
//add a child node to it
nod. Nodes. Add(p. get Quantity ());
tree. ExpandAl |l ();

}

In Figure Figure 15-4, we have created a tree list component that

implements the VisList interface and replaced the ordinary list without any

change in the public interface to the classes.

Copyright © , 2002 by James W Cooper

201

¥ Sorted bridge -0 x|

Customer view E xecutive view

Antenor antelope collars - -
Bragz plated widgets E' F:J”Ed frammis ;I
Cetailed rat brushes ¢ R FE,000
Furled frammis BB Stecltoed wing-tips
Steeltoed wing-tips 45 BER
“Washable softwear]
ZFero-bazed hex dumps - Wwhashable softwear

e 789,000

=- Zero-bazed hex dumps

“ 0,000
‘| | »

Figure 15-4— Another display using aBridge to atreelist

Windows Forms as Bridges

The .NET visual control isitself an ideal example of a Bridge pattern
implementation. A Control is a reusable software component that can be
manipulated visualy in a builder tool. All of the C# controls support a
query interface that enables builder programs to enumerate their properties
and display them for easy modification. Figure 15-5 is a screen from
Visual Studio.NET displaying a panel with atext field and a check box.
The builder panel to the right shows how you can modify the properties of
either of those components using asimple visua interface.

Copyright © , 2002 by James W Cooper

202

|
[wimdows controls—— E
File Ithuu Swskerm. Windows. Forms, TextBosx ;i
% [5[E] 7|
Readonly False -
Right ToLeft Mo
ScrollBars Mone
Size 128, 20
TabInde:x 1]
TabsStop True
: Tag
o |+ @ Black | Text Greetings
{7 Green Textalign Left
ToolTip on tips
Yisible: True —
wardwwrap True LI
[il
==
=2

Figure 15-5— A screen from Visual Studio.NET showing a propertiesinterface. The
property lists are effectively implemented using a Bridge pattern.

In other words, all ActiveX controls have the same interface used by the
Builder program, and you can substitute any control for any other and still
manipulate its properties using the same convenient interface. The actual
program you construct uses these classes in a conventional way, each
having its own rather different methods, but from the builder’s point of
view, they all appear to be the same.

Consequences of the Bridge Pattern

1. The Bridge pattern is intended to keep the interface to your client
program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a
complicated set of user interface modules and only require that you
recompile the bridge itself and the actual end display class.

2. 'You can extend the implementation class and the bridge class
separately, and usually without much interaction with each other.

Copyright © , 2002 by James W Cooper

203

3. You can hide implementation details from the client program much
more easlly.

Thought Question
In plotting a stock’ s performance, you usually display the price and price-
earnings ratio over time, whereas in plotting a mutual fund, you usually
show the price and the earnings per quarter. Suggest how you can use a

Bridge to do both.

Programs on the CD-ROM
\ Bri dge\ Basi cBri dge bridge from list to grid
\ Bri dge\ Sort Bri dge sorted bridge

Copyright © , 2002 by James W Cooper

204

16. The Composite Pattern

Frequently programmers develop systems in which a component may be
either an individual object or a collection of objects. The Composite
pattern is designed to accommodate both cases. Y ou can use the
Composite to build part-whole hierarchies or to construct data
representations of trees. In summary, a composite is a collection of
objects, any one of which may be either a composite or just a primitive
object. In tree nomenclature, some objects may be nodes with additional
branches and some may be leaves.

The problem that develops is the dichotomy between having a single,
simple interface to access all the objects in a composite and the ability to
distinguish between nodes and leaves. Nodes have children and can have
children added to them, whereas leaves do not at the moment have
children, and in some implementations they may be prevented from
having children added to them.

Some authors have suggested creating a separate interface for nodes and
leaves where a leaf could have the methods, such as the following.

public string getNane();
public float getValue();

And a node could have the additional methods.

public ArrayList elenments();

publi c Node get Child(string nodeNane);
public void add(Object obj);

public void renmove(Object obj);

This then leaves us with the programming problem of deciding which
elements will be which when we construct the composite. However,
Design Patter ns suggests that each element should have the same
interface, whether it is a composite or a primitive element. This is easier to

Copyright © , 2002 by James W Cooper

205

accomplish, but we are |eft with the question of what the getChild
operation should accomplish when the object is actually a lesf.

C# can make this quite easy for us, since every node or leaf can return an
ArrayList of the child nodes. If there are no children, the count property
returns zero. Thus, if we simply obtain the ArrayList of child nodes from
each element, we can quickly determine whether it has any children by
checking the count property.

Just as difficult is the issue of adding or removing leaves from elements of
the composite. A nonleaf node can have child-leaves added to it, but a leaf
node cannot. However, we would like al of the components in the
composite to have the same interface. We must prevent attempts to add
children to aleaf node, and we can design the leaf node class to raise an
error if the program attempts to add to such a node.

An Implementation of a Composite

Let’s consider a small company. It may have started with a single person
who got the business going. He was, of course, the CEO, athough he may
have been too busy to think about it at first. Then he hired a couple of
people to handle the marketing and manufacturing. Soon each of them
hired some additional assistants to help with advertising, shipping, and so
forth, and they became the company’ s first two vice-presidents. As the
company’ s success continued, the firm continued to grow until it has the
organizational chart in Figure 16-1.

CHE

WF Moy W Pid

Salme mgr i eyt Pra mge

| Sals | Salus | Sy | Thip Sl | Shig | | Heme | Hapser
Ll

Copyright © , 2002 by James W Cooper

206

Figure 16-1 — A typical organizational chart

Computing Salaries
If the company is successful, each of these company members receives a
salary, and we could at any time ask for the cost of the control span of any
employee to the company. We define this control cost as the salary of that

person and those of al subordinates. Here is an ideal example for a
composite.

The cost of an individual employee is ssmply his or her salary (and
benefits).

The cost of an employee who heads a department is his or her salary
plus those of subordinates.

We would like a single interface that will produce the salary totals
correctly whether the employee has subordinates or not.

float getSal aries(); /1 get salaries of all

At this point, we redlize that the idea of all Composites having the same
standard method names in their interface is probably naive. We' d prefer
that the public methods be related to the kind of class we are actualy
developing. So rather than have generic methods like getValue, we'll use
getlaries.

The Employee Classes

We could now imagine representing the company as a Composite made up
of nodes: managers and employees. It would be possible to use asingle
classto represent al employees, but since each level may have different
properties, it might be more useful to define at least two classes:
Employees and Bosses. Employees are leaf nodes and cannot have
employees under them. Bosses are nodes that may have employee nodes
under them.

Copyright © , 2002 by James W Cooper

207

We'll start with the AbstractEmployee class and derive our concrete
employee classes from it.

public interface Abstract Enpl oyee {
float getSal ary(); //get current salary
string getNane(); /1 get name
bool islLeaf(); /ltrue if |eaf
void add(string nm float salary); /1 add subordi nate
voi d add(Abstract Enpl oyee enp); /1 add subordi nate
| Enuner at or get Subor di nat es() ; /' get subordi nates
Abst ract Enpl oyee get Chil d(); /1get child
float getSal aries(); /1 get sum of salaries

}

In C# we have a built-in enumeration interface called |Enumerator. This
interface consists of these methods.

bool MveNext () ; [/ False if no nore |eft
obj ect Current() /1 get current object
voi d Reset(); /move to first

So we can create an AbstractEmployee interface that returns an
Enumerator. Y ou move through an enumeration, allowing for the fact that
it might be empty, using the following approach.

e. Reset () ;

while (e.MveNext()) {
Emp = (Enpl oyee)e. Current();
/1..do conputation..

}

This Enumerator may, of course, be empty and can thus be used for both
nodes and leaves of the composite.

Our concrete Employee class will store the name and salary of each
employee and allow us to fetch them as needed.

public class Enpl oyee : Abstract Enpl oyee {
protected float sal ary;
protected string nane;
protected ArraylLi st subordinates;
[]------

Copyright © , 2002 by James W Cooper

208

public Enployee(string nm float salry) {
subordi nates = new ArraylList();
name = nm
salary = salry;

}

[]------

public float getSalary() {
return sal ary;

public string getNane() {
return nane;

}

[l------

public bool isLeaf() {
return subordinates. Count == 0;

}

[]------

public virtual AbstractEnployee getChild() {
return null;

}

The Employee class must have concrete implementations of the add,
remove, getChild, and subordinates classes. Since an Employeeis a ledf,
all of these will return some sort of error indication. The subordinates
method could return a null, but programming will be more consistent if
subor dinates returns an empty enumeration.

public | Enurer at or get Subordi nates() {
return subordi nates. Get Enunerator ();
}

The add and remove methods must generate errors, since members of the
basic Employee class cannot have subordinates. We throw an Exception if
you call these methods in the basic Employee class.

public virtual void add(string nm float salary) {
throw new Excepti on(
"No subordinates in base enpl oyee class");

}
[[=nn---

public virtual void add(Abstract Enpl oyee enp) {

Copyright © , 2002 by James W Cooper

209

t hrow new Excepti on(
"No subordinates in base enpl oyee class");

TheBossClass

Our Boss classis a subclass of Employee and allows us to store
subordinate employees as well. We'll store them in an ArrayList called
subordinates and return them through an enumeration. Thus, if a particular

Boss has temporarily run out of Employees, the enumeration will just be
empty.
public class Boss: Enmpl oyee {
public Boss(string nane, float sal ary):base(nane,salary) {}
[]-=-----
public override void add(string nm float salary) {
Abstract Enpl oyee enp = new Enpl oyee(nm sal ary);
subor di nat es. Add (enp);

public override void add(Abstract Enpl oyee emp){
subor di nat es. Add(enp) ;

If you want to get alist of employees of a given supervisor, you can obtain
an Enumeration of them directly from the ArrayList. Similarly, you can
use this same ArrayList to returns a sum of salaries for any employee and
his subordinates.

public float getSalaries() {
float sum
Abstract Enpl oyee esub;
/1 get the salaries of the boss and subordinates
sum = get Sal ary();
| Enuner at or enunBSub = subordi nat es. Get Enunerator() ;
whil e (enunSub. MoveNext ()) {
esub = (Abstract Enpl oyee) enunub. Current;
sum += esub. get Sal ari es();
}

return sum

Copyright © , 2002 by James W Cooper

210

}

Note that this method starts with the salary of the current Employee and
then callsthe getSalaries() method on each subordinate. Thisis, of course,
recursive, and any employees who have subordinates will be included. A
diagram of these classesis shown in Figure 16-2.

AbstraciEmplovee

getBalary
getHame
izLeaf

add

addEmp
getubordinates
PRINOTE
getChild
getlalaries
it

makeBoss
T -2y

Bn;s Exployee

Figure 16-2 — The AbstractEmployee class and how Employee and Boss are derived
from it

Building the Employee Tree
We start by creating a CEO Employee and then add his subordinates and
their subordinates, as follows.

private void buil dEmpl oyeeList () {

Copyright © , 2002 by James W Cooper

}

prez = new Boss("CEO', 200000);
mar ket VP = new Boss(" Marketing VP*, 100000);
prez. add(mar ket VP) ;
sal esMgr = new Boss("Sales Mygr", 50000);
advMgr = new Boss("Advt Mr", 50000);
mar ket VP. add(sal esMyr) ;
nmar ket VP. add(advMr) ;
prodVP = new Boss("Production VP", 100000);
prez. add(prodVP);
advMgr . add(" Secy", 20000);
//add sal esnen reporting to sal es nmanager
for (int i =1; i<=5; i++){

sal esMyr. add(" Sal es" + i.ToString(),

rand_sal (30000));

}

prodMgr = new Boss("Prod Myr", 40000);
shi pMyr = new Boss("Ship Myr", 35000);
pr odVP. add(pr odMyr) ;
pr odVP. add(shi pMyr) ;

for (int i =1; i<=3; i++){

211

shi pMgr. add(" Ship" + i.ToString(), rand_sal (25000));

for (int i =1; i<=4; i++){

prodMgr . add(" Manuf" + i.ToString(), rand_sal (20000));

Once we have constructed this Composite structure, we can load a visuad

TreeView list by starting at the top node and calling the addNode()
method recursively until al the leaves in each node are accessed.

private void buildTree() {

}

To smplify the manipulation of the TreeNode objects, we derive an
EmpNode class which takes an instance of Employee as an argument:

EnpNode nod;

nod = new EnpNode(prez);
root Node = nod,;

EnpTr ee. Nodes. Add(nod) ;
addNodes(nod, prez);

Copyright © , 2002 by James W Cooper

212

public class EnpNode: Tr eeNode {
private Abstract Enpl oyee enp;
publ i c EnmpNode(Abstract Enpl oyee aenp):
base(aenp. getName ()) {
enp = aenp;

public Abstract Enpl oyee get Enpl oyee() {
return enp;
}

}
The final program display is shown in Figure 16-3.

o

B I:.ED =
= Marketing /P
e ciles o

El P'_ru:u:luu:tiu:un WP
[+ Prod Mar
=l Ship Mgr

- Ship2 il

2203635

Figure 16-3 — The cor por ate organization shown in a TreeView control

In this implementation, the cost (sum of salaries) is shown in the bottom
bar for any employee you click on. This simple computation calls the
getChild() method recursively to obtain al the subordinates of that
employee.

private void EnpTree_AfterSel ect (object sender,

Copyright © , 2002 by James W Cooper

213

TreeVi ewEvent Args e) {
EnmpNode node;
node = (EnpNode) EnpTr ee. Sel ect edNode;
get NodeSun(node) ;

private void get NodeSun{ EnpNode node) ({
Abst ract Enpl oyee enp;
float sum

enp node. get Enpl oyee() ;
sum = enp. get Sal ari es();
| bSal ary. Text = sum ToString ();

Self-Promotion

We can imagine cases where a ssmple Employee would stay in his current
job but have new subordinates. For example, a Salesman might be asked
to supervise sales trainees. For such acase, it is convenient to provide a
method in the Boss class that creates a Boss from an Employee. We just
provide an additional constructor that converts an employee into a boss:

publ i c Boss(Abstract Enpl oyee enp):
base(enp. get Name() , enp.getSalary()) {

Doubly Linked Lists

In the preceding implementation, we keep a reference to each subordinate
in the Collection in each Boss class. This means that you can move down
the chain from the president to any employee, but there is no way to move
back up to find out who an employee’s supervisor is. Thisis easily
remedied by providing a constructor for each AbstractEmployee subclass
that includes a reference to the parent node.
public class Enpl oyee : Abstract Enpl oyee {

protected fl oat sal ary;

protected string nane;

protected Abstract Enpl oyee parent;
protected Arrayli st subordi nates;

Copyright © , 2002 by James W Cooper

214

Hl------
publ i c Empl oyee(Abstract Enpl oyee parnt,
string nm float salry) {
subordi nates = new ArraylList();
name = nm
salary = salry;
parent = parnt;
}

Then you can quickly walk up the tree to produce a reporting chain.

private void bt ShowBoss_Click(object sender, System EventArgs e) {

EnpNode node;
node = (EnpNode) EnpTr ee. Sel ect edNode;
Abstract Enpl oyee enp = node. get Enpl oyee ();
string bosses = "";
while(enp !'= null) {

bosses += enp.getNane () +"\n";

enp = enp. get Boss();

MessageBox. Show (nul |, bosses, "Reporting chain");
}
See Figure 16-4.
x| [Em——
- CED Salesz
E)- Marketing ¥F Sales Mor
- Sales Mar Marketing YP
© Lo Bales] CED
- Sales?
Sales3
Salesd
Salesh

-- At Magr
[+ Production VP

35146.35

Copyright © , 2002 by James W Cooper

215

Figure 16-4— Thetreelist display of the composite with a display of the parent nodes
on theright

Consequences of the Composite Pattern

The Composite pattern allows you to define a class hierarchy of simple
objects and more complex composite objects so they appear to be the same
to the client program. Because of this simplicity, the client can be that
much simpler, since hodes and leaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar
programming interface. On the other hand, this has the disadvantage of
making your system overly genera. You might find it harder to restrict
certain classes where this would normally be desirable.

A Simple Composite
The intent of the Composite pattern isto allow you to construct atree of
various related classes, even though some have different properties than
others and some are leaves that do not have children. However, for very
simple cases, you can sometimes use just a single class that exhibits both
parent and leaf behavior. In the SimpleComposite example, we create an
Employee class that always contains the ArrayList subordinates. This
collection of employees will either be empty or populated, and this
determines the nature of the values that you return from the getChild and
remove methods. In this ssmple case, we do not raise errors and aways
allow leaf nodes to be promoted to have child nodes. In other words, we
always allow execution of the add method.

While you may not regard this automatic promotion as a disadvantage, in
systems where there are a very large number of leaves, it is wasteful to
keep a Callection initialized and unused in each leaf node. In cases where
there are relatively few leaf nodes, thisis not a serious problem.

Copyright © , 2002 by James W Cooper

216

Compositesin .NET

In .NET, you will note that the Node object class we use to populate the
TreeView isin fact just such a smple composite pattern. Y ou will also
find that the Composite describes the hierarchy of Form, Frame, and
Controlsin any user interface program. Similarly, toolbars are containers,
and each may contain any number of other containers.

Any container may then contain components such as Buttons,
Checkboxes, and TextBoxes, each of which is a leaf node that cannot have
further children. They may also contain ListBoxes and grids that may be
treated as leaf nodes or that may contain further graphical components.

Y ou can walk down the Composite tree using the Controls collection.

Other Implementation | ssues

Ordering components. In some programs, the order of the components
may be important. If that order is somehow different from the order in
which they were added to the parent, then the parent must do additional
work to return them in the correct order. For example, you might sort the
original collection alphabetically and return a new sorted collection.

Caching results. If you frequently ask for data that must be computed
from a series of child components, as we did here with salaries, it may be
advantageous to cache these computed results in the parent. However,
unless the computation is relatively intensive and you are quite certain that
the underlying data have not changed, this may not be worth the effort.

Thought Questions

1. A baseball team can be considered an aggregate of its individual
players. How could you use a composite to represent individual and
team performance?

2. The produce department of a supermarket needs to track its sales
performance by food item. Suggest how a composite might be helpful.

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

217

\ Conposite\ Conposite

composite shows tree

\ Conposite\ Dl i nkConposite

composite that uses both child links
and parent links

\ Conposite\Si npl eConposite

Simple composite of same
employee tree that allows any
employee to move from leef to
node.

Copyright © , 2002 by James W Cooper

218

17. The Decorator Pattern

The Decorator pattern provides us with away to modify the behavior of
individual objects without having to create a new derived class. Suppose
we have a program that uses eight objects, but three of them need an
additional feature. Y ou could create a derived class for each of these
objects, and in many cases this would be a perfectly acceptable solution.
However, if each of these three objects requires different features, this
would mean creating three derived classes. Further, if ore of the classes
has features of both of the other classes, you begin to create complexity
that is both confusing and unnecessary.

For example, suppose we wanted to draw a specia border around some of
the buttons in a toolbar. If we created a new derived button class, this
means that al of the buttonsin this new class would always have this
same new border when this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then we
derive any number of specific Decorators from the main Decorator class,
each of which performs a specific kind of decoration. In order to decorate
a button, the Decorator has to be an object derived from the visual
environment so it can receive paint method calls and forward calls to other
useful graphic methods to the object that it is decorating. This is another
case where object containment is favored over object inheritance. The
decorator is agraphical object, but it contains the object it is decorating. It
may intercept some graphical method calls, perform some additional
computation, and pass them on to the underlying object it is decorating.

Decorating a CoolButton

Recent Windows applications such as Internet Explorer and Netscape
Navigator have arow of flat, unbordered buttons that highlight themselves
with outline borders when you move your mouse over them. Some
Windows programmers call this toolbar a CoolBar and the buttons
CoolButtons. There is no anaogous button behavior in C# controls, but

Copyright © , 2002 by James W Cooper

219

we can obtain that behavior by decorating a Panel and using it to contain a
button. In this case, we decorate it by drawing black and white border
lines to highlight the button, or gray lines to remove the button borders.

Let’s consider how to create this Decorator. Design Patter ns suggests that
Decorators should be derived from some general visual component class
and then every message for the actual button should be forwarded from the
decorator. Thisis not al that practical in C#, but if we use containers as
decorators, al of the events are forwarded to the control being contained.

Design Patterns further suggests that classes such as Decorator should be
abstract classes and that you should derive al of your actual working (or
concrete) decorators from the Abstract class. In our implementation, we
define a Decorator interface that receives the mouse and paint events we
need to intercept.
public interface Decorator

voi d nouseMdve(obj ect sender, MuseEventArgs e);

voi d nouseEnt er (obj ect sender, EventArgs e);

voi d mobuselLeave(obj ect sender, EventArgs e);

voi d paint (object sender, PaintEventArgs e);

}

For our actual implementation, we can derive a Cool Decorator from a
Pandl class, and have it become the container which holds the button we
are going to decorate.

Now, let’s look at how we could implement a CoolButton. All we really
need to do is to draw the white and black lines around the button area
when it is highlighted and draw gray lines when it is not. When a
MouseMove is detected over the button, the next paint event should draw
the highlighted lines, and when the mouse leaves the button area, the next
paint event should draw outlinesin gray. We do this by setting a
mouse_over flag and then forcing arepaint by calling the Refresh method.

public void npbuseMove(object sender, MuseEvent Args e){
nouse_over = true;

public void nmouseEnter(object sender, EventArgs e){

Copyright © , 2002 by James W Cooper

220

nouse_over = true;
this. Refresh ();

public void nouselLeave(object sender, EventArgs e){
nouse_over = fal se;
this. Refresh ();

The actual paint event is the following:

public virtual void paint(object sender, PaintEventArgs e){
//draw over button to change its outline
Graphics g = e. G aphi cs;
const int d = 1;
//draw over everything in gray first
g. DrawRect angl e(gPen, 0, 0, x2 - 1, y2 - 1);
/1 draw bl ack and white boundaries
/1if the nobuse is over
i f(rmouse_over) {
g. DrawLi ne(bPen, 0, 0, x2 - d, 0);
g. DrawLi ne(bPen, 0, 0, 0, y2 - 1);
g. DrawLi ne(wPen, 0, y2 - d, x2 - d, y2 - d);
g. DrawLi ne(wPen, x2 - d, 0, x2 - d, y2 - d);

}

Handling eventsin a Decor ator

When we construct an actual decorator containing the mouse and paint
methods we show above, we have to connect the event handling system to
these methods. We do this in the constructor for the decorator by creating
an EventHandler class for the mouse enter and hover events and a
MouseEventHandler for the move and leave events. It is important to note
that the events we are catching are events on the contained button, rather
than on the surrounding Panel. So, the control we add the handlersto is the

button itsalf.
public Cool Decorator(Control c) {
contl = c; //copy in control

// nouse over, enter handl er
Event Handl er evh = new Event Handl er (nouseEnter);

Copyright © , 2002 by James W Cooper

221

c. MouseHover += evh;

c. MbuseEnt er += evh;
/I mouse nove handl er
c. MouseMove += new MouseEvent Handl er (nbuselMove) ;
c. MbuseLeave += new Event Handl er (nmouseLeave) ;

Similarly, we create a PaintEventHandler for the paint event.

// pai nt handl er catches button's paint
c. Paint += new Pai nt Event Handl er (pai nt);

Layout Considerations

If you create a Windows form containing buttons, the GUI designer
automatically generates code to add that Control to the Controls array for
that Window. We want to change this by adding the button to the Controls
array for the new panel, adding the panel to the Controls array for the
Window, and removing the button from that array. Here is the code to add
the panel and remove the button in the Form initialization method:

//add outside decorator to the |ayout

/land renove the button fromthe |ayout

this. Control s. AddRange(new System W ndows. Forms. Control [] {cdec});
this. Control s. Remove (btButtonA);

and this is the code to add the button to the Decorator panel:

public Cool Decorator(Control c¢) {
contl = c; //copy in control
//add button to controls contained in panel
this. Control s. AddRange(new Control[] {contl});

Control Size and Position

When we decorate the button by putting it in a Panel, we need to change
the coordinates and sizes so that the Panel has the size and coordinates of
the button and the button has a location of (0, 0) within the pandl. This
also happens in the Cool Decorator constructor:

this. Location = p;

Copyright © , 2002 by James W Cooper

contl . Location =new Poi nt (0, 0);

this. Name = "deco"+cont!. Nane ;
this.Size = contl.Size;

x1 = c. Location. X - 1;
yl = c.Location.Y - 1;
X2 = c¢.Size. Wdt h;
y2 = c. Si ze. Hei ght ;

We also create instances of the Pens we will use in the Paint method in
this constructor:

//create the overwite pens

gPen = new Pen(c. BackCol or, 2); /lgray pen overwites borders

bPen new Pen(Col or.Black , 1);
wPen = new Pen(Col or. Wiite, 1);

Using a Decorator

This program is shown in Figure 17-1, with the mouse hovering over one
of the buttons.

R=

A buttan B buttan

Gt

Figure17-1 — The A button and B button are CoolButtons, which are outlined when
a mouse hovers over them. Herethe B button is outlined.
Multiple Decorators

Now that we see how a single decorator works, what about multiple
decorators? It could be that we' d like to decorate our Cool Buttons with
another decoration— say, adiagonal red line.

Copyright © , 2002 by James W Cooper

223

Thisis only dightly more complicated, because we just need to enclose
the Cool Decorator inside yet another decorator panel for more decoration
to occur. The only real change is that we not only need the instance of the
panel we are wrapping in another, but also the central object (here a
button) being decorated, since we have to attached our paint routines to
that central object’s paint method.

So we need to create a constructor for our decorator that has both the
enclosing panel and the button as Controls.

public class Cool Decorator :Panel, Decorator {

protected Control contl;
protected Pen bPen, wPen, gPen;

private bool nouse_ over;
protected float x1, yl, x2, y2;

publ i c Cool Decorator(Control c, Control baseC) {
//the first control is the one |ayed out
//the base control is the one whose paint nmethod we extend
//this allows for nesting of decorators
contl = c;
this. Controls. AddRange(new Control[] {contl});

Then, when we add the event handlers, the paint event handler must be
attached to the base control:

/I paint handl er catches button's paint
baseC. Pai nt += new Pai nt Event Handl er (paint);

We make the paint method virtual so we can override it as we see below.

public virtual void paint(object sender, PaintEventArgs e){
//draw over button to change its outline
Graphics g = e. G aphi cs;

It turns out that the easiest way to write our SlashDecorator, which draws
that diagonal red line, isto derive it from Cool Decorato directly. We can
reuse al the base methods and extend only the paint method from the
Cool Decorator and save alot of effort.

public class Sl ashDeco: Cool Decor at or {
private Pen rPen;

Copyright © , 2002 by James W Cooper

224

public Sl ashDeco(Control c, Control bc):base(c, bc) {
rPen = new Pen(Color.Red , 2);

public override void paint(object sender,
Pai nt Event Args e){

Graphics g = e. Gaphics ;
x1=0; y1=0;
x2=this.Size.Wdth ;
y2=thi s. Si ze. Hei ght ;
g. DrawLi ne (rPen, x1, y1, x2, y2);
}
}

This gives us a final program that displays the two buttons, as shown in
Figure Figure 17-2. The class diagram is shown in Figure 17-3

Bcool Decorator ————RTe[F

‘ &, ;QH [Laik

Figure17-2 — The A CoolButton is also decorated with a SlashDecor ator.

Copyright © , 2002 by James W Cooper

225

AhstractDecorator
DecoForm T
initC ontents
mougellp
1 mousellowt
1 mouseldove
refresh
deco | paint
getControl
77
De.curatnr
it
iI]i‘t. t.:l.l:k
mousehdove
mous el oy
mouzellp
paitt

Figure17-3—-The UML classdiagram for Decorators and two specific Decor ator
implementations

Nonvisual Decorators

Decorators, of course, are not limited to objects that enhance visud
classes. Y ou can add or modify the methods of any object in asimilar
fashion. In fact, nonvisual objects can be easier to decorate because there
may be fewer methods to intercept and forward. Whenever you put an
instance of a class inside another class and have the outer class operate on
it, you are essentially “decorating” that inner class. Thisis one of the most
common tools for programming available in Visua Studio.NET.

Copyright © , 2002 by James W Cooper

226

Decorators, Adapters, and Composites

As noted in Design Patterns, there is an essential smilarity among these
classes that you may have recognized. Adapters also seem to “decorate”

an existing class. However, their function is to change the interface of one
or more classes to one that is more convenient for a particular program.
Decorators add methods to particular instances of classes rather than to all
of them. Y ou could also imagine that a composite consisting of asingle
item is essentially a decorator. Once again, however, the intent is different.

Consequences of the Decor ator Pattern

The Decorator pattern provides a more flexible way to add responsibilities
to a class than by using inheritance, since it can add these responsibilities
to selected instances of the class. It dso allows you to customize a class
without creating subclasses high in the inheritance hierarchy. Design
Patter ns points out two disadvantages of the Decorator pattern. One is that
a Decorator and its enclosed component are not identical. Thus, tests for
object types will fail. The second is that Decorators can lead to a system
with “lots of little objects’ that al look alike to the programmer trying to
maintain the code. This can be a maintenance headache.

Decorator and Fagade evoke similar images in building architecture, but in
design pattern terminology, the Fagade is away of hiding a complex
system inside a simpler interface, whereas Decorator adds function by
wrapping a class. We' Il take up the Facade next.

Thought Questions

1. When someone enters an incorrect value in a cell of agrid, you might
want to change the color of the row to indicate the problem. Suggest
how you could use a Decorator.

2. A mutua fund isacollection of stocks. Each one consists of an array
or Collection of prices over time. Can you see how a Decorator can be
used to produce a report of stock performance for each stock and for
the whole fund?

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

227

\ Decor at or \ Cool decor at or

Ct#cool button decorator

\ Decor at or\ Redecor at or

C# cool button and slash decorator

Copyright © , 2002 by James W Cooper

228

18. The Facade Pattern

The Fagade pattern is used to wrap a set of complex classes into asimpler
enclosing interface. As your programs evolve and develop, they grow in
complexity. In fact, for al the excitement about using design patterns,
these patterns sometimes generate so many classes that it is difficult to
understand the program’s flow. Furthermore, there may be a number of
complicated subsystems, each of which has its own complex interface.

The Fagade pattern allows you to smplify this complexity by providing a
smplified interface to these subsystems. This simplification may in some
cases reduce the flexibility of the underlying classes, but it usually
provides all the function needed for all but the most sophisticated users.
These users can till, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Fagcade can be useful. C# provides a set of classes that
connect to databases, using an interface called ADO.Net. Y ou can connect
to any database for which the manufacturer has provided a ODBC
connection class—almost every database on the market. Let’stake a
minute and review how databases are used and a little about how they
work.

What |sa Database?

A database is a series of tables of information in some sort of file structure
that allows you to access these tables, select columns from them, sort
them, and select rows based on various criteria. Databases usualy have
indexes associated with many of the columns in these tables, so we can
access them as rapidly as possible.

Databases are used more than any other kind of structure in computing.
You'll find databases as central elements of employee records and payraoll
systems, in travel scheduling systems, and all through product
manufacturing and marketing.

Copyright © , 2002 by James W Cooper

229

In the case of employee records, you could imagine a table of employee
names and addresses and of salaries, tax withholding, and benefits. Let's
consider how these might be organized. Y ou can imagine one table of
employee names, addresses, and phone numbers. Other information that
you might want to store would include salary, salary range, last raise, next
raise, employee performance ranking, and so forth.

Should this all be in one table? Almost certainly not. Salary ranges for
various employee types are probably invariant between employees, and
thus you would store only the employee type in the employee table and the
salary ranges in another table that is pointed to by the type number.
Consider thedatain Table 18-1.

Key | Lastname | SalaryType SdlaryType | Min Max
1 Adams 2 1 30000 45000
2 Johnson |1 2 45000 60000
3 Smyth 3 3 60000 75000
4 Tully 1

5 Wolff 2

Table 18-1 — Employee Names and Salary Type Tables

The datain the sal ar yType column refers to the second table. We could
imagine many such tables for things like state of residence and tax values
for each state, health plan withholding, and so forth. Each table will have a
primary key column like the ones at the left of each table and several more
columns of data. Building tables in a database has evolved to both an art
and a science. The structure of these tables is referred to by their normal
form. Tables are said to be in first, second, or third normal form,
abbreviated as INF, 2NF, or 3NF.

First. Each cell in atable should have only one value (never an array
of values). (INF)

Copyright © , 2002 by James W Cooper

230

Second. INF and every nonkey column is fully dependent on the key
column. This means there is a one-to-one relationship between the
primary key and the remaining cells in that row. (2NF)

Third. 2NF and all non-key columns are mutually independent. This
means that there are no data columns containing values that can be
calculated from other columns’ data. (3NF)

Today, nearly al databases are constructed so that al tables are in third
normal form (3NF). This means that there are usualy afairly large
number of tables, each with relatively few columns of information.

Getting Data Out of Databases

Suppose we wanted to produce a table of employees and their salary
ranges for some planning exercise. This table doesn’'t exist directly in the
database, but it can be constructed by issuing a query to the database.
We'd like to have a table that looked like the datain Table 18-2.

| Name | Min | Max |
Adams $45,000.00 $60,000.00
Johnson $30.000.00 $45,000.00
Smyth $60,000.00 $75.000.00
Tullv $30.000.00 $45.000.00
Wolff $45,000.00 $60,000.00

Table 18-2 - Employee Salaries Sorted by Name

Maybe we want data sorted by increasing salary, as shown in Table 18-3.

| Name Min Max

Tully $30.000.00 $45.000.00
Johnson $30,000.00 $45,000.00
Wolff $45,000.00 $60.,000.00
Adams $45.000.00 $60.000.00
Smvth $60.000.00 $75.000.00

Table 18-3— Employee Salaries Sorted by Magnitude

Copyright © , 2002 by James W Cooper

231

We find that the query we issue to obtain these tables has this form.

SELECT DI STI NCTROW Enpl oyees. Nanme, Sal ar yRanges. M n,

Sal ar yRanges. Max FROM Enpl oyees | NNER JO N Sal ar yRanges ON
Enpl oyees. Sal aryKey = Sal ar yRanges. Sal ar yKey

ORDER BY Sal ar yRanges. M n;

This language is called Structured Query Language or SQL (often
pronounced “sequel”), and it is the language of virtually all databases
currently available. There have been several standards issued for SQL

over the years, and most PC databases support much of these ANSI
standards. The SQL-92 standard is considered the floor standard, and there
have been several updates since. However, none of these databases
support the later SQL versions perfectly, and most offer various kinds of
SQL extensions to exploit various features unique to their database.

Kinds of Databases

Since the PC became a mgjor office tool, there have beena number of
popular databases devel oped that are intended to run by themselves on
PCs. These include elementary databases like Microsoft Works and more
sophisticated ones like Approach, dBase, Borland Paradox, Microsoft
Access, and FoxBase.

Another category of PC databases includes that databases intended to be
accessed from a server by a number of PC clients. These include IBM
DB/2, Microsoft SQL Server, Oracle, and Sybase. All of these database
products support various relatively similar dialects of SQL, and thus all of
them would appear at first to be relatively interchangeable. The reason
they are not interchangeable, of course, is that each was designed with
different performance characteristics involved and each with a different
user interface and programming interface. While you might think that
since they al support SQL, programming them would be similar, quite the
opposite is true. Each database has its own way of receiving the SQL
gueries and its own way of returning the results. This is where the next
proposed level of standardization came about: ODBC.

Copyright © , 2002 by James W Cooper

232

ODBC

It would be nice if we could somehow write code that was independent of
the particular vendor’ s database that would alow us to get the same results
from any of these databases without changing our calling program. If we
could only write some wrappers for all of these databases so that they all
appeared to have similar programming interfaces, this would be quite easy
to accomplish.

Microsoft first attempted this feat in 1992 when they released a
specification called Object Database Connectivity. It was supposed to be
the answer for connection to all databases under Windows. Like al first
software versions, this suffered some growing pains, and another version
was released in 1994 that was somewhat faster as well as more stable. It
also was the first 32-bit version. In addition, ODBC began to move to
platforms other than Windows and has by now become quite pervasivein
the PC and Workstation world. Nearly every major database vendor
provides ODBC drivers.

Database Structure

At the lowest level, then, a database consists of a series of tables, each
having several named columns, and some relationships between these
tables. This can get pretty complicated to keep track of, and we would like
to see some simplification of this in the code we use to manipulate
databases.

C# and dl of VisualStudio.Net use a new database access model, called
ADO.NET, for ActiveX Data Objects. The design philosophy of
ADO.NET is one in which you define a connection betweenyour program
and a database and use that connection sporadically, with much of the
computation actually taking place in disconnected objects on your local
machine. Further, ADO.NET uses XML for definition of the objects that
are transmitted between the database and the program, primarily under the
covers, although it is possible to access this data description using some of
the built-in ADO.NET classes.

Copyright © , 2002 by James W Cooper

233

Using ADO.NET

ADO.NET asimplemented in C# consists of afairly large variety of
interrelated objects. Since the operations we want to perform are still the
same relatively ssimple ones, the Fagade pattern will be an ideal way to
manage them.

OleDbConnection—This object represents the actual connection
to the database. Y ou can keep an instance of this class available
but open and close the connection as needed. Y ou must
specificaly close it when you are done, before it is garbage
collected.

OleDbCommand—This class represents a SQL command you
send to the database, which may or may not return results.

OleDbDataAdapter—Provides a bridge for moving data between
adatabase and aloca DataSet. Y ou can specify an
OleDbCommand, a Dataset, and a connection.

DataSet—A representation of one or more database tables or
results from a query on your local machine.

DataT able—A single data table from a database or query

DataRow—A single row in a DataTable.

Connecting to a Database

To connect to a database, you specify a connection string in the
constructor for the database you want to use. For example, for an Access
database, your connection string would be the following.

string connectionString =
"Provider=M crosoft.Jet. OLEDB. 4. 0; " +
"Dat a Sour ce=" + dbNane;

and the following makes the actual connection.

A eDbConnection conn =
new O eDbConnecti on(connectionString);

Copyright © , 2002 by James W Cooper

234

Y ou actually open that connection by calling the open method. To make
sure that you don’t re-open an already open connection, you can check its
state first.

private void openConnection() {
if (conn.State == ConnectionState. d osed){

conn. Open ();
}
}

Reading Data from a Database Table

To read datain from a database table, you create an ADOCommand with
the appropriate Select statement and connection.

publ i c DataTabl e openTabl e (string tabl eNanme) {
A eDbDat aAdapt er adapter = new O eDbDat aAdapter ();
Dat aTabl e dtable = null;
string query = "Select * from" + tabl eNane;
adapt er . Sel ect Command = new O eDbComand (query, conn);

Then, you create a dataset object into which to put the results.
Dat aSet dset = new DataSet ("nydata");

Then, you simply tell the command object to use the connection to fill the
dataset. Y ou must specify the name of the table to fill in the FillDataSet
method, as we show here.

try {
openConnection();

adapter.Fill (dset);

}
catch(Exception e) {

Consol e. WiteLine (e. Message);
}

The dataset then contains at least one table, and you can obtain it by index
or by name and examine its contents.

Copyright © , 2002 by James W Cooper

235

//get the table fromthe dataset

dtabl e = dset. Tables [0];

Executing a Query

Executing a Select query is exactly identical to the preceding code, except
the query can be an SQL Select statement of any complexity. Here we
show the steps wrapped in a Try block in case there are SQL or other
database errors.

publ i c DataTabl e openQuery(string query) {
O eDbDat aAdapt er dsCnd = new O eDbDat aAdapter ();
Dat aSet dset = new DataSet ();
//create a dataset
Dat aTabl e dtable = nul|; //declare a data table
try {
//create the command
dsCnd. Sel ect Cormand =
new O eDbConmand(query, conn);
/1 open the connection
openConnection();
[1fill the dataset
dsCnd. Fill (dset, "mine");
//get the table
dt abl e = dset. Tabl es[0] ;
// al ways close it
cl oseConnection();
/land return it
return dtabl e;
}
catch (Exception e) {
Consol e. WiteLine (e. Message);
return null;

}

Deleting the Contents of a Table

Y ou can delete the contents of atable using the “Delete * from Table’
SQL statement. However, since thisis not a Select command, and there is

Copyright © , 2002 by James W Cooper

236

no local table to bridge to, you can simply use the ExecuteNonQuery
method of the OleDbCommand object.

public void delete() {

//deletes entire table
conn = db. get Connecti on();
openConn();
if (conn.State == ConnectionState. Open) {
A eDbComand adcnd =
new O eDbCommuand("Del ete * from" + tabl eName, conn);
try{
adcnd. Execut eNonQuery();
cl oseConn();

}
catch (Exception e) {

Consol e. WitelLine (e. Message);
}

}

Adding Rowsto Database Tables Using ADO.NET

The process of adding datato atableis closely related. You generally start
by getting the current version of the table from the database. If it is very
large, you can get only the empty table by getting just its schema. We
follow these steps.

1.

N o g s~ w DN

Create a DataTable with the name of the table in the database.
Add it to a dataset.

Fill the dataset from the database.

Get anew row object from the DataTable.

Fill in its columns.

Add the row to the table.

When you have added all the rows, update the database from the
modified DataT able object.

The process looks like this.
Dat aSet dset = new Dat aSet (t abl eNan®e) ; /lcreate the data set

Copyright © , 2002 by James W Cooper

237

dtabl e = new Dat aTabl e(t abl eNane) ; //and a dat at abl e
dset . Tabl es. Add(dt abl e) ; //add to collection
conn = db. get Connecti on();

openConn() ; /1 open the connection

A eDbDat aAdapt er adcnd = new O eDbDat aAdapter () ;
/1 open the table
adcnd. Sel ect Command =
new O eDbConmand(" Sel ect * from" + tabl eName, conn);
A eDbConmandBui | der ol ecb = new O eDbConmandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®e);
//1oad current data into the |local table copy
adcnd. Fil | (dset, tabl eNane);
/1 get the Enumerator fromthe Hashtabl e
| Enumer at or i enum = nanes. Keys. Get Enuner at or () ;
/I move through the table, adding the nanes to new rows
while (ienum MoveNext()) {
string nane = (string)ienum Current;
row = dt abl e. NewRow() ; /1 get new rows
rowf col uymNane] = nane;
dt abl e. Rows. Add(row) ; //add into table

/I Now update the database with this table

try {
adcnd. Updat e(dset) ;
cl oseConn();
filled = true;

}

catch (Exception e) {
Consol e. WitelLine (e. Message);
}

It is this table editing ad update process that is central to the ADO style
of programming. Y ou get the table, modify the table, and update the
changes back to the database. Y ou use this same process to edit or delete
rows, and updating the database makes these changes as well.

Building the Fagade Classes

This description is the beginning of the new Fagade we are developing to
handle creating, connecting to, and using databases. In order to carry out
therest, let’s consider Table 18-4, grocery prices at three local stores.

Copyright © , 2002 by James W Cooper

St op and Shop,

St op and Shop,

St op and Shop,

Stop and Shop,

St op and Shop,

St op and Shop,

Stop and Shop,

Vil l age Market,

Vil l age Market,

Village Market,
Il age Market,
Il age Market,

Vil l age Market,
Il age Market,

Val dbaun s,

Val dbaun s,

Wal dbaun s,

Wal dbaumi s,

Val dbaum s,

Wal dbauni s,

Wal dbaumni s,

Appl es,

O anges,
Hanbur ger,
Butter,

M1k,

Col a,

Green beans,
Appl es,

O anges,
Hanbur ger,
Butter,

M1k,

Col a,

Green beans,
Appl es,

O anges,
Hanbur ger,
Butter,

M|k,

Col a,

G een beans,

Table 18-4- Grocery Pricing Data

It would be nice if we had this information in a database so we could
easily answer the question “Which store has the lowest prices for

P NP WNOONWRFEFNNOONNPEFENPEFPOO

.27
.36
.98
.39
.98
.65
.29
.29
.29
.45
.99
.79
.79
.19
.33
.47
.29
.29
.89
.99
.99

238

oranges?’ Such a database should contain three tables: the supermarkets,

the foods, and the prices. We aso need to keep the relations among the

three tables. One ssimple way to handle this is to create a Stores table with

StoreName and StoreK ey, a Foods table with a FoodName and a

FoodKey, and a Price table with a PriceKey, a Price, and references to the
StoreK ey and Foodkey.

In our Facade, we will make each of these three tablesits own class and
have it take care of creating the actual tables. Since these three tables are

so similar, we'll derive them all from the basic DBTable class.

Copyright © , 2002 by James W Cooper

239

Building the Price Query

For every food name, we'd like to get a report of which stores have the
cheapest prices. This means writing a ssmple SQL query against the
database. We can do this within the Price class and have it return a Dataset
with the store names and prices.

The final application smply fills one list box with the food names and
files the other list box with prices when you click on a food name, as
shown in Figure 18-1.

imi. MakeDB

Apples Stop and Shaop 198
Butter W aldbaum'z 229
Cola illage Market 245
[Green beans
‘Hamburger
kil
Oranges

Start |

Figure 18-1 — The grocery program using a Fagade pattern

Making the ADO.NET Facade
In the Fagade we will make for our grocery database, we start with an
abstract DBase class that represents a connection to a database. This
encapsulates making the connection and opening atable and an SQL
query.

public abstract class DBase {
protected O eDbConnecti on conn;

private void openConnection() {
if (conn.State == ConnectionState. d osed)

Copyright © , 2002 by James W Cooper

conn. Open ();

}
Hl------
private void closeConnection() {
if (conn.State == ConnectionState. Open){
conn. C ose ();

public DataTabl e openTabl e (string tableNane) {
A eDbDat aAdapt er adapter = new O eDbDat aAdapter ();
Dat aTabl e dtable = null;
string query = "Select * from" + tabl eNane;

adapt er. Sel ect Command = new O eDbCommand (query, conn);

Dat aSet dset = new DataSet ("nydata");
try {

openConnection();

adapter.Fill (dset);

dtabl e = dset. Tables [0];

}
catch(Exception e) {
Consol e. WiteLine (e. Message);

240

}
return dtabl e;
}
[]------
public DataTabl e openQuery(string query) {
QA eDbDat aAdapter dsCnd = new O eDbDat aAdapter ();
Dat aSet dset = new DataSet (); //create a dataset
Dat aTabl e dtable = null; //declare a data table
try {
/Il create the conmand
dsCnd. Sel ect Comrand = new O eDbCommand(query, conn);
openConnection(); // open the connection
//fill the dataset
dsCnd. Fil |l (dset, "mine");
/1get the table
dt abl e = dset. Tabl es[0];
cl oseConnection(); //always close it
return dtabl e; //and return it

}
catch (Exception e) {
Consol e. WitelLine (e. Message);

Copyright © , 2002 by James W Cooper

241

return null;

public void openConnection(string connectionString) {
conn = new O eDbConnecti on(connectionString);

public O eDbConnection get Connection() ({
return conn;
}

}

Note that this class is complete except for constructors. We'll make
derived classes that create the connection strings for various databases.
WEe'll make a version for Access.
public class AxsDatabase :Dbase {
public AxsDat abase(string dbName) {
string connectionString =
"Provider=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=" +
dbNane;
openConnect i on(connecti onString);
}
}
and another for SQL Server.

public class SQ.ServerDat abase: DBase {
string connectionString;

[]-----
public SQLServer Dat abase(Stri ng dbNane)
connectionString = "Persist Security Info = Fal se;" +
"Initial Catalog =" + dbName + ";" +
"Data Source = nyDataServer;User | D = nyName;" +
" passwor d=";
openConnect i on(connectionString);
}
[]-----

public SQ.ServerDat abase(string dbName, string serverNane,
string userid, string pwd) {

connectionString = "Persist Security Info = False;" +
“Initial Catalog =" + dbNane + ";" +
"Data Source =" + serverName + ";" +
"User ID =" + userid + ";" +

"password=" + pwd;

Copyright © , 2002 by James W Cooper

}
}

242

openConnecti on(connectionString);

The DBTable class

The other mgjor class we will need is the DBTable class. It encapsulates
opening, loading, and updating a single database table. We will also use
this class in this example to add the single values. Then we can derive
food and store classes that do this addition for each class.

public

cl ass DBTabl e {
protected DBase db;
protected string tabl eNaneg;
private bool filled, opened,;
private DataTabl e dtabl e;
private int row ndex;
private Hashtabl e nanes;
private string col utmNane;
private Dat aRow row;

private O eDbConnection conn;
private int index;

DBTabl e(DBase datab, string tb_Nanme) {
db = dat ab;

t abl eNane = tb_Nane;

filled =fal se;

opened = fal se;

names = new Hashtabl e();

voi d createTable() {

try {
dtabl e = new Dat aTabl e(t abl eNan®) ;

dt abl e. d ear () ;

catch (Exception e) {
Consol e. WiteLine (e. Message);
}

bool hasMoreEl ements() {
i f (opened)

return (rowl ndex < dtabl e. Rows. Count)
el se

Copyright © , 2002 by James W Cooper

return fal se;

}
[]-----
public int getKey(string nm string keynane){
Dat aRow r ow;
int key;
if(! filled)
return (int)names[nni;
el se {
string query = "select * from" + tableNanme + " where "

columName + "=\"" + nm+ "\'";
dt abl e = db. openQuery(query);
row = dtabl e. Rows[0] ;
key = Convert. Tol nt32 (row keynane].ToString());
return key;

public virtual void nakeTabl e(string cNane) {
/I shown bel ow

private void closeConn() {
if(conn.State == ConnectionState. Open) {
conn. Cl ose();

}
}
[]-----
private void openConn() {
if(conn.State == ConnectionState. dosed) {
conn. Qpen() ;
}
}
[]-----

public void openTabl e() {
dt abl e = db. openTabl e(t abl eNan®e) ;
rowl ndex = O;
if(dtable !'= null)
opened = true;

[]-----

public void delete() {
/I shown above
}

}

Copyright © , 2002 by James W Cooper

243

+

244

Creating Classesfor Each Table

We can derive the Store, Food, and Prices classes from DBTable and reuse
much of the code. When we parse the input file, both the Store and Food
classes will require that we create a table of unique names. store namesin
one class and food names in the other.

C# provides a very convenient way to create these classes using the
Hashtable. A Hashtable is an unbounded array where each element is
identified with a unique key. One way people use Hashtablesisto add
objects to the table with a short nickname as the key. Then you can fetch
the object from the table by using its nickname. The objects need not be
unique, but, of course, the keys must be unique.

The other place Hashtables are convenient isin making alist of unique
names. If we make the names the keys and some other number the
contents, then we can add names to the Hashtable and assure ourselves
that each will be unique. For them to be unique, the Hashtable must treat
attempts to add a duplicate key in a predictable way. For example, the
Java Hashtable simply replaces a previous entry having that key with the
new one. The C# implementation of the Hashtable, on the other hand,
throws an exception when we try to add a nonunique key value.

Now bearing in mind that we want to accumulate the entire list of names
before adding them into the database, we can use the following method to
add names to a Hashtable and make sure they are unique.

public void addTabl eVal ue(string nm {

[/ accurmul at es nanes in hash table

try {
nanmes. Add(nm i ndex++);
}

catch (Argunment Exception) {}
/1 do not allow duplicate names to be added

Copyright © , 2002 by James W Cooper

245

Then, once we have added all the names, we can add each of them to the
database table. Here we use the Enumerator property of the Hashtable to
iterate though all the names we have entered in the list.
public virtual void nakeTabl e(string cNane) {

col umNanme = cNane;

//stores current hash table values in data table
Dat aSet dset = new DataSet (tabl eNane); //create dataset

dt abl e = new Dat aTabl e(t abl eNane) ; //and a datatable
dset. Tabl es. Add(dt abl e); //add to collection
conn = db. get Connecti on();

openConn(); /1 open the connection

A eDbDat aAdapt er adcnd = new O eDbDat aAdapter () ;
//open the table
adcnd. Sel ect Conmand =
new O eDbCommand("Sel ect * from" + tabl eNanme, conn);
QA eDbConmandBui | der ol ecb = new O eDbCommuandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®);
//1oad current data into the |ocal table copy
adcnd. Fi |l | (dset, tabl eNane);
//get the Enunerator fromthe Hashtable
| Enuner at or i enum = nanes. Keys. Get Enuner at or () ;
/I move through the table, adding the nanes to new rows
whil e (ienum MoveNext()) {
string nanme = (string)ienum Current;

row = dt abl e. NewRow() ; /] get new rows
rowf col uymNane] = nane;
dt abl e. Rows. Add(row) ; //add into table
}
/1 Now updat e the database with this table
try {
adcnd. Updat e(dset) ;
cl oseConn();
filled = true;
}

catch (Exception e) {
Consol e. WitelLine (e. Message);

}
}
This simplifies our derived Stores table to just the following.
public class Stores :DBTabl e {

public Stores(DBase db):base(db, "Stores"){

}

Copyright © , 2002 by James W Cooper

246

public void makeTabl e() {
base. nakeTabl e (" Storenane");
}

}

And it smplifies the Foods table to much the same thing.

public class Foods: DBTable {
publi ¢ Foods(DBase db): base(db, "Foods"){
}
[]-----

public void nakeTabl e() {
base. nakeTabl e (" Foodnane");

public string getValue() {
return base. getVal ue ("FoodNane");
}

}

The getValue method allows us to enumerate the list of names of Stores or
Foods, and we can put it in the base DBTable class.

public virtual string getValue(string cnane) {
/lreturns the next name in the table
/I assunmes that openTable has already been called
if (opened) {
Dat aRow row = dt abl e. Rows[r oM ndex++] ;
return rowf cnanme]. ToString(). Trim ()

}

el se
return ""

}
Note that we make this method virtual so we can override it where needed.

Building the Price Table

The Price table is a little more complicated because it contains keys from
the other two tables. When it is completed, it will look like Table 18-5.

| Pricekey | Foodkey | StoreKey | Price
1 1 1 0.27

Copyright © , 2002 by James W Cooper

© 00 NO OB WwN

=
o

PR R R R R R
W ~NOUNWN

= =
© =
oA WNRNOOOMNWWNRNOOOONWDN

W WWWWWMNDNNNNNMNNRRRPRPRERPREPRE

N
o

21

~
w

Table 18-5— The Price Tablein the Grocery Database

0.36
1.98
2.39
1.98
2.65
2.29
0.29
0.29
2.45
2.99
1.79
3.79
2.19
0.33
0.47
2.29
3.29
1.89
2.99
1.99

247

To create it, we have to reread the file, finding the store and food names,

looking up their keys, and adding them to the Price table. The DBTable
interface doesn’t include this final method, but we can add additional
specific methods to the Price class that are not part of that interface.

The Prices class stores a series of StoreFoodPrice objectsin an ArrayList

and then loads them all into the database at once. Note that we have
overloaded the classes of DBTable to take arguments for the store and

food key values as well as the price.

Each time we add a storekey, foodkey and price to the internal ArrayList

table, we create an instance of the StoreFoodPrice object and store it.

public class StoreFoodPrice {

Copyright © , 2002 by James W Cooper

private int storeKey, foodKey;

private float foodPrice;

[]-----

public StoreFoodPrice(int sKey, int fKey, float fPrice) {
st oreKey = sKey;
f oodKey = fKey;
foodPrice = fPrice;

public int getStore() {
return storekKey;

public int getFood() {
return foodKey;

public float getPrice() {
return foodPrice;

}
Then, when we have them all, we create the actual database table:

public class Prices : DBTable {
private Arraylist pricelList;
public Prices(DBase db) : base(db, "Prices") {
priceList = new ArrayList ();

public void nakeTabl e() {
//stores current array list values in data table
A eDbConnection adc = new O eDbConnection();

Dat aSet dset = new Dat aSet (t abl eNane) ;
Dat aTabl e dtabl e = new Dat aTabl e(t abl eNane) ;

dset . Tabl es. Add(dt abl e) ;
adc = db. get Connection();
if (adc. State == ConnectionState. C osed)

adc. Open() ;
A eDbDat aAdapt er adcnd = new O eDbDat aAdapt er () ;

[1fill in price table
adcnd. Sel ect Cormand =

Copyright © , 2002 by James W Cooper

248

249

new O eDbComand("Sel ect * from" + tabl eNane, adc);
A eDbComandBui | der cust CB = new

QA eDbConmandBui | der (adcnd) ;
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl eNan®e);
adcnd. Fil | (dset, tabl eNane);
| Enunmer at or i enum = priceli st. Get Enunerator ();
//add new price entries

whil e (ienum MoveNext ()) {
St or eFoodPrice fprice =
(St oreFoodPrice)i enum Current;

Dat aRow row = dt abl e. NewRow() ;

row "foodkey"] = fprice.getFood();

row "storekey"] = fprice.getStore();

row "price"] = fprice.getPrice();
dt abl e. Rows. Add(row) ; //add to table
}
adcnd. Updat e(dset); /Isend back to database
adc. C ose();
}
[]-----

public DataTable getPrices(string food) {

string query=
"SELECT Stores. StoreNane, " +
"Foods. Foodnanme, Prices.Price " +
"FROM (Prices INNER JO N Foods ON " +
"Prices. Foodkey = Foods. Foodkey) " +
"INNER JO N Stores ON " +
"Prices.StoreKey = Stores. StoreKey " +
"WHERE(((Foods. Foodnane) = \'" + food + "\')) " +
"ORDER BY Prices.Price";

return db. openQuery(query);

public void addRowi nt storeKey, int foodKey, float price)
pricelList.Add (
new St or eFoodPrice (storeKey,
f oodKey, price));

L oading the Database Tables

With all these classes derived, we can write a class to load the table from
the datafile. It reads the file once and builds the Store and Food database

Copyright © , 2002 by James W Cooper

250

tables. Then it reads the file again and looks up the store and food keys

and adds them to the array list in the Price class. Finally, it creates the
Price table.
public class Dataloader {

private csFile vfile;

private

Stores store;

private Foods fods;
private Prices price
private DBase db;

[1-----
public

while (

Dat aLoader (DBase dat ab) {
db = dat ab;

store = new Stores(db);

fods = new Foods (db);
price = new Prices(db);

void load(string dataFile) {

string sline;

int storekey, foodkey;

StringTokeni zer tok;

//delete current table contents

store.delete();

fods. del ete();

price.delete();

/I now read in new ones

vfile = new csFile(dataFile);

vfile. OpenFor Read();

sline = vfile.readLine();

while (sline !'= null){
tok = new StringTokenizer(sline, ",");
st ore. addTabl eVal ue(t ok. next Token()); //store
f ods. addTabl eVal ue(t ok. next Token()); //food
sline = vfile.readLine();

vfile.close();

/I construct store and food tables
store. makeTabl e();

f ods. nakeTabl e() ;

vfile. OpenFor Read();

sline = vfile.readLine();

sline !'=null) {
//get the gets and add to storefoodprice objects
tok = new StringTokenizer(sline, ",");

Copyright © , 2002 by James W Cooper

251

storekey = store. get Key(tok.next Token(), "Storekey");
f oodkey = fods. get Key(tok. next Token(), "Foodkey");
price. addRow st or ekey, foodkey,

Convert. ToSi ngl e (tok.neXtToken()));

sline = vfile.readLine();

//add all to price table
price. makeTabl e();
viile.close();

TheFinal Application
The program loads a list of food prices into alist box on startup.

private void | oadFoodTabl e() {
Foods fods =new Foods(db);
f ods. openTabl e();
whi | e (fods. hashvbr eEl enent s()){
| sFoods. | t ens. Add(f ods. get Val ue());
}

}
And it displays the prices of the selected food when you click on it.

private void | sFoods_Sel ect edl ndexChanged(obj ect sender,
System Event Args e) {
string food = |sFoods. Text;
Dat aTabl e dtable = prc. getPrices(food);

I sPrices.ltems.Cear();
foreach (DataRow rw in dtabl e. Rows) {
I sPrices.ltens. Add(rw "StoreNane"].ToString().Trim) +
"\t" + rw"Price"].ToString());
}

The final program is shown in Figure 18-2.

Copyright © , 2002 by James W Cooper

=10 x|

Cola W aldbaums 1.99
Oranges Yillage M arket 219
T Stop and Shop 2.23
kil

Applez

Butter

Harnburger

Load data |

Figure 18-2— The C# grocery database program
If you click on the “load data” button, it clears the database and reloads it

from the text file.

What Constitutesthe Facade?

The Facade in this case wraps the classes as follows.

Dbase

—Contains ADOConnection, Database, DataT able,
ADOCommand, ADODatasetCommand

DBTable

—Contains ADOCommand, Dataset, Datarow, Datatable,

ADODatasetCommand

252

Y ou can quickly see the advantage of the Fagade approach when dealing

with such complicated data objects.

Copyright © , 2002 by James W Cooper

253

Consequences of the Facade

The Fagade pattern shields clients from complex subsystem components
and provides a simpler programming interface for the general user.
However, it does not prevent the advanced user from going to the deeper,
more complex classes when necessary.

In addition, the Fagade allows you to make changes in the underlying
subsystems without requiring changes in the client code and reduces
compilation dependencies.

Thought Question

Suppose you had written a program with a FilejOpen menu, a text field,
and some buttons controlling font (bold and italic). Now suppose that you
need to have this program run from a line command with arguments,
Suggest how to use a Fagade pattern.

Programs on the CD-ROM

\ Fagade\ C# database Facade classes

Copyright © , 2002 by James W Cooper

254

19. The Flyweight Pattern

The Flyweight pattern is used to avoid the overhead of large numbers of
very similar classes. There are cases in programming where it seems that
you need to generate a very large number of small class instances to
represent data. Sometimes you can greatly reduce the number of different
classes that you need to instantiate if you can recognize that the instances
are fundamentally the same except for a few parameters. If you can move
those variables outside the class instance and pass them in as part of a
method call, the number of separate instances can be greatly reduced by
sharing them.

The Flyweight design pattern provides an approach for handling such
classes. It refers to the instance' s intrinsic data that makes the instance
unique and the extrinsic data that is passed in as arguments. The Flyweight
is appropriate for small, fine-grained classes like individual characters or
icons on the screen. For example, you might be drawing a series of icons
on the screen in awindow, where eachrepresents a person or datafileasa
folder, as shown in Figure 19-1.

Copyright © , 2002 by James W Cooper

255

[® Flyweight demo -0 =]

10
Adam Eill Charlie
el I 1 I 1

Dlave Edward Fred

T

|

George

Figure 19-1— A set of foldersrepresenting infor mation about various people. Since
these are so similar, they are candidates for the Flyweight pattern.

In this case, it does not make sense to have an individual class instance for
each folder that remembers the person’s name and the icon’s screen
position. Typically, these icons are one of afew similar images, and the
position where they are drawn is calculated dynamically based on the
window’s size in any case.

In another example in Design Patterns, each character in a document is
represented as a single instance of a character class, but the positions
where the characters are drawn on the screen are kept as external data, so
there only has to be one instance of each character, rather than one for
each appearance of that character.

Discussion

Flyweights are sharable instances of a class. It might at first seem thet
each classis a Singleton, but in fact there might be a small number of

Copyright © , 2002 by James W Cooper

256

instances, such as one for every character or one for every icon type. The
number of instances that are allocated must be decided as the class
instances are needed, and this is usually accomplished with a
FlyweightFactory class. This Factory class usually is a Singleton, since it
needs to keep track of whether a particular instance has been generated
yet. It then either returns a new instance or areference to one it has
already generated.

To decide if some part of your program is a candidate for using
Flyweights, consider whether it is possible to remove some data from the
class and make it extrinsic. If this makes it possible to greatly reduce the
number of different class instances your program needs to maintain, this
might be a case where Flyweights will help.

Example Code

Suppose we want to draw a small folder icon with a name under it for each
person in an organization. If thisis alarge organization, there could be a
large number of such icons, but they are actually all the same graphical
image. Even if we have two icons—one for “is Selected” and one for “not
Selected”—the number of different iconsis small. In such a system,
having an icon object for each person, with its own coordinates, name, and
selected state, is a waste of resources. We show two such iconsin Figure
19-2.

Copyright © , 2002 by James W Cooper

=k
L
Adam Eill Charlie
| [
Diave ward Fred
|
(zeorge

Figure 19-2— The Flyweight display with one folder selected

257

Instead, we'll create a FolderFactory that returns either the selected or the

unselected folder drawing class but does not create additional instances

once one of each has been created. Since thisis such asimple case, we just

create them both at the outset and then retur n one or the other.

public class Fol derFactory {
private Fol der sel Fol der, unsel Fol der;

[]-----
public Fol der Factory() {
/lcreate the two folders
sel Fol der = new Fol der (Col or. Brown) ;
unsel Fol der = new Fol der (Col or. Bi sque);
}
[1-----

public Fol der get Fol der (bool selected) {
i f(sel ected)
return sel Fol der;
el se
return unsel Fol der;

Copyright © , 2002 by James W Cooper

258

}

For cases where more instances could exist, the Factory could keep atable
of those it had already created and only create new ones if they weren’t
already in the table.

The unique thing about using Flyweights, however, is that we pass the
coordinates and the name to be drawn into the folder when we draw it.
These coordinates are the extrinsic data that allow us to share the folder
objects and, in this case, create only two instances. The complete folder
class shown here smply creates a folder instance with one background
color or the other and has a public draw method that draws the folder at
the point you specify.

public class Fol der
//Draws a folder at the specified coordinates
private const int w = 50;
private const int h = 30;
private Pen bl ackPen, whitePen;
private Pen grayPen;

private SolidBrush backBrush, blackBrush;
private Font fnt;
[l------
public Fol der (Col or col)
backBrush = new Sol i dBrush(col);
bl ackBrush = new Sol i dBrush(Col or. Bl ack);
bl ackPen = new Pen(Col or. Bl ack) ;
whi t ePen new Pen(Col or. Wi te);
grayPen = new Pen(Col or. G ay);
fnt = new Font("Arial", 12);

public void draw(Graphics g, int x, int y, string title) {
[/ col or folder
g. Fi Il Rect angl e(backBrush, x, vy, w, h);
//outline in black
g. DrawRect angl e(bl ackPen, x, vy, w, h);
//left 2 sides have white line
g. DrawLi ne(whitePen, x + 1, y +1, x +w - 1, y + 1);
g. DrawLi ne(whitePen, x + 1, y, x + 1, y + h);
//draw tab

Copyright © , 2002 by James W Cooper

g. DrawRect angl e(bl ackPen, x + 5, y - 5,

g. Fill Rectangl e(backBrush, x + 6, y - 4, 13, 6);

/lgray line on right and bottom
g. DrawLi ne(grayPen, x, y + h -

1, X + w,
g. DrawLi ne(grayPen, x +w - 1, y, X + w -

y +h - 1);
g.Drawstring(title, fnt, blackBrush, x,

y + h + 5);

259

- 1),

To use a Flyweight class like this, your main program must calculate the

position of each folder as part of its paint routine and then pass the

coordinates to the folder instance. Thisis actually rather common, since
you need a different layout, depending on the window’ s dimensions, and

you would not want to have to keep telling each instance where its new
location is going to be. Instead, we compute it dynamically during the

paint routine.

Here we note that we could have generated an ArrayList of folders at the

outset and simply scan through the array to draw each folder. Such an
array is not as wasteful as a series of different instances because it is
actually an array of references to one of only two folder instances.

However, since we want to display one folder as “selected,” and we would
like to be able to change which folder is selected dynamically, we just use

the FolderFactory itself to give us the correct instance each time.

There are two places in our display routine where we need to compute the
positions of folders. when we draw them, and when we check for a mouse
hovering over them. Thus, it is convenient to abstract out the positioning

code into a Positioner class:

public class Positioner {
private const int pLeft = 30;
private const int pTop = 30;
private const int HSpace = 70;
private const int VSpace = 80;
private const int rowhx = 2;

private int x, y, cnt;
[[-----

Copyright © , 2002 by James W Cooper

}

public

260

Posi tioner() {
reset();

void reset() {

X = plLeft;
y = pTop;
cnt = 0;

int nextX() {
return x;

void incr() {

cnt ++;

if (cnt >rowvax) { //reset to start new row
cnt = 0O;
X = plLeft;
y += VSpace;

el se {
X += HSpace;
}

int nextY() {
return vy,

Then we can write a much simpler paint routine:

private void picPaint(object sender, PaintEventArgs e) {
Graphics g = e. G aphi cs;
posn.reset ();

for(int

i = 0; i < nanes.Count; i++) {
fol = fol Fact. get Fol der (sel ect edNane. Equal s(
(string)nanmes[i]));
fol.draw(g, posn.nextX() , posn.nextY (),
(string)nanes[i]);
posn.incr();

Copyright © , 2002 by James W Cooper

261

The Class Diagram
The diagram in Figure 19-3 shows how these classes interact.

FolderFactory
Rectangle ‘
F
ect
%ele cted

Folder
1 %

Figure 19-3 — How Flyweights are gener ated

The FlyCanvas class is the main Ul class, where the folders are arranged
and drawn. It contains one instance of the FolderFactory and one instance
of the Folder class. The FolderFactory class contains two instances of
Folder: selected and unselected. One or the other of these is returned to the
FlyCanvas by the FolderFactory.

Selecting a Folder

Since we have two folder instances, selected and unselected, we'd like to
be able to select folders by moving the mouse over them. In the previous
paint routine, we simply remember the name of the folder that was
selected and ask the factory to return a “selected’ folder for it. Since the
folders are not individual instances, we can’t listen for mouse motion
within each folder instance. In fact, even if we did listen within a folder,
we' d need away to tell the other instances to deselect themselves.

Instead, we check for mouse motion at the Picturebox level, and if the
mouse is found to be within a Rectangle, we make that corresponding
name the selected name. We create a single instance of a Rectangle class

Copyright © , 2002 by James W Cooper

262

where the testing can be done as to whether afolder contains the mouse at
that instant. Note that we make this class part of the csPatterns namespace

to make sure it does not collide with the Rectangle classin the
System.Drawing namespace.

nanespace csPatterns {
public class Rectangle {
private int x1, x2, yl, y2;
private int w h;

public Rectangl e() { }
[l-----
public void init(int x, int y) {
X1l = X;
yl =vy;
X2 = X1 + w,
y2 =yl + h;
}
[l-----
public void setSize(int w_, int h_) {
W= W ;
h =h_;
}
[]-----

public bool contains(int xp, int yp) {
return (x1 <= xp) && (Xp <= x2) &&
(yl <= yp) && (yp <=y2);

}
}

This allows us to just check each name when we redraw and create a
selected folder instance where it is needed.

private void Pic_MuseMve(object sender, MuseEventArgs e) {
string ol dname = sel ectedNane; //save old nane
bool found = fal se;
posn.reset ();
int i =0;
sel ectedNane = "";
while (i < nanmes. Count && ! found) {
rect.init (posn.nextX() , posn.nextY ());
//see if a rectangle contains the nouse
if (rect.contains(e.X, e.Y)){

Copyright © , 2002 by James W Cooper

263

sel ectedName = (string)nanes[i];
found = true;

}

posn.incr ();

i ++;
}
/
i

/only refresh if nouse in new rectangle
f(

ol dnane. Equal s (sel ect edNane)) {
Pi c. Refresh();
}

Handling the M ouse and Paint Events

In C# we intercept the paint and mouse events by adding event handlers.
To do the painting of the folders, we add a paint event handler to the
picture box.

Pi c. Pai nt += new Pai nt Event Handl er (picPaint);

The picPaint handler we add draws the folders, as we showed above. We
added this code manually because we knew the signature of a paint
routine:

private void picPaint(object sender, PaintEventArgs e) {

While the mouse move event handler is very much analogous, we might
not remember its exact form. So, we use the Visua Studio IDE to generate
it for us. While displaying the form in design mode, we click on the
PictureBox and in the Properties window we click on the lightning bolt to
display the possible events for the PictureBox, as shown in Figure 19-4.

Copyright © , 2002 by James W Cooper

264

8 Flyweight demo =gl =]
T ; IPic System, wWindows , Forms, PictureBox L’
B | | =
ImeModeChanged ;l
Lawauk
LocationChanged
MaouseDown
MouseEnter
MauseHover
Mouseleave J
MouseMowve Pic_MouseMaove
Mousellp
Move
i i Paink
{3 ; ParentChanged ﬂ
NG LB o I]

Figure 19-4 — Selecting the M ouseM ove event from the Properties window.

Then we double click on MouseMove, and it generates the correct code
for the mouse move event and adds the event handler autometically. The
generated empty method is just:

private void Pic_MuseMve(object sender, MuseEventArgs e) {

}

and the code generated to add the event handler is inside the Windows
Form Designer generated section. It amounts to

Pi c. MouseMbve += new MouseEvent Handl er (Pi c_MousehMove) ;

Flyweight Usesin C#

Flyweights are not frequently used at the application level in C#. They are
more of a system resource management technique used at a lower level
than C#. However, there are a number of stateless objects that get created
in Internet programming that are somewhat analogous to Flyweights. It is
generally useful to recognize that this technique exists so you can use it if
you need it.

Some objects within the C# language could be implemented under the
covers as Flyweights. For example, if there are two instances of a String

Copyright © , 2002 by James W Cooper

265

constant with identical characters, they could refer to the same storage
location. Similarly, it might be that two integer or float constants that
contain the same value could be implemented as Flyweights, although
they probably are not.

Sharable Objects

The Smalltalk Companion points out that sharable objects are much like
Flyweights, although the purpose is somewhat different. When you have a
very large object containing a lot of complex data, such as tables or
bitmaps, you would want to minimize the number of instances of that
object. Instead, in such cases, you' d return one instance to every part of
the program that asked for it and avoid creating other instances.

A problem with such sharable objects occurs when one part of a program
wants to change some data in a shared object. Y ou then must decide
whether to change the object for all users, prevent any change, or create a
new instance with the changed data. If you change the object for every
instance, you may have to notify them that the object has changed.

Sharable objects are aso useful when you are referring to large data
systems outside of C#, such as databases. The DBase class we devel oped
previoudly in the Fagade pattern could be a candidate for a sharable object.
We might not want a number of separate connections to the database from
different program modules, preferring that only one be instantiated.
However, should several modules in different threads decide to make
gueries simultaneously, the Database class might have to queue the
gueries or spawn extra connections.

Copy-on-Write Objects
The Flyweight pattern uses just a few object instances to represent many
different objects in a program. All of them normally have the same base
properties as intrinsic data and a few properties that represent extrinsic
data that vary with each manifestation of the class instance. However, it
could occur that some of these instances eventually take on new intrinsic

Copyright © , 2002 by James W Cooper

266

properties (such as shape or folder tab position) and require a new specific

instance of the class to represent them.

Rather than creating these in

advance as specia subclasses, it is possible to copy the class instance and
change its intrinsic properties when the program flow indicates thet a new
separate instance is required. The class copies this itself when the change
becomes inevitable, changing those intrinsic properties in the new class.
We call this process “copy-on-write” and can build thisinto Flyweights as
well as anumber of other classes, such as the Proxy, which we discuss

next.

Thought Question

If Buttons can appear on several different tabs of a TabDialog, but each of
them controls the same one or two tasks, is this an appropriate use for a

Flyweight?
Programs on the CD-ROM

\ Fl ywei ght

C# folders

Copyright © , 2002 by James W Cooper

267

20. The Proxy Pattern

The Proxy pattern is used when you need to represent an object that is
complex or time consuming to create, by a simpler one. If creating an
object is expensive in time or computer resources, Proxy allows you to
postpone this creation until you need the actual object. A Proxy usually
has the same methods as the object it represents, and once the object is
loaded, it passes on the method calls from the Proxy to the actual object.

There are severa cases where a Proxy can be useful.
1. Anobject, such as alarge image, takes a long time to load.

2. Theresults of a computation take a long time to complete, and you
need to display intermediate results while the computation continues.

3. The object is on aremote machine, and loading it over the network
may be slow, especially during peak network load periods.

4. The object has limited access rights, and the proxy can validate the
access permissions for that user.

Proxies can aso be used to distinguish between requesting an instance of
an object and the actual need to access it. For example, program
initialization may set up a number of objects that may not al be used right
away. In that case, the proxy can load the real object only wheniitis
needed.

Let’s consider the case of alarge image that a program needs to load and
display. When the program starts, there must be some indication that an
image is to be displayed so that the screen lays out correctly, but the actual
image display can be postponed until the image is completely loaded. This
is particularly important in programs such as word processors and Web
browsers that lay out text around the images even before the images are
available.

Copyright © , 2002 by James W Cooper

268

An image proxy can note the image and begin loading it in the background
while drawing a simple rectangle or other symbol to represent the image’s
extent on the screen before it appears. The proxy can even delay loading
the image at al until it receives a paint request and only then begin the
process.

Sample Code

In this example, we create a ssimple program to display an image on a
Image control when it is loaded. Rather than loading the image directly,
we use a class we call ImageProxy to defer loading and draw arectangle
until loading is completed.

private void init() {
i ngProxy = new | mageProxy ();

public Formi() {
InitializeConponent();
init();

private void buttonl_C ick(object sender, EventArgs e) {
Pic.lmage = i ngProxy. getlmage ();
}

Note that we create the instance of the ImageProxy just as we would have
for an Image. The mageProxy class sets up the image loading and creates
an Imager object to follow the loading process. It returns a class that
implements the Imager interface.

public interface | mager {
I mge getlmge() ;
}

In this ssimple case, the ImageProxy class just delays five seconds and then
switches from the preliminary image to the final image. It does this using

Copyright © , 2002 by James W Cooper

269

an instance of the Timer class. Timers are handled using a TimerCallback
class that defines the method to be called when the timer ticks. Thisis
much the same as the way we add other event handlers. And this callback
method timerCall sets the done flag and turns off the timer.

public class | nmageProxy {
private bool done
private Tinmer tiner;
[]-----
public | mageProxy() {
//create a tinmer thread and start it
timer = new Tinmer (
new TinmerCal | back (tinerCall), this, 5000, 0);

//called when tinmer conpletes
private void timerCall (object obj) {
done = true;
tinmer. Di spose ();

}
[]-----
public I mage getlmage() {
| mager iny;
if (done)
img = new Finallmge ()
el se
img = new Qui ckl mage ();
return ing.getlmage ();
}

}

We implement the Imager interface in two tiny classes we called
Quicklmage and Finallmage. One gets a small gif image and the other a
larger (and presumably slower) jpeg image. In C#, Image is an abstract
class, and the Bitmap, Cursor, Icon, and Metafile classes are derived from
it. So the actua class we will return is derived from Image. The
Quicklmage class returns a Bitmap from a gif file, and the fina image a
JPEG file.

public class Quicklnmge : I mager {

public Quicklmage() {}
public | nage getlnage() {

Copyright © , 2002 by James W Cooper

270

return new Bitmap ("Box.gif");

}
N e
public class Finallmge :1mger {
public Finallmge() {}
public I mage getlmage() {
return new Bitmap("flowtree.jpg");
}

When you go to fetch an image, you initialy get the quick image, and
after five seconds, if you call the method again, you get the final image.
The program’ s two states are illustrated in Figure 20-1

. Image Proxy Display . Image P

Figure 20-1 — The proxy image display on the left is shown until the image loads as
shown on theright.

Proxiesin C#

Y ou see more proxy- like behavior in C# than in other languages, because
it is crafted for network and Internet use. For example, the ADO.Net
database connection classes are all effectively proxies.

Copyright © , 2002 by James W Cooper

271

Copy-on-Write

Y ou can also use proxies is to keep copies of large objects that may or
may not change. If you create a second instance of an expensive object, a
Proxy can decide there is no reason to make a copy yet. It smply uses the
origina object. Then, if the program makes a change in the new copy, the
Proxy can copy the original object and make the change in the new
instance. This can be a great time and space saver when objects do not
always change after they are instantiated.

Comparison with Related Patterns

Both the Adapter and the Proxy constitute a thin layer around an object.
However, the Adapter provides a different interface for an object, while
the Proxy provides the same interface for the object but interposes itself
where it can postpone processing or data transmission effort.

A Decorator aso has the same interface as the object it surrounds, but its
purpose is to add additional (sometimes visual) function to the original
object. A proxy, by contrast, controls access to the contained class.

Thought Question

Y ou have designed a server that connects to a database. If severa clients
connect to your server at once, how might Proxies be of help?

Programs on the CD-ROM

\ Proxy Image proxy

Copyright © , 2002 by James W Cooper

272

Summary of Structural Patterns

Part 3 covered the following structural patterns.

The Adapter pattern is used to change the interface of one class to that of
another one.

The Bridge pattern is designed to separate a class' s interface from its
implementation so you can vary or replace the implementation without
changing the client code.

The Composite pattern is a collection of objects, any one of which may be
either itself a Composite or just a leaf object.

The Decor ator pattern, a class that surrounds a given class, adds new
capabilities to it and passes all the unchanged methods to the underlying
class.

The Fagade pattern groups a complex set of objects and provides a new,
simpler interface to access those data.

The Flyweight pattern provides a way to limit the proliferation of small,
similar instances by moving some of the class data outside the class and
passing it in during various execution methods.

The Proxy pattern provides a simple placetolder object for a more
complex object that isin some way time consuming or expensive to
instantiate

Copyright © , 2002 by James W Cooper

273

Part 4. Behavioral Patterns

Behavioral patterns are most specifically concerned with communication
between objects. In Part 4, we examine the following.

The Chain of Responsibility allows a decoupling between objects by
passing a request from one object to the next in a chain until the request is
recognized.

The Command patter n utilizes simple objects to represent execution of
software commands and allows you to support logging and undoable
operations.

TheInterpreter pattern provides a definition of how to include language
elementsin a program.

Thelterator pattern formalizes the way we move through alist of data
within aclass.

The Mediator pattern defines how communication between objects can
be smplified by using a separate object to keep all objects from having to
know about each other.

The Memento pattern defines how you might save the contents of an
instance of aclass and restore it later.

The Observer pattern defines the way a number of objects can be
notified of achange,

The State pattern allows an object to modify its behavior when its
internal state changes.

The Strategy pattern encapsulates an agorithm inside a class.

The Template Method pattern provides an abstract definition of an
algorithm.

The Visitor pattern adds polymorphic functions to a class noninvasively.

Copyright © , 2002 by James W Cooper

274

21. Chain of Responsibility

The Chain of Responsibility pattern allows a number of classes to attempt
to handle a request without any of them knowing about the capabilities of
the other classes. It provides aloose coupling between these classes; the
only common link is the request that is passed between them. The request
is passed aong until one of the classes can handle it.

One example of such a chain pattern is a Help system like the one shown
inFigure 21-1. Thisis a smple application where different kinds of help
could be useful, where every screen region of an application invites you to
seek help but in which there are window background areas where more
generic help is the only suitable result.

_ioi x|
[Testfiles
File [" Binam files

Gt

Figure21-1 — A simple application where different kinds of help could be useful

When you select an area for help, that visual control forwardsits D or
name to the chain. Suppose you selected the “New” button. If the first
module can handle the New button, it displays the help message. If not, it
forwards the request to the next module. Eventually, the message is
forwarded to an “All buttons’ class that can display a general message
about how buttons work. If there is no general button help, the message is
forwarded to the genera help module that tells you how the system works

Copyright © , 2002 by James W Cooper

275

in general. If that doesn't exist, the message is lost, and no information is
displayed. Thisisillustrated in Figure 21-2

New button File button All buttons

General help

Figure21-2— A simple Chain of Responsibility

All controls

There are two significant points we can observe from this example: first,
the chain is organized from most specific to most general, and second,
there is no guarantee that the request will produce aresponsein all cases.
We will see shortly that you can use the Observer pattern to provide away
for a number of classesto be notified of a change,

Applicability
The Chain of Responsibility is a good example of a pattern that helps keep
knowledge separate of what each object in a program can do. In other
words, it reduces the coupling between objects so that they can act
independently. This also applies to the object that constitutes the main
program and contains instances of the other objects. Y ou will find this
pattern helpful in the following situations.

There are severa objects with similar methods that could be
appropriate for the action the program is requesting. However,
it is more appropriate for the objects to decide which oneisto
carry out the action than it is for you to build this decision into
the calling code.

Copyright © , 2002 by James W Cooper

276

One of the objects may be most suitable, but you don’t want to
build in a series of if-else or switch statements to select a
particular object.

There might be new objects that you want to add to the
possible list of processing options while the program is
executing.

There might be cases when more than one object will have to
act on arequest, and you don’t want to build knowledge of
these interactions into the calling program.

Sample Code

The help system we just described is a little involved for a first example.
Instead, let’s start with a ssmple visual command- interpreter program
(Figure 21-3) that illustrates how the chain works. This program displays
the results of typed-in commands. While this first case is constrained to
keep the example code tractable, we'll see that this Chain of
Responsibility pattern is commonly used for parsers and even compilers.

In this example, the commands can be any of the following.
Image filenames
Genera filenames
Color names
All other commands

In the first three cases, we can display a concrete result of the request, and
in the fourth case, we can only display the request text itself.

Copyright © , 2002 by James W Cooper

Send commands

Ihelp

277

=131]

Chain.exe
Chain.pdb

blotch
help

Figure 21-3— A simple visual command interpreter program that acts on one of four

panels, depending on the command you typein.

In the preceding example system, we do the following.

1. Wetypein “Mandrill” and see a display of the image Mandrill.jpg.

2. Thenwetypein “File” and that filename is displayed in the center list

box.

3. Next, wetypein “blue,” and that color is displayed in the lower center

panel.

Finaly, if we type in anything that is neither a filename nor a color, that
text is displayed in the find, right-hand list box. Thisis shown in Figure

22-4.

Image

Color >

name

File
name

Copyright © , 2002 by James W Cooper

General

278

Figure 21-4 — How the command chain worksfor the program in Figure 20-3

To write this simple chain of responsibility program, we start with an
abstract Chain class.

public abstract class Chain {
// describes how all chains work
private bool hasLink;
protected Chain chn
public Chain() {
hasLi nk = fal se;
}

/lyou nust inplenment this in derived cl asses
public abstract void sendToChai n(string nesg);
[]-----
public void addToChai n(Chain c) {

/' add new el enent to chain

chn = c;
hasLi nk = true; //flag existence
}
[]-----
public Chain getChain() {
return chn; //get the chain link
}
[]-----
public bool hasChain() ({
return hasLi nk; //true if linked to another
}
[]-----

protected void sendChai n(string nesg) {
// send nessage on down the chain
if(chn '= null)
chn. sendToChai n (nesg);

}

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically
and add additional classes in the middle of an existing chain. The
sendToChain method forwards a message to the next object in the chain.
And the protected sendChain method only sends the message down the
chain if the next link is not null.

Copyright © , 2002 by James W Cooper

279

Our main program assembles the Chain classes and sets a reference to a
control into each of them. We start with the ImageChain class, which takes
the message string and looks for a .jpg file of that name. If it finds one, it
displaysit in the Image control, and if not, it sends the command on to the
next element in the chain.

public class | mageChain : Chain {

Pi ct ur eBox pi cBox; //image goes here
[]-----
public | mageChai n(Pi ctureBox pc) {

pi cBox = pc; /| save reference
}
[]-----

public override void sendToChai n(string nesg) {

//put image in picture box
string fnane = nesg + ".jpg";
/lassunme jpg fil enane
csFile fI = new csFil e(fnane);
if(fl.exists())

pi cBox. | mage = new Bi t map(fnane);
el se{

if (hasChain()){ //send of f down chain

chn. sendToChai n(nmesg) ;
}

}

In asimilar fashion, the ColorChain class simply interprets the message as
acolor name and displaysit if it can. This example only interprets three
colors, but you could implement any number. Note how we interpret the
color names by using them as keys to a Hashtable of color objects whee
the string names are thekeys.

public class ColorChain : Chain {
private Hashtabl e col Hash; //color |ist kept here

private Panel panel; // col or goes here
[]-----
publ i c Col or Chai n(Panel pnl) {

panel = pnl; |/ save reference

//create Hash table to correlate col or nanes

Copyright © , 2002 by James W Cooper

280

//wth actual Col or objects

col Hash = new Hashtable ();

col Hash. Add ("red", Color.Red);

col Hash. Add ("green", Color.Geen);
col Hash. Add ("bl ue", Col or. Bl ue)

public override void sendToChai n(string nmesg) ({
nmesg = nesg. ToLower ()
try {
Col or ¢ = (Col or)col Hash[nesq] ;
/1if this is a color, put it in the pane
panel . BackCol or =c;

catch (Nul | Ref erenceException e) {
//send on if this doesn't work
sendChai n(nmesq) ;

}

ThelList Boxes

Both the file list and the list of unrecognized commands are ListBoxes. If
the message matches part of afilename, the filename is displayed in the
fileList box, and if not, the message is sent on to the NoComd chain
element.

public override void sendToChain(string nesg) {
/1if the string nmatches any part of a filenane
//put those filenames in the file list box
string[] files;
string fnane = mesg + "*.*";
files = Directory. GetFil es(
Directory. CGetCurrentDirectory(), fname);
/ladd themall to the |istbox
if (files.Length > 0){
for (int i =0; i<files.Length; i++) {
csFile vbf = new csFile(files[i]);
flist.ltemns. Add(vbf. get Root Nane());

el se {

Copyright © , 2002 by James W Cooper

281

if (hasChain()) {
chn. sendToChai n(mesg) ;
}

The NoCmd Chain classis very similar. It, however, has no class to which
to send data

public class NoCrd : Chain {

private ListBox |sNocnd; /I commands go here
[]-----
public NoCnd(ListBox IDb) {

I sNocnd = | b; /I copy reference
}
[]-----

public override void sendToChai n(string nmesg) {
// adds unknown commrands to |ist box
I sNocnd. | t ens. Add (nesg);

}

Finally, we link these classes together in the Form_Load routine to create
the Chain.

private void init() {
/' set up chains
Col or Chai n cl rChain = new Col or Chai n(pnl Col or);
Fil eChain fl Chain = new Fil eChai n(l sFil es);
NoCnd noChain = new NoCrd(| sNocnd) ;
//create chain |inks
chn = new | mageChai n(pi cl mage) ;
chn. addToChai n(cl r Chai n);
cl r Chai n. addToChai n(fl Chai n);
f I Chai n. addToChai n(nhoChai n) ;

Finally, we kick off the chain by clicking on the Send button, which takes
the current message in the text box and sends it along the chain.

private void btSend_Cick(object sender, EventArgs e) {
chn. sendToChai n (txComand. Text);

Copyright © , 2002 by James W Cooper

282

}
Y ou can see the relationship between these classes in the UML diagram in

Figure 21-5.
Chain
addChain
sendT oChain
getChain
setControl
hasChain
N TN
irhiy o
F o
Fht
- N y
| Img Chain| picChain File Chain ColorChain NoCmd

btZend Click
1 Form Load

Figure 21-5—- The class strcuture of the Chain of Responsibility program

The Sender classisthe initial class that implements the Chain interface. It
receives the button clicks and obtains the text from the text field. It passes
the command on to the Imager class, the FileList class, the Colorimage
class, and finally to the NoCmd class.

Programming a Help System

Aswe noted at the beginning of this discussion, help systems provide
good examples of how the Chain of Responsibility pattern can be used.
Now that we' ve outlined a way to write such chains, we'll consider a help

Copyright © , 2002 by James W Cooper

283

system for awindow with several controls. The program (Figure 21-6)
pops up a help dialog message when the user presses the F1 (help) key.
The message depends on which control is selected when the F1 key is
pressed.

[Eotet chain ~1of x|
| New N <
e [Tew
Select a file
File [Bina

Gt

I
Figure21-6 — A simple help demonstration

In the preceding example, the user has selected the Quit key, which does
not have a specific help message associated with it. Instead, the chain
forwards the help request to a general button help object that displays the
message shown on the right.

To write this help chain system, we begin with an abstract Chain class that
has handles Controls instead of messages. Note that no message is passed
into the sendToChain method, and that the current control is stored in the
class.

public abstract class Chain
// describes how all chains work
private bool hasLink;
protected Control control;
protected Chain chn;
protected string nmessage;

public Chain(Control c, string nesg) {
hasLi nk = fal se;
control = c; //save the control

Copyright © , 2002 by James W Cooper

284

message = nesg

public abstract void sendToChain();

public void addToChai n(Chain c) {
//add new el ement to chain
chn = c;
hasLi nk = true; /1flag existence

public Chain getChain() {
return chn; //get the chain link

}

[]-----

public bool hasChain() {
return hasLi nk; //true if linked to nother
}

[]-----

protected void sendChain() {
// send nessage on down the chain
if(chn '= null)
chn. sendToChain ();
}
}

Then you might create specific classes for each of the help message
categories you want to produce. As we illustrated earlier, we want help
messages for the following.

The New button

The File button

A general button

A generd visual control (covering the check boxes)

In C#, one control will always have the focus, and thus we don't really
need a case for the Window itself. However, we'll include one for
completeness. However, there is little to be gained by creating separate
classes for each message and assigning different controls to them. Instead,
we'll create a general ControlChain class and pass in the control and the

Copyright © , 2002 by James W Cooper

285

message. Then, within the class it checks to see if that control has the
focus, and if it does, it issues the associated help message:

public class Control Chain:Chain {

public Control Chain(Control c, string nesg):base(c, nmesg)
{}
public override void sendToChain() {

/1if it has the focus display the nessage

if (control.Focused) {

MessageBox. Show (nessage) ;
}

el se
/ /ot herwi se pass on down the chain
sendChai n();

Finally, we need one special case: the end of chain which will display a
message regardless of whether the control has the focus. Thisis the
EndChain class, and it is for completeness. Since one of the controls will
presumably always have the focus, it is unlikely ever to be caled:

public class EndChai n: Chain {
public EndChai n(Control c, string nmesg):base(c, nesg){}
//default message display class
public override void sendToChain() ({
MessageBox. Show (nessage) ;
}

}

We construct the chain in the form initializer as follows:

chn = new Control Chai n(bt New, "Create new files");

Chain fl =new Control Chain (btFile, "Select a file");

chn. addToChain (fl);

Chain bg = new Control Chain (btQuit, "Exit from program);
fl.addToChain (bq);

Chain cb =new Control Chain (ckBinary, "Use binary files");
bg. addToChai n (cb);

Chain ct = new Control Chain (ckText, "Use text files");
ch. addToChain (ct);

Chain ce = new EndChain (this, "General nessage");
ct.addToChain (ce);

Copyright © , 2002 by James W Cooper

286

Receiving the Help Command

Now we need to assign keyboard listeners to look for the F1 keypress. At
first, you might think we need five such listeners—for the three buttons
and the two check boxes. However, we can simply make asingle
KeyDown event listener and assign it to each of the controls:
KeyEvent Handl er keyev = new KeyEvent Handl er (For nil_KeyDown) ;

bt New. KeyDown += keyev;

bt Fi | e. KeyDown += keyev;

bt Qui t. KeyDown += keyev;

ckBi nary. KeyDown += keyev;

ckText . KeyDown += keyev;

Then, of course the key-down event launches the chain if the F1 key is
pressed:

private void Forml_KeyDown(obj ect sender, KeyEventArgs e) {
i f(e.KeyCode == Keys.F1)
chn. sendToChain ();
}

We show the complete class diagram for this help system in Figure 21-7.

Copyright © , 2002 by James W Cooper

287

Chain

i

* | addChain
sendT oChain
getChain
hasChain

Ltha LT A Ay

Izhry

fik Y

Il
s

5
chi

ButtonChain FileChain i ﬂ 3 *
TNewChain ControlChain

bt ew_ KeyDiow
callChain

ckBin KevDown
Form Load

Forml

Figure 21-7 — The class diagram for the Help system

A Chainor aTree?

Of course, a Chain of Responsibility does not have to be linear. The
Smalltalk Companion suggests that it is more generally atree structure

with a number of specific entry points all pointing upward to the most
general node, as shown in Figure 21-8..

Copyright © , 2002 by James W Cooper

288

General
help

T

Window
help

List box
help

Button help Menu help

Sl

OK Quit File New Files Colors

Figure 21-8— The chain of responsibility implemented asatreestructure

However, this sort of structure seens to imply that each button, or its
handler, knows where to enter the chain. This can complicate the design in
some cases and may preclude the need for the chain at all.

Another way of handling a tree-like structure isto have a single entry
point that branches to the specific button, menu, or other widget types and
then “unbranches,” as previoudly, to more genera help cases. Thereis
little reason for that complexity—you could align the classes into a single
chain, starting at the bottom, and going left to right and up arow at atime
until the entire system had been traversed, as shown in Figure 21-9.

Copyright © , 2002 by James W Cooper

289

General
help

:

Window
help

+

|
Button help———® Menu help ———» List box

help
#

OK [Quit }P File [New | Files —¥® Colors

Figure 21-9 — The same chain of responsibility implemented asalinear chain

Kinds of Requests

The request or message passed aong the Chain of Responsibility may well
be a great deal more complicated than just the string or Control that we
conveniently used on these examples. The information could include
various data types or a complete object with a number of methods. Since
various classes along the chain may use different properties of such a
request object, you might end up designing an abstract Request type and
any number of derived classes with additional methods.

Examplesin C#

Under the covers, C# form windows receive various events, such as
MouseMove, and then forward them to the controls the form contains.
However, only the final control ever receives the message in C# whereas
in some other languages, each containing control doesaswell. Thisisa

Copyright © , 2002 by James W Cooper

290

clear implementation of Chain of Responsibility pattern. We could also
argue that, in general, the C# class inheritance structure itself exemplifies
this pattern. If you call for a method to be executed in a deeply derived
class, that method is passed up the inheritance chain until the first parent
class containing that method is found. The fact that further parents contain
other implementations of that method does not come into play.

We will also see that the Chain of Responsibility isideal for implementing
Interpreters and use one in the Interpreter pattern we discuss later.

Consequences of the Chain of Responsibility

1. The main purpose for this pattern, like a number of others, is to reduce
coupling between objects. An object only needs to know how to
forward the request to other objects.

2. Each C# object in the chain is self-contained. It knows nothing of the
others and only need decide whether it can satisfy the request. This
makes both writing each one and constructing the chain very easy.

3. You can decide whether the fina object in the chain handles all
requests it receives in some default fashion or just discards them.
However, you do have to know which object will be last in the chain
for thisto be effective.

4. Finaly, since C# cannot provide multiple inheritance, the basic Chain
class sometimes needs to be an interface rather than an abstract class
so the individual objects can inherit from another useful hierarchy, as
we did here by deriving them al from Cortrol. This disadvantage of
this approach is that you often have to implement the linking, sending,
and forwarding code in each module separately or, as we did here, by
subclassing a concrete class that implements the Chain interface.

Thought Question

Suggest how you might use a Chain of Responsibility to implement an e-
malil filter.

Copyright © , 2002 by James W Cooper

201

Programs on the CD-ROM

\ Chai n\ Hel pChai n program showing how a help
system can be implemented

\ Chai n\ Chai n chain of file and image displays

Copyright © , 2002 by James W Cooper

292

22. The Command Pattern

The Chain of Responsibility forwards requests along a chain of classes,
but the Command pattern forwards a request only to a specific object. It
encloses a request for a specific action inside an object and givesit a
known public interface. It lets you give the client the ability to make
requests without knowing anything about the actual action that will be
performed and allows you to change that action without affecting the
client program in any way.

M otivation

When you build a C# user interface, you provide menu items, buttons,
check boxes, and so forth to allow the user to tell the program what to do.
When a user selects one of these controls, the program receives a clicked
event, which it receives into a specia routine in the user interface. Let's
suppose we build a very simple program that allows you to select the
menu items File | Open, and File | Exit, and click on a button marked Red
that turns the background of the window red. This program is shown in
Figure 22-1.

=

Figure22-1 — A simple program that receives events from the button and menu
items

Copyright © , 2002 by James W Cooper

293

The program consists of the File Menu object with the mnuOpen, and
mnuExit Menultems added to it. It also contains one button called btnRed.
During the design phase, clicking on any of these items creates alittle
method in the Form class that gets called when the control is clicked.

Aslong as there are only afew menu items and buttons, this approach
works fine, but when you have dozens of menu items and several buttons,
the Form module code can get pretty unwieldy. In addition, we might
eventually like the red command to be carried out both from the button
and a menu item.

Command Objects

One way to ensure that every object receives its own commands directly is
to use the Command pattern and create individua Command objects. A
Command object always has an Execute() method that is called when an
action occurs on that object. Most simply, a Command object implements
at least the following interface.

public interface Conmand {
voi d Execute();
}

One objective of using this interface is to separate the user interface code
from the actions the program must carry out, as shown here.
private void commandd i ck(object sender, EventArgs e) {

Conmmand cond = (Command) sender ;

cond. Execute ();
}

This event can be connected to every single user interface element that can
be clicked, and each will contain its own implementation of the Execute
method, by simply deriving a new clas from Button and Menuitem that
supports this Command interface.

Then we can provide an Execute method for each object that carries out
the desired action, thus keeping the knowledge of what to do inside the

Copyright © , 2002 by James W Cooper

294

object where it belongs, instead of having another part of the program
make these decisions.

One important purpose of the Command pattern is to keep the program
and user interface objects completely separate from the actions that they
initiate. In other words, these program objects should be completedy
separate from each other and should not have to know how other objects
work. The user interface receives a command and tells a Command object
to carry out whatever duties it has been instructed to do. The Ul does not
and should not need to know what tasks will be executed. This decouples
the Ul class from the execution of specific commands, making it possible
to modify or completely change the action code without changing the
classes containing the user interface.

The Command object can also be used when you need to tell the program
to execute the command when the resources are available rather than
immediately. In such cases, you are queuing commands to be executed
later. Finally, you can use Command objects to remember operations so
you can support Undo requests.

Building Command Objects

There are several ways to go about building Command objects for a
program like this, and each has some advantages. We'll start with the
simplest one: creating new classes and implementing the Command
interface in each In the case of the button that turns the background red,
we derive a RedButton class from Button and include an Execute method,
satisfying the Command interface.
public class RedButton : System W ndows. Forns. Button, Conmand {

/1A Command button that turns the background red

private System Conponent Model . Cont ai ner conponents = nul |;

[]-----

public void Execute() {

Control ¢ = this.Parent;

c. BackCol or =Col or. Red ;
t hi s. BackCol or =Col or. Li ght Gray

Copyright © , 2002 by James W Cooper

295

public RedButton() {
InitializeConponent();
}

In this implementation, we can deduce the background window by asking
the button for its parent, and setting that background to red. We could just
as easily have passed the Form in as an argument to the constructor.

Remember, to create a class derived from Button that you can use in the
IDE environment, you create a user control, and change its inheritance
from UserControl to Button and compile it. This adds an icon to the
toolbox that you can drag onto the Form1 window.

To create aMenultem that also implements the Command interface, you
could use the MainMenu control on the toolbar and name it MenuBar. The
designer is shown in Figure 22-2.

=10 %]

Figure 22-2— The menu designer interface

However, it isjust as easy to create the MainMenu in code as we see
below.

We derive the OpenMenu and ExitMenu classes from the Menultem class.

However, we have to add these in the program code, since there is no way
to add them in the Form Designer.
private void init() {

//create a main nenu and install it
Mai nMenu mai n = new Mai nMenu() ;

Copyright © , 2002 by James W Cooper

this. Menu =nmi n;

//create a click-event handl er
Event Handl er evh = new Event Handl er (commandd i ck);
bt Red. d i ck += evh; //add to existing red button

/lcreate a "File" top |level entry
Menultem file = new Menultem("File");

/lcreate File Qpen conmand

FileOpen mflo = new FileCpen ();

mfl o.dick += evh; // add same handl er
mai n. Menultens. Add (file);

/lcreate a File-Exit conmmand
FileExit fex = new FileExit(this);
file.Menultens. AddRange(new Menultenf]{ mflo, fex});

fex.dick += evh; // add sane handl er
}
Here is an example of the FileExit class.
public class FileExit :Menultem Comrand {
private Form form
R
public FileExit(Form frn) :base ("Exit") {
form=frm
}
I
public void Execute() {
formddose ();
}
}

Then the FilelExit command will call it when you call that items Execute
method. This certainly lets us smplify the user interface code, but it does
require that we create and instantiate a new class for each action we want
to execute.

Classes that require specific parameters to work need to have those
parameters passed in the constructor or in a set method. For example, the
File] Exit command requires that you pass it an instance of the Form object
S0 it can closeit.

//create a File-Exit conmand

Copyright © , 2002 by James W Cooper

297

FileExit fex = new FileExit(this);

Conseguences of the Command Pattern

The main disadvantage of the Command pattern seemsto be a
proliferation of little classes that clutter up the program. However, evenin
the case where we have separate click events, we usualy call little private
methods to carry out the actual function. It turns out that these private
methods are just about as long as our little classes, so there is frequently
little difference in complexity between building the command classes and
just writing more methods. The main difference is that the Command
pattern produces little classes that are much more readable.

The CommandHolder Interface

Now, while it is advantageous to encapsul ate the action in a Command
object, binding that object into the element that causes the action (such as
the menu item or button) is not exactly what the Command pattern is
about. Instead, the Command object really ought to be separate from the
invoking client so you can vary the invoking program and the details of
the command action separately. Rather than having the command be part
of the menu or button, we can make the menu and button classes
containers for a Command object that exists separately. We thus make
these Ul elements implement a CommandHolder interface.

public interface ComuandHol der {

Comand get Command() ;
voi d set Conmand(Conmand cnd) ;

}

This simple interface says that there is a way to put a command object into
aclass and away to retrieve it to execute it. Thisis particularly important
where we have several ways of calling the same action, such as when we
have both a Red button and a Red menu item. In such a case, you would
certainly not want the same code to be executed inside both the Menultem

Copyright © , 2002 by James W Cooper

298

and the Button classes. Instead, you should fetch references to the same
command object from both classes and execute that command.

Then we create CommandMenu class, which implements this interface.

public class ComrandMenu : Menultem ConmmandHol der {
private Comrand comrand;
publ i c CommandMenu(string nane):base(nane) {}
/]-----
public void set Conmand (Command cond) {
command = cond;

public Command get Commrand () {
return command;
}

This actually ssimplifies our program. We don’'t have to create a separate
menu class for each action we want to carry out. We just create instances
of the menu and pass them different labels and Command objects.

For example, our RedCommand object takes a Form in the constructor and
sets its background to red in the Execute method:

public class RedCommand : Conmand {
private Control w ndow,

publ i c RedComrand(Control wi n) {
wi ndow = win;

voi d Conmand. Execute () {
wi ndow. BackCol or =Col or. Red ;
}

}
We can sat an instance of this command into both the RedButton and the
red menu item objects, as we show below.
private void init() {
//create a nmain nenu and install it

Mai nMenu mai n = new Mai nMenu() ;
this. Menu =nmi n;

Copyright © , 2002 by James W Cooper

//create a click-event handl er
/I note: btRed was added in the |DE
Event Handl er evh = new Event Handl er (commandd i ck);

bt Red. d i ck += evh; //add to existing red button

RedCommand cRed = new RedCommand (this);

bt Red. set Command (cRed);

/lcreate a "File" top level entry

Menultem file = new CommandMenu("File");

mai n. Menultens. Add (file);

/lcreate File Open command

CommandMenu mmuFl o = new ConmandMenu(" Cpen");

muFIl o. set Command (new OGpenCommand ());

muFl o. d i ck += evh; / add sane handl er

//create a Red nenu item too

CommandMenu muRed = new ConmandMenu(" Red");

muRed. set Command(cRed) ;

muRed. d i ck += evh; // add same handl er

/lcreate a File-Exit command
CommandMenu mmuFex = new ConmandMenu("Exit");
muFex. set Command (new Exi t Conmand(this));
file.Menultens. AddRange(

new ConmandMenu[]{ muFl o, muRed, mmuFex});
muFex. d i ck += evh; // add sanme handl er

In the CommandHolder approach, we till have to create separate

Command objects, but they are no longer part of the user interface classes.

For example, the OpenCommand class is just this.

public class OpenConmmand : Comrand {
public OpenComrand()
{}

public void Execute() {
OpenFil eDial og fd = new OpenFileDialog ();
fd. ShowDi al og ();

Copyright © , 2002 by James W Cooper

300

Then our click event handler method needs to obtain the actual command
object from the Ul object that caused the action and execute that
command.

private void conmandC ick(object sender, EventArgs e) {

Conmand cond = ((CommrandHol der) sender) . get Command () ;
cond. Execute ();

}

Thisis only dightly nore complicated than our original routine and again
keeps the action separate from the user interface elements. We can see this
program in action in Figure 22-3:

% command Holder demo -10] =i

| File

Qpen

e

Figure22-3 — Menu part of Command pattern using CommandHolder interface.

We can see the relations between theses classes and interfaces clearly in
the UML diagram in Figure 22-4.

Copyright © , 2002 by James W Cooper

 Contmand :
| Execute |
Ay
ExtCommand [~~~""""""""""""77 0 bttty a7 T 1= oY ittt [RedComimignid'
form i wincioyy
: Eommanc
ExitCommand p RedCommand
4] C d
Execute BEN:OINman Command Execute
OpenCamimand
Execute
. ComdButton 1
CommandiMenu Ezms_::;?_zms
d
Eomman ComdButton
Commandkenu setCommand
setCommand getCommancd
getZommand Dizpoze
T InttializeComponent
: i
PP P N R A e S e H
 Commandfolder |
Dy H
| getCommand !
E setCarmmand '

Figure 22-4 — Class diagram of CommandHolder appraoch

Providing Undo

Another of the main reasons for using Command design patterns is that
they provide a convenient way to store and execute an Undo function.
Each command object can remember what it just did and restore that state

Copyright © , 2002 by James W Cooper

302

when requested to do so if the computational and memory requirements
are not too overwhelming. At the top level, we simply redefine the
Command interface to have three methods.
public interface Conmmand {

voi d Execute();

voi d Undo();

bool isUndo();
}

Then we have to design each command object to keep arecord of what it
last did so it can undo it. This can be a little more complicated than it first
appears, since having a number of interleaved Commands being executed
and then undone can lead to some hysteresis. In addition, each command
will need to store enough information about each execution of the
command that it can know what specifically has to be undone.

The problem of undoing commands is actually a multipart problem. First,
you must keep alist of the commands that have been executed, and
second, each command has to keep alist of its executions. To illustrate
how we use the Command pattern to carry out undo operations, let’s
consider the program shown in Figure 22-5 that draws successive red or
blue lines on the screen, using two buttons to draw a new instance of each
line. You can undo the last line you drew with the undo button.

Copyright © , 2002 by James W Cooper

_iBix

Red [Inda

Figure22-5— A program that drawsred and bluelines each timeyou click the Red
and Blue buttons

If you click on Undo several times, you' d expect the last severd linesto
disappear no matter what order the buttons were clicked in, as shown in
Figure 22-6.

Copyright © , 2002 by James W Cooper

_iBix

Red

Blue |

Figure 22-6— The same program asin Figure 22-5 after the Undo button has been
clicked several times

Thus, any undoable program needs a single sequential list of all the
commands that have been executed. Each time we click on any button, we
add its corresponding command to the list.

private void commandd ick(object sender, EventArgs e) {
/1 get the comrand
Conmmand cond = ((CommrandHol der) sender) . get Comrand () ;
undoC. add (cond); //add to undo li st
cond. Execute (); /land execute it

}
Further, the list to which we add the Command objects is maintained
inside the Undo command object so it can access that list conveniently.

public class UndoConmd: Cormand {
private ArraylList undolLi st;
publ i ¢ UndoCond() {
undoLi st = new ArraylList ();

public void add(Comrand cond) {

Copyright © , 2002 by James W Cooper

305

if(! cond.isUndo ()) {
undolLi st. Add (cond);

public bool isUndo() {
return true;

public void Undo() { }
[]-----
public void Execute() {
int index = undoList.Count - 1,
if (index >= 0) {
Command cnd = (Conmand) undoli st [i ndex] ;
cnd. Undo() ;
undoLi st . RenoveAt (i ndex) ;

The undoCommand object keeps alist of Commands, not alist of actua
data. Each command object has its unDo method called to execute the
actual undo operation. Note that since the undoCommand object
implements the Command interface, it, too, needs to have an unDo
method. However, the idea of undoing successive unDo operationsis a
little complex for this simple example program. Consequently, you should
note that the add method adds all Commands to the list except the
undoCommand itself, since we have just defined undoing an unDo
command as doing nothing. For this reason, our new Command interface
includes an isUndo method that returns false for the RedCommand and
BlueCommand objects and true for the UndoCommand object.

The redCommand and blueCommand classes simply use different colors
and start at opposite sides of the window, athough both implement the
revised Command interface. Each class keeps alist of lines to be drawn in
a Collection as a series of DrawData objects containing the coordinates of
each line. Undoing a line from either the red or the blue line list smply
means removing the last DrawData object from the drawList collection.

Copyright © , 2002 by James W Cooper

Then either command forces a repaint of the screen. Here is the

BlueCommand class.

public class Bl ueConmand : Comrand {
protected Col or color;
private PictureBox pbox;
private ArraylList drawlist;
protected int x, y, dx, dy;

publ i c Bl ueConmand(Pi ct ureBox pbx) {
pbox = pbx;
color = Col or. Bl ue ;
drawLi st = new ArraylList ();
X = pbox. Wdth ;

dx = -20;
y =0;
dy = 0;
}
[]-----

public void Execute() {

DrawbData dl = new DrawbData(x, y, dx, dy);

drawLi st. Add(dl);
X = X + dx;

y =y + dy;
pbox. Refresh();

public bool isUndo() {
return fal se;

}
[]-----
public void Undo() {
DrawDat a dl ;
int index = drawlList. Count - 1;
if (index >= 0) {
dl = (Drawbat a)drawLi st[index];
drawli st . RenoveAt (i ndex) ;
x = dl.getX();
y = dl.getY();
}
pbox. Refresh();
}
[]-----

public void draw Graphics g) {
Pen rpen = new Pen(color, 1);

Copyright © , 2002 by James W Cooper

307

int h = pbox. Hei ght;
int w= pbox. Wdth;
for (int i =0; i < drawList.Count ; i++) {
DrawData dl = (DrawData)drawList[i];
g. DrawLi ne(rpen, dl.getX(), dl.getY(),
dl .getX() + dx, dl.getDy() + h);

}
}
Note that the draw method in the drawCommand class redraws the entire
list of lines the command object has stored. These two draw methods are
called from the paint handler of the form.
public void paintHandl er (obj ect sender, PaintEventArgs e) {
Graphics g = e. Gaphics ;

bl ueC. draw g) ;
redC. draw (Qg);

}

We can create the RedCommand in just a few lines by deriving from the
BlueCommand:
public class RedConmand : Bl ueCommand {
publ i ¢ RedCommand(Pi ct ureBox pict): base(pict) {

col or = Col or. Red;

X = 0;

dx = 20;

y =0;

dy = 0;

}

The set of classes we use in this Undo program is shown in Figure 22-7

Copyright © , 2002 by James W Cooper

Elue Cnml.ma.mi

drawlist
X

pic

itnit

drawr

Comunand Execute
Command isUndo
Comunand UTndo

he

Command

Execute
Tndo
isIndo

L
T

itit

add
Counatid Execute
Command isUndo
Comunatd Tndo

h

lad

)

it

Comunand Execute
Comtand isTndo
Comnand Tndo
draw

undoForm

huttons

<r>— btDraw Click

Form Load
Form Paint

h

kC

Figure 22-7— The classes used to implement Undo in a Command pattern

implementation

Copyright © , 2002 by James W Cooper

Command
Bution CommandHolder Menultem
c-h Execute
FR— getC omemand
: ; Fy & Iy
: i :
: ExitCommand ;
' Cmdhenu
: A Execute
: ! zetConunand
i Red Command RedBution | E ‘
i Execute ZetCommand
i
File Command
Execute
Fe
Dpen
ComdHolder
Euit
maity

Figure 22-8— A class structurefor three different objectsthat al implement the
Command interface and two that implement the CommandHolder interface

Thought Questions

1. Mouse clicks on list box items and on radio buttons also constitute
commands. Clicks on multiselect list boxes could aso be represented
as commands. Design a program including these features.

2. A lottery system uses a random number generator constrained to
integers between 1 and 50. The selections are made at intervals
selected by a random timer. Each selection must be unique. Design
command patterns to choose the winning numbers each week.

Copyright © , 2002 by James W Cooper

Programs on the CD-ROM

310

\ Command\ But t onMenu

Buttons and menus using Command
pattern

\ Command\ UndoCommand

C# program showing line drawing
and Undo

\ Command\ CondHol der

C# program showing
CommandHolder interface

Copyright © , 2002 by James W Cooper

311

23. The Interpreter Pattern

Some programs benefit from having a language to describe operations
they can perform. The Interpreter pattern generally describes defining a
grammar for that language and using that grammar to interpret statements
in that language.

M otivation

When a program presents a number of different but somewhat similar
cases it can deal with, it can be advantageous to use a simple language to
describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording
facilities a number of office suite programs provide or as complex as
Visua Basic for Applications (VBA). VBA is not only included in
Microsoft Office products, but it can be embedded in any number of third-
party products quite simply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records
menu and keystroke operations for later playback and just barely qualifies
as alanguage; it may not actually have a written form or grammar.
Languages such as VBA, on the other hand, are quite complex, but they
are far beyond the capabilities of the individual application developer.
Further, embedding commercial languages usually require substantial
licensing fees, which makes them less attractive to all but the largest
developers.

Applicability
Asthe Small Talk Companion notes, recognizing cases where an

Interpreter can be helpful is much of the problem, and programmers
without formal language/compiler training frequently overlook this

Copyright © , 2002 by James W Cooper

312

approach. There are not large numbers of such cases, but there are three
genera places where languages are applicable.

1. When you need a command interpreter to parse user commands.
The user can type queries of various kinds and obtain a variety of
answers.

2. When the program must parse an algebraic string. This caseis
fairly obvious. The program is asked to carry out its operations
based on a computation where the user enters an equation of some
sort. This frequently occurs in mathematical- graphics programs
where the program renders a curve or surface based on any
equation it can evaluate. Programs like Mathematica and graph
drawing packages such as Origin work in this way.

3. When the program must produce varying kinds of output. This case
is alittle less obvious but far more useful. Consider a program that
can display columns of datain any order and sort them in various
ways. These programs are frequently referred to as Report
Generators, and while the underlying data may be stored in a
relational database, the user interface to the report programis
usually much simpler than the SQL language that the database
uses. In fact, in some cases, the simple report language may be
interpreted by the report program and trandated into SQL.

A Simple Report Example

Let’s consider a simplified report generator that can operate on five
columns of datain atable and return various reports on these data.
Suppose we have the following results from a swimming competition.

Amanda McCart hy 12 WCA 29. 28
Jam e Fal co 12 HNHS 29. 80
Meaghan O Donnel | 12 EDST 30. 00
Greer G bbs 12 CDEV 30.04
Rhi annon Jeffrey 11 Ww 30. 04
Sophi e Connol |y 12 WAC 30. 05
Dana Hel yer 12 ARAC 30. 18

Copyright © , 2002 by James W Cooper

313

The five columns are frname, Iname, age, club and time. If we consider
the compl ete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name, or by age. Since
there are a number of useful reports we could produce from these datain
which the order of the columns changes as well as the sorting, alanguage
is one useful way to handle these reports.

WEe'll define a very simple nonrecursive grammar of this sort.

Print I nane frnanme club time Sortby club Thenby tine

For the purposes of this example, we define these three verbs.

Print
Sort by
Thenby

And we'll define the five column names we listed earlier.

Fr nane
Lnane
Age
Cl ub
Ti me

For convenience, we'll assume that the language is case insensitive. We'll
also note that the simple grammar of this language is punctuation free and
amounts in brief to the following.

Print var[var] [sortby var [thenby var]]

Finaly, there is only one main verb, and while each statement is a
declaration, there is no assignment statement or computational ability in
this grammar.

Copyright © , 2002 by James W Cooper

314

Inter preting the Language
Interpreting the language takes place in three steps.
1. Parsing the language symbols into tokens.
2. Reducing the tokens into actions.
3. Executing the actions.

We parse the language into tokens by simply scanning each statement with
a StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack we will use that technique
here. We implement the Stack class using an Arraylist—where we have
push, pop, top, and nextTop methods to examine and manipulate the stack
contents.

After parsing, our stack could look like this.

Type Token

Var Ti me <-top of stack
Ver b Thenby

Var C ub

Verb Sort by

Var Ti ne

Var Cl ub

Var Fr name

verb Lnane

However, we quickly realize that the “verb” Thenby has no rea meaning
other than clarification, and it is more likely that we' d parse the tokens and
skip the Thenby word altogether. Our initia stack then, looks like this.

Ti me

Cl ub

Sort by

Ti me

Cl ub

Fr name

Copyright © , 2002 by James W Cooper

315

Lnanme
Pri nt

Objects Used in Parsing

In this parsing procedure, we do not push just a numeric token onto the
stack but a ParseObject that has the both a type and a value property.

public class Parse(bject {
public const int VERB=1000;
public const int VAR=1010;
public const int MILTVAR=1020;
protected i nt val ue, type;

[]-----

public ParseCbject(int val, int typ) {
val ue = val ;
type = typ;

}

[]-----

public int getValue() {
return val ue;

public int getType() {
return type;
}
}

These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose vaue fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, and so on for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a smple hierarchy shown in Figure 23-1

Copyright © , 2002 by James W Cooper

Par seObject

Command
getValue
getType Execute

init
addArg
setData

Figure23-1- A simple parsing hierarchy for the Interpreter pattern

The parsing process is just the following ssmple code, using the

StringTokenizer and the parse objects. Part of the main Parser classis

shown here.

public class Parser {

private Stack stk;

private Arraylist actionList;

private Data dat;

private ListBox ptable;

private Chain chn

[]-----

public Parser(string line, KidData kd, ListBox pt)
stk = new Stack ();
/11ist of verbs accunul ates here
actionList = new ArrayList ();
set Data(kd, pt);
bui | dSt ack(li ne); /lcreate token stack

ParseVarb ParseVerb Printit Sort
init init Execute
isLegal getVerb

addArg

isLegal

getArgs

316

bui | dChai n(); /lcreate chain of responsibility

Copyright © , 2002 by James W Cooper

317

private void buildChain() {
chn = new VarVarParse(); //start of chain
Var Mul t var Parse vnvp = new Var Mul t var Par se() ;
chn. addToChai n(vnvp) ;
Mul t Var Var Par se nvvp = new Ml t Var Var Par se() ;
vvp. addToChai n(mvvp) ;
Ver bMul t var Parse vrvp = new Ver bMul t var Parse();
nmvvp. addToChai n(vrvp);
Ver bVar Par se vvp = new Ver bVar Parse();
vrvp. addToChai n(vvp) ;
Ver bAction va = new VerbAction(actionList);
vvp. addToChai n(va) ;
Nonmat ch nom = new Nonmatch (); [l error handl er
va. addToChai n (nom;

public void setData(KidData kd, ListBox pt) {
dat = new Data(kd.getData ());
ptable = pt;

private void buildStack(string s) {
StringTokeni zer tok = new StringTokenizer (s);
whi | e(t ok. hasMbor eEl enents ()) {
Parsehj ect token = tokenize(tok. next Token));
stk. push (token);

protected ParseChject tokenize(strings) {
Par seChj ect obj ;
int type;
try {
obj = getVerb(s);
type = obj.getType ();

cat ch(Nul | Ref erenceException) {
obj = getVar(s);
}

return obj;

protected ParseVerb getVerb(string s) {
ParseVerb v = new ParseVerb (s, dat, ptable);
if(v.isLegal ())

Copyright © , 2002 by James W Cooper

318

return v.getVerb (s);
el se
return null;

protected ParseVar getVar(string s) {
ParseVar v = new ParseVar (s);
if(v.isLegal ())
return v;
el se
return null;

}

The ParseVerb and ParseVar classes return objects with isLegal set to true
if they recognize the word.

public class ParseVerb: Parse(hj ect {
protected const int PRI NT = 100;
protected const int SORT = 110;
protected const int THENBY = 120;
protected ArraylList args;
protected Data ki d;
protected ListBox pt;
protected ParseVerb pv;
[]-----
public ParseVerb(string s, Data kd, ListBox Is):
base(-1, VERB) {
args = new ArraylList ();
kid = kd;
pt =1s;
i f(s.ToLower().Equals ("print")) {
val ue = PRI NT;

i f(s.ToLower().Equals ("sortbhy")) {
val ue = SORT;

}

}

[]-=-----

public ParseVerb getVerb(string s) {
pv = null;

i f(s.ToLower ().Equals ("print"))
pv =new Print(s,kid, pt);

i f(s.ToLower ().Equals ("sorthy"))
pv = new Sort (s, kid, pt);

Copyright © , 2002 by James W Cooper

319

return pv;

public void addArgs(MiltVar nmv) {
args = mv.getVector ();
}

Reducing the Par sed Stack
The tokens on the stack have this form.

Var
Var
Ver b
Var
Var
Var
Var
Ver b

We reduce the stack a token at atime, folding successive Varsinto a
MultVar class until the arguments are folded into the verb objects, as we
show in Figure 23-2

Copyright © , 2002 by James W Cooper

320

Verb
Time

Multvar

"

Var
Club

Verb

Verb
SortBy

Var
Time

Var

Club

MultVar

MultVar

var | P —|_'

Frname

Verb

Var
Lname

Figure 23-2— How the stack isreduced during parsing

When the stack reduces to a verb, this verb and its arguments are placed in
an action list; when the stack is empty, the actions are executed.

Creating a Parser class that is a Command object and executing it when

the Go button is pressed on the user interface carries out this entire

process.

private void bt Conpute_Click(object sender, EventArgs e) ({
parse();

}

private void parse() {
Parser par = new Parser (txCommand. Text ,kdata, |sResults);

Copyright © , 2002 by James W Cooper

321

par. Execute ();
}

The parser itsalf just reduces the tokens, as the preceding shows. It checks
for various pairs of tokens on the stack and reduces each pair to asingle
one for each of five different cases.

I mplementing the Interpreter Pattern

It would certainly be possible to write a parser for this simple grammar as
just aseries of if statements. For each of the six possible stack
configurations, reduce the stack until only a verb remains. Then, since we
have made the Print and Sort verb classes Command objects, we can just
Execute them one by one as the action list is enumerated.

However, the real advantage of the Interpreter pattern is its flexibility. By
making each parsing case an individual object, we can represent the parse
tree as a series of connected objects that reduce the stack successively.
Using this arrangement, we can easily change the parsing rules without
muchin the way of program changes: We just create new objects and
insert them into the parse tree.

According to the Gang of Four, these are the names for the participating
objects in the Interpreter pattern.:

AbstractExpression—declares the abstract I nterpret operation.

Terminal Expr ession—interprets expressions containing any of the
terminal tokens in the grammar.

NonTer minal Expression—interprets all of the nonterminal
expressions in the grammar.

Context—contains the global information that is part of the parser—in
this case, the token stack.

Client—Builds the syntax tree from the preceding expression types
and invokes the Interpret operation.

Copyright © , 2002 by James W Cooper

322

The Syntax Tree

The syntax tree we construct to carry out the parsing of the stack we just
showed can be quite smple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact,
the best way to implement this tree is using a Chain of Responsibility,
which passes the stack configuration along between classes until one of
them recognizes that configuration and acts on it. Y ou can decide whether
a successful stack reduction should end that pass or not. It is perfectly
possible to have several successive chain members work on the stack in a
single pass. The processing ends when the stack is empty. We seea
diagram of the individual parse chain elementsin Figure 23-3.

Chain

addChain(c)
sendToChain(stk)
getChain():Chain
hasChain():Boolean

.......

InterpChain

nextChai 1 T nextChain

ALy
=3 e}{?&ain

'
MultVarvarParse
? % . VerbMultvVarP
‘VerhVarParse ‘ |‘u"erhActiun ‘ VarMultVarParse

Figure 23-3— How the classes that perform the parsing interact.

Copyright © , 2002 by James W Cooper

In this class structure, we start with the AbstractExpression interpreter

class InterpChain.

public abstract class InterpChain:Chain {
private Chain nextChain
protected Stack stk;
private bool hasChain;
[]-----
public | nterpChain()
stk = new Stack ();
hasChain = fal se

public void addToChai n(Chain c) {
nextChain = ¢
hasChain = true

public abstract bool interpret();

public void sendToChai n(Stack stack) {
stk = stack;

if(! interpret()) { /linterpret stack
/| pass al ong

next Chai n. sendToChai n (stk);
}

public bool topStack(int cl, int c2) {
Par sethj ect pl, p2;
pl = stk.top ();
p2 = stk.nextTop ();
try{

return (pl.getType() == cl && p2.get Type()

}

cat ch(Nul | Ref erenceException) {
return fal se;

}

public void addArgsToVerb() {
Parseoj ect p = (ParseCbject) stk.pop();
ParseVerb v = (ParseVerb) stk.pop();
v. addArgs (p);
st k. push (v);

Copyright © , 2002 by James W Cooper

323

c2);

324

public Chain getChain() {
return next Chain;
}

This class aso contains the methods for manipulating objects on the stack.
Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse
class reduces two variables on the stack in succession to asingle MultVar
object.

public class VarVarParse : InterpChain {

public override bool interpret() {
i f(topStack(ParseVar. VAR , ParseVar.VAR)) {

//reduces VAR VAR to MILTVAR
ParseVar vl = (ParseVar) stk.pop();
ParseVar v2 = (ParseVar) stk.pop();
Mul tVar nmv = new Mul tVar (v2, vl);
stk. push (nv);
return true;

el se
return fal se;

}

Thus, in this implementation of the pattern, the stack congtitutes the
Context participant. Each of the first five subclasses of InterpChain are
NonTerminal Expression participants, and the ActionVerb class that moves
the completed verb and action objects to the actionList constitutes the
Terminal Expression participant.

The client object is the Parser class that builds the stack object list from
the typed-in command text and constructs the Chain of Responsibility
from the various interpreter classes. We showed most of the Parser class
above aready. However, it also implements the Command pattern and
sends the stack through the chain until it is empty and then executes the
verbs that have accumulated in the action list when its Execute method is
caled.

Copyright © , 2002 by James W Cooper

/I executes parse and interpretation of command |ine
public void Execute() {
whi | e(st k. hasMoreEl enents ()) {
chn. sendToChai n (stk);
}

/I now execute the verbs

for(int i=0; i< actionList.Count ; i++) {
Verb v = (Verb)actionList[i];
v.setData (dat, ptable);
v. Execute ();

The final visual program is shown in Figure 23-4.

R=IE

Iprint frnarne Iname time sartby time

Compute
Amanda MeCarthy zZ9.Z8 s
Jamie Falco z23.8

Meaghan 0'Donnell 20

Greesr Gibb=s 30.04

Phiannon Jeffrey 30.04

Sophie Connolly 30.05

Dana Helwyer 30.12

Lindsay Marotto 20.Z3 ;I

325

Figure23-4 — The Interpreter pattern operating on the simple command in the text

field

Copyright © , 2002 by James W Cooper

326

Conseguences of the Interpreter Pattern

Whenever you introduce an interpreter into a program, you need to
provide a smple way for the program user to enter commands in that
language. It can be as ssimple as the Macro record button we noted earlier,
or it can be an editable text field like the one in the preceding program.

However, introducing a language and its accompanying grammar aso
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of
programming effort unless some template code is available for
implementing this checking. Further, effective methods for notifying the
users of these errors are not easy to design and implement.

In the preceding Interpreter example, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen because the resulting
stack sequence probably cannot be parsed successfully, or if it can, the
item represented by the misspelled keyword will not be included.

You can aso consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem
that having such an interface obviates the necessity for alanguage at all,
the same requirements of sequence and computation still apply. When you
have to have a way to specify the order of sequential operations, a
language is a good way to do so, even if the language is generated from
the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily once you have built the genera parsing and
reduction tools. You can aso add new verbs or variables easily once the
foundation is constructed. However, as the syntax of the grammar
becomes more complex, you run the risk of creating a hard-to- maintain

program.

Copyright © , 2002 by James W Cooper

327

While interpreters are not all that common in solving genera
programming problems, the Iterator pattern we take up next is one of the
most common ones you'll be using.

Thought Question

Design a system to compute the results of simple quadratic expressions
such as

4x"N2 + 3x -4
where the user can enter x or arange of x’s and can type in the equation.

Programs on the CD-ROM

\Interpreter C# interpreter

Copyright © , 2002 by James W Cooper

328

24. The Iterator Pattern

The Iterator is one of the smplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through alist or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition, you can also
define special iterators that perform some special processing and return
only specified elements of the data collection.

M otivation

The Iterator is useful because it provides a defined way to mowve through a
set of data elements without exposing what is taking place inside the class.
Since the Iterator is an interface, you can implement it in any way that is
convenient for the data you are returning. Design Patter ns suggests that a
suitable interface for an Iterator might be the following.
public interface Iterator {

object First();

obj ect Next();

bool isDone();
object currentltem();

}
Here you can move to the top of the list, move through the list, find out if

there are more elements, and find the current list item. This interface is
easy to implement and it has certain advantages, but a number of other
similar interfaces are possible. For example, when we discussed the
Composite pattern, we introduced the getSubordinates method

| Enuner at or get Subor di nat es() ; /I get subordi nat es

to provide away to loop through all of the subordinates any employee
may have. The IEnumerator interface can be represented in C# as

bool MveNext () ;
voi d Reset();
obj ect Current {get;}

Copyright © , 2002 by James W Cooper

329

This aso allows us to loop through alist of zero or more elements in some
interna list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the C# language. This prevents the
Current() property from returning an object of the actual type of the data
in the collection. Instead, you must convert the returned object type to the
actual type of the data in the collection. Thus, while this |Enumerator
interface is intended to be polymorphic, thisis not directly possible in C#.

Samplelterator Code

Let’sreuse the list of swimmers, clubs, and times we described earlier,
and add some enumeration capabilities to the KidData class. Thisclassis
essentially a collection of Kids, each with a name, club, and time, and
these Kid objects are stored in an ArrayList.

public class KidData :|Enunerator {
private Arraylist kids;
private int index;
public KidbData(string fil enanme) {
kids = new ArrayList ();
csFile fl = new csFile (filenane);
fl.OpenForRead ();
string line = fl.readLine ();
while(line '=null) {
Kid kd = new Kid (line)
ki ds. Add (kd);
line = fl.readLine ();

fl.close ();
index = 0;
}
To obtain an enumeration of al the Kids in the collection, we simply use

the methods of the |Enumerator interface we just defined.

public bool MoveNext () {
i ndex++;
return i ndex < kids. Count ;

Copyright © , 2002 by James W Cooper

[]------
public object Current {

get {

return kids[index];
}

}
[l------
public void Reset() {

index = 0;
}

Reading in the data and displaying alist of names is quite easy. We
initialize the Kids class with the filename and have it build the collection
of kid objects. Then we treat the Kids class as an instance of |Enumerator
and move through it to get out the kids and display their names.
private void init() {

kids = new Ki dData("50free.txt");

while (kids.MoveNext ()) {

Kid kd = (Kid)kids.Current ;
I sKids.ltens. Add (kd.getFrnane()+ " "+ kd.getLnane ());

}
}

Fetching an Iterator

Another dightly more flexible way to handle iterators in a classis to
provide the class with a getlterator method that returns instances of an
iterator for that class's data. Thisis somewhat more flexible because you
can have any number of iterators active simultaneously on the same data.
Our Kidlterator class can then be the one that implements our Iterator
interface.

public class Kidlterator : |Enunerator {

private Arraylist kids;
private int index;

public Kidlterator(ArrayList kidz) {
ki ds = ki dz;
i ndex = 0;

}

[l------

public bool MveNext () {

Copyright © , 2002 by James W Cooper

331

i ndex++;
return i ndex < kids. Count ;

public object Current {
get {
return kids[index];

public void Reset() {
i ndex = 0;
}

}

We can fetch iterators from the main KidList class by creating them as
needed.

public Kidlterator getlterator() {
return new Kidlterator (kids);
}

Filtered Iterators

While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some
computation on the data before returning it. For example, you could return
the data ordered in some particular way or only those objects that match a
particular criterion. Then, rather than have alot of very similar interfaces
for these filtered iterators, you smply provide a method that returns each
type of enumeration with each one of these enumerations having the same
methods.

The Filtered lterator

Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a specia Iterator class that
has access to the data in the KidData class. Thisis very simple because the
methods we just defined give us that access. Then we only need to write
an Iterator that only returns kids belonging to a specified club.

Copyright © , 2002 by James W Cooper

332

public class Filteredlterator : |Enumnerator {
private Arraylist kids
private int index;
private string club
public Filteredlterator(ArrayList kidz, string club) {

ki ds = kidz;
index = 0;
this.club = club;
}
[]------
public bool MyveNext () {
bool nore = index < kids.Count-1 ;
if(rmore) {
Kid kd = (Kid)Kkids[++i ndex];
nore = index < kids. Count;
while(more && ! kd.getC ub().Equals (club)) {
kd = (Kid)Kkids[index++];
nore = index < kids.Count ;
}
}
return nore;
}
[]------
public object Current {
get {
return kids[index];
}
}
[]------
public void Reset() {
index = 0;
}

}

All of the work is done in the MoveNext() method, which scans through
the collection for another kid belonging to the club specified in the
constructor. Then it returns either true or false.

Finally, we need to add a method to KidData to return this new filtered
Enumeration.

public Filteredlterator getFilteredlterator(string club) {
return new Filteredlterator (kids, club);

Copyright © , 2002 by James W Cooper

}

This smple method passes the collection to the new Iterator class
Filteredlterator along with the club initials. A ssmple program is shown in
Figure 24-1 that displays all of the kids on the left side. It fills a combo
box with alist of the clubs and then allows the user to select a club and
fills the right-hand list box with those belonging to a single club. The class
diagram is shown in Figure 24-2. Note that the el ements method in
KidData supplies an Enumeration and the kidClub classisin fact itself an
Enumeration class.

C®Filtered Iterator demo =101 x|
Jamie Falco - Im vI

keaghan 0'Dannel
Greer Gibbs

Rhiannar Jeffreyp Saphie Connally
Sophie Connolly Azhley McEntes
Drana Helver K.ate Olzhefzki
Lindzay Marotto “wette Landwehr
Sarah Treichel Krigten Skroski
Aghley McEntes F.atie D uffy

Rachel Brookman
Michelle Ducharme
F.arleen Danaiz

kegan Loock

K.aitlyr Ament

Tara Schoen _:I

Figure24-1 — A simple program-illustrated filtered enumeration

Copyright © , 2002 by James W Cooper

Tierator

moveFirst])
hashloreElements()
riextElement])
S
Kids 2
HidList KidClublterator
ndex index
init(Filename) kilList
getlteratorn) club
getClublteratonclh) 1 init(col,clb)
/ .
Kid
init(line)
getiige()
getTime()
getFrname)
getlname)

Figure 24-2— Theclasses used in the Filtered enumeration

Keeping Track of the Clubs

We need to obtain a unique list of the clubs to load the combo box in

Figure 25-1 with. Aswe read in each kid, we can do this by putting the
clubs in a Hashtable:

while(line '=null) {
Kid kd = new Kid (line);
string club = kd.getd ub ();
if(! clubs.Contains (club)) {
clubs. Add (club, club);
}

Copyright © , 2002 by James W Cooper

ki ds. Add (kd);
line = fl.readLine ();

}

Then when we want to get the list of clubs, we can ask the Hashtable for
an iterator of its contents. The Hashtable class has a method
getEnumerator which should return this information. However, this
method returns an IdictionaryEnumerator, which is slightly different.
While it is derived from |Enumerator, it uses a VValue method to return the
contents of the hash table. This, we load the combo box with the following
code:

I DictionaryEnunerator clubiter = kdata.getd ubs ();

whi | e(cl ubiter. MveNext ()) {
cbd ubs. ltens. Add ((string)clubiter.Value);
}

When we click on the combo box, it gets the selected club to generate a
filtered iterator and load the kidclub list box:
private void cbd ubs_Sel ect edl ndexChanged(obj ect sender,
Event Args e) {
string club = (String)cbd ubs. Sel ectedltem ;
Filteredlterator iter = kdata.getFilteredlterator (club);
| sClubKids.Itens.C ear ();
whil e(iter. MoveNext ()) {
Kid kd = (Kid) iter.Current;
| sC ubKi ds. | tems. Add (kd. get Frname() +" "+
kd. getLnane ());

Consequences of the Iterator Pattern
1. Data modification. The most significant question iterators may raise is
the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element,
it is possible that an element might be added or deleted from the
underlying collection while you are moving through it. It is aso

Copyright © , 2002 by James W Cooper

336

possible that another thread could change the collection. There are no
simple answers to this problem. If you want to move through a loop
using an Enumeration and delete certain items, you must be careful of
the consequences. Deleting or adding an element might mean that a
particular element is skipped or accessed twice, depending on the
storage mechanism you are using.

Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class so they can move through the data. If the datais stored
in an Arraylist or Hashtable, thisis pretty easy to accomplish, but if it
isin some other collection structure contained in a class, you probably
have to make that structure available through a get operation.
Alternatively, you could make the Iterator a derived class of the
containment class and access the data directly.

External versus Internal Iterators. The Design Patterns text describes
two types of iterators. external and internal. Thus far, we have only
described external iterators. Interna iterators are methods that move
through the entire collection, performing some operation on each
element directly without any specific requests from the user. These
are less common in C#, but you could imagine methods that
normalized a collection of data valuesto lie between 0 and 1 or
converted all of the strings to a particular case. In general, external
iterators give you more control because the calling program accesses
each element directly and can decide whether to perform an operation
on it.

Programs on the CD-ROM

\Iterator\Sinplelterator kid list using Iterator

\lterator\Filteredlterator filtered iterator by team name

Copyright © , 2002 by James W Cooper

337

25. The Mediator Pattern

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more
of these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more
each class needs to know about the methods of another class, the more
tangled the class structure can become. This makes the program harder to
read and harder to maintain. Further, it can become difficult to change the
program, since any change may affect code in several other classes. The
Mediator pattern addresses this problem by promoting looser coupling
between these classes. Mediators accomplish this by being the only class
that has detailed knowledge of the methods of other classes. Classes
inform the Mediator when changes occur, and the Mediator passes on the
changes to any other classes that need to be informed.

An Example System

Let’s consider a program that has several buttons, two list boxes, and a
text entry field, as shown in Figure 25-1.

Copyright © , 2002 by James W Cooper

ol

|| [Eomy | Clear |

Jamie Falco -
teaghan O0'Daonnell

Greer Gibbs

Rhiannon Jeffrey

Sophie Connolly

Dlana Helver

Lindzay Maratta

Sarah Treichel

Aghley McEntee

Rachel Brookman

Michelle Ducharme
k.arleen Danais ;I

Figure 25-1—- A simple program with two lists, two buttons, and atext field that will
interact

When the program starts, the Copy and Clear buttons are disabled.

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right- hand list box,
and the Clear button is enabled, aswe seein Figure 25-2.

Copyright © , 2002 by James W Cooper

339

o

ILinl:lsa_l,I b arotto Copy | Clear |

moaes = Sophie Connolly
teaghan 0'Donnel

Greer Gibbs
Rhiannon Jeffrey
Sophie Connally
D ana Helyer
‘Lindzay Marotto
Sarah Treichel
Azhley McEntee

R achel Brookman

Michels Ducharme
F.arleen Danaiz _‘ﬂ

Figure 25-2 — When you select a hame, the buttons are enabled, and when you click
on Copy, the nameis copied to theright list box.

3. If you click on the Clear button, the right-hand list box and the text
field are cleared, the list box is deselected, and the two buttons are
again disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usually even more

complicated than this one, involving insert, delete, and undo operations as
well.

I nter actions Between Controls

The interactions between the visual controls are pretty complex, evenin
this simple example. Each visua object needs to know about two or more

others, leading to quite atangled relationship diagram, as shown in Figure
25-3.

Copyright © , 2002 by James W Cooper

name text (’ Copy 1__’ Clear

Kid list Picked list

Figure 25-3 — A tangled web of interactions between classesin the simple visual
interface we presented in and Figure 25-1 and Figure 25-2.

The Mediator pattern simplifies this system by being the only class that is
aware of the other classes in the system. Each of the controls with which
the Mediator communicates is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler
interaction scheme is illustrated in Figure 25-4.

Copyright © , 2002 by James W Cooper

341

name text Copy Clear

Mediator

Kid list
Picked list

Figure25-4 — A Mediator class simplifiestheinteractions between classes.

The advantage of the Mediator is clear: It isthe only class that knows of
the other classes and thus the only one that would need to be changed if
one of the other classes changes or if other interface control classes are

added.

Sample Code

Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator
classisthat each class needs to be aware of the existence of the Mediator.
Y ou start by creating an instance of your Mediator class and then pass the
instance of the Mediator to each class in its constructor.

ned = new Medi ator (btCopy, btCl ear, |sKids, |sSelected);

bt Copy. set Medi ator (med); //set nediator ref in each control
bt C ear . set Medi at or (ned);

| sKi ds. set Medi at or (ned);

med. set Text (txNane); //tell mediator about text
box

Copyright © , 2002 by James W Cooper

342

We derive our two button classes from the Button class, so they can also
implement the Command interface. These buttons are passed to the
Mediator in its constructor. Here is the CpyButton class.

public class CpyButton : System W ndows. Forms. Button, Conmmand {
private Contai ner conponents = null;
private Mediator ned;
[]-----
public CpyButton() {
InitializeConponent();

}

[]-----

public void setMedi at or (Medi ator nd) {
med = nd;

}

[]-----

public void Execute() {
med. copyd i cked ();
}

It's Execute method simply tells the Mediator lass that it has been clicked,
and lets the Mediator decide what to do when this happens. The Clear
button is exactly analogous.

We derive the KidList class from the ListBox class and have it loaded
with names within the Mediator’s constructor.

public Mediator(CpyButton cp, CrButton clr, KidList ki,

Li st Box pk) {
cpButton = cp; //copy in buttons
clrButton = clr;
klist = kl; /lcopy in |list boxes
pkLi st = pk;
kds = new KidData ("50free.txt"); //create data |ist class
cleardicked(); /lclear all controls
Kidlterator kiter = kds.getlterator ();
whi |l e(kiter.MveNext ()) { [/l oad |ist box

Kid kd = (Kid) kiter.Current ;
klist.ltemrs .Add (kd.getFrname() +" "+
kd. get Lname ());

Copyright © , 2002 by James W Cooper

343

We don't have to do anything special to the text field, since all its activity
takes place within the Mediator; we just passit to the Mediator using as
setText method as we illustrated above.

The only other important part of our initiaization is creating a single event
handler for the two buttons and the list box. Rather than letting the
development environment generate these click events for us, we create a
single event and add it to the click handlers for the two buttons and the list
box’ s SelectlndexChanged event. The intriguing thing about this event
handler is that all it needs to do is call each control’ s Execute method and
let the Mediator methods called by those Execute methods do all the real
work.

The event handler for these click eventsis simply

//each control is a command obj ect

public void clickHandl er (object obj, EventArgs e) {
Conmmand conmd = (Conmand) obj ; /1 get command obj ect
cond. Execute (); /' and execute command

}

We show the complete Form initialization method that creates this event
connections below:

private void init() {
//set up nmediator and pass in referencs to controls
ned = new Medi ator (bt Copy, btC ear, |sKids, |sSelected);
bt Copy. set Medi ator (med); // mediator ref in each control
bt C ear . set Medi at or (ned);
| sKi ds. set Medi ator (ned);
ned. set Text (txNane); //tell mediator about text box

/lcreate event handler for all command objects
Event Handl er evh = new Event Handl er (clickHandl er);
btdear.dick += evh;

bt Copy. dick += evh;

| sKi ds. Sel ect edl ndexChanged += evh;

Copyright © , 2002 by James W Cooper

The general point of all these classes is that each knows about the

Mediator and tells the Mediator of its existence so the Mediator can send

commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear, and Select
methods and has a register method for the TextBox. The two buttons and
the ListBox are passed in in the Mediator’ s constructor. Note that there is
no real reason to choose setXxx methods over constructor arguments for

passing in references to these controls. We simple illustrate both
approaches in this example.

public class Mediator {

private CpyButton cpButton; // buttons

private CrButton clrButton;

private TextBox txKids; //text box

private ListBox pkList; /11ist boxes

private KidList klist;

private Ki dData kds; //list of data fromfile

public Mediator(CpyButton cp, drButton clr,
Ki dLi st kI, ListBox pk) {
cpButton = cp; //copy in buttons
clrButton = clr;
klist = kI; //copy in list boxes
pkLi st = pk;

kds = new KidData ("50free.txt"); //create data |i st

cleardicked(); //clear all controls
Kidlterator kiter = kds.getlterator ();

whi | e(kiter.MveNext ()) { //load |ist box

Kid kd = (Kid) kiter.Current
klist.ltems .Add (kd.getFrname() +
" "+kd. getLnanme ());

/1 get text box reference
public void setText(TextBox tx) {
txKids = tx;

//clear lists and set buttons to di sabl ed
public void cleardicked() {
// di sabl e buttons and clear |ist

Copyright © , 2002 by James W Cooper

cpButton. Enabl ed = fal se;
cl rButton. Enabl ed = f al se;
pkList. ltems.Cear();

/lcopy data fromtext box to list box
public void copydicked() {
// copy name to picked |ist
pkList.ltens. Add(txKi ds. Text);
/'l clear button enabl ed
clrButton. Enabl ed = true;
klist. Sel ectedl ndex = -1;

//copy selected kid to text box
/l enabl e copy button
public void kidPicked() {
//copy text fromlist to textbox
t xK ids. Text = klist. Text;
// copy button enabl ed
cpButton. Enabl ed = true;

}

Initialization of the System

One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these
states may change as the program evolves, we simply carry out this
initialization in the Mediator’ s constructor, which sets all the controls to
the desired state. In this case, that state is the same as the one achieved by
the Clear button, and we smply call that method this.

cleardicked(); //clear all controls

Mediatorsand Command Objects

The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple.

Copyright © , 2002 by James W Cooper

346

In either case, however, this represents the solution to one of the problems
we noted in the Command pattern chapter: Each button needed knowledge
of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so the
Command buttons do not need any knowledge of the methods of the other
visual objects. The class diagram for this program is shown in Figure
25-5, illustrating both the Mediator pattern and the use of the Command

pattern.

Command
Execute() Mediaior
e
; registerCopylcpBut)
copyClicked!)
i : register”lean clrBut)
CopyCommand ' cleatClicked)
': tegisterT extitat)
ity ; isterFidList(klist)
iritmd, cpBut) ; registeth |
Command Execute!) 1_“ *: med | Eesgtésﬁziisé{;d@hstj
1 ClearCommand init()
e 1 h
rpyCmd init¢md, clrBut)
1 e
cliCimd
MedForm 1 *
btClear Click)
btCopy_ Click)
Form Load()
lsEids Click()

Figure 25-5 — The interactions between the Command objects and the M ediator
obj ect

Copyright © , 2002 by James W Cooper

Command
L +Execute()|
______ I GonE
CopyB utton ClearButton
1 T T
cpButton clrButton
btCapy $$ btC
Mediator
K
Ined

"

MedForm

Figure25-6 — The UML diagram for the C# Mediator pattern

Consequences of the M ediator Pattern

1. The Mediator pattern keeps classes from becoming entangled when
actions in one class need to be reflected in the state of another class.

2. Using aMediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the
Mediator, leaving the rest of the program unchanged.

Copyright © , 2002 by James W Cooper

347

348

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a“god class,” having too much knowledge
of the rest of the program. This can make it hard to change and
maintain. Sometimes you can improve this situation by putting more
of the function into the individual classes and less into the Mediator.
Each object should carry out its own tasks, and the Mediator should
only manage the interaction between objects.

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has
available. This makesit difficult to reuse Mediator code in different
projects. On the other hand, most Mediators are quite smple, and
writing this code is far easier than managing the complex object
interactions any other way.

Single Interface Mediator s

The Mediator pattern described here acts as a kind of Observer pattern,
observing changes in each of the Colleague elements, with each element
having a custom interface to the Mediator. Another approach isto have a
single interface to your Mediator and pass to that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components and create a
single action method with different polymorphic arguments for each of the
action elements.

public void action(MveButton nv);

public void action(clrButton clr);
public void action(KidList klist);

Copyright © , 2002 by James W Cooper

349

Thus, we need not register the action objects, such as the buttons and
source list boxes, since we can pass them as part of generic action
methods.

In the same fashion, you can have a single Colleague interface that each
Colleague implements, and each Colleague then decides what operation it

isto carry out.
Implementation | ssues

Mediators are not limited to use in visual interface programs, however, it
is their most common application. You can use them whenever you are

faced with the problem of complex intercommunication between a number
of objects.

Programs on the CD-ROM
\ Medi at or Mediator

Copyright © , 2002 by James W Cooper

26. The Memento Pattern

In this chapter, we discuss how to use the Memento pattern to save data
about an object so you can restore it later. For example, you might like
to save the color, size, pattern, or shape of objects in a drafting or
painting program. ldeally, it should be possible to save and restore this
state without making each object take care of this task and without
violating encapsulation. Thisis the purpose of the Memento pattern.

M otivation

Objects normally shouldn’t expose much of their interral state using
public methods, but you would till like to be able to save the entire
state of an object because you might need to restore it later. In some
cases, you could obtain enough information from the public interfaces
(such as the drawing position of graphical objects) to save and restore
that data. In other cases, the color, shading, angle, and connection
relationships to other graphical objects need to be saved, and this
information is not readily available. This sort of information saving
and restoration is common in systems that need to support Undo
commands.

If al of the information describing an object is available in public
variables, it is not that difficult to save them in some external store.
However, making these data public makes the ertire system vulnerable
to change by external program code, when we usually expect data
inside an object to be private and encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages
by having privileged access to the state of the object you want to save.
Other objects have only a more restricted access to the object, thus
preserving their encapsulation. In C#, however, thereis only alimited
notion of privileged access, but we will make use of it in this example.

This pattern defines three roles for objects.
1. TheOriginator is the object whose state we want to save.

2. TheMemento is another object that saves the state of the
Originator.

Copyright © , 2002 by James W Cooper

351

3. The Caretaker manages the timing of the saving of the state, saves
the Memento, and, if needed, uses the Memento to restore the state
of the Originator.

I mplementation

Saving the state of an object without making all of its variables
publicly availableis tricky and can be done with varying degrees of
success in various languages. Design Patterns suggests using the C++
friend construction to achieve this access, and the Smalltalk
Companion notes that it is not directly possible in Smalltalk. In Java,
this privileged access is possible using the package protected mode.
Theinternal keyword is available in C#, but al that means is that any
class method labeled as internal will only be accessible within the
project. If you make a library from such classes, the methods marked
asinternal will not be exported and available. Instead, we will define a
property to fetch and store the important internal values and make use
of no other properties for any purpose in that class. For consistency,
we'll use the internal keyword on these properties, but remember that
thislinguistic use of internal is not very restrictive.

Sample Code

Let’s consider a simple prototype of a graphics drawing program that
creates rectangles and alows you to select them and move them around
by dragging them with the mouse. This program has a tool bar
containing three buttons—Rectangle, Undo, and Clear—aswe seein
Figure 26-1

Copyright © , 2002 by James W Cooper

352

i%. Memento Drawing ! o [m] |

I Rect Undo | Clear|

Figure 26-1 — A simple graphics drawing program that allows you to draw
rectangles, undo their drawing, and clear the screen

The Rectangle button is a toolbar ToggleButton that stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it, as we see in Figure
26-2.

. Memento Drawing N o |E||ﬂ

Reck |Llnd0 | Clear|

Figure 26-2— Selecting a rectangle causes “handles’ to appear, indicating that it
isselected and can be moved.

Copyright © , 2002 by James W Cooper

Once it is selected, you can drag that rectangle to a new position, using
the mouse, as shown in Figure 26-3

&. Memento Drawing 3 o]

Rect |Und0 | Clear|

Figure 26-3 — The same selected rectangle after dragging

The Undo button can undo a succession of operations. Specifically, it
can undo moving arectangle, and it can undo the creation of each
rectangle. There are five actions we need to respond to in this program.

Rectangle button click
Undo button click
Clear button click
Mouse click

o A~ D

Mouse drag

The three buttons can be constructed as Command objects, and the
mouse click and drag can be treated as commands as well. Since we
have a number of visual objects that control the display of screen
objects, this suggests an opportunity to use the Mediator pattern, and
that is, in fact, the way this program is constructed.

We will create a Caretaker class to manage the Undo action list. It can
keep alist of the last n operations so they can be undone. The Mediator
maintains the list of drawing objects and communicates with the

Copyright © , 2002 by James W Cooper

Caretaker object as well. In fact, since there could be any number of
actions to save and undo in such a program, a Mediator is virtually
required so there is a single place to send these commands to the Undo
list in the Caretaker.

In this program, we save and undo only two actions: creating new
rectangles arnd changing the position of rectangles. Let’s start with our
visRectangle class, which actually draws each instance of the
rectangles.

public class VisRectangle {
private int x, y, w, h;
private const int SIZE=30;
private CsharpPats. Rectangle rect;
private bool selected;
private Pen bPen;
private SolidBrush bBrush;
I-----

public VisRectangle(int xp, int yp) {
X = Xp; y =Yyp
w = Sl ZE; h = S| ZE;

saveAsRect () ;
bPen = new Pen(Col or. Bl ack) ;
bBrush = new Sol i dBrush(Col or. Bl ack);

/lused by Menento for saving and restoring state
i nternal CsharpPats. Rectangle rects {

get {
return rect;
set {
x=val ue. X;
y=val ue.y;
w=val ue. w,
h=val ue. h;
saveAsRect () ;
}

public void setSel ected(bool b) {
sel ected = b;

/Il move to new position

public void nove(int xp, int yp) {
X = Xp;
y =Yp
saveAsRect () ;

Copyright © , 2002 by James W Cooper

public void drawm G aphics g) {
//draw rectangl e
g. DrawRect angl e(bPen, x, y, w, h);

if (selected) { / 1 draw handl es

g. Fil Il Rectangl e(bBrush, x + w/ 2, y - 2, , 4);
g. Fill Rectangl e(bBrush, x - 2, y + h/ 2, 4, 4);
g. Fi Il Rect angl e(bBrush, +(w/ 2), y+h-2 4,);

X
X+(W_ 2)1
y +(h/ 2), 4, 4);

g. Fi | | Rect angl e(bBrush,

[/return whether point is inside rectangle

public bool contains(int x, int y) {
return rect.contains (x, y);

}

[]-=-e--
/'l create Rectangle object from new position
private void saveAsRect() {

rect = new CsharpPats. Rectangle (x,y,w, h);
}

We also use the same Rectangle class as we hace devel oped before,
that contains Get and Set properties for the x, y, w, and h values and a

contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our
simple Memento class that we use to store the state of a rectangle.

public class Menento {

private int x, y, w, h;

private CsharpPats. Rectangle rect;

private VisRectangl e visRect;

Hf------

public Memento(Vi sRectangl e vrect) {
vi sRect = vrect;
rect = visRect.rects ;

X = rect.x ;
y = rect.y;
W =rect.w
h = rect. h;
}
[]------

public void restore() {
rect.x = x;
rect.y =y,

Copyright © , 2002 by James W Cooper

rect.h h;
rect.w = w,
vi sRect.rects = rect;

}
}
When we create an instance of the Memento class, we passit the

visRectangle instance we want to save, using the init method. It copies
the size and position parameters and saves a copy of the instance of the
visRectangle itself. Later, when we want to restore these parameters,
the Memento knows which instance to which it must restore them, and
it can do it directly, as we see in the restore() method.

The rest of the activity takes place in the Mediator class, where we
save the previous state of the list of drawings as an integer on the undo
list.

public void createRect(int x, int y) {

unpi ck(); /I make sure none is selected

if (startRect) { //if rect button is depressed
i nt count = draw ngs. Count;
caretakr. Add(count); //Save list size
/lcreate a rectangle
Vi sRectangl e v = new Vi sRectangl e(x, Yy);

drawi ngs. Add(v);//add elenent to |ist

startRect = fal se; /1 done with rectangle
rect.set Sel ected(false); /Tunclick button
canvas. Refresh();

}

el se
/1if not pressed look for rect to select
pi ckRect (x, VY);

}

}

On the other hand, if you click on the panel when the Rectangle button
has not been selected, you are trying to select an existing rectangle.
Thisis tested here.
public void pickRect(int x, int y) {

//save current selected rectangle

//to avoi d doubl e save of undo

int lastPick = -1;

if (selectedlndex >= 0) {

| ast Pi ck = sel ect edl ndex;

unpi ck(); //undo any sel ection

Copyright © , 2002 by James W Cooper

357

//see if one is being selected
for (int i = 0; i< drawi ngs. Count; i++) {
Vi sRectangl e v = (VisRectangl e)drawi ngs[i];
if (v.contains(x, y)) {
//did click inside a rectangle

sel ectedl ndex = i; //save it
rect Sel ected = true;
if (selectedlndex != lastPick) {

//but don't save twice
car et akr. remenber Posi tion(v);

}
v. set Sel ected(true); //turn on handl es
repaint(); //and redraw

}

The Caretaker class remembers the previous position of the rectangle
in a Memento object and adds it to the undo list.
public void renmenberPosition(VisRectangle vr) {

Merment o nmem = new Menmento (vr);
undoLi st. Add (nmem;

}

The Caretaker class manages the undo list. Thislist is a Collection of
integers and Memento objects. If the value is an integer, it represents
the number of drawings to be drawn at that instant. If it is a Memento,
it represents the previous state of a visRectangle that is to be restored.
In other words, the undo list can undo the adding of new rectangles and
the movement of existing rectangles.

Our undo method simply decides whether to reduce the drawing list by
one or to invoke the restore method of a Memento. Since the undo list
contains both integer objects and Memento objects, we cast the list
element to a Memento type, and if thisfails, we catch the cast
exception and recognize that it will be a drawing list element to be
removed.
public void undo() {

i f(undoList. Count > 0) {

int last = undoList. Count -1;

obj ect obj = undoList[last];

try{
Menent o mem = (Menent 0) obj ;
remove(mem ;

Copyright © , 2002 by James W Cooper

catch (Exception) {
removeDr awi ng() ;

}
undoLi st . RenoveAt (| ast);
}

The two remove methods either reduce the number of drawings or
restore the position of arectangle.

public void removeDraw ng() {
dr awi ngs. RenoveAt (draw ngs. Count -1);

public void renove(Menento nem {
memrestore ();
}

A Cautionary Note

Whileit is helpful in this example to call out the differences between a
Memento of arectangle position and an integer specifying the addition
of anew drawing, thisisin general an absolutely terrible example of
OO programming. Y ou should never need to check the type of an
object to decide what to do with it. Instead, you should be able to call
the correct method on that object and have it do the right thing.

A more correct way to have written this example would be to have
both the drawing element and the Memento class both have their own
restore methods and have them both be members of a general Memento
class (or interface). We take this approach in the State example pattern
in the next chapter.

Command Objectsin the User Interface

We can aso use the Command pattern to help in ssmplifying the code
in the user interface. Y ou can build atoolbar and create
ToolbarButtons in C# using the IDE, but if you do, it is difficult to
subclass them to make them into command objects. There are two
possible solutions. First, you can keep aparallel array of Command
objects for the RectButton, the UndoButton, and the Clear button and
call them in the toolbar click routine.

Y ou should note, however, that the toolbar buttons do not have an
Index property, and you cannot just ask which one has been clicked by

Copyright © , 2002 by James W Cooper

359

itsindex and relate it to the command array. Instead, we can use the
GetHashCode property of each tool button to get a unique identifier for
that button and keep the corresponding command objectsin a
Hashtable keyed off these button hash codes. We construct the
Hashtable as follows.

private void init() {
med = new Medi at or (pic); [/ create Mediator
commands = new Hashtabl e(); //and Hash table
//create the comand objectsb
Rect Button rbutn new Rect Button(mnmed, tbar.Buttons[0]);
UndoButt on ubutn new UndoButton(ned, tbar.Buttons[1]);
CrButton clrbutn = new O rButton(med);
nmed. r egi st er Rect Button (rbutn);
//add themto the hashtabl e using the button hash val ues
commands. Add(bt Rect . Get HashCode(), rbutn);
conmands. Add(bt Undo. Get HashCode(), ubutn);
conmands. Add(bt C ear. Get HashCode(), clrbutn);
pi c. Pai nt += new Pai nt Event Handl er (pai nt Handl er);

}
Then the command interpretation devolves to just a few lines of code,

since all the buttons call the same click event already. We can use these
hash codes to get the right command object when the buttons are
clicked.
private void tbar_ButtonC ick(object sender,
Tool BarButtonCl i ckEvent Args e) {
Tool BarButton tbutn = e.Button ;

Command cond = (Command) conmands|t but n. Get HashCode ()];
cond. Execute ();

}
Alternatively, you could create the toolbar under IDE control but add

the tool buttons to the collection programmatically and use derived
buttons with a Command interface instead. We illustrate this approach
in the State pattern.

The RectButton command class is where most of the activity takes
place.

public class RectButton : Conmand {
private Tool BarButton bt;
private Mediator mned;
[]=------

public RectButton(Mediator nd, Tool BarButton tbh) {
med = nd;
bt = tb;

}

Copyright © , 2002 by James W Cooper

f------
public void setSel ected(bool sel) {
bt. Pushed = sel;

public void Execute() {
i f(bt.Pushed)
med. st art Rectangle ();

}

Handling M ouse and Paint Events

We aso must catch the mouse down, up, and move events and pass
them on to the Mediator to handle.

private void pic_MuseDown(object sender, MuseEventArgs e) {
nmouse_down = true;
nmed. createRect (e. X, e.Y);

}
[]--=---

private void pic_MuseUp(object sender, MuseEventArgs e) {
mouse_down = fal se;

private void pic_MuseMve(object sender, MuseEventArgs e) {
i f (mouse_down)
med. drag(e. X , e.VY);

Whenever the Mediator makes a change, it calls for arefresh of the
picture box, which in turn calls the Paint event. We then pass this back
to the Mediator to draw the rectangles in their new positions.

private void paintHandl er (obj ect sender, PaintEventArgs e) {
Graphics g = e.Gaphics ;
med. rebDraw (Qg);

}

The complete class structure is diagrammed in Figure 26-4

Copyright © , 2002 by James W Cooper

361

cinterfaces Caretaker
Command Mediator 0.1 (rom defaul]
firom defaul] 0.1 from defaul -caretaker - drawings
q Z_l\)‘ E:? el 1 -undoList
/ | AN
|

N

undo list consistsgmm_
~, 0. \selectedRectangle of Mementos

i AN -
ClearButton RectButton UndoButton visRectangle
from default) from default) firom default) from default)

vect TiA N Memento
firotn defaulf)

{local to package}

+hlemento
+rastore

Figure26-4 — The UML diagram for the drawing program using a Memento

Consequences of the Memento

The Memento provides away to preserve the state of an object while
preserving encapsulation in languages where this is possible. Thus,
data to which only the Originator class should have access effectively
remain private. It aso preserves the smplicity of the Originator class
by delegating the saving and restoring of information to the Memento
class.

On the other hand, the amount of information that a Memento has to
save might be quite large, thus taking up fair amounts of storage. This
further has an effect on the Caretaker class that may have to design
strategies to limit the number of objects for which it saves state. In our
simple example, we impose no such limits. In cases where objects
change in a predictable manner, each Memento may be able to get by
with saving only incremental changes of an object’s state.

In our example code in this chapter, we have to use not only the
Memento but the Command and Mediator patterns as well. This
clustering of several patternsis very common, and the more you see of
good OO programs, the more you will see these pattern groupings.

Thought Question

Mementos can also be used to restore the state of an object when a
process fails. If a database update fails because of a dropped network

Copyright © , 2002 by James W Cooper

362

connection, you should be able to restore the data in your cached data
to their previous state. Rewrite the Database class in the Fagade chapter
to alow for such failures.

Programs on the CD-ROM

\ Menent o Memento example

Copyright © , 2002 by James W Cooper

27. The Observer Pattern

In this chapter we discuss how you can use the Observer pattern to
present data in several forms at once. In our new, more sophisticated
windowing world, we often would like to display datain more than one
form at the same time and have al of the displays reflect any changes
in that data. For example, you might represent stock price changes both
asagraph and as atable or list box. Each time the price changes, we'd
expect both representations to change at once without any action on

our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now
there is nothing inherent in Windows to allow this activity, and, as you
may know, programming directly in Windows in C or C++ is pretty
complicated. In C#, however, we can easily use the Observer Design
Pattern to make our program behave this way.

The Observer pattern assumes that the object containing the datais
separate from the objects that display the data and that these display
objects observe changes in that data. Thisis simple to illustrate, as we
seein Figure 27-1.

Graphic List
Display Display

Data

User

Figure 27-1- Data are displayed as a list and in some graphical mode.

Copyright © , 2002 by James W Cooper

When we implement the Observer pattern, we usualy refer to the data
as the Subject and each of the displays as an Observer. Each of these
observers registers its interest in the data by calling a public method in
the Subject. Then each observer has a known interface that the subject
calls when the data change. We could define these interfaces as
follows.
public interface Cbserver {

voi d sendNotify(string nessage);

public interface Subject {
void registerlnterest(Qoserver obs);
}

The advantages of defining these abstract interfacesis that you can
write any sort of class objects you want as long as they implement
these interfaces and that you can declare these objects to be of type
Subject and Observer no matter what else they do.

Watching Colors Change

Let's write a simple program to illustrate how we can use this powerful
concept. Our program shows a display form containing three radio
buttons named Red, Blue, and Green, as shown in Figure 27-2.

=T

— Colors

{~ Green
" Blue

Figure27-2 — A simple control panel to createred, green, or blue “data”

Now our main form class implements the Subject interface. That
means that it must provide a public method for registering interest in
the data in this class. This method is the registerInterest method, which
just adds Observer objectsto an ArrayList.

Copyright © , 2002 by James W Cooper

public void registerlnterest(Qoserver obs) {
observers. Add (obs);
}

Now we create two observers, one that displays the color (and its
name) and another that adds the current color to alist box. Each of
these is actually a Windows form that also implements the Observer
interface. When we create instances of these forms, we pass to them
the base or startup form as an argument. Since this startup form is
actually the Subject, they can register their interest in its events. So the
main form’ s initialization creates these instances and passes them a
reference to itself.

Li st Obs | obs = new ListObs (this);

| obs. Show ();
Col Gbserver col Cbs = new Col Cbserver (this);

col Gbs. Show() ;
Then, when we create our ListObs window, we register our interest in
the data in the main program.
public ListQbs(Subject subj) {

InitializeConponent();
init(subj);

public void init(Subject subj) {
subj .registerlinterest (this);
}

When it receives a sendNotify message from the main subject program,
all it hasto do is to add the color name to the lit.

public void sendNotify(string nmessage){
| sCol ors. | tens. Add(nessage) ;
}

Our color window is also an observer, and it has to change the
background color of the picture box and paint the color name using a
brush. Note that we change the picture box’ s background color in the
sendNotify event, and change the text in a paint event. The entire class
is shown here.
public class Col Cbserver : Form OCbserver{

private Container conponents = null;

private Brush bBrush;

private System W ndows. Forns. Pi ct ur eBox pi c;
private Font fnt;

Copyright © , 2002 by James W Cooper

private Hashtable col ors;
private string col Nane;

public Col Cbserver (Subject subj) {
InitializeConponent();
init(subj);

}

[]-----

private void init(Subject subj) {
subj.registerinterest (this);
fnt = new Font("arial", 18, FontStyle.Bold);
bBrush = new Sol i dBrush(Col or. Bl ack);
pi c. Pai nt += new Pai nt Event Handl er (pai nt Handl er);
// make Hashtable for converting color strings
colors = new Hashtable ();
colors. Add("red", Color.Red);
colors. Add ("blue", Color.Blue);
colors. Add ("green", Color.Geen);

col Nane = "";

public void sendNotify(string nessage) {
col Nane = nessage;
nmessage = nessage. ToLower ();
//convert color string to col or object
Col or col = (Col or)col ors[message];
pi c. BackCol or = col;

private void paintHandl er (obj ect sender,
Pai nt Event Args e) {
Graphics g = e. Graphics ;
g. Drawst ri ng(col Nanme, fnt, bBrush, 20, 40)
}

Note that our sendNotify event receives a string representing the color
name, and that we use a Hashtable to convert these strings to actual
Color objects.

Meanwhile, in our main program, every time someone clicks on one of
the radio buttons, it calls the sendNotify method of each Observer who
has registered interest in these changes by simply running through the

objects in the Observer’s Collection.

private void opButton_dick(object sender, EventArgs e) {

Radi oButton but = (Radi oButton)sender;

for(int i=0; i< observers.Count ; i++) {
bserver obs = ((Qbserver)observers[i];
obs. sendNoti fy (but. Text);

Copyright © , 2002 by James W Cooper

367

}
}

In the case of the ColorForm observer, the sendNotify method changes
the background color and the text string in the form Picturebox. In the
case of the ListForm observer, however, it just adds the name of the
new color to the list box. We see the fina program running in Figure
27-3

Figure27-3 — The data control panel generates data that is displayed
simultaneously asa colored panel and asa list box. Thisisa candidate for an
Observer pattern.

TheMessagetothe Media

Now, what kind of notification should a subject send to its observers?
In this carefully circumscribed example, the notification message is the
string representing the color itself. When we click on one of the radio
buttons, we can get the caption for that button and send it to the
observers. This, of course, assumes that all the observers can handle
that string representation. In more realistic situations, this might not
always be the case, especialy if the observers could also be used to
observe other data objects. Here we undertake two simple data
Conversions.

Copyright © , 2002 by James W Cooper

1. We get the label from the radio button and send it to the
observers.

2. We convert the label to an actual color in the ColObserver.

In more complicated systems, we might have observers that demand
specific, but different, kinds of data. Rather than have each observer
convert the message to the right data type, we could use an
intermediate Adapter class to perform this conversion.

Another problem observers may have to deal with is the case where the
data of the central subject class can change in several ways. We could
delete points from alist of data, edit their values, or change the scale of
the data we are viewing. In these cases we either need to send different
change messages to the observers or send a single message and then
have the observer ask which sort of change has occurred.

| Subject : Observer |
| Fregisterintersst{obs) | [¥senalotirmesg) |
_______________________________ . e
I i]

ObsForm listOhs ColrForm

Figure 28-4 — The Observer interface and Subject interface implementation of
the Observer pattern

Consequences of the Observer Pattern

Observers promote abstract coupling to Subjects. A subject doesn’t
know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when
there are a series of incremental changes to the data. If the cost of these
updates is high, it may be necessary to introduce some sort of change
management so the Observers are not notified too soon or too
frequently.

Copyright © , 2002 by James W Cooper

369

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the
other observers. If the Subject notifies al the observers when it is
changed, each client is not responsible for remembering to initiate the
notification. On the other hand, this can result in a number of small
successive updates being triggered. If the clients tell the Subject when
to notify the other clients, this cascading notification can be avoided,
but the clients are left with the responsibility of telling the Subject
when to send the notifications. If one client “forgets,” the program
simply won't work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive,
depending on the type or scope of change. In some cases, the clients
will thus be able to ignore some of these notifications.

Programs on the CD-ROM

\ Cbserver Observer example

Copyright © , 2002 by James W Cooper

370

28. The State Pattern

The State pattern is used when you want to have an object represent the
state of your application and switch application states by switching
objects. For example, you could have an enclosing class switch between a
number of related contained classes and pass method calls on to the
current contained class. Design Patter ns suggests that the State pattern
switches between internal classes in such away that the enclosing object
appearsto changeitsclass. In C#, at least, thisis abit of anexaggeration,
but the actual purpose to which the classes are applied can change
significantly.

Many programmers have had the experience of creating a class that
performs sightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to
some types of select case or if-else statements inside the class that
determine which behavior to carry out. It is this inelegance that the State
pattern seeks to replace.

Sample Code

Let’s consider the case of a drawing program similar to the one we
developed for the Memento class. Our program will have toolbar buttons
for Select, Rectangle, Fill, Circle, and Clear. We show this program in
Figure 28-1

Copyright © , 2002 by James W Cooper

371

=

Figure28-1 — A simple drawing program we will use for illustrating the State
pattern

Each one of the tool buttons does something rather different when it is
selected and you click or drag your mouse across the screen. Thus, the
state of the graphical editor affects the behavior the program should
exhibit. This suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator managing
the actions of five command buttons, as shown in Figure 28-2

Copyright © , 2002 by James W Cooper

372

Pick

—» Mediator

Fill

Circle

Clear

Figure 28-2— One possible interaction between the classes needed to support the
simple drawing program

However, thisinitial design puts the entire burden of maintaining the state
of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity
inside the Mediator can make it unduly complicated, as well as leading to
aset of If or Select tests that make the program difficult to read and
maintain.

Further, this set of large, monoalithic conditional statements might have to
be repeated for each actionthe Mediator interprets, such as mouseUp,
mouseDrag, rightClick, and so forth. This makes the program very hard to
read and maintain.

Instead, let’ s analyze the expected behavior for each of the buttons.

1. If the Select button is selected, clicking inside adrawing
element should cause it to be highlighted or appear with

Copyright © , 2002 by James W Cooper

373

“handles.” If the mouse is dragged and a drawing element is
aready selected, the element should move on the screen.

2. If the Rect button is selected, clicking on the screen should
cause a new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should
fill it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause a hew circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among severa of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses
the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities.

public class State {
| keeps state of each button
protected Mediator ned;
public State(Mediator nmd) {
med = nd; |/ save reference to nediator
}

public virtual void nmouseDown(int x, int y) {}
public virtual void nouseUp(int x, int y) { }
public virtual void nouseDrag(int x, int y) {}

}

Note that we are creating an actual class here with empty methods, rather
than an interface. This allows us to derive new State objects from this
class and only have to fill in the mouse actions that actually do anything
for that case. Then we'll create four derived State classes for Pick, Rect,
Circle, and Fill and put instances of all of them inside a StateM anager

Copyright © , 2002 by James W Cooper

374

class that sets the current state and executes methods on that state object.

In Design Patterns, this StateManager classis referred to as a Context.
This object isillustrated in Figure 28-3.

StateManager
currentState
[L
Pick Rect Fill Circle
State

Figure 28-3— A StateM anager classthat keepstrack of the current state

A typical State object simply overrides those event methods that it must
handle specially. For example, this is the complete Rectangle state object.

Note that since it only needs to respond to the mouseDown event, we
don’'t have to write any code at al for the other events.

public class RectState :State

public Rect State(Mediator md):base (rmd) {}
[]-----

public override void nouseDown(int x,

Copyright © , 2002 by James W Cooper

Vi sRectangl e vr = new Vi sRect angl e(x,
nmed. addDrawi ng (vr);

375

}

The RectState object ssimply tells the Mediator to add a rectangle drawing
to the drawing list. Similarly, the Circle state object tells the Mediator to
add acircle to the drawing list.
public class CircleState : State {
public CircleState(Mediator nd):base (md){ }
I-----
public override void nouseDowmn(int x, int y) {
VisCrcle ¢ = new VisCrcle(x, y);
nmed. addDrawi ng (c);

}

The only tricky button is the Fill button because we have defined two
actions for it.

1. If an object is already selected, fill it.
2. If the mouseis clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the selectOne method to
our base State interface. This method is called when each tool button is
selected.

public class State {
| keeps state of each button
protected Medi at or ned;
public State(Mediator nmd) {
nmed = nd; // save reference to nedi ator
}

public virtual void nouseDown(int x, int y) {}
public virtual void nmouseUp(int x, int y) { }
public virtual void nouseDrag(int x, int y) {}
public virtual void selectOne(Drawing d) {}

}

The Drawing argument is either the currently selected Drawing or null if
none is selected. In this ssmple program, we have arbitrarily set the fill
color to red, so our Fill state class becomes the following.

Copyright © , 2002 by James W Cooper

376

public class Fill State : State {
public Fill State(Medi ator nmd): base(nd) { }

[l-----
public override void nouseDowmn(int x, int y) {
/IFill drawing if you click inside one
int i = med.findDraw ng(x, VY);
if (i >=0) {
Drawi ng d = med. get Drawi ng(i);
d.setFill(true); //fill draw ng
}
}
[]-----
public override void selectOne(Drawing d) {
/1fill drawing if selected
d.setFill (true);
}

Switching Between States

Now that we have defined how each state behaves when mouse events are
sent to it, we need to examine how the StateManager switches between
states. We create an instance of each state, and then we simply set the
currentState variable to the state indicated by the button that is selected.

public class StateManager {
private State current State;
private RectState rState;
private ArrowState aState;
private CircleState cState;
private Fill State fState;

public StateManager (Medi at or ned) {
//create an instance of each state

rState = new Rect St at e(ned);
cState = new CircleState(ned);
aState = new ArrowState(ned);
fState = new Fill State(ned);

//and initialize them
//set default state
currentState = aState;

Copyright © , 2002 by James W Cooper

377

Note that in this version of the StateManager, we create aninstance of
each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would aso be possible to
create these states on demand. This might be advisable if there are alarge
number of states that each consume a fair number of resources.

The remainder of the state manager code simply calls the methods of
whichever state object is current. Thisis the critical piece—thereis no
conditional testing. Instead, the correct state is already in place, and its
methods are ready to be called.

public void nouseDown(int x, int y) {
current St at e. mouseDown (X, y);

public void nouseUp(int x, int y) {
current State. nouseUp (x, y);

public void nouseDrag(int x, int y) {
current St at e. mouseDrag (X, Vy);
}

public void sel ectOne(Drawi ng d) {
current State. sel ect One (d);
}

How the Mediator I nteractswith the State Manager

We mentioned that it is clearer to separate the state management from the
Mediator’ s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place. Note that each button click calls one of these
methods and changes the gate of the application. The remaining
statements in each method simply turn off the other toggle buttons so only
one button at atime can be depressed.

public class Mediator {
private bool startRect;
private int sel ectedlndex;

Copyright © , 2002 by James W Cooper

private RectButton rectb;
private bool dSel ected;

private ArrayList draw ngs;
private ArraylList undoli st;
private RectButton rButton;
private FillButton filButton;
private CircleButton circButton;
private PickButton arrowButton;
private PictureBox canvas;
private int sel ectedDraw ng;
private StateManager stMr;

[]-----

public Medi at or (Pi ctureBox pic)
startRect = fal se;
dSel ected = fal se;
drawi ngs = new ArraylList();
undoLi st = new ArraylList();
stMgr = new St at eManager (this);
canvas = pic;
sel ectedDrawi ng = -1;

}

[]-----

public void startRectangle() {
st Myr. set Rect () ;
arrowButt on. set Sel ect ed(fal se);
circButton. set Sel ect ed(fal se);
filButton. set Sel ected(fal se);

public void startCGrcle() {
stMgr.setCircle();
rectb. set Sel ected(fal se);
arrowButt on. set Sel ected(fal se);
filButton. setSel ected(fal se);

The ComdToolBarButton

378

In the discussion of the Memento pattern, we created a series of button Command
objects paraleling the toolbar buttons and keep them in a Hashtable to be caled

when the toolbar button click event occurs. However, a powerful alternative osto
create a ComdT ool BarButton class which implements the Command interface as

Copyright © , 2002 by James W Cooper

379

well as being a ToolBarButton. Then, each button can have an Execute method
which defines its purpose. Here is the base class

public class CondTool BarButton : Tool BarButton , Command {
private System Conponent Model . Cont ai ner conponents = nul |;
protected Mediator ned;
protected bool selected,;
public CondTool BarButton(string caption, Mediator nd)

{
InitializeConponent();
med = nd;
this. Text =caption;

}

[]------

public void setSel ected(bool b) {
sel ected = b;
i f(!selected)
this. Pushed =fal se;

public virtual void Execute() {

}

Note that the Execute method is empty in this base class, but is virtual so
we can override it in each derived class. In this case, we cannot use the
IDE to create the toolbar, but can simply add the buttons to the tool bar
programmatically:

private void init() {
/lcreate a Medi ator
med = new Medi at or (pic);
//create the buttons
rctButton = new Rect Button(ned);
arowButton = new Pi ckButton(ned);
circButton = new Gircl eButton(ned);
flButton = new Fill Button(ned);
undoB = new UndoButt on(nmed);
clrb = new O earButton(ned);
//add the buttons into the tool bar
t Bar . But t ons. Add(ar owBut t on) ;
t Bar. Buttons. Add(rctButton);
t Bar. Buttons. Add(ci rcButton);
t Bar. Butt ons. Add(f | Butt on);
/linclude a separator

Copyright © , 2002 by James W Cooper

Tool BarButton sep =new Tool Bar Button();
sep. Styl e = Tool BarButtonStyl e. Separ at or;
t Bar. Butt ons. Add(sep);

t Bar . Butt ons. Add(undoB) ;

t Bar. Buttons. Add(cl rb);

}

Then we can catch al the toolbar button click eventsin a single method and call
each button’ s Execute method.

private void tBar_Buttondick(object sender,
Tool Bar Butt onCl i ckEvent Args e) {
Conmand cond = (Command)e. Button ;
cond. Execute ();

}

The class diagram for this program illustrating the State pattern in this
application isillustrated in two parts. The State section is shown in Figure
28-4

State
fromn defaul)
+mouselown
+mouselrag

+mousellp
+select \

ArrowState CircleState FillState RectState
from defaut) firorin dlefaut firom defaul] frorn defauti

fState/D.J rStatefD.J

AState \0_1 \\cstate 0.1

) ed
ED?\:I n{mled
-med Mediator

0 " fromdefaulf
sthigr

StateManager
firorn default)

Figure 28-4 — The StateM anager and the Mediator

Copyright © , 2002 by James W Cooper

381

The connection of the Mediator to the buttons is shown in Figure 28-5.

| , -
! , D . .
ClearButton RectButton * FillButton -~ bikBution
fromn defauf] frorn defaul] from defaulf

ffrom defautt)

;J .
! \
UndoButton CircleButton
firorn defauli frarn defaulf]

0.1 ‘\l.{nﬁd?)j}l mecd
Mediator
firom defauly

Figure 28-5 — Interaction between the buttons and the Mediator

Handling the Fill State

The Fill State object is only dightly more complex because we have to
handle two cases. The program will fill the currently selected object if one
exists or fill the next one that you click on. This means there are two State
methods we have to fill in for these two cases, as we see here.

public class Fill State : State {
public Fill State(Medi ator nmd): base(nmd) { }

[1-----
public override void nouseDown(int x, int y) {
/IFill drawing if you click inside one
int i = nmed.findDraw ng(x, y);
if (i >=0) {
Drawi ng d = med. get Drawi ng(i);
d.setFill(true); //fill draw ng
}

Copyright © , 2002 by James W Cooper

382

public override void selectOne(Drawing d) {
/1fill drawing if selected
d.setFill (true);

Handling the Undo List

Now we should be able to undo each of the actions we carry out in this
drawing program, and this means that we keep them in an undo list of
some kind. These are the actions we can carry out and undo.

1. Creating arectangle

2. Creating acircle

3. Moving arectangle or circle
4. Filling arectangle or circle

In our discussion of the Memento pattern, we indicated that we would use
a Memento object to store the state of the rectangle object and restore its
position from that Memento as needed. This is generaly true for both
rectangles and circles, since we need to save and restore the same kind of
position information. However, the addition of rectangles or circles and
the filling of various figures are also activities we want to be able to undo.
And, aswe indicated in the previous Memento discussion, the idea of
checking for the type of object in the undo list and performing the correct
undo operation is aredly terrible idea.

[lreally terrible progranm ng approach

obj ect obj = undoList[last];

try{
Memento nem = (Menent o) obj ;
renmove(men ;

catch (Exception) {
r enoveDr awi ng() ;
}

Copyright © , 2002 by James W Cooper

Instead, let’ s define the Memento as an interface.

public interface Menmento {
void restore();
}

Then all of the objects we add into the undo list will implement the
Memento interface and will have a restore method that performs some
operation. Some kinds of Mementos will save and restore the coordinates
of drawings, and others will smply remove drawings or undo fill states.

First, we will have both our circle and rectangle objects implement the
Drawing interface.

public interface Drawing {
voi d set Sel ect ed(bool b);
voi d draw Graphi cs Q);
void nove(int xpt, int ypt);
bool contains(int x,int y);
voi d setFill (bool b);
Cshar pPat s. Rect angl e get Rects();
voi d set Rect s(Cshar pPats. Rectangl e rect);

}

The Memento we will use for saving the state of a Drawing will be similar
to the one we used in the Memento chapter, except that we specifically
make it implement the Memento interface.
public class Drawienento : Menento {

private int x, y, w, h;

private Rectangle rect;
private Draw ng visDraw,

[]-=-----

public DrawMenent o(Draw ng d) {
vi sDraw = d;
rect = visDraw getRects ();
X = rect.x;
y =rect.y ;
w = rect.w
h = rect.h;

}

[]-----

public void restore() {

Copyright © , 2002 by James W Cooper

//restore the state of a draw ng object
rect.x = x;

rect.y =vy;

rect.h h;

rect.w = w

vi sDraw. set Rects(rect);

Now for the case where we just want to remove a drawing from the list to
be redrawn, we create a class to remember that index of that drawing and

remove it when its restore method is called.

public class Drawl nstance : Menmento {
private int intg;
private Mediator ned;
[1-----
public Draw nstance(int intg, Mediator nd)
this.intg = intg;

med = nd;
}
[]-----
public int integ {
get { return intg; }
}
[l-----

public void restore() {
nmed. r eroveDr awi ng(i nt Q) ;
}

}

We handle the FillMemento in just the same way, except that its restore

method turns off the fill flag for that drawing element.

public class Fill Menento : Menento {
private int index;
private Mediator ned;
[]-----
public Fill Memento(int dindex, Mediator md) {
i ndex = di ndex;
med = nd;

public void restore() {

Copyright © , 2002 by James W Cooper

Drawi ng d = med. get Dr awi ng(i ndex) ;
d.setFill(fal se);

The VisRectangle and VisCircle Classes

We can take some useful advantage of inheritance in designing our
visRectangle and visCircle classes. We make visRectangle implement the
Drawing interface and then have visCircle inherit from visRectangle. This
allows us to reuse the setSelected, setFill, and move methods and the rects
properties. In addition, we can split off the drawHandle method and use it
in both classes. Our new visRectangle class looks like this.

public class VisRectangle : Draw ng {
protected int x, y, w, h;
private const int SIZE=30;
private CsharpPats. Rectangle rect;
protected bool selected;
protected bool filled;
protected Pen bPen;
protected SolidBrush bBrush, rBrush;

[]-----

public VisRectangle(int xp, int yp) {
X = Xp; y = Yps
w = Sl ZE; h = Sl ZE;
saveAsRect () ;
bPen = new Pen(Col or. Bl ack);
bBrush = new Sol i dBrush(Col or. Bl ack) ;
rBrush = new Sol i dBrush (Color.Red);

}

[]-----

/lused by Menento for saving and restoring state
public CsharpPats. Rectangl e get Rects() {
return rect;

}
[]-----
public void setRects(CsharpPats. Rectangle val ue) {
x=val ue. Xx; y=val ue.y;
w=val ue. w; h=val ue. h;
saveAsRect () ;
}

Copyright © , 2002 by James W Cooper

public void setSel ected(bool b) {
selected = b;

/I nove to new position

public void nove(int xp, int yp) {
X = Xp; y =yp;
saveAsRect () ;

public virtual void draw(G aphics g) {
/ldraw rectangl e
g. DrawRect angl e(bPen, x, y, w, h);
if(filled)
g.Fill Rectangle (rBrush, x,y,w h);
dr awHandl es(g) ;
}
[]-----
public void drawHandl es(G aphics g) {
if (selected) { /I draw handl es
g. Fill Rectangl e(bBrush, x + w/ 2, vy
g. Fill Rectangl e(bBrush, x - 2, y + h
g. Fi | | Rectangl e(bBrush, x + (w/ 2),
y +h- 2 4, 4);
g. Fil Il Rectangl e(bBrush, x + (w - 2),
y +(h/ 2), 4, 4);

-2, 4,);
/2, 4,);

/lreturn whether point is inside rectangle
public bool contains(int x, int y) {
return rect.contains (x, y);

/'l create Rectangle object from new position
protected void saveAsRect () {
rect = new CsharpPats. Rectangle (x,y,w h);

}

public void setFill(bool b) {
filled = b;

}

Copyright © , 2002 by James W Cooper

387

However, our visCircle class only needs to override the draw method and
have a dlightly different constructor.
public class VisCircle : VisRectangle {
private int r;
public VisGrcle(int x, int y):base(x, y) {
r = 15; w= 30; h = 30;
saveAsRect () ;

public override void draw G aphics g) {
if (filled) {
g.FillEllipse(rBrush, x, y, w, h);

}
g. Drawkl | i pse(bPen, x, y, w, h);
if (selected){

dr awHandl es(g) ;

}

}
}
Note that since we have made the x, y, and filled variables Protected, we
can refer to them in the derived visCircle class without declaring them at
al.

M ediatorsand the God Class
One real problem with programs with this many objects interacting is
putting too much knowledge of the system into the Mediator so it becomes
a“god class.” In the preceding example, the Mediator communicates with
the six buttons, the drawing list, and the StateManager. We could write
this program another way so that the button Command objects
communicate with the StateManager and the Mediator only deals with the
buttons and the drawing list. Here, each button creates an instance of the
required state and sends it to the StateManager. This we will leave as an
exercise for the reader.

Copyright © , 2002 by James W Cooper

Consequences of the State Pattern

1.

The State pattern creates a subclass of a basic State object for each
state an application can have and switches between them as the
application changes between states.

Y ou don’'t need to have along set of conditional if or switch
statements associated with the various states, since each is
encapsulated in aclass.

Since there is no variable anywhere that specifies which state a
program is in, this approach reduces errors caused by programmers
forgetting to test this state variable

Y ou could share state objects between several parts of an application,
such as separate windows, as long as none of the state objects have
specific instance variables. In this example, only the Fill State class has
an instance variable, and this could be easily rewritten to be an
argument passed in each time.

This approach generates a number of small class objects but in the
process simplifies and clarifies the program.

In C#, dl of the States must implement a common interface, and they
must thus al have common methods, although some of those methods
can be empty. In other languages, the states can be implemented by
function pointers with muchless type checking and, of course, greater
chance of error.

State Trangtions

The transition between states can be specified internally or externally. In
our example, the Mediator tells the StateManager when to switch between
states. However, it is aso possible that each state can decide automatically
what each successor state will be. For example, when arectangle or circle
drawing object is created, the program could automatically switch back to
the Arrow-object State.

Copyright © , 2002 by James W Cooper

389

Thought Questions

1. Rewritethe StateManager to use a Factory pattern to produce
the states on demand.

2. While visua graphics programs provide obvious examples of
State patterns, server programs can benefit by this approach.
Outline a simple server that uses a state pattern.

Programs on the CD-ROM
\State state drawing program

Copyright © , 2002 by James W Cooper

390

29. The Strategy Pattern

The Strategy pattern is much like the State pattern in outline but a little
different in intent. The Strategy pattern consists of a number of related
algorithms encapsulated in a driver class called the Context. Your client
program canselect one of these differing algorithms, or in some cases, the
Context might select the best one for you. The intent is to make these
algorithms interchangeable and provide a way to choose the most
appropriate one. The difference between State and Strategy is that the user
generally chooses which of severa strategies to apply and that only one
strategy at atimeislikely to be instantiated and active within the Context
class. By contrast, as we have seen, it is possible that all of the different
States will be active at once, and switching may occur frequently between
them. In addition, Strategy encapsulates several agorithms that do more or
less the same thing, whereas State encapsulates related classes that each do
something somewhat differently. Finally, the concept of transition

between different states is completely missing in the Strategy pattern.

M otivation

A program that requires a particular service or function and that has
several ways of carrying out that function is a candidate for the Strategy
pattern. Programs choose between these algorithms based on
computational efficiency or user choice. There can be any number of

strategies, more can be added, and any of them can be changed at any
time.

There are a number of casesin programs where we'd like to do the same
thing in severa different ways. Some of these are listed in the Smalltalk
Companion.

Save files in different formats.

Compress files using different algorithms

Copyright © , 2002 by James W Cooper

391

Capture video data using different compression schemes.
Use different line-breaking strategies to display text data.

Plot the same data in different formats:. line graph, bar chart, or
pie chart.

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out
the operation.

The idea behind Strategy is to encapsulate the various strategies in asingle
module and provide a simple interface to allow choice between these
strategies. Each of them should have the same programming interface,
although they need not all be members of the same class hierarchy.
However, they do have to implement the same programming interface.

Sample Code

Let’s consider a simplified graphing program that can present data as a
line graph or a bar chart. We'll start with an abstract PlotStrategy class and
derive the two plotting classes from it, as illustrated in Figure 29-1.

Plot
Strategy

o

LinePlot BarPlot
Strategy Strategy

Figure29-1 — Two instance of a PlotStrategy class

Our base PlotStrategy class is an abstract class containing the plot routine
to befilled in in the derived strategy classes. It also contains the max and

Copyright © , 2002 by James W Cooper

392

min computation code, which we will use in the derived classes by
containing an instance of this class.

public abstract class PlotStrategy {
public abstract void plot(float[] x, float[] vy);
}

Then of the derived classes must implement a method called plot with two
float arrays as arguments. Each of these classes can do any kind of plot
that is appropriate.

The Context

The Context class is the traffic cop that decides which strategy is to be
called. The decision is usually based on a request from the client program,
and all that the Context needs to do isto set a variable to refer to one
concrete strategy or another.

public class Context {

float[] x, vV;
PlotStrategy plts; //strategy sel ected goes here

[l-----

public void plot() {
readFil e(); /lread in data
plts.plot (x, y);

}

[]-----

/I sel ect bar plot
public void setBarPlot() {
plts = new BarPl ot Strategy ();

//select line plot
public void setLinePlot() {
plts = new Li nePl ot Strategy();

public void readFile() {

//reads data in fromdata file

}

Copyright © , 2002 by James W Cooper

393

The Context class is also responsible for handling the data. Either it
obtains the data from afile or database or it is passed in when the Context
is created. Depending on the magnitude of the data, it can either be passed
on to the plot strategies or the Context can pass an instance of itself into
the plot strategies and provide a public method to fetch the data.

The Program Commands

This simple program (Figure 29-2) is just a panel with two buttons that
call the two plots. Each of the buttons is a derived button class the
implements the Commard interface. It selects the correct strategy and then
calls the Context’s plot routine. For example, here is the complete Line
graph command button class.

=

Line plat B ar plat |

Figure29-2 — A simple panel to call two different plots

public class LineButton : System W ndows. Forns. Button, Command

{

private System Conponent Model . Cont ai ner conponents = nul |;
private Context contxt;

public LineButton() {
InitializeConponent();
this. Text = "Line plot";

}

public void setContext(Context ctx) {
contxt = ctx;

}

public void Execute() {

cont xt . set Li nePl ot () ;
contxt.plot();

Copyright © , 2002 by James W Cooper

3A

TheLineand Bar Graph Strategies

The two strategy classes are pretty much the same: They set up the
window size for plotting and call a plot method specific for that display
pandl. Here is the Line plot Strategy.
public class LinePlotStrategy : PlotStrategy

public override void plot(float[] x, float[] y) {

LinePlot Iplt = new LinePlot();
I plt. Show ();

Iplt.plot (x, y);
}
}

The BarPlotStraegy is more or less identical.

The plotting amounts to copying in areference to the x and y arrays,
calling the scaling routine and then causing the Picturebox control to be
refreshed, which will then call the paint routine to paint the bars.

public void plot(float[] xp, float[] yp) {

X = Xp;
y = Yp;
set Pl ot Bounds(); /I compute scaling factors

hasData = true;
pi c. Refresh();

}

Drawing Plotsin C#

Note that both the LinePlot and the BarPlot window have plot methods
that are called by the plot methods of the LinePlotStrategy and
BarPlotStrategy classes. Both plot windows have a setBounds method
that computes the scaling between the window coordinates and the x-y
coordinate scheme. Since they can use the same scaling function, we write
it once in the BarPlot window and derive the LinePlot window from it to
use the same methods.
public virtual void setPlotBounds() {

fi ndBounds() ;

/I compute scaling factors

h = pic. Hei ght;
w = pic. Wdt h;

Copyright © , 2002 by James W Cooper

395

xfactor = 0.8F * w/ (xmax - xmn);
xpmn = 0.05F * w;
Xpmax = w - xpm n;
yfactor = 0.9F * h / (ymax - ymin);
ypmin = 0.05F * h;
ypmax = h - ypmn;

/lcreate array of colors for bars

colors = new ArraylList();

col ors. Add(new Sol i dBrush(Col or.
col ors. Add(new Sol i dBrush(Col or.

col ors. Add(new Sol i dBrush(Col or

col ors. Add(new Sol i dBr ush(Col or

}

[]-----

public int calcx(float xp) {
int ix = (int)((xp - xmn)
return ix;

}

[]-----

public int calcy(float yp) {
yp = ((yp - ymin) * yfactor);
int iy =h - (int)(ypmax - yp);
return iy;

}

Making Bar Plots

Red));
Green));

.Blue));
col ors. Add(new Sol i dBrush(Col or.

Magent a)) ;

.Yellow));

* xfactor + xpmn);

The actual bar plot isdrawn in a Paint routine that is called when a paint

Pai nt Event Args e)

i++){

- iy, 20, iy);

event occurs.
protected virtual void pic_Paint(object sender,
{ Graphics g = e. Gaphics;
if (hasbData) {
for (int i = 0; i< x.Length;
int ix = calcex(x[i]);
int iy = calcy(y[i]l);
Brush br = (Brush)colors[i];
g.Fill Rectangl e(br, ix, h
}
}

Copyright © , 2002 by James W Cooper

39%

Making Line Plots
The LinePlot class is very simple, since we derive it from the BarPlot
class, and we need only write a new Paint method:

public class LinePlot :BarPlot {
public LinePlot() {
bPen = new Pen(Col or. Bl ack);
this. Text = "Line Plot";
}
protected override void pic_Paint(object sender,
Pai nt Event Args e) {
Graphics g= e. Graphics;
if (hasbData) {
for (int i =1; i< x.Length; i++) {
int ix = calcex(x[i - 1]);
int iy = calcy(y[i - 1]);
int ix1l = calcx(x[i]);
int iyl = calcy(y[i]);
g. DrawLi ne(bPen, ix, iy, ix1, iyl);

}
}
The UML diagram showing these class relations is shown in Figure 29-3

Copyright © , 2002 by James W Cooper

397

LinePlotSirategy BarPlotSirategy
Command " ; ‘1 ‘1 - :
LARE N Itz ,’/
et i o < \'\. E:llt' zf
Line Cmd BarChd “u } /1 P
PloiSirategy
‘ ’
1
poltz
ottt
coptit
1.[1
Context | *
Figure29-3 — The UML Diagram for the Strategy pattern
The final two plots are shown in Figure 29-4.
o/ JRETEY

Copyright © , 2002 by James W Cooper

398

Figure 29-4— Theline graph (left) and the bar graph (right)

Consequences of the Strategy Pattern

Strategy allows you to select one of several agorithms dynamically. These
algorithms can be related in an inheritance hierarchy, or they can be
unrelated as long as they implement a common interface. Since the
Context switches between strategies at your request, you have more
flexibility than if you simply called the desired derived class. This
approach also avoids the sort of condition statements that can make code
hard to read and maintain.

On the other hand, strategies don’t hide everything. The client code is
usualy aware that there are a number of alternative strategies, and it has
some criteria for choosing among them. This shifts an algorithmic
decision to the client programmer or the user.

Since there are a number of different parameters that you might pass to
different algorithms, you have to develop a Context interface and strategy
methods that are broad enough to allow for passing in parameters that are
not used by that particular algorithm. For example the setPenColor
method in our PlotStrategy is actually only used by the LineGraph
strategy. It isignored by the BarGraph strategy, since it sets up its own list
of colors for the successive bars it draws.

Programs on the CD-ROM

\ St r at egy plot strategy

Copyright © , 2002 by James W Cooper

399

30. The Template Method Pattern

The Template Method pattern is a very simple pattern that you will find yourself
using frequently. Whenever you write a parent class where you leave one or more
of the methods to be implemented by derived classes, you are in essence usng
the Template pattern. The Template pattern formalizes the idea of defining an
agorithm in a class but leaving some of the details to be implemented in
subclasses. In other words, if your base classis an abstract class, as often

happens in these design patterns, you are using a simple form of the Template
pattern.

M otivation

Templates are so fundamental, you have probably used them dozens of
times without even thinking about it. The idea behind the Template pattern
isthat some parts of an algorithm are well defined and can be
implemented in the base class, whereas other parts may have severd
implementations and are best |eft to derived classes. Another main theme
is recognizing that there are some basic parts of a class that can be
factored out and put in a base class so they do not need to be repeated in
several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in
the Strategy pattern examples in the previous chapter, we discovered that
in plotting both line graphs and bar charts we needed similar code to scale
the data and compute the x and y pixel positions.

public abstract class PlotWndow : Form {
protected float ymn, ymax, xfactor, yfactor;
protected float xpmn, xpmax, ypnmn, ypnmax, Xp, Yp;
private float xmn, xmax;
protected int w, h;
protected float[] x, v;
protected Pen bPen;
protected bool hasDat a;
protected const float max = 1. 0e38f;
protected PictureBox pic;
[]-----

Copyright © , 2002 by James W Cooper

protected virtual void init() {
pi c. Pai nt += new Pai nt Event Handl er (pic_Paint);

public void setPenCol or(Col or c){
bPen = new Pen(c);

}
[]-----
public void plot(float[] xp, float[] yp) {
X = Xp;
y = Yps
set Pl ot Bounds(); /I compute scaling factors
hasData = true;
}
[]-----
public void findBounds() {
Xmn = max;
Xmax = -nax;
ymn = max;
ymax = -nmax;
for (int i =0; i< x.Length ; i++) {
if (x[i] > xmax) xmax = x[i];
if (x[i] <xmn) xmn=Xx[i];
if (y[i] > ymax) ymax = y[i];
it (y[i] <ymn) ymn =y[i];
}
}
[]-----

public virtual void setPl otBounds() {
fi ndBounds() ;
/I compute scaling factors
h = pic. Hei ght;
w = pic. Wdth;

xfactor = 0.8F * w/ (xmax - xmn);
xpmn = 0.05F * w;
Xpmax = w - xpmn;
yfactor = 0.9F * h / (ymax - ymin);
ypmin = 0.05F * h;
ypmax = h - ypm n;

}

[1-----

public int calcx(float xp) {
int ix = (int)((xp - xmn) * xfactor + xpmn);
return ix;

Copyright © , 2002 by James W Cooper

401

public int cal cy(floa}t yp) {
yp = ((yp - ymin) * yfactor);
int iy =h - (int)(ypmax - yp);
return iy;

protected virtual void pic_Paint(object sender,
Pai nt Evnt Args e) {
Graphics g = e. G aphi cs;
repaint(g);

}

Thus, these methods all belong in a base PlotPanel class without any
actual plotting capabilities. Note that the pic_Paint event handler just calls
the abstract repaint method. The actual repaint method is deferred to the
derived classes. It is exactly this sort of extension to derived classes that
exemplifies the Template Method pattern.

Kindsof Methodsin a Template Class

As discussed in Design Patterns, the Template Method pattern has four
kinds of methods that you can use in derived classes.

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the preceding
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In C#, you would declare these as virtual methods.

3. Methods that contain a default implementation of some operations but
that may be overridden in derived classes. These are called Hook
methods. Of course, thisis somewhat arbitrary because in C# you can
override any public or protected method in the derived class but Hook
methods, however, are intended to be overridden, whereas Concrete
methods are not.

Copyright © , 2002 by James W Cooper

402

4. Finally, a Template class may contain methods that themselves call
any combination of abstract, hook, and concrete methods. These
methods are not intended to be overridden but describe an agorithm
without actually implementing its details. Design Patterns refers to
these as Template methods.

Sample Code

Let’s consider a simple program for drawing triangles on a screen. We'll
start with an abstract Triangle class and then derive some specia triangle

types from it, as we see in Figure 30-1

Triangle

L Fofraw
' Forawling

| HdrawZndLine: Foint
' +olose Thangle

IsocelesTriangle

--------- bl

| ahstract methuﬂ

StdTriangle

Figure30-1 - The abstract Triangle class and three of its subclasses

Our abstract Triangle class illustrates the Template pattern.
{

public abstract class Triangle
private Point pil,

p2, p3;

protected Pen pen;

[]=-----

public Triangle(Point a, Point b, Point c)

pl = a;

Copyright © , 2002 by James W Cooper

{

b;
C,
n = new Pen(Col or.Black , 1);

p2
p3
pe

public virtual void draw(G aphics g) {
g. DrawLi ne (pen, pl, p2);
Poi nt ¢ = draw2ndLi ne(g, p2, p3);
cl oseTriangl e(g, c);

public abstract Point draw2ndLi ne(G aphics g,
Poi nt a, Point b);

public void closeTriangl e(Gaphics g, Point c) {
g. DrawLi ne (pen, c, pl);

This Triangle class saves the coordinates of three lines, but the draw
routine draws only the first and the last lines. The all-important
draw2ndLine method that draws a line to the third point is |eft as an
abstract method. That way the derived class can move the third point to
create the kind of rectangle you wish to draw.

Thisis ageneral example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the triangle class is to include
default code for the draw2ndLine method.
public virtual void draw2ndLi ne(G aphics g,
Point a, Point b) {
g.drawLi ne(a, b);
}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Copyright © , 2002 by James W Cooper

Drawing a Standard Triangle

To draw a genera triangle with no restrictions on its shape, we simply
implement the draw2ndLine method in a derived stdTriangle class.

public class StdTriangle :Triangle {
public StdTriangl e(Point a, Point b, Point c)
base(a, b, c) {}

public override Point draw2ndLi ne(G aphics g,
Point a, Point b) {
g. DrawLi ne (pen, a, b);
return b;

}

Drawing an Isosceles Triangle

This class computes a new third data point that will make the two sides
equal in length and saves that new point inside the class.

public class IsocelesTriangle : Triangle {
private Point newc;
private int newcx, newcy;

public Isocel esTriangl e(Point a, Point b, Point c)
base(a, b, ¢) {
float dx1, dyl, dx2, dy2, sidel, side2;
float slope, intercept;

int incr;

dx1l = b. X - a. X

dyl = b.Y - a.y,;

dx2 = ¢c. X - b. X

dy2 = ¢c.Y - b.Y;

sidel cal cSi de(dx1, dyl);

side2 = cal cSide(dx2, dy2);

if (side2 < sidel)

incr = -1;
el se
incr = 1;
sl ope = dy2 / dx2;
intercept = c.Y - slope * c. X

Copyright © , 2002 by James W Cooper

405

//move point ¢ so that this is an isoceles triangle
newcx c. X
newcy c.Y,
while (Math. Abs (sidel - side2) > 1) {
/literate a pixel at a time until close
newcx = newcx + incr;
newcy = (int)(slope * newcx + intercept);
dx2 = newcx - b. X;
dy2 = newcy - b.Y;
side2 = cal cSi de(dx2, dy2);

newc = new Poi nt (newcx, newcy);

private float cal cSide(float a, float b) {
return (float)Math.Sgrt (a*a + b*b);
}

When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

public override Point draw2ndLi ne(G aphics g,
Point b, Point c¢) {
g. DrawLi ne (pen, b, newc);
return newc;

The Triangle Drawing Program

The main program simply creates instances of the triangles you want to
draw. Then it adds them to an ArrayList in the TriangleForm class.

private void init() {

triangles = new ArraylList();

StdTriangle t1 = new StdTri angl e(new Poi nt (10, 10),
new Poi nt (150, 50),
new Poi nt (100, 75));

Isocel esTriangle t2 = new |socel esTri angl e(
new Poi nt (150, 100), new Point (240, 40),
new Poi nt (175, 150));

triangl es. Add(t1);

triangl es. Add(t2);

Pi c. Pai nt += new Pai nt Event Handl er (TPai nt);

Copyright © , 2002 by James W Cooper

}

It is the TPaint method in this class that actually draws the triangles, by calling
each Triangle' s draw method.
private void TPaint (object sender,

Syst em W ndows. For ns. Pai nt Event Args e) {
Graphics g = e. Gaphi cs;

for (int i =0; i< triangles.Count ; i++) {
Triangle t = (Triangle)triangles[i];
t.draw(g);

}

A standard triangle and an isosceles triangle are shown in Figure 30-2.

RI=TES

Figure 30-2 — A standard triangle and an isoscelestriangle

Templates and Callbacks

Design Patterns points out that Templates can exemplify the “Hollywood
Principle,” or “Don’'t call us, we'll call you.” The idea here is that methods

Copyright © , 2002 by James W Cooper

407

in the base class seem to call methods in the derived classes. The operative
word here is seem. If we consider the draw code in our base Triangle
class, we see that there are three method calls.

g. DrawLi ne (pen, pl, p2);

Poi nt ¢ = draw2ndLi ne(g, p2, p3);
closeTriangl e(g, c);

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at al in the base
class, and various derived classes can implement it differently. Since the actua
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

If this idea makes you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class and
that these calls move up the inheritance chain until they find the first class
that implements them. If this class is the base class—fine. If not, it could
be any other class in between. Now, when you call the draw method, the
derived class moves up the inheritance tree until it finds an
implementation of draw. Likewise, for each method called from within
draw, the derived class starts at the current class and moves up the tree to
find each method. When it gets to the draw2ndLine method, it finds it
immediately in the current class. Soitisn't “really” called from the base
class, but it does seem that way.

Summary and Consequences

Template patterns occur al the time in OO software and are neither
complex nor obscure in intent. They are a normal part of OO
programming, and you shouldn’t try to make them into more than they
actually are.

The first significant point is that your base class may only define some of
the methods it will be using, leaving the rest to be implemented in the
derived classes. The second major point is that there may be methods in

Copyright © , 2002 by James W Cooper

408

the base class that call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template
method defines a general agorithm, although the details may not be
worked out completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and they may also have some classes
with asimple “placeholder” implementation that you are free to override
where thisis appropriate. If these placeholder classes are called from
another method in the base class, then we call these overridable methods
“Hook” methods.

Programs on the CD-ROM

\ Tenpl at e\ St r at egy plot strategy using Template
method pattern
\ Tenpl at e\ Tenpl ate plot of triangles

Copyright © , 2002 by James W Cooper

31. The Visitor Pattern

The Visitor pattern turns the tables on our object-oriented model and
creates an externa class to act on data in other classes. Thisis useful when
you have a polymorphic operation that cannot reside in the class hierarchy
for some reason—for example, because the operation wasn't considered
when the hierarchy was designed or it would clutter the interface of the
classes unnecessarily.

M otivation

While at first it may seem “unclean” to put operations inside one class that
should be in arother, there are good reasons for doing so. Suppose each of
anumber of drawing object classes has similar code for drawing itself.
The drawing methods may be different, but they probably al use
underlying utility functions that we might have to duplicatein each class.
Further, a set of closely related functions is scattered throughout a number
of different classes, as shown in Figure 31-1.

DrawOhject
Triangle Circle Rectangle |
draw) draw) draw)

Figure31-1 — A DrawObject and three of its subclasses

Instead, we write a Visitor class that contains al the related draw methods
and have it visit each of the objects in succession (Figure 31-2).

Copyright © , 2002 by James W Cooper

410

DrawOhject
Triangle Circle Rectangle |
accept!) accept]) accept()
I
\ v.accept(hﬂejj/
Visitor Drawer
wrigit]) drawi)
wigit)

Figure31-2 — A Visitor class (Drawer) that visits each of threetriangle classes

The first question that most people ask about this pattern is “What does
visiting mean?’ Thereis only one way that an outside class can gain
access to another class, and that is by calling its public methods. In the
Vigitor case, visiting each class means that you are calling a method
already installed for this purpose, called accept. The accept method has
one argument: the instance of the visitor. In return, it calls the visit method
of the Visitor, passing itself as an argument, as shown in Figure 31-3.

&isited.accept(v)
Visitor _ .V|S|ted
. v.visit(Me) instance

Figure 31-3 - How the visit and accept methods interact

Copyright © , 2002 by James W Cooper

411

Putting it in simple code terms, every object that you want to visit must have the
following method.

public virtual void accept(Visitor v) {
v.visit(this);
}

In thisway, the Visitor object receives a reference to each of the instances, one
by one, and can then cdl its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of coursg, if the class does
not have an accept method, you can subclass it and add one.

When to Usethe Vidgitor Pattern

Y ou should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are aso valuable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add
function to class libraries or frameworks for which you either do not have
the course or cannot change the source for other technical (or political)
reasons. In these latter cases, you simply subclass the classes of the
framework and add the accept_method to each subclass.

On the other hand, as we will see, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code

Let’s consider a ssmple subset of the Employee problem we discussed in
the Composite pattern. We have a smple Employee object that maintains
arecord of the employee' s name, salary, vacation taken, and number of
sick days taken. The following is a simple version of this class.

public class Enpl oyee {
int sickDays, vacDays;
float sal ary;
string nane;
public Enpl oyee(string nane, float salary,
int vDays, int sDays) {
t his. nane = nane;
this.salary = salary;

Copyright © , 2002 by James W Cooper

412

si ckDays = sDays;
vacDays = vDays;

public string getName() ({
return nane;

}
public int getSickDays() {
return sickbDays;

public int getVacDays() {
return vacDays;

public float getSalary() {
return sal ary;
}

public virtual void accept(Visitor v) {
v.visit(this);
}

}

Note that we have included the accept method in this class. Now let's
suppose that we want to prepare a report on the number of vacation days
that all employees have taken so far this year. We could just write some
code in the client to sum the results of calls to each Employee's
getVacDays function, or we could put this function into a Visitor.

Since C# isastrongly typed language, our base Visitor class needs to have
asuitable abstract visit method for each kind of class in your program. In
thisfirst simple example, we only have Employees, so our basic abstract
Vigitor class is just the following.

public abstract class Visitor {

public abstract void visit(Enmployee enp);
public abstract void visit(Boss bos);

}

Notice that there is no indication what the Visitor does with each classin
either the client classes or the abstract Visitor class. We can, in fact, write
awhole lot of visitors that do different things to the classesin our

Copyright © , 2002 by James W Cooper

413

program. The Visitor we are going to write first just sums the vacation
data for all our employees.

public class VacationVisitor : Visitor {
private int total Days;
[]-----
public VacationVisitor() {
total Days = 0;

public int getTotal Days() {
return total Days;

public override void visit(Enpl oyee enp){
t ot al Days += enp. get VacDays ();

public override void visit(Boss bos){
t ot al Days += bos. get VacDays ();
}

Vidgting the Classes
Now al we have to do to compute the total vacation days taken is go

through alist of the employees, visit each of them, and ask the Visitor for
the totdl.

for (int i = 0; i< enpls.Length; i++) {
enpl s[i].accept(vac); /1 get the enpl oyee
}

| sVac. I tens. Add(" Total vacati on days=" +
vac. get Tot al Days() . ToString());

Let’s reiterate what happens for each visit.
1. We move through aloop of al the Employees.
2. TheVisitor cals each Employee’ s accept method.
3. That instance of Employee calls the Visitor’s visit method.

Copyright © , 2002 by James W Cooper

414

4. The Vigtor fetches the vacation days and adds them into the
total.

5. The main program prints out the total when the loop is
complete.

Visiting Several Classes

The Visitor becomes more useful when there are a number of different
classes with different interfaces and we want to encapsulate how we get
data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’s further suppose that
at this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class has a couple of extra methods to set and obtain
the bonus vacation day information.
public class Boss : Enpl oyee {

private int bonusDays;

public Boss(string nanme, float salary,

int vdays, int sdays):
base(nanme, sal ary, vdays, sdays) { }

public void setBonusDays(int bdays) {
bonusDays = bdays;
}

public int getBonusDays() {
return bonusbDays;

public override void accept(Visitor v) {
v.visit(this);
}

}

When we add a class to our program, we have to add it to our Visitor as
well, so that the abstract template for the Visitor is now the following.

public abstract class Visitor {
public abstract void visit(Enployee enp);
public abstract void visit(Boss bos);

Copyright © , 2002 by James W Cooper

415

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee class and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the vigits are now different. We'll write anew bVacationVisitor class
that takes account of this difference.

public class bVacationVisitor :Visitor {
private int total Days;
public bVacationVisitor() {
total Days = O;

public override void visit(Enmployee enp) ({
tot al Days += enp. get VacDays();

try {
Manager nmgr = (Manager)enp;
t ot al Days += ngr. get BonusDays();

}
cat ch(Exception){}

public override void visit(Boss bos) {
t ot al Days += bos. get VacDays();
t ot al Days += bos. get BonusDays();

public int getTotal Days() {
return total Days;
}

}
Note that while in this case Boss is derived from Employee, it need not be

related at al aslong as it has an accept method for the Visitor class. It is
quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this
behavior, since the visit method from the parent class is an Employee
rather than a Boss visit method. Likewise, each of your derived classes
(Boss, Employee, etc.) must have its own accept method rather than
caling onein its parent class. Thisisillustrated in the class diagram in
Figure 31-4.

Copyright © , 2002 by James W Cooper

416

Visitor
Employee
+visit(emp)
+visit(bos) +New
4% +getName
+getSalary
+getSickdays
- L +getVacDays
VacationVisitor +accept
Boss
+New
bVacationVisitor +setBonusDays
+getBonusDays:Integer
+accept

Figure 31-4 — The two visitor classes visiting the Boss and Employee classes

Bosses Are Employees, Too

We show in Figure 31-5 asimple application that carries out both
Employee visits and Boss visits on the collection of Employees and
Bosses. The origina VacationVisitor will just treat Bosses as Employees
and get only their ordinary vacation data. The bVacationVisitor will get
both.

for (int i =0; i< enpls.Length; i++) {
enpl s[i].accept(vac); /1 get the enpl oyee
enmpl s[i].accept (bvac);
}
I svVac. | tens. Add(" Total vacation days=" +
vac. get Tot al Days(). ToString());

| sVac. I tens. Add(" Tot al boss vacati on days=" +

Copyright © , 2002 by James W Cooper

417

bvac. get Tot al Days() . ToString());
The two lines of displayed data represent the two sums that are computed when
the user clicks on the Vacations button.

=

Tatal vacation days=101
Total bosz vacation days=130

Compuite

.

Figure 31-5— A simple application that performs the vacation visits described

Catch-All Operationswith Visitors
In the preceding cases, the Visitor class has a visit method for each
visiting class, such as the following.

public abstract void visit(Enployee enp);
public abstract void visit(Boss bos);

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fal through” to
methods in one of the parent classes where that object type is recognized. This
provides away of specifying default visitor behavior.

Copyright © , 2002 by James W Cooper

418

Now every class must override accept(v) with its own implementation so
the return call v.visit(this) returns an object this of the correct type and not
of the superclass's type.

Let’s suppose that we introduce another layer of management into our
company: the Manager. Managers are subclasses of Employees, and now
they have the privileges formerly reserved for Bosses of extra vacation
days. Bosses now have an additional reward—stock options. Now if we
run the same program to compute vacation days but do not revise our
Visitor to look for Managers, it will recognize them as mere Employees
and count only their regular vacation and not their extra vacation days.
However, the catch-all parent class is a good thing if subclasses may be
added to the application from time to time and you want the visitor
operations to continue to run without modification.

There are three ways to integrate the new Manager class into the visitor
system. Y ou could define a ManagerVisitor or use the BossVisitor to
handle both. However, there could be conditions when continually
modifying the Visitor structure is not desirable. In that case, you could
simply test for this specia case in the EmployeeVisitor class.

public override void visit(Enpl oyee enp) {

tot al Days += enp. get VacDays();

try {
Manager mgr = (Manager)enp;
t ot al Days += ngr. get BonusDays();

cat ch(Exception){}
}

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching special casesin derived classes without writing
whole new visitor program hierarchies. This “catch-al” approach is discussed in
some detail in the book Pattern Hatching (Vlissides 1998).

Copyright © , 2002 by James W Cooper

419

DoubleDispatching

No discussion on the Visitor pattern is complete without mentioning that
you are really dispatching a method twice for the Visitor to work. The
Visitor calls the polymorphic accept method of a given object, and the
accept method calls the polymorphic visit method of the Visitor. It isthis
bidirectional calling that allows you to add more operations on any class
that has an accept method, since each new Visitor class we write can carry
out whatever operations we might think of using the data available in these
classes.

Why AreWe Doing This?

You may be asking your self why we are jJumping through these hoops
when we could call the getVacationDays methods directly. By using this
“callback” approach, we are implementing “double dispatching.” Thereis
no requirement that the objects we visit be of the same or even of related
types. Further, using this callback approach, you can have a different visit
method called in the Visitor, depending on the actual type of class. Thisis
harder to implement directly.

Further, if the list of objects to be visited in an ArrayList is acollection of
different types, having different versions of the visit methods in the actual
Visitor is the only way to handle the problem without specifically
checking the type of each class.

Traversing a Seriesof Classes

The calling program that passes the class instances to the Visitor must
know about al the existing instances of classes to be visited and must
keep them in a simple structure such as an array or collection. Another
possibility would be to create an Enumeration of these classes and pass it
to the Visitor. Finally, the Visitor itself could keep the list of objects that it
isto visit. In our simple example program, we used an array of objects, but
any of the other methods would work equally well.

Copyright © , 2002 by James W Cooper

420

Conseguences of the Vigtor Pattern

The Visitor pattern is useful when you want to encapsulate fetching data
from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that aVisitor can add functionality to a
collection of classes and encapsulate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from
classes. It is limited to the data available from public methods. This might
force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of
unrelated classes and utilize it to present the results of a global calculation
to the user program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individual classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Visitors are less helpful during a program’s growth stage, since each time
you add new classes that must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an
implementation for that class to each concrete Visitor you have written.
Visitors can be powerful additions when the program reaches the point
where many new classes are unlikely.

Visitors can be used very effectively in Composite systems, and the boss-
employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

Thought Question

An investment firm’s customer records consist of an object for each stock
or other financial instrument each investor owns. The object contains a
history of the purchase, sale, and dividend activities for that stock. Design

Copyright © , 2002 by James W Cooper

421

a Visitor pattern to report on net end-of-year profit or loss on stocks sold

during the year.

Programs on the CD-ROM

\Visitor\

Vigitor example

Copyright © , 2002 by James W Cooper

32. Bibliography

422

Copyright © , 2002 by James W Cooper

423

Alexander, Christopher, Ishikawa, Sara, €t. al. A Pattern Language, Oxford University
Press, New York, 1977.

Alpert, S. R., Brown, K., and Woolf, B. The Design Patterns Smalltalk Companion,
AddisonWesley, Reading, MA, 1998.

Arnold, K., and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1997.

Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Language User Guide,
AddisonWesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., ard Stal, M. A System of
Patterns, John Wiley and Sons, New Y ork, 1996.

Cooper, J. W. Java Design Patterns: A Tutorial. AddisonWesley, Reading, MA, 2000.

Cooper, J. W. Principles of Object-Oriented Programming in Java 1.1 Coriolis
(Ventana), 1997.

Cooper, JW. Visual Basic Design Patterns. VB6 and VB.NET, AddisonWesley, Boston,
MA, 2001.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley,
Reading, MA, 1992.

Coplien, James O., and Schmidt, Douglas C. Pattern Languages of Program Design,
Addison-Wesley, Reading, MA, 1995.

Fowler, Martin, with Kendall Scott. UML Distilled, Addison-Wesley, Reading, MA,
1997.

Gamma, E., Helm, T., Johnson, R., and Vlissides, J. Design Patterns: Abstraction and
Reuse of Object Oriented Design. Proceedings of ECOOP ' 93, 405—431.

Gamma, Eric, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns.
Elements of Reusable Software, AddisonWedey, Reading, MA, 1995.

Grand, Mark Patternsin Java, Volume 1, John Wiley & Sons, New Y ork 1998.

Krasner, G.E. and Pope, S.T. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programmng 1(3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal,
June, 1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison
Wedley, 1994,

Riel, Arthur J., Object-Oriented Design Heuristics, AddisonrWedley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesey, Reading,
MA, 1998

Copyright © , 2002 by James W Cooper

424

Copyright © , 2002 by James W Cooper

