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FROM THE SERIES EDITOR

In 1988, when the RiMG series was called the "Reviews in Mineralogy," Volume
18, Spectroscopic Methods in Mineralogy and Geology, edited by Frank Hawthorne,
was published. Although there were many texts in the field of spectroscopy at that
time, very few had a slant toward geological materials and virtually none stressed the
integrated, multitechnique approach necessary for use in geochemical and geophysical
problems. Volume 18 provided a timely review of cutting-edge spectroscopic techniques
beginning to be used in Earth sciences and became an essential resource to many
scientists and educators for the past two decades.

Sixty RiMG volumes later, Grant Henderson, Daniel Neuville, and Bob Downs
have taken up the task to provide an up-to-date, 21* century perspective of the spectro-
scopic and microscopic techniques that are continuing to be developed and used in the
Earth and materials sciences. One will find that the now "familiar" techniques intro-
duced in Volume 18 have advanced significantly and are more powerful than ever and
that there are many new techniques available for probing the secrets of Earth materials.
Considering how rapidly this field continues to grow, it wouldn't be surprising to see
another RiMG "Spectroscopic Methods" volume published in 20 years!

All supplemental materials associated with this volume can be found at the MSA
website. Errata will be posted there as well.

Jodi J. Rosso, Series Editor
Richland, Washington
February 2014

PREFACE

Spectroscopy is the study of the interaction between matter and radiation and spectroscopic
methods measure this interaction by measuring the radiative energy of the interaction in
terms of frequency or wavelength or their changes. A variety of spectroscopic methods saw
their first applications in mineralogical studies in the early 1960s and 1970s and since then
have flourished where today they are routinely employed to probe both the general nature of
mineralogical and geochemical processes as well as more atom specific interactions. In 1988,
a Reviews in Mineralogy volume (Volume 18) was published on Spectroscopic Methods in
Mineralogy and Geology by Frank Hawthorne (ed). The volume introduced the reader to a
variety of spectroscopic techniques that, up to that time, were relatively unknown to most of
the mineralogical and geochemical community. The volume was a great success and resulted
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in many of these techniques becoming main stream research tools. Since 1988, there have
been many significant advances in both the technological aspects of these techniques and
their applications to problems in Earth Sciences in general while the range and breadth of the
techniques currently employed have greatly expanded since those formative years. The current
volume compliments the original volume and updates many of the techniques. In addition,
new methods such as X-ray Raman and Brillouin spectroscopy have been added, as well as
non-spectroscopic chapters such as Transmission Electron Microscopy (TEM) and Atomic
Force Microscopy (AFM) for completeness.

The first chapter by Lavina et al. introduces the reader to current X-ray diffraction
methods, while those of Newville and Henderson et al. separately cover the widely used
techniques of EXAFS and XANES. The new in situ high-pressure technique of X-ray Raman
is covered in the chapter by Lee et al. There is an emphasis in all these chapters on synchrotron
based methods which continues in the Luminescence chapter by Waychunas. Chapters on high
resolution TEM and its associated spectroscopies, and X-ray photoelectron spectroscopy are
covered by Brydson et al., and Nesbitt and Bancroft, respectively. The study of mineral surfaces
by Atomic Force Microscopy has been covered by Jupille. UV/Vis and IR spectroscopies
are described in the chapters by Rossman, Clark et al., Della Ventura et al., and Hofmeister.
Rossman’s chapter covers the basics of UV/Vis while Clark et al. describes the detection of
materials in the Solar system utilizing UV and IR methods. Synchrotron-based IR imaging is
covered by Della Ventura et al. and errors and uncertainties associated with IR and UV/Vis
data are covered in the chapter by Hofmeister. Photon/phonon interactions such as Raman and
Brillouin are outlined by Neuville et al. and Speziale et al. The latter technique is relatively
new outside the fields of condensed matter and mineral physics but is gaining increasing use
as interest in elastic properties and anomalous behaviors at high pressure continues to grow.
The chapters by Stebbins and Xue, and Pan and Nilges outline the current status of magnetic
resonance methods such as NMR and EPR, respectively. Finally the last three chapters have
been included for completeness and cover the basics of the theoretical simulations that are
carried out to investigate phases beyond accessible experimental pressure-temperature ranges,
as well as aiding in the interpretation of experimental spectra (Jahn and Kowalski), the high
pressure methods that are now commonly employed for many spectroscopic studies (Shen
and Wang) and finally a chapter on methods used in high-temperature melt and crystallization
studies (Neuville et al.).

This volume is the camulative effort of many people whom we gratefully thank, especially
the authors of the chapters for their contributions and the reviewers for their comments and
suggestions. We thank the series editor Jodi Rosso for all her work and Joel Dyon for the cover
image. GSH especially thanks G. Michael Bancroft for his help as the “go to” reviewer when
a quick turnaround was essential. With 20 different groups of authors from all over the world
(Canada, England, France, Germany, Italy, Japan, Korea, Netherlands, USA) and with varying
abilities to adhere to deadlines, it has been a long process and we thank all the authors for their
patience during this time.

Grant S. Henderson
University of Toronto, Canada

Daniel R. Neuville
IPGP-CNRS, France

Robert T. Downs
University of Arizona, U.S.A.
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INTRODUCTION

A century has passed since the first X-ray diffraction experiment (Friedrich et al.
1912). During this time, X-ray diffraction has become a commonly used technique for the
identification and characterization of materials and the field has seen continuous development.
Advances in the theory of diffraction, in the generation of X-rays, in techniques and data
analysis tools changed the ways X-ray diffraction is performed, the quality of the data analysis,
and expanded the range of samples and problems that can be addressed. X-ray diffraction
was first applied exclusively to crystalline structures idealized as perfect, rigid, space and
time averaged arrangements of atoms, but now has been extended to virtually any material
scattering X-rays. Materials of interest in geoscience vary greatly in size from giant crystals
(meters in size) to nanoparticles (Hochella et al. 2008; Waychunas 2009), from nearly pure
and perfect to heavily substituted and poorly ordered. As a consequence, a diverse range of
modern diffraction capabilities is required to properly address the problems posed. The time
and space resolution of X-ray diffraction now reaches to nanoseconds and tens of nanometers.
Time resolved studies are used to unravel the mechanism and kinetics of mineral formation
and transformations. Non-ambient conditions such as extreme pressure and temperature are
created in the laboratory to investigate the structure and properties of the Earth’s deep interior
and the processes that shape the planet.

This chapter is not intended to be comprehensive or detailed, because diffraction is such
a vast subject. We will, however, summarize the principles of diffraction theory under the
assumption that the reader is familiar with basic concepts of the crystalline state. We will
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briefly review the basics of diffraction techniques, using laboratory and synchrotron X-ray
sources and highlight some of their applications in geoscience. For briefness, we will omit the
discussion of structure solution as most of experiments in the geosciences are performed on
materials of known structure.

General resources for crystallographers include the International Tables for
Crystallography (2006), a comprehensive learning and working resource including symmetry
and properties of crystals, theory and practice of most techniques as well as tables of symmetry
elements and mathematical, physical and chemical parameters. A thorough presentation of the
theory of diffraction can be found in Fundamentals of Crystallography (Giacovazzo 2011),
while other noteworthy books include Boisen and Gibbs (1985), Stout and Jensen (1989),
Warren (1990), Ladd and Palmer (2003), Blake and Clegg (2009), and Glusker and Trueblood
(2010). The websites CCP14 and SINCRIS list and link most of the available crystallographic
software; useful crystallographic tools can be found at the Bilbao Crystallographic server
(Aroyo et al. 2006a,b). Crystal structure databases of minerals include the open access
American Mineralogist Crystal Structure Database (Downs and Hall-Wallace 2003), and the
Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues
of the Russian Academy of Science (MINCRYST, Chichagov et al. 2001). Resources for
inorganic crystal structures in general include the Crystallographic Open Database (GraZulis
et al. 2012), the Inorganic Crystal Structure Database (ICSD) and the Cambridge Structural
Database (CSD).

GENERAL ASPECTS

Brief introduction to X-ray diffraction theory

Most X-ray diffraction techniques rely exclusively on the portion of X-rays elastically
scattered by electrons (Thomson scattering). The diffraction event can be visualized as
a consequence of the interaction between electromagnetic radiation and electrons. The
electromagnetic radiation enters the material with a certain frequency and the electrons in
the material “ride the waves”, oscillating in the direction of the polarization of the incident
light. Since an accelerating electron in turn creates electromagnetic radiation, the oscillating
electrons in the material give off light in spherical distributions, all with the frequency of the
oscillating electrons. The transfer of energy from the incident light into the oscillation of the
electrons takes place by decreasing the intensity of the incident X-rays. In order for X-rays to
be diffracted, namely to be spherically scattered and then experience constructive interactions
in particular directions, they have to interact with a material showing a periodicity in the
distribution of electrons comparable to the X-ray wavelength (A). The wavelength of X-rays,
ranging from 0.1 to 100 A (equivalent to energies of about 120 to 0.1 keV) is in the range of
interatomic distances or unit cell sizes, and therefore diffraction can be produced by the elastic
interaction of X-rays with matter having some degree of ordering.

X-rays are scattered by electrons, and as a consequence the scattering power of an atom
is correlated to its number of electrons. Due to the interference between scattered waves
from different portions of the electronic cloud of an atom, the effective scattering intensity,
or scattering factor, decreases with the scattering angle (Fig. 1). Interference effects are
greater with increasing distance from the atom center; outer-shell electrons contribution to
the scattered wave decreases more rapidly in comparison to inner electrons contribution with
increasing scattering angle. For most applications, the distribution of electrons around nuclei
is considered spherical, and so is the scattering factor. Tables of the calculated scattering
factors for neutral atoms ideally at rest can be found in Brown et al. (2006b). Atoms constantly
vibrate about their equilibrium positions. The amplitudes of vibration have two components,
there is a quantum effect, known as zero-point motion, due to the uncertainty principle, while
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Figure 1. The atomic scattering factor for an ideal point-like atom is constant. The volume of a real atom,
however, causes the scattering factor to decrease substantially with the scattering angle (solid curve), an
effect that is increased for atoms in motion as shown by dotted curves calculated for two values of the
displacement parameter B.

above 0 K atoms undergo thermal vibrations around their average positions (Downs 2000).
Furthermore, different atoms, e.g., Si and Al, may occupy a single crystallographic site but in
slightly different locations, and this creates a smear in the average electron density known as
static displacement. Static and dynamic disorders are represented in the description of a crystal
structure with atomic displacement parameters (ADP). The positional disorder of an atom,
whether static or dynamic, has the effect of increasing the average volume of the electron
cloud and therefore decreases the scattering amplitude (Fig. 1). For practical purposes, the
most important facts related to the scattering factors are: i) the Z dependence of the scattering
power makes atoms with similar atomic numbers virtually undistinguishable by means of
X-ray diffraction; ii) the diffracted signal decreases with the scattering angle, therefore X-ray
diffraction peaks at high scattering angles are on average weak; iii) the latter effect is increased
by static and dynamic positional disorder.

Bragg’s description of diffraction by a crystal, although not physical, is useful to explain
X-ray diffraction in an intuitive way and to provide a mathematical method for computing
diffraction directions. In Bragg’s representation, diffraction is described as the reflection of
an X-ray beam by crystallographic planes defined by indices hkl. Incident waves reflected by
equivalent planes with characteristic separation dy,; are in phase if the difference in their travel
(2A in Fig. 2) is equal to an integral number of wavelengths, n:

2d,,8in0,;, = nk ()

The d-spacing of the set of planes generating a diffraction peak may be easily calculated from
observed diffraction angles, provided the wavelength is known, using the Bragg equation. The
minimum d-spacing measured in an experiment defines the resolution. From Bragg equation, it
appears that if an experiment imposes small maximum 20, as is often the case in non-ambient
experiments, the use of incident radiation with short wavelength improves the resolution.

A very useful representation of the translational symmetry of a crystal is given by the
reciprocal lattice, which is derived from the direct lattice as the set of vectors with directions
normal to lattice planes (h k I) and lengths of 1/d;;. The reciprocal lattice allows a simple
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Figure 2. Bragg’s representation of the diffraction condition
as the reflection of X-rays by lattice planes ( & [).

visualization of diffraction conditions by the Ewald construction (Ewald 1921) shown in
Figure 3. The origin of the reciprocal lattice (O) is set at the intersection of a sphere of radius
1/A, the Ewald sphere, with the incident beam passing through the center of the sphere (C). It
is easy to verify that for any reciprocal vector intersecting the Ewald sphere, the angle at the
vertex of the isosceles triangle OCR in Figure 3 equals 20, and therefore Bragg’s equation,
i.e., the diffraction condition, is satisfied when a reciprocal lattice node intersects the Ewald
sphere. Using Ewald’s sphere we can readily notice that the wavelength defines the maximum
resolution: d" . = 1/dy;, = 2/, the sphere of radius 2/) is indeed called the limiting sphere.
The value of d",,x = 2/\ is imposed by Equation (1) since the scattering angle cannot exceed
20 = 180°.

The intensity of a diffracted beam is a function of the technique (formulation for powder
and single crystal monochromatic techniques will be given later), instrumental parameters (e.g.,
intensity of the source) and composition and crystal structure of the specimen. As mentioned
earlier, the objects scattering X-rays are electrons, and so it follows that the intensity of a
diffracted beam depends on the electron density distribution within the crystal. In ordered (in

Figure 3. Ewald representation of the
diffraction condition. O: origin of the
reciprocal lattice, C: center of the Ewald
sphere, R: reciprocal node positional
vector of length 1/d. Only the nodes
of the reciprocal space falling within a
radius 2/d may be placed, upon crystal
rotation, on the surface of the Ewald
sphere and be measured.




Modern X-ray Diffraction Methods 5

a crystalline sense) materials, only the electron density within the asymmetric part of the unit
cell needs to be considered and it can be represented with a set of atomic positions, scattering
factors and displacement parameters. The scattering power of a crystal in the direction of a
diffraction peak is given by the structure factor, F,;:

N N
Fyu=Y ™" =3"f, exp[Zni(hx, +ky; +lz,)} 2)
j=1 j=1

where hkl are the reflection indices, j indicates an atom in the unit cell with scattering factor
Jf; (which includes thermal vibrations), i is the imaginary number, h and 7 are the interplanar
vector and the positional vectors, and x, y, z are the atomic fractional coordinates. The complex
term 2mi(hx; +ky; +lz;) may be viewed as the difference in phase between the atomic position
and the origin of the unit cell. The electron density distribution may be calculated from values
of the structure factors through Fourier transform. However, because only the amplitude of
the scattering factors and not their phase can be measured, the electron density map of an
unknown structure cannot be simply calculated from its diffraction pattern (the phase problem
in crystallography).

Ideal structures, real structures, liquids

Nature offers many examples of large, nearly pure and perfect gems of astonishing beauty,
usually grown in rather unique environments over long time periods. The vast majority of
minerals, however, contain a high concentration and variety of defects that appear wonderful
to the eye of a geoscientist because of the wealth of information they bear. Defects have
an important contribution in a crystal energetics; they are typically strongly affected by the
history of a mineral and, as such, are an important part of the geological record (Putnis 1992;
Ottonello 1997). Defects strongly affect mineral properties, including color, crystal form,
reactivity, diffusion, mechanical strength, thermal conductivity and electronic properties.
Some widespread materials, such as clays and hydroxides, rarely grow in grains large enough
to produce a “good powder pattern.” Furthermore, interstitial water and cations are typically
highly variable from particle to particle and within particles, generating variability in site
occupancies and layer stacking disorders. In contrast, amorphous materials and liquids usually
display short range ordering where interatomic distances show a spherical distribution that
rapidly randomizes beyond a few bond lengths. We will show later that these materials can
also be explored by means of X-ray diffraction.

Common structural defects in minerals include twinning, vacancies and interstitials,
chemical substitutions, chemical disorder among crystallographic sites, dislocations and
stacking faults. Recently, natural quasicrystals have been discovered (Bindi et al. 2009;
Steinhardt and Bindi 2012). Structural defects may be randomly distributed in a crystal or
may be clustered or periodically distributed with very different effects on diffraction patterns.
Defects formed in a crystal at high temperature may achieve an ordered distribution upon
cooling, eventually forming a modulated structure resulting in “extra” peaks in diffraction
patterns compared to random distributions. Defects can be pictured as disruption of the ideal
symmetry, therefore, like a distorted or damaged mirror, they cause a reduction in the “phasing
power” of a lattice, it is therefore intuitive that they have the effect of decreasing or broadening
the Bragg peaks and produce scattering in between Bragg peaks. Structural defects show a
different degree of ordering; the lower the degree of ordering, the more diffuse is its associated
scattering. Defects generate superstructure and satellite reflections, diffuse lines and planes
and more or less isotropic diffuse scattering. Different diffraction methods are employed to
investigate defects, which often require high resolution in order to emphasize weak features
such as the diffuse scattering. The modeling required for the interpretation of defect structures
and their diffraction effects changes with the degree of ordering. Vacancies, interstitials and
modulated structures, twins and stacking fault structures can still be described in terms of unit
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cell parameters and atomic coordinates, in a 4 or higher dimensions space. Consequently, the
diffraction effects of such defects can be described with the same theory of diffraction used for
perfect crystals. For amorphous and liquid phases or highly disordered materials such as clays,
a generalized theory of diffraction is adopted and will be briefly presented later. Among books
dedicated to the characterization of defect structures we mention Billinge and Thorpe (1998),
Snyder and Bunge (2000) and Frey et al. (2010).

Information obtained from X-ray diffraction experiments

Having reviewed the principles of X-ray diffraction, we now summarize the information
that may be derived from diffraction experiments and how it can relate to geoscience problems.
If samples of good crystallinity and suitable instruments are available, X-ray diffraction
can provide structural information of very high precision and accuracy. We recall that the
information is averaged over the volume of the illuminated sample and is not element-selective
(with the exception of resonant diffraction techniques). For instance, most X-ray diffraction
techniques cannot discriminate between a site occupied entirely by silver and a site occupied
by equal amounts of palladium and cadmium because the total number of electrons is the same
in both cases. Spectroscopic data, displacement parameters and bond lengths considerations
are therefore complementary to X-ray diffraction. In contrast, structural parameters from
diffraction analysis are often indispensable information in the interpretation of spectroscopic
results.

The combination of diffraction angles and intensities is characteristic of a mineral, and
therefore constitute a powerful tool for phase identification through search/match routines
using crystallographic databases. It is also possible to perform an estimation of phase
abundances through whole profile fitting of powder diffraction data.

From the geometrical distribution of diffraction effects (diffraction angles) the geometry
of the crystal lattice, its orientation, and the unit cells parameters a, b, ¢, o, B, v can be
determined. Lattice parameters not only represent a fundamental component in the structural
characterization of a material, but from these a wealth of geologically relevant information
may be derived. Provided the composition is known, the mineral density may be calculated, a
parameter essential to the modeling of the Earth’s interior and processes such as the segregation
of crystals in magma and planetary differentiation. The determination of lattice parameters as
a function of pressure and temperature provides important thermodynamic parameters such as
bulk and linear compressibility and thermal expansion. Materials of the Earth may experience
immense non-hydrostatic stresses (orogenesis, earthquakes, meteorite impacts etc.), resulting
in lattice deformations that depend on pressure, temperature, grain size, orientation and
material properties. Strain is measured in situ by producing controlled stress and measuring the
deformation. Residual strain is measured in natural samples with the purpose of reconstructing
the history and value of the stress tensor, estimate the size and velocity of an extraterrestrial
object impacted on Earth, or to determine the origin of a mineral. The lattice preferred
orientation in a rock (widely studied by electron microscopy except for in situ investigations)
usually determines the rock anisotropy.

Diffraction intensities, as mentioned earlier, depend on the atomic arrangement and static
or dynamic displacements of atoms. The structural solution is the process of assigning the
atomic distribution in the unit cell. Structure refinement produces accurate atomic positions, site
occupancies and displacement parameters, typically determined through an iterative process
of least-squares minimization of the differences between observed and calculated structure
factors. Structure factors are obtained from the intensities of the diffraction peaks, and are
mathematically related to the structural model. Results of structural refinement can be used to
interpret bulk properties in terms of atomic structure; for instance, the bulk compressibility of
a silicate can be understood in terms of differential bond compressibility and bridging Si-O-Si
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angle bending. The determination of the coordination numbers and bond distances is crucial
in understanding isomorphic substitutions and consequently processes such as differentiation,
ore formation and so forth. Experimental site occupancies give the intracrystalline atomic
distribution of binary solid solutions as long as atomic species differ sufficiently in atomic
number. The systematic characterization of mineral structures leads to the development of
predictive models of the crystal chemistry of minerals and empirical trends in the behavior of
minerals (Hazen and Finger 1982).

Some of the main weaknesses of X-ray diffraction are related to the Z-dependency of
atomic diffraction power. Parameters of light (low atomic number) elements can be difficult to
determine particularly when the sample also contains heavy elements, because the contribution
of the stronger scatterers dominates the signal. Furthermore the information derived from
an X-ray experiment is an average over the illuminated volume, it makes no difference in
most techniques if substituting elements are clustered in neighbor unit cells or are randomly
distributed.

X-ray: characteristics, sources, choice

X-ray sources differ substantially in power, energy (wavelength), beam geometry and
tunability. An X-ray source is described by its intensity (photons/sec), collimation (angular
divergence), beam size, spectral distributions, and time structure. A quantity commonly used
to characterize an X-ray source is the brilliance:

- intensit
brilliance = Y

3
divergence x area x bandwidth

in which the intensity is usually expressed in photons/seconds, the divergence in mrad?, the

area in mm?, the bandwidth, describing the spectral distribution, is expressed in 0.1%. Several

orders of magnitude separate the brilliance of laboratory sources from synchrotrons and these

from free-electron lasers (Fig. 4).

Laboratory sources include sealed tubes and rotating anodes. In both devices a metal
target is bombarded with a beam of electrons accelerated by a high electrical potential applied
between the filament emitting electrons and the target. The interaction between the electron
beam and the target’s electrons include collision, excitation and de-excitation events that
generate X-ray emissions composed of a white radiation spectrum and few strong peaks
of characteristic wavelength dependent on the material used. The wavelength (L) of the
characteristic radiation is given by Moseley’s Law:

1 c(z-o) (4)
A
where ¢ and o are constants and Z is the atomic number. In most laboratory instruments,
the inner energy level “K,” characteristic wavelength is selected using a monochromator.
Most common target materials are molybdenum and copper with characteristic average K,
wavelengths of 0.7107 and 1.5418 A respectively; other target metals such as Ag and Au are
used for applications requiring higher energy. X-ray laboratory sources are in continuous
development; we recommend consulting vendor websites for the latest updates in laboratory
sources. The performances of laboratory sources differ considerably in flux, and in the
focusing size from about 1 mm to about 0.05 mm. The radiation is unpolarized and spherically
divergent.

Large user facilities, storage rings and free electron lasers, provide radiation of very high
brilliance and properties tunable over a very wide range. Synchrotron radiation is generated
when charged particles traveling at relativistic speed are accelerated. User-dedicated sources
of synchrotron radiation are storage rings of diameter up to about 2 km where a small, high
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energy, pulsed electron beam travels at relativistic speed in a closed path. The energy of a
storage ring reaches 8 GeV (Spring-8, Japan) in third generation synchrotrons; the beam size is
of the order of tens to hundreds of pum, the bunch length is of the order of tens of ps. Because of
relativistic effects, a broad spectrum light is emitted when charged particles traveling at such
speed are accelerated, in a synchrotron this happens as a result of the magnets used to curve
the beam trajectory (curved sections of the ring) and in insertion devices (straight sections of
the ring). Bending magnet sources are characterized by a broad spectrum. Insertion devices
contain an array of magnets of alternate fields causing the electron beam to oscillate in the
horizontal direction. In wigglers the oscillations are relatively large and the light produced
at each oscillation sums up incoherently, the effect is to greatly increase the total power of
the beam, which still displays a broad spectral range. Undulators are designed to obtain
coherent interactions between the light emitted at each oscillation, this occurs for a particular
wavelength and its harmonics only; the emitted beam has reduced angular divergence and is
composed of a few intense peaks with a much higher brilliance compared to bending magnets
and wigglers. The characteristic wavelength of an undulator can be tuned by changing the
intensity of the magnetic field. X-ray optics are used to monochromatize and focus the beam
to a wide range of sizes. Monochromatization is achievable down to meV and focusing can be
brought down to tens of nm. A synchrotron hosts a large number of beamlines, equipped with
different insertion devices and X-ray optics to customize the experimental stations with the
radiation most suitable for a given technique and type of experiments.

X-ray free-electron lasers (FEL) generate much brighter and shorter pulsed X-rays
compared to synchrotrons (Fig. 4). A few are under construction; the Linac Coherent Light
Source (LCLS, Stanford) is the first facility available to the user community. FEL radiation
sources have the power to “see” single atoms and to resolve in time processes such as the
bond formation: observations fundamental to the nature of materials that may affect science
broadly. One of the applications relevant to planetary science is ultrafast diffraction on samples
under pressures and temperatures of the interior of giant planets in laser generated shock
events. Useful introductions to synchrotron and FEL radiations and their applications include
Margaritondo (1988, 2002), Brown et al. (2006a), Sutton (2006), Als-Nielsen and McMorrow
(2011), and Lee (2011).

Finally, efforts have been made to develop sources for portable diffractometers for field-
work and extraterrestrial exploration (Bochenin 1973; Sarrazin et al. 1998, 2005; Yamashita
et al. 2009; Hansford 2011) such as the CheMin instrument installed in the 2012 Mars Rover
(Blake et al. 2009).

Selecting the proper X-ray source is critical to the success of an experiment. The choice of
the source depends on materials, techniques, and type of experiment. Laboratory sources are
routinely used in geoscience for a wide range of experiments, from phase identification to high
resolution non-ambient studies. Compared to central research facilities such as synchrotrons,
where time allocated for individual experiments is very limited (typically a few hours to a few
days), laboratory X-ray diffraction instruments have much less time restrictions, which can be
used to tune and optimize the data collection conditions. The high brilliance of synchrotron
radiation is essential to perform experiments on very small samples and weak scatterers,
for ultra-fast time-resolved studies, where highly focused radiation is required to reduce
scattering effects from the environmental cell, for high resolution mapping, or when high
energy or specific wavelengths are necessary. The drawbacks of using synchrotron radiation
are mostly related to the limited time available, the traveling costs, and less standardized data
collection and processing procedures compared to laboratory sources. Accurate planning of
an experiment is critical to its success. In general, there is no cost associated with running the
experiment, as these costs are usually absorbed by the agency that funds the facility.
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X-RAY DIFFRACTION TECHNIQUES

Single crystal monochromatic diffraction (SXD)

Single crystal monochromatic diffraction is a very mature technique described in details
in several books, including Stout and Jensen (1989), Clegg (2001), Ladd and Palmer (2003),
Dauter and Wilson (2007), Glusker and Trueblood (2010). As shown in Figure 3, for an
arbitrary orientation of a crystal in a monochromatic X-ray beam, it is highly unlikely that
more than a few reciprocal space nodes fall on the Ewald sphere and therefore, satisfy the
reflection condition, and generate Bragg peaks. In order to measure a sufficient portion of
reciprocal space, a crystal must be rotated to bring more vectors into the diffraction condition.
If alarge area detector and short wavelengths are used, it might be sufficient to rotate the crystal
along a single axis (rotation method). The output of a typical SXD data collection consists
of a peak list, including indices, diffraction angles, integrated intensities and their standard
deviations. If an area detector is used, then the peak positions (directions of diffracted beams)
are represented by detector pixel coordinates, whereas with a point detector, all diffraction
events occur in the detector plane (usually horizontal) and the detector angle is sufficient.
Angles are used to determine unit cell parameters, while intensities are used to determine the
average atomic arrangement in a crystal.

Measurements. The essential parts of a single crystal diffractometer are a monochromatic
X-ray source, a goniostat, a detector and computer control. Most laboratory diffractometers
use Mo K, radiation (with two spectral components K,,; and K,,) which provides sufficient
resolution. Rotations are realized with Eulerian cradles or kappa goniostats with a variable
number of circles. The greater the number of circles the greater the flexibility in sample and
detector positioning, which is particularly useful when environmental cells are used. The
precision of goniostats is given by the sphere of confusion (SoC): the minimum spherical
volume covering all possible locations of an infinitely small object at all possible goniometer
orientations (Davis et al. 1968). High precision goniostats are required when small crystals
are studied with beams of comparable size. Point (scintillator-based) and area detectors
(CCD, image plate, etc.) are used in SXD. A point detector can be collimated (narrow slits
are positioned in front of the detector to block radiation coming from directions other than
the sample), which is particularly useful in case of high background. Furthermore a point-
detector data collection can be programmed to modify the speed according to peak intensities,
improving the statistics of weak reflection measurements by increasing I/o(f). This is an
important advantage, considering that the range of intensities of SXD peaks typically exceeds
the linear range of most detectors. Area detectors have the advantages of being fast, and allow
the whole integrated peak intensity to be recorded in one exposure, while a profile is usually
measured in step-scan mode with a point detector. Area detectors record whole portions of
reciprocal space, including off-Bragg intensities. In this way, diffuse scattering or satellite
peaks, that might be overlooked when point detectors are used, can also be recorded.

Sample choice, peak search and indexing. Sample crystals should be carefully selected
using a microscope. Crystals without inclusions, of euhedral shape and with sharp extinction
are more likely to be unstrained single crystals. Depending on sample scattering power
and source intensity, crystals of roughly 50 to 500 um in diameter can be measured with
laboratory instruments while smaller samples, down to below 1 um in size, are measured using
synchrotron radiation. The crystal is positioned at the instrument center (intersection of the
rotation axes) on the beam path. The measurement proceeds with a search for reflections, an
operation that might require a few hours with a point detector. A first evaluation of the crystal
quality is based on peak shapes. “Good crystals” show narrow, symmetric peak profiles. If the
unit cell of the crystal is approximately known, with at least two, but usually not less than 5,
non-coplanar reciprocal vectors (peaks) a lattice can be defined, and using mathematical tools
the conventional cell may be derived, this allows the calculation of an orientation matrix and
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indexing of the peaks. The presence of peaks that cannot be indexed is usually an indication
of multiple crystals or twins. The initial matrix is used to predict peak positions and define the
data collection strategy. This consists of sets of reflections with calculated angular positions
if a point detector is used. With area detectors, a set of rotations/step scans that allow the
exploration of a large portion of reciprocal space is collected.

Lattice parameters. The accurate determination of lattice parameters is critical in
mineralogy. Lattice parameters are determined by least-squares refinements against peak
angles or d-spacings, imposing symmetry constraints when appropriate. The full list of
measured reflections is used in the least-squares refinement when a 2D area detector is used.
With point detectors, a short peak list of particularly carefully chosen reflections is used. The
“8-position centering method” (King and Finger 1979), described in detail by Angel et al.
(2000), consists of measuring one or more reflections at 8 diffractometer positions at opposite
diffraction angles to compensate for instrumental and centering errors provides the basis for a
very precise lattice parameter determination.

Diffraction intensities and data reduction. Peak intensities are measured by swiping
nodes of the reciprocal space through the Ewald sphere (Fig. 3). Unlike the ideal geometric
points, nodes of the reciprocal lattice have a volume determined by the crystal shape and
mosaicity; in order to collect meaningful intensities the entire volume of the nodes must cross
through the Ewald sphere at constant speed. The expression linking experimental integrated
intensities with the structure factors assumes the following form in SXD:

I(hkD) =1, 7‘—2(6—2] VULPTE[F(hkl)]Z Q)
Ve \ mc

cell

where I is the intensity of the incident beam, A is its wavelength, e, m, ¢ are universal
constants, V. and V,; are the volume of the unit cell and of the crystal, L, P and T are the
Lorentz, polarization and transmission factors, E is the extinction coefficient. The process
of deriving observed structure factors from experimental intensities by estimating the above
terms is called data reduction. The L, P, T and E factors differ from peak to peak in SXD; the
proper evaluation of these corrections is essential to obtain high quality structural analysis.
The Lorentz factor is a technique-dependent parameter that accounts for the time required for
reflections to cross the Ewald’s sphere. Algorithms for the calculation of the L factor are given
in the literature (Lipson et al. 2006) and are implemented in most commercial diffractometers.
The polarization factor is a function of the polarization of the incident beam and the scattering
angle. For non-polarized beam, in the case of conventional source, P is given by P = (1 +
cos? 20)/2. The fully polarized synchrotron radiation is slightly modified by the X-ray optics,
algorithms for the calculation of P are given by Kahn et al. (1982); the magnitude of the
polarization correction at synchrotrons is usually very small.

The transmission factor accounts for the attenuation of the incident and diffracted beam
due to crystal absorption. For each reflection the paths of the incident and diffracted beam in the
crystal differ, so does the transmission factor. Due to the systematic trends of X-ray attenuation
factors with energy and atomic number (Chantler 2000), T is small for light-element samples
measured with high energy radiation. It is customary to calculate the “pr” product to gauge the
absorption correction, where 1 is the X-ray absorption coefficient (Hubbell and Seltzer 2004)
and r is the average crystal size. The absorption correction is considered negligible in standard
data collections when pr < 0.1. There are different strategies for calculating the absorption
correction: i) if the crystal shape is known (either a euhedral shape defined by face indices
and the distance of the facet from the crystal center of gravity) the absorption correction is
calculated exactly for every set of diffraction angles; ii) in the semi-empirical correction
(North et al. 1968) a measurement of the attenuation is obtained by measuring the intensity
of few peaks at different combinations of two angles (called y-scan, this azimuthal scan is
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equivalent to moving the reciprocal space node on the surface of the Ewald sphere). Carefully
chosen y-scan curves are then used to model the three dimensional absorption correction; iii)
if the dataset contains a large number of redundant and symmetry equivalent reflections, an
idealized crystal shape can be calculated through the minimization of the discrepancy among
equivalent reflections.

Extinction includes the attenuation of the incident beam, as it travels in the crystal due
to diffraction, and the effect of multiple diffraction within the crystal. E is usually significant
only in low mosaicity specimens measured with fairly low energy radiation. The correction is
usually performed within the structural refinement.

The quality of observed structure factors Fq is quantified by the ratio between the
intensities uncertainties and their values:

_2olf)
sigma ZFOZ

and, in the case redundant reflections are measured, by the discrepancy among equivalent
reflections:

R (6)

2|F - |
R = T @)
where F, is the average intensity of a set of equivalents; the summations are performed over
all i reflections for which at least one equivalent have been measured.

Structural refinement. Due to instrumental limitations (angular limits determined
by movement range, collision limits, detector size) and time constraints, only a portion of
reciprocal space within the resolution limit is usually measured in SXD experiments. Because
the reciprocal lattice has some degree of symmetry, at least the center of symmetry, it is actually
not necessary to measure all peaks within Ewald sphere; nonetheless, collecting redundant
reflections greatly enhances the accuracy and precision of the structural analysis.

Observed structure factors are the input information for structural solution and refinement.
Popular computer programs include SHELX (Sheldrick 2008) and SIR (Burla et al. 2012).
A structural refinement consists of minimization of the differences between observed and
calculated structure factors, for instance:

Sw(Fs-F) @®)

where w is a weighting factor, which is related to the confidence of individual measurements.
F¢ structure factors are calculated based on a structural model defined through atomic
parameters (coordinates, occupancies, and displacement parameters) that are the variables in
the structural refinement. The figures of merit used to assess the quality of a refinement are:
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where n is the number of independent reflections observed and p is the number of refined
parameters. Detailed discussion of these procedures is beyond the scope of this chapter;
nonetheless, it is worth recalling that it is crucial to critically evaluate the output of
crystallographic calculations and to understand whether or not the experimental data can
constrain structural parameters to the desired accuracy. A rule of thumb is to have five or more
independent reflections per refined parameter; a “solid” refinement will have disagreements
between observed and calculated parameters that are randomly distributed with respect to
different sets of reflections (weak and strong, high and low 20); it is important to examine
the correlations between parameters (site occupancies and displacement parameters are, in
many calculations, highly correlated because similar local electron density distributions can be
modeled with different combinations of the two parameters).

Goof = (11)

Advantages. Commercial instruments and software offer highly automated data collection
and reduction procedures. Nonetheless, SXD experiments are cumbersome and time consuming
measurements compared to powder diffraction or Laue techniques. SXD has, however,
advantages that make the technique irreplaceable in several applications. The advantages
include: i) symmetry equivalents reflection and reflections having the same d-spacing do not
overlap, as in powder measurements, reducing the possibility of incorrect interpretations; ii)
subtle features such as weak diffuse scattering can be more easily identified, as will be shown
in detail below; iii) high background and broad peaks, while affecting the overall quality of
the data, do not correlate with structural parameters in the structural analysis; iv) compared
to polychromatic techniques, the data reduction is rather simple. In summary, monochromatic
SXD provides the best measurement of reciprocal space; therefore if crystals of suitable size
are available, then SXD is the method of choice for structural determination of new minerals or
new synthetic phases (e.g., Britvin et al. 2002; Berlepsch et al. 2003; Bindi et al. 2011; Tait et al.
2011; Zelenski et al. 2011), for the study of defect structures, the determination of accurate site
occupancies, atomic displacement parameters (e.g., Nakatsuka et al. 1999) and electron density
distributions. SXD, however, is not suitable for fast time resolved studies and is particularly
challenging at non-ambient conditions.

Laue method

The Laue method is the oldest of the X-ray diffraction techniques and it offers the simplest
setting with minimal instrumental requirements. The technique uses polychromatic radiation.
The sample, composed of one or few crystals, is stationary and the diffracted pattern is collected
with an area detector in transmitted or reflected geometry. In the Laue method, the diffraction
condition is realized for all reciprocal nodes that, for the particular orientation of the crystal,
fall in the volume included between the Ewald spheres of radii 1/A, and /Ay, (Fig. 5).
Many reflections satisfy the diffraction condition simultaneously; a large, though incomplete,
sampling of the reciprocal space is realized in a single exposure from a stationary crystal (Fig. 6).
Because most X-ray area detectors do not discriminate amongst the energies of diffracted
peaks, for a peak at a given 20 only the ratio A/d may be calculated, which makes indexing
more challenging compared to monochromatic techniques. Furthermore, lattice parameters
may be determined up to a multiplicative constant (relative lattice parameters). This problem
can be overcome by collecting also a single monochromatic exposure (at available beamlines)
so the absolute value of few d-spacing may be measured (Budai et al. 2008). Alternatively,
in the quasi-Laue technique, multiple diffraction patterns are collected while scanning the
energy of the beam, so the Laue image is obtained as a series of single variable energy images
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Figure 5. Two dimensional representation of diffraction in the Laue method. The node of the reciprocal
lattice for a given crystal orientation that fall in the volume enclosed by the 1/A,.x and 1/A.;, spheres (grey
area) diffract intermediate energies.

a b

o : ’3":'&“

Figure 6. a) Example of a Laue diffraction pattern obtained from a magnetite crystal (squares) embedded
in plagioclase (circles) and b) strain tensor in polar coordinates for the same sample of magnetite. Unit of
contour are micro-strain (Wenk et al. 2011).

(Wang et al. 2010). If structural refinement is the goal of the experiment, then reciprocal space
needs to be sampled with sufficient coverage. In this case, patterns are collected at different
angles by rotations perpendicular to the beam. Compared to monochromatic data collection,
the data reduction requires additional terms including harmonic deconvolution and intensity
normalization to account for the energy dependence of the intensity of the incident spectrum,
the diffraction efficiency, the crystal absorption and the detector efficiency (Srajer et al. 2000).
For these reasons, Laue diffraction is not commonly the technique of choice for structural
determinations but yet a viable option (Ren et al. 1996, 1999; Yang et al. 1998; Srajer et al.
2000). The Laue technique takes advantage of the full energy spectrum of an X-ray source. A
remarkable advantage of the technique is that the sample can be stationary, unless collecting



Modern X-ray Diffraction Methods 15

intensity data for structural refinement, so there is no need for the sophisticated goniometers
required in other micro-crystallography techniques. It follows that data collection may be
extremely fast (orders of magnitude faster than monochromatic data collection) and samples
may be very small. These two characteristics permit ultrafast time or space resolved studies of
single crystals. Many synchrotrons have one or more beamlines dedicated to the Laue method
(Lennie et al. 2007; Nozawa et al. 2007; Budai et al. 2008; Tamura et al. 2009).

The Laue method has several interesting applications in geoscience. It is possible to
efficiently collect accurate maps of the crystallites size, morphology and mutual orientation of
the grain distribution in a rock sample in one, two or three dimensions (Ishida et al. 2003; Courtin-
Nomade et al. 2008, 2010; Wenk et al. 2011), or to study the residual stress and orientation of
the stress tensor in crystals embedded in rocks (Kunz et al. 2009; Chen et al. 2011a,b). In these
studies, the lattice parameters are known beforehand with good approximation simplifying the
indexing of the Laue pattern. Compared to electron back scattering techniques, mapping of
crystal orientation and lattice strain may be determined with greater accuracy and with depth
resolution in a non-destructive fashion. The Laue method is also useful for the characterization
of micro-minerals embedded in rocks (Kariuki and Harding 1995), this is particularly valuable
for extraterrestrial and rare specimens. Laue maps may be overlapped with compositional or
spectroscopic maps. By using a beam of less than 2 pum, Ivanov et al. (2000) characterized the
structure of florenskyite, FeTiP, a new phosphide mineral embedded in a meteorite thin section.
Shock waves can be used to produce conditions of planetary interiors on small samples for a very
short time; the in situ characterization of these materials must be ultrafast and if the specimen
is a single crystal monochromatic diffraction cannot be performed. Laue exposures have been
used to characterize crystals under shock compression with a resolution of nanoseconds in
pump-and-probe manner (Ichiyanagia et al. 2007; Suggit et al. 2010).

Powder diffraction

Introduction. X-ray powder diffraction is a crystallographic technique for characterizing
structure and phase composition of crystalline samples when the sample is prepared in a
polycrystalline form. Powder diffraction is one of the principal research tools of mineralogists,
since many minerals are available in polycrystalline form. There is a number of very good
books and monographs offering a comprehensive and detailed overview of modern powder
diffraction, in particular Bish and Post (1989), Pecharsky and Zavalij (2009) and Dinnebier
and Billinge (2008) can be recommended to a reader who would like to develop a more in-
depth understanding of the experimental aspects and theory.

The principal condition which needs to be fulfilled to assure sufficient quality of
experimental powder diffraction results is satisfactory particle statistics. Powder diffraction
experiments typically require as many as 10° micrograins of the sample in the X-ray illuminated
volume, with random/uniform distribution of grain orientations.

In single crystal experiments with monochromatic radiation, the crystal needs to be re-
oriented for each diffraction event. However, in the case of powder diffraction, if the particle
statistics conditions are satisfied, then there are grains that are randomly oriented into all the
many diffracting conditions, and therefore diffraction from all of the lattice plane families is
observed simultaneously. Another consequence of powder particle statistics is the shape of the
diffracted signal. In single crystal diffraction, once diffraction condition is met, a directional
beam is scattered from the sample along vector S/, which can be calculated from the Ewald
construction:

Si" =Sy + MRy (12)
where §, is incident beam vector, S}
R is goniometer rotation matrix.

is diffracted beam vector, 7}, is the scattering vector, and
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With powder samples, the different grains that are aligned for scattering of a specific
diffraction peak have many possible azimuthal orientations around the beam, and the diffracted
signal assumes a conical shape (Debye-Scherrer cone) centered around the incident beam
direction.

Powder diffraction performed with a polychromatic incident beam leads to a continuous
diffraction signal with smooth intensity variations as a function of angle and no distinct
spatially resolved peaks. Such signal can only be interpreted if an energy-resolving detector
is used.

Powder diffraction measurement. A goal of the typical powder diffraction experiment
is to measure the angles and intensities of observable diffraction peaks. A critical factor
determining the quality of diffraction data is the resolution, measured as Ad/d, where d is the
d-spacing, and Ad its uncertainty. For high resolution synchrotron powder instruments Ad/d
is often in the 10~ range. High resolution (i.e., low value of Ad/d) means that peak positions
are more accurately determined, and peaks at similar d-spacing values can be better resolved.

Depending on the type of incident radiation used, the powder diffraction experiment can
be carried out with a polychromatic beam in energy-dispersive mode (EDX) (using a solid
state detector with energy resolution) or with monochromatic radiation in angular dispersive
mode (ADX).

Energy dispersive method. The EDX experiment has the advantage of a stationary
point detector, which does not require much angular access to the sample. The detector is
placed at some fixed scattering angle (typically near 10°). This feature is particularly useful in
experiments with sophisticated sample enclosures such as Large Volume Presses, or Diamond
Anvil Cells, which significantly obscure access to the sample (Baublitz et al. 1981). The signal
in the solid state detector is acquired as intensity vs. energy of the diffracted photons. The
simultaneous accumulation of the signal over a wide range of energies (usually 5-100 keV)
makes the EDX data acquisition quite fast. The energy scale of the detector is usually calibrated
using a set of radioactive sources with known values of emission energies. Accurate calibration
of the detector angle is performed with a diffraction standard. The main disadvantage of the
polychromatic approach is the limited-energy resolution of the available detectors. Typical Ge-
based solid state detectors have a resolution of about 25 eV. The uncertainty in the diffraction
peak energy measurement translates into uncertainty in the d-spacing determination as follows:
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As a consequence of the limited energy resolution, EDX diffraction peaks are typically
quite broad and for more complex or lower symmetry crystal structures resolving peak overlaps
at higher energies becomes a significant problem. The EDX method was widely used in the
1980s and 1990s but has become much less popular with the introduction of area detectors for
monochromatic experiments. In principle, it is possible to use peak intensities recorded in the
EDX experiment for structure refinement, however, complicated energy-dependent corrections
(e.g., incident intensity, detector quantum efficiency, sample and sample environment
absorption, etc.) need to be applied (Yamanaka and Ogata 1991; Neuling et al. 1992). Recently,
an interesting hybrid modification of the EDX method, named Combined Angle- and Energy-
dispersive Structural Analysis and Refinement (CAESAR) has been proposed (Wang et al.
2004), which greatly enhances the resolution of the diffraction data while still taking advantage
of the energy-dispersive detector. However, the data collection process in CAESAR is several
orders of magnitude more time consuming, compared to the classical EDX.

Monochromatic method. Two principal ways to detect the diffraction signal scattered
from the sample in the ADX experiment are either to use a scanning point-detector (e.g.,
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scintillator-based), which measures scattered intensity as a function of scattering angle along
a single direction at a time, or to use an imaging area detector which can be placed in the
diffracted signal path and intersects the diffraction cones. Each of these two approaches has
its benefits and disadvantages and we will briefly review specific applications for which one is
recommended over the other.

High resolution powder instruments. When using monochromatic incident X-rays in
the ADX experiment, the spectral purity of both the incident, as well as scattered radiation
contributes to the error in the d-spacing determination through the AE term in Equation (13).
High resolution instruments feature sophisticated monochromators composed of several
highest-quality single crystals (typically Si), which remove most of the unwanted energy-
components of the incident beam. The diffraction signal often contains additional energy
contributions that arise from Compton scattering, X-ray fluorescence, thermal diffuse
scattering, efc. To filter out these contributions, high resolution instruments are often equipped
with an additional detector-path monochromator (analyzer) which provides energy-filtering.

The most popular instrument geometry for high resolution powder diffraction is Bragg-
Brentano design, shown in Figure 7, in which the incident beam, defined by a set of slits,
diverges from a small source towards the sample, and then the diffraction signal, scattered
from the sample, converges (again defined by a set of slits) towards the point detector. To keep
the incident and diffracted beam path symmetric, a 6/20 rotation is typically used, in which
during the scanning process the sample is rotated by 0, while the detector moves by 20 with
each step. Modern synchrotron-based high resolution instruments are equipped with multiple
analyzer-detector banks which permit simultaneous data collection in several 20 ranges at the
same time and significantly shorten the data collection time (Wang et al. 2008). Figure 8 shows
a comparison of instrumental function (angle-dependence of peak width for a peak profile
standard) for a high resolution instrument and an instrument employing an area detector.

Powder experiments with area detectors. The two most common types of area detectors
used for X-ray diffraction include charge coupled devices (CCDs) and image plate (IP)

detector

Figure 7. Bragg-Brentano high resolution diffractometer with analyzer crystal.
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Figure 8. Comparison of instrumental function for a high-resolution
instrument and an instrument employing an area detector.

detectors. Burns (1998) presented an overview of many applications of CCD detectors in
the X-ray diffraction analysis of minerals. CCDs utilize a phosphor screen which converts
diffracted X-rays into visible light and then use electronic chip of the type used in digital
photographic cameras to detect the visible light image. IP detectors store the diffraction
information by utilizing the activation of Eu?* centers present on the surface of the plate. The
signal can then be read with the use of photo-stimulated luminescence in a scanner. CCD
detectors are characterized by much shorter readout time (few seconds) than IPs with on-line
scanners (few minutes), but have higher background noise and smaller dynamic range.

From the point of view of imperfect particle statistics, the area detector has the advantage
of sampling multiple points of intersection of the diffraction cone with the detector surface. If
significant non-uniformity of the intensity of diffracted signal occurs as a function of azimuth
(along the ring of intersection of Debye-Scherrer cone with the detector surface), then area
detectors can be used to average the intensity and better model the intensity distribution. A
scanning point-detector, on the other hand, intersects the Debye-Scherrer cone only at one
point, and therefore is highly susceptible to the effects of preferred orientation, which may
result in peak intensity measurement significantly departing from the theoretical structure
factor amplitudes. These effects can be accounted for by including a preferred orientation
model in the refinement of the structure, but this always significantly reduces the reliability of
the structure determination.

Because of the relatively small size of the CCD chips, CCD detectors often use optical
taper, which de-magnifies the image created on the phosphor to match the size of the chip. This
permits a large active area of detection and increases angular coverage for single exposure.
The taper, however, may introduce an optical distortion to the image and a special distortion
correction is typically required, which can be calibrated. Most modern CCD detectors apply
spatial correction immediately after the diffraction pattern is taken, and the bitmap image that
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is saved is already spatially corrected. Another correction needed for CCD detectors is a dark
current correction, which accounts for the electronic noise contribution.

Area detectors need to be calibrated prior to use for powder data collection. The
calibration procedure determines the sample-to-detector distance, point of intersection of the
incident beam with the detector surface, as well as the detector orientation with respect to
the incident beam. The incident energy is usually calibrated independently of the detector
calibration, e.g., using an absorption edge of a metal foil. The detector calibration is carried
out with a diffraction standard such as LaBg4, CeO, or Si powder. Once a detector calibration
is constrained, it can be used to integrate a diffraction image into a one-dimensional pattern
of 1(20).

Popular computer programs that can be used to calibrate detector geometry and integrate
diffraction images include Fit2d (Hammersley et al. 1996), Two2One (Vogel et al. 2002; Vogel
and Knorr 2005), Powder3d and Powder3d_IP (Hinrichsen et al. 2006) and Datasqueeze
(Heiney 2005).

A very comprehensive review of all aspects of the use of area detector for X-ray diffraction
applications can be found in He (2009).

Peak intensity. In the powder diffraction technique, the peak intensity is derived from
the crystal structure through the structure factor equation in much the same way as in single-
crystal diffraction. The formula for the calculation of the overall intensity contribution of one
phase p to the diffraction pattern has the following form:

i Af, i i
I, =5 ]:l Z(mlxlethBlklAhlehkl(6)|E1k1|2) +bkg (14)
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where S is the global scale factor (applicable to all phases present in the sample, reflecting the
volume of the illuminated sample, incident intensity, etc.), f, is the volume fraction of phase p,
V, is the unit cell volume of phase p, L, is the combined Lorenz and polarization correction,
myy 1s the peak multiplicity, Fy, is the structure factor, Sj,,(0) is the peak profile function, Py, is
the preferred orientation correction, Ay is the absorption correction, and bkg' is the background
term.

The main difference between peak intensity in powder (Eqn. 14) and single crystal diffraction
(Eqn. 5) is the peak multiplicity, my,,. In single crystal diffraction experiments, the symmetry-
dependent peaks, which have exactly the same d-spacing, are observed independently, and
should all have identical intensities. In powder diffraction these peaks overlap with each other
and their intensities sum together. Depending on the number of symmetry equivalent peaks,
different numbers of peak intensities are summed, and therefore, in order to compare powder
and single-crystal peak intensities, the former have to be divided by the peak multiplicity factor.

The types of intensity corrections that have to be applied to powder diffraction data prior
to structure analysis (Lyy, Py, and Ayy) are analogous to corrections used in single crystal
diffraction.

Peak overlap. One of the principal challenges of powder diffraction is the one-dimensional
character of the diffraction data and resulting peak overlap. Since all of the Debye-Scherrer
cones are simultaneously observed and all have the same geometric shape, the cones
corresponding to reciprocal vectors with the same, or very close, d-spacings overlap with each
other. If two or more peaks are too close to each other it becomes difficult to reliably fit their
positions and relative intensities (both of which are necessary for unit cell and crystal structure
refinement). The peak width and the “density” of peaks increase at higher scattering angles,
and the problem becomes much more pronounced in this region. Peak overlap is particularly
dramatic for low symmetry structures, in which many closely spaced peaks occur throughout
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the whole powder pattern. Problems with excessive peak overlap can be at least partially
resolved with the use of high resolution powder diffraction instruments, which contribute very
little instrument-related broadening to the experimental data. For experiments with broader
peaks and significant peak overlap, refinement methods which constrain the peak positions
from the unit cell (LeBail, Pawley and Rietveld methods) provide some help, as peak positions
and intensities are not individually and independently refined, however, the problem with
reliably constraining the intensity partitioning remains.

Peak width. In powder diffraction experiments the observed peak width is a convolution of
sample-related effects and instrument-related effects. Decoupling these two classes of effects
from each other permits the understanding of potentially important sample characteristics.

Typical instrument-related factors, which affect observed peak width, include divergence
of the incident beam, spectral purity (energy-width) for monochromatic beams, detector
acceptance angle (for point detectors) and diffracted signal incidence angle on the detector (for
area detectors). In general, peak width effects of the instrument vary as a function of scattering
angle in a regular way. One of the possible equations to account for this factor, which was
originally derived for neutron diffraction and Gaussian peak shapes, is known as the Caglioti
law (Caglioti et al. 1958):

Hy, =Utan’0,, + Vtan0,, + W 5)

where H,y, is full width at half maximum of the given peak, and U, V and W parameters can
be calculated according to specification of a particular instrument and source, but are usually
refined. Caglioti’s law was later generalized for application to synchrotron and laboratory
X-ray instruments (Sabine 1987; Gozzo et al. 2006).

Scherrer (1918) first observed an empirical rule that the integral breadth of the diffraction
peak, B,y defined as the ratio of peak area to peak maximum, is proportional to the average
particle size of the sample D:

16)

where Kj is a dimensionless particle shape factor, with a typical value of about 0.9, which
varies with the actual shape of the crystallites. The Scherrer formula is useful for characterizing
statistical distributions of grain sizes in nanoparticle materials. It has to be emphasized that the
Scherrer formula is not applicable to grains larger than about 0.1 pm, which precludes those
observed in most metallographic and ceramic microstructures.

Besides the particle size, the diffraction peak width is also affected by the statistical distri-
bution of the unit cell parameters (strain) of individual micrograins. Real materials often exhibit
defects, which affect the micrograin unit cell parameters. Fluctuations of these individual unit
cell parameters, in turn, affect position, size and shape of powder peak profiles. In general, two
types of strain are considered in relation to powders: macrostrain (macroscopic homogeneous
strain affecting all grains equally), and microstrain (non-homogenous strain field - on the length
scale of individual crystallites, which can significantly vary from grain to grain). Macrostrain
affects mainly peak positions, while microstrain results in peak width changes. Stokes and Wil-
son proposed a simple relation for the estimation of the effect of strain on peak profiles:

B= 2(&)5 tan 6 (17)

where ¢ is the lattice strain. By combining the size and strain contributions, the following
relation, originally proposed by Williamson and Hall (1953) is obtained:
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If peak breadths are plotted in y = BcosO, x = sinf coordinate system, then a linear
regression can approximate the average grain size from the line intercept, and the average
microstrain from the line slope. It should be noted that Equation (18) does not account for
instrumental broadening, therefore instrumental function should be calibrated with a line
profile standard (e.g., LaBg supplied by the National Institutes for Standards in Technology)
and subtracted from the observed peak breadths prior to the Williamson-Hall analysis.

cos0,y = sin 6 (18)

While very useful for semi-quantitative interpretation of grain size and strain effects,
the Williamson-Hall method is very approximate. Methods based on Fourier analysis and
convolution decomposition are recommended when more quantitative results are required
(e.g., Warren-Averbach method; Warren 1969).

Preferred orientation. With perfect particle statistics the distribution of scattered intensity
around the diffraction cone should be uniform, except for the incident radiation polarization
effects. In many real cases, however, the requirement for random distribution of micrograins
in the powder sample cannot be satisfied e.g., because of highly anisotropic grain shapes, or
stress-history. Departure from a uniform distribution of grain orientations is known as preferred
orientation. For example metallurgical samples are essentially polycrystalline powders with
frozen grain orientations. The processes involved in fabrication of the metal (e.g., rolling,
drawing, casting) leave a specific record of preferred orientation pattern, which can often
be traced back to the manufacturing methods using diffraction data. Extensive review of all
aspects of texture and preferred orientation can be found in Kocks et al. (1998).

The two most popular methods for the inclusion of the effect of preferred orientation in
structure refinement from powder data are the Dollawse-March model (March 1932; Dollase
1986) and the spherical harmonics approach (Bunge 1965; Roe 1965). In the Dollase-March
method, the Py correction in Equation (14) is calculated according to the following formula:

3
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where summation is over the equivalent peaks occurring at the same d-spacing, m is the
multiplicity factor, o, is the angle between the reciprocal vector corresponding to the n-th
peak and the vector of preferred orientation, and Py, is the additional parameter included in
the refinement which accounts for the degree of preferred orientation.

Results of preferred orientation modeling are often represented in a form of graphs,
known as pole figures, showing the probability of finding certain crystallographic directions
of polycrystalline grains along different directions in the sample.

Peak and whole pattern fitting

Individual peak fitting. The simplest approach to retrieving diffraction peak position
and intensity information from experimental powder pattern is to perform peak fitting with
appropriate peak shape function for each peak individually. Typical profile functions used in
powder diffraction analysis include:

Gaussian:

S (20)=G(20) =1, exp(—0.6931K(29 ~20,,)’) (20)
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Lorenzian:
-1
Sui(26)=L20) =1, 1+ K (20 -20,,)’ | @1
Pseudo-Voigt
S (20) = 1, [aL(26) + (1 - 0)G(26)] (22)
and Pearson-VII:
$u(20)=1,[ 142" K(20-26,,7 | " (23)

where K = 4(1 + S)Y/H?, I, is peak height, H is FWHM, S is the asymmetry parameter, and M
is additional exponent parameter used in the Pearson-VII function. In individual peak refine-
ment, the peak position 6, is usually one of the directly refined parameters, and integrated
peak intensity is calculated from other refined parameters (intensity at peak maximum, peak
width, peak asymmetry parameters, etc.) using analytical formulas for the particular peak shape
function used. In this approach, peak positions are not constrained in any way and the unit cell
is calculated using least squares optimization, after assigning each of the fitted peaks appro-
priate Miller indices. Integrated peak intensities obtained from individual peak fitting can, in
principle, be used for structure refinement in the same way as single crystal intensities. A free
computer program that can be used to perform individual peak fitting is CrystalSleuth (Laetsch
and Downs 2000).

A popular computer program which can be used to refine unit cell parameters from
fitted peak positions with assigned indices is Unitcell (Holland and Redfern 1997). Unitcell
implements several possible statistical weight models that can be assigned to each peak, as
well as an algorithm which identifies outliers that do not follow general statistical trends (e.g.,
because of errors in fitting closely overlapping peaks).

Individual peak fitting is an acceptable approach for very simple crystal structures with
high symmetry, in which peak overlap is not significant. For more complex crystal structures
and lower symmetry cases peak overlap, particularly at high scattering angles, makes fitting of
individual profiles for groups of closely spaced peaks problematic.

One case in which individual peak fitting may have advantages over other fitting approaches
are experiments with significant nonhydrostatic stress. In such cases, the individual powder
peaks may move at a different rate as a function of stress, depending on the linear modulus
along the appropriate lattice direction. The fact that the peak positions are not constrained in
any way during the refinement accounts for this effect. It should be noted that it is possible
to implement a microstrain model into Rietveld refinement (Daymond et al. 1997, 1999),
however this approach introduces additional fitting parameters and is quite sophisticated and,
as a result, not used very often.

Rietveld refinement. The ultimate tool for structure refinement from powder diffraction
datais Rietveld refinement (Rietveld 1967, 1969). Conceptually, the idea of Rietveld refinement
is very simple. The observed diffraction pattern I (index i corresponds numbers all measured
spectral points) is assumed to be a sum of background function bkg; and contributions from all

obs

individual diffraction peaks /;;

I =bkg + Y I (24)
k

where index k refers to individual diffraction peaks. ;' includes appropriate peak profile
functions. Once individual observed peak intensities I} are extracted, they can be compared
with calculated peak intensities /5, obtained from the approximate crystal structure model.

The refinement involves minimization of a weighted sum of squares WSS, defined as follows:
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while varying the structural parameters (unit cell parameters, fractional atomic coordinates,
atomic displacement parameters, site occupancy factors) as well as the peak profile and
background functions to achieve the best match between the observed and calculated
pattern. In the original papers (Rietveld 1967, 1969) which introduced the method, the
background was modeled prior to structure refinement, so that the minimization was done
with a background-subtracted pattern, and the statistical weights were uniform. In the
modern implementation of the method, the background is fit at the same time as the structure
is determined.

The main difference between the Rietveld approach and single-crystal refinement is that
all the additional parameters need to be refined at the same time as the structural parameters,
while the number of independent observations is typically much lower than in single-crystal
case. Due of this deficiency, optimization of all of the refinable parameters at the same time
can lead to divergence and unrealistic values of the parameters. As a consequence, Rietveld
refinement is usually carried out in stages in which different classes of parameters are included
in the optimization individually, while other parameters are fixed. Since Rietveld and Le Bail
refinement include the same definition of peak profile functions and their angular dependence,
it is a common practice to first carry out a Le Bail refinement to optimize unit cell parameters,
peak profiles, and background function independent of the structure, and then use these
as starting values for a Rietveld refinement in which peak intensities are derived from the
structure. Because of the overparametrization problem Rietveld refinement is usually carried
out with isotropic atomic displacement parameters, and often includes constraints or restraints
based on crystallochemical assumptions.

A review of the principles and examples of Rietveld analysis is presented by Von Dreele
in Dinnebier and Billinge (2008). For a more in-depth introduction to the method, Bish and
Post (1989) as well as Young (1993) are recommended.

Most popular computer programs which can be used to carry out Rietveld refinement
include GSAS (Larson and Von Dreele 2000; Toby 2001), Fullprof (Rodriguez-Carvajal
1990), Rietan (Young 1993) and MAUD (Lutterotti et al. 1999).

Pawley and Le Bail whole pattern refinement. Because of the problems with individual
fitting of closely overlapping peak it is difficult to use that approach to extract reliable peak
intensities that could be used for solution of unknown crystal structures. To resolve this
situation, in the 1980’s, a new whole pattern refinement method, which constrains peak
positions to values determined by unit cell parameters, while allowing individual peak
intensities to be refined independently, was introduced (LeBail et al. 1988; Pawley 1981). This
new approach dramatically reduces the number of refined parameters (for N observed peaks
instead of refining N peak position one uses 6 or less cell parameters) and aids in more reliable
refinement of intensity partitioning between closely overlapping peaks. In the Pawley method
(Pawley 1981) peak profile width is constrained by the Caglioti law with the three refinable
parameters U, V, W as defined in Equation (15).

Constraints are introduced to help provide stability of the refinement of closely overlapped
peaks. The Pawley method also calculates a co-variance matrix describing how the extracted
peak intensities correlate with each other and provides reasonable estimates of peak intensity
standard deviations. The disadvantage of the Pawley method is that the inclusion of all the
peak intensities as independent parameters in the optimization creates a challenging numerical
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problem for computer software (very large matrix that has to be inverted) and results in long
computation times.

To solve this numerical challenge a different approach for determining peak intensities, but
still taking advantage of constrained peak positions from unit cell parameters was introduced
by Le Bail et al. (1998). The Le Bail method uses a two-step iterative process in which peak
intensities are no longer treated as refinable parameters. As a consequence, the least-squares
matrix is much smaller and the optimization significantly faster than in the Pawley approach.
In Rietveld refinement, the partitioning of calculated intensity I:““ between overlapping peaks
I{4 is determined by the structure model. In order to obtain observed intensities for the same
peaks, it is then assumed that the I/™ partitions in the same way as I7“. The caveat of this
approach is that for overlapping peaks, an inaccurate or wrong model will lead to improper
estimation of I, Le Bail peak intensity extraction starts from a uniform partitioning of all

cale

calculated intensities /;;° = 1. The Rietveld algorithm is then used to extract [ b after which
the I are reset from the extracted Iy’. This approach assures optimal estimates of peak
intensities in which the intensities of completely overlapped peaks is apportioned according

to peak multiplicity.

Le Bail refinement is often used to retrieve unit cell parameters and confirm the correctness
of indexing in cases when the quality of peak intensities is insufficient for structure refinement
or if the structure of the sample is not known.

Parametric Rietveld refinement. While Rietveld refinement is a very valuable tool for
retrieving information about the atomic arrangements of the crystalline sample, the reliability
of the structure models derived from Rietveld analysis often suffers from insufficient number
of independent observations. In some extreme cases is has even been demonstrated that a
refinement with a wrong unit cell and essentially wrong structure can yield figures of merit
that look satisfactory (Buchsbaum and Schmidt 2007). This problem is particularly dramatic
for experiments at nonambient conditions (e.g., high pressure or high temperature), in which
the sample environment is complicated by the presence of heaters, high pressure cells, etc.
that contribute unwanted signal and intensity-affecting effects to the observed pattern. On
the other hand, when investigating systematic trends, a time, temperature or pressure series
of diffraction patterns, all collected within the same phase stability field are not completely
independent from each other (because the structure changes in a continuous way). Based on
this assumption, Stinton and Evans (2007) proposed an approach to fitting all of these serial
diffraction patterns at the same time while tying the refined parameters together by means
of polynomial equations. This method has been demonstrated to yield much more reliable
and physically reasonable structure models than individual Rietveld refinements (Bish and
Howard 1988; Agostini et al. 2010; Halasz et al. 2010; Miiller et al. 2011). Additional benefit
of the parametric Rietveld refinement is the fact that it produces a model of the structural
evolution accompanying the studied process, which can be much easier understood than a
series of individual models.

Quantitative analysis of phase mixtures. The powder pattern of a crystalline substance
is like its fingerprint, and, as can be seen from Equation (14), its overall intensity is dependent
on the illuminated volume of the sample. For samples composed from multiple crystalline
phases, each phase contribution is scaled by the volume fraction of the given phase. Powder
diffraction-based quantitative analysis (QA) provides for the determination of the composition
of phase mixtures by carrying out a refinement that includes phase volume fractions. The
most popular type of QA analysis with powder data is carried out using multi-phase Rietveld
refinement (Bish and Howard 1988).

In principle, it is possible to carry out powder diffraction based QA even if the structure of
some or all of the phase mixture components are not known (e.g., in case of poorly crystalline
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or amorphous phases) (Scarlett and Madsen 2006). In such cases, it is necessary to obtain
pure-phase samples of each of the components and measure calibration patterns from mixtures
of these pure components with an internal diffraction standard (a common internal standard
is Al,O3 corundum), which yields information about relative total scattering power of each
component. Chipera and Bish (2002) introduced software called FULLPAT for QA if a full set
of such calibration data is available for all components.

The atomic pair distribution function technique (PDF)

The atomic pair distribution function technique, introduced in the 1930s for the
experimental investigation of liquid and crystalline materials (Debye and Menke 1930;
Warren 1934; Warren and Gingrich 1934), has found renewed interest and has been extended
to materials with a wide range of ordering, from completely amorphous to nanocrystalline.
The technique is useful for producing an estimate of the probability distribution of interatomic
separations. A comprehensive description of the technique can be found in Egami and Billinge
(2003); and summarized in several review papers (Proffen et al. 2003; Billinge 2004; Billinge
and Kanatzidis 2004; Page et al. 2004; Proffen 2006). Bragg peaks and diffuse scattered
radiation are treated as a whole in the PDF analysis. The formalism of the PDF technique is
general; no assumptions are made on the atomic structure of materials, instead it is concerned
with the frequency of occurrence of atoms as a function of interatomic distances. The data
collection procedure is basically the same as for collecting a powder diffraction pattern to
high Q values (Q = 4nsinO/A is the magnitude of the scattering vector or momentum transfer),
usually obtained using high energy synchrotron radiation (the real space resolution is inversely
related to the wavelength), but also polychromatic laboratory sources (e.g., Di Marco et al.
2009). The data collection time varies from several hours to seconds depending on the detector
type and the sample characteristics. Measurements are carried out to high-Q values in order
to avoid artificial ripples from the Fourier transformation termination. Particular care must
be taken in the measurement of the background which is subtracted from the sample data;
inaccurate background subtraction can produce severe artifacts in the analysis because the full
pattern is used to constrain structural parameters. From the experimental coherent intensities
1(Q), expressed as a function of the momentum transfer Q, the total scattering structure
function is calculated:

1Q)-Yc|ff
Yes©)f

where ¢; and f; are the respective atom concentrations and atomic scattering factors of the
i atoms, summed over the scattering volume. The experimental PDF is denoted with the
function G(r), calculated as the Fourier transform of the total scattering:

S(Q)= (26)

G(r)=4nr[p(r)—po] = % [ o[s(@) - 1]sin@ndo @7)

where p, is the average atomic number density and p(r) is the atomic pair density. Peculiar to
the PDF technique is that a plot of the G(r) function is a rather intuitive pattern showing real
space maxima corresponding to interatomic distances “weighted” by the scattering factor of
the pairs of atoms and the frequency with which they occur. Highly ordered and symmetric
materials have well defined interatomic distances for many coordination shells and therefore
show sharp peaks in the G(r) plots, while disordered materials have a greater spread of
interatomic distances and therefore they will show broad peaks, particularly at high r. Liquids,
where the ordering vanishes quickly with distance and so interatomic distance randomize
rapidly beyond the first coordination shell (short range ordering), show peaks confined to a
fairly low-r range. The interpretation of a PDF pattern is not necessarily unique. The technique
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is especially suitable for the analysis of elusive structures of complex minerals such as clays
and weathering products (Gualtieri et al. 2008; Di Marco et al. 2009; Fernandez-Martinez
et al. 2010; White et al. 2010) where Bragg and diffuse components are equally important.
The analysis of PDF patterns is a challenging task, but can yield satisfactory results when
coupled with other experiments (Krayzman et al. 2009) and first principle calculations (White
et al. 2010; Fernandez- Martinez et al. 2010). The PDF technique is also a useful tool in
the structural analysis of materials with long range ordering, Billinge and Kanatzidis (2004)
discuss examples where incorrect structural solutions from single crystal analysis are readily
verified by means of PDF analysis. Toby and Billinge (2004) present an important analysis of
the statistics of structural determinations with the PDF technique. In a novel application of the
technique, Li et al. (2011), studied the effect of arsenate doping in y-alumina by analyzing the
differential PDF of untreated and treated samples.

The Fernandez-Martinez et al. (2010) study of the structure of schwertmannite,
(FegOg(OH)s_(SO,),, an important scavenger of As and Se contaminants, offers an instructive
example of the application of the PDF techniques. Occurring as poorly crystallized nanosize
material, schwertmannite achieved the status of mineral only recently (Bigham et al. 1994)
due to the difficulty in defining both its composition and structure. The modeling of the PDF
pattern is performed starting from the structure of the sulfate-free akaganeite (Post et al.
2003), a mineral with an arrangement of FeOg4 octahedra similar to schwertmannite. Figure 9,
with simulated partial and total PDFs of sulfate doped akaganeite, shows how single atomic
pairs sum to give the total G(r). Fe-Fe and Fe-O pairs provide a strong contribution to the
total scattering and therefore are better resolved. Nonetheless, the short S-O bond results in a
distinct feature in the simulated and experimental PDFs (Fig. 9). The authors used the intensity
of the S-O and Fe-O correlations and their weighting factors to estimate the amount of sulfate
in the sample. The fitting of the PDF data provides evidence of a triclinic distortion of the unit

Figure 9. Simulated partial and total PDFs of sulfate-doped akaganeite (leff) and comparison between
calculated (upper three) and experimental (bottom three) PDFs of the oxyhydroxysulfates (right) by Fer-
nandez-Martinez et al. (2010).
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cell of schwertmannite from the monoclinic akaganeite, however it could not discriminate two
different models for the arrangement of the FeOg4 octahedra.
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The basic physical principles of X-ray Absorption Fine-Structure (XAFS) are presented.
XAFS is an element-specific spectroscopy in which measurements are made by tuning
the X-ray energy at and above a selected core-level binding energy of a specified element.
Although XAFS is a well-established technique providing reliable and useful information
about the chemical and physical environment of the probe atom, its requirement of an energy-
tunable X-ray source means it is primarily done with synchrotron radiation sources and so
is somewhat less common than other spectroscopic analytical methods. XAFS spectra are
especially sensitive to the oxidation state and coordination chemistry of the selected element.
In addition, the extended oscillations of the XAFS spectra are sensitive to the distances,
coordination number and species of the atoms immediately surrounding the selected element.
This Extended X-ray Absorption Fine-Structure (EXAFS) is the main focus of this chapter. As
it is element-specific, XAFS places few restrictions on the form of the sample, and can be used
in a variety of systems and bulk physical environments, including crystals, glasses, liquids,
and heterogeneous mixtures. Additionally, XAFS can often be done on low-concentration
elements (typically down to a few ppm), and so has applications in a wide range of scientific
fields, including chemistry, biology, catalysis research, material science, environmental
science, and geology. Special attention in this chapter is given to the basic concepts used in
analysis and modeling of EXAFS spectra.

INTRODUCTION

X-ray absorption fine structure (XAFS) is the modulation of an atom’s X-ray absorption
probability at energies near and above the binding energy of a core-level electron of the
atom. The XAFS is due to the chemical and physical state of the absorbing atom. XAFS
spectra are especially sensitive to the formal oxidation state, coordination chemistry, and
the distances, coordination number and species of the atoms immediately surrounding the
selected element. Because of this sensitivity, XAFS provides a practical and relatively simple
way to determine the chemical state and local atomic structure for a selected atomic species,
and is used routinely in a wide range of scientific fields, including biology, environmental
science, catalysts research, and material science. Since XAFS is an atomic probe, there are
few constraints on the form of the samples that can be studied, and it can be used in a variety
of systems and sample environments.

All atoms have core level electrons, and XAFS spectra can be measured for essentially
every element on the periodic table. Importantly, crystallinity is not required for XAFS
measurements, making it one of the few structural probes available for noncrystalline and
highly disordered materials, including ions dissolved in solutions. Because X-rays are fairly
penetrating in matter, XAFS is not inherently surface-sensitive, though special measurement
techniques can be applied to enhance its surface sensitivity. Intense X-ray sources can make
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very small beams, allowing XAFS to be done on samples as small as a few square microns.
In addition, many variations on experimental techniques and sample conditions are available
for XAFS, including in situ chemical processes and extreme conditions of temperature and
pressure. XAFS measurements can be made on elements of minority and even trace abundance
in many systems, giving a unique and direct measurement of chemical and physical state of
dilute species in a variety of systems.

X-ray absorption measurements are relatively straightforward, provided one has an intense
and energy-tunable source of X-rays. In practice, this usually means the use of synchrotron
radiation, and the history and development of XAFS closely parallels that of synchrotron
sources. Since the characteristics of synchrotron sources and experimental station dictate what
energy ranges, beam sizes, and intensities are available, this often puts practical experimental
limits on the XAFS measurements that can be done at a particular station, even if there are few
inherent limits on the XAFS technique itself.

Though XAFS measurements can be straightforward, a complete understanding of XAFS
involves a wonderful mixture of modern physics and chemistry and a complete mastery of the
data analysis can be somewhat challenging. Though the basic phenomena is well-understood,
an accurate theoretical treatment is fairly involved and, in some respects still an area of active
research. The interpretation and analysis of XAFS is not always straightforward, though
significant progress has been made in both the theoretical and analytical tools for XAFS in the
past few decades. Accurate and precise interpretation of XAFS spectra is routine, if not always
trivial for novice experimentalists.

The X-ray absorption spectrum is typically divided into two regimes: X-ray absorption
near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy
(EXAFS). Though the two have the same physical origin, this distinction is convenient for
the interpretation. XANES is strongly sensitive to formal oxidation state and coordination
chemistry (e.g., octahedral, tetrahedral coordination) of the absorbing atom, while the EXAFS
can be used to determine the distances, coordination number, and species of the neighbors of
the absorbing atom.

XAFS is a mature technique, with a literature spanning many decades and many
disciplines. As a result, several books (Teo 1986; Koningsberger and Prins 1988; Bunker 2010;
Calvin 2013) have been written specifically about XAFS, and one book on X-ray physics (Als-
Nielsen and McMorrow 2001) covers XAFS in some detail. There have been many chapters
and review articles written about XAFS, including early reviews of the fledgling technique
(Stern and Heald 1983), complete theoretical treatments (Rehr and Albers 2000), and reviews
focusing on applications in a variety of fields, including mineralogy (Brown et al. 1988) and soil
science (Kelly et al. 2008). Earlier review articles on applications of synchrotron techniques in
geochemistry and environmental science (Manceau et al. 2002; Sutton et al. 2002) also contain
considerable information about XAFS. In addition, several on-line resources (XAFS.ORG
2003; IXAS 2012) have lengthy tutorials and links to software packages and documentation
for XAFS. It is not possible or particularly useful to give a full review of the XAFS literature,
even restricting to a single field such as geochemistry or mineralogy.

In this work, the origins and interpretations of XAFS will be introduced, with a hope
of aiding the reader to be able to make high-quality XAFS measurements as well as process
and analyze the data. The emphasis here is particularly on the processing and analysis of the
extended oscillations of the XAFS spectra, as the near-edge portion of the spectra is covered
in more detail elsewhere. This chapter will not make one an expert in XAFS, but it should
provide a firm foundation for a new practitioner of XAFS. The above citations are all strongly
recommended reading for further insights and different perspectives and emphasis. The reader
is not expected to have previous experience with XAFS or X-ray measurements, but some
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familiarity with advanced undergraduate-level chemistry or physics and a knowledge of
experimental practices and data interpretation will be helpful.

X-RAY ABSORPTION AND FLUORESCENCE

X-rays are light with energies ranging from about 500 eV to 500 keV, or wavelengths
from about 25 A to 0.25 A. In this energy regime, light is absorbed by all matter through the
photoelectric effect, in which an X-ray photon is absorbed by an electron in a tightly bound
quantum core level (such as the 1s or 2p level) of an atom, as shown in Figure 1.

photoelectron
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Figure 1. The photoelectric effect, in which an X-ray is absorbed by an atom and a core-level electron is
promoted out of the atom, creating a photoelectron and leaving behind a hole in the core electron level.

In order for a particular electronic core level to absorb the X-ray, its binding energy must be
less than the energy of the incident X-ray. If the binding energy is greater than the energy of the
X-ray, the bound electron will not be perturbed from the well-defined quantum state and will not
absorb the X-ray. If the binding energy of the electron is less than that of the X-ray, the electron
may be removed from its quantum level. In this case, the X-ray is destroyed (that is, absorbed)
and any energy in excess of the electronic binding energy is given to a photoelectron that is
ejected from the atom. This process has been well understood for more than a century (Einstein
received the Nobel Prize for describing this effect). As we will see, the full implications of this
process when applied to molecules, liquids, and solids will give rise to XAFS.

When discussing X-ray absorption, we are primarily concerned with the absorption
coefficient, p which gives the probability that X-rays will be absorbed according to the Beer-
Lambert Law:

I=1Ie™ @

where I, is the X-ray intensity incident on a sample, ¢ is the sample thickness, and 7 is the
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intensity transmitted through the sample, as shown in Figure 2. For X-rays of sufficiently low
intensity, the X-ray intensity is proportional to the number of X-ray photons—we will ignore
any non-linear or strong field effects here, and consider only the case of absorption by an
otherwise unperturbed atom.

At most X-ray energies, the absorption coefficient p is a smooth function of energy, with
a value that depends on the sample density p, the atomic number Z, atomic mass A, and the
X-ray energy E roughly as

pZ*
AE’®

The strong dependence of | on both Z and E is a fundamental property of X-rays, and
is the key to why X-ray absorption is useful for medical and other imaging techniques such
as X-ray computed tomography. Figure 3 shows the energy-dependence of p/p described in
Equation (2) for O, Fe, Cd, and Pb in the normal X-ray regime of 1 to 100 keV. The values span
several orders of magnitude, so that good contrast between different materials can be achieved
for nearly any sample thickness and concentrations by adjusting the X-ray energy.

TR (2)

When the incident X-ray has an energy equal to that of the binding energy of a core-level
electron, there is a sharp rise in absorption: an absorption edge corresponding to the promotion
of the core level to the continuum. For XAFS, we are concerned with the energy dependence of
| at energies near and just above these absorption edges. An XAFS measurement is then simply
a measure of the energy dependence of pat and above the binding energy of a known core level
of a known atomic species. Since every atom has core-level electrons with well-defined binding
energies, we can select the element to probe by tuning the X-ray energy to an appropriate absorp-
tion edge. These absorption edge energies are well-known (usually to within a tenth of percent),

| t | Figure 2. X-ray absorption and the Beer-Lambert

law: An incident beam of monochromatic X-rays

I I of intensity I, passes through a sample of thickness
—— t, and the transmitted beam has intensity /. The ab-

sorption coefficient p is given by the Beer-Lambert
law, I = Iye ™.

u/p (barns/atom)
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Figure 3. The absorption cross-section u/p for several elements over the X-ray energy range of 1 to 100
keV. Notice that there are at least 5 orders of magnitude in variation in p/p, and that in addition to the strong
energy dependence, there are also sharp jumps in cross-section corresponding to the core-level binding
energies of the atoms.
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and tabulated. The edge energies vary
with atomic number approximately as
72, and both K and L levels can be used
in the hard X-ray regime (in addition, M
edges can be used for heavy elements
in the soft X-ray regime), which allows
most elements to be probed by XAFS
with X-ray energies between 4 and 35
keV, as shown in Figure 4. Because a
particular absorption edge of the ele-
ment of interest is chosen in the experi-
ment, XAFS is element-specific.

Following an absorption event, the
atom is said to be in an excited state,
with one of the core electron levels left

35
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Figure 4. The energies for the X-ray K and Ly; absorption
edges as a function of atomic number Z. The energies
follow E ~ Z?, and all elements with Z > 20 have an X-ray
edge above 4 keV.

empty (a so-called core hole), and a
photoelectron emitted from the atom.
The excited state will eventually decay

(typically within a few femtoseconds) of the absorption event. Though this decay does not af-
fect the X-ray absorption process, it is important for the discussion below.

There are two main mechanisms for the decay of the excited atomic state following an
X-ray absorption event, as shown in Figure 5. The first of these is X-ray fluorescence, in which
a higher energy electron core-level electron fills the deeper core hole, ejecting an X-ray of
well-defined energy. The fluorescence energies emitted in this way are characteristic of the
atom, and can be used to identify the atoms in a system, and to quantify their concentrations.
For example, an L shell electron dropping into the K level gives the K, fluorescence line.

The second process for de-excitation of the core hole is the Auger effect, in which an
electron drops from a higher electron level and a second electron is emitted into the continuum

EVE‘LCUHIH

Energy

Figure 5. The excited atomic state
will decay by either X-ray fluores-
cence or the Auger effect. In either
case, an electron is moved from
a less tightly bound orbital to the
empty core level, and the energy
difference between these levels is
given to the emitted particle (X-ray
or electron). The emission energies
have precise values that are charac-
teristic for each atom, and can be
used to identify the absorbing atom.
Though the probability of whether
the decay occurs by fluorescence
or Auger emission depends on the
atomic number Z and energy-level,
the probability of emission is di-
rectly proportional to the absorption
probability, and so can be used to
measure EXAFS and XANES.
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(and possibly even out of the sample). In either case, a cascade of subsequent emissions will
fill the newly formed, less tightly bound hole until the atom is fully relaxed. Either of these
processes can be used to measure the absorption coefficient p, though the use of fluorescence
is somewhat more common. In the hard X-ray regime (> 10 keV), X-ray fluorescence is more
likely to occur than Auger emission, but for lower energies Auger emission dominates.

XAFS can be measured in two different modes. In transmission mode, the intensity of an
X-ray beam is sampled before and after being transmitted through a sample, as shown in Figure
2. In fluorescence mode, a secondary emission resulting from the absorption of the X-ray is
measured, such as X-ray fluorescence or Auger electrons just mentioned, or in some cases
even by monitoring visible light emitted by a sample as part of the cascade of decay events. We
will return to the details of the measurements later, but for now it is enough to say that we can
measure the energy dependence of the X-ray absorption coefficient w(E) either in transmission
mode as

where I;is the monitored intensity of a fluorescence line (or electron emission) associated with
the absorption process.

A typical XAFS spectrum (measured in the transmission geometry for a powder of FeO)
is shown in Figure 6. The sharp rise in p(E) due to the Fe 1s electron level (near 7112 eV) is
clearly visible in the spectrum, as are the oscillations in p(E) that continue well past the edge.
As mentioned in the introduction, the XAFS is generally thought of in two distinct portions:
the near-edge spectra (XANES)—typically within 30 eV of the main absorption edge, and
the extended fine-structure (EXAFS), which can continue for a few keV past the edge. As we
shall see, the basic physical description of these two regimes is the same, but some important
approximations and limits allow us to interpret the extended portion of the spectrum in a
simpler and more quantitative way than is currently possible for the near-edge spectra.
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Figure 6. XAFS p(E) for the Fe K edge of FeO, showing the near-edge (XANES) region and the extended
fine structure (EXAFS).
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For the EXAFS, we are interested in the oscillations well above the absorption edge, and
define the EXAFS fine-structure function % (FE) as a change to pu(E), as

w(E)=u (E)[1+2(E)] S

where W(E) is the measured absorption coefficient, Ly(E) is a smooth background function
representing the absorption of an isolated atom. The isolated XAFS is usually written as

B(E)—po(E)

T 4)

1(E)=
where Ap is the measured jump in the absorption pu(E) at the threshold energy. Note that,
due primarily to experimental considerations, XAFS is generally normalized by the energy-
independent edge jump rather than an energy-dependent po(E).

As we will see, EXAFS is best understood in terms of the wave behavior of the
photoelectron created in the absorption process. Because of this, it is common to convert the
X-ray energy to k, the wave number of the photoelectron, which has dimensions of 1/distance
and is defined as

2m(E-E,)
hZ

where Ej is the absorption edge energy, m is the electron mass, and 7 is Planck’s constant. The
primary quantity for EXAFS is then y(k), the isolated variation in absorption coefficient as a
function of photoelectron wave number, and y (k) is often referred to simply as “the EXAFS.”
The EXAFS extracted from the Fe K-edge for FeO is shown in Figure 7 (left). The EXAFS is
clearly oscillatory, and also decays quickly with k. To emphasize the oscillations, y (k) is often
multiplied by a power of k typically k? or &? for display, as is done for the plot in Figure 7.

k= ©)

The different frequencies apparent in the oscillations in (k) correspond to different near-
neighbor coordination shells. This can be seen most clearly by applying a Fourier transform to
the data, converting the data from depending on wavenumber & to depending on distance R. As
seen in the right panel of Figure 7, the oscillations present in the EXAFS y (k) give rather well-
defined peaks as a function of R. Though these peaks are not at the exact distances from the
absorbing atom to its near neighbors, they are due to the neighboring atoms being at particular
distances, and the values for the near neighbor distances can be accurately determined from
the EXAFS oscillations.

Figure 7. Isolated EXAFS for the Fe K edge of FeO, shown weighted by k? (leff) to emphasize the high-
k portion of the spectrum, and the Fourier transform of the k-weighted XAFS, y(R) (right), showing the
contribution from Fe-O and Fe-Fe neighbors.
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A remarkable feature of EXAFS is that the contributions to the EXAFS from scattering
from different neighboring atoms can be described by a relatively straightforward EXAFS
Equation, a simplified form of which is

% (k)= z%sm[zm_, +38, (k)]

i

Here f(k) and 6(k) are scattering properties of the photoelectron emitted in the absorption
process by the atoms neighboring the excited atom, N is the number of neighboring atoms,
R is the distance to the neighboring atom, and o2 is the disorder in the neighbor distance.
Though slightly complicated, the EXAFS equation is simple enough to enable us to model
EXAFS data reliably, and so determine N, R, and 62 once we know the scattering amplitude
flk) and phase-shifts 6(k). Furthermore, because these scattering factors depend on the Z of
the neighboring atom, EXAFS is also sensitive to the atomic species of the neighboring atom.

A SIMPLE THEORETICAL DESCRIPTION OF XAFS

In this section, a simple physical description of the XAFS process and the origin of
the EXAFS Equation will be given. Other useful treatments on a similar level can be found
in other places (Stern 1988; Rehr and Albers 2000) as well. As in the previous section, we
start with the photoelectric effect, now shown in Figure 8, in which an X-ray of energy E is
absorbed by a core-level electron of a particular atom with binding energy E,. Any energy
from the X-ray in excess of this binding energy is given to a photoelectron that propagates
away from the absorbing atom. We will treat the photoelectron as a wave, noting that its
wavelength is proportional to 1/,/E — E, . It is most common to describe the photoelectron by
its wavenumber, k = 21/A, given in Equation (5).

The absorption of the X-ray by the particular core electron level requires there to be an
available quantum state for the ejected photoelectron to go to. If no suitable state is available,
there will be no absorption from that core level. At X-ray energies below the 1s binding energy
(for example, below 7.1 keV for iron) the 1s electron could only be promoted to a valence
electron level below the Fermi level—there is simply not enough energy to put the electron
into the conduction band. Since all the valence levels are filled, there is no state for the 1s
electron to fill, and so there is no absorption from that core-level. Of course, a sample is not
transparent to X-rays with energies below the 1s binding level, as the higher level electrons
can be promoted into the continuum, but there is a sharp jump in the probability of absorption
as the X-ray energy is increased above a core level binding energy. In fact, these binding levels
are often referred to as absorption edges due to this strong increase in absorption probability.

It should be noted that the quantum state that the photoelectron occupies has not only
the right energy, but also the right angular momentum. For photo-electric absorption, the
angular momentum number must change by 1, so that an s core-level is excited into a p state,
while a p core-level can be excited into either an s or d level. This is important for a detailed,
quantitative description of the XAFS, but is not crucial to basic discussion of XAFS here, as
we are generally dealing with energies far above the continuum which have large density of
states. On the other hand, the momentum state can be extremely important when considering
XANES, the near-edge portion of the spectra, as the available energy states of the unfilled
anti-bonding orbitals still have well-defined and specific angular momentum states above the
continuum level.

The picture above described absorption for an isolated atom. When a neighboring atom
is included (Fig. 9), the photoelectron can scatter from the electrons of this neighboring atom,
and some part of the scattered photoelectron can return to the absorbing atom. Of course, the
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simple one-dimensional picture shown above suggests that the probability of scattering the
photoelectron by the neighboring atom is quite large. In a real, three dimensional sample,
the photoelectron wavefunction spreads radially out and has a lower probability of scattering
from the electrons in the neighboring atoms. The important point is that some portion of
the photoelectron wavefunction is scattered from the neighboring atom, and returns to the
absorbing atom, all in a single coherent quantum state. Since the absorption coefficient depends
on whether there is an available, unfilled electronic state at the location of the atom and at the

absorbing atom

photo-electron

A~ 1/\/(E — Eo)

IVAYAVAVAVAVAV Y
\VAVAVAVAVAN
N

E, Energy

X-ray
A\/\/\/\ﬂ | 1s core level .

Figure 8. Cartoon of X-ray absorption through the photoelectric process. As the energy of the X-rays is
increased to just above the energy of a tightly bound core electron level, Ey, the probability of absorption
has a sharp rise—an edge jump. In the absorption process, the tightly bound core-level is destroyed, and a
photoelectron is created. The photoelectron travels as a wave with wavelength proportional to 1/(E — Ep)'/2.
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Figure 9. XAFS occurs because the photoelectron can scatter from a neighboring atom. The scattered pho-
toelectron can return to the absorbing atom, modulating the amplitude of the photoelectron wave-function
at the absorbing atom. This in turn modulates the absorption coefficient u(E), causing the EXAFS.
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appropriate energy (and momentum), the presence of the photoelectron scattered back from
the neighboring atom will alter the absorption coefficient: This is the origin of XAFS.

A rough explanation of the EXAFS equation

We’ll now spend some effort developing the standard EXAFS equation using a slightly
more formal description of this simple physical picture above, but still somewhat less rigorous
than a full-blown quantum mechanical description. The goal here is to describe enough of the
basic physics to identify where the different components of the EXAFS equation arise from,
and so what they mean for use in the analysis of spectra.

Since X-ray absorption is a transition between two quantum states (from an initial state
with an X-ray, a core electron, and no photoelectron to a final state with no X-ray, a core hole,
and a photoelectron), we describe pn(E) with Fermi’s Golden Rule:

u(E) o (il 1| ) ©

where <l| represents the initial state (an X-ray, a core electron, and no photoelectron), | f > is
the final state (no X-ray, a core hole, and a photoelectron), and H is the interaction term, which
we’ll come back to shortly. Since the core-level electron is very tightly bound to the absorbing
atom, the initial state will not be altered by the presence of the neighboring atom, at least to
first approximation. The final state, on the other hand, will be affected by the neighboring atom
because the photoelectron will be able to scatter from it. If we expand | f > into two pieces, one
that is the “bare atom” portion (| f0>), and one that is the effect of the neighboring atom (| f >) as

) =15)+14f)
We can then expand Equation (6) to
N filH|iy
)il |+ a2l .o
(ilH] o)

where C.C. means complex conjugate. We’ve arranged the terms here so that this expression
resembles Equation (3),

H(E) = HO(E)[I +X(E)}

T . 2 13 3 9 3
We can now assign = |<1|H | f0>| as the “bare atom absorption,” which depends only on the
absorbing atom—as if the neighboring atom wasn’t even there. We can also see that the fine-
structure y will be proportional to the term with | f ):

1(E) o< (i H| Af)

which indicates that the EXAFS is due to the interaction of the scattered portion of the
photoelectron and the initial absorbing atom.

We can work out this term for  as an integral equation fairly easily, if approximately. The
interaction term H represents the process of changing between two states of given energy and
momentum. In quantum radiation theory, the interaction term needed is the p-A term, where
A is the quantized vector potential (there is also an A-A term, but this does not contribute to
absorption). For the purposes here, this reduces to a term that is proportional to ¢*". The initial
state is a tightly bound core-level, which we can approximate by a delta function (a 1s level for
atomic number Z extends to around ay/Z, where a, is the Bohr radius of = 0.529 A, so this is
a good approximation for heavy elements, but less good for very light elements). The change
in final state is just the wave-function of the scattered photoelectron, W....(r). Putting these
terms together gives a simple expression for the EXAFS:
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« J.d}’S(}’)eik'\Vscauer (r) = Wcateer (0) (7)
In words, this simply states the physical picture shown in Figure 9:

The EXAFS x(E) is proportional to the amplitude of the
scattered photoelectron at the absorbing atom.

We can now evaluate the amplitude of the scattered photoelectron at the absorbing atom
to get the EXAFS equation. Using the simple physical picture from Figure 9, we can describe
the outgoing photoelectron wave-function (k, r) traveling as a spherical wave,

ikr
e
k,r)= 8)
w(kr)=— (
traveling a distance R to the neighboring atom, then scattering from a neighbor atom, and
traveling as a spherical wave a distance R back to the absorbing atom. We simply multiply all
these factors together to get

ikR

ikR
—0)=%_ 81
1(K) % W (Ko7 = 0) = 7 [Zkf(k)e ]kR +C.C.

where f(k) and 8(k) are scattering properties of the neighboring atom, and C.C. means complex
conjugate. As mentioned before, these scattering factors depend on the Z of the neighboring
atom, as illustrated in Figure 10 for a few elements. Combining these terms in and using the
complex conjugate to make sure we end up with a real function, we get

x(k)= ";d(R]Z) sin| 2kR + 3 (k) | 9)

which looks much like the standard EXAFS equation. For mathematical convenience, the
EXAFS Equation is sometimes written with the sin term replaced with the imaginary part of
an exponential:

f(k) i 2kR+3(k)]
k)= Fimle |
x(k) ="
We’ll use this form on occasion.

The treatment to get to Equation (9) was for one pair of absorbing atom and scattering
atom, but for a real measurement we’ll average over billions of X-ray absorption events and so
atom pairs. Even for neighboring atoms of the same type, the thermal and static disorder in the

bond distances will give arange of distances that will affect the XAFS. As a first approximation,
the bonding environment and disorder will change the XAFS equation from Equation (9) to

Nf(k)€72k202
kR

where N is the coordination number and c? is the mean-square-displacement in the bond
distance R. We’ll return to this topic later.

x(k)= sin[ 2kR +8(k) |

Of course, real systems usually have more than one type of neighboring atom around
a particular absorbing atom. This is easily accommodated in the XAFS formalism, as the
measured XAFS will simply be a sum of the contributions from each scattering atom type or
coordination shell:
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Figure 10. Functional forms for f(k) (left) and (k) (right) for O, Fe, and Pb showing the dependence of
these terms on atomic number Z. The variations in functional form allow Z to be determined (x5 or so)
from analysis of the EXAFS.

where j represents the individual coordination shell of identical atoms at approximately the
same distance from the central atom. In principle there can be many such shells, but as shells
of similar Z become close enough (say, within a 0.05 A of each other), they become difficult
to distinguish from one another.

The explanation so far of what goes into the EXAFS equation gives the most salient
features of the physical picture for EXAFS but ignores many nuances. In order to be able to
quantitatively analyze EXAFS in real systems, we’ll need to cover some of these subtleties,
giving four main points to discuss. These are 1) the finite photoelectron mean free path, 2) the
relaxation due to the passive (non-core) electrons of the excited atom, 3) multiple-scattering of
the photoelectron, and 4) a more detailed treatment of structural and thermal disorder.

A(k): The inelastic mean free path

The most significant approximation we made above was to assert that the outgoing
photoelectron went out as a spherical wave, as given in Equation (8). In doing so, we neglected
the fact that the photoelectron can also scatter inelastically from other sources—other
conduction electrons, phonons, and so on. In order to participate in the XAFS, the photoelectron
has to scatter from the neighboring atom and return to the absorbing atom elastically (that is,
at the same energy) as the outgoing photoelectron. In addition, the scattered portion of the
photoelectron has to make it back to the absorbing atom before the excited state decays (that
is, before the core hole is filled through the Auger or fluorescence process). To account for both
the inelastic scattering and the finite core-hole lifetime, we can use a damped spherical wave:

ikre—r/k(k)
kor)=———
W( ) kr
for the photoelectron wave-function in place of the spherical wave of Equation (8). Here, A
is the mean free path of the photoelectron, representing how far it can typically travel before
scattering inelastically or before the core hole is filled. The core-hole lifetime is on the order
of 107 s, depending somewhat on the energy of the core-level. The mean free path is typically
5 to 30 A and varies with k with a fairly universal dependence on k, shown in Figure 11.
Including this A(k), the EXAFS equation becomes

N f(k “2R; /1 (k) -2k}
(k)= A )eksz  sin[2kR, +3,(k)]
J

Jj

It is the finite size of A, as well as the 1/R? term (which also originates from the wavefunction
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Figure 11. The photoelectron mean free path for XAFS, A(k), representing how far the photoelectron can
travel and still participate in the XAFS. This term accounts for both the inelastic scattering of the photo-
electron, and the finite lifetime of the core-hole.

of the outgoing photoelectron) in the EXAFS equation that shows EXAFS to be a local probe,
insensitive to atomic structure beyond 10 A or so.

As an aside, we note that it is possible to treat the losses that are described by A(k) as a
complex wavenumber, so that k becomes p = k + i/A, and the EXAFS Equation can be written
with p instead of k. This reflects the common usage in the theoretical condensed matter physics
literature that the photoelectron energy is complex, and so includes the effects of the mean free
path not only in a =2 term, but also in the disorder terms, which can be important in some
analyses. This can be incorporated into quantitative analysis tools, but is beyond the scope of
the present work, so we will continue to use the form of the EXAFS Equation above, with the
explicit A term.

Sg: intrinsic losses

A second approximation we made in the description above was to ignore the relaxation
due to the other electrons in the excited atom. That is, our “initial state” and “final state” above
should have been for the entire atom, but we considered only a single core-level electron.
Writing |®7 ") for the remaining Z-1 electrons in unexcited atom, and <(Df’l| for the Z-1
electrons in the excited atoms, we end up with a factor of '

S? = Kq>§4|cb§*‘>r

that can be placed in front of the EXAFS equation. Though recent research has suggested
that S; may have some k dependence, especially at low £, it is usually interpreted simply as a
constant value, so that the EXAFS equation becomes

2 2R, I0(k) -2k}
X(k):ZSONjfj(k)]jR? ‘ sin[ 2kR; + 3, (k) | (10)
J

J

which is the final form of the EXAFS equation that we will use for analysis.

S¢ is assumed to be constant, and is generally found to be 0.7 < S; < 1.0. By far the
biggest consequence of this is that this factor is completely correlated with N in the EXAFS
equation. This fact, along with the data reduction complication discussed later that the edge
step Ap in Equation (4) is challenging to determine experimentally, makes absolute values for
the coordination number N difficult to determine with high accuracy.
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Multiple scattering of the photoelectron

So far the treatment of EXAFS has implied that the photoelectron always scatters from
one neighboring atom and returns to the absorber. In fact, the photoelectron can scatter from
more than one neighboring atom, making a more convoluted scattering path than simply to
one scattering atom and back. Examples of the more important types of multiple scattering
paths are illustrated in Figure 12.

Multiple scattering paths can give important contributions for EXAFS, especially beyond
the first coordination shell, and are often important for XANES. In general, most first-shell anal-
ysis of EXAFS is not strongly affected by multiple scattering, but second-shell analysis can be,
and shells beyond the second are almost always complicated by multiple-scattering paths. For
highly-ordered crystalline materials, focused linear multiple scattering paths, as shown Figure
12 can be particularly important, and neglecting them in an analysis can give erroneous results.

Though the details of the calculations are beyond the scope of this work (Rehr and Albers
2000), accounting for multiple scattering formally in the EXAFS equation is conceptually
quite easy. We can simply change the meaning of the sum in Equation (10) to be a sum over
scattering paths, including multiple scattering paths, instead of being a sum over coordination
shells. We also have to change our interpretation of R from “interatomic distance” to “half
path length.” In addition, our scattering amplitudes f(k) and phase-shifts d(k) now need to
include the contribution from each scattering atom in the path, so that the term in the EXAFS
equation can be said to be effective scattering amplitudes and phase-shifts. Unfortunately, the
existence of multiple scattering means that the number of paths needed to properly account for
an EXAFS spectra grows quickly (exponentially) with path distance. This puts a practical limit
on our ability to fully interpret EXAFS spectra from completely unknown systems.

Disorder terms and g(R)

We gave a simple description of disorder above, using Ne > in the EXAFS equation,
where N is the coordination number and o2 is the mean-square displacement of the set of
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Figure 12. Multiple scattering paths for the photoelectron. While single-scattering paths generally dominate
most EXAFS spectra, multiple scattering paths can give important contributions, especially in well-ordered
crystalline materials. Fortunately, these terms can easily be included into the standard EXAFS formalism.
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interatomic distances R sampled by an EXAFS measurement. As noted above, the core-hole
lifetime is typically in the femtosecond range. Since thermal vibrations are on the picosecond
time-scale, each X-ray absorbed in an EXAFS measurement gives a “snapshot” of the structure
around 1 randomly selected absorbing atom in the sample, and the neighboring atoms will be
essentially frozen in some configuration. Building up a full spectrum will result in a “blurry
picture” due to the addition of many (often billions) of these snapshots. This has the important
consequence that a single EXAFS measurement cannot distinguish thermal disorder due to
atomic vibrations from static disorder.

An EXAFS measurement is then a sampling of the configuration of atoms around the
average absorbing atom. Ignoring the contributions from multiple-scattering just discussed,
the configuration of pairs of atoms is given by the Partial Pair Distribution function, g(R),
which gives the probability that an atom is found a distance R away from an atom of the
selected type. Pair distribution functions are found from many structural probes (notably
scattering techniques), but the Partial aspect is unique to EXAFS and other element-specific
probes. EXAFS is sensitive only to the pairs of atoms that include the absorbing atom. Thus
while scattering can give very accurate measures of the total pair distribution function, EXAFS
is particularly useful for looking at low concentration elements in complex systems.

To better account for the sampling of g(R) of any particular single-scattering shell of
atoms, we should replace our 62 term with an integral over all absorbing atoms, as with (using
a simplified form of the EXAFS Equation in exponential notation and recalling that k might be
replaced by p, the complex wavenumber to account for the mean free path A(k)):

fj k i2kR; + i (k)
- (A0

where the angle brackets mean averaging over the distribution function:

B J-dR X g(R)
~ [ar g(R)

There are a few different approaches that can be used for modeling g(R) in EXAFS. First, one
can ask what the principal moments of g(R) might be. Recognizing that ¢”*F term (or sin(2kR)
term) is the most sensitive part to small changes in R, and pulling out the other terms, we have

(x)

o)

X(k) = Zj:f/ (k) kR2 <ei2le>

This average of an exponential term can be described by the cumulants of the distribution
g(R), as

() =ex P{i (2ik!)n CH}

n=1 n

where the coefficients C, are the cumulants. The cumulants of a distribution can be related to
the more familiar moments of the distribution. The lowest order cumulants are

C =

C, =) —(r)?

Cy =(r") =3(r*)}(r) + 2r)’

Cy =(r") =307 =& )r) +12¢r7)(r)* = 6(r)’*
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where r = R — Ry and R, is the mean R value of the distribution, and (r") is the " moment of
the distribution. C| is then simply a shift in centroid, and C, is the mean-square-displacement,
6% C; and C, measure the skewness and kurtosis for the distribution, respectively, and are 0
for a Gaussian distribution. Because the low order terms in the cumulant expansion represent a
small modification to the Gaussian approximation and can be readily applied to any spectrum,
they are included in many analyses codes and discussed widely in the EXAFS literature. In
particular, the skewness term, Cs, is sometimes found to be important in analysis of moderately
disordered systems.

Another approach to modeling complex disorder is to parameterize g(R) by some
functional form and use this parameterization in the EXAFS Equation. This can be done either
analytically by putting in a functional form for g(R) (Filipponi et al. 1995), or by building a
histogram with weights given by the parameterized g(R). The latter approach can be readily
done with many existing analysis tools, and can give noticeably better results than the cumulant
expansion for very high disorder. For some problems, a more sophisticated analysis using a
Monte Carlo approach of calculating the EXAFS for a large set of atomic clusters can be
useful. For example, atomic configurations from a series of molecular dynamics simulations
may be used to predict EXAFS spectra including complex configurations and disorder. Such
work can be computationally intensive, but can also give additional insight into the interactions
between atoms and molecules in complex systems. We’ll continue to use N and o as the
normal form of the EXAFS Equation, but will remember that these more complex descriptions
of the distribution of atoms are possible and that we are not limited to studying well-behaved
systems with Gaussian distributions.

Discussion

We’ve used a simple physical picture of photoelectron scattering to develop the EXAFS
equation (Eqn. 10) that we can use in the quantitative analysis of EXAFS spectra. From
Equation (10), we can draw a few physical conclusions about XAFS. First, because of the
M(k) term and the R~? term, XAFS is seen to be an inherently local probe, not able to see
much further than 5 A or so from the absorbing atom. Second, the XAFS oscillations consist
of different frequencies that correspond to the different distances of atomic shells. This will
lead us to use Fourier transforms in the analysis. Finally, in order to extract the distances and
coordination numbers, we need to have accurate values for the scattering amplitude and phase-
shifts f{k) and (k) from the neighboring atoms.

This last point here—the need for accurate scattering amplitude and phase-shifts—has
been a crucial issue in the field of EXAFS. Though early attempts to calculate the terms were
qualitatively successful and instructive, they were generally not accurate enough to be used
in analysis. In the earliest EXAFS analyses, these factors were most often determined from
experimental spectra in which the near-neighbor distances and species were known. Such
experimental standards can be quite accurate, but are generally restricted to first neighbor
shell and to single-scattering. Since the 1990s, calculations of f(k) and &(k) have become
more accurate and readily available, and use of experimental standards in EXAFS analysis
is now somewhat rare, and restricted to studies of small changes in distances of fairly well-
characterized systems. Calculated scattering factors are not without problems, but they have
been shown numerous times to be accurate enough to be used in real analysis, and in some cases
are more accurate than experimentally derived scattering factors. The calculated factors are not
restricted to the first shell, and can easily account for multiple-scattering of the photoelectron.
We’ll use calculations of f(k) and d(k) from FEFF to model real data.



Fundamentals of XAFS 49

XAFS MEASUREMENTS: TRANSMISSION AND FLUORESCENCE

XAFS requires a very good measure of p(E). Since the XAFS is a fairly small modulation
of the total absorption, a fairly precise and accurate measurement of u(E)—typically to 10—
is required. Statistical errors in p(E) due to insufficient count rates in intensities are rarely the
limiting factor for most XAFS measurements, and can generally be overcome by counting
longer. On the other hand, systematic errors in W(E) can degrade or even destroy the XAFS,
and are more difficult to eliminate. Fortunately, if care is taken in sample preparation, setting
up the measurement system, and alignment of the sample in the beam, it is usually not too
difficult to get good XAFS measurements.

A sketch of the basic experimental layout is given in Figure 13, showing a monochromatic
beam of X-rays striking a sample and the intensities of the incident, transmitted, and emitted
X-ray beams being measured. From this, it can be seen that the main experimental challenges
are getting an X-ray source that can be reliably and precisely tuned to select a single X-ray
energy, and 2) high-quality detectors of X-ray intensity. For most modern experiments, the
X-ray source is a synchrotron radiation source, which provides a highly collimated beam of
X-rays with a broad range of energies. A particular energy is selected with a double crystal
monochromator, which consists of two parallel and nearly perfect crystals, typically silicon.
The first crystal is centered in the incident X-ray beam from the source and rotated to a
particular angle so as to reflect a particular energy by X-ray diffraction following Bragg’s law.
By using near-perfect crystals, the diffracted beam is very sharply defined in angle and so also
has a very narrow energy range, and the reflectivity is near unity. The second crystal, with
the same lattice spacing as the first, is rotated together with the first crystal, and positioned to
intercept the diffracted beam and re-diffract so that it is parallel to the original X-ray beam,
though typically offset vertically from it. Such a monochromator allows a wide energy range
of monochromatic X-rays to be selected simply by rotating a single axis, and is widely used at
synchrotron beamlines, and especially at beamlines designed for XAFS measurements.

The principle characteristics of a monochromator that are important for XAFS are
the energy resolution, the reproducibility, and the stability of the monochromator. Energy
resolutions of = 1 eV at 10 keV are readily achieved with silicon monochromators using the
Si(111) reflection, and are sufficient for most XAFS measurements. Higher resolution can be
achieved by using a higher order reflection, such as Si(220) or Si(311), but this often comes at
a significant loss of intensity. In addition, the angular spread of the incident X-ray beam from
the source can contribute to the energy resolution, and many beamlines employ a reflective
mirror that can be curved slightly to collimate the beam before the monochromator to improve
resolution. While poor energy resolution can be detrimental to XAFS measurements, and
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Figure 13. Sketch of an XAFS Experiment. An X-ray source, typically using synchrotron radiation, pro-
duces a collimated beam of X-rays with a broad energy spectrum. These X-rays are energy-selected by a
slit and monochromator. The incident X-ray intensity, /,, is sampled. XAFS can be recorded by measuring
the intensity transmitted through the sample or by measuring the intensity of a secondary emission—typi-
cally X-ray fluorescence or Auger electrons resulting from the X-ray absorption. The X-ray energy is swept
through and above the electron binding energy for a particular energy level of the element of interest.
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especially for XANES measurements, most existing beamlines have resolution sufficient for
good XAFS measurements.

Stability and reproducibility of monochromators is sometimes challenging, as the angular
precisions of monochromators needed for XAFS are typically on the order of 10~ degrees, so
that a very small change in Bragg angle corresponds to a substantial energy shift. Very high
quality rotation stages can essentially eliminate such drifts, but may not be installed at all
beamlines. In addition, small temperature drifts of the monochromator can cause energy drifts,
as the lattice constant of the crystal changes. Stabilizing the temperature of the monochromator
is very important, but can be challenging as the power in the white X-ray beam from a modern
synchrotron source can easily exceed 1 kW in a few square millimeters. For the most part,
these issues are ones of beamline and monochromator design and operation, generally solved
by the beamline, and are not a significant problem at modern beamlines designed for XAFS
measurements. Still, these issues are worth keeping in mind when assessing XAFS data.

Despite their name, monochromators based on Bragg diffraction do not select only
one energy (or color) of light, but also certain harmonics (integer multiples) of that energy.
While these higher energies will be far above the absorption edge, and so not be absorbed
efficiently by the sample, they can cause subtle problems with the data that can be hard to
diagnose or correct afterward. These include sharp changes or glitches in intensity at particular
energies, and unexpectedly large noise in the data. There are two main strategies for removing
harmonics. The first is to slightly misalign or “de-tune” the two crystals of the monochromator.
This will reduce the transmitted intensity of the higher-energy harmonics much more than it
reduces the intensity of the fundamental beam. De-tuning in this way can be done dynamically,
often by putting a small piezo-electric crystal on the second monochromator crystal to allow
fine motions to slightly misalign the two crystals. The second method for removing harmonics
is to put a reflective X-ray mirror in the beam so that it reflects the fundamental beam but not
the higher energy harmonics. Such a harmonic-rejection mirror is generally more efficient at
removing the higher harmonics than de-tuning the monochromator crystals. Ideally, both of
these strategies can be used, but it is generally necessary to use at least one of these methods.

Having linear detectors to measure /, and / for transmission measurements is important
for good XAFS measurements, and not especially difficult. A simple ion chamber (a parallel
plate capacitor filled with an inert gas such nitrogen or argon, and with a high voltage across
it through which the X-ray beam passes) is generally more than adequate, as these detectors
themselves are generally very linear over a wide range of X-ray intensities. The currents
generated from the detectors are quite low (often in the picoampere range, and rarely above
a few microampere) and so need to be amplified and transmitted to a counting system. Noise
in transmission lines and linearity of the amplification systems used for ion chambers (and
other detectors) can cause signal degradation, so keeping cables short and well-grounded is
important. Typical current amplifiers can have substantial non-linearities at the low and high
ends of their amplification range, and so have a range of linearity limited to a few decades.
For this reason, significant dark currents are often set and one must be careful to check for
saturation of the amplifiers. In addition, one should ensure that the voltage applied across the
ion chamber plates is sufficiently high so that all the current is collected—simply turning up the
voltage until the intensity measured for an incident beam of constant intensity is itself constant
and independent of voltage is generally sufficient. Such checks for detector linearity can be
particularly important if glitches are detected in a spectrum. For fluorescence measurements,
several kinds of detectors can be used in addition to ion chambers, and linearity can become an
important issue and depend on details of the detector.

With a good source of monochromatic X-rays and a good detection system, accurate and
precise transmission measurements on uniform samples of appropriate thickness, are generally
easy. Some care is required to make sure the beam is well-aligned on the sample and that
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harmonics are not contaminating the beam, but obtaining a noise level of 1073 of the signal is
generally easy for transmission measurements. Such a noise level is achievable for fluorescence
measurements but can be somewhat more challenging, especially for very low concentration
samples.

Transmission XAFS measurements

For concentrated samples, in which the element of interest is a major component—10% by
weight or higher is a good rule of thumb—XAFS should be measured in transmission. To do
this, one needs enough transmission through the sample to get a substantial signal for /. With pt
= In(l/I,), we typically adjust the sample thickness ¢ so that pz = 2.5 above the absorption edge
and/or the edge step Au(E)t = 1. For Fe metal, this gives ¢ = 7 um, while for many solid metal-
oxides and pure mineral phases, # is typically in the range of 10 to 25 um. For concentrated
solutions, sample thickness may be several millimeter thick, but this can vary substantially.
If both pr = 2.5 for the total absorption and an edge step Ap(E)f = 1 cannot be achieved, it is
generally better to have a smaller edge step, and to keep the total absorption below u = 4, so that
enough X-rays are transmitted through the sample to measure. Tabulated values for L(E) for the
elements are widely available, and software such as HEPHAESTUS (Ravel and Newville 2005)
can assist in these calculations.

In addition to being the appropriate thickness for transmission measurements, the sample
must be of uniform thickness and free of pinholes. Non-uniformity (that is, variations in
thickness of 50% or so) and pinholes in the sample can be quite damaging, as p is logarithmic
in /. Since the portion of the beam going through a small hole in the sample will transmit with
very high intensity, it will disproportionately contribute to / compared to the parts of the beam
that actually goes through the sample. For powdered material, the grain size cannot be much
bigger than an absorption length, or the thickness variation across the particle will lead to non-
linear variations in the beam transmitted through the sample. If these challenging conditions
can be met, a transmission measurement is very easy to perform and gives excellent data. This
method is usually appropriate for pure mineral and chemical phases, or for other systems in
which the absorbing element has a concentrations > 10%.

A few standard methods for making uniform samples for transmission XAFS exist. If one
can use a solution or has a thin, single slab of the pure material (say, a metal foil, or a sample
grown in a vacuum chamber), these can make ideal samples. For many cases, however, a powder
of a reagent grade chemical or mineral phase is the starting material. Because the required total
thickness is so small, and uniformity is important, grinding and sifting the powder to select the
finest grains can be very helpful. Using a solvent or other material in the grinding process can
be useful. In some case, suspending a powder in a solvent to skim off the smallest particles
held up by surface tension can also be used. Spreading or painting the grains onto sticky tape
and shaking off any particles that don’t stick can also be used to select the finest particles, and
can make a fairly uniform sample, with the appropriate thickness built up by stacking multiple
layers. Ideally, several of these techniques can be used in combination.

Fluorescence and electron yield XAFS measurements

For samples that cannot be made thin enough for transmission or with the element of
interest at lower concentrations (down to a few ppm level in some cases), monitoring the X-ray
fluorescence is the preferred technique for measuring the XAFS. In a fluorescence XAFS
measurement, the X-rays emitted from the sample will include the fluorescence line of interest,
fluorescence lines from other elements in the sample, and both elastically and inelastically
(Compton) scattered X-rays. An example fluorescence spectrum is shown in Figure 14. This
shows Fe K, and K fluorescence lines along with the elastically scattered peak (unresolvable
from the Compton scatter), as well as fluorescence lines from Ca, Ti, and V. In many cases
the scatter or fluorescence lines from other elements will dominate the fluorescence spectrum.



52 Newville

400 T T
350
300
250
200
150
100
50
0 w ) !

Scatter

Fluorescence (kHz)

Fe K,

E (keV)

Figure 14. X-ray fluorescence spectrum from an Fe-rich mineral (a feldspar), showing the Fe K, and Kj
emission lines around 6.4 and 7.0 keV, and the elastically (and nearly-elastically) scattered peak near 8.5
keV. At lower energies, peaks for Ca, Ti, and V can be seen.

There are two main considerations for making good fluorescence X AFS measurements: the
solid angle collected by the detector, and the energy resolution of the detector for distinguishing
the fluorescence lines. The need for solid angle is easy to understand. The fluorescence is
emitted isotropically, and we’d like to collect as much of the available signal as possible.
X-rays that are elastically and inelastically scattered (for example, by the Compton scattering
process) by the sample are not emitted isotropically because the X-rays from a synchrotron
are polarized in the plane of the synchrotron, (a fact we’ve neglected up to this point). This
polarization means that elastic scatter is greatly suppressed at 90° to the incident beam, in the
horizontal plane. Therefore, fluorescence detectors are normally placed perpendicular to the
incident beam, and in the horizontal plane.

Energy resolution for a fluorescence detector can be important as it allows discrimination
of signals based on energy, so that scattered X-rays and fluorescence lines from other elements
can be suppressed relative to the intensity of the fluorescence lines of interest. This lowers
the background intensity, and increases the signal-to-noise level. Energy discrimination can
be accomplished either physically, by filtering out unwanted emission before it gets to the
detector, or electronically after it is detected, or both.

An example of a commonly used physical filter is to place a Mn-rich material between
an Fe-bearing sample and the fluorescence detector. Due to the Mn K absorption edge, the
filter will preferentially absorb the elastic and inelastic scatter peak and pass the Fe K, line, as
shown in Figure 15. For most K edges, the element with Z—1 of the element of interest can be
used to make an appropriate filter, and suitable filters can be found for most of the L-edges. A
simple filter like this can be used with a detector without any intrinsic energy resolution, such
as an ion chamber or large PIN diode. To avoid re-radiation from the filter itself, Soller slits, as
shown in Figure 16, can be used to preferentially collect emission from the sample and block
most of the signal generated away from the sample from getting into the fluorescence detector,
including emission from the filter itself. Such an arrangement can be very effective especially
when the signal is dominated by scatter, as when the concentration of the element of interest is
in the range of hundreds of ppm or lower, and the matrix is dominated by light elements, with
few other heavy elements that have fluorescence lines excited by the incident beam.

Energy discrimination can also be done electronically on the measured X-ray emission
spectrum after it has been collected in the detector. A common example of this approach uses
a solid-state Si or Ge detector, which can achieve energy resolution of = 200 eV or better
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Figure 15. The effect of a “Z—1" filter on a measured fluorescence spectrum. A filter containing Mn placed
between sample and detector will absorb most of the scatter peak, while transmitting most of the Fe K,
emission. For samples dominated by the scatter peak, such a filter can dramatically improve the signal-to-
noise level.
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(approaching 130 eV for modern silicon detectors). The spectrum shown in Figure 14 was
collected with such a Ge solid-state detector. These detectors have an impressive advantage
of being able to measure the full X-ray fluorescence spectrum, which is useful in its own
right for being able to identify and quantify the concentrations of other elements in the
sample. Because unwanted portions of the fluorescence spectrum can be completely rejected
electronically, these detectors can have excellent signal-to-background ratios and be used for
XAFS measurements with concentrations down to ppm levels. Though solid-state detectors
have many advantages, they have a few drawbacks:

1. The electronic energy discrimination takes a finite amount of time, which limits the
total amount of signal that can be processed. These detectors typically saturate at = 10°
Hz of total count rate or so. When these rates are exceeded, the detector is effectively
unable to count all the fluorescence, and is said to be “dead” for some fraction of the
time. It is common to use ten or more such detectors in parallel. Even then, the limit
on total intensity incident for these detectors can limit the quality of the measured
XAFS.

2. Maintaining, setting up, and using one of these is much more work than using an ion
chamber. For example, germanium solid-state detectors must be kept at liquid nitrogen
temperatures. The electronics needed for energy discrimination can be complicated,
expensive, and delicate.
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Despite these drawbacks, the use of solid-state detectors is now fairly common practice
for XAFS, especially for dilute and heterogeneous samples, and the detectors and electronics
themselves are continually being improved.

Before we leave this section, there are two import effects to discuss for XAFS measurements
made in fluorescence mode. These are self-absorption or over-absorption from the sample,
and a more detailed explanation of deadtime effects for measurements made with solid-state
detectors. If not dealt with properly, these effects can substantially comprise otherwise good
fluorescence XAFS data, and so it is worth some attention to understand these in more detail.

Self-absorption (or over-absorption) of fluorescence XAFS

The term self-absorption, when referred to fluorescence XAFS, can be somewhat confus-
ing. Certainly, the sample itself can absorb many of the fluoresced X-rays. For example, for a
dilute element (say, Ca) in a relatively dense matrix (say, iron oxide), the Ca fluorescence will
be severely attenuated by the sample and the measured fluorescence signal for Ca will be dic-
tated by the escape depth of the emitted X-ray in the matrix. Although this type of absorbtion
is an important consideration, this is not what is usually meant by the term self-absorption in
EXAFS. Rather, the term self-absorption for EXAFS usually refers to the situation in which
the penetration depth into the sample is dominated by the element of interest, and so is one
special case of the term as used in X-ray fluorescence analysis. In the worst case for self-
absorption (a very thick sample of a pure element), the XAFS simply changes the penetration
depth into the sample, but essentially all the X-rays are absorbed by the element of interest.
The escape depth for the fluoresced X-ray is generally much longer than the penetration depth
(as the fluoresced X-ray is below the edge energy), so that most absorbed X-rays will generate
a fluoresced X-ray that will escape from the sample. This severely dampens the XAFS oscil-
lations, and for a very concentrated sample, there may be no XAFS oscillations at all. With
this understanding of the effect, the term over-absorption (Manceau et al. 2002) is probably a
better description, and should be preferred to self-absorption even though the latter is in more
common usage.

Earlier we said that for XAFS measured in fluorescence goes as

This is a slight oversimplification. The probability of fluorescence is proportional to the
absorption probability but the fluorescence intensity that we measure has to travel back
through the sample to get to the detector. Since all matter attenuates X-rays, the fluorescence
intensity, and therefore the XAFS oscillations, can be damped. More correctly, the measured
fluorescence intensity goes as (see Fig. 17)
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where ¢ is the fluorescence efficiency, AQ is the solid angle of the detector, E;is the energy of
the fluorescence X-ray, 0 is the incident angle (between incident X-ray and sample surface), ¢
is the exit angle (between fluoresced X-ray and sample surface), p,(E) is the absorption from
the element of interest, and p(E) is the toral absorption in the sample,

o (E) =1, (E) + Hoper (E)
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Figure 17. Fluorescence XAFS
d) measurements, showing inci-
dent angle 0 and exit angle ¢.

and Pope(E) is the absorption due to lower energy edges of the element of interest and other
elements in the sample. Equation (11) has several interesting limits that are common for real
XAFS measurements. First, there is the thin sample limit, in which p# << 1. The 1 — e™ term
then becomes (by a Taylor series expansion)
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which cancels the denominator, so that

eAQ
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Alternatively, there is the thick, dilute sample limit, for which pz >> 1 and p, << Hgpher- Now
the exponential term goes to 0, so that

I.=1 SAQ HX (E)
! ’ 4n Mot (E) + l”Llol(Ef)
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In this case we can also ignore the energy dependence of L, leaving

I, < Iy, (E)

These two limits (very thin or thick, dilute samples) are the best cases for fluorescence
measurements.

For relatively thick and concentrated samples, for which w, » e, We cannot ignore the
energy dependence of L, and must correct for the oscillations in L, (E) in Equation (11). As
said above, for very concentrated samples, p(E) ~ u,(E), and the XAFS can be completely
lost. On the other hand, if the self-absorption is not too severe, it can be corrected using the
above equations (Pfalzer et al. 1999; Booth and Bridges 2005).

Finally, these self-absorption effects can be reduced for thick, concentrated samples by
rotating the sample so that it is nearly normal to the incident beam. With ¢ — O or the grazing
exit limit, P (Ep/sing >> p(E)/sind, which gives

eAQ  u,(E)
I, =1, -
4T U, (Ef )/smcl)

and gets rid of the energy dependence of the denominator.
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In certain situations, monitoring the intensity of emitted electrons (which includes both
Auger electrons and lower-energy secondary electrons) can be used to measure the XAFS. The
escape depth for electrons from materials is generally much less than a micron, making these
measurements more surface-sensitive than X-ray fluorescence measurements, and essentially
immune to over-absorption. Because the relative probability for emitting an electron instead
of an X-ray is higher for low energy edges and electron levels, electron yield measurements
are much more common and efficient for lower energy edges. Electron yield measurements
are generally most appropriate for samples that are metallic or semiconducting (that is, electri-
cally conducting enough so that the emitted electrons can be replenished from a connection to
ground, without the sample becoming charged). In order to collect the electron yield signal, a
voltage-biased collector needs to be placed very close to the sample surface, typically with a he-
lium atmosphere or vacuum between sample and collector. While electron yield measurements
can give very good data, for the reasons mentioned here, measuring XAFS in electron yield is
not very common for X-ray energies above 5 keV, and further details of these measurements
will be left for further reading.

Deadtime corrections for fluorescence XAFS

For fluorescence XAFS data measured with an energy discriminating fluorescence detec-
tor, such as a solid-state Ge or Si detector, it is often necessary to correct for the so-called
deadtime effect. This accounts for the fact that a finite amount of time is needed to measure
the energy of each X-ray detected, and the electronics used to make this measurement can
only process one X-ray at a time. At high enough incident count rates, the detector electronics
cannot process any more counts and is said to be saturated. The incident count rate is due to
all the X-rays in the detector, not just from the fluorescence line used in the XAFS measure-
ments. Saturation effects are particularly important when the absorbing atom is of relatively
high concentration (above a few percent by weight), because the intensity of the monitored
fluorescence line is negligible below the edge, and grows dramatically at the absorption edge.
Such an increase in intensity can cause a non-linear reduction of the fluorescence intensity, giv-
ing a non-linear artifact to the XAFS.

Fortunately, most energy discriminating detector and electronics systems can be character-
ized with a simple parameter t that relates the incident count rate with the output count rate
actually processed as

=7 eil‘""r

where Iy, is the incident count rate to the detector, /,, is the output count rate, giving the inten-
sity reported by the detector, and 7 is the deadtime, characteristic of the detector and electron-
ics system. For a realistic value of t = 2 ps, the relation of input count rate and output count
rate is shown in Figure 18. For many detector systems, there is some ability to adjust t and the
maximum output count rate, that can be achieved, but at the expense of energy resolution of
the fluorescence spectra. In order to make this correction, one wants to get fi,, given I, which
can be complicated near the saturation value for [y, as a particular value recorded for I, could
come from one of two values for I;,;,. For some detector systems, one can simply record f;,, and
1, for each measurement as an output of the detector and electronics system. Alternatively, one
can separately measure T so that the corrections can be applied easily. Otherwise, a good rule
of thumb is that spectra can be corrected up to a rate for which I, is half of I, (i, around
350 kHz for the curve shown in Fig. 18). Importantly, for multi-element detector systems, each
detector element will have its own deadtime, and corrections should be made for each detector
before summing the signals from multiple detectors.
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Figure 18. Typical deadtime curve for a pulse-counting, energy-discriminating detector with a deadtime
T of 2 ps. At low input count rates, the output count rate—the rate of successfully processed data—rises
linearly. As the count rate increases, some of the pulses cannot be processed, so that the output count rate
is lower than the input count rate. At saturation, the output count rate cannot go any higher, and increas-
ing the input count rate will decrease the output rate. The dashed line shows a line with unity slope, for a
detector with no deadtime.

XAFS DATA REDUCTION

For all XAFS data, whether measured in transmission or fluorescence (or electron emis-
sion), the data reduction and analysis are essentially the same. First, the measured intensity
signals are converted to p(E), and then reduced to (k). After this data reduction, (k) can be
analyzed and modeled using the XAFS equation. In this section, we’ll go through the steps of
data reduction, from measured intensities to x(k), which generally proceeds as:

1.

6.
7.

Convert measured intensities to p(E), possibly correcting systematic measurement
errors such as self-absorption effects and detector deadtime.

Identify the threshold energy Ey, typically as the energy of the maximum derivative
of W(E).

Subtract a smooth pre-edge function from p(E) to get rid of any instrumental
background and absorption from other edges.

Determine the edge jump, Ap, at the threshold energy, and normalize p(E), so that
the pre-edge subtracted and normalized w(E) goes from approximately O below the
threshold energy to 1 well above the threshold energy. This represents the absorption
of a single X-ray, and is useful for XANES analysis.

Remove a smooth post-edge background function approximating p(E), thereby
isolating the XAFS y = (i — po)/Ap.

Convert , from energy E to photoelectron wavenumber k = /2m(E — E,) / i’.
k-weight the XAFS y (k) and Fourier transform into R-space.

We’ll go through each of these steps in slightly more detail, and show them graphically using
real XAFS data.

As with many things, the first step is often the most challenging. Here, the differences
between measurements made in transmission and fluorescence mode are most pronounced.
For transmission measurements, we rearrange Equation (1), and ignore the sample thickness,

so that
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W(E)= m[’TOj

where now [ and [ are the signals measured from the ion chambers. Typically, the signals mea-
sured as I and [/ are actually integrated voltages over some predefined time where the voltages
are taken from the output of current amplifiers with input currents from ion chambers as input.
Thus the measurements are not the incident flux in photons per second. Rather, they are scaled
measures of the flux absorbed in the ion chamber. For the most part, the difference between
what we think of as /; (incident X-ray flux, in photons/second) and what we actually measure
for [, (scaled, integrated current generated from X-rays absorbed in the ion chamber) is not very
significant. When we take the ratio between the two ion chamber signals most of the factors
that distinguish the conceptual intensity from the measured signal will either cancel out, give
an arbitrary offset, or give a slowly varying monotonic drift with energy. Thus, it is common to
see experimental values reported for “raw” p(E) in the literature that do not have dimensions
of inverse length, and which might even have values that are negative. For real values of p(E)
in inverse length, these measurements would be nonsensical, but for XAFS work this is of no
importance, as we’ll subtract off a slowly varying background anyway.

For fluorescence or Auger measurements, the situation is similar, except that one uses

where I, is the integrated fluorescence signal of interest. As with the transmission measure-
ments, there is generally no need to worry about getting absolute intensities, and one can simply
use the ratio of measured intensities. Because the instrumental drifts for a solid-state, energy-
discriminating fluorescence detector may be different than for a gas-filled ion chamber, it is not
unusual for p(E) for fluorescence XAFS measurements to have an overall upward drift with
energy, where transmission XAFS tends to drift down with energy.

In addition to the corrections for over-absorption and deadtime effects discussed in the pre-
vious section, other corrections may need to be made to the measured p(E) data. For example,
sometimes bad glitches appear in the data that are not normalized away by dividing by I,. This
is often an indication of insufficient voltage in ion chambers, of too much harmonic content in
the X-ray beam, poorly uniform samples, incomplete deadtime correction, or a combination of
these. If possible, it is preferred to address these problems during the measurement, but this is
not always possible. For such glitches, the best approach is simply to remove them from the
data—asserting that they were not valid measurements of p(E).

Another example of a correction that can be made in the data reduction step is for cases
where another absorption edge occurs in the spectrum. This could be from the same element
(as is over the case for measurements made at the Ly; edge, where the Ly edge will eventually
be excited, or from a different element in a complex sample. As with a glitch, the appearance of
another edge means that p(E) is no longer from the edge and element of interest, and it is best
to simply truncate the data at the other edge.

Pre-edge subtraction and normalization

Once the measurement is converted to p(E), the next step is usually to identify the
edge energy. Since XANES features can easily move the edge by several eV, and because
calibrations vary between monochromators and beamlines, it is helpful to be able to do this in
an automated way that is independent of the spectra. Though clearly a crude approximation,
the most common approach is to take the maximum of the first derivative of p(E). Though it
has little theoretical justification, it is easily reproduced, and so can readily be checked and
verified.
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Instrumental drifts from detector systems can be crudely approximated by a simple linear
dependence in energy. That is, a linear fit to the pre-edge range of the measured spectrum is
found, and subtracted. In some cases, a so-called Victoreen pre-edge function (in which one
fits a line to E"W(E) for some value of n, typically 1, 2 or 3) can do a slightly better job at ap-
proximating the instrumental drifts for most XAFS spectra. This is especially useful for dilute
data measured in fluorescence with a solid-state detector, where the contribution from elastic
and Compton-scattered intensity into the energy window of the peak of interest will decrease
substantially with energy, as the elastic peak moves up in energy.

The next step in the process is to adjust the scale of p(E) to account for the absorption of
1 photoelectron. By convention, we normalize the spectrum to go from approximately O below
the edge to approximately 1 above the edge. To do this, we find the edge step, Ay, and divide
W(E) by this value. Typically, a low-order polynomial is fitted to 1(E) well above the edge (away
from the XANES region), and the value of this polynomial is extrapolated to Ej to give the edge
step. It should be emphasized that this convention is fairly crude and can introduce systematic
biases in the result for Ap.

Examples of these processing steps (location of E,, subtraction of pre-edge, and normal-
ization to an edge jump of 1) for transmission XAFS data at the Fe K-edge of FeO are shown
in Figures 19 and 20. For XANES analysis, this amount of data reduction is generally all that
is needed. For both XANES and EXAFS analysis, the most important part of these steps is the
normalization to the edge step. For XANES analysis, spectra are generally compared by am-
plitude, so an error in the edge step for any spectra will directly affect the weight given to that
spectra. For EXAFS, the edge step is used to scale y(k), and so is directly proportional to coor-
dination number. Errors in the edge step will translate directly to errors in coordination number.
Getting good normalization (such that p(E) goes to 1 above the edge) is generally not hard, but
requires some care, and it is important to assess how well and how consistently this normaliza-
tion process actually works for a particular data set. Most existing analysis packages do these
steps reasonably well, especially in making spectra be normalized consistently, but it is not at
all unusual for such automated, initial estimates of the edge step to need an adjustment of 10%.

Background subtraction

Perhaps the most confusing and error-prone step in XAFS data reduction is the deter-
mination and removal of the post-edge background function that approximates p(E). This is
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Figure 19. The XANES portion of the XAFS spectrum (solid with +), and the identification of E, from the
maximum of the derivative du/dE (solid). This selection of Ej is easily reproduced but somewhat arbitrary,
so we may need to refine this value later in the analysis.
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Figure 20. XAFS pre-edge subtraction and normalization. A line (or simple, low-order polynomial) is fit
to the spectrum below the edge, and a separate low-order polynomial is fit to the spectrum well above the
edge. The edge jump, Ay, is approximated as the difference between these two curves at E,. Subtracting
the pre-edge polynomial from the full spectrum and dividing by the edge jump gives a normalized spec-
trum.

somewhat unfortunate, as it does not need to be especially difficult. Since py(E) represents
the absorption coefficient from the absorbing atom without the presence of the neighboring
atoms, we cannot actually measure this function separately from the EXAFS. In fact, even if
possible, measuring pu(E) for an element in the gas phases would not really be correct, as (E)
represents the absorbing atom embedded in the molecular or solid environment, just without
the scattering from the core electrons of the neighboring atoms. Instead of even trying to
measure an idealized py(E), we determine it empirically by fitting a spline function to u(E). A
spline is a piece-polynomial function that is designed to be adjustable enough to smoothly ap-
proximate an arbitrary waveform, while maintaining convenient mathematical properties such
as continuous first and second derivatives. This is certainly an ad hoc approach, without any
real physical justification. Still, it is widely used for EXAFS analysis, and has the advantage of
being able to account for those systematic drifts in our measurement of p(E) that make it differ
from the true p(E), as long as those drifts vary slowly with energy. The main challenge with
using an arbitrary mathematical spline to approximate p,(E) is to decide how flexible to allow
it to be, so as to ensure that it does not follow p(E) closely enough to remove the EXAFS. That
is, we want p(E) to remove the slowly varying parts of p(E) while not changing y(k), the part
of n(E) that varies more quickly with E.

A simple approach for determining py(E) that works well for most cases relies on the
Fourier transform to mathematically express the idea that y(E) should match the slowly
varying parts of p(E) while leaving the more quickly varying parts of iW(E) to give the EXAFS
x- The Fourier transform is critical to EXAFS analysis, and we’ll discuss it in more detail
shortly, but for now the most important thing to know is that it gives a weight for each frequency
making up a waveform. For EXAFS, the Fourier transform converts y from wavenumber k to
distance R.

For determining the background py(E), we want a smoothly varying spline function that
removes the low-R components of , while retaining the high-R components. Conveniently,
we have a physically meaningful measure of what distinguishes “low-R” from “high-R,” in
that we can usually guess the distance to the nearest neighboring atom, and therefore assert
that there should be no signal in the EXAFS originating from atoms at shorter R. As a realistic
rule of thumb, it is rare for atoms to be closer together than about 1.5 A—this is especially
true for the heavier elements for which EXAFS is usually applied. Thus, we can assert that a
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spline should be chosen for py(E) that makes the resulting x have as little weight as possible
below some distance Ry, while ignoring the higher R components of . This approach and
the use of Ry,, with a typical value around 1 A, as the cutoff value for R (Newville et al.
1993), is not always perfect, but can be applied easily to any spectra to give a spline function
that reasonably approximates o(E) for most spectra with at least some physically meaningful
basis. Figure 21 shows a typical background spline found for FeO, using a high-R cutoff Ry,
of 1.0 A. The resulting y (k) is shown in Figure 22.
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Figure 21. Post-edge background
o 0.8 1 subtraction of FeO EXAFS. The
=1 0.6 | background po(E) is a smooth
spline function that matches the
0.4 , low-R components of W(E), in this
case using 1 A for Ryy,.
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Figure 22. The EXAFS y(k) (solid) isolated after background subtraction. The EXAFS decays quickly
with &, and weighting by (dashed) amplifies the oscillations at high k.

The effect of varying Ry, on the resulting spline for py(E) and y, in both k- and R-space can
be seen in Figure 23. Here, py(E) spectra are shown for the same FeO u(E) using values for Ry,
0f 0.2, 1.0, and 4.0 A. A value for Ry that is too small (shown with a solid line) results in uO(E)
that does not vary enough, giving a slow oscillation in % (k), and spurious peak below 0.5 Ain
Ix(R)I. On the other hand, setting Ry, too high (shown with a dashed line) may result in a po(E)
that matches all the EXAFS oscillations of interest. Indeed, with Ry, = 4 A, both the first and
second shells of the FeO EXAFS are entirely removed, leaving only the highest R components.
This is clearly undesirable. In general, it is not too difficult to find a suitable value for Ry, with
1 A or half the near- neighbor distance being fine default choices. As we can see from Figure
23, having Ry, too small is not always a significant problem—the low R peak can simply be
ignored in the modeling of the spectra, and there is little effect on the spectrum at higher R.
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Figure 23. The effect of changing Ry, on Ly(E) and y. A typical value for Rbkg of 1.0 A (dots) results in
a spline for (E) that can follow the low-R variations in p(E) while not removing the EXAFS. A value too
small (Ry, = 0.2 A, solid) gives a spline that is not flexible enough, leaving a low-R artifact, but one that
will not greatly impact further analysis. On the other hand, too large a value (Ry, = 4. 0A, dashed) will give
a spline flexible enough to completely remove the first and second shells of the EXAFS.

EXAFS Fourier transforms

As mentioned above, the Fourier transform is central for the understanding and modeling
of EXAFS data. Indeed, the initial understanding of the phenomena was aided greatly by the
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ability to perform Fourier transforms on measured EXAFS spectra. While there are certainly
ample resources describing Fourier transforms and their properties, a few important points
about the use of Fourier transforms for EXAFS will be made here.

The first thing to notice from Figure 24 is that two peaks are clearly visible—these
correspond to the Fe-O and Fe-Fe distances in FeO. Thus the Fourier transformed XAFS
can be used to isolate and identify different coordination spheres around the absorbing Fe
atom. Indeed, Iy (R)l almost looks like a radial distribution function, g(R). While EXAFS does
depend on the partial pair distribution—the probability of finding an atom at a distance R from
an atom of the absorbing species—y(R) is certainly not just a pair distribution function. This
can be seen from the additional parts to the EXAFS Equation, including the non-smooth k
dependence of the scattering factor f(k) and phase-shift 6(k).
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Figure 24. The Fourier Transformed XAFS, x(R). The magnitude Iy (R)! (solid) is the most common way
to view the data, but the Fourier transform makes y(R) a complex function, with both a real (dashed) and
imaginary part, and the magnitude hides the important oscillations in the complex y(R).

A very important thing to notice about (R) is that the R positions of the peaks are shifted
to lower R from what g(R) would give. For FeO, the first main peak occurs at 1.6 A, while the
FeO distance in FeO is more like 2.1 A. This is not an error, but is due to the scattering phase-
shift—recall that the EXAFS goes as sin[2kR + 8(k)]. As can be seen from the phase shifts

shown in Figure 10, 8(k) ~ —k is a decent approximation of a typical phase-shift, which gives
an apparent shift to the peaks in ¢ (R) of —0.5 A or so.

The Fourier Transform results in a complex function for % (R) even though y (k) is a strictly
real function. It is common to display only the magnitude of x(R) as shown in solid in Figure
24, but the real (dashed) and imaginary components contain important information that cannot
be ignored. When we get to the modeling the XAFS, it will be important to keep in mind that
% (R) has real and imaginary components, and we will model these, not just the magnitude.

The standard definition for a Fourier transform of a signal () can be written as
1=

wirs I f(t)e ™ dt

Flo)=

(1) :ﬁj F (o) do

where the symmetric normalization is one of the more common conventions. This gives Fourier
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conjugate variables of o and ¢, typically representing frequency and time, respectively. Because
the XAFS equation (Eqn. 10) has y(k) o sin[2kR + d(k)], the conjugate variables in XAFS
are generally taken to be k and 2R. While the normalization for ¢ (R) and (k) is a matter of
convention, we follow the symmetric case above (with # replaced by k and o replaced by 2R).

There are a few important modifications to mention for the typical use of Fourier
transforms in XAFS analysis. First, an XAFS Fourier transform multiplies y (k) by a power of
k, typically k* or k°, as shown in Figure 22. This weighting helps compensate for the strong
decay with k of x(k), and allows either emphasizing different portions of the spectra, or giving
a fairly uniform intensity to the oscillations over the k range of the data. In addition, (k) is
multiplied by a window function (k) which acts to smooth the resulting Fourier transform
and remove ripple and ringing that would result from a sudden truncation of y(k) at the ends
of the data range.

The second important issue is that the continuous Fourier transform described above is
replaced by a discrete transform. This better matches the discrete sampling of energy and k
values of the data, and allows Fast Fourier Transform techniques to be used, which greatly
improves computational performance. Using a discrete transform does change the definitions
of the transforms used somewhat. First, the y(k) data must be interpolated onto a uniformly
spaced set of k values. Typically, a spacing of 8k = 0.05 A~! is used. Second, the array size for
% (k) used in the Fourier transform should be a power of 2, or at least a product of powers of 2,
3, and 5. Typically, Ny, = 2048 points are used. With the default spacing between k points, this
would accommodate ¥ (k) up to k = 102.4 A-'. Of course, real experimental data doesn’t extend
that far, so the array to be transformed is zero-padded to the end of the range.

The spacing of points in R is given as SR = 1/(Ng;0k). The zero-padding of the extended k
range will increase the density of points in y(R) and result in smoothly interpolating the values.
For Ny = 2048 and 8k = 0.05 A1, the spacing in R is approximately 6R = 0.0307 A. For the
discrete Fourier transforms with samples of y (k) at the points &, = ndk, and samples of x(R) at
the points R,, = mOR, the definitions for the XAFS Fourier transforms become:

1 Ni
X(Rm ) = iok Z X(k” )Q(k” )k:”e'l[mtm//vn-l

NN i
2i0R & _

v k — R Q R —2intnm/ Nz
X( rz) \/Wmm:lx( m) ( m)e

This normalization convention preserves the symmetry properties of the Fourier Transforms
with conjugate variables k and 2R.

As mentioned above, the window function Q(k) will smooth the resulting Fourier
transform and reduce the amount of ripple that would arise from a sharp cut-off y (k) at the
ends of the data range. Since Fourier transforms are used widely in many fields of engineering
and science, there is an extensive literature on such window functions, and a lot of choices and
parameters available for constructing windows. In general terms, €2(k) will gradually increases
from O to 1 over the low-k region, and decrease from 1 to O over the high-k region, and may
stay with a value 1 over some central portion. Several functional forms and parameters for
these windows can be used, and are available in most EXAFS analysis software. Many good
examples of the shapes, parameters, and effects of these on the resulting y(R) are available in
program documentation, and other on-line tutorials.

In many analyses, the inverse Fourier transform is used to select a particular R range and
transform this back to k space, in effect filtering out most of the spectrum, and leaving only a
narrow band of R values in the resulting filtered (k). Such filtering has the potential advantage
of being able to isolate the EXAFS signal for a single shell of physical atoms around the
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absorbing atom, and was how many of the earliest EXAFS analyses were done. This approach
should be used with caution since, for all but the simplest of systems, it can be surprisingly
difficult to effectively isolate the EXAFS contribution from an individual scattering atom this
way. It is almost never possible to isolate a second neighbor coordination sphere in this way. For
this reason, many modern analyses of EXAFS will use a Fourier transform to convert y (k) to
% (R), and use % (R) for data modeling, not bothering to try to use a filter to isolate shells of atoms.

XAFS DATA MODELING

In this section, we’ll work through an example of a structural refinement of EXAFS. The
FeO data shown and reduced in the previous section will be analyzed here. Of course, we know
the expected results for this system, but it will serve to demonstrate the principles of XAFS
modeling and allow us to comment on a number of subtleties in data modeling.

FeO has a simple rock salt structure, with Fe surrounded by 6 O, with octahedral
symmetry, and then 12 Fe atoms in the next shell. Starting with this simple structure, we can
calculate scattering amplitudes f(k) and phase-shifts, 5(k) theoretically. A complete description
of this calculation is beyond the scope of this treatment, but a few details will be given below.
Once we have these theoretical scattering factors, we can use them in the EXAFS equation
to refine structural parameters from our data. That is, we’ll use the calculated functions f(k)
and d(k) (and also A(k)) in the EXAFS equation to predict the (k) and modify the structural
parameters R, N, and 62 from Equation (10), and also allow E|, (that is, the energy for which k
= 0) to change until we get the best-fit to the y (k) of the data. Because of the availability of the
Fourier transform, we actually have a choice of doing the refinement with the measured y (k) or
with the Fourier transformed data. Working in R-space allows us to selectively ignore higher
coordination shells, and we will use this approach in the examples here. When analyzing the
data this way, the full complex XAFS % (R), not just the magnitude Iy (R)l, must be used.

The examples shown here are done with the FEFF (Rehr et al. 1991) program to construct
the theoretical factors, and the IFEFFIT (Newville 2001a) package to do the analysis. Some
aspects of the analysis shown here may depend on details of these particular programs, but
similar results would be obtained with any of several other EXAFS analysis tools.

Running and using FEFF for EXAFS calculations

In order to calculate the f{(k) and 8(k) needed for the analysis, the FEFF program (Rehr
et al. 1991) starts with a cluster of atoms, builds atomic potentials from this, and simulates
a photoelectron with a particular energy being emitted by a particular absorbing atom and
propagating along a set of scattering paths (Newville 2001b). FEFF represents a substantial
work of modern theoretical condensed matter physics, and includes many effects that are
conceptually subtle but quantitatively important, including the finite size of the scattering
atoms, and many-body effects due to the fact that electrons are indistinguishable particles that
must satisfy Pauli’s exclusion principle (Rehr and Albers 2000). The details of these effects
are beyond the scope of this work.

We do not, as may have been inferred from some of the earlier discussion, use FEFF to
calculate f(k) and d(k) for the scattering of, say, an oxygen atom, and use that for all scattering
of oxygen. Instead, we use FEFF to calculate the EXAFS for a particular path, say Fe-O-
Fe taken from a realistic cluster of atoms. This includes the rather complex propagation of
the photoelectron out of the Fe atom, through the sea of electrons in an iron oxide material,
scattering from an oxygen atom with finite size, and propagating back to the absorbing Fe
atom. As a result of this, we use FEFF to calculate the EXAFS for a particular set of paths so
that we may then refine the path lengths and coordination numbers for those paths.
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Starting with a cluster of atoms (which does not need to be crystalline, but this is often
easy to use), FEFF determines the important scattering paths, and writes out a separate file
for the scattering contributions for the EXAFS from each scattering path. Conveniently (and
though it does not calculate these factors individually), it breaks up the results in a way that can
be put into the standard form of the EXAFS equation (Eqn. 10), even for multiple-scattering
paths. This allows analysis procedures to easily refine distances, apply multiplicative factors for
coordination numbers and S2, and apply disorder terms. Because the outputs are of a uniform
format, we can readily mix outputs from different runs of the programs, which is important for
modeling complex structures with multiple coordination environments for the absorbing atom.

First-shell fitting

For an example of modeling EXAFS, we start with FeO, a transition metal oxide with the
particularly simple rock-salt structure, while still being representative of many systems found in
nature and studied by EXAFS, in that the first shell is oxygen, and the second shell is a heavier
metal element. We begin with modeling the first Fe-O shell of FeO, take a brief diversion into
the meaning and interpretation of the statistical results of the modeling, and then continue on
to analyze the second shell.

We start with the crystal structure, generate the input format for FEFF, run FEFF, and
gather the outputs. For the rock-salt structure of FeO with six Fe-O near-neighbors in octahedral
coordination, and twelve Fe-Fe second neighbors, there will be one file for the six Fe-O
scattering paths, and one file for the twelve Fe-Fe scattering paths. To model the first shell
EXAFS, we use the simulation for the Fe-O scattering path, and refine the values for NS, R,
and 6. We set S; to 0.75. We will also refine a value for E, the threshold defining where k is 0.
This is usually necessary because the choice of Ej from the maximum of the first derivative of
the spectra is ad hoc, and because the choice of energy threshold in the calculation is somewhat
crude. Even if the refined value for E, does not change very much, it is strongly correlated with
R, so that getting both its value and uncertainty from the fit is important.

The results of the initial refinement is shown in Figure 25, with best values and estimated
uncertainties for the refined parameters given in Table 1. These values are not perfect for
crystalline FeO, especially in that the distance is contracted from the expected value of 2.14 A,
but they are reasonably close for a first analysis.

It is instructive to look at this refinement more closely, and discuss a few of the details. The
refinement was done on the data in R-space, after a Fourier transform of k% (k)Q(k), where Q(k)
represents a Hanning window with a range between k = [2.5,13.5] A-', and with a dk parameter
of 2 A-!. The refinement used the real and imaginary components of x(R) between R = [0.9, 2.0]
A. k*y (k) for the data and best-fit model, as well as Q(k) are shown on the left side of Figure 26.

From Figures 25 and 26, it is evident that the higher frequency components (that is, from
the second shell of Fe-Fe) dominate k*y (k). This is a useful reminder of the power of the Fourier
transform in XAFS analysis: it allows us to concentrate on one shell at a time and ignore the
others, even if they have larger overall amplitude.

Table 1. Best values and uncertainties (in parentheses) for the refined first shell parameters
for FeO. The refinement fit the components of x(R) between R = [0.9,2.0] A after a Fourier
transform using k = [2.5,13.5] A~!, a k-weight of 2, and a Hanning window function. S; was
fixed to 0.75.

Shell N R (A) ot (A?) AE, (eV)
Fe-O 5.5(0.5) 2.10(0.01) 0.015(.002) -3.2(1.0)
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Figure 25. First shell fit to the EXAFS of FeO, showing the magnitude of the Fourier transform of the
EXAFS, Iy (R), for data (+) and best fit model (solid).

2.0

Figure 26. EXAFS k%*y (k) (left) for data (+) and best-fit model (solid) for the first shell of FeO, and the
window function, Q(k), used for the Fourier transform to x(R). While the solid curve shows the best-fit to
the 1* shell of the EXAFS, this is not obvious from k?y (k). On the right, the real and magnitude components
of % (R) for the data (+) and best-fit model (solid) show that the model matches the data for the first shell
very well.

Fit statistics and estimated uncertainties

At this point, we should pause to discuss further details of the fit, including the fit statistics
and how the best-fit values and uncertainties are determined in the refinement. Because the
EXAFS equation is complex, and non-linear in the parameters we wish to refine, the refinement
is done with a non-linear least-squares fit. Such a fit uses the standard statistical definitions for
chi-square and least-squares to determine the best values for the set of parameters varied as
those values that give the smallest possible sum of squares of the difference in the model and
data. The standard definition of the chi-square or %2 statistic (note the use of %2 from standard
statistical treatments—don’t confuse with the EXAFS y!) that is minimized in a least-squares
fit is defined as

Ny, data model 2
PR o /Rl Ve €]
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data

where y;" is our experimental data, y;* (x) is the model which depends on the variable fitting
parameters x, Ny, is the number of points being fit, and € is uncertainty in the data. Each of
these terms deserves more discussion.

model
i
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The set of variable parameters x are the values actually changed in the fit. If we had fixed
a value (say, for N), it would not be a variable. Below, we will impose relationships between
parameters in the EXAFS equation, for example, using a single variable to give the value for
E, for multiple paths. This counts as one variable in the fit, even though it may influence the
value of several physical parameters for multiple paths in the model function.

Importantly, the %2 definition does not actually specify what is meant by the data y. In
the fit above, we used the real and imaginary components of y(R), after Fourier transforming
the data with a particular window function and k-weight. Using different parameters for the
transform would result in different data (and model) to be fit, and could change the results. We
could have tried to fit the k*y(k) data without Fourier transforming, but as can be seen from
Figure 26, the fit would likely have been substantially worse. But, as we are at liberty to decide
what is meant by “the data” to be modeled, we can select the portion of the spectra we’re most
interested in, including changing the weighting parameters and windows. We can also use
multiple spectra that we wish to model with one set of parameters x as “the data.” Of course,
any transformation or extensions we make to the data must be applied equally to the model for
the data. In general, we find that fitting EXAFS data in R-space strikes a good balance between
not changing the data substantially, and allowing us to select the k and R ranges we wish to
and are able to model.

The uncertainty in the data is represented by ¢ in the above definition for 2. Of course,
this too must match what we mean by “the data,” and will generally mean the uncertainty in
x(R) in the range of the data we’re modeling. There are many general strategies for estimating
uncertainties in data, usually based on involved statistical treatment of many measurements.
Such efforts are very useful, but tend to be challenging to apply for every EXAFS spectra. A
convenient if crude approach is to rely on the fact that EXAFS decays rapidly with R and to
assert that the data at very high R (say, above 15 A) reflects the noise level. Applying this to the
R range of our data assumes that the noise is independent of R (white noise), which is surely
an approximation. The advantage of the approach is that it can be applied automatically for
any set of data. Tests have shown that it gives a reasonable estimate for data of low to normal
quality, and underestimates the noise level for very good data. A simple relationship based on
Parseval’s theorem and Fourier analysis can be used to relate g, the noise estimate in % (R) to
&, the noise in (k) (Newville et al. 1999).

There are two additional statistics that are particularly useful (Lytle et al. 1989). One of
these is the reduced chi-square, defined as > = %%/(Ngaa — Nyarys) Where Ny, is the number of
variable parameters in the fit. This has the feature of being a measure of goodness-of-fit that
is takes into account the number of variables used. In principle, for a good fit and data with
well-characterized uncertainties, ¢, this value should approach 1. y? is especially useful when
comparing whether one fit is better than another. In simplest terms, a fit with a lower value for
2 is said to be better than one with a higher value, even if the two fits have different number
of variables. Of course, there is some statistical uncertainty in this assertion, and confidence
intervals and F tests can be applied to do a more rigorous analysis. For EXAFS analysis, a
principle difficulty is that the values of ¥ are often several orders of magnitude worse than 1,
far worse than can be ascribed to a poor estimate of €. Partly because of this, another statistic
is R, or R-factor, defined as

NlLlLl ata mode!
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which gives the size of the misfit relative to the norm of the data. This value is typically found
to below 0.05 or so for good fits, and is often found to be much better than that.



Fundamentals of XAFS 69

Last, and possibly most surprising for the discussion of the pieces in the definition of 2,
we come to the problem of identifying Ny,,. When measuring i(E) we are free to sample as
many energy points as we wish, but increasing the number of points in p(E) over a particular
energy range doesn’t necessarily mean we have a better measure of the first shell EXAFS.
That is, the EXAFS oscillations are relatively slow in energy, and sampling nW(E) at 0.1 eV
steps over the EXAFS range does not give a better measurement of the first shell EXAFS
than acquiring for the same total time but sampling at 1 eV steps. In the previous chapter,
we mentioned that the zero-padding and fine spacing of k data sets the spacing of data in R.
We should be clear that this can (and usually does) greatly over-sample the data in R space.
Oversampling is not bad—it generally improves stability—but it must be understood that it is
not adding new, independent data.

For any waveform or signal, the Nyquist-Shannon sampling theorem tells us that the
maximum R that can be measured is related to the spacing of sampled data points in k,
according to (for EXAFS, with conjugate Fourier variables of k and 2R):

Rmax = L
25k
where R, is the maximum R value we can detect, and dk is the spacing for the (k) data. Using
8k = 0.05 A~' is common in EXAFS, which means we cannot detect EXAFS contributions
beyond 31.4 A. As the converse of this, the resolution for an EXAFS spectrum — the separation
in R below which two peaks can be independently measured—is given as
b
2kmax

OR =

where ki, is the maximum measured value of k. In short, what matters most for determining
how well y(R) is measured for any particular value of R is how many periods of oscillations
there are in (k).

Related to both R, and the resolution SR, and also resulting from basic signal processing
theory and Fourier analysis, the number of independent measurements in a band-limited
waveform is

o 2DRAR (12)
T
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where Ak and AR are the range of useful data in k and R. For completeness, the above equation
is often given with a “+2” instead of a “+1”(Stern 1993) in the EXAFS literature, though we
will follow the more conservative estimate, and note that it would give an upper limit on the
number of variables that could be determined from a set of noise-free data. No matter whether
‘+1” or “+2” is used, the main point is that number of data points available over a particular
range of R is given by range of data in k. Making measurements with extremely fine steps in k
(or energy) will allow data at higher R to be reliably modeled, but it does allow more parameters
to be determined over a particular range of R below R,... In order to be able to fit more param-
eters over a particular range of R, data needs to be collected to higher k.

Thus, we should modify the definition of 2 (and 7>) used to reflect the number of truly
independent data points in the data, as
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where N4 is given by Equation (12) and Ny, is the number of samples used for the data,
even if this far exceeds N,,y. Values of N, for real EXAFS data are not very large. In the first
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shell fit to FeO, we used k = [2.5,13.5] A" and R =[0.9,2.0] A which gives N;,q ~ 8.7, and we
used 4 variables in the fit—roughly half the maximum. For higher shells and more complicated
structures, we will have to come up with ways to limit the number of variables in fits in order
to stay below the number of independent measurements for any particular R range that the data
actually can support.

Estimates of the uncertainties for variables and correlations between pairs of variables can
be made by measuring how y2 changes as variables are moved away from their best-fit values.
Standard statistical arguments indicate that 1o error bars (that indicate a 68% confidence in the
value) should increase 2 by 1 from its best-fit value. This assumes that > = 1, which is usually
not true for EXAFS data. As a consequence, it is common in the EXAFS literature to report
uncertainties for values that increase y2 by x~. This is equivalent to asserting that a fit is actually
good, and scaling € so that y” is 1.

The estimation of uncertainties and correlations between variables can be very fast, as
the computational algorithms used for minimization compute intermediate values related
to the correlations between variables (in the form of the covariance matrix) in order to find
the best values. Uncertainties determined this way include the effect of correlations (that is,
moving the value for one variable away from its best value may change what the best value
for another variable would be), but also make some assumptions about how the values of the
variable interact. More sophisticated approaches, including brute-force exploration of values by
stepping a variable through a set of values and repeatedly refining the rest of the variables, can
give better measures of uncertainties, but are more computationally expensive.

Though the aim of a fitis to find the best values for the fitting parameters x, the computational
techniques used do not guarantee that the “global” minimum of % is found, only that a “local”
minima is found based on the starting values. This, of course, can cause considerable concern.
Care should be taken to check that the results found are not too sensitive to the starting values for
the variables or data manipulation parameters including Fourier transform ranges and weights,
and background subtraction parameters. Checking for false global minima is somewhat more
involved. Fortunately, for EXAFS analysis with reasonably well-defined shells, false minima
usually give obviously non-physical results, such as negative or huge coordination numbers
or negative values for 62. Another warning sign for a poor model is an E, shift away from the
maximum of the first derivative by 10 eV or more. This can sometimes happen, but it might also
indicate that the model y(k) may have “jumped” a half or whole period away from its correct
position, and that the amplitude parameters may be very far off, as if the Z for the scatterer is
wrong.

Our diversion into fitting statistics is complete, and we can return to our first shell fit to
Fe-O before continuing on. The data was estimated to have g; = 5 x 1073 and g; = 2 x 107, which
is a typical noise level for experimental (k) data. With a standard k grid of 0.05 A~', and an R
grid of = 0.0307 A, the fit had 72 data points, but N; 4 = 8.7. Scaled to N4 as in Equation (13),
the fit has 2 ~ 243 and ¥ = 51.7 (again with 4 variables), and R = 0.005.

Second-shell fitting

We are now ready to include the second shell in the model for the FeO EXAFS. To do this,
we simply add the path for Fe-Fe scattering to the sum in the EXAFS equation. We will add
variables for R, N, and o2 for the Fe-Fe shell to those for the Fe-O scattering path. We’ll use the
same value for E for both the Fe-O and Fe-Fe path, and keep all parameters the same as for the
fit above, except that we’ll extend the R range to be R = [0.9,3.1] A. This will increase Ning to
~ 15.7, while we’ve increased the number of variables to 7.

The fit is shown in Figure 27 and values and uncertainties for the fitted variables are
given in Table 2. The fit gave statistics of %2 =~ 837, x2 =~ 96, and R ~ 0.0059. The structural
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Figure 27. EXAFS Ix(R)! (Ieft) and Re[y(R)] (right) for FeO data (+) and best-fit model (solid) for the first
two shells around Fe, including Fe-O and Fe-Fe scattering paths.

Table 2. Best values and uncertainties (in parentheses) for the refined first (Fe-O) and seconQd
(Fe-Fe) shells for FeO. The refinement fit the components of y(R) between R = [0.9,3.0] A
with all other parameters as in Table 1.

Shell N R (A) ot (A?) AE, (eV)
Fe-O 5.3(0.5) 2.11(0.01) 0.013(.002) -1.2(0.5)
Fe-Fe 13.4(1.3) 3.08(0.01) 0.015(.001) -1.2(0.5)

values for distances and coordination number are consistent with the known crystal structure
of FeO, though the Fe-O distance is a bit shorter than expected, and the Fe-Fe is a bit longer
than expected, both suggesting that there may be some contamination of a ferric iron phase in
the sample. The fits are shown in Figure 27, and individual contributions to the total best-fit
spectrum are shown in both k- and R-space in Figure 28.

An important aspect of using fitting techniques to model experimental data is the ability to
compare different fits to decide which of two different models is better. We will illustrate this
by questioning the assumption in the above the model that the E, parameter should be exactly
the same for the Fe-O and Fe-Fe scattering path. Changing this model to allow another variable
parameter and re-running the fit is straightforward. For this data set, the fit results are close
enough to the previous fit that the graphs of y(k) and y(R) are nearly unchanged. The newly
refined values for the parameter are given in Table 3. Compared to the values in Table 2, the
results are very similar except for the values of E, and a slight increase in uncertainties.

The fit statistics for this refinement are 32 ~ 811, x> = 105, and R ~ 0.0057. Since both
%% and R have decreased, the model with 2 independent E; values is clearly a closer match to
the data. However, we added a variable to the model, so it is reasonable to expect that the fit
should be better. But is the fit sufficient to justify the additional variable? The simplest approach
to answering this question is to ask if > has improved. In this case, it has not—it went from
roughly 96 to 105. Since these statistics all have uncertainties associated with them, a slightly
more subtle question is: what is the probability that the second fit is better than the first? A
standard statistical F-test can be used to give this probability, which turns out to be about 32%
for these two fits (that is, with Ny,q = 15.7, %2 ~ 837 for 8 variables and y? ~ 811 for 7 variables).

Another way to look at this is to ask if the added variable (E, for the Fe-Fe shell) found a
value that was significantly different from the value it would have otherwise had. The two val-
ues for Ej in the “2 Ey model” are noticeably different from one another—approximately at the
limits of their uncertainties—but both are consistent with the value found in the “1 E;, model.”
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Figure 28. Contributions of the first and second shell to the total model fit to the FeO EXAFS. On the
left, the fit (solid) matches the data (+) much better than in Figure 26. Note that, compared to the Fe-O
contribution the Fe-Fe contribution has a shorter period corresponding to longer interatomic distance, and
has magnitude centered at higher &, as predicted by the f(k) function shown in Figure 10. On the right, the
Ix(R)! of the contributions from the two shells are shown. Though there is a sharp dip at 2 A between peaks
for the two shells, there is substantial leakage from one shell to another.

Table 3. Best values and uncertainties (in parentheses) for the refined first (Fe-O) and second
(Fe-Fe) shells for FeO for a model just like that shown in Table 2 except that the 2 values for
E, are allowed to vary independently.

Shell N R (A) o? (A% AE, (eV)
Fe-O 5.3(0.6) 2.12(0.01) 0.013(.002) -0.7(1.2)
Fe-Fe 13.3(1.3) 3.08(0.01) 0.015(.001) —-1.5(0.8)

This also leads us to the conclusion that the additional variable Ej is not actually necessary for
modeling this data.

We’ve seen that structural refinement of EXAFS data can be somewhat complicated,
even for a relatively straightforward system such as FeO. Many real systems can be much
more challenging, but the fundamental principles described here remain the same. The ability
to alter which of the physical parameters describing the different paths in the EXAFS sum
are independently varied in the refinement, and test the robustness of these, can be especially
important for more sophisticated analysis. One way to think about this is that in the first version
of the above example, we used the value of one variable for two different path variables—E, for
the Fe-O and Fe-Fe paths, and then demonstrated that using one value for these two physical
parameters was robust. This is the simplest type of constraint that can be applied in an EXAFS
analysis. In this case, it has the noticeable advantage of improving the fit because it uses fewer
independent variables. For a mixed coordination shell, perhaps a mixture of Fe-O and Fe-S, one
may want to include paths for Fe-O and Fe-S and ask the model not to simply refine the weight
of each of these independently but rather to ask what fraction of the Fe atoms are coordinated
by oxygen. To do this, one would vary the fraction x. as a pre-factor to the amplitude term for
the Fe-O path and constrain the coordination number for the Fe-S path to use 1 — xg.o. More
complex constraints can be imposed when simultaneously refining data from different edges or
different temperatures measured on the same sample. In a sense, the use of multiple paths for
different parts of the R range for % (R) in the fit above is merely the starting point for thinking
about how different contributions can be put together to make a model for a set of data.

The basic formalism for modeling EXAFS data has been given, based on the Path
expansion, theoretical calculations of the contributions for these paths, the Fourier transform,
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and a statistical understanding of the information present in a real EXAFS spectrum. We
have illustrated a simple approach to refining a structural model using EXAFS data, and used
statistical methods to compare two different candidate models. Finally we have outlined the
route forward to building models for more complex EXAFS data.

Two distinct and essential challenges exist for EXAFS analysis. First, the complexity
of the theoretical calculations for photoelectron scattering make it difficult to get scattering
factors f(k) and 8(k) that can match the accuracy of measured EXAFS data. By itself, this has
proven to not be a serious problem, as the EXAFS literature is full of examples showing the
accuracy of the results from EXAFS despite the imperfect theoretical calculations. Second,
the limited information contained in a finite EXAFS spectrum coupled with the number of
scattering paths needed to model real systems makes building and testing realistic models
for complex systems challenging. Progress in analysis tools for EXAFS continues to make
the building and testing of such models easier and more robust, but modeling still requires
a fair amount of expertise and care. Despite the challenges, EXAFS has been proven to give
reproducible and reliable measures of the local structure around selected atoms that cannot be
obtained in any other way, and the number of scientists using EXAFS in both mature and new
