











#### THE

## DETERMINATION

OF

# ROCK-FORMING MINERALS.

BY

## DR. EUGEN HUSSAK,

PRIVAT-DOCENT IN THE UNIVERSITY OF GRAZ.

WITH ONE HUNDRED AND THREE WOODCUTS.

## AUTHORIZED TRANSLATION FROM THE FIRST GERMAN EDITION

BY

## ERASTUS G. SMITH, PH.D.,

PROFESSOR OF CHEMISTRY AND MINERALOGY, BELOIT COLLEGE,

NEW YORK: JOHN WILEY & SONS. 1886.

## QE367 H8

EARTH SCIENCES LIBRARY

Copyright, 1885, by 344303 John Wiley & Sons.

.

## PREFACE TO THE FIRST ENGLISH TRANSLATION.

THE following authorized translation of Dr. Hussak's work was undertaken with the view of supplying a want felt in our colleges and universities. Though great progress has been made in the sciences of mineralogy and lithology in later years, through the study of the optical and the other physical properties of minerals, few attempts have been made to condense the exhaustive and original articles scattered through the scientific periodicals and State and national publications, and to put them in suitable shape for use in the laboratory and the class-room. It has been the aim, therefore, to place before the American student a practical work which shall describe the methods and exhibit the results of such investigations.

The translation of a technical work of this character is beset with difficulties appreciable only by those who have undertaken a similar task. Few liberties have been taken with the text, and the attempt has been made to reproduce the original literally so far as possible; at points, however, in order to convey clearly the author's meaning, some recasting of sentences was unavoidable.

#### iv PREFACE TO THE FIRST ENGLISH TRANSLATION.

The translator will consider it a great favor if any errors noticed either in statement or in translation are communicated to him, in order that they may be eliminated in future editions.

I would express my thanks to Dr. George Williams of Baltimore for several such corrections to the original text already received and incorporated in the translation.

ERASTUS G. SMITH.

BELOIT COLLEGE, BELOIT, WISCONSIN, October, 1885.

## PREFACE.

As the following Manual is designed especially for the use of students, the cost of the work demanded as much abridgment as possible. For this reason much of the knowledge of minerals which belongs to mineralogy proper is passed over, and in the bibliography of Part II. only those works are cited which contain detailed communications concerning the microscopical properties of the rock-forming minerals.

I must, at this time, express my gratitude to Professor Dr. F. Zirkel for his many friendly suggestions; nor am I under less obligations to Professor F. Fouqué, who has most courteously allowed the reproduction of a large number of figures from his well-known work, "Minéralogie Micrographique."

EUGEN HUSSAK.

GRAZ, November, 1884.



## TABLE OF CONTENTS.

## PART I.

## METHODS OF INVESTIGATION.

|                                                                        | AGE |
|------------------------------------------------------------------------|-----|
| Preparation of Microscopical Sections                                  | 3   |
| The Microscope provided with Polarization Apparatus suitable for Mine- |     |
| ralogical and Petrographical Investigation                             | 7   |
| A. Optical Methods of Investigation                                    | 16  |
| I. Examination of Mineral Cross-sections in Parallel Polarized         |     |
| Light                                                                  | 16  |
| I. Single refracting Minerals                                          | 17  |
| II. Double-refracting Minerals                                         | 17  |
| 2. Examination of Minerals in Convergent Polarized Light               | 29  |
| 3. Behavior of Twinned Crystals in Polarized Light                     | 37  |
| Twins of the Regular System                                            | 37  |
| Twins of the Tetragonal and Hexagonal Systems                          | 38  |
| Twins of the Rhombic System                                            | 39  |
| Twins of the Monoclinic System                                         | 40  |
| Twins of the Triclinic System                                          | 43  |
| 4. Determination of the Index of Refraction                            | 44  |
| 5. Pleochroism of Double-refracting Minerals                           | 45  |
| Determination of the Axial Colors                                      | 45  |
| B. Chemical Methods of Investigation                                   | 50  |
| Microchemical Methods                                                  | 51  |
| a. Bořicky's Microchemical Method                                      | 55  |
| b. Behrens's Microchemical Method                                      | 59  |
| C. Mechanical Separation of the Rock-forming Minerals                  | 66  |
| I. Separation with the Solution of the Iodides of Potassium and        |     |
| Mercury                                                                | 67  |
| II. Klein's Solution                                                   | 73  |
| III. Rohrbach's Solution of the Iodides of Barium and Mercury          | 75  |
| IV. Methods of Separation based on the Different Action of Acids       |     |
| on Minerals                                                            | 76  |
| V. Separation of the Rock-constituents by means of the Electro-        |     |
| magnet                                                                 | 79  |

### TABLE OF CONTENTS.

| D. Explanations of the Tables relating to the Morphological Properties | s of  |     |
|------------------------------------------------------------------------|-------|-----|
|                                                                        |       | 0   |
| the Rock forming Minerals                                              |       | 81  |
| I. Mode of Occurrence of the Rock-constituents                         |       | 81  |
| II. Structure of the Rock-forming Minerals                             |       | 87  |
| Shell-formed Structure of Crystals                                     |       | 90  |
| Interpenetration of the Rock-constituents                              |       | 93  |
| III. Inclosures of the Rock-forming Minerals                           |       | 93  |
| Gas pores                                                              | • • • | 94  |
| Fluid Inclosures                                                       |       | 95  |
| Inclosures of Vitreous Particles                                       |       | 97  |
| Inclosures of Foreign Minerals                                         |       | 99  |
| IV. Decomposition of the Rock-constituents                             |       | IOI |

## PART II.

## TABLES FOR DETERMINING MINERALS.

| Table for Determining the System of Crystallization of the Rock-forming |     |
|-------------------------------------------------------------------------|-----|
| Minerals                                                                | 106 |
| A. Even in the thinnest Sections of Opaque Minerals                     | 108 |
| B. Minerals Transparent in Thin Sections                                | 112 |
| I. Single refracting Minerals                                           | 112 |
| a. Amorphous Minerals                                                   | 112 |
| b. Minerals Crystallizing in the Regular System                         | 114 |
| II. Double-refracting Minerals                                          | 122 |
| a. Optically Uniaxial Minerals                                          | 122 |
| I. Minerals Crystallizing in the Tetragonal System                      | 122 |
| $\alpha$ . Double-refraction Positive                                   | 122 |
| $\beta$ . Double-refraction Negative                                    | 124 |
| 2. Minerals Crystallizing in the Hexagonal System                       | 128 |
| $\alpha$ . Double refraction Positive                                   | 128 |
| $\beta$ . Double-refraction Negative                                    | 132 |
| b. Optically Biaxial Minerals                                           | 140 |
| I. Minerals Crystallizing in the Rhombic System                         | 140 |
| 2. Minerals Crystalling in the Monoclinic System                        | 156 |
| 3. Minerals Crystallizing in the Triclinic System                       | 178 |
| C. Aggregates                                                           | 189 |
|                                                                         |     |
| Bibliography                                                            | 197 |
| Explanation of Cuts accompanying Part II                                | 215 |
| Cuts accompanying Part II                                               | 219 |
| Index                                                                   | 229 |

## ON THE DETERMINATION OF ROCK-FORMING MINERALS.

## PART I.

## METHODS OF INVESTIGATION.

- F. ZIRKEL. Die mikroskopische Beschaffenheit der Mineralien und Gesteine. Leipzig, 1873.
- H. ROSENBUSCH. Mikroskopische Physiographie der petrographisch wichtigsten Mineralien. Stuttgart, 1873.
- FOUQUÉ ET MICHEL LÉVY. Minéralogie micrographique. Paris, 1878.
- E. COHEN. Zusammenstellung petrographischer Untersuchungsmethoden. Strassburg, 1884.

THERE are two methods of examining rocks, the macroscopical and the microscopical.

In the macroscopical investigation of rocks those parts of the mineral mixture discernible with the naked eye can be studied with reference to crystalline form, cleavage, color, lustre, streak, hardness, solubility in acids, etc. For the more exact optical investigation, however, cleavage sections exactly oriented must be obtained, the cleavage angle, when possible, measured in order to determine the plane of cleavage, and the section, if not already transparent, ground thin. Such an investigation of the rock-forming minerals leads in most cases to the goal, provided the particles have a certain magnitude, at least 1-2 mm. Isolated particles of minerals can be examined before the blow-pipe; yet, because of their minuteness, such a purely macroscopical examination is insufficient in most cases. This is especially true in porphyritic or very fine-grained rocks, and therefore for these rocks the microscopical examination is employed. It is necessary in such a case that the pieces of rock under examination shall be ground into thin transparent leaves. In such sections the single constituents are cut in most varied directions. By these minute cross-sections the crystals and the rock-forming minerals can be determined by optical methods with the polarization-microscope, and by combination of the optical with the crystallographical properties, i.e., with the form of the cross-section, i.e., crystalline form, and cleavage.

This determination is more difficult if the minerals occur only as grains. Of course here also the human eye has its limitations: if the separate particles are so minute that they cannot be observed in section, i.e., afford no cross-sections; or, when examined under the highest possible magnifying power, they give no figures suitable—i.e., large enough—for optical study, their determination by the polarization-microscope is impossible.

In the following pages is given a description of the method of producing preparations from rocks suitable for microscopical study; of the application of the polarization-microscope adapted to the complete exposition of the optical and chemical methods of determination; then follows the discussion of the mechanical separation of the rock-constituents according to their specific gravity and by the electro-magnet; and, finally, a short chapter on the structure of the rock-forming minerals and a systematic survey of them. METHODS OF INVESTIGATION.

CALIFORN

## The Preparation of Microscopical Sections.

In order to prepare a thin section from a rock, either a suitable tablet is cut with a section-cutter from the rock, or a convenient fragment, about 2 ccm. large, is broken off with a hammer, and as even a face as possible is ground, using either an emery-disk of a section-grinder or grinding by hand on an iron plate with coarse emery-powder and water. The size of the emery used depends entirely upon the hardness of the rock. Evenness of the emery-powder, and an iron plate as smooth as possible and free from furrows, are chief factors in obtaining an even surface on the ground fragment.

If the face is sufficiently even, it is polished on a glass plate with fine floated emery, or emery-flour, and water. The fragment is then cemented by this face with boiled Canada balsam to an ordinary glass plate (preferably one that is quadratic) somewhat larger than the fragment, and rather thick, so that it can be better grasped.

Certain precautionary measures must be observed. The fragment must be first well cleaned and dried, the Canada balsam sufficiently heated, boiled neither too much nor too little, so that the emery-powder may not become distributed through it or the balsam crack off from the glass. The balsam may be boiled over an alcohol-lamp, either in an iron spoon or directly on the object-glass. Care must be taken that the balsam does not inflame. It is impossible to state the exact instant when the balsam is sufficiently boiled, as this depends on its state of dilution and must be determined by several experiments. The balsam is sufficiently boiled if, after it has already begun to fume rather strongly, large bubbles rise from the bottom, or the balsam begins to evaporate from the edges of the glass plate. The boiling of the balsam is conducted most safely in an oven with thermometer attachment, such as are sold by Fuess of Berlin. If the balsam has been boiled in an iron spoon, a small portion is placed on an object-glass, and this gently warmed until the balsam becomes a thin liquid.

The evenly-ground rock-section is firmly pressed into the boiled, still fluid, balsam, with the plane surface downward. In the operation care must be taken that no bubbles of air remain between the rock and glass, as often happens when the surface ground on the rock is not perfectly even. The plate thus prepared is allowed to thoroughly cool. If the balsam on the plate about the rock-tablet receives no impression, or appears free from fissures, it is sufficiently boiled.

The natural surface of the rock-fragment is next ground with coarse emery-powder. This is continued until the larger mineral particles or even the plate itself begins to be translucent, i.e., until the thickness is about 1-I mm. Here, again, care must be exercised that the surface is as even as possible, and that the Canada balsam surrounding and protecting the plate is not completely cut away. The grinding, as before, is continued on glass plates with fine emery, and finally with emery flour, until the tablet of rock becomes perfectly transparent. It is then cleaned from the emery, the surrounding Canada balsam is carefully scratched away, and is then dried. For the final preparation a better object-glass is selected, one well polished and freed from dust-particles or clinging threads, dried, and a larger drop of Canada balsam placed upon it. The balsam may be boiled directly on the object-glass or in a spoon, and then transferred as in the previous case.

The thin rock-tablet, to which another small drop of balsam has been added, is made movable by carefully and gently heating the object-glass, and with a pointed bit of wood is pushed over on to this second glass, which in turn is gently warmed so that the balsam again becomes mobile and surrounds the rock-section on every side; the covering-glass, of course previously cleaned and warmed, is laid upon and carefully pressed down upon the rock-section so that the excess of balsam and the air-bubbles escape. The preparation is allowed to cool slowly until the balsam has solidified, and is then cleaned by carefully scratching away the excess of balsam with a knife and washing with alcohol.

As by scratching away the balsam the covering-glass is often liable to break away, owing to the overheating of the balsam, it is advisable to shave away the balsam with a warmed knife, and then wash the preparation with alcohol.

Many rocks, especially those of a coarse granular structure, exceedingly porous or decomposed, cannot thus be transferred, and are shattered in the preparation. Sections from such rocks therefore must be placed on a better object-glass at once, and, after they are ground thin, must be finished on this same glass by pouring boiling balsam on the dried and cleaned section, and the rapid laying on and gentle pressing down of the covering-glass. Here care must be taken neither to warm the object-glass a second time, nor to press down the coveringglass too firmly, as in either case the section is often broken; it is therefore necessary to finish the preparation as rapidly as possible in order that the balsam upon the glass may not cool and thus necessitate a second warming.

Such rocks as pumice-stone which are exceedingly porous or full of cavities, or of a drossy character, or friable and fragile, as tufa, must be boiled in Canada balsam first, to make possible the grinding of a plane surface, as the balsam forcing its way into the cavities, and becoming solid on cooling, imparts to the whole a greater degree of consistency. Such thin sections must of course be finished according to the method last described, upon the same object-glass on which it was ground.

Sections easily shattered may be prepared most safely by Canada balsam dissolved in ether or chloroform. The preparation must not be heated, and must be allowed to dry very slowly. It is advisable to use rather more balsam than is ordinarily taken, as in the process of drying, i.e., the evaporation of the ether, air-bubbles may enter the balsam beneath the covering-glass. It is also advisable to avoid spotting the covering-glass with balsam, as cleaning the preparation cannot be undertaken for several weeks, until after the balsam is completely dried.

Thoulet has described a method of cutting isolated mineral particles, sand, etc.

The powder to be examined is mixed with about ten times its volume of zinc oxide, and the mixture is rubbed up to a thick mud with potassium silicate (soluble glass). This is then pressed into a mould conveniently made from a short piece of thick glass tubing, placed on an object-glass, and allowed to stand several days and harden. When thoroughly dried, the mass is easily slipped from the glass, is solid, and can be worked into a thin section exactly as any rock fragment.

In order to grind friable rocks, or those become rotten through advanced decomposition, according to A. Wichmann (Tschermak's Min. u. petr. Mitth. V, 1882, 33) the best course is the following: The fragment broken away is first shaved on one side as even as possible with a knife, and this is polished on a dry glass plate; the fragment is then cemented to the plate with Canada balsam, previously cooled so that the rock may not be further changed by its high temperature, and again shaved on the opposite side until as thin a section as possible remains, which is finally prepared with Canada balsam dissolved in ether.

#### The Material for the Preparations.

The emery should be as pure as possible, i.e., unadulterated and rich in corundum, the size of the coarser granules about 0.3-0.5 mm.; the fine emery should be like flour. The coarser variety is known as "No. 70," the fine variety as "emery flour."

The Canada balsam should be clear and rather liquid.

The object-glasses are not generally more than 18 mm. square.

Labels for microscopical preparations are to be had in book-form.

Thin rock-sections are prepared by Fuess, Berlin, S. W., Alte Jakobstrasse, 108, and by Voigt & Hochgesang, Göttingen; large collections, also, of thin sections, systematically arranged, can be obtained from the same firms. Both houses supply excellent microscopes especially adapted to mineralogicopetrographical investigations.

- The Microscope provided with Polarization Apparatus suitable for Mineralogical and Petrographical Investigation. (Also often called the "polarization-microscope.")
- TH. LIEBISCH. Bericht über die wissenschaftlichen Instrumente auf der Berliner Gewerbeausstellung. Berlin, 1879, p. 342.

H. ROSENBUSCH. N. Jahrb. f. Miner. u. Geol. 1876, p. 504.

Ueber die Anwendung der Condensorlinse bei Untersuchungen im convergentpolarisirten Lichte:

v. LASAULX. N. Jahrb. f. Miner. u. Geol. 1878, p. 377.

- E. BERTRAND. Société minéralogique de France. 1878, 9 Mai p. 22 and 14 Nov. p. 96.
- C. KLEIN. Nachr. d. k. Ges. d. Wissensch. z. Göttingen. 1878, p. 461. Ueber stauroskopische Methoden:

H. LASPEYRES. Groth's Zeitschr. f. Krystallographie, VI. Bd. p. 429.

L. CALDERON. Groth's Zeitschr. f. Krystallographie, II. Bd. p. 68.

The completely equipped polarization-microscope (Figs. 1 and 2) differs from the ordinary microscope by (1) the presence of a graduated object-stage revolving horizontally (Fig. 1, c), with vernier attachment suitable for the determination of the directions of extinction, measurement of angles, etc.; (2) two Nicol's prisms (Fig. 2, ss and rr) for investigations in parallel polarized light; (3) a condenser (Fig. 2, TT) for investigations in converging polarized light; (4) a plate of quartz (Fig. 2, ZZ) for determining feebly double-refracting minerals, which is cut perpendicular to the chief axis, has parallel planes, and can be introduced over the objective by

a slit (Fig. 2, tt); (5) a calcite plate for stauroscopic investigations cut perpendicular to the chief axis, with parallel planes —that is, a Calderon's double-plate (Fig. 2, c) or a Brezina's calcite plate set in an ocular; (6) a fourth undulation mica plate and a Dove's quartz compensation-plate, i.e., a thin wedge of quartz for the determination of the character of the double-refraction, which either enters or is just below the analyzer; and finally (7) an apparatus for centring the object-stage (Fig. 1, m and n; Fig. 2, N, nn, mm), and various minor pieces of apparatus, as the cross-threads in the ocular, an ocular- and stage-micrometer, blende (Fig. 2, dd) for investigations in converging polarized light, the graduation of the head of the micrometer-screw and of the plate on the stage.

For mineralogico-optical investigations one Nicol's prism, the polarizer (Fig. 2, rr), is fixedly adjusted beneath the stage and above the reflector; and the second, the analyzer (Fig. 2, ss), is graduated and is above the ocular. For investigations in parallel polarized light it is very convenient if the polarizer is fixed in such a position that the directions of vibration of both nicols are at right angles to each other, i.e., the nicols are crossed when the zero-point of the analyzer coincides with a mark on the tube, and at the same time the ocular with its cross-threads so adjusted in the tube that the arms of the cross-threads are exactly parallel with the directions of vibration of both nicols.

If this is not the case, the nicols must always first be crossed by turning the analyzer until complete darkness occurs and this position of the analyzer is noted. Moreover, the arms of the cross-threads must be parallel to the nicol chief sections. This may be done in the following manner: We place on the stage of the microscope, and between the crossed nicols, an object-slide to which is firmly cemented either a small quartzcrystal or a rock-section containing a longitudinal section of an apatite crystal, and turn the stage until the quartz or the

## METHODS OF INVESTIGATION.



FIG. 1.-POLARIZATION-MICROSCOPE, BY R. FUESS. (New model.)

#### IO DETERMINATION OF ROCK-FORMING MINERALS.

apatite crystal is completely darkened. The analyzer is now removed from the ocular, and the ocular is revolved until one arm of the cross-threads within the ocular is exactly parallel to the prismatic edge of the quartz crystal or the longitudinal edge of the apatite needle. In order to determine the directions of extinction in minerals, care must be taken that the ocular carrying the cross threads, when correctly placed in the manner described, is not displaced, as can easily occur in removing the analyzer.

The **Condenser** (the Lasaulx-Bertrand lens) for producing converging polarized light in the microscope is formed from two plano-convex lenses. One of these is screwed directly above the polarizer, and the second, in a suitable setting, laid upon the first (Fig. 2, TT). In investigations in convergent light, the ocular is removed and the nicols crossed. Objective 7 and ocular 3, Hartnack, is the best combination, though a more acute objective system can often be advantageously employed. In examining very diminutive crystalline cross-sections, a blende (Fig. 2, dd) is placed above the analyzer for the purpose of isolating the cross-section to be examined. The Bertrand lens can be inserted within the tube in place of the ocular (removed for the purpose), should an enlargement of the interference-figures be required.

The **Biot-Klein's Quartz Plate** (Fig. 2, ZZ), about 2 mm. thick, with parallel planes cut perpendicular to the optic axis, and brass-mounted, is introduced through a suitable opening directly above the objective (Fig. 2, tt). In order to use this quartz plate in examining feebly-refracting minerals or those of marked zonal structure, the upper nicol is revolved, after the quartz plate is introduced and the polarizer, objective, and ocular are in suitable positions, until the extremely sensitive red (the so-called "*teinte-sensible*") of the circular polarizing quartz appears. The mineral to be examined is then placed beneath the objective.





## 12 DETERMINATION OF ROCK-FORMING MINERALS.

Minerals with feeble double-refraction, as leucite, or those showing optic anomalies, as garnet, will induce a change of color.

The quartz plate is also applied to the more exact determination of the position of the directions of vibration, as all double-refracting minerals undergo a change of color, and this remains unchanged only in isotropic sections or when an axis of elasticity coincides with a nicol chief section.

The **Calcite Plate**, about 2 mm. thick, with parallel planes, and cut perpendicular to the optic axis, is set in a cork ring, and when in use is laid between the ocular and the analyzer. The nicols are crossed, and the interference-figures of the calcite plate then appear on the section under examination. The arms of the cross-threads must again coincide with the arms of the interference-cross of the calcite plate. More exact stauroscopic investigations cannot be undertaken with this plate except on the larger mineral sections.

For the microstauroscopical measurements the **Calderon Double-plate** (Fig. 2, c) is peculiarly adapted. This is made from a twin of calcite artificially formed (Fig. 3, *abcdef*) by



CALDERON DOUBLE-PLATE.

cutting a rhombohedron through the short diagonals, grinding away a wedge-shaped portion from either half, and again cementing the polished surfaces. If the projecting and reentrant angle of the twin thus formed be ground away, a plane plate xyvw is obtained, divided

by the plane separating the two pieces of calcite c, d. This plane appears from above as an extremely fine straight line. This double-plate is so mounted in one of the oculars that the boundary-line of the plate is parallel to the chief section of a nicol; i.e., that both halves between crossed nicols show the same degree of extinction.

A Fourth Undulation Mica Plate is employed to determine the character of the double-refraction in uniaxial minerals; in biaxial minerals, either a plate of quartz about 2 mm. thick and cut perpendicular to the optic axis, or a wedge of quartz with one plane parallel to the optic axis and the other inclined at an angle of about  $5^{\circ}$ , is used.

In making use of the interference-figures obtained with the condenser, to determine the character of the double-refraction in optically-uniaxial minerals, the mica plate is laid on the tube so that the plane of the optic axis of the mica, generally indicated by a mark on the setting, makes an angle of  $45^{\circ}$  with the planes of vibration of the nicols.

In investigating optically-biaxial minerals the quartz wedge is inserted by an opening in the analyzer so that the chief axis of the quartz forms an angle of  $45^{\circ}$  with the plane of vibration of the analyzer. The interference-figures of the mineral under examination are brought, by revolving the stage, into such a position that the plane of the optic axis is at first parallel and then perpendicular to the chief axis of the quartz wedge.

If but a single quartz plate cut perpendicular to the optic axis is at hand, the analyzer must be raised with one hand from the tube of the microscope, from which the ocular is removed, so that the quartz plate can be used beneath it, care being taken that both nicols remain exactly crossed. Then with the other hand the quartz plate is turned a little about a horizontal axis so that the rays of light must pass through a thicker layer of quartz, and so that the axis of revolution is at first parallel to the plane of the optic axis of the mineral and afterwards perpendicular to it.

In order to **Centre** exactly any particular point of an object under examination, and revolve about its own centre, so often necessary in the measurement of angles especially, either the revolving-stage can be moved in two directions at right angles to each other (Fig. 1, m, n), or the tube acting within a socket can be moved by two screws (Fig. 2, mm, nn). There must be

### 14 DETERMINATION OF ROCK-FORMING MINERALS.

a new centring of the stage or tube for each combination of ocular and objective.

If the stage can be centred, one of the centring-screws (Fig. 1, m) can serve at the same time as **Micrometer**. Each revolution of this screw, the total number being read off from a circle (p) placed beside it, corresponds of course to a definite magnitude of displacement of the stage, that is, of the object lying upon it; e.g., in the new microscope made by Fuess, one interval of the micrometer-screw corresponds to a horizontal movement of the stage of 0.002 mm. An ocular-micrometer often accompanies the microscopes instead of this stage-micrometer. Such a micrometer is made of glass, circular and fitted to the ocular, with a fine millimetre-scale engraved on it.

The method of Duc de Chaulnes is best adapted to determine the thickness of thin sections, i.e., the **Index of Refraction**, in sections of minerals with parallel plane surfaces. The micrometer-screw (Fig. 2, g) moving the tube in a vertical direction has a graduated circle attached, from which the revolutions of the screw, and therefore the extent of vertical movement of the tube, can be read. In Fuess's instrument, already mentioned, the tube micrometer-screw is divided into 500 degrees, each of which corresponds to a vertical movement of 0.001 mm.

The index of refraction is determined according to the formula  $n = \frac{d}{d-r}$ , where d represents the thickness of the mineral leaflet, and r the movement of the tube which is necessary to see a point as clearly through the plate after it is introduced as before its introduction.

In order to easily find a second time such places on the preparation as may be desired, two scales are placed at right angles to each other on the stage (Fig. 1, c), which run from the centre of the circular stage towards the 0° and 90° points of the outer graduation of the same and are graduated into whole or half millimetres. Then it is only necessary to place

the object-slide upon the stage so that it lies directly over the two scales with two of its sides parallel to the marks of graduation. By noting the numbers of these marks of graduation, the position of the preparation as to right and left is fixed. Should the object-glass be laid a second time on the stage in the same position, the desired point will fall within the field.

Finally, those microscopes manufactured by Fuess or by Voigt & Hochgesang are supplied with a **Heating-stage**, with thermometer attached, to be placed upon the circular revolvingstage. This can be heated by an alcohol-flame placed within a mica chimney, and often does good service, e.g., in determining the fluid inclosures in minerals.

Different blendes are also added, suitable for placing either upon the ocular, i.e., the analyzer, or of introduction in place of the polarizer.

A heating-apparatus far more to the purpose than the one just mentioned, and first suggested by Max Schultze, is described by Vogelsang (Poggend, Ann. CXXXVII, p. 58). In it the object is warmed by a platinum wire heated by means of a galvanic current. With such an instrument a temperature of 200° C. can easily be attained, the rapidity of changes of temperature regulated, and any degree of heat once reached continued quite constant.

The number of different ocular- and objective-lenses by whose combination the object can undergo a varying enlargement is a matter of choice. In mineralogico-petrographical investigations, oculars 1, 2, 3, 4 and objectives 3, 5, 7, 9 of Hartnack's system generally suffice. These are usually considered as the best, and are supplied with the Fuess instrument as described.

## A. Optical Methods of Investigations.

## I. EXAMINATION OF MINERAL CROSS-SECTIONS IN PARAL-LEL POLARIZED LIGHT.

ROSENBUSCH. Mikr. Physiographie, etc., p. 55-107. GROTH. Physikalische Krystallographie. Leipzig, 1876. E. KALKOWSKY. Gr. Zeitschrift f. Kryst., IX, 486

For observations in parallel polarized light both nicols are exactly crossed; the short diagonals corresponding to the direction of vibration in the nicols are thus perpendicular to each other, total darkness of the field following; the ocular and objective for the desired magnifying power are inserted in the tube, and the cross-section to be examined is so placed that on revolving the stage it remains within the field, and its behavior in polarized light throughout a total revolution of the stage noted. The gathering-lens, or condenser, above the polarizer inducing converging polarized light can be left *in situ*, as it does not impede the investigations because a withdrawal of the ocular is unnecessary.

As is well known, a discrimination is made between singleand double-refracting minerals; the amorphous minerals and those crystallizing in the regular system belonging to the first class. The double-refracting minerals are further distinguished according to the number of the optic axes and of the axes of elasticity as *optically-uniaxial* and *optically-biaxial* minerals. Those minerals crystallizing in the tetragonal and hexagonal systems belong to the optically-uniaxial, and those in the rhombic, monoclinic, and triclinic systems to the opticallybiaxial minerals.

In the following pages the behavior of the minerals as regards the different systems of crystallization to which they belong will be discussed.

## I. Single-Refracting Minerals.

Amorphous and Regular.—If such a mineral is placed under the microscope with crossed nicols, all of its cross-sections remain perfectly dark throughout a complete revolution of the stage; i.e., they are isotrope.

The darkness of the field induced by crossing the nicols is not changed by introducing a section of an amorphous or regularly crystallizing mineral, because isotrope bodies cause no change in the direction of vibration of the penetrating light, and the elasticity of the ether in such bodies is equal in every direction. The index of refraction n is constant for all directions.

In the stauroscope, with the calcite plate, no change of the interference-figures occurs during a complete horizontal revolution, nor any change in the shading of either half of the Calderon double-plate; as they remain equally dark, the separating-line is invisible.

A series of amorphous and regular minerals, including opal, garnet, analcine, perowskite, which occasionally appear as rockconstituents, show often optical anomalies, in that thin sections of them in parallel polarized light often brighten on revolving the stage. The reason for these phenomena lies probably in the internal tension produced during the growth of the crystal; a detailed zonal structure is generally noticeable in such optical anomalies.

## II. Double-Refracting Minerals.

A mineral is double-refracting when a part of its crosssection exhibits color-phenomena during a complete revolution in parallel polarized light, i.e., shows *polarization-colors*. Such cross-sections become four times colored and dark, the latter always occurring in turning from 90° to 90°; i.e., it extinguishes the ray so soon as one axis of elasticity coincides with a chief section of a nicol. The double-refraction depends upon the difference of the elasticity of the ether according to definite directions within these minerals. The color-phenomena are a consequence of the interference of the light-rays caused by the double-refraction, and depend upon the magnitude of the index of refraction, the direction of the section, and the thickness of the mineral leaflet.

By uniaxial minerals, embracing the tetragonal and hexagonal systems, are understood those in which the elasticity of the ether differs in two directions, parallel or perpendicular to the chief axis. Here a = the axis of greatest elasticity, and c the least; and there is but one direction where no doublerefraction occurs, viz., in the direction of the optic axis, which coincides with the chief axis. The index of refraction of the ordinary ray  $(= \omega)$  vibrating perpendicularly to the optical chief section (i.e., that plane which is parallel to the optic axis and perpendicular to the entering face of the light) differs from that  $(= \varepsilon)$  of the extraordinary ray vibrating in the optical chief section. If the chief axis, i.e. the optic axis, coincides with the axis of greatest elasticity, c = a, and  $\omega > \varepsilon$ , and the mineral is negative; if c = c and  $\omega < \varepsilon$ , the mineral is positive. The greater the difference between the indices of refraction, the more powerful is the double-refraction of the mineral.

A section of a tetragonal or hexagonal mineral, cut perpendicular to the chief axis and parallel to oP, appears isotrope in parallel polarized light throughout a complete horizontal revolution, and as one of the single-refracting minerals; i.e., it remains perfectly darkened. Sections parallel to the chief axis and one of the prismatic faces are generally rectangular, and between the crossed nicols are always dark when one of the sides of the rectangle, i.e., one of the planes of cleavage parallel to the chief axis, is parallel to one of the chief sections of a nicol or an arm of the cross-wires. This occurs four times during one complete revolution. The longitudinal section is then said to EXTINGUISH PARALLEL to the crystallographic axes.

Fig. 4 gives a clear idea of this parallel extinction in an optically-uniaxial mineral cross-section abcd. c is the chief

axis, and vw and xy are the crosssections of both crossed nicols, whose optical chief sections coincide with the short diagonals of the rhombic transverse section.

So soon as the chief axis, i.e., one of the sides, forms any angle with the nicol chief section and the cross-wires, the longitudinal section shows the polarization-colors. Sections inclined to the chief





axis, e.g., parallel to a pyramidal plane, of course always extinguish parallel to the chief axis, but not always parallel to the sides. Thus a triangular or pentagonal cross-section extinguishes parallel to one of the sides, as the chief axis in such sections is perpendicular to the direction of one of these sides, while a rhombic cross-section will extinguish parallel to the diagonals of the figure.

The behavior of various cross-sections of a uniaxial crystal in parallel polarized light can be easily demonstrated on a glass crystal model in which the chief axis is marked, if one will always bear in mind that the extinction occurs parallel to the chief axis.

In the stauro-microscope (with calcite plate) transverse sections of optically-uniaxial minerals always show the calcite interference-figures. In longitudinal sections they are undisturbed only when the chief axis or one of the contour-lines of the crystal parallel to it coincides with one of the arms of the cross-wires already in conjunction with the nicol chief sections in the microscope.

#### 20 DETERMINATION OF ROCK-FORMING MINERALS.

Transverse sections behave like isotrope cross-sections when examined with the Calderon double-plate. Longitudinal sections always induce a different shading of both halves of the plate when the chief axis is not parallel to the principal direction of vibration of the nicol, the arms of the cross-wires, or the line of junction in the Calderon plate, three objects which are exactly parallel to each other in the microscope. If the chief axis is parallel to the line of junction, both halves of the plate are equally dark with crossed nicols; if this is not the case, then both halves are unequally shaded, the one dark and the other light, or both are equally clear.

It is possible to determine whether a mineral under examination belongs to the tetragonal or hexagonal system only from the character of the contour of the section cut at right angles to the chief axis. If it is square or octagonal it belongs to the *tetragonal*; if hexagonal or dihexagonal, it belongs to the *hexagonal* system.

In the **optically-biaxial** minerals there are two directions wherein no double-refraction takes place, i.e., there are two optic axes; and further, we assume three axes of elasticity at right angles to each other, i.e., three directions in which the elasticity of the light-ether differs. The direction of the greatest elasticity is designated by  $\mathfrak{a}$ , that of middle value by  $\mathfrak{b}$ , and that of the least by  $\mathfrak{c}$ .

The optic axes do not coincide with the crystallographic axes, and form an angle with each other. The line dividing equally the acute angle is called the *first middle line*, or *acute bisectrix;* the line bisecting the more obtuse angle, the second *middle line*, or *obtuse bisectrix*. The optic axes and both middle lines lie in a single plane, THE PLANE OF THE OPTIC AXES (A.P.); the *optic normal* lies perpendicular to the plane of the optic axes. The axis of elasticity of middle value (b) always coincides with the optic normal, while the axes of greatest and least elasticity coincide with either the first or the second middle line. If a = 1. M., then c = 2. M., and the mineral is negative; if c = 1. M., and a = 2. M., the mineral is positive.

There are three different indices of refraction,  $\alpha$ ,  $\beta$ ,  $\gamma$ , corresponding to these three axes of elasticity.

Minerals crystallizing in the rhombic, monoclinic, and triclinic systems belong to the double-refracting minerals.

**Rhombic Minerals.**—In these minerals the three axes of elasticity  $\mathfrak{a} > \mathfrak{b} > \mathfrak{c}$  coincide with the three crystallographic axes  $\check{a}, \check{b}, c'$ ;  $\mathfrak{a}$  does not always equal  $\check{a}$ , etc., yet each of the crystallographic axes can coincide with each of the axes of elasticity.  $\mathfrak{a}$  and  $\mathfrak{c}$  are always middle lines, and the plane of the optic axes (AP) is always parallel to one of the three pinacoids. The following cases may therefore occur:

If 
$$AP \parallel oP$$
, then  $\check{a} = \mathfrak{a}$ ,  $\check{b} = \mathfrak{c}$ ,  
 $\check{a} = \mathfrak{c}$ ,  $\check{b} = \mathfrak{a}$ ,  $\check{c}' = \mathfrak{b}$ ;  
If  $AP \parallel \infty \check{P} \infty$ , then  $c' = \mathfrak{a}$ ,  $\check{a} = \mathfrak{c}$ ,  
 $c' = \mathfrak{c}$ ,  $\check{a} = \mathfrak{a}$ ,  $\check{b} = \mathfrak{b}$ ;  
If  $AP \parallel \infty \bar{P} \infty$ , then  $c' = \mathfrak{a}$ ,  $\check{b} = \mathfrak{c}$ ,  
 $c' = \mathfrak{c}$ ,  $\check{b} = \mathfrak{a}$ ,  $\check{a} = \mathfrak{b}$ .

Figs. 5 to 8 serve as examples of these cases. These are schematic representations of the optic orientation of rhombic augite and hornblende in sections parallel to the plane of the optic axes. A and B represent the two optic axes; the middle lines or axes of elasticity are designated by German, the crystallographic axes by italic letters.

Cross-sections parallel to the three planes of the pinacoids, in general of rectangular figure, have a parallel extinction, i.e., are dark between crossed nicols only when one of the sides of the rectangle or one of the pinacoidal cleavage-fissures is parallel to a chief section of a nicol. Darkness follows so soon as one of the crystallographical axes coincides with a nicol chief section. This occurs four times in a complete revolution,

#### 22 DETERMINATION OF ROCK-FORMING MINERALS.

just as with the longitudinal sections of the uniaxial crystals. The rhombic minerals can, however, be distinguished from them in parallel polarized light, in that the sections *parallel to* oP are not isotrope as in the uniaxial minerals.

Only those sections of rhombic minerals which are cut



exactly at right angles to one of the two optic axes remain perfectly dark throughout a complete revolution, i.e., are isotrope.

Such sections are parallel to  $\bar{P}\infty$ ,  $\check{P}\infty$ , or a prismatic face, according to the position of the optic axes. It is self-evident that such isotrope sections are more rare in rhombic than in optically-uniaxial crystals, and have, moreover, no such regular forms.
## METHODS OF INVESTIGATION.

Just as in the pinacoidal sections, i.e., from the zones  $oP: \infty \bar{P}\infty$  and  $oP: \infty \bar{P}\infty$ , so all longitudinal sections parallel to the vertical axis (c') from the zone  $\infty \bar{P}\infty : \infty \bar{P}\infty$  extinguish parallel to the sides or one of the cleavage-fissures parallel to the vertical axis. Symmetrical sections inclined to the vertical axis, not belonging to any of the above zones, do not extinguish for the most part according to their axial figures.

When examined with the stauroscope, the calcite interference-figures, i.e., the darkening of the Calderon double-plate, appear undisturbed only when one of the crystallographic axes coincides with a nicol chief section; isotrope sections, of course, exert no action on either plate during a complete revolution.

**Monoclinic Minerals.**—In the monoclinic system only the orthodiagonal axis  $\dot{b}$  coincides with one of the axes of elasticity; both of the remaining axes of elasticity form an angle with the crystallographic axes  $\dot{a}$  and c'. The plane of the optic axes is either parallel or at right angles to the plane of symmetry  $\infty \mathcal{P}\infty$ . In the monoclinic minerals there are the following possibilities for optical orientation:

If  $AP \parallel \infty \mathcal{P} \infty$ , then I. M. =  $\mathfrak{c}$ or I. M. =  $\mathfrak{a}$   $\delta = \mathfrak{b}$ ;

and c and a are inclined to c' and  $\dot{a}$ .

If, on the contrary, 
$$AP \perp \infty P \infty$$
, then I. M. =  $\dot{b} = \mathfrak{a}$ ,  
I. M. =  $\dot{b} = \mathfrak{c}$ ;  
or 2. M. =  $\dot{b} = \mathfrak{a}$ ,  
2. M. =  $\dot{b} = \mathfrak{c}$ .

In this case b and c, or b and a, are inclined to c' and a.

In Figs. 9 to 14 are given schematic representations of several rock-forming monoclinic minerals. The cross-sections are parallel to the plane of the optic axes. A and B are the



FIG. 11.—WOLLASTONITE,  $\|\infty \mathcal{P}\infty.$ (After Fouqué.) FIG. 12.—EPIDOTE.  $\parallel \infty \mathcal{P} \infty$ . (After Fouqué.)

#### METHODS OF INVESTIGATION

optic axes,  $\mathfrak{a}$  and  $\mathfrak{c}$  middle lines, and  $\mathfrak{c}$  the vertical axis. In titanite, Fig. 13, there is shown, in addition, the dispersion of the optic axes  $\upsilon < \rho$ ; in orthoclase, Fig. 14, attention is called to the case where the plane of the optic axes is  $\perp \infty P \infty$ .  $A_1 B_1$  are the optic axes where  $AP \parallel \infty P \infty$ ,  $A_2 B_2$ 





FIG. 14.—ORTHOCLASE. ∥∞₽∞. (After Fouque.)

where AP is  $\perp \infty P \infty$ ; in both cases  $\mathfrak{a}$  is at an angle of  $5^{\circ}$  to the edge  $oP : \infty P \infty$ .

As a consequence of this inclination of the axes of elasticity to the crystallographic axes, longitudinal sections are not darkened during a complete revolution whenever the crystallographic axes or the cleavage-fissures parallel to these coincide with a nicol chief section, as is the case with rhombic minerals; but in many cases *extinction* (i.e., the section becomes dark under crossed nicols) first takes place when the crystallographic axes are inclined to the nicol chief section; i.e., it *extinguishes obliquely*.

Fig. 15 represents the oblique extinction of an optically-

50 000

FIG. 15 .- OBLIQUE EXTINCTION.

biaxial crystal cross-section, abcd, wherein C represents the vertical axis, and vw and xy are again the nicol cross-sections. The crystal cross-section is in the position where it completely extinguishes the ray; the inclination of the axis of elasticity lying in the direction xy to the vertical axis is 50° in this case.

Extinction always follows, as is well known, whenever one axis of elasticity coincides with

a nicol chief section; in the monoclinic system, however, two axes of elasticity are always inclined to the crystallographic axes. This angle of inclination is exceedingly characteristic for the various monoclinic crystals (comp. Figs. 9 to 14), and can be readily determined in parallel polarized light. As a consequence of the optical orientation this oblique extinction can be accurately determined only in those sections parallel to the plane of symmetry,  $\infty \mathcal{P} \infty$  (comp. Fig. 15). A cleavagefissure parallel to the chief axis, or one of the edges parallel to it, is placed in position parallel to an arm of the cross-wires (i.e., a nicol chief section), and the degrees read on the circle of the stage. In this position, between crossed nicols, the cross-section is colored. The stage is then revolved until the cross-section is perfectly darkened. The number of degrees through which the stage must be revolved to cause total darkness gives the angle of inclination of one axis of elasticity to the vertical axis, the "angle of extinction;" e.g., on augite the inclination  $c: c = 38^\circ$ , therefore  $a: c = 52^\circ$ . This angle which one of the axes of elasticity forms with the vertical axis of course equals that which the other axis of elasticity makes with the normal to  $\infty \bar{P} \infty$ . The angle of extinction can also be measured in relation to another known edge in the

section  $|| \propto P \propto$ ; e.g., to the edge  $oP : \propto P \propto$ , i.e., as oP has the same inclination as  $\dot{a}$ , the angle of inclination of the other axis of elasticity to the clinodiagonal.

The application of the stauroscope is therefore clear from what has just been stated. This is used, as it is very difficult to determine with the eye alone the exact point of maximum darkness; with the aid of an exceedingly sensitive Calderon double plate, however, this is possible with accuracy to within some few minutes; it is therefore peculiarly adapted to the more exact determination of the position of the plane of the axes of elasticity. Equality of shading in the double-plate of course follows when an axis of elasticity is parallel to the line of junction in the plate.

All sections of monoclinic crystals from the zone oP:  $\infty \bar{P} \infty$  extinguish parallel, as in these the orthodiagonal always coincides with one of the axes of elasticity; extinction follows, therefore, always when one of the edges parallel to the vertical axis or one of the cleavage-fissures parallel to this coincides with a chief section of a nicol. The shading of the Calderon double-plate will therefore be undisturbed only when the orthodiagonal coincides with a nicol chief section, i.e., the line of junction.

Sections from the zones  $oP : \infty P \infty$  and  $\infty \overline{P} \infty : \infty P \infty$ always *extinguish* at an angle. The angle of extinction finally reaches  $o^{\circ}$  when the section is parallel to oP or  $\infty P \infty$ .

Thus, according to Michel Lévy, the value of the oblique extinction varies in augite and hornblende with the direction of the section in the following manner:

| Direction of the section in the zone. | Augite.<br>For $2v = 58^{\circ} 59'$ .                                                                                                                                                                                                                                                                                                                                                                             | Hornblende.<br>For $2v = 79^{\circ} 24'$ .                                                                                                                                                                                                                                                                        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0P : ∞P∞                              | $c = c = 38^{\circ} 44'$ Maximum.<br>$a = a = 22^{\circ} 55'$ Maximum.<br>In sections parallel to $\infty P \infty$ ,<br>$a : a = 22^{\circ} 55'$ ; with more<br>acute inclination of the sec-<br>tion the value increases and<br>reaches its maximum on the<br>plane which makes an angle<br>of $67^{\circ} 14' 6''$ with $\infty P \infty$ ;<br>it then lessens and becomes<br>o° in sections parallel to $oP$ . | Maximum of $29^{\circ}$ 58' to $14^{\circ}$<br>58' parallel to $\infty P \infty$ , accord-<br>ing to the species of horn-<br>blende, then decreases and<br>becomes 0° parallel to $\rho P$ .                                                                                                                      |
| ∞ <sup>₹</sup> ∞:∞ <sup>₹</sup> ∞     | Maximum of extinction ob-<br>liquity on $\infty P \infty$ , $c: c = 38^{\circ}$<br>44'. According to the in-<br>clination towards $\infty \overline{P} \infty$ the<br>angle decreases and becomes<br>o° parallel $\infty \overline{P} \infty$ .                                                                                                                                                                    | Minimum parallel $\infty P \infty$ , be-<br>tween 15° (for hornblende)<br>and 0° (actinolite); increases<br>and reaches the maximum<br>(actinolite = 15° 15′ 20″) in<br>the plane which forms an<br>angle of 38° 18′ 25″ with<br>$\infty P \infty$ ; then decreases and<br>equals 0° parallel $\infty P \infty$ . |
| oP: copo                              | All sections possess                                                                                                                                                                                                                                                                                                                                                                                               | parallel extinction.                                                                                                                                                                                                                                                                                              |

Triclinic Minerals.-In the triclinic minerals no one of the



 $\|\infty P\infty$ . (After Fouqué.) three axes of elasticity coincides with the crystallographic axes.

Fig. 16 is an example of the optical orientation of a triclinic rock- $\widetilde{p}_{\bullet}$  forming mineral.  $\mathfrak{a}, \mathfrak{b}, \text{ and } \mathfrak{c}$  are the three axes of elasticity; the angle of inclination of c to the vertical axis in disthene is 30° measured in sections parallel to  $\infty \bar{P}\infty$ ; a is exactly perpendicular to  $\infty \bar{P} \infty$ .

All sections, therefore, parallel to the three pinacoidal faces have the oblique extinction. The obliquity of extinction to the faces oP and  $\infty \check{P} \infty$ 

is known in most of the rock-forming minerals, and gives, therefore, an excellent means of determining the minerals of this system. In the thin sections one can in most cases determine from the shape of the cross-section whether it is parallel to one of these pinacoids. If now an oblique extinction is proved on *both* of these pinacoids, it is sufficient for assignment of the mineral to the triclinic system, as in the monoclinic system the oblique extinction obtains only parallel to the plane  $\infty P \infty$ . Exact measurement of the extinctionobliquity must, however, be made on cleavage-lamellæ parallel  $\infty \tilde{P} \infty$  and  $\sigma P$ .

In the stauroscope the calcite interference figures, i.e., the shading of the Calderon double-plate, will be disturbed whenever one of the crystallographic axes or a cleavage line or edge *parallel to them is parallel to a nicol chief section*.

# 2. EXAMINATION OF MINERALS IN CONVERGENT • POLARIZED LIGHT.

In order to produce convergent polarized light the condenser is placed above the polarizer, and, after the crosssection has been adjusted and centred in the microscope, the ocular is removed and the nicols crossed. If the cross-section is very small, and high magnifying powers must be used, thereby decreasing the interference-figures, the Bertrand lens, for the necessary enlargement, is inserted within the tube in place of the ocular, and the nicols of course are again crossed.

The interference-figures observed with the condenser in different sections of the double-refracting minerals are exactly the same as those obtained on such sections with the Nörremberg instrument. The interference-figures, however, are not so clear and large in the microscope, as the mineral crosssections are very small, and in the slides are exceedingly thin. The great advantage gained through the application of the condenser to microscopical petrography, as first recommended by Lasaulx and Bertrand, is evident; e.g., we can determine whether a mineral is a single-refracting, optically uniaxial or biaxial, if but a single isotrope cross section of the mineral is at hand. The following observations will demonstrate this. Of course the examination in parallel polarized light must always precede that in convergent light.

Clear interference-figures can be obtained on using objective 9, Hartnack, and the Bertrand magnifying-lens in convergent light, if the mineral cross-section is not less than 0,05 mm.; if the cross-sections are less, their determination in convergent light is impossible in most cases. In such cases the examination in parallel polarized light is all the more important. The behavior of mineral cross-sections in convergent light for the different systems of crystallization is the following:

**Regular and Amorphous Minerals.**—The amorphous minerals and those crystallizing in the regular system remain dark throughout a complete revolution in all cross-sections, and show no interference-phenomena.

**Optically-Uniaxial Minerals** (Fig. 17, I and II).—The isotrope transverse sections of tetragonal and hexagonal minerals show, in case the section is exactly at right angles to the chief axis (Fig. 17, I), a fixed dark interference-cross with several colored concentric rings. The presence and number of the rings in the cross section depend on its thickness and the power of double-refraction of the mineral. If the section is not exactly at right angles to the chief axis, as is evident in ordinary light from the irregular transverse section (e.g., distorted rectangles or hexagons), or the confirmation of an imperfect depolarization in parallel polarized light, the interference-cross in convergent polarized light remains undisturbed throughout a complete horizontal revolution; i.e., it does not open, but moves according to the lesser or greater inclination of the section to the chief axis either within the field or without on the circumference, and in the same direction as the stage is revolved.

If the section is so inclined that the axial point of the interference-figure falls without the field of the microscope (Fig. 17, II), it will not appear in parallel light as isotrope (show polarization-colors and become darkened four times during a revolution); in this case, by revolving the stage from 90° to 90° only one part of the interference-cross will appear as a straight black cloud in the field. The cloud moves, during a revolution of the stage through 90°, from one side of the microscope-stage, i.e., the field of the microscope, to the other in the same plane. As will be shown later, similar pictures will be obtained in sections of optically-biaxial minerals which are cut at right angles to one of the optic axes, yet the black cloud in these moves about an axial point situate within.

For the Determination of the Character of the Double Refraction (in sections at right angles to the chief axis a fourth undulation mica plate is most advantageously employed. As already stated, this is laid on the tube from which the ocular has been removed, and the analyzer placed upon it, with the nicols crossed, and with the plane of the optic axes of the mica inclined at an angle of 45° to a nicol chief section. The black interference cross of a uniaxial crystal diminishes until only two dark points remain and the colored rings are disturbed.

If the two dark points are so situated that the line joining them is perpendicular to the plane of the optic axes of the mica (generally indicated by a mark on the plate), then the mineral under examination is optically *positive*; if the joining line of both the dark points concides with the direction of the axial plane of the mica, the mineral is optically *negative*.

**Optically-Biaxial Minerals** (Fig. 17, III, IV, and V).—If an optically-biaxial mineral be cut at right angles to one of the middle lines bisecting the angle which the two optic axes make



OPTICALLY-UNIAXIAL CRYSTALS.

OPTICALLY-BIAXIAL CRYSTALS.



FIG. 17 .- INTERFERENCE-FIGURES OF DOUBLE-REFRACTING MINERALS ON USING THE CONDENSER IN THE POLARIZATION-MICROSCOPE. (After Fouqué.)

 $\phi$  is the angle which a vertical plane passing through an optic axis A forms with the optic chief section of the polarizer.

with each other (Fig. 17, V), and be examined in convergent polarized light, an interference-figure is seen, in case the plane of the optic axes coincides with a nicol chief section, which is formed from two closed systems of curvature corresponding to the two axial points; these in turn are surrounded by a larger system of curvatures, the lemniscates, and are traversed by a black cross of which one arm, the narrower, passes through the two axial points and thus shows the position of the plane of the optic axes, and whose second arm, much broader, is at right angles to it.

The number of the colored curves depends, again, on the thickness of the mineral leaflet; if this is very thin, as may be expected in rock-sections, only the black cross is visible, thus resembling the interference-figure of optically-uniaxial crystals. The difference is immediately seen on revolving the mineral section on the stage (Fig. 17, V,  $\varphi > 45^{\circ}$ ); in the optically-biaxial minerals the cross does not remain fixed, but opens and divides into two hyperbolas which move about either axial point and by revolving 90° again close into the cross.

The distance between the two points, or the hyperbolas passing through them, gives both the position of the plane of the optic axes and the magnitude of the axial angle; if this angle is large, then each of the hyperbolas lies without the field, so soon as the plane of the axes forms an angle of  $45^{\circ}$ with a nicol chief section (Fig. 17, V,  $\varphi = 45^{\circ}$ ). It can generally be determined from the proximate estimation of the magnitude of the axial angle whether the section is made perpendicular to the first or second middle line. There are cases, as in the rhombic pyroxenes, where the acute axial angle differs but little from the obtuse; in such cases it is impossible to determine by the microscope which axes of elasticity coincide with the first and second middle lines.

If it is known whether the section is at right angles to the first or second middle line, then it can be determined which of

the axes of elasticity a or c coincides with the same, i.e., the optical orientation. If the axial angle is very small, the interference-figure will be similar to the optically-uniaxial mineral and the cross apparently remains closed.

The Determination of the Character of Double-refraction in the optically-biaxial crystals is effected in the following manner: The axial figure is placed in such a position that the plane of the optic axis is at an angle of 45° with a nicol chief section, i.e., the cross seems merged into the hyperbolas; the quartz plate described on page 10, or the quartz wedge, is so used beneath the analyzer that the axis of revolution of the quartz plate or quartz wedge is at first parallel and then perpendicular to the plane of the optic axes. In any case, a change of the interference-figure is visible on revolving the quartz plate or on pushing in the quartz wedge; the inner rings move from the circumference of the field towards the centre, the outer lemniscates, on the other hand, in the opposite direction. If this enlargement and movement of the rings occur when the axis of revolution of the quartz plate or the quartz wedge is perpendicular to the plane of the optic axis, the mineral is positive double-refracting; under reversed conditions, negative.

If the mineral was proved positive double-refracting on sections at right angles to the first middle line, then the axis of the least elasticity coincides with it and the plan is the following:

> First middle line =  $\mathfrak{c}$  (positive); Second middle line =  $\mathfrak{a}$ ; Optic normals always =  $\mathfrak{b}$ .

The reverse is true in case the second middle line is positive :

First middle line =  $\mathfrak{a}$  (negative); Second middle line =  $\mathfrak{c}$ ; Optic normals =  $\mathfrak{b}$ . Sections at right angles to one of the two optic axes appear as isotrope in parallel polarized light, and show in convergent polarized light a spherical or elliptical colored ring-system traversed by a dark cloud (Fig. 17, III). If the section is exactly at right angles to the optic axis, on revolving the preparation the cloud moves in a contrary direction about the axial point lying in the centre of the ring-system; on sections more or less inclined to the optic axes (Fig. 17, IV) a movement of the whole axis-figure is observed concordant with the revolving of the object-stage.

If the section is so oblique to the optic axis (Fig. 17, IV) that the axial point falls without the field, only a part of the cloud ever lies in the centre of the field on revolving from  $90^{\circ}$  to  $90^{\circ}$ , just as with the optically-uniaxial minerals cut inclined to the axis; the difference consists, however, in the movement of the cloud itself about the axis-point in the direction opposite to that of the revolving-stage. Sections parallel to the plane of the optic axes, at right angles to b, show no interference-figures in convergent polarized light, become colored as in parallel polarized light, and appear dark whenever an axis of elasticity coincides with a nicol chief section.

**Rhombie Minerals.**—Sections at right angles to the crystallographic axes, consequently parallel to the pinacoidal planes, show perfectly the optical orientation. According to the position of the plane of the optic axes (see page 22), either the vertical axis, the brachy- or macro-diagonal will be the first middle line. One of the pinacoidal sections will show perpendicular to it the first middle line with the smaller angle of the optic axes, a second the appearance of the second middle line with the larger axial angle, and the third parallel to the plane of the axes will show no interference-figures. The transverse sections are the most favorable (at right angles to c'); as on the one hand but few of the rock-forming minerals, e.g., olivine, have the axial planes parallel oP, consequently in these, at any rate, an interference-figure is seen; and on the other hand, as the predominating cleavage is prismatic or pinacoidal, it can be controlled as to whether the section is made exactly at right angles to the vertical axis.

As a consequence of the dispersion of the optic axes the interference-figure develops in white light a varying color-distribution according as the axial angle for red is greater or smaller than for blue  $(\rho \geq v)$ ; in the rhombic system the distribution is symmetrical to the middle lines. Where  $\rho > v$ , in the position: axial plane parallel to the nicol chief section, the inner closed curves are blue on the inner limb, and red on the outer : in the position: axial plane inclined 45° to the nicol chief section, the hyperbolas become red on the inner, the convex surface, and blue on the outer, the concave surface. Where  $\rho < v$ the reverse holds true. The phenomena of dispersion, when not too weak, can be studied in convergent light very well in the rock-constituents, e.g., zoisite, etc. Often the simple observation of an hyperbola in relation to the colored edges suffices for the determination of the form of axial dispersion; it is not absolutely necessary, therefore, that the sections should be at right angles to the middle lines.

Monoclinic Minerals.—If the plane of the optic axes in monoclinic minerals is parallel  $\infty P \infty$ , the sections at right angles to the vertical axis and parallel  $\infty \bar{P} \infty$  will not show a perpendicular development of a middle line, as is the case with the corresponding pinacoidal sections of rhombic crystals, but a displaced axial picture (AP parallel to the edge  $oP:\infty P \infty$  or  $\infty \bar{P} \infty : \infty P \infty$ ); or simply an appearance of one of the optic axes according to the degree of inclination of the middle line to the crystallographic axes. Sections at right angles to the middle lines obtain only accidentally and are extremely rare (compare with the rhombic minerals); such, of course, spring from the zone  $oP:\infty \bar{P}\infty$ . In prismatic sections the displaced

### METHODS OF INVESTIGATION.

axial picture or appearance of one axis is not visible in the middle of the mineral leaflet, but at one side. If the inclination of the axes of elasticity to the crystallographic axes is very small, as, e.g., from a: c in mica, the mineral is apparently



FIG. 18.—MUSCOVITE. | oP. Mica I. Class, (After Fouqué.)



FIG. 19.—BIOTITE. | oP. Mica II. Class. (After Fouqué.)

rhombic (Figs. 18 and 19). In the mica minerals the first middle line a differs but little from the normals to oP; A and B are the two optic axes; a, b, and c, the axes of elasticity.

If the plane of the optic axes be at right angles to  $\infty P \infty$ , an appearance of one middle line perpendicular to  $\infty P \infty$  may always be observed; yet such an appearance is not shown on sections parallel oP or  $\infty \bar{P} \infty$ ; on these a distorted axial picture is again visible, AP parallel to the edge  $oP: \infty \bar{P} \infty$ .

In the **Triclinic Minerals** a perpendicular appearance of a middle line obtains in none of the pinacoidal sections, the plane of the optic axes is neither parallel nor at right angles to a pinacoid, and only portions of the interference-figure can be described in the pinacoidal sections.

The phenomena of dispersion in monoclinic and triclinic minerals cannot be established with great precision by the microscope or prove of value in determining the minerals; in general it can only be determined whether  $\rho \geq v$ .

3. BEHAVIOR OF TWINNED CRYSTALS IN POLARIZED LIGHT.

Twins of the **Regular System** cannot be recognized as such either in parallel or convergent polarized light, as both individuals remain equally dark between crossed nicols; therefore

the form of the cross-section and the cleavage must be solely regarded in the determination of the law of twinning.

Twins of the Tetragonal and Hexagonal Systems.—a. With *parallel axial systems*. These also, for the same reason as the regular minerals, cannot be recognized in polarized light.

b. On the other hand, twins with inclined axial systems can



According to  $3P\infty$ . According to  $P\infty$ . FIG. 20.—RUTILE TWINS. be recognized easily in parallel polarized light. In these minerals the chief axes and axes of elasticity form an angle with each other, and the twinned crystal will not, therefore, act as a unit in extinguishing the light; e.g., rutile  $C:C_1 = 114^\circ 26'$  (Fig. 20).  $C,C_1$  are

the chief axes of both individuals, and N is the twinning-seam.

When one individual appears dark between crossed nicols, the second becomes colored. The angle between the two chief axes can therefore be determined, if an edge of one individual parallel to the chief axis be first placed on the centred stage parallel to the nicol chief section so that it is darkened, the stage revolved until the second is darkened, and the number of degrees read through which it was necessary to revolve the stage.

If several individuals are twinned (polysynthetic twins), these are wont to occur in laminations, as, e.g., in calcite,

twinning-plane  $-\frac{1}{2}R$  (Fig. 21): in these, in sections inclined to the twinningplane, the axes of elasticity of the lamellæ 1, 3, 5, etc., have a similar position, i.e., they extinguish at the same instant. In sections parallel to the twinning-plane no twinning stria-



tions can be observed, as in this case but a single individual is met with.

METHODS OF INVESTIGATION.

If the twinning-plane in calcite is the *R*-face, although never occurring in the rock-forming individuals, the chief axes form nearly a right angle with each other,  $C: C_1 = 89^\circ 8'$ ; both individuals therefore extinguish the ray at nearly the same instant.

Twins of the Rhombic System.—The most common examples of this system are:

| I. | Twinning-plane | a face of a | brachydome. |
|----|----------------|-------------|-------------|
| 2. | "              | "           | pyramid.    |
| 3. | "              | "           | prism.      |

In the first two cases the crystallographic axes form an angle with each other; in longitudinal sections of such twins, therefore, no unit-extinction between crossed nicols can occur. In staurolite, for example, the vertical axes  $c:c_1$ , which in this case coincide with the axis of elasticity t, form with each other an angle of  $60^\circ$  according to the law  $\frac{3}{2}P\frac{3}{2}$ ; but



FIG. 22.-STAUROLITE TWINS ACCORDING TO P: P. .

an angle of 90° according to the law  $\frac{3}{2} \breve{P} \infty$ ; i.e., in the latter case both individuals extinguish together (Fig. 22).

A further point of recognition for the twinning development in colored minerals lies in the pleochroitic behavior, as both individuals, by virtue of their different position with reference to the chief direction of vibration of the polarizer, will be differently colored.

If one of the prismatic faces is the twinning-plane, a law exemplified, e.g., often on aragonite, rarely on cordierite, etc. (Fig. 23), the longitudinal sections parallel to the vertical axis, when in parallel polarized light, show no difference in the direction of extinction, as the axes of elasticity of both individuals coinciding with the c'-axis are again parallel. The two individuals in such sections, however, can be accurately distinguished in convergent polarized light, as the same interference-figure does not appear on both members; but the appearance of a middle line on one side and only one of the



FIG. 23.—CORDIERITE TWINS. (According to v. Lasaulx.)

optic axes on the other, etc., will be observed, the phenomena depending on the direction of the section.

Penetration twins or trillings after this law often imitate the form of an hexagonal prism. Cross-sections of such twins, however, divide into six sectors in parallel polarized light, two of which in opposite positions will extinguish at the same instant. The axes of elasticity of these three individuals are inclined  $60^{\circ}$  to each other; an equal inclination of the plane of the optic axes in the individuals can therefore be observed on such twins by convergent polarized light, provided they are not of a mineral with the plane of the optic axes parallel to oP.

Twins of the Monoclinic System.—The most commonly-occurring twinnings are according to the law: twinning-plane  $\infty \bar{P}\infty$ . Twinnings according to a prismatic face seldom occur.

### METHODS OF INVESTIGATION.

Augite, amphibole, epidote, and gypsum may be brought ward as examples of the rock-forming minerals with repeated twinning according to  $\infty \bar{P}\infty$ . Sections perpendicular to the twinning-plane and parallel to  $\infty P \infty$  will show, in parallel polarized light, in both individuals, an oblique extinction equally inclined to the vertical axis, i.e., the twinning-seam or line of development, but in opposite directions; e.g., on augite  $c: c = c_1: c_1 = 38^\circ$  (Fig. 24). Such sections in convergent light show no difference; nor can interference-figures be recognized, as in these minerals the plane of symmetry is at the







FIG. 25.—POLYSYNTHETIC AUGITE TWIN according to  $\infty P \infty$ . Section  $\perp c'$ -axis.

same time the plane of the optic axes. Such twins, with parallel vertical axes, can be easily recognized in parallel polarized light as belonging to a monoclinic mineral, as both individuals, if rhombic, would extinguish at the same instant. As already stated, several twinning lamellæ are often interpolated according to this law (Fig. 25); therefore in parallel polarized light, especially in sections at right angles to the vertical axis, there is often observed an interchange of brilliantly-colored lines, all parallel to a boundary-line of the apparently simple crystal. Twins occur but rarely after the plane of a dome or pyramid, as in augite according to  $-P_2$ , and more rarely still penetration-twins according to  $-\bar{P}\infty$ . In the latter case we are vigorously reminded of the staurolite

twinning; but the extinction in these augite twins, so commonly occurring in certain basaltic rocks, does not occur parallel to the vertical axes of both individuals on epidote (Fig. 26). One or more narrow interpolated twinning-lamellæ are often



noticed in the hexagonal sections parallel to the plane of symmetry, which is the same as the plane of the optic axes parallel to  $\infty \bar{P}\infty$ .

In titanite (Fig. 27), contact-twins often occur after the law: twinning-plane oP. In this case sections at right angles to the twinning-plane, where they are not parallel to  $\infty P \infty$ , also develop on either side an angle of extinction equally in-



FIG. 28.—ORTHOCLASE TWIN according to the Carlsbad and Baveno laws.

clined to the vertical axis. Extinction follows here nearly parallel to the face  $\frac{1}{2}\bar{P}\infty$ , as the first middle line is nearly perpendicular to it. Sections parallel  $\infty \bar{P}\infty$  develop in convergent polarized light one optic axis in each individual, but in opposite directions.

The most varied twinning development occurs on orthoclase (Fig. 28). These will be described more exactly in Part II.

Twins of the Triclinic System.—The triclinic rock-forming minerals, especially plagioclase and disthene, are quite commonly polysynthetically twinned; i.e., several parallel twinlamellæ are interpolated in the crystal. Such twins can be recognized easily also in parallel polarized light, in that the separate twinning-lamellæ appear with varying polarizationcolors, and the directions of extinction do not have the same position in two adjoining lamellæ.

In plagioclase the "Albite law" is the most common: twinning-plane  $\infty \tilde{P} \infty$  (Fig. 29). Sections at right angles to this plane from the zone  $\partial P : \infty \bar{P} \infty$  will always develop in parallel polarized light the polysynthetic twinning-striations. Such





Fig. 29.—Polysynthetic Plagioclase Twin.  $\| \infty \overline{P} \infty$ .

FIG. 30.—PLAGIOCLASE TWINNED according to the Albite and Pericline laws.

twins were not possible in the monoclinic system, as the plane in the monoclinic system  $\infty P \infty$  corresponding to the plane  $\infty \tilde{P} \infty$  is at the same time a plane of symmetry, and such a symmetrical development gives no twins. Such polysynthetic twins are wanting in orthoclase. It is easy, therefore, to distinguish orthoclase from plagioclase, although it is not impossible for the latter also to occur as a simple twin.

A second less common twinning-law of plagioclase, appearing also combined with the Albite law, is the "Pericline law:" twinning-plane at right angles to the zone  $oP : \infty \bar{P} \infty$ , developed after a plane which, with the prismatic faces, gives a rhombic section. The twinned developments of plagioclase also will be discussed again at the proper point in Part II. If the Albite and Pericline laws are combined (Fig. 30), one will observe in sections cut approximately parallel to  $\infty \bar{P} \infty$  a double system of twinning-striations cutting each other at nearly right angles.

Disthene occurs, though in rocks more rarely, as twins, according to the following laws:

I. Twinning-plane  $\infty \bar{P} \infty$ .

| II.  | "  | at right angl | es to the | c'-axis.      |       |
|------|----|---------------|-----------|---------------|-------|
| III. | 66 |               | "         | b-axis.       | 1     |
| IV.  | 66 | parallel oP.  | This for  | rm of twinnir | ng is |

often repeated also, and is commonly observed in the disthene occurring in rocks.

And, finally, it may be mentioned that two twins after one definite law can combine according to another law; e.g., as often occurs in plagioclase, where two plagioclase species twinned after the Albite law (twinning-plane  $\infty \check{P} \infty$ ) are united with each other according to the so-called Carlsbad law, common on orthoclase (twinning-plane  $\infty \check{P} \infty$ ).

## 4. DETERMINATION OF THE INDEX OF REFRACTION.

- H. CLIFTON SORBY. On a new method for determining the index of doublerefraction in thin sections of mineral substances. Miner. Mag. 1877, No. 6.
- H. CLIFTON SORBY. Determination of minerals in thin sections by means of their refractive indices. Miner. Mag. 1878, No. 8.
- J. THOULET. Contributions à l'étude des propriétés phys. et chim. des minér. microsc. Bull. Soc. minér. 1880, III, 62 et 1883, VI, 184.

MICHEL LÉVY. Bull Soc. minér. 1883, VI, 143 et 1884, VII, 43.

One method of determining the index of refraction in microscopic mineral particles has been mentioned before, under the description of the polarization-microscope (page 14). The following method, applicable in many cases, was proposed first by Thoulet :

Certain minerals, as olivine, different augites, titanite, etc.,

show on their sections a rough shagreenous surface, considered as almost characteristic for olivine; this is much plainer if the rock-section is not covered with Canada balsam and a covering-glass. This phenomenon is a result of imperfect polishing of the slide, i.e., of the particular mineral, and disappears on a more perfect finishing. By immersion of the mineral showing such a rough upper surface in different liquids whose index of refraction is known, it is possible to determine the index of refraction of the mineral, as the rough upper surface will disappear as soon as a liquid is used whose index of refraction equals or is very near that of the mineral. The liquid filling the depressions in the mineral on immersion thus removes all difference between depression and elevation in the mineral leaflets. Examples of such liquids where n = index of refraction are:

| Water,             | n  | = | I.34  |
|--------------------|----|---|-------|
| Alcohol,           | n  | = | 1.36  |
| Glycerine,         | n  | = | I.4I. |
| Olive-oil,         | n  | = | I.47  |
| Beech-oil,         | n  | = | 1.50. |
| Clove-oil,         | n  | = | 1.54  |
| Cinnamon-oil,      | 12 | = | 1.58. |
| Bitter-almond-oil, | 12 | = | 1.60. |
| Carbon disulphide, | n  | - | 1.63. |

## 5. PLEOCHROISM OF DOUBLE-REFRACTING MINERALS.

Determination of the Axial Colors.

GROTH and ROSENBUSCH, l. c.
TSCHERMAK, Sitzungsber. d. k. Akad. d. Wissensch., math.-naturw. Cl., Wien. 1869, 59. Bd., Mai-Heft.
LASPEYRES. Groth's Zeitschr. f. Krystallographie. 1880, IV, p. 454.

We understand by pleochroism that property of doublerefracting minerals whereby the light penetrating in different directions shows different colors. Of course only such doublerefracting minerals as are colored could show the phenomenon, as it depends upon the varying refraction and partial absorption of the light penetrating in the different directions. Pleochroism, or absorption, stands in closest relationship to doublerefraction. Optically-uniaxial colored minerals show differences of absorption in two directions; the optically-biaxial in three directions at right angles to each other and corresponding to the different axes of elasticity.

Optically-Uniaxial Minerals .- On looking through such a mineral in a direction at first parallel and then perpendicular to the chief axis, a difference in color will be noted. The color observed on looking through parallel to the chief axis is called the "basal color" (Basis-farbe), the color at right angles to it the "axial color" (Axen-farbe). If a transverse section of such a mineral be examined in a polarization-microscope, with only the polarizer in position,-the single nicol thus performing the duty of a dichroscope,-and the section be turned through one complete revolution, no difference in color is noticed, as only rays vibrating at right angles to the optic axis are in the field, and there is no double-refraction in the direction parallel to the chief axis. If, on the other hand, a longitudinal section be placed in the microscope, a change of color is noticed on revolving the stage. The greatest difference in absorption is noticed first when the chief axis is parallel to the nicol chief section, and secondly when it is at right angles to it. Thus, e.g., tourmaline (Fig. 31; xy denoting the optical chief section of the polarizer, c the chief axis, a and c the two axes of elasticity), which, as is well known, absorbs the ordinary ray much more powerfully than the extraordinary, appears nearly black when its c-axis is at right angles to the shorter diagonal of the polarizer, but shows a light gray or blue color when the c-axis is parallel to the nicol chief section. Consequently the ordinary ray (o) vibrating at right angles to the chief axis is

transmitted with darker colors; the extraordinary ray ( $\varepsilon$ ) vibrating parallel to the chief axis with a lighter gray or bluer color. As the double-refraction of tourmaline is negative, therefore  $\mathfrak{a} = c$  and  $\mathfrak{c} \perp c$ . We can thus express the axial colors:  $\mathfrak{a} =$  light gray ( $\varepsilon$ ),  $\mathfrak{c} =$  black (o). And in general, in minerals with *negative* double-refraction the *ordinary* ray is more strongly absorbed; in those with *positive* double-refraction,



FIG. 31.—DICHROISM. (Tourmaline. Section | c-axis.) (After Fouqué.)

the extraordinary ray. The color with which o is transmitted corresponds with the basal color, while the axial color is compounded from both of the colors for o and  $\varepsilon$ . In order to observe the colors of the faces, the under nicol, the polarizer, is of course also removed, and the investigation carried on by ordinary light.

**Optically-Biaxial Minerals.**—The differences of absorption are developed in optically-biaxial minerals in three directions at right angles to each other and coinciding with the three axes of elasticity for the most part. We discriminate here, therefore, between three face-colors and three axial colors. The three axial colors corresponding to the axes of elasticity are designated by a, b, and c; each face-color is composed of two axial colors. If one looks through a cordierite crystal, e.g., through the plane oP, i.e., in the direction of the vertical axis, here coinciding with the axis of elasticity a, it appears blue; that is to say, the face-color A which is composed of the axial

colors b and c is blue; parallel  $\infty \tilde{P} \infty$  (c) the face-color C is yellowish white from the composition of a and b; and parallel to  $\infty \tilde{P} \infty$  (b) the face-color B is a bluish white from composition of the axial colors a and c. On the other hand, the axial colors for cordierite are: a, yellowish white; b, light Prussian blue; c, dark Prussian blue. The determination is effected in the following manner: If a cross-section of a crystal whose optical orientation is known be selected, e.g., a section of hypersthene (Fig. 32) at right angles to the c'-axis (parallel oP), the axial colors b and c can be determined in it with the polarizer; on turning the stage, first the brachy-axis ( $\check{a} = \mathfrak{a}$ ) and then the macro-axis



FIG. 32.—TRICHROISM. (Hypersthene. Sections  $\perp c'$ -axis and  $\parallel \infty \check{P} \infty$ .)

(b = b) is parallel to the nicol chief section, and above the polarizer. Another cross-section of mineral is needed in order to determine the axial color for  $\mathfrak{c}$ . This section in the case cited can be either parallel  $\infty \bar{P} \infty$  or  $\infty \bar{P} \infty$ . Parallel to  $\infty \bar{P} \infty$  two axial colors,  $\mathfrak{a}$  and  $\mathfrak{c}$ , can again be determined; the axial color  $\mathfrak{c}$  is observed so soon as the vertical axis  $(c' = \mathfrak{c})$  coincides with a nicol chief section, that for  $\mathfrak{a}$  so soon as the brachy-axis coincides. The axial color  $\mathfrak{a}$ , therefore, was determined twice, and must correspond in both cases if the sections were of equal thickness.

If pleochroitic minerals are examined in extremely thin sections, as is always the case in rock thin sections, the differences of absorption are often imperceptible. This is true of cordierite and andalusite, while tourmaline, e.g., shows the

#### METHODS OF INVESTIGATION.

most marked dichroism even in the thinnest needles. For this reason it is advisable to prepare a somewhat thicker section from the rock under examination for the investigation of the optical properties of the larger mineral constituents.

The power of absorption in different directions in any mineral is represented by an > or < annexed to the axes of elasticity; in tourmaline, e.g.,  $o > \varepsilon$  or  $\mathfrak{c} > \mathfrak{a}$ , i.e., the ordinary ray is more powerfully absorbed than the extraordinary. In cordierite  $\mathfrak{c} > \mathfrak{b} > \mathfrak{a}$ , or, as the axes of elasticity in the rhombic minerals coincide with the crystallographic axes, in these according to the optical orientation corresponding  $\overline{b} > a > c$ ; i.e., the absorption in cordierite is greatest in the direction of the macro-axis.

In tetragonal and hexagonal minerals the directions in which the greatest color-difference can be recognized—Laspeyres calls them "axes of absorption"—coincide with the two axes of elasticity, i.e., are parallel and at right angles to the chief axis; in the rhombic, with the three axes of elasticity, i.e., the crystallographic axes; in the monoclinic and triclinic minerals, however, according to the latest investigations of Laspeyres, the three axes of absorption do not coincide with axes of elasticity, but yet are at right angles to each other.

In the monoclinic minerals there appears to be but one coincidence of an absorption-axis, and that with the orthodiagonal; while each of the others, lying in the plane of symmetry, forms an angle with the axes of elasticity. Colorless double-refracting minerals, e.g., apatite, often show pleochroism as a consequence of the regular inclosures of colored particles or other mineral fragments.

And, finally, it may be mentioned that the axial colors of pleochroitic minerals do not remain constant, in that often on cross-sections of one and the same mineral now  $\mathfrak{c} > \mathfrak{a} > \mathfrak{b}$  and now  $\mathfrak{c} > \mathfrak{b} > \mathfrak{a}$ , and so on, are observed; or one and the same mineral can be now feebly and now powerfully pleochroitic. Nevertheless pleochroism is a characteristic for certain min-

erals, as andalusite, cordierite, tourmaline, hypersthene, hornblende, biotite, and others, and thus lends its aid to their determination.

# B. Chemical Methods of Investigation.

The chemical examination of rocks should go hand in hand with the microscopical investigation; a quantitative analysis will always give a welcome explanation of the mineralogical composition, or at least will confirm the microscopical examination to a greater or lesser degree. It is, however, impossible to determine the component minerals or to give their individual chemical composition from such a rock-analysis alone. In order that the rock-forming minerals may be separately analyzed and their chemical composition correctly determined it is necessary to separate them from each other. Such a mechanical separation can be simply effected with a needle beneath a microscope, when only a small fragment may be needed for a qualitative chemical test of the minerals; or it may be effected by solutions of high specific gravity, thus taking advantage of the differing specific gravities of the minerals for obtaining larger quantities of mineral for the quantitative chemical investigation. There is also another advantage in this latter method, as the specific gravities of the separate mineral components are thus known.

If the rock under examination is coarsely granular, the separate components often can be distinguished with the naked eye and the different cleavage-leaflets be examined optically as well as by chemical qualitative and quantitative analysis. In this separation it is, e.g., impossible to separate several feldspars from each other in case they occur in the same rock. Such a separation of the components is also impossible in the finegrained rocks. In order to examine chemically the rock-constituents in such cases and thus obtain a clue in the determination, the microchemical reactions are applied; the component under examination beneath the microscope is dissolved either directly on the rock-section or on detached granules, and treated with such reagents as give exceptionally characteristic precipitates. Sometimes a more exact and careful mechanical separation of the mineral components is attempted by treating the powdered rocks with solutions of high specific gravity.

A partial analysis of the portion of rock soluble or insoluble in hydrochloric acid in many cases gives valuable conclusions and simplifies the determination of the constituents.

## MICROCHEMICAL METHODS.

H. ROSENBUSCH, l. c., p. 107, und N. Jahrb. für Min. und Geol. 1871, p. 914.

- F. ZIRKEL. Basaltgesteine und Lehrb. d. Petrographie.
- A. STRENG. Ueber die mikroskopische Unterscheidung von Nephelin und Apatit. Tschermak's Miner. Mitth. 1876, p. 167.
- E. BOKICKY. Elemente einer neuen chemisch-mikroskopischen Mineral- und Gesteinsanalyse. Archiv d. naturw. Landesdurchforsch. Böhmens. III. Bd., V. Abthlg., Prag, 1877.
- SZABÓ. Ueber eine neue Methode, die Feldspäthe auch in Gesteinen zu bestimmen. Budapest, 1876.
- TH. H. BEHRENS. Mikrochemische Methoden zur Mineralanalyse. Verslagen en Mededeelingen der k. Academie v. Wetenschappen. Amsterdam, 1881.—Afdeeling Natuurkunde. 2. Reeks, XVII. Deel. p. 27—73.
- A. STRENG. XXII. Ber. der oberhesisschen Ges. f. Nat. u. Heilkunde. 1883, p. 258 u. 260.

E. Bořicky. N. Jahrb. f. Min. u. Geol. 1879. p. 564.

- MICHEL LÉVY et L. BOURGEOIS. Compt. rendus 1882, 20 mars, and Bull. Soc. miner. 1882, V. p. 136 (Reaction auf Zirkonerde).
- SCHÖNN. Zeitschr. für analyt. Chemie. 1870. IX. p. 41 (Reaction auf Titansäure).

A. KNOP. N. Jahr. f. Min. u. Geol. 1875, p. 74.

Hydrochloric acid has been applied for a long period as a microscopical reagent in investigations of rocks. Zirkel (comp. Petrogaphie, II. p. 293, 1870) applied it most advantageously in discriminating between the varieties of plagioclase allied to anorthite and those related to albite, and between magnetite and ilmenite. The application of hydrochloric acid for the determination of calcite in rocks has been known for a much longer period; also in the recognition of silicates soluble in this acid, as nepheline, members of the meionite group, etc. Thus Roth (1865) rightly conjectured the presence of melilite in the basaltic lavas from Eifel because of the large amount of calcium dissolved in the acid.

In such a testing of the rock-constituents regard is had first of all for the solubility, and secondly for the products of the decomposition effected by the acid; as the evolution of CO<sub>2</sub> from calcite, the deposition of the NaCl-cubes on evaporating a drop of the test for nepheline, the appearance of the gelatinous SiO<sub>2</sub> on treating olivine with hydrochloric acid, etc.

In such examinations the testing is made with powdered rock by examining microscopically the rock-section or powder both before treatment with acid and also afterward if a residue remains. In the second case the testing is undertaken directly on the slide without a glass cover. There are great evils in either case; in the one in that it is difficult to recognize the minerals in powdered condition and thus determine what has been dissolved away, and in the other in that in treating the section with acids the whole section crumbles away and is destroyed.

A. Streng has recommended a method of isolating the minerals of a thin section for microchemical study which is to be recommended in many cases. If a mineral granule in a thin section is treated with acid, it is almost always unavoidable that the drop of solvent may touch also the other neighboring particles, react on them, and thus render the chemical reactions questionable. This evil can be remedied by first covering the section with a perforated covering-glass which is coated on the under side with fluid boiled Canada balsam, so that the opening of about  $\frac{1}{2}$ -I millimetre in diameter is opposite the mineral particle to be tested. The Canada balsam filling the opening

may be easily removed by alcohol. Such perforated coveringglasses can be easily prepared by treatment with hydrofluoric acid. An ordinary covering-glass is first dipped in melted wax and allowed to cool; a hole  $\frac{1}{2}-1$  mm. diameter is then made through the wax, and concentrated hydrofluoric acid dropped on the bared opening until a hole is eaten through the glass at this point. The wax is then removed from the covering-glass.

The reaction for distinguishing between nepheline and apatite, first proposed by Streng (1876), deserves special mention as one nearly always accomplishing its purpose. Both minerals occur in rocks very commonly, and are remarkably similar—hexagonal ( $\infty P. oP. P$ ), optically negative, and colorless.

The microchemical reactions for apatite are:

(a) Reaction for phosphoric acid. A drop of concentrated nitric-acid solution of ammonium molybdate is transferred with a glass rod to the apatite crystal lying exposed, i.e., not covered by other minerals of the section; the whole of the thin section within the field of the microscope not protected by glass is thus covered. A muscovite or glass leaflet is often cemented with glycerine to the objective to protect the lens, which in such experiments is easily attacked by the acid vapors. The apatite dissolves slowly in the nitric acid of the reagent, forming beautiful yellow grains and small octahedra of the ammonium phospho-molybdate  $(10MoO_3 + PO_4(NH_4)_3 + I_2H_3O)$ . These yellow crystals are wreathed about the apatite and not in the former position of the apatite crystal, as here the excess of phosphoric acid prevents the formation of a precipitate.

(b) Reaction for lime. A crystal of apatite in the thin section is dissolved in hydrochloric or nitric acid and a drop of sulphuric acid added: fine white feathery aggregates of gypsum are formed round about the point previously occupied by the apatite. If a crystal of apatite is treated with sulphuric acid alone it is not dissolved, as a thin coating of gypsum is

formed which prevents the further action of the acid on the 'apatite.

The reaction of Streng for phosphoric acid is the surest and most exact if it is carried out, not on the thin section directly, but on an isolated granule: or if the thin section be treated with dilute nitric acid, the solution taken up with a capillary pipette, evaporated, again dissolved in dilute nitric acid, and the reaction completed on an ordinary object-glass.

Nepheline can be recognized from the negative results to the reactions given above for apatite, as well as by a reaction with hydrochloric acid; if a drop of the acid be deposited on a crystal under examination it is easily decomposed, i.e., dissolved. After some time numbers of minute colorless cubes of sodium chloride, easily recognized, are formed in the cavity formerly occupied by the crystal. They are formed by the action of the hydrochloric acid on sodium silicate, and are difficultly soluble in the concentrated acid.

A. Streng has recently found acetate of uranium to be an excellent reagent for sodium. If a drop of concentrated solution of acetate of uranium be added to the residue from the solution of a silicate in hydrochloric acid, clearly defined, bright yellow tetrahedra  $\left(\frac{O}{2} \cdot - \frac{O}{2} \text{ or } \frac{O}{2} \cdot \infty O\right)$  of sodium uranate, difficultly soluble in water, are formed. More rarely penetration-twins after a tetrahedral face occur, and in polarized light can be easily distinguished from the double-refracting, rhombic, nearly cubical crystals of the acetate of uranium.

A. Knop has recommended a reaction for the recognition of members of the hauyn group, which when colorless are difficultly distinguishable from apatite or nepheline sections. The thin section of the rock bearing the hauyn is carefully loosened from the object-glass by warming, and is washed clean with alcohol. The clean section is introduced into a platinum crucible, and as much flowers of sulphur as can be taken up on

## METHODS OF INVESTIGATION

CA

the point of a knife added. If now the crucible is heated to glowing for some minutes, whereby the sulphur vaporizes and fills the crucible, and then, still covered, is allowed to cool, all ferrous compounds appear blackened, while the hauyn is conspicuous among the rock-components by the beautiful azureblue color. The other rock-forming minerals do not become blue on heating in sulphur-vapor. Knop does not state, however, whether sodalite, like hauyn, becomes blue.

These few characteristic microreactions have reference. however, to an extremely limited number of the rock-forming minerals-nepheline, apatite, and hauyn. The necessity for a method of complete microchemical qualitative analysis of the rock-constituents has been remedied by Bořicky and Behrens.

# Boricky's Microchemical Method.

Chemically pure hydrofluosilicic acid is the only reagent required. It should contain 13 per cent acid, and must be absolutely pure; i.e., when allowed to dry on a layer of balsam on an object-glass it must leave no residue of silico-fluoride crystals. It cannot, therefore, be prepared or stored in glass bottles. Almost all of the rock-forming minerals are attacked more or less by strong hydrofluosilicic acid. It is therefore available for the formation of the silico-fluorides, which dissolve in the solution of hydrofluosilicic acid, and after evaporation of this solution appear as beautifully-developed crystals, characteristic for the different elements or groups of elements.

The microchemical tests with this acid can be carried out either directly on the rock-section without a glass cover, or, better yet, on minute particles of the minerals of about the size of a pin's head, on an object-glass coated with Canada balsam. One or two drops of the hydrofluosilicic acid are transferred with a caoutchouc rod to the mineral granule under examina-

tion, and the preparation is allowed to rest quietly in a place free from dust, preferably at a temperature of about  $18^{\circ}$  C., until the drop has dried away.

If the mineral is easily attacked by the acid, all of the metals are generally found after evaporating the solution in their several peculiar crystalline forms, and in about the same proportion as in the mineral. If the mineral is but slightly attacked, only those metals most easily soluble can be proven, and the same mineral fragment must be treated again with the acid; in the latter case it is often of advantage to treat, in a small platinum dish, first with hydrofluoric acid and then with hydrofluosilicic acid, evaporate to dryness, redissolve in water, and allow a drop to evaporate on an object-glass.

Thin sections are more easily attacked than granules or cleavage-pieces, and must be exceedingly thin. It is better if the test is taken from carefully-selected mineral particles, as sections become coated with a dull white crust. The silicofluorides crystallize most perfectly when lixiviated with boiling water, and the solution allowed to cool on another objectglass. The silico-fluorides are always in minute crystals, and are best observed under 200–400 diameters. They are distinguished by their crystalline forms, and there appears:

1. Potassium Silico-fluoride in skeleton groups of small crystals of the regular system clearly defined, generally  $\infty O \infty$ , also often with O and  $\infty O$ . Yet potassium silico-fluoride often crystallizes in larger, apparently rhombic crystals of the form  $\infty Pn \cdot mP \infty$ , if the acid was in excess or the evaporation occurred at lower temperatures (12° C.), or in presence of a large amount of sodium.

2. Sodium Silico-fluoride (Fig. 33) in short hexagonal columns with oP. P, also  $\infty P2$ ; imperfect crystals are barrel-shaped. The more calcium silico-fluoride present the larger the crystals. Easily soluble in water.

3. Calcium Silico-fluoride (Fig. 34) in peculiar, long, pointed,

### METHODS OF INVESTIGATION.

spindle-shaped crystals, often grouped in rosettes; the combination of parallel straight lines and planes is characteristic for



FIG. 33.—Sodium Silico-fluoride. (After Bořicky.)



FIG. 34.—CALCIUM SILICO-FLUORIDE. (After Boricky.)

this compound. It crystallizes in monoclinic crystals, and is easily soluble in water.

4. Magnesium Silico-fluoride (Fig. 35) appears in rhombohe-

dra with polar edges truncated by oR and combinations of  $R \cdot \infty P_s$  or  $R \cdot \infty P_s \cdot oR$ ; all of the crystals have well-defined edges and faces. It often appears also in rhombohedra elongated in one direction, or in cruciform, hook-shaped, or feathery figures. It is easily soluble in water.

5. Iron Silico-fluoride cannot be distinguished from magnesium silico-fluoride; the same with manganese silico-fluoride; while strontium



FIG. 35.—MAGNESIUM SILICO-FLUORIDE. (After Boricky.)

silico-fluoride can scarcely be distinguished from calcium silico-fluoride.

Lithium Silico-fluoride appears generally in regular flat hexagonal pyramids, where one pair of faces is sometimes remarkably

developed; barium silico-fluoride in extremely minute, short, pointed needles.

Distinction between the Silico-fluorides of Calcium and Strontium.—If a drop of sulphuric acid diluted with an equal bulk of water is added to the silico-fluorides, the crystals of *calcium* are *immediately* surrounded with a thick fringe of monoclinic gypsum crystals, while those of strontium change but slowly.

Distinction between the Silico-fluorides of Iron, Manganese, and Magnesia.—These can be distinguished either by subjecting to the action of chlorine gas for about twenty minutes, when the magnesium silico-fluoride remains colorless, the iron becomes yellow and the manganese red; or these silicofluorides can be distinguished by the reaction with ammonium sulphide, when the silico-fluoride of magnesium remains colorless, while the iron is blackened and the manganese becomes reddish-gray and granular.

The fluorides of Fe, Mn, Co, Ni, and Cu can be distinguished also by their reaction with potassium ferrocyanide. If this solution be dropped on the silico-fluorides the corresponding ferrocyanides will be formed, which can be recognized from the characteristic color: Fe is blue, Mn brown, Cu red, Co dark green, and Ni light green.

This method has many disadvantages; e.g., it is impossible to prove by it the presence of alumina; the distinction between the silico-fluorides of iron and magnesium is difficult and detailed; the calcium silico-fluoride crystals are also insufficiently characteristic. Nevertheless it is advantageously employed, especially in testing for the alkalies.

Th. A. Behrens has proposed another complete system of microchemical methods for use in petrography. In this method also a series of new and admirable microreactions are introduced. If a combination of these two methods—that of Bořicky for the determination of the alkalies, and of Behrens
#### METHODS OF INVESTIGATION.

—be effected, a complete qualitative analysis in many cases can be carried out with the microscope. In this latter method, however, the operation cannot be carried out on the rocksection itself.

## Behrens's Microchemical Method.

Preparation of the Mineral.-The minerals to be examined must always be separated from the mass of the rock. In the coarse-grained rocks this is easily done by picking out the pieces from the coarse rock-powder either under the microscope or with a pocket-lens. In the fine-grained rocks, where the rock-constituents can no longer be distinguished in the powder, the mineral particle is removed from the slide by aid of the microscope and a lance-shaped needle; the section is ground until the desired mineral granule is transparent and partly polished. The isolation of the desired mineral is effected by gradually breaking away the section from the edge. The isolation of the mineral is lightened if the object-glass is first warmed, and the Canada balsam under the rock-leaflet thus softened. The isolated mineral particle, of at least 0.3 mm. diameter and 0.1 mg. in weight, is cleaned and pulverized in an agate mortar beneath a piece of filter-paper to prevent loss.

The Testing.—The tests are made in a hemispherical platinum dish about I cm. in diameter, closed by a concave platinum cover; the reagent employed is chemically pure hydrofluoric acid, or ammonium fluoride, or concentrated hydrochloric acid. Two or three drops of either acid are transferred to the small dish, and the mineral, finely powdered, added. The mixture is heated, and, if necessary, hydrofluoric acid added a second time, and the evaporation repeated. The dried fluorides are then evaporated with concentrated sulphuric acid until voluminous clouds of the gray acid-vapors appear. The sulphuric acid, however, must not be completely volatilized; it is advisable, therefore, to repeat the evaporation with a drop of sulphuric acid. The decomposed mass is then dissolved in water, the platinum capsule being about half filled, and the contents evaporated by gentle heat until each centigram of solution contains about 0.1 mg. substance.

A drop of this solution is transferred by a capillary pipette to a slide without a covering-glass to facilitate evaporation, and is placed beneath the microscope. Two hundred diameters is the best magnifying power. The objective here also must be protected by a leaf of muscovite cemented with glycerine.

This drop is examined first for

Calcium.—If the mineral was calciferous, free crystals of gypsum (Fig. 36) separate on evaporation; the columns are



FIG. 36.—GYPSUM. (After Behrens.) thin, of  $\infty P. \infty P \infty . P$ , generally lying on  $\infty P \infty$  or arranged in rosettes. Often larger crystals of the wellknown swallow-tail twins are discernible in the outer edge of the drop. The presence of 0.0005 mg. CaO can be demonstrated by this reaction. If a smaller amount of lime is present, or the gypsum separates too slowly, the slide with the drop is moistened with alcohol. The crystals then

formed are, however, smaller and less distinct, but the sensitiveness of the reaction is quadrupled.

The same drop is searched for

**Potassium.**—A drop of concentrated platinum chloride is added by means of a platinum wire to the drop to be tested. Crystals of the double chloride of platinum and potassium (Fig. 37, a) are formed within a few minutes, and generally on the outer edge of the drop. They are sharply-defined octahedra of high refractive power and of a bright yellow color. If a concentrated solution was employed, clover-leaved trillings

and fourlings also appear. The crystals are formed more rapidly in chloride solution than in sulphate solution, and are smaller. A large excess of sulphuric acid prevents their formation. 0.0006 mg. K<sub>2</sub>O can be demonstrated by this reaction.

Sodium is proved with cerium sulphate. A drop of the concentrated solution of this reagent, and another drop of the solution from



FIG. 37. a. Potassium-flatinum Chloride. b. Potassium Fluoborate. (After Behrens.)

the decomposed mineral, are placed on a slide about 5 mm. apart, and joined by a thread of glass. Tufts of cerium sulphate appear in the drop of reagent, and on the edge an opaque brown zone of the sodium double-salt, which permeates the whole drop if the percentage of sodium is large; with 600 diameters this zone is shown to be composed of minute white transparent granules. If the mineral contains potassium also, a coarsely granular gray zone of the potassium double-salt is formed in the centre of the drop, which is made up from granules and fragments similar to potato-starch. In lower percentages of the alkali metals in the mineral the phenomena are more easily observed. Lumps and short rhombs of the potassium double-salt, and acute prisms and spindle-formed crystals of the sodium double-salt, appear. A large excess of sulphuric acid retards the reaction.

This reaction can be first applied for both alkali-metals, and then that with platinum chloride for potassium on the same slide, and finally the test for sodium with hydrofluosilicic acid after the slide has been prepared with balsam. At any

rate the Bořicky test for sodium is to be preferred, as also the test for potassium with platinum chloride.

Magnesium is shown by hydrogen-sodium-ammonium phosphate (microcosmic salt). The drop already searched for Al or K is saturated with ammonia, a drop of water placed at a distance of about I cm., a grain of microcosmic salt dissolved in it, and the two drops connected by a thread of glass. There are immediately formed either double, forked crystalloids similar to the microlites in the natural glasses, or, if the solution is quite dilute, well-defined twins of hemimorphous crystals of ammonium-magnesium phosphate (Fig. 38). The reaction for magnesium often does not appear or is ill-defined,



FIG. 38.—AMMONIUM-MAGNESIUM PHOSPHATE. (After Behrens.)



FIG. 39.—CÆSIUM ALUM. (After Behrens.)

owing to an insufficiency of ammonium salts; it is advisable, therefore, to add a little hydrochloric acid or ammonium chloride before saturation with ammonia. 0.001 mg. MgO can be proved by this reaction.

Behrens found cæsium chloride an excellent reagent for Aluminium. A minute portion of the deliquescent salt is placed with the point of a platinum wire on the edge of the test-drop. Large transparent octahedra (more rarely  $\infty O \infty . O$ ) of cæsium alum are immediately formed (Fig. 39). If the solution of the mineral is concentrated, only a dendritic mass is formed, and a small drop of water must be placed beside that of the reagent. A large amount of sulphuric acid interferes with the formation of the alum crystals. 0.01 mg.  $Al_2O_3$  can be clearly proved by this reaction.

Iron is rarely searched for with the microscope. The color of the flocculent, fine-grained precipitate obtained with potassium ferrocyanide from iron solutions is sufficiently characteristic and intense when examined macroscopically.

Manganese is proved by fusing with soda. The characteristic green color is obtained with the smallest amount. A microscopical examination is therefore superfluous.

Lithium is precipitated by an alkaline carbonate from the solution in sulphuric acid, and gives well-developed monoclinic crystals of lithium carbonate with rectangular cross-section. These crystals can be distinguished from gypsum by their rectangular form and solubility in dilute sulphuric acid; from magnesium double-salt by the property that they are formed in every proportion of potassium carbonate and lithium sulphate, and remain constant; while the crystals of magnesium double-salt are formed only in large excess of the alkaline carbonates and in close proximity, and soon become granular. Phosphoric acid seriously retards the formation of the lithiumcarbonate crystals.

Barium and Strontium.—These are found, together with calcium and gypsum, in the residue after lixiviation of the mass in the platinum capsule with water. This residue is dissolved in hot concentrated sulphuric acid, is allowed to cool, and is extracted with water. From a drop there is first a separation of barium sulphate in small lenticular, crossed crystals; then of strontium sulphate, at first in matted tufts and fine needles, then in larger, often rhombic, cruciform, twinned crystals; last of all gypsum separates.

Metalloids. -- Of the remaining reactions proposed by Behrens

for use with the rock-forming minerals, the following are of importance:

**Chlorine.**—The mineral granule to be examined for chlorine is fused with soda and decomposed; a large quantity of concentrated sulphuric acid is added to the fused mass in the platinum capsule, and the escaping hydrochloric-acid gas is absorbed by a drop of water adhering to the under side of a glass covering the capsule. This cover is kept cool by a few drops of water on the upper surface. At the close of the process the water is wiped from the upper surface with filter-paper, and the covering-glass inverted and placed on the stage of the microscope. A granule of thallium sulphate is then laid in the centre of the drop of adhering water. Colorless octahedra as well as  $O . \infty O$  of thallium chloride are rapidly formed. These refract light powerfully, and are often combined into clover-leaf trillings and fourlings. 0.004 mg. NaCl can be thus proved.

**Phosphorus and Sulphur** can be proved by reversing the reactions already described for aluminium (for S) and for magnesium (for P). Insoluble sulphates and phosphates must be fused with soda, and the pulverized fused mass lixiviated with water. For proving the presence of sulphur a drop of this solution is placed near a drop of solution of aluminium chloride and hydrochloric acid with a little cæsium chloride. The two drops are then united by a glass thread, when the cæsium-alum octahedra are developed, as before, near the extremity. A concentrated solution of ammonium chloride and magnesium sulphate is used as a reagent for the detection of phosphorus.

Fluorine.—The mineral containing fluorine is dissolved in concentrated sulphuric acid, and the escaping gas is absorbed by dilute sulphuric acid. Such minerals as topaz or tourmaline must be first fused with twice their volume of soda in order to change the fluorine into hydrofluosilicic acid; powdered sand is sometimes added. A drop of the sulphuric acid is placed on the

## METHODS OF INVESTIGATION.

convex surface of the platinum cover, and is then laid on the platinum capsule with the drop downward, the upper surface being cooled as in the chlorine reaction. The capsule is gently warmed, and at the close of the distillation the water used for cooling is removed by filter-paper, and the drop of acid containing the fluorine is transferred to a slide coated with Canada balsam, or a leaflet of barite. (In order to avoid spurting it is advisable to heat the test, first fused with soda, with acetic acid, and evaporate before using the sulphuric acid.) A grain of sodium chloride is then added to the transferred drop. At first six-leaved rosettes, and later hexagonal tablets,  $\infty P \cdot oP$ , and short columns,  $\infty P \cdot P$ , of sodium silico-fluoride will appear. 0.0036 mg. fluorine can be thus detected.

Silicon and Boron .- Their determination is precisely the same as fluorine, except that hydrofluoric acid must be used with the sulphuric. If only one of the two elements is to be proved, sodium chloride is again used as the reagent; the hexagonal tablets already mentioned are again formed. If, however, boron as well as silicon is to be detected, potassium chloride is used. Potassium silico-fluoride crystallizes in the regular system, as O and  $O \cdot \infty O \infty$ ; while potassium boro-fluoride (Fig. 37, b) appears in lance-shaped leaves and in rhombs with obtuse angles, often replaced by edges. The silico-fluorides separate first. If the mineral under examination is rich in silicon, the greater part of the silicon must be removed before the presence of boron can be accurately proved. The mineral powder mixed with hydrofluoric and sulphuric acids must be warmed until the greater part of the silico-fluoride is driven out, which is absorbed by the diluted sulphuric acid and tested for silicon with sodium chloride. Hydrofluoric acid is again added to the mineral test and again heated until the white fumes of sulphuric acid appear. The distillate is warmed to about 120° C., and a drop of water is added to the residue, which is transferred to a slide and tested for boron with potassium chloride. The rhom-

bic crystals of potassium boro-fluoride are formed only when the drop has dried.

Water.—The water-determination is carried out with minute mineral particles in the same way as in blowpipe analysis. Behrens recommends the following small apparatus for this purpose : A small tube about 10 mm. long and 3 mm. in diameter is drawn out at one end to a thread about 2 cm. in length and 0.5 mm. in diameter; after a gentle heating of the whole tube and drawing through of air it is closed. While the tube is yet warm, the mineral granule is introduced and the tube drawn out to about half its length and melted at the other end also, making it blunt. The capillary end is then cooled by alcohol, or is heated to glowing if no deposition has taken place. Such a deposition of water then generally occurs, which collects in the capillary portion without artificial cooling.

By the application of the delicate method of Behrens we are in position to determine immediately with ease and perfect accuracy those most important elements of the rock-forming minerals, potassium, calcium, magnesium, and aluminium; the Bořicky method appears to be more characteristic and accurate for sodium. Rosenbusch recommends the flame-reaction when the amount of sodium is very small.

# C. Mechanical Separation of the Rock-forming Minerals.

THOULET. Bull. de la Soc. minéralog. de France, 1879, II. p. 17 and 189. FOUQUÉ ET MICHEL LÉVY. Minéralogie micrographique, p. 114.

- GOLDSCHMIDT. N. Jahrb. f. Mineralogie und Geologie, 1881, 1. Beilagebd. p. 179.
- K. OEBBEKE. Ebenda, p. 454.
- E. COHEN U. L. V. WERVEKE. N. Jahrb. f. min. u. Geol., 1883, II. Bd. p. 86-89.
- D. KLEIN. Bull. de la Soc. minér. de France, Juin 1881, 4. p. 149, and Zeitschr.
  f. Krystallographie und Mineralogie v. Groth, VI. 1882, p. 306, or N. Jahrb. f. Min. u. Geol. 1882, II. Bd. Ref. p. 189.

- P. GISEVIUS. Beiträge z. Methode d. Bestimmung d. spec. Gew. v. Min. u. d. mechanischen Trennung von Mineralgemengen. Inaug.-Diss. Univ. Bonn, 1883.
- C. ROHRBACH. N. Jahrb. f. Min. u. Geol. 1883, II. Bd. p. 186, and Wiedemann's Annalen f. Physik u. Chemie.
- P. MANN. N. Jahrb. f. Min. u. Geol. 1884, II. p. 175.

In order to institute a quantitative chemical analysis of the several rock-forming minerals, they must be separated as perfectly as possible from each other; a partial separation of the minerals, as already stated, is possible by treatment with different acids and with the magnet; but the separation is best effected by taking advantage of the relative specific gravities of the minerals. Solutions of high specific gravities are best adapted to this purpose, as by dilution of the solution it can be lowered easily. This method of the mechanical separation of the rock-constituents has the additional advantage that their specific gravities can be exactly determined at the same time, and thus a further vantage-ground for the determination of the mineral be won.

The solutions at present known and universally applied to the mechanical separation and determination of the specific gravities are:

I. The solution of iodides of potassium and mercury with a highest specific gravity of 3.196 (Thoulet-Goldschmidt).

II. The solution of cadmium boro-tungstate with a specific gravity of 3.6 (Klein).

III. The solution of iodides of barium and mercury with a specific gravity of 3.588 (Rohrbach).

## I. SEPARATION WITH THE SOLUTION OF THE IODIDES OF POTASSIUM AND MERCURY.

Preparation and Properties of the Solution.—Potassium iodide and mercuric iodide are weighed out in proportion of 1:1.239; both portions are thrown into a large evaporating-dish, mixed,

and dissolved in as little water as possible. The solution is then evaporated on the water-bath until a piece of mineral, tourmaline e.g., sp. gr. 3.I, floats upon it; the dish is then removed from the water-bath and allowed to cool, when the mass thickens and the maximum of specific gravity is reached. Generally acicular crystals of a hydrous double iodide of potassium and mercury separate from the concentrated solution during the process of cooling; this precipitate can be dissolved in a few drops of water, or can be filtered off if there is an abundance of the solution. The salt thus removed by filtration can be redissolved in water and evaporated to the required specific gravity. If too much potassium iodide was used, crystals of the salt of the combination  $\infty O \infty \cdot O$  will separate on the surface of the liquid; if, on the other hand, there is an excess of mercuric iodide, a thick felt of yellow needles is formed which is decomposed on dissolving in water, with the deposition of a red crystalline powder HgI,, but which dissolves in potassiumiodide solution without decomposition. The concentrated solution is often decomposed on adding water with deposition of the red powder, which is, however, again redissolved on agitating the solution. The specific gravity of the solution changes on long standing ; this depends on the temperature and moisture of the atmosphere; the solution is also decomposed by organic substances, as filter-paper, etc. The highest attainable specific gravity of the solution is 3.196 (Goldschmidt).

Determination of the Specific Gravity of Minerals and Rocks by the Solution.—The specific gravity of all those minerals under 3.196 can be determined by means of this solution in the following manner: The fragments of the mineral or rock, washed in pure water and dried, are thrown into a tall slim beaker-glass filled with the solution at its maximum density; the liquid is then diluted with water, or diluted solution, until the mineral is completely suspended in the solution, i.e. neither sinks nor rises. The solution is then poured into a 25-cc. kolben accurately calibrated, and filled exactly to the mark—the mark had best be on the under side of the meniscus. The excess of liquid is removed either with a capillary pipette or filter-paper. The filled kolben is weighed and then emptied back into the beaker-glass and the solution tested with the fragment of mineral; the kolben is refilled to the mark and weighed, and the operation repeated for a third time. A mean is taken of these three weighings. The weighings need not be perfectly exact (i.e. to a few milligrams), varying often between 10 and 20 milligrams, as the error is lessened by the triple weighing. Determinations of specific gravity by this method are carried with accuracy to the third decimal place. E.g., quartz and a 25-cc. kolben gave:

| First weighing | = 77.981    | grams.  |
|----------------|-------------|---------|
| Second "       | = 77.919    | "       |
| Third "        | = 77.973    | "       |
| Mean           | = 77.957    | "       |
| — Kolben       | = 11.682    | "       |
|                | 66.275      | "       |
| 6 0            | St 1 anaifa | amarit- |

#### $66.275 \div 25 = 2.654$ specific gravity.

Such determinations can be made much more rapidly and as accurately, according to the principle of Mohr, on a balance constructed by G. Westphal of Celle (price, 45 marks). By this method the specific gravity is read directly on the balancebeam after a single weighing and with weights in rider form.

It must be noted that specific-gravity determinations of mineral *powder* cannot be made with the solution, and, as is well known, that decompositions or inclosures may lower or raise the specific gravity of minerals.

Separation of the Rock-components by means of the Solution. —In order to separate the components of a rock from each other, the rock must be pulverized; this should be preceded

by an orientation concerning its probable mineralogical composition by an investigation of a thin section. The powder is then passed through sieves of different mesh, and that part selected for separation which the microscopical examination has demonstrated to be homogeneous, i.e., wherein several minerals do not cohere. The very finest flour-like powder cannot be used for the separation, as it mixes with the syrupy solution to form a thin mud; the minute mineral particles, grains, and crystals, therefore, which constitute for the most part the micro-crystalline or porphyritic rocks cannot be separated by this method.

If the rock is very coarsely granular, it is often of great advantage if the minerals distinguished by the pocket-lens,



FIG. 40. HARADA'S SEPARAT-ING-APPARATUS. (Copy from K. Oebbeke.)

broken away and dissociated, are separated by means of the solution; e.g., the white feldspars or the black bisilicates. Mica can be obtained pure by allowing the mineral powder simply to slide over rough paper.

The granular powder obtained in this manner is poured into an apparatus filled with the potassium-mercury-iodide solution at its highest specific gravity.

Apparatus.—As the very simplest piece of apparatus and one especially adapted to the purpose, an ordinary large glass separating-funnel, or the pear-shaped vessel described by T. Harada, is to be recommended. This latter apparatus is closed above with a ground-glass stopper, and terminates in a narrow tube below, also provided with a ground-glass stop-cock (Fig. 40). The solution after the powder is added to it is well stirred with a glass rod and allowed to settle;

those minerals possessing a higher specific gravity than the solution sink to the bottom, and can be removed by carefully opening the lower glass cock after the solution has had time to clear.

#### METHODS OF INVESTIGATION.

The potassium-mercury solution is then diluted by carefully dropping distilled water accompanied by constant agitation of the liquid with a stirring-rod until another portion of the powder has either settled to the bottom or is suspended in the liquid. Care must be taken that particles of the powder do not cling to the rod itself or the walls of the funnel.

In order to establish the specific gravity of the solution, and consequently of the precipitated mineral granules, either a direct specific-gravity determination is made with the Mohr-Westphal balance, whereby a short and broad glass tube is thrust into the solution and the plunger of the balance sunk inside of it (a device preventing a large loss of mineral by adhesion), or the so-called indicators are employed. A series of larger mineral fragments of a known specific gravity and varying from I to 3.2 is used for this purpose. A large number of such minerals, especially of those with a specific gravity 2–3.2, should be at hand. By the use of several of these indicators, selected according to the mineral composition of the rock as established by the microscope, the specific gravity of the solution can be determined easily.

After removing the powder which has fallen to the bottom, the solution is again diluted, and the operation repeated. The separated powder is well washed with water. The washings can be evaporated with the diluted solution on the water-bath until the maximum density is again reached.

The rock-powder can thus be divided into portions of different known specific gravity which are partly pure, i.e., contain fragments made up of one and the same mineral, or, if the rock was too coarsely pulverized, show the so-called intermediary products, impurities resulting from the interpenetrations of several minerals. In the latter case these portions must be more finely pulverized and again separated.

**Example**.—*Tonalite*.—The microscopical examination of this coarse-grained rock developed as components: plagioclase

predominating, orthoclase subordinate, much quartz, green hornblende, brown biotite, and magnetite, ilmenite, and garnet as accessory.

The biotite is first of all slid off on rough paper, and thus obtained quite pure. The magnetite can be withdrawn by a magnet. The residual powder is then thrown into the solution, when the garnets and titanic iron sink to the bottom. Hornblende, orthoclase, and quartz fragments are selected as indicators, as the specific gravities of the minerals to be separated lie between them. By slow dilution of the potassium-mercury solution the hornblende will be first precipitated, and only a white powder will remain. The plagioclase will first precipitate from this white powder, then quartz, and finally the orthoclase.

If the specific gravity of the solution was determined while the plagioclase was suspended, and it was found to be 2.67, the value shows that the plagioclase is an andesine.

Finally, optical investigations can be instituted on cleavagefragments of andesine and hornblende selected from the separated mineral particles. The plagioclase also can be subjected to a quantitative chemical analysis after the purity of the powder is established.

Precautionary Rules in Working with the Potassium-Mercury Solution.—I. A large loss of 'the solution should be guarded against, because of the cost of preparation. All scattered drops, residues, and washings from the apparatus should therefore be gathered, and this dilute solution again evaporated on the water-bath. 2. The solution is very poisonous and attacks the skin.

**Regeneration of the Solution.**—The solution changes to a dark or reddish brown after long usage, owing to the separation of free iodine. The iodine is removed, as L. v. Werveke has recommended, by addition of mercury and agitation of the cold solution; or, better, by concentrating the solution on the water-bath with constant agitation, and consequent division of

the mercury. The solution again assumes a honey-yellow color, and can be raised to its highest specific gravity without injury. The free iodine combines with the mercury to form the subiodide, which precipitates as a dirty-green dust on the mercury. This is again changed to metallic mercury and mercuric iodide on concentrating the solution, and is dissolved by the excess of potassium iodide which caused the separation of the free iodine.

## II. KLEIN'S SOLUTION.

D. Klein has recommended a solution\* of boro-tungstate of cadmium  $(9WO_s \cdot B_sO_s \cdot 2CdO, 2H_sO + 16 aq.)$  for the separation of the rock-forming minerals. Although the preparation of this solution is far more complicated than that of the potassium-mercury iodides, yet it is to be preferred, as nearly all of the rock-forming minerals can be separated by it, owing to its high specific gravity—3.6; while many minerals, and the most important, as augite, hornblende, olivine, etc., whose specific gravity lies above 3.19, cannot be separated by the solution of the iodides.

The process of separation with Klein's solution is exactly analogous to that with the iodide solution. It must be remembered, however, to dissolve out with acids all carbonates, such as calcite, etc., from the rock-powder, as they decompose the solution. The apparatus, either separating-funnel or Harada's vessel, must be surrounded by hot water or otherwise warmed, as the salt must be melted at 75° if a solution with a specific gravity of 3.5-3.6 is desired.

The Preparation of the solution is as follows: A solution of Na, WO, in five parts water is first prepared and then boiled

<sup>\*</sup>According to the author's experience, Klein's solution is the best and the most durable of all the solutions of high specific gravity used for the mechanical separation of the rock-components.

with 1.5 parts B(OH), until the whole is dissolved. On cooling and agitating the solution, crystals of borax and sodium polyborates separate, which must be removed. The decanted liquid is again evaporated, and the newly-formed crystals removed, and this process is repeated until glass floats on the surface. A boiling solution of BaCl, is then added (1BaCl, : 3Na, WO,). A thick white precipitate is formed, which is filtered off, well washed with water, and finally dissolved in dilute HCl (1HCl sp. gr. 1.18 : 10H,O). Hydrochloric acid is added in excess to the solution, and the whole evaporated to dryness, when H,WO, separates. The dried mass is again dissolved in hot water, boiled for about two hours, water being added from time to time, and the H<sub>2</sub>WO<sub>4</sub> filtered off. Tetragonal crystals of the compound  $9WO_{0}$ . B<sub>0</sub>O<sub>0</sub>. 2BaO, 2H<sub>0</sub>O + 19 aq. separate from the solution, and these are purified by recrystallization. Finally, CdSO, is added to a boiling solution of these crystals, when the soluble cadmium boro-tungstate oWO, . B,O, . 2CdO,  $_{2H_{2}O + 16}$  aq. is formed and filtered from the insoluble BaSO.

Cadmium boro-tungstate dissolves in less than  $\frac{1}{10}$  of its weight of water; it crystallizes on evaporation on the waterbath and cooling. The solution of these crystals has a specific gravity of 3.28 at 15° C.

Evaporation of the solution must be done always on the water-bath; if a specific gravity of 3.6 is desired, the solution is evaporated until olivine floats, and is then allowed to stand 24 hours. Crystalline masses are deposited which are removed from the solution, purified and melted at  $75^{\circ}$  in the separating-apparatus, placed either over the water-bath or in a jacket filled with hot water. Spinel floats on this fused mass.

Cadmium boro-tungstate solution can be obtained from chemical depots ready for use.

In addition to its higher specific gravity this solution has these further advantages over the potassium-mercury solution: it is non-poisonous, does not attack the skin, and remains at a constant specific gravity; carbonates and metallic iron, however, decompose it.

## III. ROHRBACH'S SOLUTION OF THE IODIDES OF BARIUM AND MERCURY.

This is even more valuable than Klein's solution for the separations. The specific gravity of the concentrated bariummercury solution is nearly the same as Klein's, but the preparation is not so complicated; moreover no decomposition is effected by the carbonates.

The solution of the Iodides of Mercury and Barium is prepared in the following manner: 100 parts of barium iodide and 130 parts of mercuric iodide are weighed as rapidly as possible; both in powdered form are transferred to a dry kolben over an oil-bath heated to about 200° C., are well shaken together, and dissolved in about 20 kcm. of water. The solution is hastened by whirling the contents with a glass rod bent at the lower extremity. If all is dissolved, the solution is allowed to boil a little, and is then transferred to a water-bath, where it is evaporated until a fragment of epidote floats. On allowing the solution to cool, the specific gravity increases until olivine floats; a double-salt, however, is deposited, which is allowed to settle at the bottom of a tall beaker-glass, and is removed by careful decantation of the clear solution. Filtration is not advisable, as filter-paper cannot be used. The solution thus prepared attains a specific gravity of 3.575-3.588.

The method of operation with this solution is exactly the same as with the potassium-mercury solution, except that the barium-mercury solution must not be diluted with water, but always with dilute solution. This latter solution can be obtained easily by allowing a layer of water to stand for about 24 hours on the concentrated solution in a beaker-glass, when

the mixing will follow by diffusion. Red mercuric iodide generally deposits on diluting with water. The powder to be separated must be perfectly dry; iodide of potassium must be used at first in washing, which redissolves any precipitated mercuric iodide.

Rohrbach recommended also that the separation of all minerals below 3.1 should be carried out with the potassiummercury solution, and that the further separation of the heavier minerals of sp. gr. 3.1–3.58 should be prosecuted with the *barium-mercury* solution; closed apparatus for separation, as Harada's, is also advisable. On continued standing (i.e., for several months) the solution becomes specifically lighter, owing to the deposition of mercuric iodide; it cannot, therefore, be employed in separating minerals of sp. gr. 3.2–3.6.

## IV. METHODS OF SEPARATION BASED ON THE DIFFERENT ACTION OF ACIDS ON MINERALS.

#### ZIRKEL und ROSENBUSCH, l. c.

- F. FOUQUÉ et MICHEL LÉVY. Minéralogie micrographique. Paris, 1879, p. 116.
- F. FOUQUÉ. Nouveaux procédés d'analyse médiate des roches et leur application aux laves de la dernière éruption de Santorin. Mém. savants étrangères de l'Académie des sciences. Paris, XXII. p. 11, and Compt. rend. 1874. p. 869.
- K. OEBBEKE. N. Jahrb. f. Min. u. Geol. 1881, I. Beilagebd. p. 455.
- A. CATHREIN. Ebenda, 1881. I. Bd. p. 172.

It has been hinted already that a basis for the more exact determination of many minerals can be obtained in many cases by simple treatment of the powdered rock with various acids. With this in view, a thin section of the rock is first examined in order to gain some idea of its mineralogical composition. Small fragments of the rock are then finely powdered and treated with concentrated hot hydrochloric acid in a beakerglass. Any evolution of gas must be carefully noted, or formation of any precipitate, especially separation of sulphur or silicic acid. The acid is generally allowed to act on the powder for some hours, and is then filtered. The sulphur is then dissolved from the dried powder on the paper with carbon disulphide or ether, and the silicic acid by boiling in sodium carbonate. The powder is then thoroughly washed, dried, mixed with Canada balsam, and suitably prepared on a slide for a microscopical examination. If it is evident that one or more of the rock-forming minerals has dissolved, the ordinary qualitative chemical analysis of the filtrate is set in course.

The following rock-forming minerals are soluble in hydrochloric acid:

I. Soluble *without* evolution of gas or separation of a precipitate:

Magnetite, Hematite, Apatite (P<sub>a</sub>O<sub>b</sub>), Titaniferous Magnetite (difficultly soluble).

II. Soluble with evolution of CO<sub>2</sub>: Calcite, Aragonite (Ca), Dolomite (CaMg), Magnesite (difficultly soluble), Siderite (Fe).

III. Soluble with separation of S: Pyrrhotite, Pyrite (difficultly soluble).

IV. Soluble with separation of pulverulent SiO<sub>2</sub>:

Leucite (K), Meionite (Ca), Scapolite (Ca, Na), Labradorite and Bytownite (more difficultly soluble, Ca, Na), Anorthite (Ca).

**V.** Soluble with separation of gelatinous SiO<sub>2</sub>:

Sodalite (Cl), Hauyn and Nosean (SO<sub>3</sub>), Nepheline (Na), Wollastonite (Ca), Olivine (Mg), Melilite (Ca), nearly all Zeolites, Serpentine, then Chlorite and Epidote (difficultly soluble).

Exact determinations cannot be carried out by this method, and all the less because many minerals, and those too the most commonly-occurring silicates, possess a similar chemical composition; e.g., scapolite or meionite, with the species of plagioclase closely related to anorthite. Such minerals as the carbonates, apatite or sodalite, can be more easily demonstrated, as they give characteristic reactions. If hydrochloric acid of different degrees of concentration be used, more exact results are obtained, as the solubility of the minerals depends upon the size of the granule, temperature, duration of action, and degree of concentrations have been made in this direction; e.g., nepheline and olivine occurring together in a nepheline basalt can be separated by treatment with hydrochloric acid.

Fouqué has proposed another method of separation which depends upon the application of hydrofluoric acid of different degrees of strength.

Pure concentrated hydrofluoric acid is poured into a platinum dish, and about 30 grams of the powdered rock is slowly added and stirred with a platinum spatula. Nearly all minerals except those containing Fe and Mg are dissolved, forming fluorides and silico-fluorides and a thick jelly of silicic acid The different minerals can be separated accordand alumina. ing to the duration of the reaction; the amorphous minerals being decomposed first, then the feldspars, then quartz, and finally the iron silicates and magnetite. If the action of the acid on a mineral has been studied sufficiently and its arrest is desired, a strong fine stream of water may be directed into the dish, and the acid thus be diluted until it ceases to act on the powder. The gelatinous mass is pressed together, and washed with water; the unattacked mineral remaining at the bottom of the dish.

In this manner feldspar, e.g., can be separated from a vitreous mass, or augite and hornblende from other components.

#### METHODS OF INVESTIGATION

## V. SEPARATION OF THE ROCK-CONSTITUENTS BY MEANS OF THE ELECTRO-MAGNET.

F. FOUQUE. Santorin. Paris, 1879.

F. FOUQUE. Mém. Acad. des sciences, 1874, XXII, No. 11.

- C. DOELTER. Sitzungsb. d. k. Akad. d. Wiss. in Wien. LXXXV. Bd. I. Abth. 1882. p. 47 and 442.
- C. DOELTER. Die Vulcane der Capverden. Graz, 1882.

P. MANN. N. Jahrb. f. Min. u. Geol. 1884. II. p. 181.

It has been noted already that for a long period the extraction of magnetite from the rock-powder has been effected by means of an ordinary powerful magnet; more recently the electro-magnet has been applied to the separation of the ferriferous minerals from those containing no iron.

The credit for its application to petrographical investigations is due to Fouqué, and especially that he called attention to its value in the mechanical analysis of rocks.

It is impossible to separate the components of a rock by use of the electro-magnet alone; several methods must always be combined in order that the minerals may be separated as pure as possible. Therefore the solution of the iodides of potassium and mercury is first advantageously employed, then Klein's or Rohrbach's solution, and finally the mineral portions separated by means of these solutions are completely purified with the electro-magnet. E.g., it is required to separate the components of a phonolite-magnetite, sanidine, nepheline, and augite. The magnetite is removed with the magnetic needle. In the residue, sanidine and nepheline are separated from the augite by means of the potassium-mercury solution of specific gravity about 3, when the augite is obtained very pure. The sanidine and nepheline can be purified by means of the electro-magnet, and the nepheline separated from the sanidine (and augite accidentally present) again by means of

the potassium-mercury solution; or the nepheline can be dissolved in hydrochloric acid.

If, on the other hand, the components of a vitreous augiteandesite are to be separated, the vitreous base may be removed by means of hydrofluoric acid, the augite separated from the plagioclase by the electro-magnet, and the varieties of plagioclase, in case several species are present, isolated by the potassium-mercury solution.

The powder must be dry and free from the very finest dust when the electro-magnet is used. The size of the grains depends upon the density of the rock.

If several ferriferous mineral species occur in the rock to be examined, e.g., magnetite, ilmenite, augite, biotite, olivine, etc., they can be separated from each other by varying the strength of current passing through the electro-magnet. At first two elements are used, then four, six, eight, and finally ten. Doelter has shown that the minerals can be arranged in the following series according to their different powers of being attracted:

> Magnetite, Hematite, Ilmenite, Chromite, Siderite, Almandine, Hedenbergite, Ankerite, Limonite, Augite (rich in iron), Pleonaste, Arfvedsonite, Hornblende, Augite (light-colored), Epidote, Pyrope, Tourmaline, Bronzite, Idocrase, Staurolite, Actinolite, Olivine, Pyrite, Chalcopyrite, Biotite, Chlorite, Rutile, Hauyn, Diopside, Muscovite, Nepheline, Leucite, Dolomite.

Doelter has also described a piece of apparatus suitable for such separations. In this the distance between the powder lying on a glass plate and the hook-shaped poles of the horseshoe magnet can be measured. He also advised the preparation of a scale of minerals for each apparatus with its varying power of the current, analogous to the indicators used in the separation by solutions of high specific gravity, in order to determine the individual power of attraction with the different strength of current. The mineral granules to be separated should be from 0.14 to 0.18 mm. in diameter. v. Pebal states that powder suspended in water is preferable to the dry.

## D. Explanations of the Tables relating to the Morphological Properties of the Rock-forming Minerals.

ZIRKEL. Mikr. Beschaff. d. Min. u. Gesteine. Leipzig, 1873.

ROSENBUSCH. Mikr. Physiogr. d. petrogr. wicht. Miner. Stuttgart, 1873.

E. COHEN. Sammlung von Mikrophotographien zur Veranschaulichung der mikroskopischen Structur von Mineralien und Gesteinen. Stuttgart, 1883.

FOUQUÉ ET MICHEL LÉVY. Minéralogie micrographique. Paris, 1879.

THOULET. Contributions à l'étude des propriétés physiques et chimiques des minéraux microscopiques. Paris, 1880.

v. PEBAL. Sitzungsber. d. k. k. Akad. der Wiss. math. nat. Cl. 1882. p. 193.

#### I. MODE OF OCCURRENCE OF THE ROCK-CONSTITUENTS.

The mineral constituents of a rock occur either in perfectlydeveloped crystals, often sharply defined, in crystalline grains, or as microlites or crystallites.

It is seldom, however, that the crystals appearing in the rocks are so large that the system of crystallization can be determined by the macroscopical examination or measurement of the angles alone. In order, therefore, to determine the mineralogical composition of a rock, a thin section must be prepared wherein the constituents, appearing in the forms just mentioned, are in sections in every possible direction. In this

case the determination of the crystalline form is rendered much more difficult, and is impossible simply from the form of the cross-section. By suitable combination of the form of cross-section, optical properties, cleavage, and finally by measurement of the angles, it can be determined in most cases to which system of crystallization the mineral belongs. E.g., a mineral appears whose cross-sections are octagonal, with cleavage at nearly right angles; or are elongated, rectangular, or hexagonal, with cleavage-fissures parallel to the longest axis. The mineral could belong to the tetragonal as well as the rhombic or monoclinic system. The section must be examined, therefore, in parallel and convergent polarized light. The form of the cross-sections shows that the mineral is developed in long eight-sided prisms with prismatic cleavage; the octagonal sections are the transverse sections at right angles to the c-axis. If they appear as isotrope in parallel polarized light and show in convergent polarized light a fixed axial cross, the mineral is tetragonal, possibly belonging to the meionite group. If, on the contrary, the transverse sections as well as the longitudinal are anisotrope and develop a middle line in converging polarized light, it is rhombic; and if, finally, one optic axis is visible, it is monoclinic and the mineral may be, e.g., from the augite group.

By measurement of the angles it can, in the latter case, still be determined which faces belong to the prism  $\infty P$  and the pinacoids, and to which faces the cleavage-fissures are parallel.

In measuring the angle of cleavage the direction of the section must always be carefully noted, as the value of the angle of cleavage varies within wide limits, according to the inclination of the section to the chief or vertical axis. E.g., augite cannot be distinguished from hornblende by the angle of cleavage alone, as augite prisms cut at an angle of  $40^{\circ}$  to the vertical axis, following  $-2 P \infty$  in the zone  $oP : \infty P \infty$ , will show a cleavage-angle of  $124^{\circ} 2'$ , which lies very near the angle of a section of hornblende cut perpendicularly to the vertical axis.

Thoulet (l. c., p. 28) has determined the value of the cleavage-angle of augite, hornblende, orthoclase, and labradorite for the different directions of the sections and according to the amplitude of its inclination to the vertical axis. The determination for the first two of these minerals is given in the table on the following page.

It is therefore impossible by observation of a single crosssection with nearly rectangular cleavage to determine with accuracy, for example, whether the observed monoclinic green or brown mineral is augite or hornblende. Nor less by simply proving the presence or absence of pleochroism. It is therefore necessary to examine a series of cross-sections of the particular mineral, and it can only be settled with any great accuracy whether a mineral is augite or hornblende when several transverse sections show a cleavage-angle approaching 87° or 124°.

Often the shape of the crystal outline shows that the plane of the section is inclined to the vertical axis, and gives approximately its angle of inclination; if the constituents are in a granular condition, this mark of recognition is wanting, and hence complicates the determination. The direction of the section can also be approximately determined by comparison of the optical relations (according to examinations in convergent polarized light).

The simple proof of parallel extinction on one or a few sections can give no safe conclusions as to whether the mineral is rhombic or monoclinic; e.g., the determination of c:c to about  $20^{\circ}$  in augite and hornblende. As many observations as possible, therefore, must be made on sections optically oriented. In the cases mentioned this is done most easily on prismatic cleavage-leaflets.

Microscopical Measurements of Angles are made with the polarization-microscope in the same manner as the determina-

|              | HORNBLENDE.<br>Zone eP : ∞₽∞.<br>Section in sense of                              | - <i>m₽</i> ∞.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59° 27' 40°; 10 20<br>58 48<br>62 33<br>69 18; 10 - 20<br>73 38<br>73 38<br>73 38<br>73 38<br>73 36<br>73 36<br>74 40<br>71 10 20<br>75<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76 | 179 54<br>180 54 ¦ μ∞₽∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
|--------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| HORNELENDE   |                                                                                   | Zone oP :<br>Section in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone oP<br>Section in<br>+ mP∞.                                                                                                                                                                                                                                                                                                                     | 57° 27' 40°;    2P<br>556 32<br>556 32<br>556 32<br>556 32<br>557 28;    2P<br>569 25<br>569 25<br>573 40<br>573 40<br>573 40<br>573 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93 20<br>102 52<br>114 20<br>127 58<br>143 46<br>161 24<br>161 24<br>180 5             |
|              | 日本になったの                                                                           | Zone oP : w P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | action in sense of                                                                                                                                                                                                                                                                                                                                  | 122° 32' 20°;    <i>aP</i><br>122 45<br>122 45<br>123 23; 124<br>127 37<br>127 37<br>127 37<br>138 48<br>138 48<br>148                                                                                             | 164 50<br>169 49<br>174 53<br>180 5                                                    |
|              |                                                                                   | ; ∞£∞,<br>i sense of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <i>m₽</i> ∞.                                                                                                                                                                                                                                                                                                                                      | 95° 11';    0P<br>96° 50° 101<br>96° 50° 101<br>104 54<br>1108 42;<br>1108 42;<br>1108 42;<br>110 54<br>113<br>124 2<br>137 38<br>137 38<br>137 36<br>153 6<br>153 6<br>153 6<br>153 6<br>153 2<br>153 2<br>153 2<br>150 2<br>100 2<br>100 200 2<br>100 200 200 200 200 200 200 200 200 200 |                                                                                        |
| стте<br>Стте | AUGITE.<br>Zone $\rho P: \infty P \infty$ .<br>Section in sense of $m P \infty$ . | Zone oP<br>Section in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + <i>m</i> £∞.                                                                                                                                                                                                                                                                                                                                      | 95° 11'; <b># 0.P</b><br>92 56<br>93 56<br>93 38<br>94 38; <b># 2</b><br>96 38<br>96 38<br>120 32<br>120 32<br>120 32<br>121 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127 50<br>134 46<br>152 34<br>152 38<br>153 38<br>159 36<br>168 40<br>178 6<br>180 Dec |
| AIT          |                                                                                   | 84° 49' 18";    0.P<br>85 33<br>85 55<br>85 55<br>93 40<br>97 5<br>107 55<br>107 55 | 150 22<br>159 59<br>169 55 <b>;</b>    æ <i>2</i> °œ                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
|              | BY AN<br>INCLINATION<br>OF THE                                                    | SECTION TO<br>of OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | م<br>م 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                        | 75<br>75<br>75<br>75<br>75<br>85<br>85<br>85<br>75<br>100<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |

THE PRISMATIC CLEAVAGE-ANGLE OF

84

#### DETERMINATION OF ROCK-FORMING MINERALS.

tion of the direction of extinction. The instrument is accurately centred, one leg of the angle to be measured so disposed that it coincides exactly with one arm of the crossthreads, the apex of the angle reaching exactly to the junction of the cross-threads of the ocular. The position of the stage is read and the stage revolved until the other leg of the angle coincides with the same arm of the cross-threads, and its position again read: the difference of the two readings gives the magnitude of the angle measured.

If the rock-components are granular, their determinations are greatly complicated, as one can neither draw any satisfactory conclusion as to the crystalline form from the character of the outline merely, nor can it be determined to which faces the cleavage-fissures are parallel; one is therefore restricted to the determination of the color, direction of cleavage, magnitude of the cleavage-angle, and especially to the optical properties of the mineral granules.

The Microlite is another form of development of the rockforming minerals. E. Cohen has designated as "microlites" all those crystals which cannot be prepared in sections in suitable positions, generally horizontal, the micas, however, vertical, appearing in the thin section as perfectly developed individuals; it makes no difference whether the mineral species can be determined or not. Vogelsang (Phil. d. Geol. 1867, p. 139) has recommended that the term "microlite" be used only with the acicular microscopical mineral forms without any regard as to whether it can or cannot be determined to which mineral the microlite belongs. Many rock forming minerals, as augite, hornblende, and the feldspars, appear as microlites; in the porphyritic rocks these occur with larger crystals or grains, and thus chronicle their different stages of formation or separation. The large crystals and grains-the so-called "springlings" (Einsprenglinge) (components of the first class)-were formed sooner than the microlites (components of the second class)

of the same mineral species forming the principal ground-mass of the porphyritic rocks.

As microlites, and nearly always as such, appear sillimanite (comp. Fig. 71), rutile, zircon, commonly tourmaline, etc.; while other minerals, as olivine, titanite, etc., never or rarely thus appear.

The Crystallites (see Fig. 41) form a transition-stage to the



microlites, i.e., lie between the amorphous and crystalline condition. Vogelsang designates by this term "all inorganic products which show some systematic arrangement, but not the general character of crystallized bodies, i.e., no polyhedral outline." The crystallites exert no influence on polarized light.

FIG. 41. CRYSTALLITES AND MICROLITES. Crystallites occur frequently in vitreous or semi-vitreous rocks. The

simplest forms are the **Globulites**, as those exceedingly minute, isotrope, for the most part globular, forms which have separated

in the vitreous ground-mass of such rocks are designated. If several such globulites are chained together, the **Margarites** are formed. If the members of this chain-like aggregate of globulites are fused together into a long needle, the **Longulites** are formed.

The **Crystalloids** form yet another stage of transition to the microlites; "these are more of a unit, act also on polarized light, but do not yet show the polyhedral outline of the microlite."



FIG. 42. MICRO-FLUCTUATION STRUCTURE. BELONITES AND TRICHITES.

The genesis of the rock-forming minerals is therefore

briefly as follows: The *crystallites* are the primitive form, —the *globulites* being first in order; the *crystalloids* mark a further progress in development; these form a transition to the *microlites*, which in turn only differ in size from the *crystals*.

Vogelsang has proposed a further subdivision of the crystallites and crystalloids, resting upon their pellucidity. A pellucid species may be called a **Belonite**; a non-pellucid, a **Trichite**. (Fig. 42.)

II. STRUCTURE OF THE ROCK-FORMING MINERALS.

The following should be especially noted concerning the microscopical relations of the rock-components:

I. The disturbances in crystallization.

- 2. The destruction of crystals already formed.
- 3. The concentric structure of crystals.

Disturbances in Crystalization are not common, and are manifested in the imperfect development of the crystal at one end or in the sunken faces whereby the crystals take on an "etched appearance;" the phenomenon so often noticed in magnetite is also to be mentioned—the regular grouping of several small crystals in three directions at right angles to each other corresponding to the axes, thus forming the outline to a larger crystal.

Imperfectly-developed crystals occur on one termination; e.g., on hematite, where hexagonal tablets are notched and lapped on one or two sides, or on the crystals of hornblende, augite, etc., which are often covered at one end with several subindividuals and thus acquire an appearance resembling a ruin.

On olivine, leucite, etc., often occur crystals with faces depressed in consequence of the interrupted development. In a word, exactly the same phenomena of growth and disturbance are noticed in the crystals separated from the molten rockmagma as can be perceived on crystals formed from a solution. The destruction, fracture, and bruising of crystals already fully

formed can be commonly observed on the microscopic con-



FIG. 43. CORRODED QUARTZ CRYSTAL. (After Fouqué.) stituents of the more recent and vitreous rocks, just as the same phenomena are observed on the macroscopic individuals; e.g., of tourmaline, epidote, etc. The larger mineral components which first separated show such fractures especially. These are a direct consequence of the pressure which the molten, fluctuating rock-magma exerted on the crystals already formed, if any change in the rapidity of fluctuation was induced

by any obstruction; e.g., another opposing large crystal lying in the immediate vicinity. The corresponding fragments of the crystal, as well as the crystal or other matter causing the fracture, can be observed very often lying close together. Such fractures are for the most part restricted to the thin tabular or long acicular crystal individuals; they are observed, therefore, most commonly on the feldspars, augite or hornblende crystals, while the micas because of their elasticity show only a bending or exfoliation. However, quartz grains and crystals often appear shattered into small splinters and plates.

## The Destruction of Crystals already Formed.

The larger crystalline components undergo further changes through the caustic action of the liquid magma, as manifested in the corrosion, partial fusion, and even total destruction of the crystal. Thus quartz occurring in the porphyritic eruptive rocks often shows a sinus-like penetration of the ground-mass. (Fig. 43.) Leucite and olivine as well as augite crystals or grains often show an etched surface, sometimes covered with regular depressions, probably caused by the caustic action of the magma on the crystals for a long period, similar to the figures and

depressions often formed on artificial crystals by action of the mother-liquor.

If action of magma on the crystals already formed was more powerful, a partial fusion ensued, as may be observed very often on crystals of feldspar or augite of the eruptive rocks, where some faces are yet more or less evident.

The resolution of the edges into minute crystals and grains as is often observed on the larger olivine, augite, and feldspar crystals is another remarkable corrosion-phenomenon, depending upon this action of the magma. The minute crystals are to be regarded as newly-deposited crystals of the same mineral, and the grains as separated particles. The diopside, bronzite, and olivine grains of the so-called "olivine lumps" in the basalts often show such changes. More remarkable yet is that on the omphacite of eclogite, a rock classed, however, according to its formation with the crystalline schists.

Another change also ascribed to the action of the molten magma, and commonly observed on hornblende and biotite

crystals of the more recent eruptive rocks richer in iron, consists of the appearance of an opaque margin (Fig. 44). The crystals are surrounded by a border, or narrow, dense, opaque black hem, formed from exceedingly minute granules of an unknown iron

compound - the so-called "opacite." Often the whole crystal has undergone such an igneous meta- HORNELENDE.

morphosis and only remnants of the fresh, brown, original mineral are to be found.

This opaque bounding of hornblende and biotite must not be confounded with the decompositions effected by water, whereby such a marginal hem is formed, proved to be of magnetite. In this case the hornblende is not perfectly fresh, but is partially changed to chlorite, and the opaque hem is not so dense as those crystals metamorphosed by fire.

Finally, the occurrence of the so-called "Pseudo-crystals" of



hornblende, augite, and biotite must be briefly noticed. In the younger eruptive rocks bearing these minerals, aggregates of minute augitic granules, feldspathic grains, and especially magnetite or hematite leaflets often occur, which assume their crystalline forms; often a fresh, irregular, partially-fused kernel of hornblende or biotite or augite is seen within. It is very probable that these aggregates occurring in the eruptive rocks have been formed by the action of the liquid rock-magma on the unchanged hornblende, biotite, or augite crystals, the form of the crystal being meanwhile preserved. These pseudocrystals can be formed experimentally by dipping hornblende, etc., crystals in fused rock-magma and allowing to cool.

### The Shell-formed Structure of Crystals.

A macroscopical examination of many crystals shows a zonal structure, e.g. barite, tourmaline, epidote, garnet, etc.; the shell-structure proves a repeated interrupted growth of the crystal, each layer or coat corresponding to a period of growth. This shell-structure may be easily shown in artificial crystals by suspending a crystal successively in different mother-liquors; e.g., an octahedron of alum in a solution of chrome-alum.

In the same way an exceedingly detailed laminated formation may be observed often in the microscopical crystal individ-



FIG. 45. ZONALLY-DEVELOPED AUGITE. Section  $\parallel \infty \mathcal{P} \infty$ .

uals occurring as rock-constituents. Among these, the feldspars, augite, hornblende, melanite, tourmaline, more rarely epidote, titanite, disthene, andalusite, corundum, hauyn, nepheline, etc., must be mentioned particularly.

The different layers are often very numerous and exceedingly thin, and can be distinguished from each other easily, especially if multicolored, as is so commonly

the case with augite (Fig. 45) or hornblende, where a green

centre is surrounded by a brown layer, or green and brown or nearly colorless layers alternate. In melanite dark-brown layers alternate with lighter; in andalusite often a red centre, in disthene and corundum a blue centre, is enveloped by a colorless coating.

In many cases the shell-formed structure of crystals, as in the feldspars, augite, and hornblende, is first evident in polarized light; the different layers thus show different polarization-colors, and also the direction of extinction varies somewhat in them, due, it appears, to the slight variation in chemical constitution of the successive layers. These lines of growth run undisturbed through the twinnings of the feldspars, etc.; this would indicate that the laminated development was synchronous with the formation of the twins.

The single layers often can be distinguished from each other more sharply by the inclosures of fluids, glass, or microlites lying between them; the successive layers have a course nearly parallel with the central crystal (see Fig. 45). Now and then, however, crystals are observed, especially of feldspar and augite, where the edges and angles of the kernel-crystal are replaced by faces of the enveloping layers.

As already mentioned, a very common and prominent development of crystals from two zones of different optical orientation is noticed in the feldspars, in sanidine, as well as in some species of plagioclase. In these latter species it can be proved often that the kernel-crystal is a plagioclase of more basic composition; but the envelopes, on the other hand, belong to a plagioclase richer in silicic acid and sodium. Hoepfner (N. Jahrb. f. Min. u. Geol., 1881, II. p. 883) first called attention to these relations by showing that the plagioclase of andesite from Monte Tajumbina often has an anorthite centre surrounded by an envelope of oligoclase. Becke confirmed these observations on the feldspars in kersantite from the lower Austrian forest (Tscher. Min. Mitth., 1882, V. p. 161).

The change from kernel to envelope is quite gradual, as each successive layer deposits a feldspar richer in sodium. The observation of Rosenbusch that the decomposition of a feldspar is generally from the centre outward is quite in harmony. The hypothesis already proposed by the same investigator, that the kernel of these species of plagioclase possesses a more basic constitution, and therefore undergoes an alteration first, is confirmed by the observations of Hoepfner and Becke.

A peculiar structure of crystal is the so-called "hour-glass structure" as seen not rarely in monoclinic augite of many basaltic rocks (Figs. 46 and 47), especially of limburgite,



FIG. 46.—AUGITE WITH "HOUR-GLASS STRUCTURE." Section  $|| \infty \mathcal{P} \infty$ . (After L. v. Werveke.)



FIG. 47.—SCHEMATIC REPRESENTATION OF THE "HOUR-GLASS AUGITE."

more rarely in hornblende, and also in andalusite and staurolite. Sections parallel to the plane of symmetry divide into four fields in polarized light, any two of which lying opposite each other show the same colors and the same optical orientation. The deviation in optical orientation is generally slight. The sections parallel  $\infty P \infty$  are similar.

While sections perpendicular to the vertical axis show the

#### METHODS OF INVESTIGATION.

ordinary zonal structure. At first a crystal-skeleton shaped like an hour-glass appears to have been formed, both of whose conical spaces were filled subsequently with an augitic substance varying somewhat in chemical composition.

## Interpenetration of the Rock-constituents.

Graphic granite or pegmatyte serves as one of the bestknown examples of a regular interpenetration of two rockconstituents. In pegmatyte numberless macroscopic quartz individuals all showing the same optical orientation are formed within large orthoclase individuals. The same penetration precisely is found commonly among the microscopic individuals of the rock-constituents, and is called the "micro-pegmatitic structure." This proves a nearly simultaneous formation of both mutually-developed individuals, and occurs very commonly in the granites and crystalline schists. In the latter case, however, not only is the orthoclase regularly developed with quartz, but also other constituents, as garnet or augite with quartz, plagioclase with augite, etc. Their development is often irregular, in that the augite grains penetrating the plagioclase individuals, e.g., do not show throughout the same optical orientation. Regular interpenetrations commonly occur also between the augites and hornblendes, where either monoclinic augite, especially diallage or omphacite, also possessing the brachy-pinacoidal separation (Absonderung), is grown into the monoclinic hornblende so that the ortho-pinacoidal faces of both lie parallel; or rhombic and monoclinic augite are interpenetrated so that both lie with the ortho- or macro-pinacoids adjoining.

#### III. INCLOSURES OF THE ROCK-FORMING MINERALS.

Macroscopical inclosures have been observed in many crystalline minerals for a long period; quartz is especially rich

in them. The microscopic constituents of the rocks also contain inclosures many of which may be regarded as characteristic for certain minerals. Among these inclosures of the rockcomponents are gas-pores, fluids, vitreous particles (of the rock-mass), and, finally, inclosures of other minerals also sharing in the composition of the rock.

## Gas-pores (Fig. 48).

During the development of a crystal minute bubbles of air often cling fast to the faces, which afterward are surrounded



and finally inclosed by the crystalline material during the succeeding growth; this phenomenon can be best observed with artificial crystals on removal from the solution. In exactly the same manner bubbles of gas which were absorbed by the motherliquor and are of such common occurrence in the vitreous ground-mass of rocks were inclosed by the rock-form-GAS-PORES AND FLUID INCLOSURES. ing minerals during their separation

from the molten magma: these are the so-called Gas-pores. It is difficult to determine what gases are inclosed within the minute, generally egg-shaped or irregularly-defined spaces; it is very probable that gaseous (i.e. condensed) carbon dioxide is of common occurrence. The gas-pores are often regularly distributed through the crystals; being sometimes zonal, parallel to the crystal faces if they are inclosed between two successive concentric layers, or forming an elongated series.

The minerals of the hauyn group among the rock-constituents are especially rich in inclosures of gas-pores; apatite, the feldspars, augite, etc., also contain them. Cavities empty, or filled with gas, often occur, especially in quartz, which ex-
hibit the form of the mineral in which they occur—the so-called "negative crystals." Such regular pores filled with air occur in artificial crystals; e.g., the cube-shaped cavities in rock-salt. During the development of this mineral regular cubical depressions are formed; an air-bubble forces its way into the depression, which becomes covered afterward by succeeding depositions of the crystalline material.

## Fluid Inclosures (Fig. 48).

If the mother-liquor is forced into the irregular or cubical cavity mentioned in the last example, instead of air or other gases absorbed by the mother-liquor, fluid inclosures are formed which contain a small air- or gas-bubble, sometimes called the "libella," which by turning the piece of salt vibrates along the sides of the cavity.

In just the same way the fluid inclosures commonly occurring, especially in quartz, are formed in the rock-forming minerals. The fluid inclosures occur more rarely in the younger and recent eruptive rocks, and are for the most part inclosures of liquid carbon dioxide—a proof that these rocks were formed under immense pressure. Inclosures of aqueous solutions also occur in the constituents of the volcanic rocks; it is probable that these liquids were inclosed in a fluid condition. The formation of the bubble within the fluid inclosures can be accounted for most easily by supposing that the crystals separated at a high temperature and under heavy pressure; on subsequent cooling the inclosed liquid contracted and thus left an empty space—the bubble. The bubble in the microscopic fluid inclosures commonly shows a perfect freedom of motion, at one time slow and again exceedingly rapid.

If the inclosed liquid was a concentrated salt solution, minute crystals have been deposited since the cooling, and liquid, crystals, and bubble can be distinguished within the cavity. The form of the fluid inclosure is generally an irregular one; the egg-shaped and spherical are more rare; and more rare yet those assuming the form of the inclosing mineral, as occasionally in quartz, gypsum, etc. The inclosure is commonly very small and does not generally exceed some hundredths or thousandths of a millimetre. What has been said already concerning the distribution of the gas-pores is equally applicable to these fluid inclosures.

As regards the chemical constitution of the inclosed liquids, all determinations up to the present time have shown them to be either water, liquid carbon dioxide, or some salt solution, especially of sodium chloride. The majority of the simply aqueous inclosures have a quiescent or feebly-vibrating bubble, which does not disappear on heating to about 100° C. The inclosures of liquid carbon dioxide, on the other hand, have generally a very mobile bubble which disappears on heating to about  $32^{\circ}$  C. If the bubble in such an inclosure is very large, i.e. but little liquid is present, the liquid CO<sub>3</sub> is changed into the gaseous condition when the bubble disappears; if, on the other hand, the bubble is so minute that the whole space is filled through the expansion of the liquid carbon dioxide, the gaseous bubble disappears.

Inclosures of liquids of two kinds commonly occur where liquid carbon dioxide is present together with a purely aqueous inclosure in one and the same mineral grain; also, but rarely in quartz, two different liquids are inclosed in one and the same cavity, without commingling; in this case the inner liquid, generally carbon dioxide, possesses a bubble.

Inclosures of concentrated salt solutions have, for the most part, an immovable bubble, or at least one moving but slowly or after warming, and minute crystals deposited from the inclosed mother-liquor; sodium-chloride crystals are the most common. The bubble, as well as the minute cube, does not disappear on warming the preparation, or disappears first at higher temperatures.

## METHODS OF INVESTIGATION.

The bubble is wanting in many fluid inclosures, as the cavities are completely filled with liquid. Such microscopic cavities can be distinguished from gas-pores only with great difficulty. They are surrounded in transmitted light with a broad dark border, in consequence partly of a total reflection of the rays; the two can be distinguished only by the presence of the bubble. This dark border of the gas and fluid inclosures will be the stronger the greater the indices of refraction of the inclosed gas and the inclosing mineral. For this reason the gas-pores have always a darker border than the fluid inclosures.

## Inclosures of Vitreous Particles.

Particles of the ground-mass, either purely vitreous or semiindividualized, become inclosed during the process of crystal-

lization from the fused magma, just as fluids are inclosed within crystals deposited from solution. These very minute and irregular, egg-shaped, or spherical glassy particles, the vitreous inclosures (Fig. 49), solidified during or after their inclosure, generally have one or several gas-bubbles inclosed with them. This gas-bubble is of course immovable, and, unlike the bubble of the fluid inclosures, cannot be moved by heating.



FIG. 49.-VITREOUS INCLOSURES.

The vitreous inclosures in minerals are colorless or brown according as the vitreous matrix of the rock is light or dark colored (the acidic lavas have generally only a colorless, basic, light-colored or brown glass); both varieties very commonly occur together, the coloration of the glass depending merely on the amount of iron present.

The distribution of the vitreous inclosures is either an irregular one or is in zones corresponding to the shell-formed structure of the crystal. Sometimes the kernel of the crystal is filled with these inclosures, and the enveloping layers poor in them, or the reverse.

The vitreous inclosures are especially common in the feldspars of the younger and recent eruptive rocks, common also in quartz and augite.

Vitreous inclosures of dihexahedral form are occasionally found in quartz, corresponding to its crystalline form. Such regular inclosures are formed in the same manner as the dihexahedral gaseous or fluid inclosures in quartz, with this difference, that the substance filling the regular cavities is in this case a vitreous mass. A jagged bubble is often seen in such vitreous inclosures, or a gas-bubble partially freed from the inclosure, which was prevented from escaping by rapid deposition of crystalline matter. The presence of such an escaping bubble, as well as that of several bubbles within the inclosures, is a proof of their solid vitreous character: such phenomena could not occur in fluid inclosures.

Minute crystals, magnetite octahedra, augite microlites, trichites, etc., have often separated during solidification of vitreous, inclosed particles in the same manner as crystals are deposited from inclosures of saturated solutions; i.e., the glass is "devitrified" (*entglast*). The magnitude of the gas-bubble has absolutely no genetic connection with the magnitude of the inclosure. The vitreous inclosures will show in transmitted light no such dark border as the gas-pores and fluid inclosures, as the index of refraction of the glass is rather high and differs less than air or water from that of the mineral. The vitreous portion of the inclosure has consequently a less marked border, although the gas-bubble shows all the darker broad band.

The presence of a gas-bubble in the vitreous inclosure cut

through in the process of grinding the mineral section is an additional means of discriminating between a vitreous and a fluid inclosure. As the gas-bubble is an empty cavity, fixed in the solid vitreous body, it is cut through during the process of preparation, becomes filled with Canada balsam, and the vitreous inclosure appears in the preparation as only a feebly outlined circle; a fluid inclosure, on the other hand, thus cut through would become completely filled with Canada balsam, as the liquid escapes during the process of cutting and the bubble in this case is completely dissipated.

Often large, irregular particles of non- or but poorly-individualized vitreous masses with no inclosed gas-bubbles occur in the rock-forming minerals; as, e.g., between the layers or in the kernel of feldspar, olivine, etc. They, as well as the vitreous inclosures containing gas-bubbles, are a proof of the formation of the rock (i.e. the minerals) from a molten magma.

In the quartz grains of rock of undoubted sedimentary origin which were solidified from confined and metamorphosed eruptive rocks, vitreous inclosures are also discovered, but of a secondary character, being first formed through the action of eruptive magma heated to redness on the inclosed rock; this can be proved by experiment. The way, however, in which such secondary vitreous inclosures could be made is at present unexplained. (See Chrustschoff, Tschermak's Min. Mitth. 1882, IV. p. 473.)

## Inclosures of Foreign Minerals.

Macroscopical inclosures of other minerals have been observed commonly in quartz (prase, etc.). Among the microscopical constituents also, quartz, as well as many other minerals, as staurolite, etc., is especially rich in inclosures. The granules or crystals thus inclosed within the rock-constituents

are of those minerals making up the composition of the particular rock, and are for the most part very minute and often regularly distributed through the inclosing mineral. In augite, e.g., long, narrow indeterminable microlites (augite?) together with vitreous inclosures are commonly arranged in zones; these were inclosed in the same manner as the vitreous particles, during separation of the crystal from the vitreous, semiindividualized magma. In other minerals the mineral inclos-



FIG. 50. INCLOSURES OF BROOK-ITE (?) TABLETS IN HYPERSTHENE. ures are regularly distributed parallel to certain faces, as the opaque to brownish translucent rectangular tablets parallel to  $\infty \tilde{P} \infty$ in hypersthene and bronzite (Fig. 50), or the opaque microlites and tablets parallel to the *c*'-axis in labradorite.

The zonally arranged inclosures of small quartz granules in the garnet and staurolite of the crystalline schists; the inclosures of

minute elongated needles of rutile, regular

and crossed at an angle of  $60^{\circ}$ , occurring in some species of magnesian micas in certain eruptive rocks; and, finally, the inclosures of sillimanite microlites in cordierite and quartz of crystalline schists, etc., are also especially worthy of mention.

Comparison of the inclosures of rock-constituents often proves of importance in determining the order of separation, i.e. the formation; thus magnetite, menaccanite, spinel, rutile, zirconite, are generally the minerals first formed in the crystalline rocks, as they are always found included within all the minerals occurring in one and the same rock.

In the eruptive rocks the magnesian silicates generally followed these in order of separation (augite, hornblende, biotite, and olivine), then the feldspars, and finally quartz. Nevertheless no universal law can be formulated. Still less possible is it to formulate a law for the crystalline schists. Quartz, and also orthoclase, are found included within hornblende and garnet—i.e., they were first formed; or quartz and orthoclase are interpenetrated (micro-pegmatitic, graphic-granitic)—i.e., both were developed at the same time.

The chemical and physical properties of minerals are of course changed by these inclosures. Specimens as free as possible from inclosures must therefore be selected for examination.

## IV. DECOMPOSITION OF THE ROCK-CONSTITUENTS.

## J. ROTH. Allgemeine und chemische Geologie. Berlin, 1879. I. Bd.

The rock-forming minerals are far more exposed to the decomposing and solvent influences of filtrating waters than the larger developed minerals. In the volcanic rocks a further change of the rock-constituents is induced by the action of the gaseous emanations accompanying the eruptions. For these reasons, therefore, different minerals are found in the rock-preparations in different stages of decomposition. The metamorphosis in most cases can be studied and followed on the thin sections. It begins almost always from without and advances inwards, especially on the cleavage-fissures of crystals or grains; the crystal-kernel, as in the feldspars, though rarely, first undergoes decomposition.

Olivine, orthoclase, and magnetite, of the rock-forming minerals, most commonly occur thus metamorphosed.

In the metamorphosis of olivine into serpentine, fine greenish or brown thread-like aggregates appear along the fissures. These gradually broaden, whereby the cross-section of olivine on the slide seems drawn into a net of serpentine, in whose meshes lie the fresh olivine residues. These also finally undergo decomposition, and a complete pseudomorphosis of serpentine after olivine results.

Serpentine is generally tinged red by freshly-formed iron

hydroxide. Clino-chlore is deposited in many cases in olivinefels by the metamorphosis of magnetite. In these cases water is taken up and magnetite and iron silicates are deposited. If the silicates are removed so that only the ferrous oxide separated from olivine remains as ferric oxide and hydroxide, pure pseudomorphs of ferric oxide and hydroxide after olivine are often formed.

Grayish to brownish opaque pseudomorphoses after olivine are often found in the picrites, consisting principally of calcite and showing a mesh-like structure. The meshes themselves are formed from calcium silicate, while the spaces between are filled with calcite. In this case silicic acid and magnesia are removed, and alumina, lime, carbon dioxide, and alkalies are taken up. Similar pseudomorphs of calcite after augite also occur.

In the metamorphosis of feldspar into kaolin no such regular progress of decomposition beginning with the cleavagefissures, as a rule, can be determined; they become spotted and opaque, and metamorphosed into an aggregate of minute gray or white grains. The alumina remains constant, silicic acid is partially removed, water and potassium are taken up. In the zonally-developed feldspars the layers rich in inclosures first undergo decomposition.

Potassium micas, in minute brilliantly-polarizing tablets, are also commonly formed by the decomposition of the feldspars; quite perfect pseudomorphs of muscovite, after orthoclase, are often found. In this case the greater part of the alkali remains; the rest is removed together with silicic acid, which often separates as quartz (SiO<sub>2</sub>).

Menaccanite becomes coated with a gray opaque coating (leucoxene), and is finally metamorphosed into transparent titanite; lime must be added. More rarely menaccanite metamorphoses into rutile with separation of ferric oxide, which deposits as a reddish border about the decomposed mineral.

## METHODS OF INVESTIGATION.

Finally, mention must be made of the metamorphosis of minerals of the hauyn group, and of nepheline into the zeolites, especially natrolite, wherein calcite often separates; the metamorphosis of garnet into chlorite; of biotite, hornblende, and augite into chlorite and epidote, with elimination of quartz, ferric hydroxide, and calcite; the decomposition of rhombic augite in bastite, etc.

#### END OF PART I.



# PART II.

# TABLES FOR DETERMINING MINERALS.

#### ABBREVIATIONS USED IN THE TABLES.

Under the heading "Optical Properties:"

AP = Plane of the optic axes.  $\mathbf{M} = \mathbf{First}$  middle line. 2 M. = Second middle line. a = Axis of greatest elasticity. b = Axis of middle elasticity = optic normal. c = Axis of least elasticity.  $\|$  = Parallel.  $\bot$  = At right angles. n =Index of refraction.  $\omega =$ Index of refraction for the ordinary ray. For opticallyuniaxial minerals.  $\ell \epsilon =$ Index of refraction for the extraordinary ray. For optically- ( $\beta$  = Index of refraction of middle value. biaxial minerals.  $\rho = For red light.$ i. c. p. l. = In convergent polarized light. i. p. p. l. = In parallel polarized light. For the crystallographic axes : c = Chief, i.e. vertical, axis. In rhombic or  $(\check{a} = Brachydiagonal axis.$ triclinic minerals.  $\overline{b} = Macrodiagonal$  axis.

In monoclinic (  $\dot{a} = \text{Clinodiagonal axis.}$ 

minerals. b' = Orthodiagonal axis.

Under the heading "Structure:"

I. O. = Components first in order of separation.

II. O. = Components second in order of separation.

| k-forming       | )     |
|-----------------|-------|
| e Roc           |       |
| of th           |       |
| Crystallization | als.  |
| l of            | liner |
| System          | Z     |
| the             |       |
| Determining     |       |
|                 |       |
| for             |       |

106

| Munciaus. | nicols during a<br>ing polarized light<br>stage moves                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   | No axis of elasticity<br>coincides with a<br>crystallographic<br>axis. Plane of the<br>optic axes neither<br>perpendicular nor<br>parallel to a<br>pinacoidal face,<br>but inclined to<br>them.                       | No pinacoidal sec-<br>tion extinguishes<br>parallel, the<br>obliqueness of<br>extinction aP<br>and co Po known<br>and characteristic.                                                                                                                       |                                                        |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
|           | A part of the cross-section becomes colored and dark between crossed<br>complete revolution.<br>Optically-Uniaxial.<br>Sotropic sections show<br>fixed axial crossin con-<br>erging polarized light. | One axis of elasticity<br>coincides with one of the<br>crystallographic axes, the<br>orthodiagonal; the other<br>two, together with the optic<br>axes, lie either in the plane<br>of symmetry $\infty \mathcal{P}^{\omega}$ , or in a<br>plane at right angles to it,<br>and inclined according to<br>$\mathcal{P}^{D}$ or $t + \mathcal{P}^{\omega}$ , and form an<br>angle with the crystallo-<br>graphic axes. | Extinguish parallel, i.e.,<br>parallel and at right angles<br>to the pinacoidal faces.                                                                                                                                | Sections from the zone<br>$aP$ : $\infty P \infty$ extinguish<br>parallel; sections farrallel<br>$\infty P \infty$ , on the other hand,<br>show an extraction oblique<br>to the edge $aP$ : $\infty P \infty$<br>or $\infty P \infty$ ; $\infty P \infty$ . |                                                        |  |
|           |                                                                                                                                                                                                      | The three axes of<br>elasticity correspond<br>to the crystalographic<br>axes. Both optic carbit<br>lie in a plane parallel<br>to a pinacoid.                                                                                                                                                                                                                                                                      | Rectangular, extin-<br>guishing parallel and<br>at right angles to the<br>sides, i.e., the<br>pinacoids,                                                                                                              | Rectangular, all with<br>parallel extinction,<br>i.e. parallel and at<br>right pargles to the<br>sides parallel to the<br>vertical axis.                                                                                                                    |                                                        |  |
|           |                                                                                                                                                                                                      | The optical elasticity<br>in the direction of the<br>chief axis different<br>from that at right<br>angles to it.<br>The chief axis<br>coincides with the<br>optic axis and corre-<br>sponds with the axis of<br>either the greatest or<br>least elasticity.                                                                                                                                                       | The quad-<br>ratic or hexagonal<br>or 12-13- or<br>transverse 9- sided<br>sections transverse<br>remain<br>perfectly remain<br>dark dark<br>throughout throughout<br>throughout throughout<br>revolution, revolution. | Rectangular or<br>hexagonal elongated<br>hospitudinal sections<br>have parallel extinc-<br>tion, i.e., parallel and<br>engles to the<br>chief axis or the pair<br>of sides parallel to it.                                                                  |                                                        |  |
|           | ISOTROPE.                                                                                                                                                                                            | ISOTROFE.<br>All cross-sections<br>remain dark petween<br>crossed nicols<br>hroughout a complete<br>revolution.<br>Fevolution.<br>Equal optical<br>elasticity in all<br>directions.                                                                                                                                                                                                                               |                                                                                                                                                                                                                       | All cross-sections<br>remain perfectly<br>darkened during                                                                                                                                                                                                   | complete revolution.                                   |  |
|           | Division of the<br>Minerals                                                                                                                                                                          | according to<br>their Optical<br>Properties.                                                                                                                                                                                                                                                                                                                                                                      | Relations<br>between the<br>Axes of<br>Elasticity and<br>the<br>Drystallographic<br>Axes.                                                                                                                             |                                                                                                                                                                                                                                                             | Sections parallel<br>to the chief<br>or vertical axis. |  |

DETERMINATION OF ROCK-FORMING MINERALS.

| is axes show in con-<br>thout colored rings.<br>riding as the section<br>a vial point appears<br>e axial point appears<br>thola, is red on the<br>spersion of the axes of<br>ation of the axes of<br>a parallel or Po in<br>a the triclinic, gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRICLINIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ght angles to one of the opt<br>in a black cloud with or wir<br>r of double-refraction. According<br>field. On revolving the star,<br>field. On revolving the star,<br>in fit this cloud, i.e., hype<br>on the concave, then the di<br>on the concave, then the di<br>alographic areas in section<br>and parallel $\rho P$ and $\infty P \infty$ if<br>determining them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MONOCLINIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Isotropic sections at riverging polarized ligit<br>verging polarized ligit<br>according the powe<br>is more or less perpendent<br>is more or less perpendent<br>without or within the<br>in a contrary direction<br>convex side and blue<br>convex side and blue<br>convex side and blue<br>elssticity to the crysta<br>monoclinic minerals, a<br>an admirable means of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RHOMBIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nclined to<br>xis show a<br>ance of the<br>xis in<br>t polarized<br>the field of<br>g to the<br>the section;<br>d axial<br>es in the<br>estage is<br>hed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEXA-<br>GONAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sections i<br>the chief a<br>side appear<br>as optice a<br>optice a<br>light, the a<br>light, the a<br>light, the a<br>vithout<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordin<br>accordi | TETRA-<br>GONAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cross-<br>sections<br>sections<br>polygenal<br>regular<br>outline<br>cleavage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REGU-<br>LAR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cross-<br>sections<br>sections<br>polygenat<br>regular<br>outline,<br>and<br>especially<br>especially<br>estructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A MOR-<br>PHOUS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Random<br>Sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System<br>of<br>ystallization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cross-<br>sectionsCross-<br>sectionsSections inclined to<br>sectionsIsotropic sections at right angles to one of the optic axes show in con-<br>verging polarized light a black cloud with or without colored rings,<br>alpoygaval polygonal polygonal polygonal polygonal polygonal regular<br>optic axis in<br>regularIsotropic sections aright angles to one of the optic axes show in con-<br>verging polarized light a black cloud with or without colored rings,<br>and solgonal polygonal polygonal regular<br>regularIsotropic sections are right angles to one of the optic axes show in con-<br>verging polarized light a black cloud with or without colored rings,<br>according to the axes<br>ight, the axial point appears<br>and with or without or within the field. On revolving the sage this cloud revolves<br>in the volves<br>in a convergent polarized and blue on the concave, then the dispersion of the axes<br>on the corvers in the<br>corver sile to the optic axes in the cross moves in the<br>or corystalline<br>arcoulding to the<br>cross moves in the<br>direction the stage is the section, and<br>the function the stage is the section interval.Random<br>and<br>crystalline<br>crystallineInterval, the stallographic axes in the criticinic, gives<br>a duritable means of determining them.Random<br>and<br>crystallineInterval, the stallographic axes in the criticinic, gives<br>a duritable means of determining them. |

Examination in Converging Polarized Light.

# A. Even in the thinnest Sections

| NAME.                                                             | Chemical<br>composition<br>and reactions.                                                                         | Specific<br>gravity. | System<br>of<br>crystalliza-<br>tion. | Cleavage.            | Ordinary<br>combinations<br>and form<br>of the<br>cross-section.     | Twins.                                           |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|----------------------|----------------------------------------------------------------------|--------------------------------------------------|
| 1. Magnetite.<br>(Magnet-<br>eisen.)                              | Fe <sub>8</sub> O <sub>4</sub><br>(FeO + Fe <sub>2</sub> O <sub>3</sub> ),<br>Easily soluble<br>in HCl.           | 4.9-5.2.             |                                       | According<br>to O.   | Grains and<br>octahedra.<br>Squares and<br>equilateral<br>triangles. | According to O.                                  |
| 2. Titaniferous<br>Magnetite.<br>( <i>Titan-</i><br>magneteisen.) | FeO + FeoOg<br>Distinguished<br>from<br>magnetite only<br>by chemical<br>analysis.<br>(Reaction for<br>titanium.) | 4.8-5.1.             | *                                     |                      | Octahedra<br>and<br>grains,                                          |                                                  |
| 3. Pyrite.                                                        | FeS <sub>2</sub> .<br>Easily soluble<br>in HNO <sub>3</sub> ,<br>with<br>separation of S.                         | 4-9-5-2.             |                                       | According<br>to ∞O∞. | ∞ O <sub>2</sub><br>Regular<br>hexagons and<br>pentagons.            | Penetration-<br>twins of $\frac{\circ O_2}{2}$ . |



# of Opaque Minerals.

| the second se |                                                                                                                                                                                        |                                                                                                                                                | the second s |                                                                                                                                                                                                                                |                                                                          |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Color and<br>lustre.                                                                                            | Structure.                                                                                                                                                                             | Association.                                                                                                                                   | Decomposition.                                                                                                 | Occurrence.                                                                                                                                                                                                                    | Remarks.                                                                 |
| Iron-black;<br>in reflected<br>light binish-<br>black metallic<br>lustre.                                       | Often in<br>beautiful<br>cruciform<br>aggregates;<br>o' as product<br>of decomposi-<br>tion wreathed<br>about the<br>minerals;<br>also deposited<br>upon the<br>cleavage-<br>fissures. | With nearly<br>all of the<br>rock-forming<br>minerals;<br>especially with<br>augite,<br>olivine,<br>plagioclase,<br>nepheline,<br>and leucite. | Commonly<br>into iron<br>hydroxide.<br>A reddish<br>brown circle<br>about the<br>magnetite<br>crystals.        | 1. As primary<br>essential<br>constituent of the<br>basic eruptive<br>rocks; accessory<br>in nearly all of<br>the crystalline<br>rocks.<br>As decomposi-<br>tion-product of<br>olivine, augite,<br>hornblende,<br>and biotite. |                                                                          |
| Ditto.                                                                                                          |                                                                                                                                                                                        | -                                                                                                                                              | iron hydroxide.                                                                                                | Primary; in<br>basaltic rocks and<br>crystalline schists.                                                                                                                                                                      | Forms at the<br>same time<br>the transition-<br>products to<br>ilmenite. |
|                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                |                                                                          |
| In reflected<br>light<br>brass-yellow.<br>Metallic<br>lustre.                                                   |                                                                                                                                                                                        |                                                                                                                                                | Into iron<br>hydroxide.                                                                                        | Rarely as<br>accessory<br>secondary<br>constituents in<br>decomposed basic<br>eruptive rocks,<br>and (also primary)<br>in crystalline<br>schists.                                                                              |                                                                          |
|                                                                                                                 | · · · · ·                                                                                                                                                                              |                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                | ,                                                                        |

| NAME.                            | Chemical<br>composition<br>and reactions.                                                                                                                 | Specific<br>gravity. | System<br>of<br>crystalliza-<br>tion. | Cleavage.                                                    | Ordinary<br>combinations<br>and form<br>of the<br>cross-section.                                                                                                                                                                                      | Twins.                                                                           |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4. Ilmenite.<br>(Titan-eisen.)   | FeTiO <sub>8</sub> +<br>$\chi$ (Fe <sub>2</sub> O <sub>2</sub> ).<br>Difficultly<br>soluble in HCl.<br><i>Ti-reaction</i><br>with<br>microcosmic<br>salt. | 4.56-5.21.           | iai.                                  | R and oR;<br>conchoidal<br>separation<br>(absonde-<br>rung). | Tabular<br>R. oR;<br>also<br>-½K 2R,<br>and grains<br>which are not<br>spherical<br>but for the<br>most part<br>long rods.<br>Cross-sections<br>generally<br>hexagonal,<br><i>long.</i><br><i>threadlike</i> ,<br><i>jagged</i> , or<br>netted forms. | With parallel<br>axial<br>systems.<br>Polysynthetic<br>twins<br>after <i>R</i> . |
| 5. Graphite<br>(and<br>bitumen). | C.<br>Bituminous<br>black rocks,<br>becoming<br>grayish-white<br>on heating.                                                                              | 1.9-2.3.             | Hexago                                | oP.                                                          | Rarely in thin<br>hexagonal<br>tablets and<br><i>irregular</i><br><i>leaves</i> .                                                                                                                                                                     |                                                                                  |
| 6. Pyrrhotite.<br>(Magnet kies.) | Fe <sub>n</sub> S <sub>n+1.</sub>                                                                                                                         | 4.54-4.64.           |                                       |                                                              | Irregular<br>grains.                                                                                                                                                                                                                                  |                                                                                  |

#### MINERALS RENDERED TRANSPARENT

| 1. Chromite.  |                |            |    |                          |  |
|---------------|----------------|------------|----|--------------------------|--|
|               | See page 14.   | Regular.   | 1  | Grains and<br>octahedra. |  |
| 2. Pleonaste. | ]              |            |    |                          |  |
| 3. Hæmatite.  | See page 32.   | Hexagonal. | -  | Tablets.                 |  |
|               | C. Serlisher 1 |            | 44 |                          |  |

| Color and                                                                            | Ctanotuno  | Accordition                                                    | Decomposition                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                              | Dent                                                                                                                                                          |
|--------------------------------------------------------------------------------------|------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lustre.                                                                              | Structure. | Association.                                                   | Decomposition.                                                                                                                                                                                                                                                                                                                                                                   | Occurrence,                                                                                                                                                                                        | Remarks.                                                                                                                                                      |
| Black-brown;<br>metallic<br>lustre.<br>In reflected<br>light gray,<br>if decomposed. |            | With plagioclase,<br>augite,<br>hornblende,<br>and<br>olivine. | Into titanite<br>(leucoxene) and<br>rutile with<br>hematite. Ilmenite<br>is metamorphosed<br>by decomposition<br>first into a<br>grayish, opaque,<br>pulverulent mine-<br>ral (leucoxene),<br>changing gradually<br>into one brown and<br>transparent, which<br>can be determined<br>as titanite; often<br>thin decomposed<br>threads of<br>ilmenite remain.<br>(Comp. Fig. 51.) | In basic<br>eruptive rocks<br>(especially the<br>granular<br>diabases,<br>gabbros,<br>basalts,<br>picrites);<br>also in<br>crystalline<br>schists.                                                 | Can be<br>distinguished<br>from magnetite<br>by the form<br>of the<br>cross-section,<br>and especially<br>by the,<br>phenomena<br>attending<br>decomposition. |
| Iron-black ;<br>metallic<br>lustre.                                                  |            |                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | Rare, in<br>crystalline<br>schists, clay<br>and clay-mica<br>schists, gneiss,<br>limestone, and<br>as an inclosure<br>in staurolite,<br>andalusite,<br>chiastolite,<br>dipyre, and<br>couzeranite. | Distinguished<br>from hæmatite<br>by its opacity<br>or decoloration<br>by heating.                                                                            |
| Bronze-yellow<br>and<br>copper-red.                                                  |            |                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | Rarely in<br>crystalline<br>schists,<br>contact-schists.                                                                                                                                           | Can be<br>distinguished<br>from pyrite<br>easily by the<br>lustre in<br>reflected light.                                                                      |

## ONLY WITH DIFFICULTY.

| Black;<br>metallic lustre;<br>if transparent, | Rare in olivine                                                              |  |
|-----------------------------------------------|------------------------------------------------------------------------------|--|
| Green.                                        | rocks.<br>Contact rocks<br>and<br>schistose rocks.                           |  |
| Red.                                          | Generally as<br>accessory<br>constituent and<br>product of<br>decomposition. |  |

# B. Minerals Transparent

# I. SINGLE-REFRACTING MINERALS.

# a. Amorphous

| NAME.                        | Chemical<br>composition and<br>reactions.                                                                                                                                                                                                                        | Specific gravity.                                                      | Color.                                                                                                                                               | Structure.                                                                                                                                                                                                                                                                               |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Opal.<br>(Porodinamorph.) | Essentially SiO <sub>2</sub><br>(H <sub>2</sub> O, traces of<br>Fe, Ca, Al, Mg,<br>and the alkaloids).<br>Soluble in<br>KOH.                                                                                                                                     | I.9-2.3.                                                               | Colorless<br>(white, yellowish),<br>often colored<br>red and brown<br>by ferric oxide<br>and hydroxide.<br>n = 1.455.                                | a. Homogeneous<br>and devoid<br>of structure.<br>b. Concentric-<br>conchoidel, and<br>then showing<br>often in<br>parallel polarized<br>light feeble<br>double-refraction<br>(interference-<br>cross).<br>In clusters,<br>crust-like.<br>(See Fig. 52.)                                  |
| 2. Hyalite.<br>(Glasmasse.)  | Always a<br>complicated<br>silicate<br>(Si, Al, Fe, Ca,<br>Mg, alkalies).<br>Acid vitreous<br>mass containing<br>about 70 per cent<br>SiO <sub>2</sub> nor there<br>mass with<br>about 40 per cent<br>SiO <sub>2</sub> , for the most<br>part soluble in<br>HCl. | Acidic<br>= 2.2-2.4<br>(obsidian).<br>Basic<br>= 2.51<br>(trachylyte). | Colorless,<br>or colored gray,<br>brown, or red.<br>The basic hyalite<br>is generally dark,<br>the acidic light.<br>$\pi$ (for obsidian)<br>= 1.488. | a. Obsidians<br>absolutely devoid<br>of structure,<br>with separation of<br>free glasses.<br>b. Pitchstone,<br>with macroscopic<br>separations.<br>c. Pumlce-stone,<br>fibrous and filled<br>with gas-pores.<br>d. Perlite,<br>spherical with<br>concentric-<br>conchoidal<br>structure. |

# in Thin Sections.

# (Isotropic in all cross-sections.)

## Minerals.

| Inclosures.                                                                                                                                                                                            | Decomposition.                                                                                                                                                                                                    | Occurrence,                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>a. Brownish-red,<br/>dust-like inclosures of<br/>ferric hydrate.</li> <li>b. Aggregates of<br/>hexagonal tablets of<br/>tridymite.</li> <li>c. Fluid inclosures<br/>and gas-pores.</li> </ul> |                                                                                                                                                                                                                   | Always secondary;<br>decomposition-<br>product of the rock-<br>constituents<br>feldspar, augite,<br>hornblende, biotite,<br>and then deposited<br>either in the primary<br>position, i.e., as<br>pseudomorphs after<br>these minerals,<br>or in some secondary<br>position lining the<br>walls of cavities;<br>especially in the<br>acidic younger<br>eruptive rocks, the<br>rhyolites and<br>andesites, but also in<br>the basic basalts. | The ground-mass of<br>many decomposed<br>eruptive rocks is<br>almost completely<br>metamorphosed into<br>opal (semi-opal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inclosures, i.e.,<br>gas-fores,<br>crystallites, and<br>microliths very<br>commonly; also<br>spheroliths.<br>(Compare Figs. 4x<br>and 42.)                                                             | Into viridite in the basic<br>rocks, basalt ; into<br>opal in the acidic,<br>rhyolite.<br>Basic glasses are often<br>decomposed into a<br>vellowish,<br>dot ble-refracting,<br>fibrous substance<br>(pelagonite). | The natural glasses<br>are only one method<br>of solidification of the<br>eraptive rocks.<br>Hyalite occurs more<br>of less commonly in<br>often apparently<br>purely crystalline<br>eruptive rocks, and<br>only in them.                                                                                                                                                                                                                  | Rock glasses<br>(vitrophyre) are known<br>in the following<br>eruptive rocks;<br>a. Acidic = vitreous<br>rhyolith, trachyte,<br>dacite, andesite,<br>porphyries; rarely<br>porphyries; and<br>phonoliths.<br>b. Basic = vitreous<br>diabase, melaphyr,<br>augite-andesite, and<br>basalts. (trachylte,<br>hyalomelane, sidero-<br>melane, palagonite,<br>hydrotachylyte).<br>Frequently pure hyalite<br>can be distinguished<br>from opal only with<br>difficulty; the only<br>surety lies in the<br>micro-chemical<br>analysis (preferably<br>corrosian with hydro-<br>fluosilicic acid). The<br>glasses are mentioned<br>here only because of<br>their differences<br>from opal. |

# b. Minerals Crystallizing

| The state of the second second     | 2 2 4 4 1 2 3 5 4 5 5 5 K                                                                                                                                                                                                                                       |                      | Carl Service and Carl II | and the second state of the second states                                                                    |                                                                     |                                                                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| NAME.                              | Chemical<br>composition<br>and reactions.                                                                                                                                                                                                                       | Specific<br>gravity. | Cleavage.                | Ordinary<br>combinations<br>and form<br>of the<br>cross-section.                                             | Twins.                                                              | Color and power<br>of<br>refracting light.                                        |
| 1. Hauyn<br>Group.<br>α. Sodalite. | $\begin{array}{l} 3(\mathrm{Na_2Al_2Si_2O_8})\\ + 2 \mathrm{NaCl.}\\ Cl-reaction;\\ \mathrm{easily} \mathrm{soluble}\\ \mathrm{in} \mathrm{HCl};\\ \mathrm{gelatinous}\\ \mathrm{SiO_2;}\\ \mathrm{NaCl-cubes} \mathrm{on}\\ \mathrm{evaporation.} \end{array}$ | 2.13-2.29.           | ∞0.                      | Grains and<br>$\infty 0$ (rarely<br>$0,\infty 0\infty$ );<br>cross-sections<br>rectangular<br>and hexagonal. | Penetra-<br>tion-twins<br>after a<br>trigonal<br>secondary<br>axis. | Colorless;<br>colored by<br>$Fe_2O_3$<br>red, green,<br>and blue-<br>mostly blue. |
|                                    |                                                                                                                                                                                                                                                                 |                      | ,                        |                                                                                                              |                                                                     |                                                                                   |
| β. Hauyn                           | $\begin{array}{c} {}_{2}Na_{2}CaAl_{2}\\Si_{2}O_{8}+\\Na_{2}(Ca)SO_{4}.\\Reaction for\\Ca and H_{2}SO_{4}.\end{array}$                                                                                                                                          | 2.4-2.5.             |                          | Crystals"<br>∞ O and O,<br>like sodalite.                                                                    | Twins<br>after O<br>and like<br>sodalite.                           | Colorless, blue<br>or black.                                                      |
| and                                |                                                                                                                                                                                                                                                                 |                      |                          |                                                                                                              | -                                                                   |                                                                                   |
| y. Nosean.                         | 3Na <sub>2</sub> Al <sub>2</sub> Si <sub>2</sub> O <sub>8</sub><br>+ Na <sub>2</sub> SO <sub>4</sub> .<br>Reaction for<br>H <sub>2</sub> SO <sub>4</sub> .<br>Both soluble<br>in HCl with<br>separation of<br>gelatinous<br>SiO <sub>2</sub> .                  | 2.279-2.399          | ∞0.                      | Commonly<br>distorted or<br>corroded<br>cryctals.                                                            |                                                                     | Colorless,<br>brown or<br>black.                                                  |
|                                    |                                                                                                                                                                                                                                                                 |                      |                          |                                                                                                              |                                                                     |                                                                                   |

# in the Regular System.

| Structure.                                                                                                                                                                                                                                                             | Association.                                                                                                      | Inclosures.                                                                                                                                                                                  | Decomposition.                                                                                                                                                                                                                                                                                    | Occurrence.                                                                                                                                                                                                                                                                              | Remarks.                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interpenetrated<br>with feldspar<br>and horn-<br>blende; the<br>centre often<br>colorless, and<br>outer layers<br>blue or<br>colored red by<br>ferric oxide.                                                                                                           | With micro-<br>cline, augite,<br>and mica in<br><i>syenites</i> .<br>With sanidine<br>and augite<br>in trachytes. | Fluid<br>inclosures and<br>gas-pores.<br>Vitreous<br>inclosures and<br>augite needles.                                                                                                       | Becomes<br>opaque by<br>decomposition<br>into zeolites.                                                                                                                                                                                                                                           | As primary<br>constituent in<br>syenites<br>(elæolith-<br>syenite), and<br>rarely in<br>auguic<br>trachytes.<br>Secondary in<br>cavities of the<br>latter.                                                                                                                               | The three minerals<br>can be accurately<br>distinguished<br>only by the<br>micro-chemical<br>qualitative<br>analysis.                                                                                                                                                                                                                                                                                 |
| The outer<br>coats colored,<br>with opaque<br>or dark core;<br>often colored<br>red by<br>iron oxide<br>at the cleavage-<br>fissures.<br>Regularly<br>disposed<br>inclosures,<br>and systems of<br>dark streaks<br>at right angles<br>to each other.<br>(See Fig. 53.) | Generally with<br>lewcite,<br>nepheline,<br>and augite.                                                           | Numberless<br>gas pores<br>and vitreous<br>inclosures<br>arranged in<br>streamers.<br>Black<br>minute grains<br>and needles,<br>like dust,<br>often at regular<br>spaces.<br>Pyrite tablets. | Into a felt-like<br>aggregate of<br>colorless,<br>double-<br>refracting<br>needles and<br>filaments of<br>zeolites and<br>calcite. A<br>decoloration of<br>the hauya<br>thus occurs;<br>a yellowish,<br>secondary<br>coloration<br>of the<br>decomposition-<br>product by<br>ferric<br>hydroxide. | Primary<br>constituent.<br>In the younger<br>eruptive rocks<br>and the<br>sanidine and<br>plagioclase<br>rocks, as<br>trachyte<br>(rarely),<br>phonolite,<br>leucitophyr,<br>tephrites,<br>nepheline<br>and leucite<br>basalts.<br>Very common<br>in the<br>trachytic<br>volcanic lavas. | Hauyn is<br>distinguished from<br>sodalite by<br>presence of the<br>characteristic<br>gypsum needles<br>on evaporating a<br>drop of the<br>hydrochloric acid<br>solution (on<br>account of the<br>calcium present<br>in hauyn);<br>sodalite is<br>characterized by<br>the chlorine.<br>It is difficult also<br>to distinguish<br>hauyn from nosean<br>chemically.<br>Mineralogically<br>they are one. |

|                                      |                                                                   |                      | the second state of the second | and the second second second second                                                          |        |                                                                                 |
|--------------------------------------|-------------------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------|
| NAME.                                | Chemical<br>composition<br>and reactions.                         | Specific<br>gravity. | Cleavage.                      | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                           | Twins. | Color and<br>power of<br>refracting light.                                      |
| 2. Garnet<br>Group.<br>α. Almandine. | Fe3Al2Si3O12.                                                     | 3.78<br>(3.1-4.2).   | Imperfect<br>∞O.               | ∞ 0.202<br>and grains.<br>Cross-<br>sections<br>quadratic,<br>hexagonal,<br>or<br>octagonal. |        | Red, in very<br>thin sections<br>nearly<br>colorless,<br>$\pi \rho = 1.772$ .   |
|                                      |                                                                   |                      |                                |                                                                                              |        |                                                                                 |
| β. Pyrope.                           | (CaO, MgO,<br>FeO, MnO)<br>AlgOg3SiOg.<br>Contains Cr.            | 3.7-3.8.             | Imperfect<br>∞O.               | Grains.                                                                                      |        | Blood-red.                                                                      |
|                                      |                                                                   |                      |                                |                                                                                              |        |                                                                                 |
| y. Melanite.                         | Ca <sub>3</sub> Fe <sub>2</sub> Si <sub>3</sub> O <sub>12</sub> . | 3.6-4.3.             | Imperfect<br>∞O.               | Crystals<br>∞O.                                                                              |        | Black;<br>dark brown<br>in sections.<br>Transparent<br>only with<br>difficulty. |
|                                      | All garnets are insoluble in acids.                               |                      |                                |                                                                                              |        |                                                                                 |

| Structure.                                                                                                                      | Association.                                                            | Inclosures.                                                                                                                                                                  | Decomposition.                                                                                                                                                                                                                                  | Occurrence.                                                                                                           | Remarks.                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Commonly<br>disseminated<br>through<br>micro-pegmatic<br>quartz and<br>feldspar,                                                | Generally with<br>guarts,<br>orthoclase,<br>biotite, and<br>hornblende. | Cavities of<br>the form of<br>garnet<br>(= negative<br>crystals).<br>Fluid<br>inclosures,<br>quartz-<br>granules.<br>Rutile; often<br>zonally<br>disposed.<br>(See Fig. 54.) | Commonly<br>metamorphosed<br>into chlorite<br>tableds on the<br>upper surfaces<br>and cleavage-<br>fissures. More<br>rarely, as in<br>pyrope,<br>metamorphosed<br>about the<br>edges into a<br><i>fibrous</i><br>hornblende,<br>or augite-zone. | Primary<br>constituent;<br>in many<br>crystalline<br>schists,<br>common in<br>granite, rare<br>in trachytic<br>rocks. |                                                                                                                     |
|                                                                                                                                 | With olivine<br>and augite.                                             | Very poor.                                                                                                                                                                   | Augitic fibrous<br>tufts shooting<br>out in marginal<br>zones,<br>perpendicular to<br>the surface of<br>the grains<br>are very common<br>and<br>characteristic,<br>(See Fig. 55.)                                                               | Primary<br>constituent.<br>In serpentines.                                                                            | The garnets<br>can be easily<br>distinguished<br>from the<br>hauyn by the<br>color and<br>insolubility<br>in acids. |
| Very<br>commonly<br>beautiful<br>zonal<br>structure,<br>then<br>generally<br>showing<br>double<br>refraction.<br>(See Fig. 54.) | With augite,<br>sanidine,<br>nepheline,<br>hauyn, and<br>leucite.       | Very poor.<br>Augite and<br>apatite<br>needles;<br>vitreous<br>inclosures.                                                                                                   |                                                                                                                                                                                                                                                 | Primary<br>constituent.<br>In phonoliths,<br>leucitophyr,<br>and volcanic<br>lavas.                                   | Compare with chromite.                                                                                              |
|                                                                                                                                 |                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                 |                                                                                                                       | -                                                                                                                   |

| NAME.                            | Chemical<br>composition<br>and reactions.                                                                               | Specific<br>gravity.      | Cleavage.                                                         | Ordinary<br>combinations<br>and form<br>of the<br>cross-section. | Twins.                      | Color and<br>power of<br>refracting light.                                                                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|
| 3. Spinel Group.<br>a. Chromite. | FeO,Cr2O3.                                                                                                              | 4.4-4.6.                  | Imperfect<br>O.                                                   | <i>Grains</i> and octahedra.                                     |                             | Becomes<br>translucent<br>only with<br>difficulty;<br>dark brown,<br>reddish brown,<br>metallic<br>lustre. |
| β. Picotite.                     | MgO { Al <sub>2</sub> O <sub>3</sub> }<br>FeO { Fe <sub>2</sub> O <sub>3</sub> }                                        | 4.08.                     |                                                                   | Octahedra.<br>Very minute<br>grains.                             | Twins<br>according<br>to O. | ditto.                                                                                                     |
| y. Pleonaste,                    | $ \begin{array}{c} FeO \ \left\{ \begin{array}{c} Al_2O_3 \\ MgO \end{array} \right\} \\ Fe_2O_3 \end{array} \right\} $ | Above 3.65.<br>(3.8-4.1). |                                                                   | ditto.                                                           |                             | Dark green.                                                                                                |
| & Hercynite                      | FeO. AlaOa                                                                                                              | 2.01-2.05.                |                                                                   | Octahedra.                                                       |                             | ditto.                                                                                                     |
|                                  | Insoluble in<br>acids;<br>unattacked<br>by HFl.                                                                         |                           |                                                                   |                                                                  |                             |                                                                                                            |
| 4. Analcime,                     | Nag AlgSidO12<br>+ 2H2O.<br>Soluble in HCI<br>with<br>separation<br>of gelatinous<br>SiO2.                              | 2.1-2.28.                 | (Imperfect);<br>according<br>to<br>Tschermak,<br>clearly<br>∞ O∞. | Generally<br>compact grains;<br>in cavities<br>202.              |                             | Coloriess,<br>white.<br>np = 1.4874.                                                                       |
|                                  | CARE SHE                                                                                                                | 1.2.5 72.3                | A TO BEN                                                          | Sector and                                                       | S ELLE LE                   | 125 Lines                                                                                                  |

| Structure.                                                                                                                                      | Association.                                                                                | Inclosures.                                                           | Decomposi-<br>tion. | Occurrence.                                                                                                                                                                                                                                                     | Remarks,                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Many<br>individual<br>grains<br>occurring in<br>basalts show<br>a broad,<br>opaque border.                                                      | With olivine<br>and augite.                                                                 |                                                                       |                     | Primary<br>accessory<br>constituent.<br>In olivine rocks,<br>serpentines,<br>and in basalts.<br>Picotite<br>commonly<br>inclosed in<br>olivine.                                                                                                                 | Great similarity<br>with melanite; if<br>in grains, can<br>be distinguished<br>only by chemical<br>tests. Melanite is<br>attacked by<br>concentrated HFI,<br>and is free from<br>chromium.<br>Melanite is<br>almost always<br>crystallized, and<br>hence can be<br>easily distinguished                                         |
|                                                                                                                                                 | Rarely with<br>olivine<br>and augite.<br>Common<br>with guarts,<br>orthoclase,<br>and mica. |                                                                       |                     | The same, but<br>rare. More<br>common in<br>granulites<br>and in<br>metamorphic<br>(contact) rocks.                                                                                                                                                             | from chromite.<br>Chromite and<br>picotite can be<br>distinguished only<br>by chemical means,<br>The spinels are<br>distinguished from<br>magnetite by<br>their transparency<br>(in very thin<br>sections) and<br>insolubility in acids.<br>Pleonaste and<br>hercynite can be<br>distinguished only<br>by chemical<br>analysis. |
| Often showing<br>double-<br>refraction and<br>remarkable<br>zonal structure;<br>generally<br>opaque;<br>interpenetrated<br>with<br>plagioclase. | With<br>plagioclase,<br>augite, or<br>hornblende.                                           | Poor in<br>inclosures.<br>Fluid<br>inclosures.<br>Apatite<br>needles. |                     | Either primary (?)<br>or decomposition<br>product of<br>nepheline (?)<br>Rare in the<br>younger basic<br>eruptive rocks,<br>the teschenites.<br>As decomposition-<br>products in<br>cavities (secondary)<br>in phonoliths,<br>trachytes,<br>andesites, basalts. | Can be determined<br>accurately only<br>by chemical tests.                                                                                                                                                                                                                                                                      |

119

| NAME.          | Chemical<br>composition<br>and reactions.                                                                              | Specific<br>gravity. | Cleavage.           | Ordinary<br>combinations<br>and form<br>of the<br>cross-section.                                           | Twins.                                | Color and power<br>of refracting<br>light.                                 |
|----------------|------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|
| 5 Fluorite.    | CaFl <sub>2</sub> .<br>Decomposed<br>by<br>concentrated<br>H <sub>2</sub> SO <sub>4</sub> with<br>evolution<br>of HFl. | 3.1-3.2.             | Perfect<br>after O. | In rocks<br>only in form<br>of minute<br>angular<br>granules.                                              |                                       | Blue,<br>transparent.<br>n = 1.435.                                        |
| 6. Perowskite, | CaTiO <sub>3</sub> ,<br>not attacked<br>by HCl ;<br>decomposed<br>by concen.<br>H <sub>2</sub> SO <sub>4</sub> .       | 4.0-4.I.             | ∞0∞.                | In irregular,<br>arborescent,<br>and<br>jagged forms,<br>often in<br>sharp<br>octahadra.<br>(See Fig. 56.) | Rare ;<br>penetra-<br>tion-<br>twins. | Grayish-violet;<br>grayish-<br>reddish<br>brown,<br>Relief<br>well marked. |
|                |                                                                                                                        |                      |                     |                                                                                                            |                                       |                                                                            |

#### MINERALS APPARENTLY CRYSTALLIZING

| 1040410. |  | <br>202.<br>Compare<br>with minerals<br>of the<br><i>tetragonal</i><br>system. |  |
|----------|--|--------------------------------------------------------------------------------|--|
| 1        |  |                                                                                |  |

| Structure.                                                                                                                                                                                                     | Association.                                               | Inclosures.          | Decomposition. | Occurrence.                                             | Remarks.                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|----------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Developed in<br>feldspar and<br>irregularly<br>distributed<br>through the<br>ground-mass.                                                                                                                      | With quartz,<br>orthociase,<br>biotite.                    | Fluid<br>inclosures. |                | Very rare ;<br>secondary in<br>quartzose<br>porphyries. |                                                                                                                                             |
| The rough<br>surface<br>of the slide very<br>characteristic,<br>Grouped<br>as inclosure<br>in mellite and<br>also in olivine,<br>often showing<br>double refraction.<br>Polarization-<br>colors very<br>faint. | With<br>nepheline,<br>melilite,<br>augile,<br>and olivine. | Very poor.           |                | In nepheline,<br>leucite, and<br>melilite<br>basalts.   | Can be<br>distinguished<br>from spinel<br>by its<br>color and<br>optical<br>anomalies;<br>and from<br>garnet by the<br>crystalline<br>form. |

#### IN THE REGULAR SYSTEM.

| Twinning<br>triations, double-<br>refracting. |       |  |                |
|-----------------------------------------------|-------|--|----------------|
|                                               | P. S. |  |                |
|                                               |       |  |                |
|                                               |       |  | and the second |

# II. DOUBLE-REFRACTING *a. Optically-Uniaxial* <sup>1.</sup> MINERALS CRYSTALLIZING IN A. DOUBLE-REFRACTION

| NAME.                                 | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                      | Specific<br>gravity. | Cleavage.                                                | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                                               | Twins.                                                                                                                                                                                                                                                                                        | Character<br>and strength<br>of double-<br>refraction.                                                                                                                                                                   | Polarization-<br>color.               |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1. Lencite.                           | K <sub>2</sub> Al <sub>2</sub> Si <sub>4</sub> O <sub>12</sub> .<br>Soluble in<br>HCl.<br>Separation of<br>pulverulent<br>SiO <sub>2</sub> :<br>K-reaction<br>with hydro-<br>fluosilicic<br>acid. | 2.45-2.5.            | Imperfectly<br>prismatic,<br>$\circ P \circ and$<br>o P. | Grains, but<br>(mostly)<br>crystals<br>P. 4 P2.<br>Apparently<br>a regular<br>form, 202.<br>Crystal<br>cross-<br>section<br>generally<br>octagonal,<br>often nearly<br>rectangular<br>of<br>hexagonal.           | After 2P∞;<br>polysyn-<br>thetic<br>twinning-<br>striations<br>after these<br>faces,<br>crossing at<br>right or<br>oblique<br>angles.<br>(See Fig.57.)                                                                                                                                        | The small<br>individuals,<br>without<br>twinning-<br>striations,<br><i>apparently</i><br><i>isotrope</i> .<br>No clear<br>axial<br>picture<br>evident in<br>c. p. l.<br>Double-<br>refraction<br>positive;<br>very weak. | Not very<br>brilliant<br>bluish-gray. |
| 2. Rutile.<br>(Nigrine,<br>Sagenite.) | TiO <sub>2</sub> :<br>Ti-reaction<br>with micro-<br>cosmic bead.                                                                                                                                  | 4.2-4.3<br>(4.277).  | ∞ P and<br>∞ P∞.                                         | $\infty P \cdot \infty P\infty$ .<br>P.<br>Grains;<br>often,<br>however, in<br>minute,<br>very long<br>and narrow<br>needles and<br>crystals.<br>The prisms<br>show a<br>striation<br>parallel to<br>the c-axis. | Very<br>common<br>and charac-<br>teristic<br>after Poo.<br>Bent at an<br>angle of<br>14° 25'.<br>Also, a web<br>of needles<br>which cut<br>each other<br>at an angle<br>of about<br>60°.<br>Sagenite.<br>Heart-<br>shaped<br>to 3Poo<br>are very<br>common,<br>(Comp.<br>Figs. 20<br>and 59.) | The crystals<br>are gene-<br>rally too<br>examine<br>with the<br>condenser.<br>Double-<br>refraction<br>strongly<br>positive.                                                                                            | None<br>especially<br>bright.         |

# MINERALS.

# Minerals.

## THE TETRAGONAL SYSTEM.

#### POSITIVE.

| Color and<br>power of<br>refracting<br>light.                                                                                                                                                      | Pleo-<br>chroism.                  | Structure.                                                                                                                                                                                                                                                                                          | Association.                                                                      | Inclosures.                                                                                                                                                                                                                                                                                                          | Decomposi-<br>tion.                                                                                                                                                                    | Occurrence.                                                                                                                                                                                                                                                                                                                                                                   | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colorless,<br>clear as<br>water.<br>$\omega = 1.508$ .<br>$\epsilon = 1.509$ .                                                                                                                     |                                    | Aggregates<br>of spherical<br>crystals<br>into a large<br>crystal.<br>Zonal and<br>radial<br>disposition<br>of the<br>inclosures.<br>(See Fig.38.)<br>Large<br>corroded<br>crystals<br>I. O. and<br>minute<br>often sharp-<br>ly formed<br>II. O.,<br>the latter<br>also<br>developed<br>in augite. | With<br>augite,<br>olivine,<br>nepheline,<br>plagioclase,<br>and<br>sanidine.     | Inclosures<br>of minute<br>virreous<br>particles,<br>gas-pores,<br>needles of<br>augite, etc.,<br>arranged in<br>zones and<br>rays, or<br>gathered<br>together at<br>the ceptre,<br>are charac-<br>teristic.<br>Also rich in<br>inclosures<br>of other<br>minerals, as<br>hauyn,<br>augite,<br>apatite,<br>melanite. | Into an<br>aggregate<br>of colorless<br>or yellow-<br>ish, fine<br>radial<br>filaments or<br>grains of<br>zeolites.<br>Rarely<br>pseudo-<br>morphs of<br>analcime<br>after<br>leucite. | Primary<br>essential<br>constituent.<br>With<br>sanidine,<br>etc., in the<br>leucitophyrs,<br>leucite-<br>tephrites,<br>and basalts;<br>also with<br>nepheline<br>and<br>plagioclase.<br>Especially<br>only in the<br>younger<br>basic<br>erupfive<br>rocks.                                                                                                                  | Easily distin-<br>guished from<br>other minerals by<br>crystalline form,<br>twinning-stria-<br>tions, and inclo-<br>sures, i. e., their<br>regular arrange-<br>ment. If the<br>leucite occurs in<br>very minute<br>grains through<br>the ground-mass,<br>it is often difficult<br>to distinguish<br>from the colorless<br>vitreous base<br>lying between;<br>in such cases<br>recognized only<br>by micro-chemical<br>reactions. |
| Honey-<br>yellow to<br>reddish<br>brown.<br>In grains<br>often<br>opaque or<br>only trans-<br>lucent<br>(nigrine),<br>then with<br>metallic<br>lustre;<br>occurring in<br>this form<br>but rarely. | Not especially<br>notice-<br>able. | Rutile, as<br>sagenite,<br>often occurs<br>regularly<br>developed<br>in biotite;<br>also inter-<br>penetrated<br>with<br>ilmenite.<br>Very<br>common as<br>inclosure<br>in the<br>minerals<br>accompany-<br>ing it,<br>especially<br>in garnet<br>and<br>omphacite.                                 | With<br>quartz,<br>polassium<br>feldspar,<br>garnet,<br>hornblende,<br>omphacite. | Very poor.                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        | As primary<br>accessory<br>constituent<br>very<br>common in<br>nearly all<br>crystalline<br>schists,<br>especially<br>those<br>containing<br>hornblende<br>and augite,<br>as the horn-<br>blendites and<br>eclogites.<br>As decom-<br>position-<br>froduct of<br>ilmenite<br>secondary.<br>Very<br>common in<br>aluminious<br>schists, as<br>"aluminous"<br>schist, needles," | Easily distin-<br>guished from<br>zircon by polar-<br>ization-colors,<br>color, and<br>common twinned<br>formation.                                                                                                                                                                                                                                                                                                              |

UNIVE 123

| Name.      | Chemical<br>composition<br>and<br>reactions.                                                                                                 | Specific<br>gravity. | Cleavage.                | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                | Twins.              | Character<br>and strength<br>of double<br>refraction.   | Polarization-<br>colors.                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 3. Zircon. | ZrO <sub>2</sub> + SiO <sub>2</sub> .<br>Acids have<br>no action,<br>except<br>H <sub>2</sub> SO <sub>4</sub> ,<br>which decom-<br>poses it. | 4.4-4.7.             | Imperfect,<br>P and ∞ P. | P. $\infty$ P $\infty$ ,<br>also 3P3;<br>rich in com-<br>binations;<br>nearly<br>always in<br>minute<br>but sharply-<br>defined<br>crystals,<br>(See Fig.<br>60.) | Rarely<br>alter P∞. | Double-<br>refraction;<br>very<br>ztrongly<br>positive. | Exceedingly<br>brilliant,<br>emerald-<br>green,<br>hyacinth-<br>red, and<br>iridescent. |
|            |                                                                                                                                              |                      | 1                        |                                                                                                                                                                   |                     | •                                                       |                                                                                         |

## B. DOUBLE-REFRACTION

| 4. Anatase.                           | Like rutile.                                                                                                                                                                                            | 3.83-3.93.  | oP and P.                                           | Sharp P.                                                                                                                         | Like rutile.                                              | Like rutile.              |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|
| 5. Meionite<br>Group.<br>a. Meionite. | Ca <sub>6</sub> (Al <sub>2</sub> )Si <sub>9</sub> O <sub>36</sub>                                                                                                                                       | 2.734-2.737 |                                                     |                                                                                                                                  |                                                           |                           |
| β.Scapolite.                          | R <sub>3</sub> Al. <sub>2</sub> Si <sub>6</sub> O <sub>21</sub><br>R = predomi-<br>nating Ca, some<br>Mg, Na <sub>2</sub> soluble<br>in HCl, with<br>separation of<br>pulverulent<br>SiO <sub>2</sub> . | 2.63-2.79.  | Perfect<br>$\infty P \infty$ .<br>(See Fig.<br>61.) | Crystals<br>after<br>$\infty P$ . $\infty P \infty$ .<br>P<br>and larger<br>grains, or<br>elongated<br>prismatic<br>individuals. | Double-<br>refraction;<br>rather<br>strongly<br>negative. | Brilliant<br>like quartz. |

|                                                                                                                                                                                                            |                         |                                                                                                                                   |                                                                      |                                                                                                      | And the second se | and the second se |                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Color and<br>power of<br>refracting<br>light.                                                                                                                                                              | Pleo-<br>chroism.       | Structur <del>e</del> .                                                                                                           | Association.                                                         | Inclosures.                                                                                          | Decomposi-<br>tion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks.                                                                                                             |
| Colorless,<br>wine-<br>yellow;<br>wery strong<br>refraction;<br>the con-<br>tours have<br>black<br>borders (by<br>the total<br>reflection<br>of the<br>incident<br>light).<br>$\omega = 1.92$<br>e = 1.97. | Not<br>notice-<br>able. | Like rutile,<br>one of the<br>first-formed<br>rock con-<br>stituents;<br>therefore<br>common as<br>inclosure<br>in the<br>others. | With<br>quartz,<br>orthoclase,<br>biotite,<br>hornblende,<br>augite. | Fluid<br>inclosures,<br>acicular<br>cavities,<br>and<br>elongated<br>undeter-<br>minable<br>needles, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Primary<br>accessory<br>constituent<br>in garnet,<br>syenite,<br>quariz,<br>porfhyry,<br>trachytes,<br>and many<br>other<br>eruptive<br>rocks, but<br>rare;<br>more<br>commonly<br>accompany-<br>ing rutile<br>in<br>chrystalline<br>schists.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well<br>characterized by<br>crystalline form,<br>polarization-<br>colors, and<br>powerful<br>refraction of<br>light. |
|                                                                                                                                                                                                            | The second              | The second second                                                                                                                 |                                                                      |                                                                                                      | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |

## NEGATIVE.

| Dark<br>lavender-<br>blue.                                                                                                                | Like<br>rutile. |                                                                                                                        | With<br>quartz,<br>orthoclase,<br>and<br>biotite.                                                                                          |                                                            |                                                    | Very rare<br>in granite,<br>quartzose<br>porphyries,<br>and<br>crystalline<br>schists.                                                                                             |                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\omega = 1.594 - \frac{1.597}{1.58} - \frac{1.58}{1.561}$<br>colorless.<br><i>White</i> .<br>$\omega = 1.565$<br>e = 1.565<br>e = 1.545. |                 | Scapolite<br>appears<br>often to<br>replace<br>plagioclase<br>and to be<br>a decom-<br>position<br>product<br>from it, | With<br>sanidine,<br>sodalite,<br>augite,<br>With<br>quartz,<br>plagioclase,<br>calcite,<br>auglte,<br>garnet,<br>rutile, and<br>titanite. | Poor;<br>fluid in-<br>closures;<br>rutile in<br>scapolite. | Opaque,<br>fibrous; decomposed<br>into<br>calcite. | Primary<br>accessory<br>constituent;<br>very rare in<br>trachytic<br>rocks.<br>Rare in<br>crystalline<br>schists,<br>with<br>plagioclase<br>secondary<br>accessory<br>constituent. | Scapolite can<br>be easily<br>distinguished<br>from orthoclase<br>and calcite by<br>the optical<br>properties and<br>cleavage;<br>meionite is<br>recognizable by<br>the crystalline<br>form. |

| NAME.                              | Chemical<br>composition<br>and reactions,                                                                                                                                                                               | Specific<br>gravity.                | Cleavage.                                                           | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                                                                                                                                       | Twins.                                                                                          | Character<br>and strength<br>of double-<br>refraction. | Polarization-<br>colors.                                                                                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y. Couse-<br>ranite and<br>Dipyr.  | Similar to<br>scapolite;<br>rich in the<br>alkalies,<br>$H_2O$ .<br>Not attacked<br>by acids<br>(HCI), or at<br>least only<br>with<br>difficulty.                                                                       | 2.69-2.76<br>(2.613).<br>2.62-2.68. | According<br>to $\infty P \infty$ .<br>According<br>to $\alpha P$ . | Long<br>prisms<br>©P. ©P∞;<br>with<br>termina-<br>tions<br>either<br>rounded or<br>fibrous.                                                                                                             |                                                                                                 | As in<br>scapolite,<br>Rather<br>energetic.            | Rather<br>brilliant,                                                                                                                                                           |
| 8. Melilite.<br>(Humbold-<br>ite.) | (Ca, Mg, Na <sub>9</sub> ) <sub>12</sub> .<br>(Al <sub>2</sub> Fe <sub>2</sub> ) <sub>2</sub> ,<br>Si <sub>9</sub> O <sub>36</sub> .<br>Easily soluble in<br>HCl with<br>separation of<br>gelatinous SiO <sub>2</sub> . | 2.90-2.95.                          | Parallel to $oP$ and $\infty P$ .                                   | Nearly<br>always in<br>crystals;<br>thin tablets<br>predomi-<br>nating,<br>oP. oP.<br>more<br>grains.<br>Cross-<br>sections<br>for the<br>most part<br>ractan-<br>gular,<br>more<br>rarely<br>circular. | Rarely<br>penetra-<br>tion<br>twins, with<br>chief axes<br>at right<br>angles to<br>each other. | Double-<br>refraction<br>feebly<br>negative.           | Not very<br>brilliant;<br>if yellow<br>and<br>fibrous,<br>shows<br>aggregate<br>polariza-<br>tion-<br>colors; if<br>colorless,<br>bluish-gray<br>polariza-<br>tion-<br>colors. |
|                                    |                                                                                                                                                                                                                         | -                                   |                                                                     |                                                                                                                                                                                                         |                                                                                                 |                                                        |                                                                                                                                                                                |

|                                                                                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                                             |                                                                                                                                      |                                                                                                           | Concession with the second statement of the second sta |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Color and<br>power of<br>refracting<br>light.                                                                                         | Pleo-<br>chroism.                                                                                     | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Association.                                                 | Inclosures.                                                                                                                 | Decomposi-<br>tion.                                                                                                                  | Occurrence.                                                                                               | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bluish,<br>colorless<br>in thin<br>section,<br>clear as<br>waier,<br>black<br>from<br>inclosures.<br>$\omega = 1.558$ .<br>e = 1.543. |                                                                                                       | Crystals<br>developed<br>in<br>limestone,<br>often rich<br>in<br>inclosures.                                                                                                                                                                                                                                                                                                                                                                                            | With<br>calcite,<br>actinolite,<br>and mica.                 | Very rich;<br>particles<br>of carbon,<br>quartz-<br>grains,<br>and<br>leaflets of<br>muscovite<br>distributed<br>at random. | Fibrous<br>decomposi-<br>tion, with<br>formation<br>of calcite<br>on the<br>crevices.                                                | As contact-<br>mineral in<br>metamor-<br>phosed<br>limestone,<br>Very rare.                               | Can be<br>distinguished<br>from chinastolite<br>by the<br>structure;<br>from<br>andalusite<br>by the<br>optical<br>properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Generally<br>lemon-<br>yellow,<br><i>honey-</i><br>yellow,<br>colorless to<br>yellowish<br>white.                                     | Longi-<br>tudinal<br>scc-<br>tions;<br>rect-<br>angles<br>show a<br>very<br>feebie<br>dichro-<br>ism. | Rectangu-<br>lar longi-<br>tudinal<br>sections<br>show a<br>striation<br>and<br>fibrous<br>tendency<br>parallel<br>to the<br>short<br>sides,<br>i.e., the<br>chief<br>axis c;<br>there are<br>also<br>very fine<br>spindle-<br>shaped<br>cavities<br>which<br>appear as<br>minute<br>circles<br>within the<br>rounded<br>sections<br>cut at<br>right angles<br>to the<br>so-called<br>"Pflock-<br>structure."<br>(See<br>Fig. 62.)<br>Developed<br>with its<br>crystal. | With<br>nepheline,<br>leucite,<br>augite,<br>and<br>olivine. | Poor.                                                                                                                       | The<br>formation<br>of fibres<br>is a<br>result of<br>tion into<br>zeolitic<br>substances.<br>(Compare<br>with<br>"struc-<br>ture.") | As<br>primary<br>constituent<br>often<br>replacing<br>in the<br>and<br>lewite<br>basalts<br>and<br>lavas, | Easily<br>recognizable<br>by the<br>crystalline form,<br>color, and fibrous<br>tendency.<br>If colorless,<br>easily confounded<br>with nepheline,<br>although the<br>hexagonal<br>isotropic sections<br>are wanting<br>in melilite.<br>Can be<br>distinguished<br>from serpentine<br>often only by<br>the paler color<br>and the<br>interlacing<br>of olivine<br>particles;<br>from biotite<br>leaflets by the<br>paler color<br>and the want of<br>dichroitic<br>longitudinal<br>sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

127

#### 2. MINERALS CRYSTALLIZING IN

A. DOUBLE-REFRACTION

| and the second sec |                                                                                                            | and the second second second second |                                                                                                                    |                                                                                                                                                                                                                          | the second s |                                                        |                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|
| NAME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chemical<br>composition<br>and<br>reaction.                                                                | Specific<br>gravity.                | Cleavage.                                                                                                          | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                                                       | Twins.                                                                                                         | Character<br>and strength<br>of double-<br>refraction. | Polariza-<br>tion-colors.                                                                  |
| 1 Quartz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SiO <sub>2</sub> .<br>Unattacked<br>by HCI and<br>H <sub>3</sub> SO <sub>4</sub> :<br>dissolved by<br>HFI. | 2.65<br>average<br>(2.651).         | Imperfect<br>according<br>to <i>R</i> .<br>The<br>sections<br>uneven<br>owing to<br>the<br>conchoidal<br>fracture. | Grains or<br>crystals<br>R R or<br>or, $R. R R$ .<br>Generally<br>in large<br>individuals;<br>regular<br>hexagons,<br>rhombs,<br>and<br>hexagons,<br>with two<br>parallel<br>longer<br>sides.<br>Never as<br>microlites. | With<br>parallel<br>axial-<br>rystems.<br>As a rock-<br>constituent<br>never or<br>rarely<br>twinned.          | Double-<br>refraction<br>positive.<br>Strong.          | Brilliant<br>yet weak<br>in very<br>thia<br>sections;<br>bluish-gray,<br>like<br>feldspar. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                     |                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                |                                                        |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                     |                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                |                                                        |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                     | •                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                |                                                        |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                     |                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                |                                                        |                                                                                            |

## THE HEXAGONAL SYSTEM.

## POSITIVE.

|                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Color and<br>power of<br>refracting<br>light.                                                       | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Association.                                                                                                                                                                                                                    | Inclosures.                                                                                                                                                                                                                                                                                                                       | Decomposi-<br>tion.                                                                                                                                                                                                                                                                                         | Occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks.                                                                                                                                                                                                                                                                            |
| Colorless;<br>clear as<br>water;<br>vitreous<br>lustre.<br>$\omega = 1.548.$<br>$\epsilon = 1.558.$ |                   | Often colored<br>by Fe <sub>2</sub> O <sub>3</sub><br>entering<br>fissures;<br><i>cloudy from</i><br><i>numberless</i><br><i>inclosures</i> , as<br>and crystals.<br>Quartz from<br>the eruptive<br>rocks give<br><i>evidence of</i><br><i>corrosion</i> ,<br>being rounded<br>and shattered;<br>the ground-<br>mass is forced<br>between as<br>leaves of a<br>book (see<br>Fig. 43).<br>In granites<br>commonly<br>developed<br>with ortho-<br>clase, as<br>graphic-<br>granite<br><i>micro-<br/>pegmatite</i> .<br>(Comp. Fig.<br>63.)<br>In the<br>porphyritic<br><i>eruptive</i><br>rocks also<br>with radial<br>structure as<br>spherulites. | With<br>orthoclase<br>(and<br>sanidine),<br>more rarely<br>plagioclase,<br>bornblende,<br>and augite.<br>Never as<br>primary<br>component<br>in augite-<br>olivine<br>rocks; as<br>also in<br>nepheline<br>or leucite<br>rocks. | Poor in<br>mineral<br>inclosures.<br>Apatite<br>prisms.<br>In clastic<br>schists and<br>granites<br>very rich<br>inclosures<br>and long<br>brown or<br>black, often<br>bent,<br>needles.<br>In the<br>porphyries,<br>trachytes,<br>and other<br>eruptive<br>rocks rich<br>in primary<br>glassy<br>inclosures<br>and<br>gas-pores. | None.<br>Changes<br>resulting<br>from the<br>action of<br>melted<br>magma are<br>quartz of<br>the eruptive<br>rocks, or<br>from the<br>rocks, or<br>from the<br>rocks contained<br>in it as<br>inclosures.<br>Compare<br>corrosion-<br>phenomena<br>secondary<br>glassy<br>inclosures.<br>(See<br>Fig. 43.) | <ul> <li>I. As primary component:         <ul> <li>(a) In eruptive</li> <li>(b) In eruptive</li> <li>(c) As macroscopic constituent</li> <li>I. O. As macroscopic constituent</li> <li>in grains and</li> <li>crystals with fluid</li> <li>crystals a component of the II. O. in</li> <li>the ground-mass of</li> <li>those rocks in</li> <li>minute irregular</li> <li>grains, never as</li> <li>crystals.</li> <li>(b) In nearly all</li> <li>crystals.</li> <li>(c) In nearly all</li> <li>crystals.</li> <li>(b) In nearly all</li> <li>crystals.</li> <li>(c) In nearly all</li> <li>crystals.</li> <li>(c) In nearly all</li> <li>crystals.</li> <li>(d) In nearly all</li> <li>crystals.</li> <li>(d) In nearly all</li> <li>crystals.</li> <li>(d) In nearly all</li> <li>crystals.</li> <li>(f) In secondary</li> <li>product through decomposition of</li> <li>silicates, especially</li> <li>of augite, horn-</li> <li>blende, and biotite;</li> <li>in diabases, as</li> <li>granular aggre-</li> <li>grains in classers</li> <li>in lines and</li> <li>fluid inclosures;</li> <li>joined together,</li> <li>recks.</li> </ul> </li> <li>III. In clastic rocks as flattened grains;</li> <li>fluid inclosures;</li> <li>joined together,</li> <li>reaching to the very</li></ul> | In grains<br>often<br>similar to<br>sanidine,<br>but can<br>be easily<br>distin-<br>guished from<br>nephe-<br>line and<br>apatite by<br>insolu-<br>bility in<br>dum by<br>the<br>character<br>of<br>double-<br>refrac-<br>tion; from<br>calcite by<br>ccleavage<br>and<br>twinning. |
|                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | muscovite<br>and<br>biotite.                                                                                                                                                                                                    | twined<br>fluid<br>inclosures.                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                         | building quartzite<br>and quartz<br>schists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                     |

| NAME.              | Chemical<br>composition<br>and<br>reactions, | Specific<br>gravity. | Cleavage.   | Ordinary<br>combina-<br>tions and<br>form of<br>cross-section.                          | Twins.                                                                                                                                                                                                     | Character<br>and strength<br>of double-<br>refraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polarization-<br>colors.        |
|--------------------|----------------------------------------------|----------------------|-------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 2. Tridy-<br>mite. | Like<br>quariz.                              | 2.282-2.326.         | Imperfectly | In very<br>minute<br>thin tablets,<br>pred. oP<br>and $\infty P$ .                      | Very<br>common.<br>Twinning-<br>plane<br>a face of<br>$\frac{1}{2}P$ and $\frac{3}{2}P$ .<br>(According<br>to<br>v. Lasaulx<br>and<br>Schuster,<br>twins<br>according<br>to a plane<br>of $\infty P_{*}$ ) | Positive.<br>Very<br>feeble.<br>According<br>to<br>v. Lasaulx<br>and<br>Schuster,<br>tridymite<br>crystallizes<br>in the<br>triclinic<br>system.<br>A.P.<br>differing<br>but little<br>from the<br>normals to<br>aP.<br>M. = c<br>nearly<br>$\perp oP$ .<br>Axial angle<br>$65-70^\circ$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not very<br>brittiant,<br>Gray, |
|                    |                                              |                      |             | A more exac<br>optical dete<br>is generally<br>minuteness<br>in the rock<br>mite behave | ct crystallogr<br>rmination c<br>impossible,<br>of the cryst<br>s. Microscc<br>s like an he:<br>eral in p.p.l.                                                                                             | raphical and<br>of tridymite<br>owing to the<br>ls occurring<br>opical tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy-<br>tridy |                                 |
| Color and<br>power of<br>refracting<br>light.                     | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                     | Association.                                                                                                                                    | Inclosures.          | Decomposi- | Occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks.                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colorless,<br>clear as<br>water.<br>n, i.e.<br>$\beta = 1.4285$ . |                   | Generally<br>in<br>aggregates<br>of minute<br>thin tablets;<br>either<br>hexagonal<br>or<br>irregular<br>tablets,<br>lapping<br>over<br>each other<br>like<br>shingles,<br>Often in<br>the<br>neighbor-<br>hood of<br>feldspars,<br>or in large<br>groups<br>in the<br>groups<br>in the<br>groups<br>Fig. 64.) | With<br>quartz,<br>sanidine,<br>plagioclase,<br>augite,<br>biotite,<br>and<br>horn-<br>blende.<br>Secondary<br>with opal<br>and chalce<br>dony. | Fluid<br>inclosures. |            | Primary as<br>accessory<br>constituent,<br>and<br>secondary<br>as decom-<br>position-<br>product in<br>rhyolites,<br>trachytes,<br>hornblende-<br>and augite-<br>and augite-<br>a | The tendency to<br>form aggregates<br>is very<br>characteristic for<br>microscopic<br>tridymite; the<br>optical properties<br>and the<br>twinnings for<br>the larger<br>crystals and<br>those suitable<br>for optical<br>investigations. |
|                                                                   |                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                          |

131

B. DOUBLE-REFRACTION

|                    | and the second se | and the second | and the second second              | and the second second second by the                               |                                                                                              | and the second |                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME.              | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific<br>gravity.                                                                                             | Cleavage.                          | Ordinary<br>combina-<br>tions and<br>form of<br>cross-section.    | Twins.                                                                                       | Character<br>and<br>strength of<br>double-<br>refraction.                                                        | Polarization-<br>colors.                                                                                                                                                     |
| 1. Calcite.        | CaCO <sub>3</sub> .<br>Easily<br>soluble<br>in HCl,<br>with rapid<br>evolution<br>of CO <sub>3</sub> .<br>Easily<br>soluble in<br>acetic acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6-2.8<br>(2.72).                                                                                               | Perfect<br>R.<br>(See<br>Fig. 65.) | Only in<br>regular<br>grains<br>and<br>crystalline<br>aggregates. | Poly-<br>synthetic<br>twinning-<br>striation<br>after<br>- 4 R.<br>(See Figs.<br>21 and 65.) | Double-<br>refraction<br>strongly<br>negative.                                                                   | Generally<br>weak; gray;<br>yet often<br>brilliantly<br>iridescent<br>like talc,<br>especially<br>in those cases<br>where<br>the calcite<br>occurs in<br>minute<br>granules. |
| 2. Dolomite.       | (Ca) (Mg)<br>CO <sub>3</sub> .<br>More<br>difficultly<br>soluble in<br>acids than<br>calcite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.85-2.95.                                                                                                       | ditto.                             | Grains and<br><i>R</i> .                                          | See " Re-<br>marks."                                                                         |                                                                                                                  | ditto.                                                                                                                                                                       |
| 3. Mag-<br>nesite. | MgCO <sub>3</sub> .<br>More<br>difficultly<br>soluble in<br>HCl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9-3.1.                                                                                                         | ditto.                             | ditto.                                                            |                                                                                              |                                                                                                                  | ditto.                                                                                                                                                                       |
| 4. Siderite.       | FeCO <sub>3</sub> .<br>Soluble in<br>HCl with<br>evolution of<br>gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7-3.9.                                                                                                         | ditto.                             | ditto.                                                            |                                                                                              | 5.                                                                                                               | ditto.                                                                                                                                                                       |

#### NEGATIVE.

|                                                               |                       | and the second second second second                                                                                                                                                     |                                                                                                |                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Color and<br>power of<br>refracting<br>light.                 | Pleo-<br>chroism.     | Structure.                                                                                                                                                                              | Association.                                                                                   | Inclosures.                                                       | Decomposi-<br>tion. | Occurrence.                                                                                                                                                                                                                                                                                                                                                                               | Remarks.                                                                                                                                                                                                                                                                           |
| Colorless,<br>white,<br>grayish.<br>w = 1.64833<br>€ = 1.4833 | Feeble<br>absorption. | Generally<br>in granular<br>aggregates,<br>in cavities;<br>in threads<br>and fibres.<br>In irregular<br>grains,<br>single<br>individuals,<br>between<br>the other<br>con-<br>stituents. | In nearly<br>all rocks<br>bearing<br>augite,<br>hornblende,<br>biotite,<br>and<br>plagioclase. | Fluid<br>inclosures;<br>very poor<br>in<br>mineral<br>inclosures. | None.               | As primary<br>constituent,<br>building by<br>itself a<br>simple rock,<br>limestone;<br>not yet<br>assuredly<br>proved as<br>such in<br>eruptive<br>rocks.<br>Here as<br>decomposition<br>product,<br>especially of<br>the bisilicates<br>and of mica,<br>where it<br>occurs in<br>lenticular<br>forms<br>between the<br>laminæ.<br>Primary and<br>secondary in<br>crystalline<br>schists. | Well<br>character-<br>ized by<br>the rhombo-<br>hedral<br>cleavage<br>and<br>twinning-<br>striation.<br>If occurring<br>in minute<br>granules,<br>often<br>difficult to<br>accurately<br>determine;<br>the<br>solubility<br>and<br>polarization<br>colors<br>remain as<br>means of |
| ditto.                                                        |                       | ditto.                                                                                                                                                                                  |                                                                                                |                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                           | The poly-<br>synthetic<br>twinning-<br>striations<br>after $-\frac{1}{2}R$<br>are wanting<br>on dolomite.                                                                                                                                                                          |
| ditto.                                                        |                       | ditto.                                                                                                                                                                                  | With<br>serpentine.                                                                            |                                                                   |                     | With olivine<br>and<br>serpentine as<br>decomposi-<br>tion-product.                                                                                                                                                                                                                                                                                                                       | Magnesite<br>and<br>siderite                                                                                                                                                                                                                                                       |
| Yellowish<br>to brown.                                        |                       | ditto.                                                                                                                                                                                  | See<br>Calcite.                                                                                |                                                                   |                     | As decomposi-<br>tion-product<br>in small<br>balls of con-<br>centrically-<br>arranged<br>layers and<br>with radial<br>fibres; in<br>andesites, etc                                                                                                                                                                                                                                       | can be dis-<br>tinguished<br>from<br>calcite<br>only by<br>chemical<br>means.                                                                                                                                                                                                      |

| NAME.                                 | Chemical<br>composition<br>and<br>reactions.                                                                                                                                        | Specific<br>gravity. | Cleavage.                         | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                       | Twins. | Character<br>and strength<br>of double-<br>refraction.  | Polarization-<br>color.                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------|-----------------------------------------------------|
| 5.Nepheline<br>Group.<br>a. Elæolite. |                                                                                                                                                                                     | 2.65 (2.591).        | Imperfect;<br>coarse<br>fissures. | Only in larger grains.                                                                                                                   |        |                                                         | Generally<br>bluish gray,<br>not very<br>brilliant. |
| β. Nephe-<br>line.                    | (Na, K) <sub>2</sub><br>Al <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> .<br>Easily soluble<br>in HCl<br>with<br>separation of<br>gelatinous<br>SiO <sub>2</sub> ; on<br>evaporation | (2.58-2.65)          | Imperfect                         | Hexagons                                                                                                                                 |        | Double-<br>refraction<br>negative,<br>not<br>energetic. | Similar to                                          |
|                                       | cubes of<br>NaCl.                                                                                                                                                                   | 2.30.                | ωP.                               | rectangles;<br>in minute<br>crystals<br>$\infty P$ , $oP$ ,<br>in short<br>prisms,<br>and in<br>minute<br>irregular<br>granules.<br>(See |        |                                                         | the feldspar<br>in very<br>thin sections.           |
|                                       |                                                                                                                                                                                     |                      |                                   | Fig. 66.)                                                                                                                                |        |                                                         |                                                     |
|                                       |                                                                                                                                                                                     |                      |                                   |                                                                                                                                          |        |                                                         |                                                     |
|                                       |                                                                                                                                                                                     |                      |                                   |                                                                                                                                          |        |                                                         |                                                     |
|                                       |                                                                                                                                                                                     |                      |                                   |                                                                                                                                          |        |                                                         |                                                     |

| Color and<br>power of<br>refracting<br>light.                                                  | Pleo-<br>chroism. | St-ucture.                                                                      | Association.                                                                                                               | Inclosures.                                                                                   | Decomposi-<br>tion.                                                                                                                                        | Occurrence.                                                                                                                                            | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gray,<br>reddish<br>brown,<br>faity lustre;<br>colorless<br>in thin<br>section.                |                   | Irregular<br>grains<br>inter-<br>penetrated<br>with<br>other con-<br>stituents. | With<br>sodalite,<br>microline,<br>hornblende,<br>titanite.                                                                | Poor;<br>often<br>colored<br>green by<br>hornblende.                                          | Fibrous,<br>zeolitic<br>meta-<br>morphosis.                                                                                                                | As primary<br>essential<br>constituent<br>in the older<br>eruptive<br>rocks; in the<br>elæolite-<br>syenites.                                          | Well recognizable<br>macroscopically.<br>The solubility<br>and Na-reaction<br>are characteristic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Colorless,<br>clear as<br>water.<br><i>ω</i> = 1.539<br>- 1.534<br><i>e</i> = 1.534<br>- 1.537 |                   | In crystals<br>or in<br>aggregates<br>of minute<br>irregular<br>granules.       | With<br>leucite,<br>augite,<br>olivine,<br>or with<br>sanidine<br>and augite,<br>or with<br>hornblende<br>and<br>titanite. | Inclosures<br>of augite<br>very<br>commonly<br>parallel<br>to the faces,<br>(See<br>Fig. 66.) | Generally<br>fresh, in<br>phonolites<br>more often<br>opaque<br>and meta-<br>morphosed<br>into<br>zeolites;<br>then<br>polarizing<br>like an<br>aggregate. | As primary<br>essential<br>constituent<br>in the<br>younger<br>eruptive<br>rocks:<br>nephelinites,<br>nephelinites,<br>phonolites<br>and<br>tephrites. | Distinguished<br>from: apatile by<br>the imperfect<br>cleavage,<br>microchemical<br>reactions, and<br>crystalline forms,<br>as spatite<br>commonly<br>shows P,<br>besides $\infty P, oP$ ,<br>and occurs<br>in long prisms;<br>guartz never<br>occurs in such<br>minute crystals<br>as nepheline;<br>feldspar-threads<br>are long<br>and twinned;<br>medilite has no<br>hexagonal<br>transverse<br>sections;<br>zeolitas generally<br>evidence their<br>secondary<br>character.<br>The short<br>rectagular<br>longitudinal<br>sections are<br>wanting in<br>tridymite.<br>If nepheline<br>occurs in<br>aggregates of<br>minute granules,<br>then it is<br>similar to a<br>colorless vitreous<br>mass or quartz<br>and orthoclase<br>aggregates,<br>and can be<br>proven only by |
|                                                                                                | 1                 |                                                                                 | 1918 194                                                                                                                   | A States !!                                                                                   |                                                                                                                                                            |                                                                                                                                                        | tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| NAME.                | Chemical<br>composition<br>and reactions.                                                                                                                                                                                                 | Specific<br>gravity. | Cleavage.                                                                                                                                                                                                                                            | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                  | Twins. | Character<br>and strength<br>of double-<br>refraction.                                                                                 | Polarization-<br>colors.                                      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| γ. Cancri-<br>nite.  | Composition<br>like a<br>nepheline,<br>poor in<br>potassium,<br>together with<br>CaO, CO <sub>2</sub> ,<br>and H <sub>2</sub> O.<br>Soluble in<br>HCl with<br>effervescence,<br>with<br>separation of<br>gelatinous<br>SiO <sub>2</sub> . | 2.448-2.454 <b>.</b> | Imperfect                                                                                                                                                                                                                                            | Larger<br>irregular<br>grains.                                                     |        | Double-<br>refraction<br>negative.                                                                                                     | Rather<br>brilliant;<br>aggregate<br>polariza-<br>tion.       |
| δ. Lieben-<br>erite. | Potassium-<br>aluminium<br>silicate,<br>H <sub>2</sub> O, traces<br>of Fe, Mg,<br>Similar to<br>pinite,<br>incompletely<br>decomposed<br>by HCl.                                                                                          | 2.799–2.814.         | Very<br>imperfect<br>$\infty P$ .                                                                                                                                                                                                                    | Only larger<br>crystals<br>∞P.oP.                                                  |        | Double-<br>refraction<br>negative (?)<br>Cannot be<br>confirmed,<br>as the<br>crystals<br>are always<br>completely<br>decom-<br>posed. | Remark-<br>aggregate<br>polariza-<br>tion, very<br>brilliant. |
| 6. Apatite.          | Ca <sub>8</sub> P <sub>8</sub> O <sub>12</sub> Cl.<br>Ca <sub>8</sub> P <sub>3</sub> O <sub>12</sub> Fl.<br>Soluble in<br>acids.<br><i>Reaction for</i><br><i>phosphoric</i><br><i>acid</i> .                                             | 3.16-3.22.           | Crystals,<br>more rarely<br>grains.<br>Imperfect<br>cleavage<br>parallel $aP$<br>and $\infty P$ ,<br>Remarkable<br>"separa-<br>tion"<br>(abson-<br>derung)<br>   P, the<br>acicular<br>crystals<br>thereby<br>separating<br>into several<br>members, | ∞ P, P<br>and more<br>rarely oP.<br>Generally<br>long prisms.<br>(See<br>Fig. 67.) |        | Double-<br>refraction<br>negative,<br>feeble,                                                                                          | Generally<br>not very<br>brilliant,<br>as with<br>nepheline.  |

| Color and<br>power of<br>refracting<br>light.                                                                                                                                                                             | Pleo-<br>chroism.                             | Structure.                                                                                                                                                                                                                                                                                                                     | Association.                                 | Inclosures.                                                                                                                                                                                                                                                                                                                                                                                             | Decomposition.                                                                                                                                                                              | Occurrence.                                                                                                                                                                                        | Remarks.                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lemon-<br>yellow,<br>nearly<br>colorless,<br>in sections.                                                                                                                                                                 |                                               | Fibrous,<br>inter-<br>penetrated<br>with<br>nepheline<br>and<br>orthoclase.                                                                                                                                                                                                                                                    | Like<br>elæolite.                            | Poor,<br>Leaflets of<br>ferric oxide,<br>etc., like<br>elæolite.                                                                                                                                                                                                                                                                                                                                        | Fibrous<br>decomposi-<br>tion with<br>formation of<br>calcite.<br>(Cancrinite<br>appears to be<br>only a<br>decomposed<br>nepheltine.)                                                      | Like<br>elæolite;<br>rare.                                                                                                                                                                         | Can be<br>dis-<br>tinguished<br>from<br>elæolite<br>only<br>macro-<br>scopically<br>and by the<br>content of<br>CaCO <sub>3</sub> .                                                                                                                                                                                        |
| Oil-green;<br>in sections<br>colorless;<br>white.                                                                                                                                                                         |                                               | Only as<br>"spring-<br>ling"<br>in macro-<br>scopic<br>crystals.                                                                                                                                                                                                                                                               | With<br>flesh-red<br>orthoclase<br>and mica. |                                                                                                                                                                                                                                                                                                                                                                                                         | It is probably<br>a completely<br>decomposed<br>nepheline(?) or<br>cordierite(?);<br>consists<br>principally of<br>minute<br>muscovite<br>leaflets, which<br>i.p.l. appear<br>very clearly. | Rare,<br>In<br>orthoclase-<br>porphyry.                                                                                                                                                            | Easily<br>recog-<br>nizable<br>by the<br>crystalline<br>form and<br>decom<br>position.                                                                                                                                                                                                                                     |
| Colorless,<br>white;<br>colored<br>reddish,<br>brown,<br>black,<br>from<br>numberless<br>inclosures;<br>not water-<br>clear like<br>nepheline;<br>more<br>prominent<br>among the<br>rock-con-<br>stitucnts.<br>n = 1.657. | If<br>colored,<br>plainly<br>di-<br>chroitic. | In irregular<br>grains, or<br>inclongated<br>often very<br>narrow<br>columns,<br>broken as a<br>con-<br>sequence of<br>the basic<br>separation.<br>Inclosures I<br>(See<br>Fig. 67.)<br>Only<br>accessory<br>constituent.<br>As<br>inclosure<br>especially<br>common<br>in the<br>bisilicates<br>hornblende<br>and<br>biotite. | Proven<br>in nearly<br>all rocks.            | Vitreous<br>inclosures,<br>gas-pores. Very<br>characteristic<br>are <i>inclosures</i><br>of black or<br>brown needles,<br>or minute dust-<br>like granules,<br>which permeate<br>the whole<br>crystal; in this<br>respect, in the<br>transverse<br>sepcially,<br>showing a great<br>similarity to<br>many hauyns<br>also rich in<br>inclosures of<br>glass, etc., often<br>with the form<br>of apatite. | Always fresh.                                                                                                                                                                               | As<br>accessory<br>constituent<br>in <i>mearly</i><br>all eruptive<br>rocks and<br>crystalline<br>schists.<br>One of the<br>minerals<br>first<br>eliminated<br>in<br>formation<br>of the<br>rocks. | Dis-<br>tinguished<br>from:<br>nepheline<br>especially<br>by the<br>micro-<br>chemical<br>reactions<br>(comp.<br>nepheline),<br>inclosures<br>very char-<br>acteristic;<br>Aauyn in<br>the longi-<br>tudinal<br>sections<br>and basic<br>separations;<br>elizine by<br>the optical<br>properties<br>and the<br>separation. |

| NAME.                                   | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                                                                                                                                                                         | Specific<br>gravity. | Cleavage.                                                                 | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                                                                                                                             | Twins.                                                                                            | Character<br>and strength<br>of double-<br>refraction.                                                              | Polarization-<br>colors.                             |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 7. Corun-<br>dum.                       | AlgOs.<br>Insoluple<br>in acids.                                                                                                                                                                                                                                                                                                                     | 3.9-4.               | R and oR.                                                                 | $\infty P_2 \cdot oR.$<br>R and grains.<br>Hexagons<br>and<br>rectangles<br>whose angles<br>are<br>truncated<br>by R.                                                                                                                                                                          | In rocks<br>seldom (?)                                                                            | Double-<br>refraction<br>strongly<br>negative.                                                                      | Very<br>brilliant.                                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                      |                      |                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                                                     |                                                      |
| 8. Tourma-<br>line.<br>(Schörl.)        | Very<br>complicated.<br>IR <sub>6</sub> Al <sub>2</sub> B <sub>2</sub><br>Si <sub>4</sub> O <sub>20</sub><br>II<br>+R <sub>9</sub> (Al <sub>2</sub> ) <sub>9</sub> .B <sub>2</sub><br>Si <sub>4</sub> O <sub>20</sub><br>I = Na<br>predominat-<br>ing and<br>II<br>R = Mg, Fe.<br><i>Contains</i><br><i>boric acid.</i><br>Not attacked<br>by acids. | 3.059.               | Imperfect<br>R and                                                        | Almost only<br>in crystals.<br>$R \cdot \infty P_2 \cdot \frac{\infty R}{2}$ .<br>Transverse<br>sections<br>three, six,<br>and nimesided<br>when observed<br>parallel to<br>the chief axis;<br>often showing<br>good hemi-<br>morphism,<br>R below,<br>R above.<br>(Comp. Figs.<br>68 and 69.) |                                                                                                   | Double-<br>refraction<br>negative,<br>energetic.                                                                    | Rather<br>brilliant;<br>between<br>brown and<br>red. |
| 9. Hæma-<br>tite.<br>(Eisen-<br>glanz.) | Fe <sub>2</sub> O <sub>3</sub> .<br>Easily soluble<br>in HCl.                                                                                                                                                                                                                                                                                        | 5.19-5.28.           | <i>R.oR.</i><br>Not charac-<br>teristic in<br>microscopic<br>individuals. | Mostly tabular<br>thin leaflets,<br>oR. $\infty P_2$ ,<br>and irregular<br>leaflets.                                                                                                                                                                                                           | With<br>parallel<br>axial<br>systems.<br>Penetration<br>- twins<br>with re-<br>entrant<br>angles. | Indetermin-<br>able, as<br>occurring<br>always in<br>exceedingly<br>thin<br>leaflets in<br>crevices<br>in minerals. | Not very<br>brilliant,                               |

| Color and<br>power of<br>refracting<br>light.                                                                                                                               | Pleo-<br>chroism.                                                                                                                        | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Association.                                                                                                                                                                  | Inclosures.                                                                                                                               | Decom-<br>position.                                                                        | Occurrencer                                                                                                                                                                                                                                                                                                                                          | F Remaiks.                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colorless,<br>azure-blue,<br>spotted,<br>also brown<br>from<br>inclosures;<br>powerfully<br>refracting<br>light,<br>appearing<br>well in<br>sections.<br>$\omega = 1.768$ . | If<br>colored,<br>very strong;<br>w = azure-<br>blue.<br>e = sea-<br>green.                                                              | Rough section-<br>surface.<br>In rounded<br>grains or<br>short prisms.<br>One of the<br>minerals first<br>separated.<br>Zonal<br>structure,<br>blue core,<br>and colorless<br>layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | With quartz,<br>orthoclase,<br>and biotite;<br>pleonaste;<br>andalusite.                                                                                                      | Very poor;<br>fluid and<br>vitreous<br>inclosures;<br>zircon.<br>Brown<br>dust-like<br>inclosures<br>(so-called<br>ordinary<br>corundum). |                                                                                            | Very rare,<br>Contact-<br>mineral, in<br>metamorphic<br>schists and<br>in trachytes.                                                                                                                                                                                                                                                                 | When<br>in grains<br>similar to<br>apatite, yet<br>recognizable<br>by the<br>brilliant<br>polarization-<br>colors,<br>distinguished<br>from: quartz<br>by the rough<br>surface and<br>character of<br>the double-<br>refraction,<br>also not so<br>clear as<br>quartz;<br>divine by<br>the optical<br>properties. |
| Mostly<br>grayish<br>blue,<br>brown.<br>$\omega = 1.64$<br>$\epsilon = 1.62$ .                                                                                              | Very<br>marked<br>dickroism.<br>$\omega = dark$<br>blue, brown<br>to black.<br>$\epsilon = light$<br>blue to<br>light gray<br>and brown. | In<br>macroscopic<br>and in<br>exceedingly<br>minute<br>crystals,<br>rarely in<br>granules, as<br>in certain<br>metamorphic<br>rocks. In<br>granites in<br>granite | With quartz,<br>orthoclase,<br>and<br>muscovite<br>in granite.<br>With quartz,<br>orthoclase,<br>mica, and<br>other<br>accessory<br>minerals, as<br>staurolite<br>and garnet. | Very poor.<br>Fluid<br>inclosures.                                                                                                        |                                                                                            | Common<br>as primary<br>constituent,<br>In certain<br>granites in<br>grains.<br>Accessory in<br>many crystal-<br>line schists,<br>especially<br>clay-schists,<br>also in<br>clastic rocks.<br>Finally,<br>common and<br>characteristic<br>in schists<br>metamor-<br>phosed by<br><i>contact</i> with<br>eruptive<br>rocks,<br>especially<br>granite. | Easily<br>recognizable<br>by crystalline<br>form and<br>pleochroism.<br>Distinguished<br>from :<br><i>hornblende</i> by<br>the optical<br>properties;<br><i>biotile</i> by the<br>repeated<br>formation of<br>laminæ.                                                                                             |
| Iron-black<br>with<br>metallic<br>lustre; in<br>thin leaves<br>blood-red,<br>also<br>yellowish<br>red to<br>brownish<br>violet.                                             |                                                                                                                                          | Occurring<br>only in leaves<br>infiltrated on<br>the fissure<br>of minerals.<br>Is always a<br>secondary<br>mineral.<br>Only in some<br>basalts also<br>appearing as<br>primary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In nearly<br>all rocks<br>especially<br>with<br>decomposed<br>biotite,<br>hornblende,<br>augite,<br>magnetite,<br>as decom-<br>position-<br>product.                          |                                                                                                                                           | Into<br>brown-<br>ish-red<br>and<br>brown<br>pulver-<br>ulent<br>ferric<br>hydrox-<br>ide. | Compare<br>association.<br>Accessory<br>secondary<br>mineral.                                                                                                                                                                                                                                                                                        | Easily<br>recognizable<br>by the form<br>of occurrence<br>and<br>blood-red<br>color.                                                                                                                                                                                                                              |

#### C. MINERALS APPARENTLY

1. Biotite; in brown, apparently isotrope (optically-uniaxial),

2. Chlorite; in green, apparently isotrope (optically-uniaxial),

## II. b. Optically-Biaxial

I. MINERALS CRYSTALLIZING IN

#### $\alpha$ . No Interference-figure Visible

| NAME.<br>1. Olivine.<br>(Chryso-<br>lite.) | Chemical<br>composition<br>and<br>reactions.<br>n Mg <sub>2</sub> SiO <sub>4</sub><br>+ FeSiO <sub>4</sub> -<br>Rather<br>easily<br>soluble in<br>HCl, with<br>separation<br>of<br>gelatinous<br>SiO <sub>2</sub> . | Specific<br>gravity.<br>3.2-3.4. | Cleavage.<br>Perfect<br>$   \infty P \infty$ ,<br>imperfect<br>$\infty P \infty$ ,<br>Con-<br>choidal<br>fracture<br>not so<br>evident<br>in<br>sections.<br>Gene-<br>rally<br>twisted<br>crevices. | $\begin{array}{c} Ordinary \\ condinations \\ conditionations \\ ection. \\ \hline Tabular \\ crystals, \\ \infty P. Pow, \\ \infty Pow$ | Twins.<br>Very<br>rare<br>according<br>to<br>Poo;<br>also pene-<br>tration-<br>twins. | Optical<br>orientation.<br>1. M. $\perp$<br>$\infty \vec{P}\infty$<br>$\vec{a} = c$ .<br>$\vec{b} = a$ .<br>c' = b.<br>Feeble<br>dispersion<br>of the<br>axes.<br>$\rho < v$ ,<br>large<br>axial<br>angle. | Character<br>and strength<br>of double-<br>refraction.<br>Double-<br>refraction<br>very<br>strongly<br><i>positive</i> . | Direction<br>extinction. |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                            |                                                                                                                                                                                                                     |                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                            |                                                                                                                          | *                        |
|                                            |                                                                                                                                                                                                                     |                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                            |                                                                                                                          | •                        |
|                                            |                                                                                                                                                                                                                     |                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | -                                                                                                                                                                                                          |                                                                                                                          |                          |

#### HEXAGONAL.

hexagonal leaflets; small axial angle. See Monoclinic System. hexagonal or irregular leaflets; small axial angle. See Monoclinic System.

## Minerals.

#### THE RHOMBIC SYSTEM.

#### (opt. A.P. || oP) IN SECTIONS || oP.

| Polariza-<br>tion-<br>colors.                                    | Color and<br>power of<br>refracting<br>light.                                                                                                                  | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Associa-<br>tion.                                                                                                                                                                                              | Inclosures.                                                                                                                                                                                                                      | Decomposition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Occurrence.                                                                                                                                                                                                                                                 | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exceed-<br>ingly<br>brilliant,<br>stronger<br>than in<br>augite, | $ \begin{array}{c} Colorless; \\ in \\ sections \\ rarely \\ greenish; \\ rough; \\ section- \\ surfaces. \\ Relief \\ marked. \\ \beta = 1.678. \end{array} $ |                   | Possesses<br>a rough<br>section-<br>surface;<br>the manner<br>of decom-<br>position<br>yellowish-<br>red, brown<br>or greenish<br>serpentine,<br>beginning<br>at the<br>crevices, is<br>charac-<br>teristic;<br>also the<br><i>inclosures</i><br>of picatite<br>(see<br>Fig. 70).<br>Partly in<br>sharp<br>crystals,<br>partly in<br>fragments<br>of them,<br>or in<br>irregular<br>grains.<br>Constituent<br>I. O. in<br>vitreous<br>eruptive<br>rocks;<br>also in minute<br>crystals,<br>otherwise<br>only as<br>"spring-<br>ling." | Princi-<br>pally with<br>augite,<br>plagio-<br>clase,<br>nephe-<br>line,<br>leucite.<br>Also with<br>horn-<br>blende<br>and<br>biotite.<br>Almost<br>never<br>with<br>primary<br>quartz or<br>ortho-<br>clase. | Rather<br>poor;<br>besides<br>the<br>minute<br>brown<br>picotite<br>octa-<br>hedra,<br>vitreous<br>and<br>rarely<br>fluid<br>inclo-<br>sures,<br>wite-<br>wagne-<br>tite. Very<br>rarely<br>other<br>mineral<br>inclo-<br>sures. | Most<br>commonly<br>into<br>serpentine<br>(compare<br>aggregates),<br>whereby the<br>picotite<br>inclosures<br>remain.<br>Also into a<br>brown fibrouss<br>and pseudo-<br>morphs of<br>calcite after<br>olivine.<br>By the de-<br>composition,<br>elimination<br>of ferric<br>hydroxide,<br>and magne-<br>tite in the<br>crevices.<br>Totally<br>decomposed<br>olivine,<br>very rich in<br>iron, always<br>in sharp<br>tabular<br>crystals in<br>limburgite<br>from<br>Sasbach,<br>was called<br>hyalosiderite. | As primary<br>essential<br>constituent<br>in all<br>basaltic<br>rocks. in<br>olivine-<br>fels and<br>picrite,<br>melaphyr,<br>olivine-<br>gabbro,<br>olivine-<br>diabase.<br>(In<br>crystalline<br>schists ?)<br>Also in<br>certain<br>mica-<br>porphyries. | Distin-<br>guished<br>from :<br>gwartz in<br>isotrope<br>sections<br>easily;<br>zoisite by<br>the<br>crystalline<br>form (never<br>in long<br>needles)<br>and polari-<br>zation-<br>colors;<br>colors;<br>colors;<br>colors;<br>colors;<br>colors;<br>colors;<br>saridine<br>by the<br>cleavage in<br>sections<br>at right<br>angles to<br>the c-axis;<br>saridine<br>by the<br>rough<br>surface and<br>the ex-<br>ceedingly<br>brilliant<br>polariza-<br>tion-colors. |

## $\beta$ . AXIAL PICTURE VISIBLE IN SECTIONS || oP.

aa. Appearance of the 1 (+)

|                      | Chemical                                                                    |                      | and the second state of th |                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                  |                                                        |                                       |
|----------------------|-----------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|
| NAME.                | composition<br>and<br>re ctions.                                            | Specific<br>gravity. | Cleavage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                                                                | Twins.                                                                                                                                                                                | Optical<br>orientation.                                                                                                                                                                          | Character<br>and stlength<br>of double-<br>refraction. | Direc-<br>tion of<br>extinc-<br>tion. |
| 1. Silli-<br>manite. | Al <sub>2</sub> SiO <sub>5</sub> .<br>Not<br>attacked<br>by acids.          | 3.23-3.24.           | ∥∞₽∞<br>Separa-<br>tion of<br>the thin<br>needles<br>∥∞P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prismatic<br>individuals<br>without<br>defined<br>termina-<br>tions.<br>$\infty P = 111^{\circ}$ .<br>(See<br>Fig. 72.)          |                                                                                                                                                                                       | A.P. $\  \infty \overline{P} \infty$<br>1.M. $\perp oP$ .<br>c' = c.<br>$\overline{\delta} = a$ .<br>$\overline{a} = b$ .<br>Small<br>axial angle<br>$p = 44^{\circ}$ .<br>Strong<br>dispersion. | Double-<br>refraction<br>positive.                     |                                       |
| 2. Stau-<br>rolite.  | $H_{3}R_{4}(Al_{2})_{6}$ $Si_{6}O_{34}$ $R = 3Fe + 1Mg$ Insoluble in acids. | 3.34-3.77.           | Perfect<br>$\infty \tilde{P}\infty$ ,<br>mperfect<br>$separa- tion \ oP.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rarely<br>irregular<br>grains.<br>Crystals<br>$\infty P$ . $\infty P \infty$<br>$\theta P$ .<br>$\infty P = 128^{\circ}$<br>42'. | Penetra-<br>tion-<br>twins,<br>wherein<br>the c-axes<br>cut each<br>other<br>at right<br>or nearly<br>right<br>angles;<br>rarely<br>micro-<br>scopic.<br>(See<br>Figs. 22<br>and 73.) | A.P. $  \infty \overline{\rho} \infty$<br>T. M. $\perp \rho P$ .<br>c' = c.<br>$\overline{\delta} = a$ .<br>(Dispersion<br>feeble<br>$\rho > v$ .)                                               | Double-<br>refraction<br>positive,<br>strong.          |                                       |

#### DOUBLE-REFRACTION IN THEM POSITIVE.

Middle Line on oP.

| Polariza-<br>tion-<br>colors.                                  | Color and<br>power of<br>refracting<br>light.                                      | Pleo-<br>chroism.                                                                                                                                                              | Structure.                                                                                                                                                                                                                                | Association.                                                 | Inclosures.                                                                             | Decom-<br>position. | Occurrence.                                                                                                | Remarks,                                                                                                                                                                                                                           |
|----------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very<br>brilliant,<br>some-<br>what<br>like<br>musco-<br>vite. | Colorless,<br>often<br>colored<br>red by<br>FegO3<br>on<br>fractures.              |                                                                                                                                                                                | In<br>exceedingly<br>long, thin<br>needles,<br>generally<br>in large<br>numbers,<br>often<br>finely<br>fibrous<br>and ar-<br>ranged<br>parallel;<br>developed<br>in quartz,<br>cordierite,<br>and other<br>minerals.<br>(See<br>Fig. 77.) | With<br>quartz,<br>orthoclase,<br>biotite, and<br>muscovite. | Very poor.<br>Fluid<br>inclosures.                                                      |                     | As primary<br>accessory<br>constituent<br><i>in</i><br><i>crystalline</i><br><i>schists;</i><br>rare.      | Distin-<br>guished<br>from :<br>zoisite<br>by the<br>character<br>of the<br>double-<br>refraction<br>and polar-<br>ization-<br>colors;<br>andalusite<br>by the<br>character<br>of the<br>double-<br>refraction<br>and<br>cleavage. |
| Very<br>brilliant.                                             | Light or<br>deep<br>yellowish<br>brown.<br>Relief<br>very<br>marked.<br>\$p=1.7526 | Easily<br>recogniz-<br>able,<br>especially<br>in the<br>longitu-<br>dinal<br>sections.<br>c = dark<br>brown.<br>brown.<br>brown.<br>slight<br>difference<br>= light<br>yellow. | In large<br>and small<br>crystals<br>the num-<br>berless in<br>closures are<br>character-<br>istic.                                                                                                                                       | With<br>quariz,<br>orthoclase,<br>mica, and<br>garnet.       | Inclosures<br>of minute<br>guaris<br>grains,<br>birumen,<br>hematite,<br>are<br>common. |                     | As primary<br>accessory<br>constituent<br>in<br>crystalline<br>schists,<br>especially<br>mica-<br>schists, | Well<br>character-<br>ized by the<br>color and<br>pleochro-<br>ism.                                                                                                                                                                |

| NAME.              | Chemical<br>composition<br>and<br>reactions.                                    | Specific<br>gravity. | Cleavage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ordinary<br>combinations<br>and form<br>of the<br>cross-section,                                                                                                                | Twins. | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Character<br>and strength<br>of double-<br>refraction.                                                                   | Direc-<br>tion of<br>extinc-<br>tion. |
|--------------------|---------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 3. Ensta-<br>tite. | MgSiO <sub>3</sub> .<br>Only with<br>difficulty<br><i>attacked</i><br>by acids. | 3.1-3.29<br>(3.153). | Perfect<br>   $\overset{o}{\sim} P_{\infty}$ ,<br>$\overset{o}{\sim} P_{\infty}$ , | Long<br>prismatic<br>op P. o. Pro<br>op Po, mPo,<br>Octagonal<br>transverse<br>sections<br>with two<br>controlling<br>pairs of<br>faces,<br>similar to<br>monoclinic<br>augite. |        | N.B That<br>position is<br>selected<br>where<br>$\sigma P = g_2^{\circ}$<br>lies to the<br>front:<br>A.P. $\  \omega \hat{P} \omega$<br>c' = c.<br>$\delta = b.$<br>$\hat{a} = a.$<br>(See<br>Fig. 7.)<br>Like<br>bronzite.<br>The<br>positive<br>axial angle<br>increasing<br>with iron<br>present.<br>Dispersion<br>not strong.<br>$\rho > v_{\tau}$<br>and clear.<br>[Comp.<br>Zirkel, Min.<br>p. 597. Ac-<br>cording to<br>Tscher-<br>mak's<br>position the<br>optical<br>orientation<br>in enstatile<br>and<br>bronzite is<br>the<br>following:<br>A.P. $\  \omega \hat{P} \omega$<br>$\xi' = c. T. M.$<br>$\delta = a.$<br>$\hat{a} = b.$ ] | Double-<br>refraction<br><i>positive</i> ,<br>rather<br>strong,<br><i>Weaker</i> (?)<br>than in<br>monoclinic<br>augite. |                                       |
| •                  |                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                       |

| Very brit-<br>biliant.       Colorides<br>orcensity.<br>greenish.<br>marked.       In irregular<br>prismatic<br>prismatic<br>show<br>lica<br>denger.<br>tadataat       With<br>placioclase,<br>august.       Very poor.       Into<br>streamine,<br>with<br>formation<br>of take.<br>Los deattle<br>(compare).<br>Decompare).<br>Decompare).<br>Decompared.<br>Teresting<br>august.       As essential<br>and<br>constituent<br>prismatic<br>prophy-<br>rite<br>with<br>ibroits<br>tadataat       Distin-<br>guished<br>accessory<br>of take.<br>Decompared.<br>Striation<br>like<br>formation<br>of take.       As essential<br>and<br>constituent<br>prophy-<br>rite<br>with<br>and<br>constituent<br>prophy-<br>rite<br>with<br>and<br>and<br>constituent<br>prophy-<br>rite<br>guartz       Distin-<br>guished<br>and<br>constituent<br>prophy-<br>rite<br>guartz         Very poor.       In irregular<br>with<br>and<br>constituent<br>prophy-<br>prite<br>greening,<br>guartz       In irregular<br>prophy-<br>greening,<br>guartz       Very poor.       Into<br>streamine,<br>guartz       As essential<br>and<br>constituent<br>greening,<br>guartz       Distin-<br>guished<br>and<br>constituent<br>greening,<br>guartz       Distin-<br>guished<br>constituent<br>greening,<br>guartz         Very poor.       In irregular<br>guartz       Note<br>guartz       In irregular<br>guartz       Distin-<br>guished<br>and<br>greening,<br>guartz       Distin-<br>guartz         Very poor.       In irregular<br>guartz       In irregular<br>guartz       In irregular<br>guartz       Distin-<br>guartz         Very poor.       In irregular<br>guartz       In irregular<br>guartz       In irregular<br>guartz       In irregular<br>guartz         Very poor.       In irregular<br>guartz       In irregular<br>guartz       In irregular<br>guartz       In irregular<br>guartz         Very poor.       In irregular<br>guart | Polari-<br>zation-<br>colors. | Color and<br>power of<br>refracting<br>light.     | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                                                             | Association.                                                     | Inclosures. | Decomposi-<br>tion.                                                                                                                                                                                                                         | Occurrence.                                                                                                                                                                                                                                                                                           | Remarks.                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Very<br>bril-<br>liant.       | Colorless<br>to<br>greenish.<br>Relief<br>marked. |                   | In irregular<br>elongated<br>prismatic<br>individuals<br>which<br>show<br><i>lca</i><br><i>longi-</i><br><i>tudinal</i><br><i>striation</i><br><i>like</i><br><i>fibres</i> .<br>(See<br>Fig. 75.)<br>More<br>rarely in<br>crystals,<br>generally<br>decom-<br>posed.<br>More often<br>interpene-<br>trated <i>lc</i><br>with<br>monoclinic<br>augite. | With<br>plagioclase,<br>olivine,<br>and<br>monoclinic<br>augite. | Very poor.  | Into<br>serpentine<br>with<br>formation<br>of talc.<br>Into bastite<br>(compare).<br>Decomposi-<br>sition<br>resembles<br>the meta-<br>morphosis<br>of olivine<br>into<br>serpentine,<br>yet mostly<br>crystalline<br>outlines<br>obtained. | As essential<br>and<br>accessory<br>constituent<br>in basic<br>porphy-<br>ritic<br>erufitive<br>rocks,<br>With<br>olivine-fels.<br>Rare in<br>quartzose<br>rocks as<br>quartz-<br>porphy-<br>rites; in<br>porphy-<br>rites, in<br>porphy-<br>rites,<br>melaphyrs;<br>also in<br>gabbro<br>and norite. | Distin-<br>guished<br>from :<br>olivine<br>by the<br>fibrous<br>tendency<br>llc;<br>zoisite<br>by the<br>character<br>of the<br>double-<br>refraction<br>and<br>polariza-<br>tion-colors;<br>silliman-<br>ite by the<br>form<br>(never in<br>so minute<br>needles)<br>and<br>cleavage;<br>the follow-<br>ing<br>minerals<br>only by the<br>variation<br>of the<br>contained<br>iron. |

145

| NAME.                  | Chemical<br>composition<br>and<br>reactions,                                             | Specific<br>gravity.      | Cleavage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                                                                                                              | Twins.                                                                                                                                                                                                                                                                                                                                 | Optical<br>orientation.                                                                                                                                                                                                 | Character<br>and strength<br>of double-<br>refraction.                                                                                                                                                                                                                                                                    | Direction<br>of<br>extinction |
|------------------------|------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 4. Bronzite.           | m (MgSiO <sub>3</sub> )<br>+<br>n (FeSiO <sub>3</sub> ).<br>Not<br>attacked<br>by acids. | 3-3.5<br>(3.12-<br>3.25). | Perfect<br>$\infty P$ ,<br>and<br>separates<br>according<br>$t_0^{\circ} \infty P_{\infty}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elongated<br>acicular.<br>$\infty P , \infty P \infty$<br>$\infty P \infty$<br>predomi-<br>nating;<br>$%P , %P \infty$ ,<br>very<br>similar<br>to the<br>monoclinic<br>augite. | Not<br>rarely the<br>large<br>bronzite<br>cleavage-<br>leaves<br>l $\infty P \infty$<br>bent,<br>wavy,<br>through<br>repeated<br><i>twinning</i><br>after<br>$1/4 P \infty$ .<br>Rarely in<br>por-<br>phyritic<br>eruptive<br>rocks<br>knee-<br>shaped<br>twins<br>after<br>$m P \infty$ in<br>asteroid<br>crystal-<br>line<br>groups. | Like<br>enstatite.<br>[According<br>to<br>Tschermak<br>c = c +<br>or<br>c = a -]<br>Large axial<br>angle,<br>$69^{\circ}-90^{\circ}$ .<br>Inter-<br>mediary<br>product<br>between<br>enstatite<br>and hyper-<br>sthene. | Double-<br>refraction<br>positive,<br>like<br>enstatite.<br>In sections<br>at right<br>angles to<br>the middle<br>$(\omega, P\omega)$ only<br>an opening<br>cross, with<br>traces of<br>the lemnis-<br>cates, is<br>visible.<br>In sections<br>at right<br>angles to<br>an optic<br>axis one or<br>no ring is<br>visible. |                               |
| 5. Antho-<br>phyllite. | n (MgSiO <sub>3</sub> )<br>+ FeSiO <sub>3</sub> .<br>Not<br>attacked<br>by acids.        | 3.187-<br>3.225.          | $\  \overset{\otimes}{\longrightarrow} \overset{\widetilde{P}}{\longrightarrow} \overset{\otimes}{\longrightarrow} \overset{\otimes}{ p_{\infty}} $ | In leaf-like<br>masses,<br>very rarely<br>in crystals.<br>Transverse<br>sections<br>like those<br>of<br>monoclinic<br>kornblende.                                              |                                                                                                                                                                                                                                                                                                                                        | A. P. =<br>$\infty \dot{P} \infty$<br>1.M. $\perp oP$<br>c' = c<br>$\bar{b} = b$<br>d = a.<br>Dispersion<br>clear about<br>$c = v > \rho$ ;<br>large axial<br>angle.<br>(See Fig. 8.)                                   | Double-<br>refraction<br>strongly<br><i>positive</i> .                                                                                                                                                                                                                                                                    |                               |

|                                                                                                                                                  |                                                           | 1                                                                                                                                                     |                                                                                                                                                                                 | 1                                                                                                         | 1                                                                                                                                                                                                                            | 1                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polariza-<br>tion-<br>colors.                                                                                                                    | Color and<br>power of<br>refracting<br>light.             | Pleo-<br>chroism,                                                                                                                                     | Structure.                                                                                                                                                                      | Associa-<br>tion.                                                                                         | Inclosures.                                                                                                                                                                                                                  | Decom-<br>position.                                                                                                                                                                | Occurrence.                                                                                                                                                                                                                                      | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inter-<br>ference-<br>figures<br><i>less</i><br><i>brilliant</i><br><i>by far</i><br>than in<br><i>mono-</i><br><i>clinic</i><br><b>augite</b> . | $\beta = r.639$<br>Dark<br>brown.                         | Very<br>slight.                                                                                                                                       | Partly in<br>large<br>irregular<br>granular<br>coarsely-<br>granular<br>rocks;<br>partly in<br>sharply-<br>defined<br>crystals in<br>the por-<br>phyritic<br>eruptive<br>rocks. | With<br>olivine,<br>plagio-<br>clase,<br>mono-<br>clinic<br>augite,<br>magnet-<br>ite; like<br>enstatite. | Inclosures<br>of brown<br>rectangular<br>leaflets, or<br>opaque<br>needles<br>distributed<br>$\parallel \infty \hat{P} \infty$<br>(or, after<br>Tschermak,<br>$\parallel \infty \hat{P} \infty$ ,<br>Vitreous<br>inclosures. | Similar<br>to<br>bastite,<br>into a<br>green<br>fibrous<br>aggre-<br>gate, with<br>elimiza-<br>tion of<br>Fe <sub>2</sub> O <sub>4</sub><br>or<br>Fe <sub>2</sub> O <sub>3</sub> . | Like<br>enstatite,<br>accessory<br>primary<br>constituent.<br>Often<br>replacing<br>monoclinic<br>augite as<br>essential<br>constituent.<br>Also in the<br>younger<br>basic<br>eruptive<br>rooks<br>and the<br>coarse-<br>grained<br>older ones. | Can be dis-<br>tinguished<br>from:<br>monoclinic<br>awgite only<br>by examin-<br>ing the<br>transverse<br>sections and<br>the exactly<br>parallel<br>direction of<br>extinction<br>of the longi-<br>tudinal<br>sections;<br><i>hyper-</i><br>sthene by<br>pleochroism<br>and charac-<br>ter of the<br>double-<br>refraction;<br>hornblende<br>and biotite<br>by the want<br>of powerful<br>pleochro-<br>ism. |
| Bril-<br>liant.                                                                                                                                  | Dark<br>brown.<br>βρ = 1.636.<br>Relief<br>not<br>marked. | Strong<br>pleo-<br>chroism.<br>Greenish<br>yellow<br>parallel<br>to the<br>striations<br>(  c).<br>reddish<br>brown<br>at right<br>angles to<br>them. | Inclosures<br>similar to<br>bronzite.<br>The longi-<br>tudinal<br>sections<br>generally<br>fibrous as<br>a conse-<br>quence of<br>cleavage.                                     | With<br>olivine,<br>plagio-<br>clase,<br>augite,<br>and horn-<br>blende.                                  | Inclosures<br>of minute<br>brown and<br>greenish<br>inca-like<br>leaves,<br>often<br>regularly<br>arranged;<br>otherwise<br>very poor<br>inclosures.<br>Magnetite.                                                           |                                                                                                                                                                                    | Very rarely<br>accessory<br>as<br>secondary<br>constituent.<br>Decom-<br>position-<br>product of<br>olivine in<br>gabbro and<br>olivine-<br>fels.                                                                                                | Distin-<br>guished<br>from :<br>biotite by<br>cleavage,<br>strength of<br>pleo-<br>chroism,<br>and<br>magnitude<br>of axial<br>angle;<br><i>hornbicnde</i><br>by the<br>optical<br>orientation ;<br><i>bronzite</i><br>and<br><i>hyper-</i><br><i>sthene</i> by<br>the pleo-<br>chroism<br>(axial<br>colors)<br>and<br>cleavage.                                                                             |

147

rance of the

| NAME.                | Chemical<br>composition<br>and<br>reactions.       | Specific<br>gravity. | Cleavage.                                                                                                                                                                                                                                                                                                                                         | Ordinary<br>combinations<br>and form<br>of the cross-<br>section.                                                                                              | Twins.                                                                    | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                                                                         | Character<br>and strength<br>of double-<br>refraction.                                                              | Direc-<br>tion or<br>extine<br>tion, |
|----------------------|----------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1. Hyper-<br>sthene. | Like<br>bronzite,<br>yet far<br>richer in<br>iron. | 3.3-34.<br>(3.34.)   | $\begin{array}{c} & & \mathcal{P} \\ & & \mathcal{P} \text{ref.ct.} \\ & & \mathcal{O} \mathcal{P} \text{o} \\ & & \text{con-} \\ & & \text{choidal separa-} \\ & & \text{inn.} \\ & & & \mathcal{O} \mathcal{P} \text{o} \\ & & \text{imper-} \\ & & \text{fect.} \\ & & & \mathcal{O} \mathcal{P} = \\ & & \text{about } 92^\circ. \end{array}$ | Large<br>irregular<br>grains and<br>columns<br>of<br>$\infty P. \infty f^{\infty} \infty$<br>also: $\frac{1}{2}P \infty$<br>$2P \infty$ . $\frac{3}{2}F_2^2$ . | Knee-<br>shaped<br>twins<br>in the<br>crystals<br>as in<br>bronz-<br>ite. | A.P. = $\infty \tilde{P}\infty$<br>2.M. $\perp oP$ ;<br>1.M. $\perp \omega \tilde{P}\infty$<br>c' = c<br>$\tilde{\sigma} = \tilde{b}$<br>$\tilde{a} = a$<br>(See<br>Fig. 5.)<br>Large<br>axial angle.<br>Dispersion<br>about a<br>$\rho > \pi$ ,<br>feeble.<br>[According<br>to Tscher-<br>mak the<br>acute $\infty P$ -<br>angle lies<br>to the front,<br>then<br>A.P. = $\infty \tilde{P}\infty$<br>c' = c.<br>$\tilde{c} = a.$<br>$\tilde{a} = b.$ ]<br>(See | oP<br>positive.<br>  ∞P∞<br>negative.<br>Feebler<br>than in the<br>monoclinic<br>augites.<br>(Compare<br>bronzite.) |                                      |
|                      |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                           | Fig. 74.)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                      |
|                      |                                                    |                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                      |

## Secona Middle Line (+) on oP.

| Polariza-<br>tion-<br>colors.                               | Color<br>and<br>power of<br>refract-<br>ing light.                                          | Pleo-<br>chroism.                                                                                                                                                                                                 | Structure.                                                                                                                                                                                                 | Association.                                                     | Inclosures.                                                                                                                                                                                                                                                                                                                                                                                      | Decom-<br>position.                                                                                                                                                                                                                                                                                                                                                                           | Occurrence.                                                                                                                                                                                                                                                              | Remarks,                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rather<br>bril-<br>liant,<br>Com-<br>pare<br>bronz-<br>ite, | Light<br>to dark<br>brown.<br>Black<br>from<br>iron in-<br>closures:<br>$\beta =$<br>1.639. | Strong,<br>especially<br>in the<br>longitudi-<br>nal<br>sections<br>and the<br>thicker<br>sections.<br>Axial<br>colors:<br>a =<br>hyacinth<br>brown,<br>c = gray-<br>ish green.<br>Absorp-<br>tion<br>c' > a > b. | In large<br>irregular<br>grains in<br>the granu-<br>lar older,<br>and in<br>small,<br>augite-like<br>crystals in<br>the<br>younger<br>porphyritic<br>eruptive<br>rocks.<br>Primary<br>constituent<br>I. U. | With<br>plagioclase,<br>olivine,<br>and<br>monoclinic<br>augite. | Numberless<br>inclosures<br>of brown<br>or violet<br>rectangular<br>leaflets<br>often in the<br>large<br>grains with<br>marked<br>separation<br>$0 D^{Po}$ ,<br>whereby<br>they appear<br>striated.<br>(See<br>Fig. 50)<br>Inclosures<br>of opaque<br>needles<br>regularly<br>distributed<br>often occur<br>in the<br>crystals.<br>Otherwise<br>poor in<br>inclosures.<br>Vitreous<br>particles. | Hyper-<br>sthene often<br>decomposes<br>into a<br>dirty-<br>brown<br>or<br>greenish<br><i>fibrous</i><br><i>aggregate</i><br>parallel to<br>the c'-axis<br>and similar<br>to that of<br>enstatite;<br>the decomposi-<br>tion begins<br>here also,<br>first on the<br>despecially<br>on those<br>at right<br>angles to<br>the c'-axis.<br>It is a<br>"bastite-<br>like"<br>decom-<br>position. | In grains<br>in gabbro,<br>morites in<br>younger<br>eruptive<br>rocks;<br>especially<br>in augite-<br>andesites,<br>and feld-<br>spathic<br>basalts<br>poor in<br>olivine. As<br>primary<br>essential<br>constituent<br>and<br>together<br>with<br>monoclinic<br>augite. | Distin-<br>guished<br>from :<br>bronsile by<br>the<br>character<br>of the<br>double-<br>refraction<br>and power-<br>ful pleo-<br>chroism ;<br>monoclinic<br>augite<br>often only<br>by exami-<br>nation<br>with the<br>condenser,<br>especially<br>in<br>transverse<br>sections,<br>and by the<br>feebler<br>double-<br>refraction ;<br>biotite by<br>absence<br>of the<br>marked<br>cleavage ;<br>by optical<br>orientation<br>and<br>prismatic<br>angle. |

| NAME.                                          | Chemical<br>composition<br>and<br>reactions.       | Specific<br>gravity. | Cleavage.                        | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                    | Twins,                                       | Optical<br>orientation.                                                                                                                                                                 | Character<br>and strength<br>of double-<br>refraction,                                                                                                                                                                            | Direction<br>of<br>extinction. |
|------------------------------------------------|----------------------------------------------------|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 2. a. Proto-<br>bastite.<br>(Dia-<br>clasite.) |                                                    | 3.054.               |                                  |                                                                                                                                                                                       |                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                   |                                |
| β. Bastite.                                    | Like<br>bronzite.<br>Contains<br>H <sub>2</sub> O. | 2.6-2.8.             | ∞ <sup>β</sup> ∞.<br>∞ <i>P.</i> | Partly in<br>rather<br>sharply-<br>defined<br>crystals,<br>partly in<br>grains of<br>columnar<br>form,<br>and in<br>irregular<br>leafy in-<br>dividuals.<br>$\infty P = 93^{\circ}$ . | Very<br>rare.<br>Penetra-<br>tion-<br>twins, | A. P. =<br>$ \begin{bmatrix} \omega \overline{P} \infty, \\ \omega \overline{P} \infty, \end{bmatrix} $ 2. M. $\perp oP.$<br>r. M. $\perp \\ \omega \overline{P} \infty, \end{bmatrix}$ | In sections<br>  oP<br>positive;<br>conse-<br>quently<br>negative<br>c' = c<br>$\overline{\delta} = a$<br>d = b<br>Dispersion<br>$\rho > v$<br>about a.<br>Rather<br>strongly<br>doubly-<br>refracting,<br>like hyper-<br>sthene. |                                |
|                                                |                                                    |                      |                                  |                                                                                                                                                                                       |                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                   |                                |

#### DISTINGUISHING OF THE RHOMBIC AUGITES

The three rhombic augites, enstatite, bronzite, and hypersthene, are in general distinguished only by the amount of 1ron present, together with the magnitude of the optic axial angle lying in the plane  $\|\infty \tilde{P}\infty$ ; in those poor in iron, r.  $M. (= c') \perp oP$ ; in those rich in iron is c' to z.  $M. (\perp oP)$ . A positive double-refraction is observable in the transverse sections of *both* varieties, only the magnitude of the axial angle determining whether the acute angle is visible  $\|oP \circ r\| \propto \tilde{P}\infty$ .

Pleochroism also, in general, allows no conclusion, as only hypersthenes which are very rich in iron seem to show the mentioned powerful pleochroism. Protobastite and its decomposition product, bastite, however, have the optic axial plane  $\| \propto \bar{P} \infty$ . The rhombic augites mentioned above also show a tendency to metamorphose into bastite.

The rhombic augites, as regards optical orientation, are distinguished from the monoclinic by the much feebler double-refraction and inferior brilliancy of the polarization-colors. The isotrope

| Polariza-<br>tion-<br>colors. | Color and<br>power of<br>refracting<br>light. | Pleo-<br>chroism.                                     | Structure.                                                                                                                                                                                                                                                                        | Associa-<br>tion,                              | Inclosures.                                                      | Decom-<br>position.                                                                            | Occurrence.                                                                                                                                                                                    | Remarks.                                                                                                                                                                                                                                                                                                        |
|-------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rather<br>brilliant.          | Light<br>yellow-<br>ish.                      |                                                       | Proto-<br>basite,<br>fresh and<br>free from<br>inclosures,<br>often<br>shows the<br>beginning<br>of a<br>fibrous<br>decomposi-<br>tion into<br>basitie, in<br>that the<br>formation is<br>of fibres<br>  c'.                                                                      | With<br>plagio-<br>clase,<br>olivine,<br>mono- | Many<br>times in-<br>closures<br>like<br>hyper-<br>sthene<br>and | Into<br>bastite.                                                                               | As<br>primary<br>essential or<br>accessory<br>mineral in<br>certain<br>gabbros<br>and por-<br>phyritic<br>augite-<br>plagioclase<br>rocks.                                                     | Distinguish-<br>able from<br>enstatite and<br>bronzite<br>only by the<br>optical<br>orientation<br>(position of<br>r. M.).                                                                                                                                                                                      |
| Not very<br>brilliant.        | Dirty<br>pale<br>green.                       | Very<br>weak.<br>Absorp<br>tion<br>c > a<br>and $b$ . | Commonly<br>interpene-<br>trated with<br>olivine, i.e.,<br>serpentine.<br>A metallic<br>lustre on<br>$\infty f \infty$ .<br>Finely<br>striated<br><i>parallel</i> to<br>the vertical<br>axis. Often<br>shows a<br>remnant of<br>fresh<br>enstatile or<br>protobastite<br>mineral. | clinic<br>augite,<br>magnet-<br>ite.           | bronzite.<br>Inclos-<br>ures of<br>picotite<br>and<br>chromite,  | Bastite<br>itself is<br>always a<br>decom-<br>position-<br>product<br>of<br>rhombic<br>augite. | As<br>secondary<br>decom-<br>position-<br>product of<br>rhombic<br>augite in<br>olivine-fels,<br>gabbro,<br>norite,<br>andesites,<br>rarely in<br>melaphyrs,<br>and<br>diabase-<br>porphyries. | Distinguished<br>from:<br>serfentine<br>by the stria-<br>tion parallel<br>to the vertical<br>axis;<br>chlorite by<br>less perfect<br>cleavage, and<br>not running<br>   JP, by the<br>feebler pleo-<br>chroism, and,<br>finally,<br>almost always<br>by the<br>pseudo-<br>morphs after<br>augite crys-<br>tals. |

#### FROM EACH OTHER AND FROM THE MONOCLINIC.

sections of *monoclinic augite*, cut at right angles to one of the optic axes, show two to three rings and clouds; those of *rhombic augite* of the same thickness, none or at most one ring.

The polarization colors of *rhombic augite* in very thin sections are generally yellowish white I. O.,  $\| oP \text{ and } \infty \overline{P} \infty$  (in bronzite and hypersthene, enstatite shows more brilliant polarization-colors); in these sections also a biaxial interference-figure is discernible; if *monoclinic* augite, a blue to red, green, and side appearance of one of the optic axes.

Finally, all sections of *rhombic augites* parallel to the c'-axis have a parallel extinction i. p. p. l.; of *monoclinic* augites, an extinction with a varying obliquity (to  $45^{\circ}$ ) to the c-axis. The common polysynthetic twins of monoclinic augites  $\| \infty P^{\infty}$  are wanting in the rhombic (seen especially well on transverse sections).

151

## Y. AXIAL PICTURE VISIBLE IN SECTIONS || oP.;

aa. Appearance of the 1. M.

| NAME.                                             | Chemical<br>composition<br>and<br>reactions. | Specific<br>gravity. | Cleavage.                                                                                                                                                                                         | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                      | Twins, | Optical<br>orientation.                                                                                                                                                                    | Character<br>and strength<br>of double-<br>refraction. | Direction<br>of<br>extinction. |
|---------------------------------------------------|----------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|
| 1 α. Anda-<br>lusite.                             | Al2SiO5.<br>Not acted<br>on by acids.        | 3.10-<br>3.17.       | Prismatic<br>$\infty P$ .<br>Imperfect<br>after<br>$\infty P \infty$ ,<br>$\infty P \infty$ ,<br>$\infty P \infty$ ,<br>$\infty P =$<br>$00^{\circ} 50'$ .<br>Separa-<br>tion<br>$\parallel oP$ . | Rarely<br>grains;<br>long<br>columns<br>$\infty P, oP, P\infty$ ,<br>Quadratic<br>transverse<br>sections,<br>longi-<br>tudinal<br>sections,<br>elongated<br>rectangles. | •      |                                                                                                                                                                                            |                                                        |                                |
| β. Variety<br>of anda-<br>lusite:<br>Chiastolite, | ditto.                                       | 2.9–3.1.             | $\begin{array}{c} Perfect\\ \infty P\\ g1^{\circ} 40^{\prime}. \end{array}$                                                                                                                       | Long<br>columns<br>of P.oP;<br>not in form<br>of<br>microlites.                                                                                                         |        | A.P. $  \infty \stackrel{j \infty}{\rightarrow} \stackrel{j \infty}{\rightarrow} \frac{j \infty}{a}$<br>c' = a<br>$\overline{\delta} = b$<br>$\overline{a} = c$ .<br>Large<br>axial angle. | Double-<br>refraction<br>strongly<br>negative.         |                                |
|                                                   |                                              |                      |                                                                                                                                                                                                   |                                                                                                                                                                         |        |                                                                                                                                                                                            |                                                        |                                |

152

## IN THESE DOUBLE-REFRACTION NEGATIVE.

on oP Negative.

| Polariza-<br>tion-<br>colors. | Color and<br>power of<br>refracting<br>light.                                 | Pleo-<br>chroism.                                                                                                               | Structure.                                                                                                                                                                                                                                                                                                                     | Associa-<br>tion.                                                         | Inclosures.                                                                                                                                                                                                  | Decompo-<br>sition.                                                                                                                                                           | Occurrence.                                                                                                                                                                                                  | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very<br>bril-<br>liant.       | Colorless;<br>tinged<br>Assh-red.<br>Relief<br>very<br>marked.<br>βρ = 1.638. | Very<br>strong;<br>a =<br>dark<br>blood-<br>red,<br>b = oil-<br>green.<br>absorp-<br>tion<br>$c' > \overline{b} > \overline{a}$ | Rarely in<br>grains, almost<br>always in<br>columnar<br>individuals.<br>Like<br>staurolite,<br>often so filled<br>with<br>inclosures<br>that but little<br>of the<br>andalusite<br>substance is<br>to be seen.<br>Often in long<br>thin needles<br>in radial<br>aggregates.                                                    | With<br>quartz,<br>ortho-<br>clase,<br>biotite,<br>and<br>mus-<br>covite. | Some-<br>times<br>verypoor,<br>and again<br>in the<br>meta-<br>morphic<br>schists<br>very rich<br>granules,<br>in<br>quartz<br>granules,<br>bitumi-<br>nous in-<br>closures,<br>and<br>leaves of<br>biotite. | Com-<br>monly<br>decom-<br>posed<br>into a<br>greenish<br>fibrous<br>aggregate,<br>which has<br>a certain<br>similarity<br>to the<br>decom-<br>product<br>of cor-<br>dierite. | As primary<br>accessory<br>constituent<br>in granite<br>and in<br>crystalline<br>schists, as<br>mica schists,<br>granulite.<br>As meta-<br>morphic<br>mineral<br>in the<br>contact-<br>schists,<br>hornfels. | Distinguished<br>from: colorless<br><i>augile</i> by<br>the commonly oc-<br>curring pleochro-<br>ism (reddish<br>green), and by the<br>always parallel<br>extinction; <i>ensta-<br/>tile</i> by the charac-<br>ter of the double-<br>refraction; <i>hyper-</i><br>sthem by the color<br>and character of<br>double refraction;<br><i>zoisile</i> by the pleo-<br>chroism, form of<br>cross-section, pris-<br>matic angle, and<br>position of the<br>1. M.; <i>sillimanite</i><br>enly with diffi-<br>culty if occurring<br>in minute needles,<br>sillimanite gen-<br>erally occurs in<br>minute needles,<br>andalusite in large<br>columns or grains.<br>They differ, more-<br>over, in pleochro-<br>ism, prismatic<br>angle, and<br>cleavage. |
|                               |                                                                               |                                                                                                                                 | The trans-<br>verse sections<br>present a<br>peculiar<br>structure.<br>Quadratic<br>cores,<br>inclosures of a<br>bituminous<br>substance, are<br>arranged<br>at the centre<br>and on the<br>four corners;<br>very common<br>are the<br>regularly-<br>disposed<br>inclosures of<br>carbonaceous<br>particles.<br>(See Fig. 76.) | •                                                                         | Bitumen.<br>Leaves<br>of mus-<br>covite<br>and<br>biotite.                                                                                                                                                   | Similar to<br>anda-<br>lusite;<br>whole<br>pseudo-<br>morphs of<br>quartz,<br>mus-<br>covite,<br>and<br>chloritic<br>substance<br>after<br>chiasto-<br>lite.                  | Rarely in<br>meta-<br>morphic<br>schists<br>(contact on<br>granite).                                                                                                                                         | Characterized<br>by the regular<br>inclosures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| NAME.                                                             | Chemical<br>composition<br>and<br>reactions.                                                                    | Specific<br>gravity. | Cleavage.                                                                          | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                              | Twins.                                                                                                                                                                 | Optical<br>orientation.                                                                                                                                                                           | Character<br>and strength<br>of double-<br>refraction. | Direction<br>of<br>extinction. |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|
| Cordierite.<br>(Dichro-<br>ite.)                                  | $\begin{array}{c} Mg_2R_2\\ Si_5O_{18}\\ R_2\equiv\\ Al_2, Fe_2.\\ Scarcely\\ attacked\\ by acids. \end{array}$ | 2.59-2.66.           | $\infty \not P \infty$ ,<br>imperfect<br>$P \infty$ .<br>$\infty P =$<br>119° 10'. | In large<br>grains and<br>small<br>crystals.<br>$\circ P$ , $\circ P \circ \circ$<br>$P \circ$<br>Hexagonal<br>transverse<br>sections<br>and rect-<br>angular<br>longitu-<br>dinal<br>sections. | If in<br>crystals<br>so often<br><i>pene-</i><br><i>tratiom</i><br><i>twins</i><br>and<br>four-<br>lings<br>after<br>$\infty F_3$ .<br>(See<br>Figs.<br>23 and<br>78.) | A. P.  <br>$\infty \overrightarrow{P} \infty$ ,<br>I. M. $\perp oP$ ,<br>$d' = a$<br>$\overrightarrow{b} = c$<br>$d = b$ .Axial angle<br>rather<br>large,<br>Dispersion<br>feeble<br>$\rho < v$ . | Negative,<br>not very<br>energetic.                    |                                |
| Pinite<br>(Decom-<br>position-<br>product<br>of cor-<br>dierite.) |                                                                                                                 |                      |                                                                                    | $Large crystals = \infty P \cdot \infty P \infty.\infty \overline{P} \infty \cdot oP.$                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                   |                                                        |                                |

bb. Appearance of 2 M.

 $\begin{array}{c} H_2Ca_4\\ (Al_2)_3\\ Si_6O_{26}.\\ Attacked \end{array}$  $\infty \check{P}\infty$ Zoizite. Elongated 3.22-3.36. In oP very grains and A. P. ∥ ∞ ₽∞ appearance perfect. Separalong of 2. transverse-limbed always negative M. by acids only with difficulty; tion positive.  $\ddot{a} = c =$  $\begin{array}{columns,\\ \infty P, \ \infty \ P \end{array}$ 110P. Feeble 5 = b double-(see Fig. after  $c' = \mathfrak{a}$ . refraction. ignition, Or if 79). however, soluble Hexagonal A. P. | oP, transverse  $\overline{b} = a$ sections. with c' = b; $\infty P =$ separation very of 116° 26'. powerful amorphous SiO<sub>2</sub>. dispersion  $\rho < v$ . About a! (if A. P. || oP, then dispersion  $\rho > v.)$ 

.

| Polari-<br>zation-<br>colors.                | Color and<br>power of<br>refracting<br>light.                                               | Pleo-<br>chroism.                                                                                                                                                                                 | Structure.                                                                                                                                                                             | Associa-<br>tion.                                                                                                                                                | Inclos-<br>ures.                                                                                                                    | Decomposi-<br>tion.                                                                                                                                                                                                                                | Occurrence.                                                                                                                                                                                                                                  | Rəmarks.                                                                                                                                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rather<br>bril-<br>liant,<br>like<br>quartz. | Violet-<br>blue.<br>In very<br>thin<br>sections,<br>coloriess.<br>$\beta = 1.54$ -<br>1.56. | Very<br>marked.<br>In thicker<br>sections<br>well<br>recog-<br>nizable.<br>a = yel-<br>lowish.<br>white.<br>b = pale<br>to prus-<br>sian blue.<br>c = dark<br>prussian<br>blue<br>Absorp-<br>tion | Always in<br>larger<br>individuals;<br>never in,<br>In rounded<br>larger<br>grains, or<br>in small<br>crystals;<br>the latter in<br>eruptive<br>rocks.<br>Meta-<br>morphic<br>mineral. | With<br>quartz,<br>ortho-<br>clase,<br>and<br>biotite.<br>With<br>plagio-<br>clase.<br>quartz,<br>sani-<br>dine,<br>augite,<br>pleo-<br>maste,<br>corun-<br>dum. | Fluid<br>inclos-<br>ures,<br>silli-<br>manite<br>neadles,<br>pleo-<br>naste<br>crystals,<br>zircon,<br>vitreous<br>inclos-<br>ures, | Very<br>common,<br>especially<br>if occurring<br>in grains or<br>large crys-<br>tals, on the<br>crevices, or<br>completely<br>decomposed<br>(pinite) into<br>a greenish<br>fibrous<br>aggregate,<br>similar to<br>andalusite.<br>(See Fig.<br>77.) | Rare, as<br>accessory<br>primary con-<br>stituent in<br>granite,<br>quartz-por-<br>phyry(pinite),<br>and in grains<br>in graeiss.<br>Rarely in<br>crystals in<br>trachytes<br>(twins!), and<br>in the<br>trachytic<br>volcanic<br>overflows. | In thin sections<br>and in grains<br>often very<br>similar to<br>quartz, yet<br>easily distin-<br>guished by the<br>phenomena of<br>decomposition<br>on the crevices<br>in c. p. l.<br>If in crystals,<br>recognized by<br>the color and<br>pleochroism. |
| Aggre-<br>gate<br>polari-<br>zation.         | Green.<br>Colorless.                                                                        | δ> ά>c'.                                                                                                                                                                                          | Wholly<br>composed<br>of minute<br>threads and<br>leaflets.                                                                                                                            | With<br>quartz,<br>ortho-<br>clase,<br>and<br>biotite.                                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                              | Easily recog-<br>nized macro-<br>scopically by<br>the crystalline<br>form, and from<br>the decom-<br>position.                                                                                                                                           |

(negative) on oP.

| Gene-<br>rally<br>feebly<br>bril-<br>liant<br><i>blue-</i><br>green. | Colorless<br>—white,<br>βp = 1.70.<br>Relief<br>very<br>marked. |           | The<br>transverse<br>crevices on<br>the long<br>columns<br>and the<br>inclosures<br>are charac-<br>teristic.<br>(See Fig.<br>79.) | With<br>quartz,<br>ompha-<br>cite,<br>garnet,<br>mica,<br>horn-<br>blende. | Fluid<br>inclos-<br>ures<br>are<br>very<br>com-<br>mon. | Often<br>opaque on<br>the border. | Common in<br>crystalline<br>schitts as<br>eclogites and<br>especially<br>amphibolites. | Distinguished<br>from:<br>apatite easily<br>by the optical<br>properties;<br>andalusite by<br>the cleavage in<br>sections parallel<br>aP, moreover<br>by the pleochro-<br>ism and polari-<br>zation-colors;<br>sillimanite by<br>the polarization-<br>colors and the<br>optical orienta-<br>tion (never<br>sinks, like silli-<br>manite, to the<br>microliticform);<br>alivine by the<br>crystalline form<br>and polariza-<br>tion-colors<br>(optical investi-<br>gation, power of<br>dispersion);<br>enstatite by the<br>optical orienta-<br>tion, the polari-<br>zation-colors,<br>(cleavare, and |
|----------------------------------------------------------------------|-----------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      |                                                                 | S. Carlos |                                                                                                                                   |                                                                            |                                                         |                                   |                                                                                        | cleavage, and the $\infty$ <i>P</i> -angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## II. b. 2. Minerals Crystallizing a. MINERALS APPARENTLY CRYSTALLIZING

CLEAVAGE MOST

| NAME.                                               | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Specific<br>gravity. | Cleavage.                                                                                                                                                                                                                      | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Twins.                                                                                                                                                                                                                                                                          | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Character<br>and strength<br>of double-<br>refraction.                                                                                                                                                                                                            | Direction<br>of<br>extinction.                                                                                                                                                                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Mica<br>Group.<br>a. Mer-<br>oxene<br>(Biotite). | $\begin{array}{c} I\\m R_4SiO_4\\m R_2SiO_4\\m R_2SiO_12\\m R_2SiO_12$ | 2.8-3.2.             | Highly<br>eminent<br>  $\rho P_{\cdot}$<br>Separa-<br>tions<br>corre-<br>corre-<br>sponding<br>to the<br>pressure-<br>surfaces<br>or<br>"sliding-<br>planes"<br>(gleit-<br>fläche)<br>$P_{2}$ and<br>$\frac{1}{2}P_{\infty}$ . | <sup>∞</sup> P quite<br><sup>120°,</sup><br><sup>∞</sup> P, ∞ P∞,<br><sup>o</sup> P, Thin<br>tablets or<br>short<br>columns,<br>(1oP)<br>hexagonal<br>tablets<br>without<br>cleavage-<br>cracks,<br>More often<br>with<br>"sliding<br>plane"<br>(gleit-<br>fläche),<br>three line-<br>systems<br>crossing<br>each other<br>at an<br>angle of<br>60°, and<br>rectangular<br>longitudi-<br>nai<br>sections<br>(1 to the<br>c'-axis),<br>with<br>numberless<br>cleavage-<br>lines<br>parallel to<br>the longer<br>sides,<br>(See<br>Figs. 80<br>and 81.) | Rare.<br>Twin-<br>ning-<br>plane, $_{\infty}P$ ;<br>both in-<br>dividuals,<br>however,<br>forced<br>over each<br>other in a<br>plane<br>quite $ _{\partial}P$ ;<br>also with<br>several<br>lamellæ<br>inter-<br>polated.<br>Only the<br>latter<br>recogniz-<br>able<br>i. p. l. | A. P. $  \infty P^{\infty}$<br>(mica<br>second<br>class),<br>A. P. paral-<br>lel to two<br>opposite<br>sides( $\infty P^{\infty}$ )<br>of a<br>hexagon<br>and<br>coinciding<br>with a<br>"fracture-<br>line"<br>(schlag-<br>linie),<br>1. M = 0<br>vary but<br>little from<br>the normal<br>to $\rho P$ .<br>Axial<br>angle<br>generally<br>very small<br>= $5^{\circ} 13^{\circ}$ ,<br>but<br>variable,<br>being<br>sometimes<br>very large.<br>Dispersion<br>P < v.<br>(See<br>Fig. 19.) | As<br>hexagonal<br>as a conse-<br>quence<br>of the<br>apparently<br>constant<br>parallel<br>extinction<br>and of the<br>small<br>axial angle,<br>or, as the<br>1. M. differs<br>but little<br>from the<br>normal<br>to eP,<br>apparently<br>rhombic.<br>Negative. | The<br>trans-<br>verse<br>sections<br>generally<br>apparent-<br>ly<br>isotrope;<br>the lon-<br>gitudinal<br>sections<br>with<br>parallel<br>extinc-<br>tion,<br>therefore<br>cannot<br>be<br>studied in<br>c. p. l.<br>Ap-<br>parently<br>hexago-<br>nal. |
|                                                     | Si $_{6}O_{24}$<br>and<br>Mg $_{12}Si_{6}O_{24}$<br>in<br>proportion<br>of<br>1:1 or 2:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 | The axial<br>angle<br>lessens with<br>decrease<br>of iron<br>present.                                                                                                                                                                                                                                                                                                                                                                                                                      | North I                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |

156

## in the Monoclinic System. IN THE HEXAGONAL (OR RHOMBIC) SYSTEM. PERFECT || oP.

| Polariza-<br>tion-<br>colors.                                                                                                      | Color and<br>power of<br>refracting<br>light. | Pleochroism.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Structure.                                                                                                                                                                                                                                                                                                                                                                                                  | Associa-<br>tion.                                                                                                              | Inclosures.                                                                                                                                                                                                                                               | Decomposi-<br>tion.                                                                                                                                                                                                                                                                                                                                                                                                                             | Occur-<br>rence.                                                                                                                                                                                                                                                                                           | Remarks,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not<br>particu-<br>lariy<br>brilliant,<br>brownish<br>tints;<br>in very<br>thin<br>leaflets<br>indes-<br>cent,<br>carmine-<br>red. | Brown-<br>black,<br>green. $\beta = 1.61$ .   | Transverse<br>sections<br>show<br>almost no<br>pleochro-<br>ism.<br>In longi-<br>tudinal<br>sections<br>very<br>stronger<br>than<br>hornblende.<br>a and b<br>differing<br>but<br>slightly.<br>In<br>longitudi-<br>nal<br>sections<br>sections<br>sections<br>for the<br>c'-axis<br>(= the<br>shorter<br>sides of<br>the<br>recta.gle).<br>a = yellow<br>pale<br>brown;<br>perpen-<br>dicular to<br>the c'-axis<br>(parallel<br>to the<br>longer<br>sides).<br>c = dark<br>brown to<br>black.<br>Absorption<br>c > b > a. | Primary<br>constituent<br>I. O.<br>Partly in<br>large<br>crystals<br>(in eruptive<br>rocks)<br>often<br>cracked<br>or<br>shattered,<br>or with<br>broad<br>opaque<br>border;<br>or in<br>minute<br>irregular<br>leaflets,<br>especially<br>in the<br>crystalline<br>schists;<br>or dis-<br>tributed<br>through the<br>ground-<br>mass<br>constituent<br>II. O.,<br>as in the<br>basalts and<br>other rocks. | Gen-<br>erally<br>with<br>quartz<br>and<br>ortho-<br>clase;<br>horn-<br>blende,<br>more<br>rarely<br>augite<br>and<br>olivine. | Generally<br>free from<br>inclosures;<br>yet often<br>neumbers<br>of epidote<br>needles<br>arranged<br>in tufts<br>(comp.<br>decomposi-<br>tion),<br>or long<br>thin rutile<br>needles<br>arranged<br>very<br>regularly<br>at 60°;<br>apatite,<br>zircon. | Into<br>chloritic<br>minerals<br>very<br>commonly<br>with<br>epidote and<br>calcite.<br>In this<br>decompo-<br>sition the<br>biotite<br>loses its<br>brown<br>color, and<br>becomes<br>green;<br>lenticular<br>calcite<br>separates<br>between<br>the leaves,<br>and<br>needles of<br>epidote<br>appear.<br>(See<br>Figs. 80<br>and 81.)<br>In the<br>decomposi-<br>tion of<br>ferric<br>hydroxide<br>or magnet-<br>ite about<br>the poriphery. | In nearly<br>all rocks,<br>In many<br>as<br>essential<br>primary<br>constitu-<br>ent.<br>One<br>of the<br>first-<br>formed of<br>minerals,<br>As decom-<br>position-<br>product<br>of augite,<br>horn-<br>blende,<br>rarely of<br>olivine.<br>As<br>contact-<br>mineral<br>in meta-<br>morphic<br>schists. | Easily re-<br>cognizable<br>by eminent<br>cleavage<br>and exceed-<br>ingly<br>powerful<br>pleochro-<br>ism. Dis-<br>tinguished<br>from:<br><i>kornblende</i><br>sections<br>are not<br>pleochroitic<br>(and by the<br>investiga-<br>tion<br>i. c. p. l.)—<br>the longi-<br>tudinal<br>sections<br>can be<br>distin-<br>guished<br>by the,<br>oblique<br>extinction<br>to be<br>proven on<br>blende;<br><i>chlorite</i> is<br>always<br>green,<br>never so<br>well<br>crystal-<br>lized,<br>feebler<br>pleochro-<br>itic, and<br>generally<br>arranged<br>in tuffs. |

15%

|                     |                                                                                                                                                                                                                                                                                                                                                                | -                     | 1                                                                                                                                                                                   | 1 0.1.                                | 1                                                                                                              | 1                                                                                                                                                                                                        |                                                        | 1                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| NAME.               | Chemical<br>composition<br>and<br>reactions,                                                                                                                                                                                                                                                                                                                   | Specific<br>gravity.  | Cleavage.                                                                                                                                                                           | form of the cross-section.            | Twins.                                                                                                         | Optical<br>orientation.                                                                                                                                                                                  | Character<br>and strength<br>of double-<br>refraction, | Direction<br>of<br>extinction.                                    |
| δ. Rubellan.        | Like<br>biotite<br>(meroxene);<br>rich in<br>iron.                                                                                                                                                                                                                                                                                                             | See<br>mer-<br>oxene. | See mer-<br>oxene.                                                                                                                                                                  | Large<br>thin<br>hexagonal<br>tables. |                                                                                                                | Large<br>axial angle.                                                                                                                                                                                    | See mer                                                | oxene.                                                            |
| c. Phlogo-<br>pite. | A<br>magnesian<br>mica,<br>nearly free<br>from iron,<br>According<br>to<br>Tschermak,<br>a mixture<br>of<br>K <sub>6</sub> (Al <sub>2</sub> ) <sub>3</sub><br>Si <sub>6</sub> O <sub>24</sub> ,<br>H <sub>6</sub> Si <sub>10</sub> O <sub>24</sub> ,<br>and<br>Mg <sub>12</sub> Si <sub>6</sub> O <sub>24</sub><br>in the<br>proportion<br>of nearly<br>3:1:4. | 2.75-<br>2.97.        | See mer-<br>oxene.                                                                                                                                                                  | See<br>meroxene.                      | See mer-<br>oxene;<br>also twins<br>after $\infty P$<br>with indi-<br>viduals<br>lying<br>near one<br>another. | A.P. $\  \infty \mathcal{P} \infty$<br>a nearly<br>$\perp oP$ .<br>c: $a = 2^{10}$ .<br>Dispersion<br>$\rho < v$ .<br>Axial angle<br>about 15°.                                                          | Negative<br>like<br>meroxene.                          | Like<br>mer-<br>oxene,<br>alwar s<br>parallel<br>extinc-<br>tion. |
| d. Anomite.         | According<br>to<br>Tschermak,<br>a mixture<br>of<br>H <sub>2</sub> K <sub>1</sub> (Al <sub>2</sub> ) <sub>3</sub><br>Si <sub>6</sub> O <sub>24</sub><br>and<br>Mg <sub>12</sub> Si <sub>6</sub> O <sub>24</sub><br>in<br>proportion<br>of 1:1<br>of 2:1.                                                                                                       |                       | See mer-<br>oxene;<br>also here<br>the<br>"gliding-<br>planes"<br>very com-<br>monly<br>dis-<br>cernible.<br>One of<br>the<br>gliding-<br>planes<br>parallel<br>$\infty P \infty$ . | See<br>meroxene.                      |                                                                                                                | A.P. $\perp \infty \mathcal{P} \infty$<br>(mica<br>I. class).<br>$\alpha$ nearly<br>$\perp \partial \mathcal{P}$ .<br>Axial angle<br>about<br>$22-16^{\circ}$<br>and less.<br>Dispersion<br>$\rho > v$ . | Negative.                                              | ditto.                                                            |

. .

| Polariza-<br>tion-colors. | Color and<br>power of<br>refracting<br>light.                                           | Pleo-<br>chroism.                                          | Structure.                                                                                                                                   | Associa-<br>tion.                                                                 | Inclosures.                                                                                                             | Decomposi-<br>tion.                                                                                                                                                                          | Occur-<br>rence.                                                                                                  | Remarks.                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                           | Brown-<br>ish red,<br>brick-red.                                                        |                                                            | Often<br>appears as<br>a foreign<br>inclosure;<br>only<br>primary<br>constituent<br>I.O. Is<br>only an<br>altered<br>(pyrogene?)<br>biotite. | With<br>augite,<br>olivine<br>plagio-<br>clase,<br>nephe-<br>line, or<br>leucite. | Augitic<br>needles,<br>ferric<br>hydrate,<br>and<br>microlites<br>regularly<br>arranged<br>at 60°<br>as in<br>meroxene. | Depositing<br>ferric<br>hydroxide.                                                                                                                                                           | In<br>basalts<br>and<br>lavas.                                                                                    | Dis-<br>tinguished<br>from<br>biotite<br>only by the<br>color.                  |
| See mer-<br>oxene.        | Yellow,<br>pale<br>brown,<br>red-<br>brown,<br>like mer-<br>oxene.<br>Relief<br>marked. | Very<br>strong,<br>yet<br>weaker<br>than<br>mer-<br>oxene. | Mostly<br>in thin<br>irregular<br>leaflets.                                                                                                  | With<br>calcite<br>and<br>ser-<br>pentine.                                        | Very poor;<br>as in<br>rubellan,<br>regular<br>layers of<br>thread-like<br>needles.                                     | Becoming<br>green,<br>like<br>meroxene.                                                                                                                                                      | In<br>granular<br>rarely<br>compact<br>lime-<br>stones,<br>dolo-<br>mites,<br>and in<br>serpen-<br>tine<br>rocks, | Differs<br>from<br>meroxene<br>only in<br>chemical<br>composition<br>and color, |
| ditto.                    | Red-<br>brown.                                                                          | ditto.                                                     | ditto.                                                                                                                                       | With<br>olivine,<br>angite,<br>and<br>actino-<br>lite.                            |                                                                                                                         | Becoming<br>green to<br>colorless<br>as above.<br>At the<br>beginning<br>of the<br>decomposi-<br>tion it<br>becomes<br>opaque, and<br>contains<br>numbers<br>of brown<br>grains<br>inclosed. | Rare in<br>olivine-<br>fels.                                                                                      |                                                                                 |

|                                        |                                                                     | A CONTRACTOR OF |                                                                                                   |                                                                                                 |                       |                                                                                                                                                                                                                 |                                                        |                                                                                                |
|----------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|
| NAME.                                  | Chemical<br>composition<br>and<br>reactions.                        | Specific<br>gravity.                                                                                            | Cleavage.                                                                                         | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                              | Twins.                | Optical<br>orientation.                                                                                                                                                                                         | Character<br>and strength<br>of double-<br>refraction. | Direction<br>of<br>extinction.                                                                 |
| e. Musco<br>vite<br>(and<br>sericite). | H4K2(Al2)3<br>SigU24.<br>Not<br>attacked by<br>acids.               | 2.76-3.1.                                                                                                       | Very<br>perfect<br>1 oP;<br>"sliding-<br>planes"<br>(gleit-<br>fläche)<br>as in<br>mer-<br>oxene. | Rarely<br>crystallized<br>in rocks;<br>hexagonal<br>tables.                                     | See<br>merox-<br>ene. | A.P. $\perp \infty P \infty$<br>(mica I.<br>class).<br>a differing<br>but little<br>from $c^{\prime}$ .<br>Dispersion<br>p > v.<br>Axial angle<br>generally<br>large,<br>$60-70^{\circ}$ .<br>(See<br>Fig. 18.) | Strongly<br>negative.                                  | Like<br>magnesia-<br>mica<br>with<br>parallel<br>extinc-<br>tion ; ap-<br>parently<br>rhombic, |
| 2. Tzic.                               | H2Mgs<br>St O12<br>Not<br>attacked by<br>acids.<br>Al-<br>reaction. | 2.69-2.8.                                                                                                       | Eminent<br>∥ oP<br>(imper-<br>fect ∞ P).                                                          | Never in<br>crystals;<br>in rocks<br>mostly in<br>minute<br>irregular<br>leafiets like<br>mica. |                       | A.P.   $\omega \mathcal{P} \omega$<br>   to a<br>fracture-<br>line<br>(schlag-<br>linie),<br>a nearly<br>$\perp oP.$<br>(According<br>to<br>Tschermak<br>axial angle<br>about 17°.)                             | Feebly<br>negative.                                    | Ap-<br>parently<br>rhombic?                                                                    |

| Polariza-<br>tion-<br>colors.                                                      | Color and<br>power of<br>refracting<br>light. | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                             | Association.                                                                 | Inclosures.                                                                                                | Decomposition. | Occurrence.                                                                                                                                                                                                                                                                                                                                                                            | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exceed-<br>ingly<br>brilliant,<br>irides-<br>cent<br>(red to<br>yellow<br>colors). | Colorless,<br>light<br>green,<br>oil-green.   |                   | As<br>primary<br>constituent<br>I. O. in<br>large<br>leaves and<br>tables, in<br>tufted and<br>stellate<br>aggregates.<br>As<br>secondary<br>product<br>in<br>aggregates<br>of minute<br>irregular<br>leaflets.<br>In<br>crystalline<br>schists in<br>minute<br>irregular<br>leaflets. | With<br>quartz,<br>orthoclase,<br>biotite,<br>tourmaline.                    | Very poor;<br>rarely<br>rutile<br>needles,<br>hematite<br>tablets, or<br>tourmaline<br>columns,<br>Zircon. |                | As<br>primary<br>constituent<br>in granites,<br>especially<br>tourmaline<br>granites,<br>and in<br>crystalline<br>schists;<br>especially<br>prominent<br>in gneiss,<br>mica-schists,<br>and clay<br>schists.<br>As primary<br>constituent<br>nowhere<br>else in<br>eruptive<br>costs. As<br>decomposi-<br>tion-product<br>in the<br>feldspars,<br>chiastolite,<br>liebenerite,<br>etc. | Easily recog-<br>nizable by<br>the highly<br>eminent<br>cleavage and<br>brilliant po-<br>larization-col-<br>ors; yet diffi-<br>cult to distin-<br>guish with the<br>microscope<br>from talc.<br>Sericite is<br>only a musco-<br>vite, appear-<br>ing like tale,<br>soft,<br>greasy to the<br>touch, non-<br>elastic and<br>occurring in<br>compact<br>aggregates of<br>minute irreg-<br>ular leaflets,<br>in certain<br>semi-crystal-<br>line schists.                                                        |
| See<br>musco-<br>vite.                                                             | Colorless,<br>white,<br>light<br>green.       |                   | Mostly in<br>irregularly<br>disposed<br>interlaced<br>or<br>rosette-<br>shaped<br>stellate<br>aggregates<br>of minute<br>leaflets.                                                                                                                                                     | With<br>quartz,<br>orthoclase,<br>mica,<br>or with<br>augite and<br>olivine. | Very poor.<br>Biotite,<br>actinolite.<br>Like<br>muscovite.                                                |                | As<br>primary<br>constituent<br>in many<br>crystalline<br>schists.<br>Not<br>common.<br>As second-<br>ary product<br>in the de-<br>composition<br>of augites<br>and horn-<br>blendes<br>poor in<br>iron,<br>especially<br>enstatite<br>before oc-<br>curring in<br>olivine-fels<br>and<br>serpentines.                                                                                 | Difference be-<br>tween musco-<br>tween musco-<br>tween musco-<br>tween musco-<br>curs general-<br>ly in large in-<br>dividuals<br>remarkable<br>for the basal<br>cleavage, or<br>in separate<br>leaves.<br><i>Talc</i> , how-<br>ever, occurs<br>generally in<br>aggregates of<br>compact inter-<br>twined mi-<br>nute leaflets<br>arranged in<br>stellate<br>groups.<br>The micro-<br>chemical in-<br>vestigation of<br>isolated leaf-<br>lets with hy-<br>drofluo-silicic<br>acid is the<br>only safe one. |

|                                                                                        |                                                                                                                                                                                 |                      |                                                                            | and the second                                                                                                                                                 |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                                                            |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| NAME.                                                                                  | Chemical<br>composition<br>and<br>reactions.                                                                                                                                    | Specific<br>gravity. | Cleavage.                                                                  | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                             | Twins.                                                                                                                         | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                 | Character<br>and<br>strength of<br>double-<br>refraction.        | Direction<br>of<br>extinction.                                                                             |
| 3. Ohlor, te<br>Group.<br>#. Ripido-<br>lite.<br>(Chlorite in<br>restricted<br>sense.) | $ \begin{array}{c} Mixture \ o f \\ p \ (2H_2O \ . \\ 3MgO \ . \\ 2SiO_2) + \\ q \ (2H_2O \ . \\ 2MgO \ . \\ 2MgO \ . \\ 3H_2O_3 \ . \\ SiO_2). \\ p : q = 1 : 2. \end{array} $ | 2.78-<br>2.95.       | Very<br>perfect<br>   oP.                                                  | Leaflets<br>and six-<br>sided<br>tablets<br>$\infty P \cdot oP$<br>like hexag-<br>onal. If<br>monoclinic,<br>then $\infty P$ .<br>$\infty P \infty \cdot oP$ . |                                                                                                                                | Apparently<br>hexagonal<br>(optically-<br>uniaxial),<br>often<br>clearly<br>optically-<br>biaxial,<br>with very<br>small axial                                                                                                                                                                                                                                                                          | Feebly<br>negative.                                              | Cleavage-<br>leaflets<br>like<br>isotrope.<br>Longi-<br>tudinal<br>sections<br>with<br>parallel<br>extinc- |
| δ. Hel-<br>minth.                                                                      | Decom-<br>posed by<br>H <sub>2</sub> SO <sub>4</sub> .                                                                                                                          |                      | ditto.                                                                     | Long ver-<br>micular<br>curled<br>columns.                                                                                                                     | Six-sided<br>leaflets<br>with re-<br>entrant<br>angles.                                                                        | angle.<br>a⊥oP.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | tion.                                                                                                      |
| c. Pennin-<br>ite.                                                                     | See a.<br>p: q = 3: 2.<br>Decom-<br>posed by<br>HCl.                                                                                                                            | 2.61-<br>2.77.       | ditto,                                                                     | Crystals<br>like<br>rhombo-<br>hedra $oP$ .<br>R or $3Ror \infty R. R.$                                                                                        | Pene-<br>tration<br>three-<br>lings.<br>(Biaxial<br>parts.<br>Visible in<br>three                                              | Often<br>clearly<br>optically-<br>biaxial.                                                                                                                                                                                                                                                                                                                                                              | Sometimes<br>positive,<br>sometimes<br>negative;<br>very feeble. | Longi-<br>tudinal<br>sections<br>with<br>parallel<br>extinc-<br>tion.<br>Cleavage-                         |
| d. Kaem-<br>mererite.                                                                  | Contains<br>Cr <sub>2</sub> O <sub>3</sub> .                                                                                                                                    | 2.617-<br>2.76.      | ditto.                                                                     | Irregular<br>leaflets<br>apparently<br>P. oP.                                                                                                                  | by 120°<br>in leaves<br>   oP.)                                                                                                | Clearly<br>optically-<br>biaxial.                                                                                                                                                                                                                                                                                                                                                                       |                                                                  | leafiets<br>some-<br>times<br>isotrope,<br>some-<br>times<br>double-<br>refract-<br>ing.                   |
| e. Clino-<br>chlore.                                                                   | <i>f</i> : <i>g</i> = 2:3.<br>More<br>difficultly<br>decom-<br>posed by<br>acids than<br>the above.                                                                             | 2.65-<br>2.78.       | ditto.<br>"Sliding<br>planes"<br>(gleit-<br>fläche)<br>similar<br>to mica. | Crystals of<br>monoclinic<br>habit<br>$\infty P, \infty P\infty$ .<br>$\sigma P, etc.$<br>$\sigma P$ quite<br>120°. In<br>large<br>leaves.                     | Com-<br>monly in<br>twins and<br>three-<br>lings.<br>Twinning<br>plaue a<br>face of<br>the hemi-<br>pyramid<br>3P.             | $ \begin{array}{c c} \overline{A,P,\  & \otimes P & \otimes, \\ \text{often also} \\ \bot & \otimes P & \otimes; \\ \text{cquite } \bot & \rho P & \otimes; \\ \text{cquite } \bot & \rho P & \otimes; \\ \text{varying } \\ \text{about } 12^{-15} & \circ \\ \text{from the } \\ \text{normal to } \\ \rho P. & \text{Large } \\ \text{axial angle.} \\ \text{Dispersion } \\ \rho < v. \end{array} $ | Generally<br>positive.                                           | C: c =<br>12-15°.                                                                                          |
| f. Chlori-<br>toid<br>and<br>g. Sismon-<br>dine.                                       | $\begin{array}{l} H_2R(Al_2)\\SiO_7;\\R=FeO\\and some\\MgO.\\Decom-\\posed by\\concen-\\trated\\H_2SO_4.\end{array}$                                                            | 3.52-<br>3.56.       | <i>   oP.</i><br>Not so<br>perfect<br>as in the<br>others.                 | ditto.<br>Tablets.                                                                                                                                             | Common-<br>ly tablets<br>of thin<br>leaves de-<br>veloped<br>twin-like,<br>which are<br>placed at<br>120° to<br>each<br>other. | A.P.<br>  ∞ P∞.<br>1. M. differs<br>about 12°<br>from the<br>⊥ oP.                                                                                                                                                                                                                                                                                                                                      | Negative.                                                        | a:c=<br>5-12°.                                                                                             |

| Polari-<br>zation-<br>colors.                                                         | Color and<br>power of<br>refracting<br>light. | Pleo-<br>chroism.                                                                                                                         | Structure.                                                                                                                                                                                                                                                             | Associa-<br>tion.                                                                                                          | Inclos-<br>ures.                                                                                                     | Decom<br>position.                                                                  | Occurrence.                                                                                                                                                                                                                                                                                                             | Remarks.                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feebly<br>bril-<br>liant,<br>bluish,<br>blue to<br>green.                             | Light<br>to dark<br>green.<br>$\mu = 1.575$ . | Very<br>feeble.                                                                                                                           | The chlorites<br>do not for the<br>most part<br>occur as rock-<br>constituents<br>in large lamel-<br>lary hexag-<br>onal tablets<br>like the micas,<br>but like tablets<br>of minute ir-<br>regular leaf-<br>lefs either<br>singly or<br>disposed in<br>radial groups, | As<br>primary<br>con-<br>stituent<br>with<br>quartz,<br>ortho-<br>clase,<br>biotite,<br>and<br>musco-<br>vite.             | Very<br>poor.<br>Hema-<br>tite and<br>hydrated<br>ferric<br>oxide,<br>and<br>needles of<br>rutile and<br>actinolite. | •                                                                                   | Primary.<br>More com-<br>monly in<br>leaflets in<br>chloritic<br>schists, as de-<br>composition-<br>product of<br>mica, augite,<br>hornblende,<br>and garnet.<br>As decomposi-<br>tion-product<br>after mica and<br>hornblende,<br>and inter-<br>penetrated in<br>minerals of<br>the crystal-<br>line schists.<br>Rare. | Difficult to<br>distinguish<br>from<br>decomposed<br>or green-<br>colored mica.<br>The chlorites<br>as rock-<br>constituents<br>are extremely<br>difficult to<br>distinguish                                            |
| See<br>ripido-<br>lite.                                                               | Leek to<br>bluish<br>green.                   | Feeble.<br>Green<br>shades.                                                                                                               |                                                                                                                                                                                                                                                                        | ditto.                                                                                                                     | ditto.                                                                                                               |                                                                                     | Rare as rock-<br>constituent<br>as above, in<br>leaves.                                                                                                                                                                                                                                                                 | from each<br>other.<br>Clinochlore<br>alone (also<br>ottrelite) is<br>well charac-<br>terized                                                                                                                           |
|                                                                                       | Peach to<br>blood-red.                        |                                                                                                                                           | Often inter-<br>penetrated<br>with clino-<br>chlore.                                                                                                                                                                                                                   | With<br>olivine,<br>augite,<br>and<br>chromite.                                                                            |                                                                                                                      | By<br>decom-<br>position<br>is de-<br>color-<br>ized and<br>resem-<br>bles<br>talc. | Rarely in<br>serpentines.                                                                                                                                                                                                                                                                                               | pronounced<br>pleochroism<br>as well as the<br>common<br>twinning;<br>more easily<br>determined<br>by optical<br>examination.                                                                                           |
| More<br>brilliant<br>than in<br>the<br>other<br>chlo-<br>rites.<br>Indigo-<br>yellow. | Dark oil<br>to bluish<br>green.               | Often<br>very<br>strong. In<br>sections<br>$\perp oP$<br>yellow;<br>ll <i>c</i> light<br>green,<br>yellowish<br>green,<br>dark-<br>green. | In larger<br>leaves, yet<br>not so<br>marked by<br>lamellæ as<br>mica.                                                                                                                                                                                                 | With<br>quartz,<br>ortho-<br>clase, and<br>mica.<br>With<br>augite,<br>horn-<br>blende,<br>olivine,<br>or ser-<br>pentine. | ditto.                                                                                                               |                                                                                     | Primary.<br>Common in<br>crystalline<br>schists, as<br>chloritic<br>schist, and<br>secondary in<br>serpentine.                                                                                                                                                                                                          | Ottrelite is<br>marked by<br>the greater<br>hardness, less<br>perfect<br>cleavage,<br>absence of<br>laminations,<br>and richness<br>of inclosures;<br>also dis-<br>tinguished by<br>chemical<br>quantitative<br>applied |
| See<br>clino-<br>chlore.                                                              | Dark<br>green.                                | See<br>clino-<br>chlore.<br>   c<br>yellowish<br>green.<br>L c<br>greenish<br>blue.                                                       | ditto.                                                                                                                                                                                                                                                                 | With<br>quartz,<br>ortho-<br>clase, and<br>mica,<br>With<br>augite,<br>rutile,<br>titanite,<br>glauco-<br>phane            | Fluid in-<br>closures<br>very<br>common.<br>Rutile<br>needles.                                                       |                                                                                     | Chloritoid in<br>certain semi-<br>crystalline<br>schists.<br>Sismondine<br>rarely in<br>glaucophane-<br>eclogite.                                                                                                                                                                                                       | alldly 515,                                                                                                                                                                                                             |

| Name.         | Chemical<br>composition<br>and<br>reactions.                                                                                                      | Specific<br>gravity. | Cleavage.                                                                                                      | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                      | Twins.                                                                                    | Optical<br>orientation.                                                                                                        | Character<br>and<br>strength of<br>double-<br>refraction. | Direction<br>of<br>extinction.                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| k. Ottrelite. | $\begin{array}{l} H_{6}R_{3}\left(Al_{2}\right)_{2}\\ S_{16}O_{24},\\ R=Fe,Mn,\\ Attacked\\ by H_{2}SO_{4}\\ only with difficulty,\\ \end{array}$ | 4.4 (?).             | oP very<br>perfect.<br>Besides,<br>according<br>to $\infty P$ ,<br>with an<br>angle of<br>110-120°<br>(Becke). | Thin<br>spherical<br>tablets;<br>rounded<br>cross-<br>sections<br>l oP rare.<br>Elongated<br>rectangles<br>if the<br>sections are<br>inclined<br>to oP. | See<br>sismondine;<br>poly<br>synthetic<br>twinning-<br>striations<br>0 oP.<br>(Fig. 82.) | Optically<br>biaxial;<br>1.M. rather<br>sharply<br>inclined to<br>the perfect<br>cleavage-<br>planes;<br>small axial<br>angle. | Very<br>feebly<br>negative.                               | Com-<br>monly<br>parallel<br>to the<br>longer<br>axis of<br>the cross-<br>section. |
| Mar and       | E 15100                                                                                                                                           | EAST FOUL            |                                                                                                                |                                                                                                                                                         | WER CONTRACTOR                                                                            |                                                                                                                                | JUNE DIGE                                                 |                                                                                    |

#### 2. MONOCLINIC

aa. PLANE OF OPTIC AXES GENERALLY  $\perp \infty \mathcal{P}\infty$ ; PERFECT

| 1. a. Orthoclase. | K2Al2<br>SigO10.<br>Not<br>attacked<br>by acids.<br>Small<br>amount of<br>Na, Ca, Fe,<br>Mg. | 2.50-<br>2.59<br>(2.57). | Eminent<br>I oP and<br><sup>\$\oto\$ P\$\oto\$</sup> .<br>Cleavage<br>angle<br>89° 40'. | In grains,<br>or partly<br>columnar:<br>oP. oP 2P ∞. P.<br>and partly<br>of large or<br>more rarely<br>minute<br>tabular<br>crystals.<br>oP 2P ∞.<br>P ∞. | Very<br>common,<br>especially<br>after the<br>following<br>three laws:<br>most<br>commonly<br><i>I. The</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Tiaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i><br><i>Carisbad</i><br><i>Iaw.</i> | A.P.<br>generally<br>$\perp \omega_0 P \infty_1$ ,<br>equally<br>inclined<br>with $\partial P$ and<br>forms with<br>the vertical<br>axis an<br>angle of<br>$\delta \phi^0$ 11'.<br>$c = \delta$<br>$a: \dot{a} = 5^\circ$ .<br>True axial<br>angle = $\delta \phi^\circ$ .<br>(See Fig.14).<br>Axial<br>dispersion<br>$\equiv \rho > v$ .<br>In sections<br>parallel<br>$\omega P \infty$ or<br>$\omega P \infty$<br>i. cond. a<br>distorted<br>biaxial in-<br>terference-<br>figure<br>visible.<br>A.P. is rare. | Rather<br>feebly<br>negative. | In<br>sections<br>or<br>cleavage-<br>leaflets $  \\ \infty P^{2} \infty a$<br>direction<br>of ex-<br>tinction<br>varies<br>from the<br>edge $\sigma P$ :<br>$\infty P^{2} \equiv$<br>a: a about5° 18'.<br>Sections<br>parallel $\delta$ ,<br>that is,<br>from the<br>zone $\sigma P$ :<br>$\infty P_{\infty}$ ,<br>of course<br>have a<br>parallel<br>extinc-<br>tion. |
|-------------------|----------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------|----------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Polariza-<br>tion-<br>colors.                     | Color and<br>power of<br>retracting<br>light.                      | Pleo-<br>chruism.                                                                                                                         | Structure,                                                                                                                                                                                                                                          | Associa-<br>tion.                                                             | Inclosures.                                                                                                                                               | Decom-<br>position. | Occurrence.                                                        | Remarks.                                                                                                                                                                                                                                                     |
|---------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not<br>brilliant,<br>similar<br>to<br>ripidolite. | Greenish<br>black; in<br>sections<br>light to<br>grayish<br>green. | Rather<br>power-<br>ful;<br>  oP lav-<br>ender-<br>blue,<br>bluish<br>green,<br>  e<br>green-<br>ish<br>blue,<br>yellow-<br>ish<br>green. | Compare with<br>"Inclosures."<br>In large<br>tablets of a<br>black color<br>(rather hard).<br>Cleavage    oP<br>never so<br>very perfect<br>as in the other<br>chlorites;<br>besides this,<br>however,<br>always a<br>cleavage    to<br>the c-axis. | With<br>quartz,<br>mica<br>(musco-<br>vite),<br>rutile<br>needles,<br>garnet. | Generally<br>exceed-<br>ingly rich<br>in in-<br>closures<br>of color-<br>less<br>guartz<br>granules,<br>rutile<br>needles,<br>and<br>earthy<br>particles. |                     | Rare, in<br>semi-<br>crystalline<br>and<br>metamorphic<br>schists. | Ottrelite is<br>tridinic<br>(Renard).<br>Cleavage after<br>nP; also not<br>after $\infty P$ , but<br>in two directions<br>cutting each<br>other at an<br>angle of about<br>$1_30^\circ$ , and in a<br>third direction<br>at right angles<br>to one of these. |
|                                                   |                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                     | Tay.                                                                          |                                                                                                                                                           |                     | a state and the                                                    |                                                                                                                                                                                                                                                              |

#### CRYSTALS.

CLEAVAGE || oP AND  $\infty \mathcal{P}\infty$ , ANGLE NEARLY 90°.

| Rather<br>brilliant,<br>not,<br>so bright<br>as in<br>quartz.<br>In very<br>thin<br>sections<br>and in<br>micro-<br>lites the<br>polariza-<br>tion-<br>colors of<br>ortho-<br>clase<br>are dull,<br>generally<br>blue.<br>gray,<br>as, e.g.,<br>nephe-<br>line. | Rarely<br>colorless,<br>clear as<br>water;<br>generally<br>white or<br>opaque<br>from<br>decom-<br>position,<br>gray;<br>tinged<br>red from<br>ferric<br>oxide or<br>hydrox-<br>ide. |      | Orthoclase in<br>large crystals<br>or grains I.O.<br>and smaller<br>granules,<br>rarely fila-<br>ments, II.O.<br>in eruptive<br>rocks; always<br>in grains in<br>crystalline<br>schists.<br><i>Penetrations</i><br>with plagio-<br>clase are<br>common,<br>generally<br>$\  \infty P\infty;$<br>graphic-<br>granite-like,<br>with quartz<br>(micro-peg-<br>matite). (See<br>Fig. 63, e.)<br>Zonal struc-<br>ture rare; also<br>inclosures<br>zonally<br>disposed. | With<br>quartz,<br>biotite,<br>and<br>horn-<br>blende,<br>rarely<br>augite,<br>plagio-<br>clase,<br>elæo-<br>lite. | As a rule<br>very poor.<br>Hema-<br>tite,<br>biotite<br>leaflets,<br>fluid in-<br>closures,<br>apatite<br>needles,<br>zircon. | Mostly<br>perfect-<br>ly det<br>com-<br>posed,<br>the<br>crystals<br>opaque,<br>and<br>non-<br>trans-<br>parent;<br>into<br><i>kaolin</i><br>with<br>forma-<br>tion of<br>musco-<br>vite<br>or<br>epidote. | One of the<br>most common<br>constituents<br>of the<br>granular and<br>porphyritic<br><i>alder</i> eruptive<br>rocks. Essen-<br>tial primary<br>constituent in<br>granite,<br>syenite,<br>quarizose<br>porphyry, and<br>accessory in<br>nearly all<br>plagioclase<br>rocks; more-<br>over, in the<br>crystalline<br>schists,<br>especially the<br><i>gneisses;</i><br>here often<br>glassy, as<br>sanidine. | The large<br>crystals can<br>be easily dis-<br>tinguished<br>from the<br>other colorless<br>optically-biaxial<br>minerals by<br>the twinnings<br>in sections<br>$0^{P}$ and $@ \mathcal{P} @$ ,<br>and by the<br>oblique<br>extinction<br>parallel $@ \mathcal{P} @$ ,<br>The threadlets<br>of orthoclase<br>and sandine,<br>so often<br>appearing in the<br>ground-mass<br>of rocks, have<br>often a marked<br>similarity to<br>nepheline, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                 | William Providence                                                                                                                                                                   | N.S. | and here the                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sent Co                                                                                                            | in the second                                                                                                                 | S Call                                                                                                                                                                                                     | No. of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                     | Martin Street                                                                                                                                                                                                                                                                                                                                                                                                                               |

| NAME.             | Chemical<br>composi-<br>tion and<br>reactions. | Specific<br>gravity. | Cleavage.                               | Ordinary<br>combinations<br>and<br>form of the<br>cross-section.                                                                                                                                                                                                                                                                                                                                                                                                                  | Twins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optical<br>orientation.                                                 | Character<br>and<br>strength<br>of double-<br>refraction. | Direction<br>of<br>extinction. |
|-------------------|------------------------------------------------|----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| b. Sani-<br>dine. |                                                |                      | As above:<br>crystals<br>fur-<br>rowed. | Sanidine in minute, long, narrow threads, as microlites, or large crystals, never in grains. Form of cross-sections parallel $oP$ and $\infty P\infty$ long and thread-like; parallel $m P \infty$ distorted hexagons whose sides correspond to $oP \cdot \infty P \cdot \infty$ . In columnar types of the crystals: rectangular: rectangular sections if at right angles to $oP \cdot \infty P \infty$ , octagonal if besides these also $zP \infty$ is present. (See Fig. 83.) | Twinning-<br>plane = $\partial P$ .<br>(See Fig. 28.)<br>Cross-<br>sections of<br>twins:<br>a. In the<br>Carlsbad<br>twins the<br>rectangular<br>sections at<br>right angles<br>$\rho P \infty$<br>divided into<br>halves<br>parallel to<br>the edges<br>$\partial P (\infty P \infty)$<br>and<br>$\infty P / \infty P \infty$ ,<br>b. In the<br>Bayeno<br>twins the<br>quadratic<br>sections at<br>right<br>angles $\infty P \infty$<br>are divided<br>into halves<br>by the<br>diagonals. | Parallel<br>$\infty P \infty;$<br>b = b<br>a: a<br>equals $5^{\circ}$ . |                                                           |                                |
|                   |                                                |                      |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                           |                                |
| Polariza-<br>tiona-<br>volors. | Color and<br>power of<br>refracting<br>light.<br>Sanidine<br>is always<br>colortess,<br>clear as<br>water.<br>βρ =<br>1.5237. | Pleochro-<br>ism. | Structure.<br>Sanidine<br>in large<br>crystals<br>I. O. and<br>minute<br>threads II.O.<br>in eruptive<br>rocks.<br>The large<br>crystals<br>are often<br>erumbled or<br>fused, and<br>with an<br>exceedingly<br>beautiful<br>zonal<br>structure,<br>seen<br>particularly<br>well.<br>1. p. p. 1.<br>Inclosures<br>are common,<br>arranged<br>in zones. | Associa-<br>tion.<br>Sanidine<br>like<br>ortho-<br>clase;<br>besides<br>with<br>augite,<br>nepte-<br>line, and<br>leucite,<br>never<br>with mus-<br>covite. | Inclosures.<br>Sanidine<br>generally<br>very rick im<br>inclosures,<br>especially<br>vitreous<br>inclosures,<br>generally<br>zonally<br>disposed,<br>augite-<br>microlites,<br>apatite<br>needles, | Decompo-<br>sition. | Occurrence.<br>Essential<br>primary<br>constitu-<br>ent of the<br>trachytes,<br>rhyolites,<br>phono-<br>lites,<br>and the<br>glasses of<br>the ortho-<br>clase<br>rocks;<br>accessory<br>jall of the<br>younger<br>plagio-<br>clase<br>rocks, | Remarks.<br>and certain<br>melilites.<br>The isotrope<br>hexagonal<br>transverse<br>sections are<br>wanting on<br>orthoclase.<br>Grains of<br>orthoclase<br>in isotrope<br>sections<br>are<br>easily<br>distinguish-<br>ed from<br>quartz by<br>the<br>condenser,<br>as in<br>orthoclase<br>cross-<br>sections<br>one of the<br>optic axes<br>is visible.<br>Orthoclase<br>is distin-<br>guished from<br>plagioclase<br>by the<br>optical<br>orientation<br>and absence<br>of the<br>polysynthet-<br>ic striation. |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                                    |                     |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

167

bb. PLANE OF OPTIC AXES || ∞ P ∞;

| NAME.                                                                             | Chemical<br>composition<br>and<br>reactions. | Specific<br>gravity.                              | Cleav-<br>age.                                 | O dinary<br>combinations<br>and form of<br>the cross-<br>section. | Twins.                                                                                                                                                                                                                                                                                                                                          | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                                                          | Character<br>and strength<br>of double-<br>refraction.                         | Direction<br>of<br>extinction.                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME.<br>1. Mono-<br>clinic<br>Group,<br>a.Ordinary<br>and<br>basaltic<br>Augite. | Chemical<br>composition<br>and<br>reactions. | Specific<br>gravity.<br>(3.17-3 41)<br>3.34-3.38. | Cleav-<br>age.<br>Emi-<br>nent<br>$\infty P$ . | O dinary<br>combinations<br>and form of<br>the cross-<br>section. | Twins.<br>Very<br>common.<br>Twins-<br>ning-<br>plane<br>$\infty \mathcal{P}\infty$ ,<br>also in<br>poly-<br>synthetic<br>twins.<br>(See Figs.<br>24 and 25.)<br>More<br>rarely<br>penetra-<br>tion-<br>twins<br>after:<br>twinning-<br>plane a<br>face<br>$-\mathcal{P}\infty$ ; or<br>after:<br>twinning-<br>plane a<br>face $\mathcal{P}2$ . | Optical<br>orientation.<br>A.P. $\  \infty P \infty;$<br>the<br>r.M. = c is<br>wanting<br>in the<br>obtuse<br>angle $\beta$ ,<br>b = b<br>(See<br>Fig. to.)<br>The<br>positive<br>axial angle,<br>decreases<br>with the<br>iron<br>present,<br>about 60°.<br>Sections<br>at right<br>angles to<br>the c-axis<br>and<br>parallel<br>$\infty P \infty$ show<br>with<br>condenser<br>one optic<br>axis exactly<br>in the<br>centre of<br>the field. | Character<br>and strength<br>of double-<br>refraction.<br>Positive,<br>strong. | Direction<br>of<br>extinction.<br>In<br>sections<br>parallel<br>∞ P∞<br>c: c =<br>about 30°.<br>Varies<br>from 30°<br>to 54°.<br>a: to edge<br>eP/∞ P∞<br>Sections<br>about 22°.<br>Sections<br>inclined<br>to ∞ P∞<br>c: c de-<br>creases to<br>0°<br>parallel<br>∞ P∞. |
|                                                                                   |                                              |                                                   |                                                |                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                                                                                                                                                                                                                                          |

q6

### Eminent Cleavage after $\infty P = 87^{\circ}$ .

| Polariza-<br>tion-<br>colors.                                                         | Color and<br>power of<br>refracting<br>light.                                                                                                                                                                        | Pleo-<br>chroism,                                                                                                                                                                                       | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Associa-<br>tion.                                                                                                                                                                           | In-<br>closures.                                                                                               | Decomposi-<br>tion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Occurrence.                                                                                                                                                                                                                                                                                                                                                                   | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very<br>brilliant,<br>especially<br>in the<br>light-<br>colored,<br>yellow to<br>red. | In<br>sections<br>green to<br>brown,<br>often<br>violet to<br>brown in<br>the<br>basalts.<br>The<br>same<br>crystal<br>often<br>shows<br>several<br>colors.<br>(Comp.<br>"struc-<br>ture.")<br>$\beta \rho = 1.69$ . | Gen-<br>erally<br>very<br>feeble,<br>strong-ly<br>ly opeo-<br>chroitic<br>as in<br>the<br>phono-<br>lites<br>and<br>then<br>resem-<br>blende.<br>Absorp-<br>tion<br>feeble<br>c>a>b,<br>a about<br>= b. | In large crystals<br>I. O. and col-<br>umns in micro-<br>lites II. O. The<br>first very com-<br>monly show a<br>zonal structure,<br>a green core,<br>e.g. with brown<br>layers which in<br>turn are often<br>again composed<br>of numberless<br>thin layers. As<br>a consequence<br>of this varying<br>constitution<br>of both core and<br>layers, opti-<br>cal differences,<br>as in directions<br>of extinction<br>and polariza-<br>tion-colors, are<br>frequent. (See<br>Fig. 45) As<br>with orthoclase,<br>the successive<br>layers in twins<br>of augite<br>run equally and<br>unimpeded<br>through both in-<br>dividuals. Augite<br>run equally and<br>through both in-<br>dividuals. Augite<br>run equally and<br>through both in-<br>dividuals. Augite<br>run equal and the so-<br>site extinguish<br>are often fused,<br>also commonly<br>separated into<br>large aggre-<br>gates, rhe so-<br>called " augite-<br>eyes," or<br>needles radially<br>grouped. | Princi-<br>pally<br>with pla-<br>gioclase,<br>nephe-<br>line, leucite,<br>without<br>olivine<br>and<br>biotite.<br>Rarely<br>with<br>ortho-<br>clase,<br>horn-<br>blende,<br>and<br>quartz. | Vitre-<br>ous in-<br>closures<br>are<br>also<br>gas-<br>pores<br>and<br>apatite<br>needles.<br>Mag-<br>netite. | Augite<br>crystals<br>are com-<br>monly de-<br>composed<br>into a pro-<br>duct of<br>chloritic<br>material,<br>calcite,<br>ferric<br>hydrate,<br>epidote,<br>and quartz.<br>Perfect<br>pseudo-<br>morphs of<br>one or more<br>of these<br>minerals<br>after augite<br>are<br>common.—<br>Into opal.—<br>More<br>rarely the<br>metamor-<br>phosis into<br>hornblende<br>(uralitizing)<br>wherein<br>the form of<br>augite re-<br>mains with<br>hornblendic<br>cleavage.<br>Finally the<br>rare meta-<br>morphosis<br>into<br>serpentine,<br>with forma-<br>tial cand<br>chlorite. | As essential<br>primary<br>constituent<br>in many<br>younger<br>prophyritic<br>eruptive<br>rocks;<br>diabases,<br>melaphyrs,<br>augite-<br>andesites,<br>and all<br>basaltic<br>rocks; also<br>common in<br>andesites,<br>trachytes,<br>phonolites.<br>Rare and in<br>larger<br>grains in<br>the older<br>granular<br>eruptive<br>rocks, and<br>in<br>crystalline<br>schists. | Easily dis-<br>tinguished<br>from other<br>optically-<br>biaxial<br>minerals<br>by the<br>important<br>oblique<br>extinction<br>c:c<br>and<br>prismatic<br>clearage<br>with angle<br>of 87°;<br>especially<br>in trans-<br>verse sec-<br>tions; more<br>difficult<br>when gran-<br>clined to<br>the c-axis<br>the<br>cleavage-<br>angle ap-<br>proaches<br>that of<br>hornblende,<br>Easily dis-<br>tinguished<br>from epi-<br>dote by the<br>color, direc-<br>tion of ex-<br>tinction, re-<br>lief, and<br>polariza-<br>tion-colors. If<br>augite is<br>perfectly<br>colorless,<br>the polari-<br>zation-<br>colors are<br>very bril-<br>liant and<br>resemble<br>olivine. |

| NAME.              | Chemical<br>composition<br>and<br>reactions.                                                                                                           | Specific<br>gravity. | Cleavage.                                                                                                                 | Ordinary<br>combinations<br>and form of the<br>cross-section.                                                                                                                    | Twins.                                                      | Optical<br>orientation. | Character<br>and strength<br>of double-<br>refraction. | Direc-<br>tion of<br>extinc-<br>tion. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------------------------------|---------------------------------------|
| δ. Diallage.       | See augite.                                                                                                                                            | 3.23-<br>3.34.       | ∞ P (87°)<br>concen-<br>trically<br>arranged<br>after<br>∞ P∞.                                                            | Rarely in<br>clearly-defined<br>crystals, mostly<br>in large tabular<br>or granular<br>individuals,<br>fibrous parallel<br>to the c-axis.                                        | ∥∞₽∞<br>poly-<br>synthet-<br>ic; not<br>rarely<br>after oP. | S                       | ee augite.                                             |                                       |
|                    |                                                                                                                                                        |                      |                                                                                                                           |                                                                                                                                                                                  |                                                             |                         |                                                        |                                       |
| c. Ompha-<br>cite. | See augite.<br>Rich in<br>Al <sub>2</sub> O <sub>3</sub> .                                                                                             | 3.3.                 | See<br>augite,<br>also sepa-<br>ration<br>$\  \infty \mathcal{P} \infty$ ,<br>yet not so<br>perfect<br>as in<br>diallage. | Only in grains                                                                                                                                                                   | Rare.                                                       | S                       | ee augite.                                             |                                       |
| d. Diopside.       | More CaO<br>than MgO,<br><i>poor in</i><br>Al <sub>2</sub> O <sub>3</sub> .<br>Mixture of<br>CaMgSi <sub>2</sub> O <sub>6</sub> .<br>(Tscher-<br>mak.) | 3.3.                 | ditto.                                                                                                                    | ditto.                                                                                                                                                                           | ditto.                                                      | ditto.                  | ditto.                                                 | ditto.                                |
| e. Sahlite.        | Pale green<br>augite,<br>poor in Fe.                                                                                                                   | 3.2-3.3.             | Separa-<br>tion after $oP$<br>together<br>with<br>cleavage<br>after $oP$<br>and<br>oPo.                                   | In grains and<br>long columns<br>with separation<br>at right angles<br>to the longest<br>axis, generally<br>without<br>terminal planes.<br>Cross-sections<br>resemble<br>augite. | ditto.                                                      | ditto.                  | ditto.                                                 | ditto.                                |

| Polariza-<br>tion-<br>colors. | Color and<br>power of<br>refracting<br>light.                                                                                | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                         | Associa-<br>tion,                                                                                    | Inclosures.                                                                                                                                | Decomposi-<br>tion.                                                                                                                                                                                                                                              | Occurrence.                                                                                                                                                                                  | Remarks.                                                                                                                                                                        |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See<br>augite.                | Greenish<br>brown,                                                                                                           | Very<br>feeble.   | Occurs only<br>in large ir-<br>regular<br>grains. A<br>great simi-<br>larity in<br>structure to<br>bronzite es-<br>pecially as<br>regards in-<br>closures,<br>separating<br>into fibres,<br>and twin-<br>nings.<br>Often inter-<br>nary augite,<br>hornblende,<br>or mica.<br>Rare in<br>crystals. | With<br>plagio-<br>clase,<br>ordinary<br>augite,<br>olivine,<br>blende.<br>Rarely<br>with<br>quartz. | As in<br>bronzite.<br>Inclosures<br>of brown<br>leaflets<br>of göthite<br>parallel<br>∞ <i>P</i> ∞,<br>otherwise<br>poor in<br>inclosures. | Formation<br>of uralite<br>common, in<br>that<br>diallage<br>changes at<br>the ends<br>into dark<br>green,<br>strongly<br>pleo-<br>chroitic,<br>hornblende<br>fibres.<br>Into<br>viridite;<br>into serpen-<br>tine with<br>formation<br>of chlorite<br>and talc. | Primary<br>constituent.<br>Common in<br>gabbro,<br>norite,<br>rare in<br>porphyritic,<br>eruptive<br>rocks.<br>In serpen-<br>tine and<br>olivine-fels.<br>Rare in<br>crystalline<br>schists. | Often<br>resembles<br>bronzite.<br>Easily dis-<br>tinguished<br>from it on<br>sections or<br>cleavage-<br>leaves<br> ∞P∞;<br>i. c. p. l.<br>appearance<br>of one optic<br>axis. |
| ditto.                        | Grass-<br>green.                                                                                                             | See<br>augite.    | Only<br>known in<br>fresh grains<br>poor in in-<br>closures;<br>often inter-<br>penetrated<br>with<br>hornblende.<br>Often en-<br>veloped by<br>surround-<br>ing grains.                                                                                                                           | With<br>quartz,<br>horn-<br>blende,<br>garnet,<br>zoisite,<br>disthene,<br>rutile.                   | Rare. Fluid<br>inclosures<br>and needles<br>of rutile.                                                                                     |                                                                                                                                                                                                                                                                  | In eclogites<br>and amphi-<br>bolites.                                                                                                                                                       | See augite.<br>They are<br>distinguish-<br>ed from:<br><i>augite</i> by<br>the paler<br>color<br>(small<br>amount of<br>Fe) and by<br>the<br>crystalline<br>form;               |
| ditto.                        | ditto.                                                                                                                       | ditto.            |                                                                                                                                                                                                                                                                                                    | With<br>olivine,<br>chromite,<br>diallage,<br>and the<br>rhombic<br>augites.                         | Very rare.<br>Vitreous<br>inclosures.                                                                                                      |                                                                                                                                                                                                                                                                  | As primary<br>constituent<br>in olivine-<br>fels (so-<br>called chro-<br>mium diop-<br>side),<br>Rarely sec-<br>ondary as<br>metamor-<br>phic pro-<br>duct of<br>garnet.<br>(Pyrope.)        | diallage by<br>the lack of<br>the perfect<br>separation<br>after $\infty P \infty$ .                                                                                            |
| Very<br>brilliant.            | Pale<br>green to<br>colorless.<br>Relief<br>marked as<br>a conse-<br>quence of<br>the<br>powerful<br>refraction<br>of light. | 5                 |                                                                                                                                                                                                                                                                                                    | With<br>quartz,<br>horn-<br>blende,<br>garnet,<br>scapolite,<br>plagio-<br>clase,<br>titanite.       |                                                                                                                                            | Rarely<br>changed to<br>uralite.                                                                                                                                                                                                                                 | In<br><i>crystalline</i><br>schists.                                                                                                                                                         |                                                                                                                                                                                 |

| NAME.                 | Chemical<br>composition<br>and<br>re ctions.                                                                           | Specific<br>gravity. | Cleavage.                                                                    | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                                                                                            | Twins.              | Optical<br>orientation.                                                                                                                                                 | Character<br>and<br>strength of<br>double-<br>refraction. | Direction<br>of<br>extinction.                                                              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| f. Acmite.            | Na <sub>2</sub> Fe <sub>2</sub><br>Si <sub>4</sub> O <sub>12</sub> .                                                   | 3.53-<br>3.55.       | Eminent<br>$\infty P$ ,<br>$87^{\circ}$ :<br>imperfect<br>$\infty P\infty$ . | In grains or<br>columns<br>$\infty P \cdot \infty P \infty$ ,<br>$\infty P \infty$ ,<br>elongated<br>by pre-<br>dominance<br>of faces<br>$\infty P \infty$ . | ∞₽∞<br>com-<br>mon. | SA.P. $   \infty P \infty$ .<br>Large axial<br>angle.<br>Sections<br>or leaves<br>$   \infty P \infty$ show<br>a distorted<br>axial picture<br>of a biaxial<br>mineral. | ee augite.<br>Positive.                                   | C: C = Very<br>small<br>angle<br>= 2-7°.                                                    |
| g. Woilas-<br>tonite, | CaSiO <sub>3</sub><br>by HCl<br>perfectly<br>decomposed<br>with<br>separation<br>of<br>amorphous<br>SiO <sub>2</sub> . | 2.78-2.91.           | Parallel $\infty P \infty$ , $oP$ , and $P \infty$ .                         |                                                                                                                                                              | ditto.              | A.P. ∥∞₽∞.<br>Apparent<br>axial angle<br>= about 70°.<br>(Compare<br>Fig. 11.)                                                                                          | Positive,<br>strongly.                                    | c forms<br>with $aP$<br>towards<br>the front,<br>$32^{\circ}$ 12'.<br>$a: c = 12^{\circ}$ . |

cc. PERFECT CLEAVAGE

| <ol> <li>Horn-<br/>blende<br/>Group.</li> <li>a.Ordinary<br/>and<br/>basaltic<br/>Horn-<br/>blende.</li> <li>b. Smarag.</li> </ol> | m RSiO <sub>3</sub><br>+ n R <sub>2</sub> O <sub>3</sub> .<br>R=Ca, Mg,<br>Fe <sub>2</sub> .<br>Oly those<br>rich in Fe<br>partially<br>attacked by<br>acids. | 3.I-<br>3.3. | Highly<br>eminent<br>$\infty P$ .<br>124° 11';<br>imperfect<br>$\infty P \infty$<br>and<br>$\infty P \infty$ . | ∞P. ∞P∞,<br>∞P∞, and<br>0P. Por P∞<br>almost<br>always in<br>crystals,<br>rarely in<br>grains.<br>Transverse<br>sections<br>generally<br>kexagonal,<br>longitu-<br>dinal<br>sections, as<br>in augite.<br>(Fig. 86.) | ditto. | A.P. $\parallel \infty P\infty$ .<br>The<br>The<br>The<br>Merican State of the set of the se | Strongly<br>negative,<br>yet some-<br>what<br>feebler<br>than<br>augite. | c: $c = about$<br><sup>15°</sup> .<br>Varies<br>from 2-18°.<br>a: c = 75°.<br>a: a = 20°58'.<br>c: $c = 13-15°$<br>in green<br>horn-<br>blendes,<br>and $= 11-13°$<br>and less in<br>brown. |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dite.                                                                                                                              | See<br>uralite.                                                                                                                                               |              |                                                                                                                |                                                                                                                                                                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                                                                                                                                             |

1

| Polariza-<br>tion-<br>colors, | Color<br>and<br>power of<br>refract-<br>ing light.              | Pleo-<br>chroism.                                                                                   | Structure.                                                                                                                                                                               | Associa-<br>tion.                                                     | Inclos-<br>ures.          | Decom-<br>posit.on. | Occurrence.                                                                                                                                                                    | Remarks.                                                                                                                                                                                            |
|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See<br>augite.                | Dark<br>brown,<br>dark<br>green.<br>β above<br>1.7.             | Rather<br>strong.<br>c dark<br>brown;<br>a brown-<br>ish<br>green.<br>Absorp-<br>tion<br>c > b > a. | In large crys-<br>tals in the<br>syenites, often<br>with fibrous<br>terminations.<br>In minute crys-<br>tals of yellow<br>and dark green<br>color in the<br>trachytes and<br>phonolites. | With<br>elæolite,<br>sodalite,<br>micro-<br>cline,<br>and<br>biotite. | Earthy<br>par-<br>ticles, |                     | Not rare in<br>elæolite-<br>syenites,<br>phonolites,<br>and<br>trachytes.                                                                                                      |                                                                                                                                                                                                     |
| Very<br>bril-<br>lıant.       | Color-<br>less,<br>yellow-<br>ish<br>white.<br>Relief<br>marked |                                                                                                     | In aggregates<br>of fibrous<br>individuals in<br>tufts or radially<br>disposed.                                                                                                          | With<br>calcite,<br>green<br>augite,<br>granite.                      | Fluid<br>inclos-<br>ures. |                     | As decom-<br>position-<br>product or<br>contact-mine-<br>ral rare in<br>granular<br>chalks meta-<br>morphosed<br>from eruptive<br>rocks. Rare<br>in elacolite-<br>syenites and | Resembles<br>tremolite, but<br>distinguish-<br>able by the<br>prismatic<br>angle, solu-<br>bility in acids,<br>and gelatin-<br>izing; difficult<br>to distinguish<br>from zeolites<br>as scolecite, |

 $\infty P = 124^{\circ}$ .

| Less<br>bril-<br>liant<br>than in<br>augite;<br>yellow<br>to<br>green-<br>isb<br>brown. | Green<br>to<br>brown<br>βρ =<br>1.62. | Generally<br>very<br>strong.<br>a =<br>yellow-<br>green or<br>honey-<br>yellow;<br>b =<br>yellow-<br>brown;<br>c =<br>black or<br>greenish<br>brown,<br>Absorp-<br>tion<br>$c > \delta > a$ . | In large crys-<br>tals or grains<br>I. O. More<br>rarely in small<br>crystals and<br>microlites II.O.<br>The green<br>hornbiendes are<br>often fibrous;<br>the brown often<br>beautifully de-<br>veloped in<br>zones. The<br>brown horn-<br>blende of the<br>younger erup-<br>tive rocks often<br>shows a broad<br>opaque margin<br>(see Fig. 44), or<br>pseudomorphs<br>of augite and<br>magnetite after<br>hornblende<br>occur. The<br>green horn-<br>blendes are<br>often inter-<br>penetrated with<br>augite. | With<br>ortho-<br>clase,<br>plagio-<br>clase,<br>quartz,<br>biotite;<br>more<br>rarely<br>with<br>augite<br>and<br>olivine. | Poor in<br>inclos-<br>ures.<br>Fluid<br>inclos-<br>ures,<br>glass,<br>pores,<br>earthy<br>par-<br>ticles,<br>apatite<br>needles. | Becomes<br>finely<br>fibrous<br>and<br>bleached<br>through<br>decom-<br>position<br>into<br>epidote,<br>calcite,<br>ferric hy-<br>droxide,<br>ferric hy-<br>droxide,<br>then<br>often sur-<br>rounded<br>by a<br>wreath<br>of<br>mag-<br>netite;<br>always as<br>augite.<br>Meta-<br>mor-<br>phoses<br>into<br>biotite,<br>chlorite. | Primary<br>essential con-<br>stituent. In<br>granular and<br>porphyritic<br>eruptive<br>rocks :<br>syenite, dio-<br>rite (green<br>hornblende),<br>porphyrite,<br>trachyte<br>(brown, more<br>rarely green,<br>hornblende).<br>Accessory in<br>basalts(brown<br>H.), rare and<br>in olivine-fels<br>(green H.),<br>Common in<br>crystalline<br>schists(green,<br>more rarely<br>brown, H.).<br>As essential<br>constituent in<br>amphibolite,<br>hornblendic<br>schists,certain<br>gesisses, ec-<br>logite (so-<br>called smar-<br>agdite). | Easily dis-<br>tinguished<br>from:<br>argite by the<br>prismatic<br>cleavage-<br>angle, slight<br>inclination of<br>c : c, and<br>powerful<br>pleochroism;<br><i>biotite</i> on<br>sections at<br>right angles<br>to the vertical<br>axis.<br>In biotite<br>the cleavage<br>and powerful<br>dichroism is<br>wanting in<br>such sec-<br>tions ( ] oP). |
|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| NAME.                                     | Chemical<br>composition<br>and<br>reactions,                                                                                                                                                   | Specific<br>gravity. | Cleavage.                                                                                                                  | Ordinary<br>combinations<br>and form of<br>the cross-<br>section.                                                                                | Twins.                            | Optical<br>orienta-<br>tion. | Character<br>and<br>strength<br>of double-<br>refraction. | Direction<br>of<br>extinction. |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-----------------------------------------------------------|--------------------------------|
| c. Actinolite                             | $\begin{array}{c} CaMg_{9}Si_{4}\\ O_{12}+Ca\\ Fe_{9}Si_{4}O_{12}\\ Al_{2}free\\ Fe-poor\\ (Tschermak).\\ \hline RSiO_{3}\\ R = predominating Mg,\\ less Ca, and a\\ little Fe.\\ \end{array}$ | 3.026-<br>3.160.     | As above;<br>separation<br>at right<br>angles to<br>the c-axis.                                                            | Long prisms,<br>generally<br>without<br>terminations<br>$\infty P, \infty P\infty$ .                                                             | Rare.                             | See Hor                      | mblende.                                                  | C: c<br>generally<br>15°.      |
| d. Tremo-<br>lite.                        | 3MgSiO3<br>+ CaSiO3.<br>MgO pre-<br>dominating.<br>Unattacked<br>by acids.                                                                                                                     | 2.93-3.              | $\begin{array}{c} & \infty \ P \\ like \\ hornblende. \\ Separation \\ at right \\ angles to \\ the \ c-axis. \end{array}$ | <u>∞P.∞P∞</u><br>generally in<br>long narrow<br>prisms.                                                                                          | Rare.<br>Like<br>horn-<br>blende. | See hor                      | nblende.                                                  | c:c=15°.                       |
| e. Arfved-<br>sonite,                     | $\frac{Na_2(Fe)_2}{Si_4O_{12}}$<br>Insoluble in acids.                                                                                                                                         | 3-33-<br>3-59-       | ∞P like<br>hornblende.                                                                                                     | In large<br>grains.                                                                                                                              |                                   | Se                           | e hornblen                                                | de.                            |
| f. Glauco-<br>phane<br>(Gastal-<br>dite). | Na2(Al)2<br>Si4O12.<br>Contains<br>Ca, Mg, Fe.<br>Nearly<br>unattacked<br>by acids.                                                                                                            | 3.1,                 | Like<br>hornblende.<br>Separation<br>at right<br>angles to<br>the c-axis.                                                  | Elongated<br>prisms,<br>generally<br>without<br>terminal<br>planes.                                                                              |                                   | See hor                      | nblende.                                                  | $c: c = 6\frac{1}{7}^{\circ}.$ |
| g: Uralite<br>(Smarag-<br>dite in part).  | Like<br>ordinary<br>green<br>hornblendes.                                                                                                                                                      | 3.1-3.3.             | Like<br>hornblende;<br>often,<br>showing<br>in addition<br>the augite-<br>cleavage<br>quite<br>perfectly.                  | See<br>"Structure;"<br>single fibres<br>show $\infty P$<br>= about 124°.<br>Part in the<br>form of<br>augite or in<br>irregular<br>large grains. |                                   | Se                           | e hornblen                                                | de.                            |

| Polariza-<br>tion-<br>colors.                                                                                                                            | Color and<br>power of<br>refracting<br>light. | Pleo-<br>chroism.                                                                                                                                          | Structure.                                                                                                                                                                                                                                                                      | Associa-<br>tion.                                                                                                  | Inclos-<br>ures.                                              | Decompo-<br>sition.                                                                                                                       | Occurrence.                                                                                                                                               | Remarks.                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See<br>horn-<br>blende.                                                                                                                                  | Light to<br>dark<br>green.                    | c dark<br>green, a<br>yellowish<br>green,<br><i>feebler</i><br><i>than in</i><br><i>blendes</i> ,<br>generally<br>only in<br>green<br>tints.<br>c > b > a. | Generally<br>occurring in<br>long narrow<br>needles or<br>grains, often<br>fibrous at the<br>termination.                                                                                                                                                                       | With<br>quartz,<br>mica,<br>chlorite,<br>rutile.                                                                   | Very<br>poor.                                                 | Often<br>periect<br>pseudo-<br>morphs of<br>biotite,<br>chlorite,<br>and ferric<br>hydrox-<br>ide after<br>actinolite<br>are<br>observed. | Rather<br>common in<br>certain non-<br>feldspathic<br>crystalline<br>schists,<br>in talcose,<br>mica-<br>chloritic<br>schists, in<br>serpentines.         | Dis-<br>tinguished<br>from<br>ordinary<br>green horn-<br>blende by<br>chemical<br>means;<br>actinolite<br>always oc-<br>curs in long<br>columns,<br>not like<br>hornblende<br>in short<br>crystals. |
| Very<br>brilliant.                                                                                                                                       | Colorless,<br>relief<br>marked.               |                                                                                                                                                            | In long,<br>columns, the<br>termination<br>often in sheaf-<br>like fibres; in<br>tufted<br>aggregates,<br>rarely in grains.                                                                                                                                                     | With<br>calcite;<br>with<br>olivine,<br>horn-<br>blende,<br>diallage.                                              | Very<br>poor.                                                 | Into<br>calcite<br>and talc.                                                                                                              | As contact-<br>mineral in<br>limestones;<br>as primary<br>constituent<br>(also rarely<br>secondary)<br>in crystal-<br>line schists<br>and<br>serpentines. | Compare<br>wollaston-<br>ite.                                                                                                                                                                       |
| See<br>horn-<br>blende:                                                                                                                                  | Blue-<br>green.                               | Very<br>strong.                                                                                                                                            | In irregular,<br>often fibrous<br>grains and long<br>columnar<br>individuals.                                                                                                                                                                                                   | With or-<br>thoclase,<br>micro-<br>cline, elæ-<br>olite,<br>sodalite.                                              |                                                               |                                                                                                                                           | Rarely in<br>elæolite<br>rocks.                                                                                                                           | Dis-<br>tinguished<br>from horn-<br>blende by<br>chemical<br>composition<br>and color.                                                                                                              |
| See<br>horn-<br>blende.                                                                                                                                  | Indigo-,<br>lavender-<br>blue.                | Very<br>strong.<br>a= white,<br>b= violet-<br>blue,<br>c = dark<br>blue.<br>Absorp-<br>tion<br>c > b > a.                                                  | Mostly in long<br>fibrous needles,<br>often<br>interpenetrated<br>with green<br>hornblende.                                                                                                                                                                                     | With<br>quartz,<br>horn-<br>blende,<br>garnet,<br>zoisite,<br>chlorite,<br>ompha-<br>cite,<br>rutile,<br>titanite. | Rutile<br>needles<br>and gas-<br>pores<br>are<br>com-<br>mon. |                                                                                                                                           | Rare in<br>crystalline<br>schists,<br>eclogites,<br>amphibo-<br>lites, mica<br>and<br>chlorite<br>schists.                                                |                                                                                                                                                                                                     |
| Generally<br>aggregate<br>polariza-<br>tion, as<br>the<br>separate<br>horn-<br>blende<br>threads<br>have not<br>the same<br>optical<br>orienta-<br>tion. | Dark to<br>light<br>green.                    | Partly<br>strong,<br>partly<br>weak.                                                                                                                       | Finely-fibrous<br>decomposition-<br>product of<br><i>angite</i> and<br><i>diallage</i> , often<br>of the form of<br>augite and with<br>remnants of the<br>augite or dial-<br>lage yet fresh.<br>The fibres show<br>the prismatic<br>angle of horn-<br>blende. (See<br>Fig. 85.) | With<br>plagio-<br>clase,<br>olivine,<br>diallage,<br>augite.                                                      |                                                               |                                                                                                                                           | In gabbros<br>and<br>serpentines;<br>in augitic<br>porphyries.                                                                                            | Compare<br>with dial-<br>lage and<br>ordinary<br>hornblende.<br>An ordinary<br>green<br>bornblende<br>occurring<br>in eclogite<br>was also<br>called<br><i>smaragdite</i> .                         |

| NAME.    | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                       | Specific<br>gravity. | Cleavage.                                                                                             | Ordinary<br>combinations<br>and form<br>of the<br>cross-section.                                                                                                                                                                                                                                                                                                                                                                                                                                          | Twins,                                                                                                      | Optical<br>orientation.                                                                                                                                                                                                                                                                                                 | Character<br>and<br>strength<br>of double-<br>refraction. | Direc-<br>tion of<br>extinc-<br>tion.                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Epidote. | H <sub>2</sub> Ca <sub>4</sub> (R <sub>2</sub> ) <sub>3</sub><br>Si <sub>6</sub> O <sub>25</sub><br>(R <sub>2</sub> )=(Al <sub>2</sub> )<br>(Fe <sub>2</sub> ).<br>Slightly<br>attacked by<br>HCl. | 3.32-3.5.            | Highly<br>eminent<br>  0P,<br>and per-<br>fect $\infty P\infty$<br>forming<br>an angle<br>of 115°24'. | Generally very<br>small prisms,<br>elongated in<br>the direction of<br>axis, the com-<br>bination $\infty P$ .<br>$P \cdot P \infty \cdot \infty P \infty$<br>predominating.<br>(See Fig. 80.). The longitudi-<br>mal sections<br>parallel $\infty P \infty$<br>are hexagonal.<br>The transverse<br>sections at right<br>angles to c and<br>sections parallel<br>$oP : \infty P \infty$ are<br>long and nar-<br>row, rectangu-<br>lar or<br>hexagonal,<br>with one pair<br>of sides longer;<br>in grains. | Rare<br>micro-<br>scopi-<br>cally.<br>Twinning<br>plane<br>$\infty P \infty$ .<br>(See Figs.<br>26 and 88.) | A.P.   $\infty P \infty$<br>at right<br>angles to<br>the elonga-<br>tion of the<br>crystal,<br>$b = \delta_r$ , r. M.<br>= a nearly<br>coinciding<br>with c.<br>Sections  <br>$\infty P \infty$ show<br>a biaxial<br>interfer-<br>ence-figure,<br>as the 2. M.<br>is at nearly<br>right<br>angles,<br>(See Fig.<br>87.) | Strongly<br>negative.                                     | $\begin{array}{c} a: c = \\ 2^{\circ} 2o' \\ c: a = \\ 27^{\circ} 47' \\ = c: oP, \end{array}$ |

ee. CLEAVAGE IMPERFECT  $\infty P$  or

| Titanite. | CaSiTiO <sub>5</sub> ;<br>contains<br>FeO.<br>Decom-<br>posed by<br>H <sub>3</sub> SO <sub>4</sub> ;<br>TiO <sub>2</sub><br>dissolved<br>with forma-<br>tion of<br>gypsum. | 3.4–3.6. | ∞ <i>P</i><br>133° 52',<br><i>P</i> ∞<br>113° 30',<br>imperfect. | Mostly crystals:<br>or P. oP. 14P0;<br>14P0 or 34P<br>prominent with<br>0P. Po. 14P0.<br>Swedge-shaped<br>grains. Such<br>are character-<br>istic crystal<br>cross-sections.<br>(See Fig. 90.) | Rather<br>common;<br>contact-<br>or pene-<br>tration-<br>twins;<br>twinning-<br>plane<br>= oP.<br>(See Fig.<br>27.) | A.P. $  \infty P \infty$<br>I. M. = c at<br>nearly right<br>angles to<br>$\frac{1}{2} P \infty$ ;<br>very strong<br>dispersion<br>of the axes.<br>p > v.<br>(See Fig.<br>13.) | Strongly<br>positive. | $a:c = 39^{\circ} 17' a:a = 21^{\circ}.$ |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|
|           |                                                                                                                                                                            |          |                                                                  |                                                                                                                                                                                                |                                                                                                                     |                                                                                                                                                                               |                       |                                          |
|           |                                                                                                                                                                            |          |                                                                  |                                                                                                                                                                                                |                                                                                                                     |                                                                                                                                                                               |                       |                                          |

## ANGLE 115°.

| Angle                                        | : 115°.                                                                                 | TABL                                                                                                                                                                                      | ES FOR .                                                                                                                                  | DETER                                                                                                                  | MINI                                       | NG M.               | INERALS.                                                                                                                                                                                                                                                                                    | REESE LIBRAAD                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polari-<br>zation-<br>colors,                | Color and<br>power of<br>refracting<br>light.                                           | Pleo-<br>chroism.                                                                                                                                                                         | Structure.                                                                                                                                | Associa-<br>tion,                                                                                                      | Inclos-<br>ures.                           | Decom-<br>position. | Occurrence,                                                                                                                                                                                                                                                                                 | Remarks,                                                                                                                                                                                                                                                                                                                                                          |
| Very<br>bril-<br>liant,<br>yellow<br>to red. | Lemon-<br>yellow,<br>yellowish<br>Relief<br>very<br>marked.<br>$\beta = 1.72-$<br>1.75. | Rather<br>powerful<br>in the<br>thicker<br>prisms,<br>a = very<br>yellow,<br>b = brown<br>to<br>yellowish<br>green,<br>t = green<br>to lemon-<br>yellow.<br>Absorp-<br>tion<br>b > c > a. | Generally<br>in long<br>minute<br>prisms,<br>lying in<br>chloritic<br>matter,<br>or in<br>pseudo-<br>morphs,<br>more rarely<br>in grains. | With<br>quartz,<br>ortho-<br>clase,<br>plagio-<br>clase,<br>born-<br>blende,<br>bloite,<br>augite<br>with<br>chlorite. | Very<br>poor.<br>Fluid<br>inclos-<br>ures. |                     | Secondary min-<br>eral. Common<br>as decomposi-<br>tion product of<br>the feldspars,<br>hornblende,<br>biotite, more<br>rarely of augite,<br>in eruptive<br>rocks and crys-<br>talline schists<br>bearing these<br>minerals, also<br>often as<br>primary con-<br>stituent in the<br>latter. | Similar to<br>augite, distin-<br>guished from it<br>by the even<br>parallel extinc-<br>tion in sections<br>parallel to the<br>longest<br>development<br>(= $\delta$ -axis) and<br>slight inclina-<br>tion of a : c.<br>The yellow<br>color, powerful<br>refraction of<br>light, and<br>brilliant polari-<br>zation-colors<br>are character-<br>istic for epidote. |

P∞; ACUTE WEDGE-SHAPED CROSS-SECTIONS.

| Feeble,<br>gray-<br>i.e. like<br>original<br>color;<br>much<br>weaker<br>than<br>augite<br>and<br>horn-<br>blende.<br>$\beta \rho =$<br>1.005.<br>Relief<br><i>very</i><br>marked. | Pale<br>yellow,<br>reddisk<br>brown<br>to<br>colorless. | Rather<br>strong in<br>the darker<br>colored<br>vàrieties.<br>a = red-dishbrown. $c = green-ishyellow.c > b > a.Weakerthan inthe horn-blendes.$ | Rough sur-<br>face of sec-<br>tion is<br>characteris-<br>tic for<br>titanite.<br>Commonly<br>associated<br>and inter-<br>penetrated<br>with augite<br>and horn-<br>blende.<br>One of the<br>minerals<br>first formed<br>in the<br>erupiive<br>rocks. | With<br>ortho-<br>clase,<br>plagio-<br>clase,<br>horn-<br>blende,<br>augite,<br>biotite,<br>chlorite,<br>quartz,<br>and other<br>accessory<br>minerals. | Very<br>poor. | Rarely<br>pseudo-<br>morphs<br>of<br>calcite<br>after<br>titanite. | As primary<br>accessory<br>constituent in<br>eruptive rocks.<br>Granite<br>(rarely),<br>syenite,<br>phonolite,<br>leucitophyr,<br>elæolite-<br>syenite,<br>trachyte, mica-<br>and hornblende-<br>andesite,<br>diorite and<br>in crystalline,<br>especially<br>hornblendic<br>schists.<br>Secondary<br>as<br>decomposition-<br>product of<br>ilmenite and<br>titaniferous<br>magnetite. | Easily<br>recognizable<br>by the almost<br>constant wedge-<br>shaped cross-<br>sections,<br>powerful refrac-<br>tion of light,<br>and rough<br>surface. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| NAME.   | Chemical<br>composition<br>and<br>reactions.            | Specific<br>gravity. | Cleavage.                                                                   | Ordinary<br>combinations<br>and form<br>of the cross-<br>section.                                           | Twins.                                           | Optical<br>orientation.                                                                                                                                                                  | Character<br>and<br>strength<br>of double-<br>refraction. | Direc-<br>tion of<br>extinc-<br>tion.    |
|---------|---------------------------------------------------------|----------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| Gypsum. | CaSO4 +<br>2H20.<br>Difficultly<br>soluble in<br>acids. | 2.2-2.4.             | Highly<br>eminent<br>clino-<br>diagonal,<br>perfect<br>according<br>to - P. | In granules<br>or elongated<br>prismatic<br>individu-<br>als, crystals<br>$\infty P.\infty P\infty$ .<br>P. | Very rare<br>in micro-<br>scopic<br>individuals. | A.P. $\  \infty \mathcal{P} \infty$<br>r. M. = a.<br>One optic<br>axis<br>nearly<br>$\perp \infty \mathcal{P} \infty$ .<br>One forms<br>$8_3^\circ$ with c,<br>the other<br>$22^\circ$ . | Strongly<br>negative.                                     | a: c =<br>52° 30′.<br>c: c =<br>37° 30′. |

# II. b. 3. Minerals Crystallizing

 $\alpha$ . Long Columnar Crystals, Colorless or of a Blue Color,

| Disthene<br>(Cyanite.) Acids have<br>no action. | 3.48-3.68. | Highly<br>eminent<br>[] $\infty P \infty$ ,<br>perfect<br>$\infty P \infty$ ,<br>and<br>o P,<br>(Gleit-<br>fläche.) | Grains, or<br>elongated<br>prisms,<br>ωPω<br>predomi-<br>nating,<br>ωPω with<br>tan angle of<br>166° 15',<br>rarely with<br>terminal<br>planes.<br>Transverse<br>sections<br>rectangular<br>or<br>hexagonal<br>if ω'P or<br>ωP' is<br>added to<br>the above<br>combina-<br>tion. | Common;<br>more rarely<br>on micro-<br>scopic<br>individuals.<br>Twinning-<br>plane<br>either:<br>1. $\omega \beta \omega$<br>repeated;<br>2. At right<br>angles to<br>the c-axis;<br>3. At right<br>angles to<br>the c-axis;<br>4. Parallel<br>oP, caused<br>by pressure,<br>and re-<br>peated. | A.P. forms<br>with the<br><u>edge</u><br>$\infty P \infty$ ; $\rho P$<br>an angle of<br>$30^\circ$ ; with<br>$\infty P \infty$ ; $\rho P$ ;<br>an angle of<br>$50^\circ$ ; $\rho T$ ;<br>an angle<br>$60^\circ$ $15'$ , and<br>like the<br>r. M. = a<br>is at right<br>angles<br>to $\infty P \infty$ .<br>(See Fig.<br>r6.) Large<br>axial angle,<br>bersion of<br>the axes,<br>$\gamma < \rho$ .<br>In sections<br>parallel<br>$\infty P \infty$ a bi-<br>axial inter-<br>ference-<br>figure with<br>negative<br>middle line<br>is visible. | Rather<br>strongly<br>negative. | In<br>sections<br>parallel<br>$\infty \overline{P} \infty$<br>t: c=<br>$30^{\circ}$ . |
|-------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|
|-------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|

| Polari-<br>zation-<br>colors.               | Color and<br>power of<br>refracting<br>light.                         | Pleo-<br>chroism. | Structure.                                                                                                                | Association.                                                                                   | Inclosures.               | Decomposi-<br>tion. | Occurrence.                                     | Remarks, |
|---------------------------------------------|-----------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|---------------------|-------------------------------------------------|----------|
| Very<br>bril-<br>liant.<br>Irides-<br>cent. | Colorless,<br>secondary,<br>often<br>colored by<br>iron<br>compounds. |                   | In<br>minute<br>granules,<br>and tangled<br>or parallel<br>fibrous<br>aggregates<br>of needles.<br>Rarely in<br>crystals. | Rarely<br>with clastic<br>constitu-<br>ents as<br>quartz gran-<br>ules or<br>mica<br>leaflets. | Fluid<br>inclos-<br>ures. |                     | As simple<br>rock, granu-<br>lar or<br>compact, |          |

in the Triclinic System.

# OR GRAINS. CLEAVAGE $\infty \overline{P} \infty . \infty P \infty$ AND oP.

| Exceedingly<br>bril-<br>liant. | Colorless,<br>azure-blue,<br>often<br>spotted.<br>βp = 1.72.<br>Relief<br>marked. | If blue<br>rather<br>strong-<br>ly<br>pleo-<br>chro-<br>itic,<br>es-<br>pecially<br>parallel<br>$\infty P \infty$ .<br>a =<br>white. | In long<br>prisms or<br>irregular<br>traversed<br>by number<br>less fissures<br>parallel or<br>at right<br>angles to<br>the chief<br>axis, often<br>irregularly<br>or com-<br>pletely<br>colored<br>blue.<br>Rarely in<br>aggregates<br>of thin<br>needles or<br>filaments;<br>the needles<br>cracked and<br>broken at<br>right angles<br>to the<br>chief axis, | With<br>quartz,<br>mica,<br>garnet,<br>omphacite,<br>hornblende,<br>rarely with<br>orthoclase. | Very<br>poor;<br>fluid<br>inclos-<br>ures. | Rare,<br>Surrounded<br>by a<br>marginal<br>zone of a<br>brownish,<br>fibrous,<br>felt-like<br>decomposi-<br>tion-<br>product. | Rare.<br>Primary<br>accessory<br>constituent<br>in<br>crystalline<br>schists,<br>granulite,<br>eclogite,<br>and<br>especially<br>in<br>many<br>micaccous<br>schists. | If<br>colorless,<br>it is often<br>difficult to<br>distinguish<br>from<br>sillimanite,<br>with which<br>it<br>commonly<br>occurs;<br>only possi-<br>ble by the<br>determina-<br>tion of the<br>position of<br>the axes of<br>elasticity. |
|--------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                            |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                                                                          |

## $\beta$ . BROAD TABULAR CRYSTALS OR GRAINS,

| NAME.                                                                                                                  | Chemical<br>composition<br>and<br>reactions. | Specific<br>gravity.     | Cleavage.                                                      | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                              | Twins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                    | Character<br>and<br>strength of<br>double-<br>refraction.                                                                   | Direction<br>of<br>extinction.                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Triclinic<br>Feldspars.<br>1. Potassium<br>Microcline.<br>(Microper-<br>thite,<br>so-called<br>fibrous<br>orthoclase.) | See ortho-<br>clase.                         | 2.54-<br>2.57<br>(2.56). | Highly<br>eminent<br>µøP.<br>Eminent<br>parajlel<br>øP.<br>øP. | Very<br>similar to<br>orthoclase,<br>$\infty \mathcal{P} \circ \mathcal{P}^2$ ,<br>$\sigma' P \cdot \infty \mathcal{P}'$<br>predomi-<br>nating. | Rare.<br>Countless<br>thin lamel-<br>læ of ortho-<br>clase are<br>developed<br>parallel to<br>o Poo and<br>at right<br>angles to<br>it, so that<br>in sections<br>parallel oP<br>a latticed<br>inter<br>penetration<br>of two<br>systems of<br>striations<br>exceedingly<br>character-<br>istic for<br>microcline.<br>Besides,<br>lenticular<br>lenticular<br>lenticular<br>lenticular<br>lenticular<br>irregular<br>lines of<br>polysyn-<br>thetic<br>twinned<br>albite are<br>so inter-<br>penetrated<br>that the<br>oP-planes<br>of both<br>species of<br>plagioclase<br>fall in one<br>plane.<br>(See Figs.<br>g1-93.) | A. P. at<br>right angles<br>to $\rho P$ ;<br>its cross-<br>section with<br>forms with<br>the obuse<br>edge<br>$\rho P$ . $\infty P \infty$<br>$\sigma$ - 6° in<br>the obuse<br>angle $\delta c$ .<br>Cleavage-<br>leaflets<br>parallel<br>$\infty P \infty$<br>show one<br>of the optic<br>axes more<br>clearly; the<br>axial plane<br>$\infty P \infty$ . | Rather<br>strongly<br>negative.<br>In leaflets<br>parallel<br>$\infty P \infty;$<br>positive<br>double-<br>refrac-<br>tion. | c with the<br>normal to<br>$\mathcal{O}^{P_{\infty}} = 15^{\circ} 26';$<br>a cleav-<br>parallel<br><i>oP</i><br>does not<br>therefore<br>extin-<br>guish<br>parallel<br>like<br>ortho-<br>clase,<br>but gives<br>an ex-<br>tinction<br>to the<br>edge<br>$\mathcal{O}^{P} : \mathcal{O}^{P_{\infty}}$<br>$= 415^{\circ} - 16^{\circ};$<br>parallel<br>$\mathcal{O}^{P_{\infty}}$<br>$= 44^{\circ} - 5^{\circ}.$ |
| and the second                                                                                                         | 1                                            |                          |                                                                |                                                                                                                                                 | Les also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                         | P. Call                                                                                                                     | 12.14                                                                                                                                                                                                                                                                                                                                                                                                           |

# COLORLESS. CLEAVAGE PARALLEL oP and $\infty \breve{P} \infty$ .

| Polariza-<br>tion-<br>colors.       | Color and<br>power of<br>refracting<br>light.                         | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Association.                                                                                                                                                                                         | Inclosures.                                                                                 | Decompo-<br>sition.                                                           | Occurrence.                                                                                                                                                                                                                                                                                                             | Remarks.                                                                                                                                                                                                                                                                                             |
|-------------------------------------|-----------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exceed-<br>ingly<br>bril-<br>liant. | Colortess.<br>Relief<br>not so<br>marked<br>as in<br>ortho-<br>clase. |                   | In rocks only<br>in grains;<br>commonly<br>interpene-<br>trated with<br>graphic-<br>granite,<br>also with<br>sodalite and<br>elzolite.<br>Compare the<br>twinning<br>development.<br>An ortho-<br>clase or<br>feldspar<br>correspond-<br>ing to<br>microcline<br>was called<br><i>micropher-<br/>thite</i> ;<br>this contains<br>exceedingly<br>thin lamellæ<br>of a triclinic<br>feldspar<br>closely<br>related to<br>albite, which<br>can be<br>especially<br>well observed<br>in sections.<br>(See Fig. 93.) | a. With<br>orthoclase,<br>elzeolite,<br>sodalite,<br>augite,<br>augite,<br>augite,<br>duartz,<br>orthoclase,<br>biotite,<br>hornblende,<br>muscovite.<br>c. With<br>these and<br>garnet,<br>cyanite. | Generally<br>very<br>poor;<br>of mine-<br>rals;<br>hora-<br>biotite,<br>zircon,<br>apatite. | Fibrous<br>decom-<br>position<br>with<br>opacity<br>as in<br>ortho-<br>clase, | As<br>primary<br>essential<br>constituent<br>with<br>orthoclase<br>in:<br>a. Elæolite-<br>syenite;<br>b. In<br>different<br>graphic-<br>granite;<br>and<br>c. In<br>crystalline<br>schists (as<br>micro-<br>perthite,<br>also<br>called<br>fibrous<br>orthoclase),<br>especially<br>in<br>granulite<br>and<br>gneisses, | Distinguished<br>from:<br>orthoclase<br>by the<br>oblique<br>extinction on<br>oP, and the<br>interpene-<br>tration<br>of twins;<br>the other<br>triclinic<br><i>feldspars</i><br>by the<br>latticed<br>structure<br>(interpene-<br>tration of<br>twins)<br>parallel oP<br>and optical<br>properties. |

| NAME.                                                                                                             | Chemical<br>composi-<br>tion and<br>reactions.                                                                                    | Specific<br>gravity.             | Cleav-<br>age.                                                                                  | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.                                                                                                         | Twins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Character<br>and<br>strength of<br>double-<br>refraction. | Direc-<br>tion of<br>extinc-<br>tion,                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Plagio-<br>clase,<br>Calcium-<br>Sodium<br>Feld-<br>spars:<br>a. Albite<br>(and<br>oligo-<br>clase<br>albite). | Ab.<br>NagAlg<br>SigO16<br>with<br>traces of<br>Ca and K.<br>I-2%.<br>Not at-<br>tacked by<br>acids.<br>SiOg =<br>68%.<br>AbgAn1. | <b>2.61</b> -<br>2.63<br>(2.62). | Emi-<br>nent<br>oP and oP or<br>imper-<br>fect<br>oP and P<br>Right<br>edges<br>oP:<br>g3° 36'. | <sup>∞</sup> <sup>β</sup> <sup>∞</sup> , oP,<br><sup>∞</sup> <sup>(P,∞)</sup> P',<br><sup>p</sup> , <sup>∞</sup> , P,<br><sup>to</sup><br>orthoclase.<br>(See<br>Fig. 94.) | Almost always<br>twinned,<br>1. Albite law,<br>Twinning-jelame<br>$D^{P} co$ and generally<br>polysynthetic; there-<br>fore in sections from<br>the zone oP: $D^{P} co$<br>i, p. p. 1. the single<br>individuals appear<br>as fine lamella with<br>varied polarisa-<br>tion-colors. Only<br>those sections<br>parallel of Pos show<br>no twinning-stria-<br>tions. Two such<br>polysynthetically-<br>twinned albite indi-<br>viduals are often<br>again combined<br>according to the<br>Carlsbad orthoclase<br>twinning-law.<br>2. Pericline law.<br>Twins according to<br>the law: axis of<br>rotation the b-axis,<br>composition plane<br>the rhombic section,<br>i.e., the plane so<br>cutting the rhom-<br>boidal prism $D^{P}$<br>$D^{O}$ P that the plane<br>agains which these<br>planes form with<br>the edge of 13-22°.<br>Such twins are<br>often again united<br>after the Manebach<br>orthoclase law.<br>Also oP as composi-<br>tion plane. By com-<br>bining both laws (ta<br>and 2) a latticed<br>structure i, p. p. 1.<br>is observed in sec-<br>tions mclined to<br>$D^{P} D_{c}$ recalling<br>that of microcline.<br>Compare<br>Figs. 29 and 30. | A. P. forms<br>with the<br><i>c</i> -axis an<br>angle of<br>$96^{9}$ ic <sup>6</sup> , with<br>the normal<br>to $\infty P \infty$ an<br>angle of<br>$16^{9}$ ir <sup>7</sup> .<br>T.M. = c.<br>Dispersion<br>feeble<br>p < v;<br>large axial<br>angle.<br>Cleavage-<br>leaflets<br>perallel<br>$\infty P \infty$ show<br>quite com-<br>plete dis-<br>torted inter-<br>ference-<br>figure (ap-<br>pearance of<br>the positive<br>middle line<br>perpendicu-<br>lar to<br>$\infty P \infty$ ); yet,<br>because of<br>the large<br>axial angle,<br>in the<br>position of<br>$45^{\circ}$ the<br>hyperbolas<br>do not lie<br>in the field<br>to the field<br>c inclined<br>to the<br>sharp edge<br>$oP$ : $\infty P \infty$ .<br>(See<br>Fig. 97.) | Rather<br>strongly<br>positive.                           | On<br>cleav-<br>age<br>pieces:<br>parallel<br>oP the<br>edigue-<br>ness of<br>edge<br>oP:<br>$\infty P \infty = =$<br>$+3^{\circ}54'$<br>to<br>$+4^{\circ}51'$<br>(+4^{\circ})<br>parallel<br>$\infty P \infty =$<br>$+3^{\circ}54'$<br>to<br>$+4^{\circ}51'$<br>(+4^{\circ})<br>(+19^{\circ}). |

| Polariza-<br>tion-<br>colors.                                                                                                                  | Color and<br>power of<br>refracting<br>light.                                  | Pleo-<br>chro-<br>ism, | Structure.                                                                                                                                                     | Associa-<br>tion.                                                                                                      | Inclosures.                             | Decom-<br>position.                                                                             | Occurrence.                                                                                                                                                                                                                                                                       | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For the<br>most part<br>very<br>brilliant.<br>Not so<br>powerful<br>as in<br>quartz; in<br>very thin<br>sections<br>feeble,<br>blue-<br>green. | Colorless,<br>clear as<br>water.<br>Relief<br>feebly<br>defined.<br>βρ= 1.537. |                        | In large<br>grains,<br>rarely in<br>crystals;<br>often inter-<br>penetrated<br>with<br>orthoclase<br>microcline.<br>In<br>eruptive<br>rocks as<br>thin fibres. | With<br>calcite,<br>quartz,<br>mica, and<br>ortho-<br>clase;<br>chorite,<br>more<br>rarely<br>with<br>horn-<br>blende. | Very<br>poor;<br>fluid in-<br>closures. | Rarely<br>decom-<br>posed.<br>Fibrous,<br>opaque<br>decom-<br>position.<br>See oligo-<br>clase. | Common in<br>granular<br>limestones.<br>In<br>crystalline<br>schists, in<br>many semi-<br>crystalline<br>greisses,<br>phyllites,<br>sericite-<br>schists.<br>Rare in<br>eruptive<br>rocks, in<br>grains in<br>diorite,<br>in fibres<br>in many<br>andesites<br>and<br>porphyries. | The<br>polysynthetic<br>twinning after<br>$\infty P \infty$ is peculiar<br>to all plagio-<br>clase, and is<br>excecatingly<br>characteristic<br>for them.<br>The triclinic<br>feldspars can be<br>distinguished<br>from each other<br>accurately only<br>by chemical<br>analysis or by<br>determination<br>of the oblique-<br>ness of extinc-<br>tion on <i>aP</i> and<br>$\infty P \infty$ on cleav-<br>age-pieces from<br>grains or larger<br>crystals. It<br>is therefore<br>impossible to<br>specify with<br>accuracy the<br>minute plagio-<br>clase threads<br>occurring in the<br>ground-mass of<br>the eruptive<br>rocks; one can at<br>best determine,<br>by measuring<br>the obliqueness<br>of extinction<br>in sections,<br>whether they<br>belong to a<br>plagioclase<br>approximating<br>albite or<br>anorthite in<br>composition. |
|                                                                                                                                                |                                                                                | No. Co                 | See Com                                                                                                                                                        | dia to                                                                                                                 | 12.96                                   | N SI Same                                                                                       | and Fa                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

183

| Name.               | Chemical<br>composition<br>and<br>reactions.                                                       | Specific<br>gravity.      | Cleav-<br>age.                                                                    | Ordinary<br>combinations<br>and form of<br>cross-section. | Twins.                                                                                                                                                    | Optical<br>orientation.                                                                                                                                                                                                                                        | Character<br>and<br>strength<br>of double-<br>refraction. | Direction of extinction.                                                                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Oligo-<br>clase. | $SiO_{2} = \frac{52-66}{62-66},$<br>per cent, But little<br>K.<br>= Ab_{3}An_{1},<br>Ab_{3}An_{1}. | 2.62-<br>2.65.<br>(2.63.) | Most<br>perfect<br>  oP,<br>also<br>after<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | See albite.                                               | Always<br>polysyn-<br>thetic<br>twinning<br>according<br>to the<br><i>Albite law</i> ,<br>also<br>according<br>to the<br><i>Pericline</i><br><i>law</i> . | Very<br>similar to<br>albite. In<br>cleavage-<br>parallel<br>$\infty P \infty$<br>the axial<br>points lie<br>still farther<br>beyond the<br>field than<br>in albite.<br>c is inclined<br>to the<br>obluse edge<br>$OP: \infty P \infty$ .<br>(See Fig.<br>98.) | See<br>albite.                                            | Parallel $oP$<br>to the edge $oP: oPoo = +1^{\circ} to'$<br>$(Ab_{3}An_{1} = +1^{\circ} 4r);$<br>parallel $oPoo = 2-4^{\circ};$<br>$(Ab_{3}An_{1} = 4r);$<br>$(Ab_{3}An_{1} = 4r);$<br>$(Ab_{3}An_{1} = 4r);$<br>$(Ab_{3}An_{1} = 4r);$ |
| c. An-<br>desine.   | Ab <sub>3</sub> An <sub>1</sub> to<br>Ab <sub>1</sub> An <sub>1</sub> .                            | 2.65.                     | ditto.                                                                            | ditto.                                                    | See albite.                                                                                                                                               | Similar to oligoclase,                                                                                                                                                                                                                                         | ditto.                                                    | Parallel oP<br>to the edge                                                                                                                                                                                                              |
|                     |                                                                                                    |                           |                                                                                   |                                                           |                                                                                                                                                           | yet with the<br>axial plane<br>more<br>strongly<br>inclined<br>(above 15°)<br>to the<br>obtuse<br>edge<br>$oP: \infty \not P\infty$ ,<br>Dispersion<br>$\rho < v$ ,                                                                                            |                                                           | $aP: \infty P\infty$<br>$-1^{\circ} 57' 10$<br>$-2^{\circ} 10';$<br>parallel<br>$\infty P\infty$<br>$-4^{\circ} 50' 10$<br>$-8^{\circ}.$                                                                                                |

| Polari-<br>zation-<br>colors. | Color and<br>power of<br>refracting<br>light.                                 | Pleo-<br>chroism. | Structure.                                                                                                                                                                                                                                                                                                                                                                                                              | Association.                                                                      | Inclosures.                                                                                                                                               | Decomposi-<br>tion.                                                                                                                                                                                                                                                              | Occurrence.                                                                                                                                                                                                                    | Remarks.    |
|-------------------------------|-------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| See albite.                   | Colorless,<br>clear as<br>water or<br>clouded,<br>white,<br>grayish<br>white. |                   | In large<br>grains or<br>crystals<br>I. O. and as<br>minute,<br>elongated,<br>and narrow<br>threads<br>(cross-<br>sections of<br>thin<br>tablets).<br>Zonal<br>develop-<br>ment (see<br>Fig, ro2)<br>and zonally<br>disposed<br>inclosures.<br>Almost<br>always<br>twinned<br>polysyn-<br>thetically.<br>Twinning<br>and<br>concentric<br>develop-<br>ment<br>occurred<br>simulta-<br>neously as<br>in ortho-<br>clase. | With<br>orthoclase,<br>quartz,<br>hornblende,<br>biotite,<br>augite,<br>olivine.  | Fluid<br>inclosures<br>rare, and<br>vitreous<br>inclosures<br>common<br>in the<br>younger<br>eruptive<br>rocks,<br>augite- and<br>apatite-<br>microlites. | Generally<br>fresh in the<br>younger<br>eruptive<br>nocks,<br>in the<br>older<br>fibrous and<br>clouded,<br>Metamor-<br>phosis into<br>epidote<br>called<br>saussurite;<br>into mus-<br>covite<br>similar to<br>orthoclase;<br>observed<br>also in<br>nearly all<br>plagioclase. | As primary<br>essential or<br>accessory<br>constituent<br>in eruptive<br>rocks, granite,<br>diorite,<br>diabase,<br>gabbro,<br>trachyte,<br>also basalts,<br>and in<br>crystalline<br>schists,<br>e.g.<br>gneiss.              | See albite. |
| ditto,                        | ditto,                                                                        |                   | See<br>oligoclase.<br>(Comp.<br>Fig. 102.)                                                                                                                                                                                                                                                                                                                                                                              | With<br>sanidine,<br>orthoclase,<br>augite,<br>hornblende,<br>biotite,<br>quartz. | ditto,                                                                                                                                                    | Mostly<br>fresh.                                                                                                                                                                                                                                                                 | As primary<br>essential<br>constituent<br>in tonalite,<br>(quartz-<br>diorite), in<br>andesites,<br>especially<br>dacites and<br>augite-<br>andesites,<br>porphy-<br>rites,<br>syenites,<br>also in<br>crystalline<br>schists. | ditto.      |

| NAME.                | Chemical<br>composition<br>and<br>reactions.                                                                                                            | Specific<br>gravity.     | Cleav-<br>age,                                                              | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section.        | Twins.                                                                                                                                                                                                               | Optical<br>orientation.                                                                                                                                                                                                                                                                                | Character<br>and<br>strength of<br>double-<br>refraction. | Direction<br>of<br>extinction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d. Labra-<br>dorite. | Ab <sub>1</sub> An <sub>1</sub> to<br>Ab <sub>1</sub> An <sub>2</sub> .<br>SiO <sub>2</sub> =<br>55.5 - 49<br>per cent.<br>De-<br>composable<br>by HCl. | 2.68<br>-2.70<br>(2.69). | See<br>ortho-<br>clase;<br>often<br>of<br>color<br>on<br>$\infty P\infty$ . | Mostly<br>in large<br>grains;<br>rarely in<br>crystals; as<br>orthoclase. | The albite<br>and<br>pericline<br>laws<br>combined<br>are<br>common.<br>The<br>individuals<br>twinned<br>after the<br>Carlsbad<br>law or<br>according<br>to $\infty P\infty$<br>or $\sigma P$ .<br>See<br>structure. | In planes<br>  ∞ P∞ (right)<br>a side appear-<br>ance of one<br>optic axis and<br>indication of<br>the lemniscates;<br>axial point<br>invisible;<br>parallel oP<br>side appearance<br>of the other<br>axis, the axial<br>point also<br>invisible.<br>Disfersion<br>p> v.<br>(See Fig. 99, a<br>and b.) | Like<br>ortho-<br>clase.                                  | On $oP = -\frac{4^{\circ}}{4^{\circ}} 3o'$<br>$-\frac{6^{\circ}}{54'} (Ab_1An_1) = -\frac{6^{\circ}}{54'} 5'$<br>$= -\frac{16^{\circ}}{10'} 2' 0' 0' = -\frac{16^{\circ}}{10'} 12' (Ab_1An_1) = -\frac{16^{\circ}}{10'} 12' $ |
| e. By-<br>townite.   | Ab <sub>1</sub> An <sub>3</sub> to<br>An.<br>SiO <sub>2</sub> =<br>per cent.<br>More<br>easily<br>soluble in<br>HCl than <i>d</i> .                     | 2.70<br>-2.73<br>(2.71). |                                                                             | Like labrado                                                              | orite.                                                                                                                                                                                                               | Similar to labra-<br>dorite. Cleav-<br>age-leaflets $ \rho P \text{ and } \infty P \infty$<br>show the side<br>appearance of<br>one optic axis,<br>the axial point<br>not falling<br>within the field.<br>Dispersion<br>$\rho > v$ .<br>(See Fig. 100, 200, 200, 200, 200, 200, 200, 200,              | Like<br>labrador-<br>ite.                                 | $\begin{array}{c} Parallel \\ oP = \\ -14.5^{\circ} to \\ -20^{\circ}, \\ (Ab_1 An_3) \\ = -17^{\circ} \\ parallel \\ \infty P \infty = \\ -27^{\circ} to \\ -32^{\circ}. \\ Ab_1 An_3 = \\ -29^{\circ} 38'. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Polari-<br>zation-<br>colors.             | Color and<br>power of<br>refracting<br>light. | Pleo-<br>chro-<br>ism. | Structure.                                                                                                                                                                                                                                                                                                                                                                                          | Associa-<br>tion.                                                                                                     | Inclosures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Decomposition.                                                                         | Occurrence.                                                                                                                           | Remarks.     |
|-------------------------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Gene-<br>rally<br>very<br>bril-<br>liant. | Like<br>ortho-<br>clase.                      |                        | In grains<br>and large<br>crystals I.O.<br>and microlites<br>II. O.<br>Compare<br>inclosures<br>and decom-<br>position.<br>If labradorite<br>is twinned<br>according to<br>the Albite<br>and Pericline<br>laws, a<br>latticed<br>structure<br>similar to<br>that of<br>microcline<br>appears i.p. I.,<br>yet the<br>twinning<br>filaments in<br>labradorite<br>are clearly<br>distinguish-<br>able. | With<br>diallage,<br>hyper-<br>sthene,<br>olivine,<br>also with<br>quartz,<br>augite,<br>horn-<br>blende,<br>biotite. | Hornblende,<br>olivine,<br>diallage,<br>magnetite,<br>ilmenite.<br>Especially<br>prominent are<br>the countless<br>inclosures of<br>long acicular<br>opaque micro-<br>lites disposed<br>parallel to the<br>vertical axis or<br>also to the edge<br>oP. or Pox;<br>also brownish<br>tablets (ferric<br>oxide?<br>brookite?)<br>which lie with<br>their longer<br>direction per-<br>pendicular<br>to the<br>microlites, or countless<br>minute<br>colorless to<br>greenish<br>granules, so<br>that the<br>labradorite<br>appears opaque. | Like<br>ortho-<br>clase.<br>Com-<br>monly<br>into<br>epidote<br>and<br>musco-<br>vite. | Primary<br>essential<br>constituent<br>in norite,<br>gabbro,<br>dolerite,<br>especially<br>in dacite,<br>basalts,<br>and<br>diorites. | Like albite. |
|                                           | Like                                          | abrador                | ite.                                                                                                                                                                                                                                                                                                                                                                                                | With<br>horn-<br>blende,<br>augite,<br>biotite,<br>diallage,<br>hyper-<br>sthene,<br>etc.                             | Like labra<br>yet with no<br>microlites and<br>leaflets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dorite,                                                                                | Primary<br>essential<br>constituent<br>in eruptive<br>rocks,<br>diorite,<br>gabbro,<br>andesites.                                     |              |

187

| NAME.              | Chemical<br>composition<br>and<br>reactions.                                                                                                                                                         | Specific<br>gravity.     | Cleavage.                                                                    | Ordinary<br>combina-<br>tions and<br>form of the<br>cross-section. | Twins. | Optical<br>orientation.                                                                                                                                                                                                                                                                                                                                 | Character<br>and strength<br>of double-<br>refraction. | Direction<br>of<br>extinction.                                                                                                                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f. Anor-<br>thite. | CaAl <sub>2</sub> Si <sub>2</sub><br>O <sub>8</sub> . An.<br>SiO <sub>2</sub> = 45-43<br>per cent.<br>Easily<br>soluble in<br>HCI<br>without<br>formation<br>of amor-<br>phous<br>SiO <sub>2</sub> . | 2.73-<br>2.75<br>(2.75). | Perfect<br>${}^{oP}and \\ {}^{oP}o. \\ P: M$<br>right =<br>${}^{g_4^o}$ to'. | Like al                                                            | bite.  | 1. $M_{+} = c$<br>nearly<br>perpen-<br>dicular<br>to $2_{+}P^{+}\infty_{-}$<br>Dispersion<br>$p > v_{-}$<br>Leaflets<br>$l \circ P$ and<br>$\infty P^{+}\infty$<br>show a<br>side ap-<br>pearance of<br>one or the<br>other<br>of the<br>optic axes.<br>Axial<br>point on<br>margin of<br>the field.<br>(Comp.<br>Fig. rot,<br><i>a</i> and <i>b</i> .) | Like<br>albite.                                        | $\begin{array}{c} Parallel\\ oP = \\ -36^{\circ} \text{ to } \\ -42^{\circ}.\\ An = \\ -37^{\circ}.\\ Parallel\\ \infty \mathcal{P} \\ or -43^{\circ}.\\ An = \\ -36^{\circ}. \end{array}$ |

### DISTINCTION BETWEEN

The plagioclases from  $\delta$  to  $\epsilon$  inclusive are, as is well known, isomorphous mixtures of the terminal members, albite (Ab) and anorthite (An). As there are all possible intermediary stages between these two in chemical composition (oligoclase, andesine, labradorite, bytownite being only names for such members), transitions in the physical properties, specific gravity, and especially the optical orientation, are also shown.

As has been demonstrated by M. Schuster, one can directly determine the proportional mixture of the feldspar to be determined, i.e., the plagioclase itself, by observing the directions of extinction in cleavage-leaflets parallel oP and  $\infty \check{P} \infty$ .

# C. Aggre-

Aggregates never show a simultaneous extinction, i.e., total darkness, i. p. p. l. (between crossed nicols during a complete revolution), as the axes of elasticity of the exceedingly minute individuals forming the aggregate are irregularly distributed. In a complete horizontal revolution of the stage, therefore, the separate individuals extinguish in succession, and the entire aggregate does not extinguish as a unit in revolving from 90° to 90°. If the aggregates are radially fibrous, an interference-cross is visible i. p. p. l.

In the following pages something will be given concerning the most difficultly determinable

| Polariza-<br>tion-<br>colors. | Color and<br>power of<br>refracting<br>light.                      | Pleochroism. | Structure.           | Associa-<br>tion.                                                     | Inclosures.         | Decomposi-<br>tion.                                | Occur-<br>rence.                                                                                                                                                                                                                             | Remarks. |
|-------------------------------|--------------------------------------------------------------------|--------------|----------------------|-----------------------------------------------------------------------|---------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| See<br>labrador-<br>ite,      | Color-<br>less,<br>clear as<br>water,<br>like<br>labrador-<br>ite. |              | Like<br>labradorite. | With<br>labra-<br>dorite,<br>augite,<br>hyper-<br>sthene,<br>olivine. | Like<br>oligoclase. | Generally<br>fresh,<br>as in other<br>plagioclase. | Rather<br>rare.<br>Primary<br>essential<br>con-<br>stituent<br>in<br>eruptive<br>rocks.<br>In<br>basaltic<br>rocks<br>and<br>augite-<br>andesites,<br>gabbro,<br>norite.<br>In crys-<br>talline<br>schists,<br>amphibo-<br>lites,<br>gneiss. |          |

#### THE SPECIES OF PLAGIOCLASE.

The oblique extinctions given have reference to the usual setting up of a plagioclase (the  $\rho P$ plane falling from above forward and inclined from left to right), and always to the obtuse edge  $\delta P: \infty \tilde{P}\infty$ , i.e., the plane  $\infty \tilde{P}\infty$  lying to the right. The symbol + prefixed indicates, on cleavageleaflets parallel  $\rho P$ , that the direction of extinction as regards the right prismatic edge is inclined towards the obtuse  $\rho P: \infty \tilde{P}\infty$ ; on cleavage-leaflets parallel  $\infty \tilde{P}\infty$ , that it is inclined towards the edge  $\sigma P: \infty \tilde{P}\infty$ , the same as the section of the plane  $\sqrt{P}, \infty$  with  $\infty \tilde{P}\infty$ . The symbol – indicates in both cases the opposite direction.

### gates.

crypto-crystalline aggregates. Their determination is rendered unusually difficult by the minuteness of the separate individuals; often the chemical investigation is the only safe means of determination. All aggregates here introduced are secondary minerals, decomposition-products, and often inclose fresh remnants of the original mineral. From those minerals already studied aggregates (crypto-crystalline also) are often formed; so, e.g., from talc, muscovite, tridymite, siderite: these have been discussed already under the appropriate headings.

| Name.          | Chemical<br>composition<br>and<br>reactions.                                                                  | Specific gravity. | Color and<br>power of<br>refracting light.                                             | Optical p                                                                                                                                                                                                                                        | roperties.                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Serpentine. | H <sub>2</sub> Mg <sub>8</sub> Si <sub>2</sub> O <sub>8</sub><br>+ aq.<br>Completely<br>decomposed by<br>HCl. | 2.5-2.7.          | Green, more<br>rarelv yellow,<br>brown, reddish-<br>brown, black.<br>$\beta = 1.574$ . | Partly<br>amorphous,<br>partly showing<br>aggregate<br>polarization.<br>The variety<br><i>antigorite</i><br>rhombic (?).<br>(See "structure.")<br>$a = r. M. \perp oP$ ;<br>i.e.<br>perpendicular<br>to the direction<br>of perfect<br>cleavage. | Polarization-<br>colors feeble.<br>Antigorite<br>negative<br>double-refracting,<br>feebly<br>pleochroitic.<br>Dispersion clear,<br>but feeble.<br>$\rho > \nu$ . |
|                |                                                                                                               |                   |                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                  |
|                |                                                                                                               |                   |                                                                                        |                                                                                                                                                                                                                                                  | 1                                                                                                                                                                |
|                |                                                                                                               |                   |                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                  |
|                |                                                                                                               |                   |                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                  |
|                |                                                                                                               |                   |                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                  |

|                                                                                                                                                                                                                                                                                                                                       | and the second            |                                                                                                                                                                                                                                                 |                                                                                                                    | and the second second second second                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Structure.                                                                                                                                                                                                                                                                                                                            | Association.                                                                                                                | Occurrence.                                                                                                                                                                                                                                     | Decomposition-<br>product.                                                                                         | Remarks.                                                                                                     |
| The mesh-structure<br>is characteristic.<br>The decomposition<br>begins on the<br>walls of the<br>olivine fissures;<br>generally yellowish-<br>green threads shoot<br>out at right angles;<br>thus a sort of<br>net is formed<br>embracing within<br>its meshes particles<br>of fresh olivine,<br>which are<br>subject to the further | With olivine,<br>rhombic or<br>monoclinic augite,<br>hornblende,<br>garaet, magnetite,<br>chromite, chlorite,<br>magnesite. | Massive, as<br>decomposition-<br>product of<br>olivine-fels; in<br>pseudomorphs<br>after olivine, in<br>olivine-bearing<br>eruptive rocks,<br>and schists.<br>As decomposition-<br>product of<br>olivine, Al-free<br>augite, and<br>hornblende. | For the most part<br>of <i>alivine</i> and<br><i>augite free from</i><br><i>alumina</i><br>and <i>hornblende</i> . | Difficult to<br>distinguish from<br>the bastite and<br>chloritic<br>decomposition-<br>products of<br>augite. |
| decomposition.<br>The interior of the<br>meshes generally<br>appears filled with<br>tufted serpentine<br>threads. The<br>mesh-structure is                                                                                                                                                                                            |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                              |
| yet further<br>advanced, in that<br>between the single<br>fields earthy<br>particles are<br>deposited. In<br>other serpenting                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                              |
| substance is<br>arranged in form of<br>large often very<br>regular leaflets<br>lying at nearly right<br>angles, showing<br>the optical behavior                                                                                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                              |
| of the so-called<br>antigorite; here the<br>mesh-structure<br>is wanting.<br>In decomposition<br>magnetite is<br>separated, also                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                              |
| ferric oxide and<br>hydroxide. The<br>serpentines are<br>often impregnated<br>with amorphous<br>silicic acid or<br>chalcedony.                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    | -                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    | -                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                              |

191

| NAME.                                                                                                                                                                                                                              | Chemical<br>composition and<br>reactions.                                                                                                        | Specific gravity.                                                                                                                     | Color and power<br>of refracting<br>light.                                                                                                          | Optical properties.                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Viridite.</li> <li>Partly chloritic,<br/>partly serpen-<br/>tine-like aggre-<br/>gates, as:         <ul> <li>a. Delessite;</li> <li>b. Chlorophæ-<br/>ite;</li> <li>c. Green earth<br/>(Grünerde).</li> </ul> </li> </ol> | The augites es<br>pose into dirty to<br>called by the com<br>scope is impossibl<br>viriditic aggregate<br>sometimes they a<br>ceedingly fine-gra | pecially and the<br>brownish-green<br>prehensive term<br>e on account of<br>es show aggregai<br>re finely radial a<br>ined or more or | hornblendes, als<br>fibrous aggregate<br><i>viridite.</i> An ex<br>the minuteness of<br>the polarization, i<br>and concentric o<br>less laminated a | o garnet and biotite, often decom-<br>is, or, as in green earth, granular,<br>act specification with the micro-<br>of the threads and grains. The<br>and often a feeble pleochroism;<br>r tangled fibrous, and again ex-<br>ggregates. The three minerals, |
| 3. Bastite,                                                                                                                                                                                                                        | Green. Comp<br>rhombic pyroxen<br>very like that of s<br>especially the sepa                                                                     | oare with these<br>e crystals or gr<br>serpentine. Her<br>aration-clefts par                                                          | the rhombic py<br>rains into bastit<br>re also the decor<br>allel <i>oP</i> , and pro                                                               | roxenes. The decomposition of<br>e or a bastite-like aggregate is<br>nposition begins on the fissures,<br>gresses into a threading parallel                                                                                                                |
| 4. Ohalcedony.                                                                                                                                                                                                                     | SiO <sub>2</sub> .<br>Staall percentage<br>of H <sub>2</sub> O.                                                                                  | See quartz.                                                                                                                           | Colorless,<br>transparent,<br>often colored<br>by ferric oxide<br>or hydroxide.<br>n = 1.547.                                                       | See quartz.                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                                            |

| Structure.                                                                                                                                                                                                                                                                                                                                                                                                                                         | Association.                                                                                                                                                      | Occurrence,                                                                                                                                                                                                                                                                                                   | Decomposition-<br>products,                                                                                                                              | Remarks.                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a, b, c occurring in si<br>very commonly in ps<br>to the chemical comp<br>silicate, and from ti<br>bles the chlorites ; l<br>hydrous and poor in<br>the decomposed basi                                                                                                                                                                                                                                                                            | ich crypto-crystallin,<br>seudomorphs after a<br>sosition, $a$ is a hydro<br>high percentage of<br>a d c are iron-ma<br>alumina. Very wic<br>c eruptive rocks and | e aggregates occur<br>ugite. According<br>us <i>feMg alumina</i><br>of alumina resem-<br>gnesium silicates,<br>lely distributed in<br>crystalline schists.                                                                                                                                                    | For the most<br>part from<br>monoclinic augite<br>and hornblende,<br>garnet, biotite, etc.                                                               |                                                                                                                                                                                                                                                                                                                                     |
| to the c-axis. As a c<br>of these threads it i<br>bastite by studying i<br>under "Bastite" (pag                                                                                                                                                                                                                                                                                                                                                    | onsequence of the r<br>is often possible to<br>. c. p. l. Compare o<br>ge 150).                                                                                   | egular disposition<br>determine them as<br>optical orientation                                                                                                                                                                                                                                                | From the<br>rhombic pyroxenes.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |
| Chalcedony is for<br>the most part a<br>mixture of<br>amorphous and<br>micro- or crypto-<br>crystalline silicic<br>acid. The<br>aggregates are<br>either fine-grained<br>or tangled fibrous;<br>also often radial.<br>In the last case,<br>quartz individuals<br>elongated according<br>to the chief axis are<br>combined to form<br>a ball, and such<br>aggregates<br>brilliantly polarizing<br>show the<br>interference-cross<br>browsed nicols. | Especially in<br>quartz-orthoclase-<br>biotite rocks,<br>with opal and<br>tridymite.                                                                              | Secondary<br>mineral, common<br>in the acidic<br>eruptive rocks,<br>especially rhyolite,<br>dacite, quartz-<br>porphyries;<br>also in other<br>decomposed<br>eruptive rocks, as<br>basalt, andesite,<br>melaphyr, and<br>porphyrite, in<br>cavities, clefts,<br>and irregular<br>parts in the<br>ground-mass. | A long series of<br>minerals,<br>especially the<br>feldspars and<br>augite, yield on<br>decomposition<br>chalcedony,<br>together with<br>other products. | The primary<br>radial quartz<br>sphærulites are to<br>be distinguished<br>from the<br>chalcedony always<br>appearing as<br>decomposition-<br>product ; these<br>are direct<br>eliminations from<br>the eruptive<br>magma, and can<br>be recognized as<br>primary products<br>from the nature<br>of the limitations<br>(Abgrenzung). |

| NAME.          | Chemical composition and reactions.                                                                                                                                                                | Specific gravity.                   | Color and power<br>of refracting<br>light.             | Optical properties.                                                                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Zeolites.   | Of these, analcime has                                                                                                                                                                             | been already stu                    | died. (Compare                                         | e Regular Minerals.)                                                                                                                                                        |
| a. Natrolite.  | $Na_2Al_2Si_3O_{10} + 2H_2O.$                                                                                                                                                                      | 2.17–2.26.                          | Colorless, clear<br>as water.<br>Relief not<br>marked. | Rhombic.                                                                                                                                                                    |
| δ. Scolecite.  | $CaAl_2Si_3O_{10} + 3H_2O.$                                                                                                                                                                        | 2 <b>.2</b> -2.39 <b>.</b>          | ditto.                                                 | Monoclinic or triclinic.                                                                                                                                                    |
| c. Stilbite.   | $H_4$ CaAl <sub>2</sub> Si <sub>6</sub> O <sub>18</sub> + 3 $H_2$ O.                                                                                                                               | 2.1-2.2.                            | ditto.                                                 | Monoclinic.                                                                                                                                                                 |
| d. Desmine.    | $CaAl_2Si_6O_{16} + 6H_2O.$                                                                                                                                                                        | 2,1-2.2.                            | ditto.                                                 | ditto.                                                                                                                                                                      |
| e. Chabasite.  | $\begin{array}{l} R_2CaAl_2Si_5O_{15}+6H_2O.\\ R_2=\frac{2}{4}H+\frac{1}{4}K.\\ All, a \ to \ c, \ are \ easily\\ soluble \ in \ HCl, \ with \ separation \ of \ gelatinous \ silica. \end{array}$ | 2.07-2.15.                          | ditto.                                                 | Rhombohedral or<br>triclinic. Rhombohe-<br>dral cleavage.                                                                                                                   |
| 6. Carbonates. | Of these, calcite, dol<br>"Hexagonal Minerals."<br>gates.                                                                                                                                          | omite, magnesit<br>These occur also | e, siderite, have<br>in extremely fine                 | been studied under the<br>e-grained or radial aggre-                                                                                                                        |
| Aragonite.     | CaCO <sub>3</sub> .<br>Easily soluble in HCl with<br>effervescence.                                                                                                                                | 2.9-3.                              | Colorless,<br>transparent.                             | <b>Rhombic.</b> Polarization-<br>colors as in calcite,<br>often iridescent,<br>Cleavage parallel<br>$\infty P \infty$ and $\infty P$ .<br>A.P. $  \infty P \infty; a = c$ . |
|                |                                                                                                                                                                                                    |                                     |                                                        |                                                                                                                                                                             |

|                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                             | and the second second                                                                                                               |                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure.                                                                                                                                                                                                                                                    | Association.                                                                                                                                                                                 | Occurrence.                                                                                                                                                                                 | Decomposition-<br>product.                                                                                                          | Remarks.                                                                                                                                                                                                                                          |
| Besides anal                                                                                                                                                                                                                                                  | cime the followi                                                                                                                                                                             | ng often occur a                                                                                                                                                                            | s decomposition-                                                                                                                    | products :                                                                                                                                                                                                                                        |
| Almost always in aggre-<br>gates of long acicular<br>crystals, generally radially<br>disposed with brilliant<br>polarization-colors.<br>A.P. $  \infty P^{\infty}; c = c$ .<br>Ditto. Generally in needless<br>radially disposed.<br>$a: c = 11-12^{\circ}$ . | Compare<br>occurrence.<br>With augite,<br>olivine,<br>magnetite,<br>hornblende,<br>biotite,<br>feldspar, etc.,<br>i.e. their<br>decomposition-<br>product; with<br>calcite and<br>aragonite. | Secondary<br>minerals,<br>especially<br>prominent in<br>the bubble-<br>cavities (see<br>Fig. 103) of<br>feldspar,<br>nepheline, and<br>leucite-basalts;<br>the basanites,<br>tephrites, and | The zeolites<br>occur<br>generally as<br>decomposition-<br>products of the<br>feldspars, of<br>nepheline,<br>leucite, and<br>hauyn. | The distinctions are best<br>effected by the micro-<br>chemical examination,<br>$\delta$ to $d'$ inclusive can be<br>accurately distinguished<br>only by determining<br>the relation of the<br>axes of elasticity to the<br>crystallographic axes |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                              | also in trachytic<br>and andesitic                                                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                                                                                   |
| Tabular crystals in radial                                                                                                                                                                                                                                    |                                                                                                                                                                                              | eruptive rocks.                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
| groups. I. M. = $c = \dot{b}$ .                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
| As above. A. P. $\  \infty P \infty$ ,<br>b: $c = 34^{\circ}$ .<br>I. M. with $a =$ about 5°.<br>In rhombohedra.<br>Polarization-colors like                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
| granular aggregates.                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                             | and the second                                                                                                                      |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                   |
| Siderite is very comm<br>hedral carbonates very comm                                                                                                                                                                                                          | on in spherical, 1<br>monly as decomp                                                                                                                                                        | radial, and concer<br>position-product o                                                                                                                                                    | ntric aggregates.<br>occur :                                                                                                        | Besides these rhombo-                                                                                                                                                                                                                             |
| Partly in large grains or in<br>radial fibrous tufts of long<br>needles.                                                                                                                                                                                      | With calcite<br>and zeolites.<br>See occurrence                                                                                                                                              | Common in<br>basic eruptive<br>rocks in cavities<br>and geodes.                                                                                                                             | Decomposition-<br>product of<br>calcareous<br>silicates.                                                                            | Characterized by<br>solubility with evolution<br>of CO <sub>2</sub> , and by<br>crystalline form; easily<br>distinguished from<br>calcite by the latter<br>property.                                                                              |

195



# BIBLIOGRAPHY TO PART II.

The following larger text-books and treatises are not embraced in this bibliography:

- E. COHEN. Sammlung von Mikrophotographien zur Veranschaulichung der mikroskopischen Structur von Mineralien und Gesteinen, aufgenommen von J. Grimm in Offenburg. Stuttgart, Schweizerbart'sche Verlagshandlung. 1883. 80 Tafeln.
- FISCHER. Kritische mikroskop.-mineralogische Studien. 3 Hfte. Freiburg i. Br. 1869-1873.
- F. FOUQUÉ et A. MICHEL LÉVY. Minéralogie micrographique roches éruptives françaises. Paris, 1879. a. Atlas LV Pl.
- H. ROSENBUSCH. Mikroskopische Physiographie der petrographisch wichtigen Mineralien. Stuttgart, Schweizerbart'sche Verlagshandlung. 1873. Mit 10 Tafeln.
- Mikroskopische Physiographie der massigen Gesteine. Stuttgart, Schweizerbart'sche Verlagshandlung. 1877.
- F. ZIRKEL. Die mikroskopische Beschaffenheit der Mineralien und Gesteine. Leipzig, W. Engelmann. 1873.
- Microscopical Petrography. Washington, 1876. w. XII Pl.

### Acmite and Aegirine.

TSCHERMAK. Tschermak's Mineral. Mitth. 1871. 33. BECKE. Tschermak's Mineral u. petr. Mitth. N. F. I. 1878. 554. KOCH. N. Jahrbuch f. Min. u. Geol. 1881. I. Beil. Bd. 156. TÖRNEBOHM. Förh. geol. Fören. i Stockholm. 1883. VI. 383 and 542. Comp.

Ref. N. Jahrb. f. Min. u. Geol. 1883. II. 370. Mücge. N. Jahrb. f. Min. u. Geol. 1883. II. 189. MANN, N. Jahrb. f. Min. u. Geol. 1884. II. 172.

#### Actinolite (Smaragdite, Karinthine).

TSCHERMAK. Tschermak's Min. Mitth. 1871, 37 and 44. v. DRASCHE. Tsch. Min. Mitth. 1871, 85. RIESS. Tsch. Min. u. petr. Mitth. N. F. 1878. I. 185, 192. CH. WHITMAN CROSS. Tsch. Min. u. petr. Mitth. 1881. III. 386. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 234, 360. — Tsch. Min. u. petr. Mitth. 1882. V. 157.

### Albite.

LOSSEN. Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 509 and 1879. XXXI. 441. SCHUSTER. Tsch. Min. und petr. Mitth. N. F. 1881. III. 153. Böhm. Tsch. Min. und petr. Mitth. N. F. 1883. V. 202.

#### Almandine (ordinary Garnet).

DRASCHE. Tsch. Min. Mitth. 1872. 2. 85. WICHMANN. Pogg. Ann. f. Phys. u. Chem. 1876. CLVII. 282. DATHE. Zeitschr. d. deutsch. geol. Ges. 1877. XXIX. 274. RIESS. Tsch. Min. u. petr. Mitth. 1878. I. 186. SZABO. N. Jahrb. f. Min. u. Geol. 1880. I. Beil.-Bd. 302. SCHRAUF. Groth's Zeitschr. f. Kryst. 1882. 323. RENARD. Bull. du Musée royal d'hist. nat. de Belgique. 1882. I. v. LASAULX. Sitzungsber. d. niederrhein. Ges. in Bonn. 1883.

### Analcime.

TSCHERMAK. Sitzungsber. Wien. Akad. d. Wiss. 1866. LIII. 260.

#### Andalusite.

JEREMEJEFF. N. Jahrb. f. Min. u. Geol. 1866. 724.
ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 68. 180.
ROSENBUSCH. Die Steiger Schiefer. Strassburg, 1877.
POHLIG. Zeitschr. d. deutsch. geol. Ges. 1877. XXIX. 560, and Tsch. Min. u. petr. Mitth. 1881. III. 344.

TELLER U. JOHN. Jahrb. d. kk. geol. R.-Anst. Wien, 1882. XXXII. 589. Müller. N. Jahrb. f. Min. u. Geol. 1882. II. 205.

#### Andesine.

v. RATH. Zeitschr. d. deutsch. geol. Ges. 1864 XVI. 294. SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 173. BECKE. Tsch. Min. u. petr. Mitth. 1882. V. 149, 160.

### BIBLIOGRAPHY TO PART II.

### Anomite.

TSCHERMAK. Gr. Zeitschr. f. Kryst. 1878. 31. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 331. V. 151.

### Anorthite.

BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 246. SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 208.

### Anthophyllite.

TSCHERMAK. Tsch. Min. Mitth. 1871. 37. CH. WHITMAN CROSS. Tsch. Min. u. petr. Mitth. 1881. III. 388. BECKE. Tsch. Min. u. petr. Mitth. N. F. 1882. IV. 331. 450. SJögren (on Gedrit). Comp. Ref. N. Jahrb. f. Min. u. Geol. 1883. II. 366.

### Apatite.

ROSENBUSCH. Nephelinit v. Katzenbuckel. Freiburg i. Br. 1869.
ZIRKEL. Basaltgesteine. Bonn, 1870. 72.
N. Jahrb. f. Min. u. Geol. 1870. 806, 821.
HAGGE. Ueber Gabbro. In. Diss. Kiel, 1871. 58.
KREUTZ. Tsch. Min. u. petr. Mitth. N. F. 1884. VI. 149.

#### Arfvedsonite.

KOENIG. Gr. Zeitschr. f. Krystall. 1877. 423.

#### Augite (ordinary and basaltic).

WEDDING. Zeitschr. d. deutsch. geol. Ges. 1858. 380.
BÜTSCHLV. N. Jahrb. f. Min. u. Geol. 1867. 700.
TSCHERMAK. Sitzungsber. d. Wien. Akad. d. Wiss. 1869. LIX.
Tsch. Min. Mitth. 1871. 28.
ROSENBUSCH. Neph. v. Katzenbuckel. 1869.
ZIRKEL. Basaltgesteine. 1870. 8.
VRBA. Zeitschr. "Lotos" Prag. Jahrg. 1870.
DATHE. Zeitschr. d. deutsch. geol. Ges. 1874. XXVI. I.
LAGORIO. Andesite d. Kaukasus. Dorpat, 1878. Ref. N. Jahrb. f. Min. u. Geol. 1880. I. 209.
v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1879. 482. 822.
BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 365.
KREUTZ. Tsch. Min. u. petr. Mitth. 1884. VI. 141.

#### Bastite.

TSCHERMAK. Tsch. Min. Mitth. 1871, 20. HAGGE. Ueber Gabbro. Kiel, 1871. 27. STRENG. N. Jahrb. f. Min. u. Geol. 1872. 261. DRASCHE. Tsch. Min. Mitth. 1873. 5.

#### Bronzite (comp. with Serpentine).

TSCHERMAK. Sitzungsber. d. Wien. Akad. d. Wiss. 1869. LIX. 1. 1. — Tsch. Min. Mitth. 1871. 17. STRENG. N. Jahrb. f. Min. u. Geol. 1872. 273. SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 321. BÜCKING. Gr. Zeitschr. f. Kryst. 1883 VII. 502. BECKE. Tsch. Min. u. petr. Mitth. 1883. V. 527. ROSENBUSCH. N. Jahrb. f. Min. u. Geol. 1884. I. 197.

### Bytownite.

SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 202. BECKE. Tsch. Min. u. petr. Mitth. 1882. V. 168. RENARD. Bull. d. Musée roy. d'hist. nat. belgique. 1884. III. 10.

#### Calcite.

OSCHATZ. Zeitschr. d. deutsch. geol Ges. 1855. VII. 5.
STELZNER. Ueber Gesteine v. Altai. Leipzig, 1871. Aus Cotta: D. Altai. p. 57.
INOSTRANZEFF. Tsch. Min. Mitth. 1872. I. 45.
ROSENBUSCH. N. Jahrb. f. Min. u. Geol. 1872. 64.
LEMBERG. Zeitschr. d. deutsch. geol. Ges. 1872. 226. 1876. 519.
LAGORIO. Mikrosk. An. ostbaltischer Gebirgsarten. Dorpat, 1876.
O. MEYER. Zeitschr. d. deutsch. geol. Ges. 1879. XXXI. 445.
RENARD. Bull. Acad. royal des Sciences belg. 1879. XLVII. Nr. 5. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1880. II. 146.

### Cancrinite.

A. KOCH. N. Jahrb. f. Min. u. Geol. 1881. I. Beil.-Bd. 144.
 TÖRNEBOHM. Geol. Fören. i Stockholm Förh. 1883. VI. 383. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1883. II. 370. 542.

### Chalcedony.

REUSCH. Pogg Ar.n. f. Ph. u. Chem. 1864. CXXIII. 94 BEHRENS. Sitzungsber. d. Wien. Akad. d. Wiss. 1871. LXIV. Dec. 1.

### BIBLIOGRAPHY TO PART II.

REES 201

UNIVERS

### Chiastolite.

CALIFORNIA ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. 68. POHLIG. Zeitschr. d. deutsch. geol. Ges. 1877. XXIX. 545. 563. - Tsch. Min. u. petr. Mitth. 1881. III. 348. CH. WHITMAN CROSS. Tsch. Min. u. petr. Mitth. 1881. III. 381. MÜLLER. N. Jahrb. f. Min. u. Geol. 1882. II. 205.

#### Chloritoid (Sismondine).

TSCHERMAK u. SIPOCZ. Gr. Zeitschr. f. Kryst. 1879. 506 and 509. v. Foullon. Jahrb. d. kk. geol. R.-Anst. Wien, 1883. XXXIII. 207. BARROIS. Ann. de la Soc. géol. du Nord. Lille, 1883. XI. 18. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1884. II. 68.

#### Chromite.

DATHE. J. Jahrb. f. Min. u. Geol. 1876. 247. THOULET. Bull. Soc. minér. Paris, 1879. 34.

### Cordierite.

WICHMANN. Zeitschr. d. deutsch. geol. Ges. 1874. XXVI. 675. v. LASAULX. N. Jahrb. f. Min. u. Geol. 1872. 831. - Gr. Zeitschr. f. Kryst. 1883. VIII. 76. SZABO. N. Jahrb. f. Min. u. Geol. 1880. I. Beil. Bd. 308. HUSSAK. Sitzungsber. d. Wien. Akad. d. Wiss. 1883. April. CALDERON y ARAÑA. Bal. d.l. Comis. d. Mapa. geolog. Madrid, 1882.

#### Corundum.

ZIRKEL. N. Jahrb. f. Min. u. Geol. 1870. 822. TELLER u. JOHN. Jahrb. d. kk. geol. R.-Anst. Wien, 1882. XXXII. 589. WICHMANN. Verhandl. d. kk. geol. R.-Anst. Wien, 1884. 150.

### Couseranite (Dipyr).

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 202. GOLDSCHMIDT. N. Jahr. f. Min. u. Geol. 1881. I. Beil.-Bd. 225.

#### Diallage.

G. ROSE. Zeitschr. d. deutsch. geol. Ges. 1867. 280, 294. TSCHERMAK. Tsch. Min. Mitth. 1871. 25, and Sitzungsber. d. Wien. Akad. d. Wiss. 1869. LIX. I. I.

v. DRASCHE. Tsch. Min. Mitth. 1871. I. HAGGE. N. Jahrb. f. Min. u. Geol. 1871. 946. STRENG. N. Jahrb. f. Min. u. Geol. 1872. 377. 379. v. RATH. Verh. d. niederrhein. Ges. f. Nat. u. Heilkde. Bonn. 8. Mz. 1875. DATHE. Zeitschr. d. deutsch. geol. Ges. 1877. XXIX. 274. SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 323. v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1883. II. 97. KLOOS. N. Jahrb. f. Min. u. Geol. 1884. III. Beil.-Bd. 19.

### Diopside (Omphacite and Sahlite).

TSCHERMAK. Tsch. Min. Mitth. 1871. 21. v. DRASCHE. Tsch. Min. Mitth. 1871. 58. v. KALKOWSKY. Tsch. Min. Mitth. 1875. II. DATHE. N. Jahrb. f. Min. u. Geol. 1876. 225, 337. RIESS. Tsch. Min. u. petr. Mitth. 1878. I. 168. BECKER. Zeitschr. d. deutsch. Geol. Ges. 1881. XXXIII. 31. BECKE. Tsch. Min. u. petr. Mitth. 1882 IV. 297. SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 321.

### Disthene (Cyanite).

v. KOBELL Pogg. Ann. f. Phys. u. Chem. 1869. CXXXVI. 156.
v. LASAULX. N. Jahrb. f. Min. u. Geol. 1872. 835.
RIESS. Tsch. Min. u. petr. Mitth. 1878. I. 165, 195.
BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 225, 231.

#### Dolomite.

INOSTRANZEFF. Tsch. Min. Mitth. 1872. 48.
LEMBERG. Zeitschr. d. deutsch. geol. Ges. 1876. 519.
O. MEYER. Zeitschr. d. deutsch. geol. Ges. 1879. 445.
RENARD. Bull. Acad. royal Belg. XLVII. 5. Mai 1879. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1880. II. 146.

### Elæolite.

SCHEERER. Pogg. Ann. f. Phys. u. Chem. 1863. CXIX. 145. ZIRKEL. N. Jahrb. f. Min. u. Geol. 1870. 810. v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1880. II. 141. Koch. N. Jahrb. f. Min. u. Geol. 1880. I. Beil-Bd. 140.
#### BIBLIOGRAPHY TO PART II.

#### Enstatite.

TSCHERMAK. Tsch. Min. Mitth. 1871. 17. STRENG. N. Jahrb. f. Min. u. Geol. 1872. 273. TRIPPKE. N. Jahrb. f. Min. u. Geol. 1878. 673. TELLER u. JOHN. Jahrb. d. kk. geol. R.-Anst. Wien, 1882. XXXII. 589.

#### Epidote.

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1869. XIX. 121.
V. LASAULX. N. Jahrb. f. Min. u. Geol. 1872. 837.
BECKE. Tsch. Min. u. petr. Mitth. 1879. II. 25, 34.
Tsch. Min. u. petr. Mitth. 1882. IV. 264.
V. KALKOWSKY. Tsch. Min. u. petr. Mitth. 1876. II. 87.
REUSCH. N. Jahrb. f. Min. u. Geol. 1883. II. 179.
TÖRNEBOHM. Geol. Fören. i Stockholm Förh. VI 185. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1883. I. 245.
BACHINGER. Tsch. Min. u. petr. Mitth. 1884. VI. 44.
Küch. Tsch. Min. u. petr. Mitth. 1884. VI. 119.

#### Fluorite.

LASPEYRES. Zeitschr. d. deutsch. geol. Ges. 1864. XVI. 449.

#### Glaucophane.

HAUSMANN. Göttinger gel. Anz. 1845. 195.

BODEWIG. Pogg. Ann. f. Phys. u. Chem. 1876. CXLVIII. 224.

LUEDECKE. Zeitschr. d. deutsch. geol. Ges. 1876 XXVIII. 248.

BECKE. Tsch. Min. u. petr. Mitth. 1879. II. 49, 71.

WILLIAMS. N. Jahrb. f. Min. u. Geol. 1882. II. 201.

STELZNER. N. Jahrb. f. Min. u. Geol. 1883. I. 208.

BARROIS. Ann. Soc. géol. du Nord. Lille, 1883. XI. 18. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1884. II. 68.

v. LASAULX. Sitzungsber. d. niederrhein. Ges. F. Nat. u. Heilkunde. Bonn, 1884. 3. XII.

#### Graphite.

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. 68.
Pogg. Ann. f. Phys. u. Chem. CXLIV. 1871. 319.
RENARD. Bull. du Musée royal d'hist. nat. Bruxelles, 1882. I. 47. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1883. II. 68.

#### Gypsum (and Anhydrite).

HAMMERSCHMIDT. Tsch. Min. u. petr. Mitth. 1883. V. 245.

#### Hauyn (comp. Nosean).

ZIRKEL. Basaltgesteine. 1870. 79.
N. Jahrb. f. Min. u. Geol. 1870. 818.
VOGELSANG. Mededeel. d. k. Akad. v. Wetenschapp. Amsterdam, 1872 (2).
SAUER. Zeitschr. f. d. gesammt. Naturwiss. Halle, 1876. XIV.
DOELTER. Tsch. Min. u. petr. Mitth. 1882. IV. 461.

#### Hematite.

G. Rose. Zeitschr. d. deutsch. geol. Ges. 1859. XI. 298, 306. Kosmann. Zeitschr. d deutsch. geol. Ges. 1864. XVI. 665. ZIRKEL. Basaltgesteine. 1870. 71.

#### Hercynite.

v. KALKOWSKY. Zeitschr. d. deutsch. geol. Ges. 1881. XXXIII. 533.

#### Hornblende (ordinary and basaltic).

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. 99. 119.

- Zeitschr. d. deutsch. geol. Ges. 1871. 43.

- Basaltgesteine. 1870. 74.

TSCHERMAK. Sitzungsber. d. Wien. Akad. d. Wiss. 1869. LIX. I. I.

- Tsch. Min. Mitth. 1871. 38.

RIESS. Tsch. Min. u. petr. Mitth. 1878. 165.

SOMMERLAD. N. Jahrb. f. Min. u. Geol. 1882. II. 139.

BECKER. N. Jahrb. f. Min. u. Geol. 1883. II. I.

STRENG. XXII. Bericht d. oberhess. Ges. f. Natur- u. Heilkunde. Giessen, 1883. KLOOS. N. Jahrh. f. Min. u. Geol. 1884. III. Beil.-Bd. 24.

#### Hypersthene.

KOSMANN. Sitzungsber. d. niederrhein Ges. f. Natur- u. Heilkunde. Bonn, 3. Febr. 1869.

— N. Jahrb. f. Min. u. Geol. 1869. 374 and 1871. 501. НАGGE. N. Jahrb. f. Min. u. Geol. 1871. 946. ТSCHERMAK. Tsch. Min. Mitth. 1871. 17. NIEDZWIEDZKI. Tsch. Min. Mitth. 1872. 253.

BECKE. Tsch. Min. u. petr. Mitth. 1878. I. 244.

BECKE. Tsch. Min. u. petr. Mitth. 1883. V. 527.

Fouqué. Santorin. Paris, 1879.

BLAAS. Tsch. Min. u petr. Mitth. 1881. III. 479.

TELLER u. JOHN. Jahrb. d. kk. geol. R.-Anst. Wien. 1882. XXXII. 589.

Rosenbusch. Gesteine v. Ekersund. N. Magaz. f. Naturvidenskaberne. XXVII. 4. Heft.

- HAGUE u. IDDINGS. Amer. Journ. of Science. 1883. XXVI. 222. Ref. N. Jahrb. f. Min. u. Geol. 1884. I. 225.
- CH. WHITMAN CROSS. The same. XXV. 1883. 139. Ref. N. Jahrb. f. Min. u. Geol. 1884. I. 228.

KRENNER. Gr. Zeitschr. f. Kryst. 1884. IX. 255.

#### Ilmenite.

LASPEYRES. N. Jahrb. f. Min. u. Geol. 1869. 513.

ZIRKEL. Basaltgesteine. Bonn, 1870. 70.

SANDBERGER. N. Jahrb. f. Min. u. Geol. 1870. 206.

STRENG. N. Jahrb. f. Min. u. Geol. 1872. 385.

GÜMBEL. D. paläolith. Eruptivgest. d. Fichtelgebirges. München, 1874. 35.

DATHE. Zeitschr. d. deutsch. geol. Ges. 1874. XXVI. 1.

- COHEN. Reisen in Südafrika. Hamburg, 1875. 2. Friedrichsen'sche Jahresber. der geograph. Ges. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1876. 213.
- v, LASAULX Verh. d. naturw. Ver. d. preuss. Rheinlande u. Westphal. 1878. XXXV.

SAUER N. Jahrb. f. Min. u. Geol. 1879. 575.

CH. WHITMAN CROSS. Tsch. Min. u. petr. Mitth. 1881. III. 401.

CATHREIN. Gr. Zeitschr. f. Kryst. 1882. 244.

#### Labradorite.

VOGELSANG. Archiv. Néerland. 1868. III. SCHRAUF. Sitzungsber. d. Wien. Akad. d. Wiss. Dec. 1869. LX. Bd. STELZNER. Berg- und Hüttenmänn. Zeig. XXIX. 150.

HAGGE. N. Jahrb. f. Min. u. Geol. 1871. 946.

SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 183.

#### Leucite.

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1868. 97. – Basaltgesteine. Bonn, 1870.

v. RATH. Monatsber. d. Berlin. Akad. d. Wiss. Aug. 1872.

KREUTZ. Tsch. Min. u. petr. Mitth. 1884. VI. 135. v. CHRUSTSCHOFF. Tsch. Min. u. petr. Mitth. 1884. VI. 161.

#### Liebenerite.

ZIRKEL. N. Jahrb. f. Min. u. Geol. 1868. 719.

#### Magnesite.

ROSENBUSCH. N. Jahrb. f. Min. u. Geol. 1884. I. 196.

#### Magnetite.

 ZIRKEL. Basaltgesteine. Bonn, 1870. 67.
 VELAIN. Descript. géol. d'Aden, Réunion, des îles St. Paul et Amsterdam. Paris, 1877.

#### Meionite.

v. RATH. Zeitschr. d. deutsch. geol. Ges. 1866. XVIII. 608, 626. 633. v. KALKOWSKY. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 663.

#### Melanite.

Fouqué. Compt. rend. 15 mars 1875. WICHMANN. Pogg. Ann. f. Phys. u. Chem. 1876. CLVII. 282. KNOP. Gr. Zeitschr. f. Krystall. 1877. 58.

#### Melilith.

v. RATH. Zeitschr. d. deutsch. geol. Ges. 1866. XVIII. 527. ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1868. XX. 118. — Basaltgesteine. Bonn, 1870. 77. HUSSAK. Sitzungsber. d. Wien. Akad. d. Wiss. April 1878. STELZNER. N. Jahrb. f. Min. u. Geol. 1882. II. Beil.-Bd. 369.

#### Meroxene (Biotite).

TSCHERMAK. Sitzungsber. der Wien. Akad. der Wiss. 1869. May. LIX.
Gr. Zeitschr. f. Kryst. 1878. II. 18.
ZIRKEL. Basaltgesteine. Bonn, 1870. 76.
Ber. d. kgl. sächs. Ges. d. Wiss. July 21, 1875.
v. KALKOWSKY. Die Gneissformation d. Eulengebirges. Leipzig, 1878. 28.

- N. Jahrb. f. Min. u. Geol. 1880. I. 33.

#### BIBLIOGRAPHY TO PART II.

KISPATIC. Tsch. Min. u. petr. Mitth. 1882. IV. 127. WILLIAMS. N. Jahrb. f. Min. u. Geol. 1882. II. 616. BECKER. N. Jahrb. f. Min. u. Geol. 1883. II. 1.

#### Microcline (Microperthite).

DES CLOIZEAUX. Ann. de chim. et phys. 1876. 9. 433.
DATHE. Zeitschr. d. deutsch. geol. Ges. 1877. XXI. 274.
Zeitschr. d. deutsch. geol. Ges. 1882. XXXIV. 12.
M. LÉVY. Bull. d. la sociét. miner. No. 5. 1879.
BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 196.
KOLLER. Tsch. Min. u. petr. Mitth. 1883. V. 218.
KLOOS. N. Jahrb. f. Min. u. Geol. 1884. II. 87.

#### Muscovite (Sericite).

LOSSEN. Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 509. WICHMANN. Verh. des naturf. Ver. f. d. Rheinlande. XXXIV. 5. F. 4. Bd. TSCHERMAK. Gr. Zeitschr. f. Kryst. 1878. 40. V. LASAULX, N. Jahrb. f. min. u. Geol. 1872. 851. V. GRODDECK. Jahrb. d. kk. geol. R.-Anst. Wien, 1883. 397.

#### Nepheline.

ZIRKEL. Pogg. Ann. f. Phys u. Chem. 1867. 298.

- N. Jahrb. f. Min. u. Geol. 1868. 697.

- Basaltgesteine. Bonn, 1870.

- ROSENBUSCH. Nephelinit v. Katzenbuckel. Freiburg, 1869 Ref. N. Jahrb. f. Min. u. Geol. 1869. 485.
- BOKICKY. Archiv. d. naturw. Landesdurchforsch. Böhmens. Prag, 1874. Die Phonolithe. 8.

#### Nosean.

v. RATH. Zeitschr. d. deutsch. geol. Ges. 1862. XIV. 663. ZIRKEL. Pogg. Ann. f. Phys. u. Chem. 1867. CXXXI. 312. ROSENBUSCH. Nephel. v. Katzenbuckel. 1869. 35. BOŘICKY. Archiv. d. naturw. Landesdurchforsch. Böhmens. Prag, 1873. Die

Basaltgesteine. 27.

- The same. 1874. Die Phonolithe. 10.

#### Oligoclase.

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 100. M. SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 164. Mügge. N. Jahrb. f. Min. u. Geol. 1881. II. 107.

#### Oligoclasalbite.

SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 159.

#### Olivine.

TSCHERMAK. Sitzungsber. d. Wien. Akad. d. Wiss. 1866. LIII. 260. - Sitzungsber. d. Wien. Akad. d. Wiss. 1867. July. LVI. ZIRKEL. Basaltgesteine. Bonn, 1870. 55. - Zeitschr. d. deutsch. geol. Ges. 1871. 59. HAGGE. Ueber Gabbro. Kiel, 1871. N. Jahrb. f. Min. u. Geol. 1871. 946. ROSENBUSCH. N. Jahrb. f. Min. u. Geol. 1872. 59. DATHE. N. Jahrb. f. Min. u. Geol. 1876. 225, 337. PENCK. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 97. BRÖGGER. N. Jahrb. f. Min. u. Geol. 1880. II. 187. COHEN. N. Jahrb. f. Min. u. Geol. 1880. II. 31, 52. v. FOULLON. Tsch. Min. u. petr. Mitth. 1880. II. 181. BECKER. Zeitschr. d. deutsch. geol. Ges. 1881. XXXIII. 31. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 322, 355, 450. - Tsch. Min. u. petr. Mitth. 1882. V. 163. SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 321. KREUTZ. Tsch. Min. u. petr. Mitth. 1884. VI. 142.

#### Opal.

M. SCHULTZE. Verh. d. naturf. Ver. d. preussischen Rheinlande u. Westphalens. 1861. 69.

G. Rose. Monatsber. d. Berlin. Akad. d. Wiss. 1869. 449. BEHRENS. Sitzungsber. d. Wien. Akad. d. Wiss. 1871. LXIV. I. Abth. VELAIN. Descript. géolog. d'Aden, Réunion . . . Paris, 1877. 32, 322. KISPATIČ. Tsch. Min. u. petr. Mitth. 1882. IV. 122.

#### Orthoclase (Sanidine).

REUSCH. Pogg. Ann. f. Phys. u. Chem. 1862. CXVI. 392, and 1863. CXVIII. 256.

ZIRKEL. Pogg. Ann. f. Phys. u. Chem. 1867. CXXXI. 300.

- Sitzungsber. d. Wien. Akad. d. Wiss. 1863. XLVII. 237, 246.

- N. Jahrb. f. Min. u. Geol. 1866. 775.

- Zeitschr. d. deutsch. geol. Ges. 1867. XIX. 87.

LASPEYRES. Zeitschr. d. deutsch. geol. Ges. 1864. XVI. 392.

S. WEISS. Beitr. z. Kenntn. d. Feldspathbildung. Haarlem, 1866.

ROSENBUSCH. Verh. d. Naturf. Ver. Freiburg. VI. 1, 95, 98, 103.

STRENG. N. Jahrb. f. Min. u. Geol. 1871. 598.

#### BIBLIOGRAPHY TO PART II.

#### Ottrelite.

V. LASAULX. N. Jabrb. f. Min. u. Geol. 1872. 849.
TSCHERMAK u. SIFÖCZ. Gr. Zeitschr. f. Kryst. 1879. 509.
BECKE. Tsch. Min. u. petr. Mitth. 1878. I. 270.
RENARD et VALLÉE POUSSIN. Ann. de la Soc. géol. Belgique. VI. Mém. 51.
N. Jahrb. f. Min. u. Geol. 1880. II. 149.

#### Perowskite.

BOŘICKY. Sitzungsber. der math.-naturw. Classe d. k. böhm. Ges. d. Wiss. 1876. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1877. 539.

HUSSAK. Sitzungsber. d. Wien. Akad. d. Wiss. math. nat. Classe. April 1878. STELZNER. N. Jahrb. f. Min. u. Geol. 1882. II. Beil. Bd. 390.

#### Phlogopite.

TSCHERMAK. Gr. Zeitschr. f. Kryst. 1878. 33.

#### Picotite.

ZIRKEL. Basaltgesteine. Bonn, 1870. 97. STELZNER. N. Jahrb. f. Min. u. Geol. 1882. II. Beil.-Bd. 393.

Pinite (and other decomposition-products of Cordierite).

WICHMANN. Zeitschr. d. deutsch. geol. Ges. 1874. XXVI. 675.

#### Plagioclase.

TSCHERMAK. Sitzungsber, d. Wien, Akad. d. Wiss. L. Dec. 1864.
WEISS. Beitr. z. Kenntn. d. Feldspathbildung. Haarlem, 1866.
ROSE. Zeitschr. d. deutsch. geol. Ges. XIX. 1867. 289.
STELZNER. N. Jahrb. f. Min. u. Geol. 1870. 784.
ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1871. XXIII. 43, 59, 94.
Basaltgesteine. Bonn, 1870. 28.
HAGGE. Ueber Gabbro. Kiel, 1871.
STRENG. N. Jahrb. f. Min. u. Geol. 1874. 598, 715.
COHEN. N. Jahrb. f. Min. u. Geol. 1874. 460.
v. RATH. Monatsber. d. Berlin. Akad. d. Wiss. 24. Feb. 1876.
ROSENBUSCH. Verh. d. naturforsch. Ges. Freiburg i. Br. VI. 1, 77.
PENCK. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 97.
PFAFF. Sitzungsber. d. phys.-med. Societ. z. Erlangen. 1878.
SCHUSTER. Tsch. Min. u. petr. Mitth. 1881. III. 117.
Tsch. Min. u. petr. Mitth. 1882. V. 189.

HOEPFNER. N. Jahrb. f. Min. u. Geol. 1881. II. 164. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 253. KLOCKMANN. Zeitschr. d. deutsch. geol. Ges. 1882. 373. v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1883. II. 97. KREUTZ. Tsch. Min. u. petr. Mitth. 1884. VI. 137.

#### Pleonaste.

TELLER u. JOHN. Jahrb. d. kk. geol. R.-Anst. Wien, 1882. XXXII. 589.

#### Protobastite (Diaclasite).

TSCHERMAK. Tsch. Min. Mitth. 1871. 1. Heft. 20. STRENG. N. Jahrb. f. Min. u. Geol. 1872. 273. Anm. 2.

#### Pyrope.

DOELTER. Tsch. Min. Mitth. 1873. 13. SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 321 and 1884. II. 21.

#### Quartz.

H. CLIFTON SORBY. Quart. Journ. geol. Soc. Nov. 1858. XIV. 453.
ZIRKEL. N. Jahrb. f. Min. u. Geol. 1868. 711.
— Pogg. Ann. f. Phys. u. Chem. 1871. CXXXXIV. 324.
ROSENBUSCH. Reise n. Südbrasilien. Freiburg i. Br., 1870.
BEHRENS. N. Jahrb. f. Min. u. Geol. 1871. 460.
LEHMANN. Verh. d. niederrhein. Ges f. Nat. u. Heilkunde. Bonn, 1874. XXXIV.
— Verh. d. naturhist. Ver. d. preuss. Rheinlande u. Westphalens. 1874. XXXIV.
v. CHRUSTSCHOFF. Tsch. Min. u. petr. Mitth. 1882. IV. 473.
BOŘICKY. Archiv d. naturw. Landesdurchf. Böhmens. 1882. IV. No. 4. 12.

#### Ripidolite (Chlorite, Helminth).

O. MEYER. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 1, 24.

#### Rubellan.

HOLLRUNG. Tsch. Min. u. petr. Mitth. 1883. V. 304.

#### Rutile.

SAUER. N. Jahrb. f. Min. u. Geol. 1879. 569.
N. Jahrb. f. Min. u. Geol. 1880. I. 227, 279.
V. WERVEKE. N. Jahrb. f. Min. u. Geol. 1880. II. 281.

#### BIBLIOGRAPHY TO PART II.

CATHREIN. N. Jahrb. f. Min. u. Geol. 1881. I. 169. — Gr. Zeitschr. F. Kryst. 1883. VIII. 321. H. GYLLING. N. Jahrb. f. Min. u. Geol. 1882. I. 163. PICHLER u. BLAAS. Tsch. Min. u. petr. Mitth. 1882. IV. 513. SANDBERGER. N. Jahrb. f. Min. u. Geol. 1882. II. 192. v. LASAULX. Gr. Zeitschr. f. Kryst. 1883. VIII. 54.

#### Serpentine (comp. Olivine).

WEBSKY. Zeitschr. d. deutsch. geol. Ges. 1858. 277.
WEISS. Pogg. Ann. f. Phys. u. Chem. 1863. CXIX. 458.
TSCHERMAK. Sitzungsber. d. Wien. Akad. d. Wiss. LVI. July 1867.
ZIRKEL. N. Jahrb. f. Min. u. Geol. 1870. 829.
J. ROTH. Abhandl. d. Berlin. Akademie d. Wiss. 1869.
DRASCHE. Tsch. Min. Mitth. 1871. I.
WEIGAND. Tsch. Min. Mitth. 1875. 183.
DATHE. N. Jahrb. f. Min. u. Geol. 1876. 225, 337.
LEMBERG. Zeitschr. d. deutsch. geol. Ges. 1877. XXX. 457.
BECKE. Tsch. Min. u. petr. Mitth. 1878. I. 459, 470.
Tsch. Min. u. petr. Mitth. 1882. IV. 322.
HARE. Serpentin von Reichenstein. In.-Diss. Breslau, 1879.
HUSSAK. Tsch. Min. u. petr. Mitth. 1882. V. 61.
SCHRAUF. Gr. Zeitschr. f. Kryst. 1882. 321.
SCHULZE. Zeitschr. d. deutsch. geol. Ges. 1883. XXXV. 433.

#### Sillimanite.

v. KALKOWSKY. Die Gneissform. d. Eulengebirges. Leipzig, 1878. SCHUMACHER. Zeitschr. d. deutsch. geol. Ges. 1878. 427. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 189.

#### Scapolite.

MICHEL LÉVY. Bull. Soc. minér. France. 1878. No. 3 and 5. BECKE. Tscherm. Min. u. petr. Mitth. 1882. IV. 369. TÖRNEBOHM. Geol. Fören. i Stockholm Förhandl. VI. 185. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1883. I. 245.

CATHREIN. G. Zeitschr. f. Kryst. 1884. IX. 378.

#### Sodalite.

V. RATH. Zeitschr. d. deutsch. geol. Ges. 1866. 620.
Verh. d. niederrhein. Ges. f. Nat. u. Heilkunde. 1876. 82.
VRBA. Sitzungsber. d. Wien. Akad. d. Wiss. LXIX. Feb. 1874.

V. KALKOWSKY. Zeitschr. d. deutsch. geol. Ges. 1878. 663.
V. WERVEKE. N. Jahrb. f. Min. u. Geol. 1880. II. 141.
KOCH. N. Jahrb. f. Min. u. Geol. 1881. I. Beil.-Bd. 149.

#### Staurolite.

PETERS u. MALY. Sitzungsber. d. Wien. Akad. d. Wiss. LVII. 1868. 15.
v. LASAULX. Tsch. Min. u. petr. Mitth. 1872. III. 173, and N. Jahrb. f. Min. u. Geol. 1872. 838.

O. MEYER. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 1.

#### Talc.

v. LASAULX. N. Jahrb. f. Min. u. Geol. 1872. 823. TSCHERMAK. Tsch. Min. Mitth. 1876. I. 65.

#### Titanite.

ZIRKEL. Zeitschr. d. deutsch. geol. Ges. 1859. XI. 522, 526.
Pogg. Ann. f. Phys. u. Chem. 1867. CXXXI. 325.
v. RATH. Zeitschr. d. deutsch. geol. Ges. 1862. XIV. 665.
Zeitschr. d. deutsch. Geol. Ges. 1864. XVI. 256.
GROTH. N. Jahrb. F. Min. u. Geol. 1866. 46.
v. LASAULX. N. Jahrb. f. Min. u. Geol. 1872. 362.
v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1880. II. 159.
MANN. N. Jahrb. f. Min. u. Geol. 1882. II. 200.
DILLER. N. Jahrb. f. Min. u. Geol. 1883. I. 187.

#### Titaniferous Magnetite.

v. WERVEKE. N. Jahrb. f. Min. u. Geol. 1880. II. 141. CATHREIN. Gr. Zeitschr. f. Kryst. 1883. VIII. 321.

#### Tremolite (Grammatite).

TSCHERMAK. Tsch. Min. Mitth. 1871. 37. and 1876. 65. BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 338.

#### Tridymite.

ZIRKEL. Pogg. Ann. f. Phys. u. Chem. 1870. CXL. 492.
v. LASAULX. N. Jahrb. f. Min. u. Geol. 1869. 66.
Gr. Zeitschr. f. Kryst. 1878. II. 254.
STRENG. Tsch. Min. Mitth. 1871. 47.
N. Jahrb. f. Min. u. Geol. 1872. 266.

#### BIBLIOGRAPHY TO PART II.

ROSENBUSCH. Verhandl. d. naturf. Ges. Freiburg i. Br. 1873. VI. 1. Hft. 96. SCHUSTER. Tsch. Min. u. petr. Mitth. 1878. 71.

#### Tourmaline.

ZIRKEL. N. Jahrb. f. Min. u. Geol. 1875. 628. TÖRNEBOHM. Geol. Fören. i. Stockholm Förhandl. 1876. III. 218. MEYER. Zeitschr. d. deutsch. geol. Ges. 1878. XXX. 1, 24. WICHMANN. N. Jahrb. f. Min. u. Geol. 1880. II. 294. DATHE. Zeitschr. d. deutsch. geol. Ges. 1882. XXXIV. 12. PICHLER u. BLAAS. Tsch. Min. u. petr. Mitth. 1882. IV. 512.

#### Uralite.

G. Rose. Reise nach dem Ural. II. 371. BECKE. Tsch. Min. u. petr. Mitth. 1882. V. 157.

#### Viridite (Delessite, Chlorophæite).

VOGELSANG. Zeitschr. d. deutsch. geol. Ges. 1872. XXIV. 529.
KOSMANN. Verh. d. naturw. Ver. d. preuss. Rheinlande u. Westph. XXV. 239. and 289.

TSCHERMAK. Die Porphyrgesteine Oesterreichs. Wien, 1869. 42, 66, 134. — Tsch. Min. Mitth. 1872. 112.

#### Wollastonite.

FOUQUÉ. Compt. rend. 15 Mar. 1875. LAGORIO. Andesite d. Kaukasus. Dorpat, 1878. Ref. N. Jahrb. f. Min. u. Geol. 1880. I. 209.

CH. WHITMAN CROSS. Tsch. Min. u. petr. Mitth. 1881. III. 373.

Törnebohm. Geol. Fören. i. Stockholm Förh. 1883. VI. No. 12. 542. Comp. Ref. N. Jahrb. f. Min. u. Geol. 1884. I. 230.

#### Zeolite (Analcime).

ROSENBUSCH. Nephelinit v. Katzenbuckel. Freiburg i. Br., 1869. KLOOS. N. Jahrb. f. Min. u. Geol. 1884. III. Beil.-Bd. 37.

#### Zircon.

SANDBERGER. Würzburger nat. Zeitschr. 1866/67. VI. 128 and 1883. — Zeitschr. d. deutsch. geol. Ges. 1883. XXXV. 193. — N. Jahrb. f. Min. u. Geol. 1881. I. 258.

ZIRKEL. N. Jahrb. f. Min. u. Geol. 1875. 628.

- N. Jahrb. f. Min. u. Geol. 1880. I. 89.

TÖRNEBOHM. Geol. Föhren. i Stockholm Förhandling. 1876. III. No. 34. and N. Jahrb. f. Min. u. Geol. 1877. 97.

MICHEL LÉVY. Bull. Soc. minéral. France. 1877. No. 5. 77.

ROSENBUSCH. Sulla presenza dello zircone nelle roccie. Atti d. R. Accadem. d. Science. Torino 1881. Vol. XVI.

BECKE. Tsch. Min. u. petr. Mitth. 1882. IV. 204.

FLETCHER. Gr. Zeitschr. f. Kryst. 1882. 80.

NESSIG. Zeitschr. d. deutsch. geol. Ges. 1883. XXXV. 118.

v. CHRUSTSCHOFF. Tsch. Min. u. petr. Mitth. 1884. VI. 172.

#### Zoisite.

RIESS. Tsch. Min. u. petr. Mitth. 1878. I. 188.

BECKE. Tsch. Min. u. petr. Mitth. 1878. I. 249. and 1882. IV. 312.

# EXPLANATIONS OF CUTS ACCOMPANYING PART II.

| F | IG. |                                                                                                                                           | PAGE |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 51  | ILMENITE. Grain, partly decomposed into leucoxene, with undecom-                                                                          |      |
|   |     | posed earthy filaments interiaminated                                                                                                     | 111  |
|   | 52  | OPAL. As filling of a cavity, in concentric layers, inclosing small<br>groups of tridymite tablets. (After Fouqué.)                       | 112  |
|   | 53  | HAUYN. Cross section with opacitic border and vitreous inclosures;<br>penetrated by a network of black lines crossing each other at right |      |
|   |     | angles                                                                                                                                    | 115  |
|   | 54  | a. MELANITE cross section, zonally developed                                                                                              | 117  |
|   |     | b. ALMANDINE GRAIN, with inclosures of quartz-grains; traversed                                                                           | 117  |
|   |     | by irregular cleavage issuics                                                                                                             | ,    |
|   | 55  | PYROPE GRAIN $(P)$ with border of so-called <i>kelyphile</i> $(K)$ . From the                                                             |      |
|   |     | serpentine (S) from Kremse, Bohemian forest. On the serpentine                                                                            |      |
|   |     | portion (S) showing the "mesh-structure" is a thin layer of fresh                                                                         |      |
|   |     | olivine grains, followed by the norous metamorphosed zone $(K)$ of                                                                        |      |
|   |     | pyrope; this has been caned keyphile by Schradt, and is a "pyro-                                                                          |      |
|   |     | duct and has been regarded as allied to an augitic mineral                                                                                | 117  |
|   | -6  | Depowerung Chains in the so called "heated" fourse. (After Stals.                                                                         |      |
|   | 50  | PEROWSKITE GRAINS in the so-caned nacked ingures. (After Steiz-                                                                           | 120  |
|   |     |                                                                                                                                           | 120  |
|   | 57  | LEUCITE cross-section in polarized light, showing the polysynthetic                                                                       |      |
|   |     | striation. (After Zirkei.)                                                                                                                | 122  |
|   | 58  | Cross sections of small LEUCITE crystals and grains (constituents                                                                         |      |
|   |     | II. order), with vitreous inclosures regularly distributed                                                                                | 123  |
|   | 59  | RUTILE CRYSTAL. Knee-, heart-shaped, and polysynthetic twins.                                                                             |      |
|   |     | (After Reusch.)                                                                                                                           | 122  |
|   | 60  | ZIRCON CRYSTALS. (After Fouqué.)                                                                                                          | 124  |
|   | 61  | SCAPOLITE cross-section, at right angles to the chief axis, with rectan-                                                                  |      |
|   |     | gular cleavage                                                                                                                            | 124  |

| FIG |                                                                                                                                             | PAGE |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 62  | MELILITE. a. Cross-sections parallel to the chief axis. The upper                                                                           |      |
|     | the under, the so-called "pflock-structure," pear-shaped and spin-                                                                          |      |
|     | dle-shaped canals originating from the face $oP$ , which appear as a                                                                        |      |
|     | small circle in sections (parallel) oP (Fig. 62, b). Fig. 62, c, shows a                                                                    |      |
|     | larger cross-section of an irregular grain, wherein small leucite<br>grains are developed. (a and b after Stelzner.)                        | 127  |
| 63  | QUARTZ. $a-d$ are cross-sections of the conchoidal crystal skele-                                                                           |      |
|     | ton, which occur interpenetrated with orthoclase "micropegmatitic."<br>a. Section parallel to the chief axis. $b$ . Section parallel to the |      |
|     | base. c. Section at right angles to the prismatic edges. d. Section                                                                         | -    |
|     | clase wherein quartz is developed micropegmatitic                                                                                           | 120  |
| 64  | TRIDYMITE. Crystal groups of thin hexagonal tablets overlapping                                                                             |      |
|     | each other like roof-tiles. (After Fouqué.)                                                                                                 | 131  |
| 65  | CALCITE GRAIN, with rhombohedral cleavage and twinning striations.                                                                          |      |
|     | After $-\frac{1}{2}R$                                                                                                                       | 132  |
| 66  | NEPHELINE. a. Transverse section. b. Longitudinal section, with                                                                             |      |
| 6-  | Apartic inclosures zonally distributed                                                                                                      | 134  |
| 07  | cleavage-fissures and acicular inclosures parallel to the base                                                                              | 137  |
| 68  | TOURMALINE. a. Longitudinal section. b. Transverse section zo-<br>nally developed                                                           | 138  |
| 69  | TOURMALINE CRYSTAL. (After Reusch.)                                                                                                         | 138  |
| 70  | OLIVINE cross section in different degrees of decomposition. a. With                                                                        |      |
|     | undecomposed centre. b. "Serpentinized" only on the edges and                                                                               | TAT  |
| 71  | OLIVINE cross-section $a$ Cross section parallel $aP$ , $b$ Cross-sec-                                                                      | 141  |
| -   | tion parallel $\infty \not P \infty$ . (After Fouqué.)                                                                                      | 140  |
| 72  | SILLIMANITE. a. Transverse section. b. Long, broken needle, with                                                                            |      |
|     | transverse fissures                                                                                                                         | 142  |
| 73  | STAUROLITE. Twin with inclosures of quartz granules; the $+$ sign                                                                           |      |
|     | annexed indicates the position of the directions of vibration in the individual which is batched                                            | 142  |
| 74  | ENSTATITE and BRONZITE transverse sections. a. Optical orienta-                                                                             |      |
| 14  | tion according to Tschermak's position. b. According to G. v.                                                                               |      |
|     | Rath's position                                                                                                                             | 144  |
| 75  | ENSTATITE longitudinal section, with the cleavage fissures parallel to                                                                      | - 13 |
|     | the vertical axis partially decomposed into bastite                                                                                         | 145  |

EXPLANATIONS OF CUTS ACCOMPANYING PART II. 217

| FIG. |                                                                                                                                                                                                                                                                                                        | PAGE |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 76   | ANDALUSITE cross-sections. <i>a.</i> Transverse section with rectangular cleavage-cracks, and opaque granules distributed centrally and in a cross-shape. (Similar to chiastolite.)                                                                                                                    | 153  |
| 77   | CORDIERITE GRAIN, with a fibrous decomposition on the cleavage-<br>cracks, with inclosures of sillimanite needles                                                                                                                                                                                      | 155  |
| 78   | Transverse section of a twinned cordierite crystal. The apparently<br>hexagonal crystal, composed of three individuals, divides into six<br>fields in polarized light, two of which lying opposite extinguish to-<br>gether; the position of the directions of vibration is designated by<br>a mark    | 154  |
| 79   | ZOISITE cross-sections. <i>a.</i> Transverse section. <i>b.</i> Longitudinal section, showing cleavage-fissures and fluid inclosures arranged in a series                                                                                                                                              | 155  |
| 80   | BIOTITE leaflet, parallel <i>oP</i> ; the outer portions are decomposed into chlorite and contain earthy granules and epidote needles; the irregularly defined kernel is fresh                                                                                                                         | 156  |
| 81   | BIOTITE longitudinal section, showing cleavage-cracks parallel <i>oP</i> and inclosures of calcite lenses                                                                                                                                                                                              | 156  |
| 82   | OTTRELITE. Section at right angles to $\rho P$ , twinned polysynthetically after $\rho P$ . The annexed $+$ indicates the position of the directions of vibration.                                                                                                                                     | 164  |
| 83   | SANIDINE cross-sections. $a = \text{parallel } oP \text{ or } \infty P \infty$ . $b = \text{Carlsbad}$<br>twin. $c = \text{Bayeno twin.} d = \text{parallel } \infty P \infty$ with a combination                                                                                                      | 12   |
| 84   | AUGITE cross-section. $a$ . At right angles to the vertical axis. $b$ .<br>Parallel to the orthopinacoid. $c$ . Parallel to the clinopinacoid.                                                                                                                                                         | 100  |
| 1    | (After Fouqué.)                                                                                                                                                                                                                                                                                        | 168  |
| 85   | URALITE cross-section. The seconary hornblende is partially de-<br>veloped over the augite, with a twin lamella after $\infty \mathcal{P} \infty$ . (After<br>Becke)                                                                                                                                   | 175  |
| 86   | HORNBLENDE cross section. <i>a</i> . Transverse section. <i>b</i> . Parallel $\infty P \infty$ . <i>c</i> . Parallel $\infty P \infty$ . (After Fouqué.)                                                                                                                                               | 172  |
| .87  | EPIDOTE. Optical orientation. (After Klein and v. Lasaulx.) Opt.<br>A. = optic axes (for red and green), I. a first negative middle line,<br>II. $\mathfrak{c} =$ second middle line, $\mathfrak{b} = \mathfrak{b}$ optic normals. a. Clinodiagonal<br>and one direction of cleavage. c. Vertical axis | 176  |
| 88   | EPIDOTE twin after $\infty \mathcal{P} \infty$ . (After Reusch.)                                                                                                                                                                                                                                       | 176  |
| 89   | EPIDOTE CRYSTAL. (After Reusch.)                                                                                                                                                                                                                                                                       | 176  |
|      |                                                                                                                                                                                                                                                                                                        |      |

| FIG.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAGE  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 90       | TITANITE. Cross-section of crystals and grains; simple individuals<br>and twins after oP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176   |
| 91       | MICROCLINE. Section parallel $oP$ shows the latticed twinning striations and lenticular albite developed within, with polysynthetic striations also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180   |
| 92<br>93 | MICROCLINE from Lampersdorf, Silesia. (After A. Beutell.) Section<br>parallel $oP$ . The microcline is in part homogeneous, in part shows<br>the latticed structure; the larger albite bands run parallel to the<br>edge $oP: \bar{P} \infty$ and show fine twinnings striation parallel $oP: \infty \bar{P} \infty$<br>MICROPERTHITE. $a =$ section parallel to the separation-plane cor-<br>responding $\infty P \infty$ , shows a peculiar network composed of filaments<br>refracting light powerfully, crossing each other at right angles.<br>$b =$ section parallel $oP$ , $c$ parallel $\infty \bar{P} \infty$ , both with entered poly- | 180   |
|          | synthetically twinned albite lamellæ. (After Becke.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180   |
| 94       | Plagioclase crystal showing the position of the obtuse edge $P/M$ ,<br>and the bearing of the directions of extinction toward them. (After<br>Schuster.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 182   |
| 195      | PLAGIOCLASE. Cross-section parallel $\mathcal{M}(\infty \stackrel{p}{\nearrow} \infty)$ . Right longitudinal plane $(\infty \stackrel{p}{\nearrow} \infty)$ of a crystal correctly oriented. (Compare Fig. 94.) The obtuse edge $P: \mathcal{M}$ lies above                                                                                                                                                                                                                                                                                                                                                                                      | 182   |
| 96       | PLAGIOCLASE. Cross-section parallel $P(oP)$ . Upper terminal plane $(oP)$ of an oriented crystal; the obtuse edge $P: M$ lies to the right.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 182   |
| 97-      | -1016. Interference figures of PLAGIOCLASE on cleavage leaflets par-<br>allel $M$ and $P$ . They have reference to the upper $oP$ - and right $oo P oo$ -planes of an oriented crystal (Fig. 94), and are all in the same<br>position as Figs. 95 and 96.                                                                                                                                                                                                                                                                                                                                                                                        |       |
|          | Fig. 07 Albite. parallel $M(\infty \not P \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 182   |
|          | 98 Oligoclase, parallel $M(\infty \not P \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 184   |
|          | 99a Labrador, parallel $M(\infty \not P \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186   |
|          | 99b Labrador, parallel P(0P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186   |
|          | 100 <i>a</i> Bytownite, parallel $M(\infty \not \stackrel{p}{\rightarrow} \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 186   |
|          | 100b Bytownite, parallel P(oP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 186   |
|          | 101 <i>a</i> Anorthite, parallel $M(\infty \not P \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188   |
|          | 1010 Anorthite, parallel $P(oP)$ (Figs. 95–101 after Schuster.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 188   |
| 102      | ANDESINE, Cross-section parallel oP. Zonally developed. (After Becke.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 185   |
| 102      | AGGREGATES of acicular zeolite crystals and concentric conchoidal car-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Sec. |
| 103      | bonates as cavity-deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195   |

# CUTS ACCOMPANYING PART II.



F1G. 51.







FIG. 52.

FIG. 53.





FIG. 55.

CUTS ACCOMPANYING PART II .- Continued.









FIG. 58.



FIG. 59.







FIG. 61.







FIG. 62.

# CUTS ACCOMPANYING PART II.

CUTS ACCOMPANYING PART II.-Continued.





FIG. 65.



FIG. 66.







FIG. 68.





b







FIG. 70.



e

FIG. 63.

CUTS ACCOMPANYING PART II.-Continued.



FIG. 71.

b



FIG. 72.



+



a

b

a

ъ

FIG. 76.

FIG. 74.



FIG. 77.

# CUTS ACCOMPANYING PART II.

FESE LIBRA

CALIFORNIA

UNIT

# CUTS ACCOMPANYING PART II.-Continued.



CUTS ACCOMPANYING PART II.-Continued.



# CUTS ACCOMPANYING PART II.

CUTS ACCOMPANYING PART II.-Continued.





FIG. 91.



FIG. 92.







CUTS ACCOMPANYING PART II.-Continued.



FIG. 95.



FIG. 96.



FIG. 97.



FIG. 98.



FIG. 99 b.



FIG. 99 a.

# CUTS ACCOMPANYING PART II.

### CUTS ACCOMPANYING PART II .- Concluded.



FIG. 100 a.



FIG. 100 b.



FIG. 101 a.



FIG. 101 8.







FIG. 103.



PACE

#### A

| Aegerine                                | 197  |
|-----------------------------------------|------|
| Aggregate                               | 188  |
| Acmite 172,                             | 197  |
| Actinolite                              | 197  |
| Albite                                  | 198  |
| Almandine                               | 198  |
| Ammonium-magnesium Phosphate            | 6:   |
| Amorphous Minerals                      | 112  |
|                                         | , 30 |
|                                         | 100  |
| Analcime                                | IOS  |
| Analyzer                                | 8    |
| Anatase                                 | 124  |
| Andalusite                              | IO   |
| Andesine                                | IO   |
| Anisotrope                              | 10   |
| Anomite                                 | 100  |
| Anorthite                               | 100  |
| Anthophyllite                           | 100  |
| Apatite                                 | 100  |
| Arragonite                              | 10   |
| Arfvedsonite                            | 100  |
| Augite, Ordinary and basaltic           | 100  |
| - optical orientation of                | -95  |
|                                         | 02   |
| cleavage of                             | 8    |
|                                         | 01   |
|                                         | 92   |
| Axes of elasticity Determination of the | 4.   |
| position of                             | 26   |
| Axial plane. Determination of the posi- |      |
| tion of the optic                       | 2:   |
| Axial colors, Determination of the      | A    |
|                                         | -    |

#### PAGE Becker ..... 202, 204, 207, 208 Belonite...... 87 Bertrand ...... 7 Bitumen..... 110 Bodewig ..... 203 Böhm..... 198 Boricky ...... 51, 55, 207-210 Bourgeois...... 51 Brögger. ..... 208 Bücking ..... 200 Bütschly..... 199 Bytownite......186, 200

### С

| Ladmium-boro-tungstate solution    | 73   |
|------------------------------------|------|
| Cæsium alum                        | 63   |
| Calcite                            | 200  |
| Calcite plate                      | 12   |
| Calderon                           | 7    |
| Double-plate                       | 12   |
| Calderon y Araña                   | 201  |
| Carinthine                         | 172  |
| Cancrinite                         | 200  |
| Cathrein                           | -212 |
| Centring adjustment on microscope  | 13   |
| Chabazite                          | 194  |
| Chalcedony                         | 200  |
| Chemical investigation, Methods of | 50   |
| Chiastolite152,                    | 201  |
| Chlorite                           | 162  |
| Chloritoid 162,                    | 201  |
| Chlorophæite192.                   | 213  |
| Chromite                           | 201  |
| Chrustschoff                       | 213  |
| Clinochlore                        | 162  |
|                                    |      |

#### B

| Bachinger               | 203 |
|-------------------------|-----|
| Barrois                 | 201 |
| Barium-mercury solution | 75  |
| Bastite                 | 200 |

| · · · · · · · · · · · · · · · · · · ·      | AGE |
|--------------------------------------------|-----|
| Cohen                                      | 209 |
| Condenser                                  | 10  |
| Cordierite 40, 47, 154,                    | 201 |
| Corrosion of the rock-forming minerals     | 88  |
| Corundum                                   | 138 |
| Couseranite126,                            | 201 |
| Cross 198, 201, 204, 205,                  | 213 |
| Crystal formation, Disturbances in the     | 87  |
| Crystallites                               | 86  |
| Crystallization, Determination of the sys- |     |
| tems of                                    | 106 |
| Crystalloids                               | 86  |
| Cyanite                                    | 202 |
|                                            |     |

# D

E

| Eisen-kies          | 108 |
|---------------------|-----|
| Elæolite134,        | 203 |
| Enstatite           | 203 |
| Epidote             | 203 |
| Extinction, Oblique | 25  |
| , Parallel          | 19  |

# , F

| Feldspar, Shell-formed structure of | 91   |
|-------------------------------------|------|
| , Decomposition of                  | 102  |
| Fisher                              | 197  |
| Fletcher                            | 213  |
| Fluid inclosures 94                 | , 95 |

| Fluor-spar (Fluorite)                     | 02 |
|-------------------------------------------|----|
| Form of occurrence of the rock-compo-     | ~5 |
| nents                                     | 81 |
| v. Foullon 2                              | 80 |
| Fouqué1, 66, 76, 79, 81, 197, 205, 206, 2 | 13 |
| Fourth-undulation mica                    | 13 |

CR

# G

| Gas-pores     | ~   |
|---------------|-----|
| Gostaldite    | 94  |
| Gastalulle    | 194 |
| Gisevius      | 67  |
| Glasmasse     | 112 |
| Glaucophane   | 202 |
| Globulite     | 86  |
| Goldschmidt   | 201 |
| Garnet        | 116 |
| Graphite      | 204 |
| v. Groddeck   | 207 |
| Groth 16, 45, | 212 |
| Green earth   | 192 |
| Gümbel        | 205 |
| Gylling       | 211 |
| Gypsum178,    | 204 |
|               | _   |

# н

| 114880                   | 209  |
|--------------------------|------|
| Hague                    | 205  |
| Hammerschmidt            | 204  |
| Harada's apparatus       | 70   |
| Hare                     | 211  |
| Hausmann                 | 203  |
| Hauyn                    | 204  |
| Heating apparatus        | 15   |
| Helminth162.             | 210  |
| Hematite                 | 204  |
| Hercynite 118.           | 204  |
| Hexagonal minerals       | 128  |
|                          | . 20 |
| Höhfner                  | 210  |
| Hollrung                 | 210  |
| Hornblende, Cleavage of  | 84   |
| Ordinary and basaltic    | 172  |
| Opacitic border of       | 80   |
| - Optical orientation of | 09   |
| Humboldilith             | 20   |
|                          | 120  |
| <i>Hussak</i>            | 211  |
| Hydrofiuosilicic acid    | 55   |
| Hypersthene148,          | 204  |
| , Inclosures in          | 100  |
| , Optical orientation of | 22   |
|                          | 48   |

#### PAGE |

| Iddings                                    | 205 |
|--------------------------------------------|-----|
| Ilmenite                                   | IIC |
| Index of refraction, Determination of. 14, | 44  |
| Inclosures of the rock-forming minerals    | 93  |
| — of gases                                 | 94  |
| of fluids                                  | C.  |
| of vitreous particles                      | 07  |
| of foreign minerals                        | 00  |
| Inastranzeff 200                           | 202 |
| Interference-figures                       | 22  |
| Interpenetration of the rock-constituents  | 3-  |
| Interpenetration of the rock constituents  | 93  |
| Investigation, Optical methods of          | 10  |
| , Chemical methods of                      | 50  |
| Isotrope                                   | 106 |
|                                            |     |

т

| Jeren  | nejeff | • | <br> | <br> |         | <br> | <br>   |    |    |    |      | 198 |
|--------|--------|---|------|------|---------|------|--------|----|----|----|------|-----|
| v. 701 | hn     |   | <br> |      | <br>• • | <br> | <br>19 | 8, | 20 | 3, | 205, | 210 |

# K

| v. Kalkowsky 202-2                                                                                             | 204, 206, 211, 212 |
|----------------------------------------------------------------------------------------------------------------|--------------------|
| Kaemmerite                                                                                                     | 162                |
| Kispatič                                                                                                       | 208                |
| C. Klein                                                                                                       | 7                  |
| D. Klein                                                                                                       |                    |
| Klein's solution                                                                                               | 73                 |
| Klockmann                                                                                                      | 210                |
| Kloos                                                                                                          | 02, 204, 207, 213  |
| Knop                                                                                                           | 54, 206            |
| v. Kobell                                                                                                      | 202                |
| Koch                                                                                                           | 197, 200, 203, 212 |
| Koenig                                                                                                         | 199                |
| Koller                                                                                                         | 207                |
| Kosmann                                                                                                        |                    |
| Krenner                                                                                                        | 205                |
| Kreutz                                                                                                         | 199, 205, 208, 210 |
| Küch                                                                                                           | 203                |
| The second s |                    |

| 186, | 20                                                               |
|------|------------------------------------------------------------------|
| 200, | 213                                                              |
| 211- | 213                                                              |
| 205, | 208                                                              |
|      | 210                                                              |
| 201, | 211                                                              |
| 122, | 20                                                               |
| 136, | 200                                                              |
|      |                                                                  |
|      | 80                                                               |
| 198, | 20                                                               |
|      | 20                                                               |
|      | 186,<br>200,<br>211-<br>205,<br>201,<br>122,<br>136,<br><br>198, |

| М                                         | PAGE    |
|-------------------------------------------|---------|
| Magnesite                                 | 2, 206  |
| Magnetite                                 | 8, 206  |
| Magnet-kies                               | 110     |
| Maly                                      | . 212   |
| Mann                                      | 7, 212  |
| Margarite                                 | 86      |
| Measurement of angles                     | 83      |
| Mechanical separation of the rock-forming | g       |
| minerals                                  | 66      |
| by means of solutions of hig              | h       |
| specific gravity                          | 67      |
| by the solution of the iodides of         | əf      |
| barium and mercury                        | 75      |
| by the solution of the iodides of         | of      |
| potassium and mercury                     | 67      |
| by the solution of cadmiu                 | m       |
| boro-tungstate                            | . 73    |
| by means of the electro-magne             | t. 79   |
| by means of acids                         | 70      |
| — , Apparatus for                         | . 70    |
| Meionite                                  | 4, 200  |
| Melanite                                  | 0, 200  |
| Memmin                                    | 0, 200  |
| Meyer                                     | 0, 200  |
| Michael I days + 08 44 57 66 56 87 100    | 10-213  |
| Interet Decy, 20, 44, 51, 50, 70, 61, 19  | 7, 207, |
| Microchemical Methods                     | -,      |
| of Bořicky                                |         |
|                                           | 50      |
| Microchemical reactions with Aluminiu     | m 62    |
| Barium                                    | . 63    |
| Boron                                     | . 65    |
| Calcium                                   | 57, 60  |
| Chlorine                                  | . 64    |
|                                           | 64      |
| Iron                                      | 57, 63  |
| Lithium                                   | 57, 63  |
| Magnesium                                 | 57, 62  |
| Manganese                                 | 58, 63  |
| Phosphorus                                | 64      |
| Potassium                                 | 56, 60  |
|                                           | 65      |
| Sodium                                    | 56, 61  |
| Strontium                                 | 58, 63  |
| ——————————————————————————————————————    | 64      |
| Water                                     | 66      |
| Microcline                                | 0. 207  |

Micrometer.....

14

# 231

2

| A | G | E |  |
|---|---|---|--|
|   |   |   |  |

P

| Micropegmatite                        | 93   |
|---------------------------------------|------|
| Microperthite                         | 180  |
| Microscope                            | 7    |
| Monoclinic minerals                   | 107  |
| , Behavior of, in pol. light 23, 36   | , 40 |
| Morphological properties of the rock- |      |
| forming minerals                      | 81   |
| Mügge197,                             | 207  |
| Müller 198,                           | 201  |
| Muscovite                             | 207  |
|                                       |      |

N

| Natrolite             | 194 |
|-----------------------|-----|
| Nepheline             | 207 |
| Nessig                | 214 |
| Niedzwiedzky          | 205 |
| Nigrine               | 122 |
| Non-pellucid minerals | 108 |
| Nosean                | 207 |
|                       |     |

### 0

| Ocular micrometer                      | 14   |
|----------------------------------------|------|
| Oebbeke                                | , 76 |
| Oligoclase                             | 207  |
| Albite                                 | 208  |
| Olivine                                | 208  |
| , Decomposition of                     | 101  |
| Omphacite                              | 202  |
| Opacitic border                        | 89   |
| Opal                                   | 208  |
| Optically-uniaxial minerals18, 30, 46, | 106  |
| Optically-biaxial minerals20, 32, 47.  | 107  |
| Orthoclase                             | 208  |
| Oschatz                                | 200  |
| Ottrelite 164,                         | 200  |
|                                        |      |

P

| Penck                       | 209   |
|-----------------------------|-------|
| Penninite                   | 162   |
| Perowskite120,              | 209   |
| Peters                      | 212   |
| Pfaff                       | 209   |
| Phlogopite158,              | 209   |
| Pichler                     | 213   |
| Picotite                    | 209   |
| Pinite                      | 209   |
| Plagioclase                 | 209   |
| , Shell-formed structure of | 91    |
| , Twins of                  | 3, 44 |
| Pleochroism                 | 45    |
| Pleonaste 110, 118,         | 210   |
| Pohlig                      | 201   |
| Polarization-microscope     | .7, 8 |
|                             |       |

|                                       | TUR |
|---------------------------------------|-----|
| Polarizer                             | 7   |
| Potassium fluo-borate                 | 61  |
| Mercury solution                      | 67  |
| Platinum chloride                     | 61  |
| Preparation of microscopical sections | 3   |
| Prism, Nicol's                        | 7   |
| Protobastite 150,                     | 210 |
| Pseudo-crystals                       | 89  |
| Pyrite                                | 103 |
| Pyrope                                | 210 |
| Pyrrhotine                            | 110 |
|                                       |     |

### Q

| Juartz              | 210 |
|---------------------|-----|
| wedge               | 13  |
| plate, Biot-Klein's | TI  |

# R

| v. Rath198, 202, 20              | 05-207, 209, 211  |
|----------------------------------|-------------------|
| Regular minerals                 |                   |
| , Behavior of, in pol. 1         | ight17, 30        |
| Renard 165, 198, 20              | 00, 202, 204, 209 |
| Reusch                           | 200, 203, 208     |
| Rhombic minerals                 |                   |
|                                  | ight 21, 35       |
| Riess                            | 8. 202. 204. 214  |
| Ripidolite                       |                   |
| Rohrbach                         | 67. 75            |
| Rose                             | 04. 208. 200. 213 |
| Rosenbusch 1. 7. 16. 45. 51. 76. | 81. 02. 107-200.  |
|                                  | 5 207-210 212     |
| Rath                             | 101 211           |
| Duballan                         | 1                 |
| Dutile                           | 150, 210          |
| Autile                           |                   |

# s

| Sagenite                              | 122 |
|---------------------------------------|-----|
| Salite170,                            | 202 |
| Sandberger 205, 211,                  | 213 |
| Sanidine166,                          | 208 |
| Sauer                                 | 210 |
| Scapolite 124,                        | 211 |
| Scolecite                             | 194 |
| Scheerer                              | 203 |
| Schönn                                | 51  |
| Schörl                                | 138 |
| Schrauf 198, 200, 202, 205, 208, 210, | 211 |
| Schultze                              | 208 |
| Schulze                               | 211 |
| Schumacher                            | 211 |
| Schuster                              | 213 |
| Sericite                              | 160 |
| Serpentine                            | 211 |

| PAC                                    | 3 K |
|----------------------------------------|-----|
| Shell-formed structure of crystals     | 90  |
| Siderite I                             | 32  |
| Silico-fluorides                       | 58  |
| Sillimanite 142, 2                     | 11  |
| Single-refracting minerals             | 17  |
| Sipocz 201, 2                          | 09  |
| Sismondine162, 2                       | or  |
| Sjögren I                              | 99  |
| Smaragdite172, 1                       | 74  |
| Sodalite                               | 11  |
| Sommerlad 2                            | 04  |
| Sorby                                  | 10  |
| Specific gravity, Determination of     | 68  |
| Spinel I                               | 18  |
| Stage, Heating                         | 15  |
| of the polarization-microscope         | 7   |
| scale                                  | 14  |
| Staurolite                             | 12  |
| Stauroscopic apparatus 7,              | 13  |
| Stelzner 200, 203, 205, 206, 2         | 09  |
| Stilbite I                             | 94  |
| Streng                                 | 12  |
| Structure of the rock-forming minerals | 87  |
| Szabo                                  | IOI |
|                                        |     |

| - |  |
|---|--|
|   |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| Talc                | 160, 212           |
|---------------------|--------------------|
| Teller              | 198, 203, 205, 210 |
| Tetragonal minerals |                    |
| , Behavior of, in 1 | pol. light 18, 30  |
| Thoulet             | 6, 44, 66, 81, 201 |
| Titanite            | 25, 42, 176, 212   |
| Titaneisen          | 102, 110, 205      |
| Titan magneteisen   |                    |

| FAUS                                   |
|----------------------------------------|
| Törnebohm 197, 200, 203, 211, 213, 214 |
| Courmaline                             |
| fremolite                              |
| Frichite 87                            |
| Friclinic minerals                     |
| , Behavior of, in pol. light 28, 37    |
| Fridymite 130, 212                     |
| Trippke 203                            |
| Tschermak                              |
| Twins, Behavior of, in pol. light      |
| TT 5,                                  |
| U                                      |
| Uralite 174, 213                       |
| V                                      |
| Valée-Poussin 209                      |
| Velain                                 |
| Viridite                               |
| Vitreous inclosures                    |
| Vogelsang                              |
| Vrha                                   |
| 117                                    |
| W                                      |
| Websky 211                             |
|                                        |

| Vebsky 21    | I |
|--------------|---|
| Wedding 19   | 9 |
| Weigand 21   | I |
| Weiss208-21  | I |
| . Werveke    | 2 |
| Wichman      | 3 |
| Williams     | 7 |
| Wollastonite | 3 |
|              |   |

|           |      |         | 4    |           |      |    |     |      |      |
|-----------|------|---------|------|-----------|------|----|-----|------|------|
| Zeolites. | <br> | <br>    | <br> | <br>      |      |    |     | 194, | 213  |
| Zircon    | <br> | <br>• • | <br> | <br>•••   |      |    |     | 124. | 213  |
| Zirkel    | <br> | <br>    |      | <br>      | . I, | 51 | 76, | 197- | -214 |
| Zoisite   | <br> | <br>    | <br> | <br>• • • |      |    |     | 154, | 214  |









|                          | TH SCIEN | CES LIBRARY<br>642-2997 |
|--------------------------|----------|-------------------------|
| LOAN PERIOD 1<br>1 MONTH | 2        | 3                       |
| 4                        | 5        | 6                       |

# ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

Books needed for class reserve are subject to immediate recall

| DUE AS STAMPED BELOW |                  |                    |  |
|----------------------|------------------|--------------------|--|
|                      |                  |                    |  |
|                      |                  | State In Car       |  |
|                      | No.              |                    |  |
|                      |                  |                    |  |
|                      |                  |                    |  |
|                      |                  | State State        |  |
|                      |                  |                    |  |
|                      |                  |                    |  |
|                      |                  | and the second     |  |
|                      | and the second   | The second         |  |
|                      |                  |                    |  |
|                      |                  |                    |  |
| Sales and the second | LINIVERSITY OF C | ALIFORNIA BERKELEY |  |

FORM NO. DD8

UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720


