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Preface

This book is the result of almost forty years of concentrated work by the 
senior author. Many of the basic concepts presented in the book were col-
laboratively developed by the authors between 1977 and 1987, when they 
occupied adjacent offi ces at the U.S. Geological Survey in Menlo Park, Cali-
fornia. Over the following twenty years, many of those concepts were further 
developed, elucidated, and exemplifi ed in the professional literature. From 
the beginnings of the work, colleagues have asked for a unifi ed presentation 
of the many ideas about quantitative resource assessments (QRA) that are 
located in widely disperse publications. Although not apparent from indi-
vidual reports, there was a broad plan for the kind of QRA presented here 
from the beginnings of this work in 1974–1979. The purpose of the form of 
mineral resource assessments discussed in this book is to make unbiased 
quantitative assessments in a format needed in decision-support systems 
so that consequences of alternative courses of action can be examined with 
respect to land use or mineral-resource development. The audiences for 
these assessments are governmental or industrial policy-makers, managers 
of exploration, planners of regional development, and similar decision-mak-
ers. Some of the tools and models presented here are useful for selection of 
exploration sites, but that is a side benefi t, not the goal.

Readers of this book are likely to be either users or practitioners of assess-
ments. For them, we brought together materials published in diverse places 
and have tried to capture the necessary ingredients of the diverse disciplines 
that are an integral part of quantitative mineral resource assessments. We 



viii  Preface

believe that the book is written so that the procedures are relatively easy to 
understand for those who come from one of the diverse disciplines. The cost 
of writing for the broader audience is that the mineral economist who reads 
the book might understand that knowing the geologic setting is important 
but may not understand the complexity involved in determining the set-
ting. The same can be said of the economic geologist, who may not under-
stand the implications and assumptions made when a Poisson distribution 
is assumed for the distribution of deposits or when a net present value is 
used to determine worth. The point is that although the concepts presented 
here are relatively straightforward and understandable to many, in assess-
ments, carefully listening to the experts in other disciplines leads to better 
products. Borrowing from De Veaux and Velleman’s (2008) comments about 
the challenges of teaching statistics, we believe that navigating through and 
making sense of QRA require not just learning rules and equations but also 
life experiences and common sense. The judgment required to understand 
which tools to apply is best learned by example and experience.

The accomplishments reported here refl ect many years of work by a group 
of dedicated researchers. Their publications do not convey the diffi culties of 
their work. Those who made signifi cant contributions include Dan Mosier, 
Jim Bliss, and Greta Orris. Important additional contributions were made by 
Dave Root, Norm Page, Keith Long, Vladimir I. Berger, and Joe Duval. The 
suggestions and critiques over many years by Barney Berger, Larry Drew, 
Margie Scott, and Ryoichi Kouda have led to many improvements and are 
greatly appreciated. Over the years, reviews, questions, and suggestions on 
papers made by Paul Barton, Brian Skinner, Roderick Eggert, and Don Sang-
ster have helped improve these works. Our common training in mineral eco-
nomics from DeVerle P. Harris at Penn State University provided a basis for 
decision support systems.

Although he would probably deny any responsibility, none of this would 
have been possible without the training that we received from the remark-
able John Cedric Griffi ths at Penn State University. He taught us how to 
focus on the ultimate goal and not the items or tools.

Finally, we would like to thank Brian Singer at altitudesf.com for provid-
ing the cover art.
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Perspective

Every day, somewhere in the world, decisions are made about how public 
lands that might contain undiscovered resources should be used or whether 
to invest in exploration for minerals. Less frequently, decisions are made 
concerning mineral resource adequacy, national policy, and regional devel-
opment. Naturally, the people making the decisions would like to know the 
exact consequences of the decisions before the decisions are made. Unfortu-
nately, it is not possible to inform these decision-makers, with any certainty, 
about amounts, discoverability, or economics of undiscovered mineral 
resources. The kind of assessment recommended in this book is founded 
in decision analysis in order to provide a normative framework for mak-
ing decisions concerning mineral resources under conditions of uncertainty. 
Our goal is to make explicit the factors that can affect a mineral-related deci-
sion so that the decision-maker can clearly see the possible consequences 
of the decision. This means that we start with the question of what kinds of 
issues decision-makers are trying to resolve and what types and forms 
of information would aid in resolving these issues. This book has a differ-
ent purpose than academic reports common to many assessments, and it 
is not designed to help select sites for exploration. The audience for prod-
ucts of assessments discussed here comprises governmental and industrial 
policy-makers, managers of exploration, planners of regional development, 
and similar decision-makers. Some of the tools and models presented here 

 1
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are useful for selection of exploration sites, but that is a side benefi t. The 
focus of this book is on the practical integration of the fundamental kinds 
of information needed by the decision-maker. The integrated approach to 
assessment presented in this book focuses on three assessment parts and 
the models that support them. The fi rst part uses models of tonnages and 
grades to estimate possible tonnages and grades of undiscovered deposits. 
The second part develops mineral resource maps that explore whether an 
area’s geology permits the existence of one or more types of mineral depos-
its. The product of this part of the assessment is identifi cation of so-called 
permissive tracts of land. For those areas that are permissive, the third part
of the assessment develops estimates of the possible number of undiscov-
ered deposits of different types. These estimated undiscovered deposits are 
consistent with the grade-and-tonnage models of the fi rst part. These three 
parts are the centerpiece of this book; the mineral deposit models are used 
to aid in construction of the three parts and to help convert the output of the 
three parts into forms helpful to decision-makers.

We believe that qualitative assessments of undiscovered minerals are 
most useful when there is shared understanding and trust between the 
assessor and the decision-maker, for example, in a small company where 
the decision-maker is comfortable with the advice of the geologist. In most 
situations, however, this is not the case because organizations are too large 
or there are too many interested parties. When three or more parties have an 
interest in the outcome of the decision, there may be a need to adjudicate. 
Qualitative assessments are typically subjective and so poorly defi ned that 
implications of such statements as “high potential for X” cannot be docu-
mented and defended in an adversarial situation. So, in most cases, some 
form of quantitative assessment is warranted.

Many papers and books dealing with academic issues of quantitative 
mineral resource assessment are interesting; we recommend them to stim-
ulate thought and discussion. Maurice Allais is considered the father of 
modern quantitative resource assessment not because he was the fi rst to use 
quantitative methods (see King, 1880), but because he was probably the fi rst 
to design a system to respond to the needs of decision-makers (see Allais, 
1957). The next signifi cant steps in the development of quantitative mineral 
resource assessments were proposed by Harris (1965, 1984). He extended 
the work of Allais by introducing multivariate methods, using economics, 
capturing the knowledge of geologists, and focusing on the decision-maker. 
This book has the same goal as did Allais and Harris—to provide informa-
tion useful to decision-makers. The book represents the work of a dedicated 
team of scientists which, in a span of thirty years, constructed and refi ned 
numerous models, tested methods, and participated in assessments.

The differences between the ideas presented by Allais fi fty years ago and 
Harris twenty to forty years ago, and those presented in this book refl ect a 
signifi cant growth in knowledge gained since their works and the recogni-
tion of the value of, and improved ways to capture, geologic information. 
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Owing to substantial advances in understanding about the earth’s nature, 
we now can use geologic maps to divide a large region into parts that could 
contain different kinds of mineral deposits, and we know that these different 
kinds differ signifi cantly in the amounts and qualities of minerals of interest 
to society, which affects chances that the deposits will be sought, found, and 
exploited by society. These topics are discussed below in the context of a 
brief history of three-part assessments and a guide to the remaining parts of 
this book. It is important to recognize that selections of methods presented 
here are motivated by the desire fi rst to make unbiased estimates and then to 
minimize the uncertainty associated with the estimates.

Beginnings of Three-Part Assessments

In the not too distant past, the directors of a major mining company were 
inclined to invest in the new larger trucks for the company’s existing mine 
due to the almost certain 15 percent return on the investment, rather than 
in the vague hopes of large fi nancial returns that might occur at some point 
in the future if the monies were invested in mineral exploration. Heads 
of exploration have found themselves in this situation many times over 
the years because boards must meet their fi duciary responsibilities and be 
concerned about risk. How could the vice president of exploration compete 
for exploration funds? At a minimum, the board required an estimate of 
the probability of success, an estimate of the value of the resources being 
sought, and knowledge of exploration costs. He could neither specify the 
expected monetary reward nor the uncertainty of his proposed exploration 
investment.

Over the last forty years, some companies have responded to this com-
petition for limited funds by conducting internal studies of the possible 
number of undiscovered deposits in a region, the possible values of these 
deposits, and the chances of fi nding them. Classifying the deposits into 
types considerably reduces the work of determining their possible values, 
the geologic settings where the deposits might occur, and the chances and 
costs of discovery. Quantifi cation of this information provides a founda-
tion for analyzing the uncertainty and risk of the exploration investment. 
Thus have some exploration programs been justifi ed and funded. For the 
most part, these studies have been considered company confi dential and 
are not publicly available. However, the key elements of these studies are 
the same as those needed for decisions about public lands, regional devel-
opment, and resource development issues that are discussed in a series 
of examples of histories of actual assessments given in boxes throughout 
this book. A key to the development of modern resource assessments was 
recognition that differences in locations, amounts, and qualities can be cap-
tured by knowing about different kinds of mineral deposits that contain 
the resources of interest. From the standpoint of the fi eld of statistics, the 
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variability of locations and values of mineral resources are partitioned by 
deposit types. For example, the total variability in amounts of some metal 
can be explained and predicted by knowing whether a particular deposit 
type could or could not occur in an area of interest. Thus, the large uncer-
tainties inherent in estimating amounts of undiscovered resources in an 
area of interest are signifi cantly reduced by knowing if a deposit type could 
occur. The same could be said for the values and possible locations of these 
undiscovered resources.

Mineral deposit models are important in quantitative resource assess-
ments for two reasons: (1) numbers per unit area of deposits and grades and 
tonnages of most deposit types are signifi cantly different, and (2) types occur 
in different geologic settings that can be identifi ed from geologic maps. As 
a consequence, mineral deposit models can be used to reduce uncertainty 
about locations, number of deposits, amounts of resources, and values of the 
resources. Mineral deposit models are the keystone in combining the diverse 
geoscience information on geology, mineral occurrences, geophysics, and 
geochemistry used in resource assessments and mineral exploration.

Perhaps the fi rst publications showing the power of delineating tracts of 
land for deposit types using geology and using grade-and-tonnage models 
with associated estimates of the number of undiscovered deposits was in 
an assessment of a 1:250,000-scale quadrangle in Alaska (Richter, Singer, 
and Cox, 1975; Singer, 1975). An order of magnitude increase in complex-
ity came in a 1:1,000,000-scale assessment of about 80 percent of Alaska in 
which eleven new grade-and-tonnage models were developed and 144 tracts 
were delineated with eighty-fi ve estimates of number of deposits (Eberlein 
and Menzie, 1978; Grybeck and DeYoung, 1978; Hudson and DeYoung, 1978; 
MacKevett, Singer, and Holloway, 1978; Singer and Ovenshine, 1979).

ASSESSMENT EXAMPLE

As part of the 1958 Alaska Statehood Act, the state was entitled to 
select 102 million of the state’s 375 million acres (1.520 million km2)
for whatever use the state decided. Additionally, Alaskan Natives were 
entitled to select 44 million acres for ownership as a result of the 1971 
Alaska Native Claims Settlement Act, and in another Act, the U.S. 
Interior Department had rights to withdraw up to 80 million acres in 
several land categories. The U.S. Congress was required to complete 
these various classifi cations by 18 December 1978. Each affected party 
had an interest in and desire for information about discovered and 
possible undiscovered mineral resources in Alaska. Responding to this 
need, the U.S. Geological Survey (USGS) in 1977 began a 1:1,000,000-
scale, three-part quantitative mineral resource assessment of about 80 
percent of the state. Without knowing decision-makers’ intents before 
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Many of the economic geologists, statisticians, mineral economists, and 
computer specialists who participated in the 1:1,000,000-scale assessment 
of Alaska became the core group that continued the development and appli-
cations of what was later called the three-part form of resource assessment. 
An assessment of Colombia’s mineral resources led to the fi rst publication of 
descriptive (Cox, 1983a, 1983b) and linked grade-and-tonnage models (Singer 
and Mosier, 1983a, 1983b) that were precursors to a more compressive compi-
lation of mineral deposit models authored by thirty-seven scientists (Cox and 
Singer, 1986). A robust method of combining probabilistic estimates of num-
ber of deposits, grades, and tonnages without relying on some strong assump-
tions was developed by David Root (see Root, Menzie, and Scott, 1992).

The methods, procedures, and models developed in support of this form 
of assessment were fi nally given the name “three-part assessments” in 1993 
(Singer, 1993a). The word “part” is used rather than “step” to indicate that 
these assessments are not always done in the same sequence. More important 
than the name was the recognition that the success of this form of assess-
ment depends on it being an integrated approach. By this we mean that no 
part of this system of models and methods of estimation has any meaning 
in isolation. For instance, estimates of the number of undiscovered deposits 
are completely arbitrary unless tied to a grade-and-tonnage model. As dem-
onstrated throughout this book, the various models and methods are linked 
to the other parts. This integration of models and methods is a source of 
strength that reduces the chances of biased estimates, but it is also a burden, 
requiring careful development of the kinds of models and applications of 
methods discussed in this book.

Chapters of this book are divided into four groups. Chapters 1 and 2 pro-
vide information about why assessments are done and the nature of min-
eral resources. Mineral deposit models covered in chapters 3 through 5 
are key to three-part assessments. Details concerning the three parts of the 

the assessment was released in February 1978, it is not possible to 
determine how the assessment changed their decisions. We do know 
that the State of Alaska selected land now known to contain one of 
the largest copper deposits in the world (Pebble Copper) located in 
a tract delineated in the assessment as permissive for porphyry cop-
per deposits but containing no known deposits in 1978, and which 
had estimates of undiscovered copper deposits. We also know that in 
central Alaska some important gold deposits were discovered after the 
assessment that were not recognized as a known type at the time of the 
assessment. One of the major zinc-lead concentrations in the world 
was recognized in the Brooks Range of Alaska by the assessment, but 
its boundaries were not well defi ned due to sparsely known geology 
in that part of Alaska.



8  Quantitative Mineral Resource Assessments

recommended form of assessment are presented in chapters 6 through 8. 
Chapters 9 through 11 focus on ways to use the assessment parts.

Important Ideas on Assessments

Because the primary purpose of the kind of assessments recommended here 
is not to locate where to drill or mine but to help decision-makers determine 
consequences of economic and policy decisions about tracts of land, regions, 
or countries, it is critical that the assessments be unbiased. Technically, a 
statistic is biased if, in the long run, it consistently overestimates or under-
estimates the parameter it is estimating. This idea can be visualized by con-
sidering a target and three different attempts to hit its center (fi gure 1.1). The 
average center of a shooter’s attempts can be compared with the center of the 
target: when the two are different, we can say that the shooter is not accurate 
or is biased. In assessments of undiscovered mineral resources, we do not 
want biased estimates. The problem is that we typically cannot see the target 
(undiscovered resources) in these assessments. However, we can do some 
things to reduce the chances of introducing bias in our estimates. For exam-
ple, when someone tries to make a “conservative” estimate to reduce the 
chances of being wrong, or makes a high estimate to allow for the unknown, 
that person is introducing a bias of some unknown amount, and this should 
be resisted. Examples of situations that can introduce biases or examples of 
how certain parts of assessments address biased estimates are presented in 
many chapters of this book. In addition, the integrated approach to assess-
ments recommended in this book is specifi cally designed to reduce chances 

Figure 1.1 Target and three different attempts to hit its center. Variation 
about the center of each cluster represents precision, whereas the 
difference between the center of each cluster and the target center 
represents accuracy or bias.
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of biased estimates. Before introducing the various parts and models used in 
these assessments, it is helpful to discuss some aspects of mineral resources 
that infl uence how and why assessments should be performed.

Chapter 2 provides an overview on the supply and demand of mineral 
resources as well as a perspective on why certain aspects of resources are of 
greater importance than others and why certain kinds of mineral deposits 
are of greater interest than others. Demand and supply of minerals follow 
patterns of regional development that affect prices and have implications 
for assessments. In particular, we show that only certain deposit types have 
dominated supply. In addition, only the largest deposits are important to 
global supply. The effects of these distributions of sizes and types of depos-
its are the greatest sources of uncertainty in assessments and also affect risk 
of exploration failure. It is the frequency distribution of deposit sizes that 
caused Allais (1957) to observe for his study that the expected fi nancial 
return from an exploration investment was positive, but the probability of 
economic failure was 0.65 (fi gure 1.2). Deposit models help to reduce both 
uncertainty and risk of failure.

Mineral Deposit Models for Three-Part Assessments

A rough overview of the role of the various mineral deposit models in three-
part assessments is shown in fi gure 1.3. Mineral deposit models are the 
focus of chapters 3 through 5. The models are the keystone in combining the 
diverse geoscience information on geology, mineral occurrences, geophys-
ics, and geochemistry used in resource assessments and mineral explora-
tion. Although these different kinds of models are presented separately in 
this book, it should not be forgotten that they do not exist in isolation. None 
of these models has any useful meaning except in the context of the other 

Figure 1.2 Hypothetical probability of return from investment and expected 
return. In exploration, it is possible to both have a signifi cant positive 
expected profi t and also have a signifi cant chance of losing money. 
Awareness of this should affect decision-making.

Probability
density

Profits0

Expected return

Probability
of loss



10  Quantitative Mineral Resource Assessments

related models of the same deposit type. Construction of these models is an 
iterative process where changes in a deposit type’s descriptive model, for 
example, affects and necessitates changes in the type’s grade-and-tonnage 
model. It is the internal consistency of these models that provides the strong 
foundation upon which unbiased assessments can be made—achieving this 
internal consistency requires much time-consuming work for their proper 
construction. Descriptive mineral deposit models (chapter 3) are critical to 
construction of the fi rst part of assessments, the grade-and-tonnage mod-
els (chapter 6). Additionally, descriptive models are the primary source of 
guidance for linking geoscience information to deposit types in the second 
part of assessments, delineation of permissive tracts (chapter 7). In order to 
properly serve this function, descriptive models focus on observations, use 
theories of deposit origins only to suggest what to observe, and should have 
their model properties documented at the scale of assessments.

In estimating the number of mineral deposits, a robust method is based 
on mineral deposit densities (chapter 4), which are a form of mineral deposit 
model wherein the numbers of deposits per unit area from well-explored 

Figure 1.3 Relationships of book chapters to three-part assessments. 
Chapters 1 and 2 provide overviews of resources and assessments. 
Descriptive models (not shown) (chapter 3) guide part 2, the mineral 
resource map (chapter 7). Grade-and-tonnage models (chapter 6) serve as 
part 1 and assist density models (not shown) (chapter 4) in guiding part 3, 
estimating number of deposits (chapter 8). Cost models (chapter 5) aid in 
integrating parts 1 through 3 (chapter 9).
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regions are counted and the resulting frequency distribution enables estima-
tion of the number of undiscovered deposits (chapter 8). Deposit densities 
can be used either directly for an estimate or indirectly as a guideline in 
some other method.

In resource assessments of undiscovered mineral deposits and in the 
early stages of exploration, including planning, a need exists for prefeasibil-
ity cost models (chapter 5). These models, which separate economic from 
uneconomic deposits, help assessors and decision-makers focus on targets 
that can benefi t society or the exploration enterprise. In three-part assess-
ments, these models can be used to eliminate deposits that would probably 
be uneconomic even if discovered. Awareness of economics of deposit sizes 
has helped determine priorities of deposit types selected for constructing 
grade-and-tonnage models.

ASSESSMENT EXAMPLE

The U.S. Forest Service asked the USGS and the U.S. Bureau of Mines 
to quantitatively assess the future copper and silver production pos-
sibilities from sediment-hosted copper deposits within the Kootenai 
National Forest of Idaho and Montana. The three-part assessment 
provided estimates of the number of undiscovered deposits, associ-
ated grade-and- tonnage distributions, and an economic analysis of 
the resources (Spanski, 1992). Mineral deposit models and estimates 
of the number of deposits were integrated with mine and mill cost-
estimation models and relevant economic and policy assumptions to 
estimate possible mineral production and associated economic effects 
(Gunther, 1992), including number of jobs generated and impacts of 
land-use policies.

Three Parts of an Assessment

Grade-and-tonnage models occupy a position of being both a kind of deposit 
model and also one of the three parts of assessments. Frequency distribu-
tions of tonnages and average grades of well-explored deposits of each type 
are employed as models for grades and tonnages of undiscovered deposits 
of the same type in geologically similar settings (chapter 6). Data utilized 
to construct these models include average grades of each metal or mineral 
commodity of possible economic interest and the associated tonnage based 
on the total production, reserves, and resources at the lowest possible cutoff 
grade. These data represent an estimate of the endowment of each of many 
known deposits so that the fi nal models can accurately represent the endow-
ment of all undiscovered deposits.
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The geologic settings used to defi ne the mineral grade-and-tonnage mod-
els and descriptive models are key to identifying where the deposit type 
could occur, which is the second part of an assessment. To be able to con-
sistently assess the undiscovered mineral resources of regions, areas are 
delineated where geology permits the existence of deposits of one or more 
specifi ed types. These areas, called permissive tracts, are based on geologic 
criteria derived from deposit models that are themselves based on studies of 
known deposits within and outside the study area (chapter 7). Tracts may or 
may not contain known deposits.

The third part of an assessment is the estimation of some fi xed, but 
unknown, number of undiscovered deposits of each type that exist in the 
delineated tracts (chapter 8). Until the area being considered is thoroughly 
and extensively drilled, this fi xed number of undiscovered deposits, which 
could be any number including 0, will not be known with certainty. Esti-
mates of the number of deposits explicitly represent the probability (or 
degree of belief ) that some fi xed but unknown number of undiscovered 
deposits exist in the delineated tracts. As such, these estimates refl ect both 
the uncertainty of what may exist and a measure of the favorableness of 
the existence of the deposit type. In many cases, experts make estimates of 
number of deposits, so chapter 8 also includes new evidence that such esti-
mates can be unbiased and provides some robust guides to reduce chances 
of biased estimates.

ASSESSMENT EXAMPLE

In an attempt to provide information about undiscovered mineral re-
sources to the various parties selecting lands in Alaska by 1978, a 
nonquantitative approach was prepared by a group of geologists in the 
USGS. The map indicated high potential for chromium across a broad 
swath in central Alaska. What was meant by “high potential” in this 
case was that a large number of undiscovered podiform chromite de-
posits were believed to exist in this zone. Fortunately, a quantitative 
assessment was proceeding at the same time by another group that 
had analyzed the distribution of sizes of podiform chromite depos-
its, which showed that even if large numbers of deposits existed, the 
sum of the chromite resource could not be large enough to affect na-
tional demand. About the same time, attorneys and economists were 
considering the U.S. government’s position with respect to embargos 
of chromite from some countries in southern Africa. After the grade-
and-tonnage model was shown to the USGS managers, the qualita-
tive assessment was withdrawn in order to prevent the possibility of 
it being misinterpreted to indicate that the United States had large 
undiscovered chromite resources.
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Integrating the Three Parts and Including Economics

If the decision-makers needed information only on the general locations of 
undiscovered mineral resources, the output of part two, delineation of per-
missive tracts (see fi gure 1.3), would be adequate for these assessments. If 
assessments were conducted only to estimate amounts of undiscovered met-
als, we would need contained metal models and estimates of the number 
of undiscovered deposits. Grades are simply the ratio of contained metal to 
tons of ore, so contained metal estimates are available for each deposit. In 
the simplest of all cases, one could multiply the average contained metal in 
a deposit type by the expected number of undiscovered deposits to make an 
estimate of the expected metal endowment. Such an estimate would be of 
limited value to a decision-maker because it neglects the considerable uncer-
tainty that should be attached to the estimate, and it ignores the issue of 
whether the metal might be economic to extract. Ways to capture this uncer-
tainty and the economic effects without violating important assumptions 
about resources are discussed in chapter 9.

Questions about the economics of undiscovered mineral deposits are 
central to one of the original reasons for developing the three-part assess-
ment. Although the objectives and aversion to risk may be different for min-
ing enterprises and governments, the kind of information needed by the 
decision-makers is similar (Scott and Dimitrakopoulos, 2001). Reduction of 
risk of exploration failure is one of the principal values of geologic informa-
tion provided by governmental organizations. The ability to quantify the 
uncertainty allows examination of the risks of exploration (chapter 10). The 
risks of fi nancial loss in exploration stem in large part from the nature of 
mineral resources, as discussed in chapter 2. There are some ways to reduce 
these risks but not eliminate them. The keys are to recognize the extent of the 
risks in the early planning stages and to understand the trade-offs between 
costs of gathering additional information to reduce risk and the benefi ts of 
these reduced uncertainties.

In chapter 11, we point out where there are opportunities to improve the 
three-part form of mineral resource assessment. Many of these opportunities 
come from identifi ed sources of uncertainties in assessments of all kinds, 
such as assessing resources under cover. Some of the improvements can be 
made in assessments that are not completed, such as including economic 
fi lters. Additional opportunities come from the possibilities of harnessing 
the power of new technologies such as probabilistic neural networks to well-
designed applications in these kinds of assessments.
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Perspective

Modern society cannot live without electric and electronic products, con-
crete, glass, fertilizers, ceramics, motor vehicles, airplanes, refrigerators, 
stoves, and medical equipment, all of which are made with products of min-
ing. In the 1950s and again in the 1970s there was serious concern about 
whether we would run out of mineral resources. This recurring theme is 
driven largely by the increasing amounts of mineral material produced from 
mines and used by society over time.

One of the most striking aspects of the increasing quantities of min-
eral materials produced has been that prices of many minerals have been 
declining for more than 100 years (e.g., fi gure 2.1). Historically, prices of 
nonfuel mineral materials have declined relative to consumer goods and 
wages (Barnett and Morse, 1963). The declining prices have had a posi-
tive infl uence on general economies of mineral users by reducing prices of 
the factors of production of fi nished goods. Because mineral commodities 
are the building blocks of so many industries and products, the declining 
prices reverberate throughout the economy. Declining mineral commodity 
prices have largely been due to the successes of mining engineers in repeat-
edly lowering mining and processing costs and of geologists in lowering 
discovery costs of mineral deposits. Demonstrating the variability of com-
modity prices, between 2003 and 2008 prices have dramatically increased, 
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Figure 2.1 World copper production compared to price in 1998 U.S. dollars. 
Consumer Price Index used for conversion to 1998 U.S. dollars. Data from 
Porter and Edelstein (2008).
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and in 2008 they declined again. Understanding how it is possible to have 
both increasing production and decreasing and more recently increasing 
and then decreasing prices of minerals is important to assessors and to 
decision-makers.

Decision-makers, whether concerned about regional development, explo-
ration, or land management, are faced with the dilemma of obtaining new 
information, or allowing or encouraging others to obtain it, and the possible 
benefi ts and costs of development if mineral deposits of value are discov-
ered. The intent in this chapter is to provide decision-makers and assessors a 
modern perspective on the geologic controls of mineral supply and demand 
and on the importance to supply of different kinds of mineral deposits and 
occurrences.
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Geologic Supply

Supply of minerals to society is dependent not only on the total amount 
of mineral material but also on the quality or concentrations, the spatial 
distributions or how scattered the material is, whether it has been found, 
whether it is remote from infrastructure, and a whole host of other issues 
such as government policies, production technologies, and market struc-
tures. These nongeologic determinants of mineral supply are not considered 
here. Most uses of metals do not reduce their amounts, but only relocate and 
reconstitute them, so why should anyone be interested in questions about 
the supply of minerals to society? An important reason is that we simply do 
not know very much about possible supplies of these materials and would 
prefer to have less uncertainty about factors of such importance to society. 
The earth contains vast quantities of every metal we use. Even if estimates 
of crustal abundances are an order of magnitude too high, there are still 
immense quantities of metals.

The question is how much metal is available in concentrations and forms 
of interest to society. As long as costs of extraction of metals are above zero, 
industry will seek out the concentrations and forms of metals that have cost-
reducing physical attributes (DeYoung and Singer, 1981). Both form, or min-
eralogy, and concentration, or grade, are critical to consider because either 
can make some of the total amount of metal inaccessible due to excessive 
costs of extracting and processing the materials of interest. In addition, cur-
rent concepts of cost go beyond traditional views of direct production costs 
to include, for example, chemical attributes that increase environmental 
costs, whether they are internalized or not.

Most of the earth’s less common metals, such as copper, zinc, lead, and 
nickel, occur more or less evenly distributed in common silicate minerals 

ASSESSMENT EXAMPLE

A quantitative mineral assessment was undertaken at the request of 
U.S. Department of State to stimulate investment in the Bolivian min-
ing sector in the wake of the collapse of the tin market. The collapse 
left many miners without mining employment. The Department of 
State, which did not want to see the miners turn to growing cocoa, 
encouraged the U.S. Trade and Development Program (TDP) to fund 
the program. The TDP sought to provide the groundwork for further 
development of the Bolivian mining sector while at the same time in-
troducing U.S. industry to business opportunities there. The joint as-
sessment served as a vehicle to better inform the mineral exploration 
community and to reduce the exploration risk to mining companies 
(U.S. Geological Survey and Servicio Geologico de Bolivia, 1992).
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(Skinner, 1976). Metals in this form cannot be signifi cantly concentrated to 
reduce volumes to be processed, and the entire mineral must be broken down 
chemically to separate the desired metal from the other atoms. Because the 
chemical bonds in most common minerals are so strong, this is a complicated 
and very energy-intensive process (Skinner, 1976). For these reasons, min-
ing of these scarce metals focuses on rare mineral deposits that contain metal 
in compounds with elements such as sulfur or oxygen. The metals in such 
deposits are more easily extractable and are found in signifi cant concentrations 
or grades (fi gure 2.2). Total amounts of copper, zinc, lead, silver, and gold in 
extractable minerals that are contained in all discovered mineral deposits range 
from 0.015 to 0.002 percent of the amounts contained in the upper 1 km of con-
tinental crust (Singer, 1995). Thus, presently identifi ed extractable minerals in 
deposits represent a very small percentage of the total amount of metal.

To demonstrate that only a small percent of the metallic elements in the 
earth’s crust are contained in identifi ed mineral deposits, several research-
ers have constructed plots of the metals in mineral deposits or ore deposits 
versus metals in rocks (usually the upper 1 km of the earth’s crust) (McKel-
vey, 1960, 1973; Erickson, 1973; Brooks, 1976; Barton, 1983). Barton (1983, 
p. 6) pointed out that the large amounts of metals that are not accounted 
for in identifi ed conventional metal deposits offer great opportunities for 
undiscovered deposits of these metals. These and similar analyses gener-
ated renewed speculation about the promise held by the observed relation 
between decreasing grades acceptable for mining and resulting increases in 
mineral availability (Lasky, 1950). However, the promise is not kept because 
the mathematical model used as a basis for such extrapolations has been 
demonstrated to produce physically impossible results outside of the lim-
ited range of observed mineral-deposit grades (DeYoung, 1981).

It is quite diffi cult to estimate the total amounts of the earth’s metals that 
are in undiscovered mineral deposits that might become available for min-
ing. Based on an extrapolation of copper in one of the world’s most heavily 
mineralized areas in the southwestern United States, the National Acad-
emy of Sciences (COMRATE, 1975) estimated that the upper limit on the 

Figure 2.2 Probable distribution of geochemically scarce metals in the 
earth’s crust. After Skinner (1976).

Metal in silicate minerals

Metal in nonsilicate 
minerals

A
m

ou
nt

 o
f m

et
al

Grade (%)



18  Quantitative Mineral Resource Assessments

quantity of copper in ores with grades greater than 0.1 percent that can be 
produced in the United States is 0.9 billion metric tons (Gt). In a detailed 
probabilistic assessment of undiscovered mineral resources using the three-
part assessment, the U.S. Geological Survey (USGS) estimated that about as 
much copper remains to be found in the United States as has been found 
to date (Ludington and Cox, 1996; U.S. Geological Survey National Mineral 
Resource Assessment Team, 1998). The total amount of copper discovered in 
mineral deposits in the United States is 0.4 Gt; about one-fourth of this has 
already been mined. These independent estimates of the total amount of cop-
per in mineral deposits in the United States are remarkably consistent—an 
upper limit estimate of 0.9 Gt versus a total of resources in known deposits 
plus undiscovered deposits estimate of 0.8 Gt. Thus, assuming that it is at 
acceptable grades, deposit sizes, and discoverable, about seven-eighths of the 
total resources (identifi ed and undiscovered) of copper in the desirable sul-
fi de or oxide form in the United States should yet be available for mining.

But are these resources in deposits with acceptable grades, sizes, and 
locations? Worldwide, at least 62 percent of the 260,000 metric tons of gold 
discovered to date is located in four countries, and more than 68 percent 
occurs in four types of mineral deposits. About 55 percent of the 2,400,000 
metric tons of silver found is in four countries, and 45 percent is in four 
types of deposits. Fifty-six percent of the 2.1 billion metric tons of discov-
ered copper is from four countries, and three types of deposits contain 86 
percent of the total (fi gure 2.3). More than 50 percent of both the 890,000,000 
metric tons of zinc and 460,000,000 metric tons of lead discovered to date 
come from four countries, and 70 percent of both metals occur in four types 
of deposits. All discovered gold would fi t in a cube with a height of 24 m, 

Figure 2.3 Percent of all known copper in each type of deposit.
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silver in a 61-m cube, copper in a 620-m cube, zinc in a 500-m cube, and 
lead in a 340-m cube. The point is that, at least for these metals, the total 
amounts of metal presently known in deposits represent relatively small 
volumes, and they tend to be located in few places.

The known deposits, regardless of type, also can be used to examine 
whether the metals are predominately in lower grade deposits and whether 
many small deposits can be signifi cant sources of metals. Comparison of the 
proportion of deposits with the proportion of metals grouped in increasing 
grade classes (average grades of whole deposits) provides a way to examine 
both frequency of grades and tendency of metals to concentrate at certain 
grades (fi gure 2.4). At least 62 percent of gold, silver, zinc, and lead is in 
deposits having average grades above the respective median grades, and 
75 percent of copper is in deposits with average grades at or above a grade of 
0.5 percent copper. That is, very low grade deposits contain less total metal 
than do moderate grade deposits. Comparison of the proportion of deposits 
with the proportion of metals grouped in increasing tonnage classes (ton-
nage of whole deposits) provides a way to examine both frequency of ton-
nages and tendency of metals to concentrate at certain tonnages (fi gure 2.5). 
Tonnage of mineralized rock is a better predictor of contained metal, with 
more than 96 percent of each metal’s total residing in deposits having greater 
than median size and between 47 and 86 percent of metal contained in the 
largest 10 percent of deposits (fi gure 2.6).

Figure 2.4 Percentage of all copper metal (right x-axis) and percentage 
of deposits (left x-axis) by average grade class (y-axis) for 2,045 copper-
bearing deposits containing 2,065,000,000 metric tons of copper.
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Figure 2.5 Percentage of all copper metal in deposits in size class (right 
x-axis) and percentage of deposits in tonnage class (left x-axis) by size of 
deposit class (y-axis) for 2,045 copper-bearing mineral deposits containing 
2,065,000,000 metric tons of copper.
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World-class deposits, defi ned as the upper 10 percent of deposits in terms 
of contained metal, account for more than 83 percent of all gold, 78 percent 
of silver, 83 percent of copper, 71 percent of zinc, and 77 percent of lead. 
Each of these world-class deposits contain at least 120 metric tons (3.2 mil-
lion ounces) of gold, 2,400 metric tons (77 million ounces) of silver, 1.7 
million metric tons copper, 1.6 million metric tons zinc, and 0.84 million 
metric tons lead. Mineral deposits occur rarely in the earth’s crust, and large 
ones are especially uncommon (fi gure 2.6).

This analysis shows that only the unusually large deposits can signifi -
cantly affect supply of these metals, and they are key to understanding 
exploration risks. The importance of effects of deposit size on estimating 
total resources and on exploration risk was demonstrated in a preliminary 
sensitivity analysis in which the expected amount of metal was estimated 
from a population of porphyry copper deposits (Singer and Kouda, 1999a). 
The greatest opportunity for reducing uncertainty and risk in exploration 
and resource assessment was shown to lie with lowering the uncertainty 
associated with tonnage estimates, followed in importance by uncertainty 
associated with grade estimates. The importance of the few largest deposits 
to mineral supply cannot be overemphasized—it is only the few largest that 
can affect supply.
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ASSESSMENT EXAMPLE

In the 1990s the number of requests made to the USGS for mineral 
resource assessments and the complex nature of the requests made 
it diffi cult to respond in a timely manner. Both the boundaries of the 
areas to be assessed and deadlines for completed reports changed fre-
quently. Preparing a detailed assessment of the nation in anticipation 
of future assessment requests was impractical. The USGS undertook a 
national mineral assessment of gold, copper, silver, lead, and zinc in 
order to provide a framework for the yet-to-be-requested more detailed 
assessments expected that have unknown boundaries and scales. Pre-
paring the national assessment required organizing and consolidat-
ing large geological, geophysical, geochemical, and mineral deposit 
fi les that could then be used in subsequent assessments. This seminal 
quantitative assessment of the nation’s resources used the three-part 
form and demonstrated that the United States contains about as much 
of the fi ve metals in undiscovered conventional-type deposits as has 
already been found (for overview, see Schulz and Briskey, 2007).

Where might these large undiscovered deposits exist? In a USGS assess-
ment of gold, silver, copper, zinc, and lead resources of the United States 
(Schruben, 2002), the majority of undiscovered mineral deposits were esti-
mated to exist under cover. Because a large portion of undiscovered resources 
are covered by younger sediments or rocks, it is necessary to explicitly 
address the issue of predicting mineral resources remotely through cover in 
order to reduce uncertainties of possible locations and amounts.

Demand

The physical existence of minerals and the ability and willingness to pro-
duce minerals only partially determine whether minerals will be abundant 
or scarce. The level at which minerals are consumed is also important. 
Rapid economic development in Asia is increasing the consumption of min-
eral commodities and raises the question of whether mineral production 
will be adequate to meet the needs of society over the next twenty or more 
years. The answer to this question will in part depend on how fast develop-
ing countries increase their mineral consumption and whether developed 
countries are able to reduce the amount of minerals they consume, that is, in 
changes in emerging patterns of mineral consumption.

In theory, consumption of minerals can be measured at different stages 
of use, including as raw minerals by mineral processing industries, as 
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processed minerals by industries, and as minerals in fi nal goods used by 
consumers. Consumption is most commonly measured at the industrial 
stage because data on production and trade in primary metal products are 
easily obtained. Measuring mineral consumption in fi nal goods is diffi cult 
because it requires disaggregating the fi nished goods into component mate-
rials, which can require a large investment of time and strong assumptions 
about the compositions of classes of goods.

Effects of a country’s stage of development on mineral consumption 
has been examined by recent studies of changes in per capita apparent 
consumption of aluminum, cement, copper, and salt for Japan, the Repub-
lic of Korea, and the United States at 5-year intervals from 1965 to 1995 
(DeYoung and Menzie, 1999) and of per capita apparent consumption data 
of the same four mineral products for the twenty most populous countries 

Figure 2.6 Cumulative percentage of 2,045 known copper-bearing deposits 
and percentage of their total amount of 2,065,000,000 metric tons of copper 
versus tonnage of mineralized rock. For example, deposits of 100 million 
tons or more represent about 18 percent of the deposits but 89 percent of 
the total copper.
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for every fi fth year from 1970 to 1995 (Menzie, DeYoung, and Steblez, 
2001). The study of Japan, Korea, and the United States (DeYoung and 
Menzie, 1999) found that, in the United States, per capita consumption 
of cement, copper, and salt did not signifi cantly change over the period of 
study. In Korea, per capita consumption of aluminum, cement, and cop-
per increased dramatically, while the consumption of salt grew slowly. In 
Japan, per capita consumption all four commodities grew at slow rates. Fig-
ure 2.7 illustrates changing per capita consumption of copper and cement 
in the three countries. By the end of the period, Japan and the United 
States had achieved a similar level of development as measured by per 
capita GDP (gross domestic product), and both countries consumed simi-
lar per capita levels of the metals, copper (10 kg), and aluminum (30 kg), 
whereas their levels of per capita consumption of cement and salt, a con-
struction material and industrial mineral, respectively, differed by a factor 
of 2. The order in which growth began in Korea may be signifi cant. Cement 
consumption grew earliest, followed by copper and aluminum. This could 
refl ect development of basic infrastructure, followed by development of 
workplaces and light manufacturing, followed by manufacture of heavier 
structural goods.

Figure 2.7 Copper (a) and cement (b) consumption per capita in Japan, 
Republic of Korea, and the United States. From DeYoung and Menzie (1999).
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The second study (Menzie, DeYoung, and Steblez, 2001) included addi-
tional developed, or high-income, countries (Germany, United Kingdom, and 
France), which, like the United States and Japan, did not show signifi cant 
changes in per capita consumption of cement and copper over relatively 
long periods but did show increasing per capita consumption of aluminum. 
Menzie, DeYoung, and Steblez (2001) also included countries that, like 
Korea, were undergoing signifi cant development (increases in income) and 
signifi cant increases in per capita consumption of aluminum, cement, and 
copper. China, Thailand, and Turkey showed signifi cant increases in the per 
capita consumption of all three commodities, although Thailand’s consump-
tion of copper declined slightly in 2000 and Thai consumption of cement 
declined signifi cantly in response to the Asian economic crisis of the late 
1990s. Several other developing countries showed signifi cant increases in 
one or two commodities: Mexico (aluminum and cement), Egypt (cement), 
and Iran (copper). Finally, two additional groups of countries showed other 
patterns of consumption. India and Indonesia also showed increases in per 
capita consumption of several mineral commodities, but because their ini-
tial level of consumption was low, growth is only beginning to appreciably 
increase their total consumption of minerals. Another group of countries, 
including Bangladesh and Nigeria, showed no signifi cant consumption of 
mineral commodities.

Together, these two studies showed a consistent pattern of per capita con-
sumption of minerals with increasing per capita income. At very low income 
levels, per capita consumption of minerals is very low. During the initial 
states of income growth, per capita consumption increases slowly. After 
income has reached a threshold level, per capita consumption increases very 
rapidly. Finally, when countries reach high levels of income, the per capita 
consumption is essentially constant. The pattern of use of these commodities 
is consistent with the phenomenon of dematerialization, or declining con-
sumption per unit of economic activity (Wernick et al., 1996). The pattern, 
however, does not imply decreasing per capita consumption. Rather, results 
of the two studies suggest that levels of per capita consumption of metals 
in developed countries may be similar, while the per capita consumption 
of construction materials and industrial minerals may differ from country to 
country. Taken together, the pattern of increasing per capita consumption of 
minerals with increasing incomes and the similar absolute levels of use of 
metals form a basis for predicting future consumption of metals.

The pattern of increasing per capita consumption with increasing income 
described above defi nes a growth curve, which may be modeled by a logistic 
function (Menzie, Singer, and DeYoung, 2005):

 C = (K/(1 + e–rlog(i)))P, (2.1)

where C is consumption of a commodity, K is a constant representing the 
saturation level of the per capita consumption of the commodity in an 
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economy, r is a constant, i is per capita income or per capita GDP, and P is 
population. Thus, consumption of raw materials in the future may be cal-
culated by adjusting per capita GDP for real growth of GDP using available 
estimates of population and income.

Because the consumption of copper in high-income countries became 
stable at about the same level, copper was selected to develop a model of 
consumption as a function of income and population. The equation was 
used to estimate future levels of copper consumption in the twenty most 
populous countries in 2020. The model forecasts copper consumption of 
the twenty countries will be 19 Mt (million metric tons) in 2020 (Menzie, 
Singer, and DeYoung, 2005). If the twenty countries consume the same pro-
portion of world copper in 2020 as they did in 2000, world copper consump-
tion in 2020 will be 24 Mt. This is 1.8 times larger than 2000 consumption 
and represents an average rate of growth of world copper consumption of 
3.1 percent, which is about 10 percent faster than the annual growth rate 
(2.8 percent) of per capita consumption of copper between 1980 and 2000.

Developing countries have been increasing their proportion of world cop-
per consumption. In 1980, France, Germany, Japan, the United Kingdom, 
and the United States accounted for 68 percent of world copper consump-
tion. By 2000, these fi ve countries accounted for only 51 percent of copper 
consumption. The model (equation 2.1) predicts that these fi ve countries 
will account for only 30 percent of the world’s consumption of copper by 
2020. One way to comprehend the magnitude of changes implied by the 
model is to compare which countries consume more than 1 Mt of copper. In 
1980, the Soviet Union consumed 1 Mt, Japan 1.2 Mt, and the United States 
2.2 Mt. In 2000, Germany and Japan each consumed 1.3 Mt, China 2 Mt, and 
the United States 3 Mt. The model estimates that, in 2020, Brazil will con-
sume 1.2 Mt, Japan 1.4 Mt, India 1.6 Mt, the United States 3.5 Mt, and China 
5.6 Mt. New modeling indicates that China will be the world’s leading con-
sumer of industrial copper by 2015 and the twenty most populous countries 
will consume 36 Mt of copper in 2025. Such estimates may appear remark-
able until one recalls the growth that Korea achieved in twenty years.

The above projected growth in consumption has important implications 
about the need to develop new reserves of copper and other minerals. The 
USGS reports world copper reserves in 2001 of 340 Mt (Edelstein, 2002). In 
1995, world copper consumption was 10.5 Mt. Copper reserves are equal to 
thirty-four years of supply at the 1995 level of consumption. The logistic 
model (equation 2.1) predicts world consumption of more than 24 Mt per 
year by 2020. If consumption reaches this level and reserves are kept propor-
tional to consumption, at about thirty years of consumption, and allowance 
is made for intervening drawdown of reserves, more than 700 Mt of copper 
must be added to world reserves, assuming that 10 percent of consumption 
will come from secondary sources. The likelihood of developing the reserves 
indicated by the above calculations depends on the rate of discovery of 
large deposits. Porphyry copper and sedimentary copper deposits currently 
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contain the bulk of the world’s copper reserves. The ability to discover these 
additional reserves depends on new discoveries of large porphyry cop-
per and/or sedimentary copper deposits and/or discoveries of signifi cant 
reserves in a major new type of copper deposit. Typically, porphyry copper 
deposits contain more copper than sedimentary copper deposits (fi gure 2.8). 
The fi ve largest porphyry copper deposits contain a median of about 100 Mt 
of copper. In order to maintain the predicted growth in consumption and 
retain a thirty-year reserve, the discovery of 1.1 Gt of copper in new deposits 
will be required by 2020. To put this immense amount into perspective, it 
will require the discovery and development of eleven additional deposits, 
each of which is as large as the median of the fi ve largest porphyry copper 
deposits known from a century of exploration!

Implications

The rapid economic development in Asia and increase in consumption of 
mineral commodities that is accompanying this development are reviving 
concerns of about resource scarcity. Will mineral production be adequate 
to meet the needs of rapid economic development of large Asian countries? 
At the same time, there are growing concerns that global environmental sys-
tems are already being affected by mineral production and use. Can global 
environmental systems absorb the wastes from increased mineral produc-
tion and use, or can we reduce the levels of such wastes suffi ciently to avoid 
environmental problems?

Based on estimates of known and yet-to-be-discovered mineral resources, 
mineral supply per se does not appear to be a limit on growth. In addition, 

Figure 2.8 Copper grades, tonnages, and contained metal by type of deposit.
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mineral deposits that occur at, or near, the surface are still being found in 
some regions. Over the next twenty or more years, however, an increas-
ing proportion of resources that remain to be discovered are likely to be in 
deposits concealed beneath signifi cant quantities of covering rock or sedi-
ments. Such deposits will be more diffi cult to discover and will likely be 
more costly to mine.

Very large deposits are needed to sustain supply and are more likely than 
small deposits to have high net present values (Singer, 2005). Economic 
trends of lower prices over time require larger sized deposits in order to 
take advantage of economies of scale. Many major exploration companies 
today require a minimum size of what is called “world-class” deposits. Even 
in parts of the world where exploration of exposed rocks is only partially 
complete, the belief that the larger deposits tend to be found early in the 
exploration process suggests that the new frontier of exploration lies under 
cover where there is an increased chance of discovering world-class depos-
its. The possibility of large returns and a substantial risk of failure argue for 
careful planning and execution of exploration under cover. Because of high 
costs of exploring under cover, it is critical to plan exploration strategies that 
effi ciently use models, experienced geoscientists, and data.

For both governmental and industrial decision-makers, utilizing infor-
mation necessary to develop policies to reduce disruptive fl uctuations in 
the supply of minerals requires understanding how these critical factors 
can affect supply. One of the effects of globalization is that both suppliers 
and consumers have an interest in possible supplies of mineral materials. 
Understanding that signifi cant mineral supply typically comes from rare 
large deposits of a few types that do not occur everywhere is key to proper 
planning. Continuing growth of demand in large developing countries and 
increasing environmental concerns suggest continued price pressures of 
mineral raw materials in the next ten years or so. These supplies will largely 
come from existing or soon-to-open mining operations. Replenishing the 
materials mined and supplying additional minerals require further develop-
ment of discovered mineral deposits and the discovery of new, yet-to-be-
identifi ed deposits. Critical to exploration decisions must be the awareness 
of the need for very large deposits, the large expense implied by remote or 
covered deposits, and the time lag in fi nding and bringing such deposits 
to the point of production. It is the information from quantitative mineral 
resource assessments of these yet-to-be-discovered deposits that benefi ts 
decision-makers by reducing uncertainty and allowing better informed deci-
sions. Information from quantitative assessments allows governmental and 
company planners to consider whether and when to invest in exploration to 
meet future mineral needs.

For mineral resource assessors, information required to make future 
assessments necessitates dealing with quantitative data, with econom-
ics, and, in many situations, with information necessary to assess mineral 
resources that are covered or in remote places. Assessing resources under 



28  Quantitative Mineral Resource Assessments

cover will prove particularly diffi cult because of the common lack of pros-
pects and of mapped geology. Without maps showing boundaries of geo-
logic settings, there is no basis to defi ne boundaries of where different kinds 
of mineral deposits might occur. Although only deposit types that have 
large tonnages will be the focus of most assessments because of their pos-
sible effect on supply, there are situations where smaller types of deposits 
might be of interest because of their association with larger deposit types. In 
addition, some deposit types that are typically small in size, such as some 
polymetallic veins that might contain such rare elements as indium, could 
be targets of interest. Most forms of mineral resource assessment do not pro-
vide the information necessary to address these issues (Singer and Mosier, 
1981a; Harris, 1984; Shulman et al., 1992). Finally, the three-part form of 
mineral resource assessments presented in this book is designed to show 
how to integrate the information so that assessors will be able to better com-
municate the results to decision-makers.
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Perspective

Mineral deposit models play a central role in an information system that 
will help the policy makers to make their decisions. Ideally, the different 
kinds of deposit models would provide the necessary and suffi cient infor-
mation to discriminate (1) possible mineralized environments from barren 
environments, (2) types of known deposits from each other, and (3) mineral 
deposits from mineral occurrences. Probably the most important part of cre-
ating mineral deposit models is the planning stage in which consideration of 
the purpose and possible uses of the models should determine the character 
of the models. The way to describe a model is fi rst by thinking about what 
it is for, about its function, not the list of items that make up its structure 
(Churchman, 1968).

Although there are many fi ne compendiums of mineral deposit models 
(Australian Geological Survey Organisation, 1998; Eckstrand, Sinclair, and 
Thorpe, 1995; Kirkham et al., 1993; Lefebure and Hoy, 1996; Lefebure and 
Ray, 1995; Roberts and Sheahan, 1988; Rongfu, 1995; Sheahan and Cherry, 
1993), the focus in this book is on deposit models applied to quantitative 
resource assessment. The focus of this chapter is the descriptive aspects of 
the deposits because the goal is to provide a basis for interpreting geologic 
observations rather than to provide interpretations in search of examples 
(Cox, Barton, and Singer, 1986). Thus, the discussion herein is limited to 
mineral deposit models specifi cally designed for quantitative assessments 

 3
Descriptive Models
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ASSESSMENT EXAMPLE

An assessment of the mineral resources of Colombia (Hodges et al., 
1984) was the fi rst international quantitative resource assessment by 
the U.S. Geological Survey (USGS). It was performed jointly with 
the Colombian agency INGEOMINAS in order to encourage devel-
opment of mineral resources. Documentation and development of 
mineral deposit models was required in order to communicate with 
colleagues who spoke another language and had limited access to 
the latest literature on economic geology. Thus, the fi rst descriptive 
mineral deposit models designed specifi cally for assessments were 
born. Although there had been earlier grade-and-tonnage models, 
the models created with this assessment were the fi rst to accompany 
descriptive models and include the information in graphical form. 
Following publication of these deposit models in 1983, models spe-
cifi cally on Canadian deposits were published (Eckstrand, 1984), and 
the compilation of worldwide models was published by the USGS 
(Cox and Singer, 1986).

such as those in Cox and Singer (1986), Bliss (1992a), Orris and Bliss (1991, 
1992), and Rogers et al. (1995). Mineral deposits modeled for three-part 
assessments are defi ned as mineral occurrences of suffi cient size and grade 
that they might, under favorable circumstances, be economic. Although his-
tory suggests that we can expect discoveries of as-yet-unrecognized deposit 
types, the three-part assessments discussed here do not include resources 
from these deposits simply because they cannot be modeled.

Most published quantitative mineral resource assessments that have 
used models have relied upon descriptive and grade-and-tonnage models 
(chapter 6), which are also the foundations of other kinds of models such as 
deposit-density models (chapter 4) and economic cost models (chapter 5). 
One of the purposes of a mineral deposit model is to communicate infor-
mation that helps us fi nd and evaluate mineral deposits. In general, a min-
eral deposit model is the systematically arranged information describing the 
essential attributes (properties) of a class of mineral deposits (Barton, 1993).

Because every mineral deposit is different from every other in some way, 
models have to represent more than single deposits. Deposits sharing a rela-
tively wide variety and large number of attributes come to be characterized 
as a “type,” and a model representing that type can be synthesized. Deposit 
models are constructed with information in and around know deposits, and 
as a consequence, the models contain information that can be used to dis-
criminate one deposit type from another. For example, low values of an attri-
bute (X) (fi gure 3.1) can be used to clearly discriminate deposit type d1 from 
deposit type d2 because low values of X have essentially zero probability 



Figure 3.1 Probability of observing a value of attribute X, given the sample 
came from deposit type d1 or type d2.
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Figure 3.2 Diagram showing the central role of mineral deposit models in 
integrating information to delineate tracts.

PRELIMINAR
Y

1

4
3

2

5

*
1

*
2

*
5

*
4 *

7

*
6

*
3

•
•• •

•

•
• • •

• •

••• •
•

•

• ••

EXTENSIVE
NONE

Mineral resource map 

Known deposits

Geophysics

Exploration history

Geologic map

Geochemistry

•

Mineral deposit models

Grade-Tonnage
Models

Tonnes

PRELIMINARY

Descriptive Models
 Deposit Environment
    Porphyry Copper



32  Quantitative Mineral Resource Assessments

Table 3.1. Example of a descriptive model of porphyry copper-gold deposits by 
Cox (1986a).

Description Stockwork veinlets of chalcopyrite, bornite, and magnetite in 
porphyritic intrusions and coeval volcanic rocks. Ratio of Au (ppm) to Mo 
(percent) is greater than 30.

General References Sillitoe (1979), Cox and Singer (1992).

Geological Environment
Rock Types Tonalite to monzogranite; dacite, andesite fl ows and tuffs coeval 

with intrusive rocks. Also syenite, monzonite, and coeval high-K, low-Ti 
volcanic rocks (shoshonites).

Textures Intrusive rocks are porphyritic with fi ne- to medium-grained aplitic 
groundmass.

Age Range Cretaceous to Quaternary.
Depositional Environment In porphyry intruding coeval volcanic rocks. Both 

involved and in large-scale breccia. Porphyry bodies may be dikes. Evidence 
for volcanic center; 1–2 km depth of emplacement.

of occurring given deposit type d2. But attribute X does not necessarily dis-
criminate a barren area from either deposit type d1 or d2. In quantitative 
assessments, deposit models are used to classify mineralized and to classify 
types of known deposits in the fi rst, tract-delineation part of the assessment 
(fi gure 3.2), and mineral deposits are distinguished from mineral occur-
rences in the third, number-of-deposit estimation part of the assessment. 
The second part of assessments, grade-and-tonnage models of deposits, is 
combined with the estimated number of undiscovered deposits to provide 
the foundation for economic analysis.

Descriptive models used in three-part assessments focus on observations 
and use theories of origin only to guide what to observe. Ideally, the obser-
vations are available at the scale of the assessments. Descriptive models, 
such as those in Cox and Singer (1986), have two parts (tables 3.1, 3.2). The 
fi rst describes the geologic environments in which the deposits are found; 
the second gives identifying characteristics of deposits. The second part 
of the descriptive model, the deposit description, provides the identifying 
characteristics of the deposits themselves, particularly emphasizing aspects 
by which the deposits might be recognized and used to discriminate one 
type from another, such as mineralogy, alteration, and geochemical and 
geophysical anomalies.

Thus, the fi rst part of a descriptive model describes the general setting of 
the deposit type and plays a primary role in the delineation of tracts of land 
geologically permissive for the occurrence of undiscovered deposits. This 
information may be found on typical regional-scale geologic maps. The sec-
ond part helps classify known deposits and occurrences into types, which 
aids the delineation process discussed in chapter 7. In some cases, the typing 
of known deposits and occurrences helps to identify geologic environments 



Table 3.1. (continued )

Tectonic Setting(s) Island-arc volcanic setting, especially waning stage of 
volcanic cycle. Also continental margin rift-related volcanism.

Associated Deposit Types Porphyry Cu-Mo; gold placers.

Deposit Description
Mineralogy Chalcopyrite ± bornite; traces of native gold, electrum, sylvanite, 

and hessite. Quartz + K-feldspar + biotite + magnetite + chlorite + actinolite + 
anhydrite. Pyrite + sericite + clay minerals + calcite may occur in late-stage 
veinlets.

Texture/Structure Veinlets and disseminations.
Alteration Quartz ± magnetite ± biotite (chlorite) ± K-feldspar ± actinolite, ± 

anhydrite in interior of system. Outer propylitic zone. Late quartz + pyrite + 
white mica ± clay may overprint early feldspar-stable alteration.

Ore Controls Veinlets and fractures of quartz, sulfi des, K-feldspar magnetite, 
biotite, or chlorite are closely spaced. Ore zone has a bell shape centered on 
the volcanic-intrusive center. Highest grade ore is commonly at the level at 
which the stock divides into branches.

Weathering Surface iron staining may be weak or absent if pyrite content is low 
in protore. Copper silicates and carbonates. Residual soils contain anomalous 
amounts of rutile.

Geochemical Signature Central Cu, Au, Ag; peripheral Mo. Peripheral Pb, Zn, 
Mn anomalies may be present if late sericite pyrite alteration is strong. Au 
(ppm):Mo (percent) > 30 in ore zone. Au enriched in residual soil over ore 
body. System may have magnetic high over intrusion surrounded by magnetic 
low over pyrite halo.

Examples
 Dos Pobres, Arizona (Langton and Williams, 1982)
 Copper Mountain, British Columbia, Canada (Fahrni et al., 1976)
 Tanama, Puerto Rico (Cox, 1985)

Table 3.2. Example of a descriptive model of porphyry copper deposits by Cox (1986b).

Description This generalized model includes various subtypes all of which 
contain chalcopyrite in stockwork veinlets in hydrothermally altered 
porphyry and adjacent country rock.

General Reference Titley (1982).

Geological Environment
Rock Types Tonalite to monzogranite or syenitic porphyry intruding granitic, 

volcanic, calcareous sedimentary, and other rocks.
Textures Porphyry has closely spaced phenocrysts and microaplitic 

quartz-feldspar groundmass.

(continued )



Table 3.2. (continued )

Age Range Mainly Mesozoic and Cenozoic, but may be any age.
Depositional environment High-level intrusive rocks contemporaneous with 

abundant dikes, breccia pipes, faults. Also cupolas of batholiths.
Tectonic setting(s) Rift zones contemporaneous with Andean or island-arc 

volcanism along convergent plate boundaries. Uplift and erosion to expose 
subvolcanic rocks.

Associated deposit Types Base-metal skarn, epithermal veins, polymetallic 
replacement, volcanic hosted massive replacement. See also: Porphyry 
Cu-skarn related, porphyry Cu-Mo, and porphyry Cu-Au.

Deposit Description
Mineralogy Chalcopyrite + pyrite ± molybdenite; chalcopyrite + magnetite ± 

bornite ± Cu; assemblages may be superposed. Quartz + K-feldspar + biotite + 
anhydrite; quartz + sericite + clay minerals. Late veins of enargite, tetrahedrite, 
galena, sphalerite, and barite in some deposits.

Texture/Structure Stockwork veinlets and disseminated sulfi de grains.
Alteration From bottom, innermost zones outward: sodic-calcic, potassic, 

phyllic, and argillic to propylitic. High-alumina alteration in upper part of 
some deposits. Propylitic or phyllic alteration may overprint early potassic 
assemblage.

Ore Controls Stockwork veins in porphyry, along porphyry contact, and in 
favorable country rocks such as carbonate rocks, mafi c igneous rocks, and 
older granitic plutons.

Weathering Green and blue Cu carbonates and silicates in weathered 
outcrops, or where leaching is intense, barren outcrops remain after Cu is 
leached, transported downward, and deposited as secondary sulfi des at 
water table or paleowater table. Fractures in leached outcrops are coated 
with hematitic limonite having bright red streak. Deposits of secondary 
sulfi des contain chalcocite and other Cu2S minerals replacing pyrite and 
chalcopyrite. Residual soils overlying deposits may contain anomalous 
amounts of rutile.

Geochemical Signature Cu + Mo + Au + Ag + W + B + Sr center; Pb, Zn, 
Au, As, Sb, Se, Te, Mn, Co, Ba, and Rb outer. Locally Bi and Sn form 
most distal anomalies. High S in all zones. Some deposits have weak 
U anomalies.

Examples
 Bingham, Utah (Lanier et al., 1978)
 San Manuel, Arizona (Lowell and Guilbert, 1970)
 El Salvador, Chile (Gustafson and Hunt, 1975)
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not indicated on geologic maps. The arrangement of descriptive models 
illustrated here is designed to focus on host-rock lithology and tectonic set-
ting, the features most easily obtained from a geologic map. Experimental 
forms of descriptive models emphasizing quantitative information are dis-
cussed later in this chapter.

General Geologic Setting

The section titled “Geological Environment” in tables 3.1 and 3.2 provides 
information about the geologic environment under several headings. The 
headings “Rock Types” and “Textures” describe the host rocks of deposits as 
well as the source rocks believed responsible for some deposits. In table 3.1, 
the rocks tonalite to monzogranite and dacite and andesite fl ows and tuffs 
coeval with intrusive rocks are listed for the gold-rich variety of porphyry 
copper deposits (Cox and Singer, 1992). Also listed are syenite, monzonite, 
and coeval high-potassium, low-titanium volcanic rocks. In the more gen-
eral porphyry copper model (table 3.2), syenitic porphyry intruding granitic, 
volcanic, calcareous sedimentary, and other rocks has been added. Textures 
with these deposits are listed as porphyritic intrusive rocks with fi ne- to 
medium-grained aplitic groundmass.

Some of these rocks and textures, such as porphyry or breccia, are only 
identifi able on quite detailed maps due to the small aerial size of the bodies—
this situation occurs in many deposit models. The contents of the descrip-
tive model might be correct but are not useful at the scale of some mineral 
resource assessments. In general, scales of observations in the “Geological 
Environment” section of descriptive models have not been identifi ed, and 
yet scales are important in the application of these models in assessments 
because differences in map scale frequently refl ect differences in the infor-
mation content of the maps.

“Age Range” refers to the age of the event responsible for the formation of 
the deposit. “Depositional Environment” refers to the geologic setting of the 
deposit. “Tectonic Setting” is concerned with major tectonic features or prov-
inces. “Associated Deposit Types” are listed as deposit types whose pres-
ence might indicate suitable conditions for the formation of deposits of the 
type portrayed by the model. For the descriptive model for porphyry Cu-Au 
(table 3.1), the associated deposit types are listed as porphyry Cu-Mo and 
gold placers. In the more general porphyry copper model (table 3.2), the asso-
ciated deposits are listed as base-metal skarn, epithermal veins, polymetal-
lic replacement, and volcanic hosted massive replacement. The “Geological 
Environment” section of the descriptive model uses information from the 
geologic map, geophysical maps, and the known deposits and occurrences. 
This part of a descriptive model provides the general setting of the deposit 
type and plays the primary role in the delineation of tracts of land geologi-
cally permissive for the occurrence of undiscovered deposits (see chapter 7).
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ASSESSMENT EXAMPLE

In 1994, at the request of the U.S. State Department, two USGS ge-
ologists went to Jakarta to consult with Indonesian government offi -
cials and to plan a possible resource assessment project. The Indone-
sian government was particularly interested in mineral resources in 
the eastern part of the country in order to possibly provide employ-
ment opportunities for people relocating from the densely populated 
western part of the country. The goal of the proposed project was 
to prepare a quantitative assessment of eastern Indonesia’s mineral 
resources that would help the government of Indonesia develop its 
mineral resources to ensure sustainable development and in ways 
that are sensitive to environment. Before writing the proposal for 
the project, a short course was given and a fi eld trip was taken to 
examine the geology of some parts of eastern Indonesia. Among the 
places visited was Ambon Island, which was believed to have low 
chances of containing metal-bearing economic minerals and that 
had no known prospects or occurrences. The geologists found clear 
indications of the kind on mineralization associated with porphyry 
copper-gold deposits (Menzie et al., 1997). Subsequent exploration 
by a Canadian mining company confi rmed the possibility of a large 
copper deposit, and Indonesian government geochemical work sug-
gested the possibility of associated epithermal gold deposits on 
Ambon Island. Unfortunately, due to subsequent violence, further 
exploration has not taken place on Ambon, and the joint assessment 
project was not funded.

According to the descriptive models of Cox (1986a, 1986b), porphyry 
copper deposits consist of stockwork, disseminated, and breccia-hosted 
copper mineralization together with K-silicate alteration that is generally 
restricted to porphyritic stocks and their immediate wall rocks. The depos-
its may have parts that contain skarn. Deposits that may be derived from, 
or affected by, supergene processes are included in the models. Using these 
descriptive models and an understanding of tectonic settings, broad vol-
canic arcs that formed at approximately the same time can be the funda-
mental unit for the delineation of permissive areas for porphyry copper 
deposits. Permissive tracts can be outlined along borders of magmatic arcs, 
taking into consideration the deposit ages and distributions of major struc-
tures. Boundaries of mapped rock units form the primary basis for drawing 
limits of permissive areas (see chapter 7). Permissive area boundaries are 
typically extended using interpolated geology and locally geophysical sur-
veys, such as aeromagnetics, to identify where younger rocks or sediments 
conceal permissive rocks.
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Deposit Description

The purpose of the “Deposit Description” section of these descriptive models 
is to assist in the classifi cation of known mineral deposits and more poorly 
explored mineral occurrences into the appropriate deposit types. Properly 
classed deposits and occurrences are useful when plotted on a map in that 
they reinforce the spatial distributions of geologic settings of particular 
deposit types and, in some cases, identify geologic settings not recognized 
from the geologic map alone due to errors or to scale issues where the map 
scale is not suffi cient to differentiate the permissive hosting unit (chapter 7).

“Mineralogy,” “Texture/Structure,” and “Alteration,” which are fre-
quently useful in classifi cation, are included in the deposit description sec-
tion of descriptive models for that reason. Although many deposit types have 
overlapping minerals in common, it is possible to correctly classify many 
deposits into types with mineralogy (see below). Information on weathering 
of deposits and their alteration patterns is applicable in many parts of the 
world. “Geochemical Signature” and, in some cases, geophysical anomalies 
(table 3.1; Hoover, Heran, and Hill, 1992), might be useful in planning for 
mineral assessments or mineral exploration (Cox, Barton, and Singer, 1986). 
However, unless the assessment is being done at a detailed map scale, such 
information may not be useful because it is not typically shown on regional 
maps. Many descriptive models also include a generalized map or cross sec-
tion illustrating ore controls, zoning patterns, or other features of the model. 

Figure 3.3 Map illustrating a generalized model of metal and mineral zoning 
in polymetallic replacement deposits. After Morris (1986). 
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The generalized map or cross section is primarily used to classify known 
deposits and occurrences in and near an area being assessed (fi gure 3.3). In 
appendices to USGS Bulletin 1693 (Cox and Singer, 1986), the models are 
extensively indexed by frequency of occurrence of minerals and associated 
geochemical anomalies. The 3,900 individual deposits located in 110 coun-
tries referred to in the models in USGS Bulletin 1693 are also indexed, and 
their model classifi cation is shown.

Digital Models

Consistency in quantitative assessments is dependent on the internal con-
sistency required in the construction of the descriptive, grade-and-tonnage, 
and deposit-density models. Descriptive models discussed above have been 
developed on the basis of expert knowledge. An alternative, more time-
consuming method of developing descriptive models is to gather data from 
well-explored deposits of each type to determine how commonly different 
attributes and combinations of attributes occur after expert classifi cation of 
the deposits. Quantifying mineral deposit attributes is the necessary and suf-
fi cient next step in statistically classifying known deposits by type. Quanti-
fi ed deposit attributes also can provide a fi rm foundation to identify which 
observations on geologic and other maps should be effective in delineation 
of tracts and perhaps identifying sites for detailed exploration.

An example of these kinds of digital data is shown in fi gure 3.4, where the 
frequency of reports of the presence or absence a few of the minerals pres-
ent in fi ve types of deposits has been counted. Adularia and gold are more 
commonly reported in Comstock epithermal gold-silver deposits, whereas 
alunite and barite are more commonly reported in quartz-alunite epithermal 
gold-silver deposits. Biotite is ubiquitous in porphyry copper deposits but 
not particularly common in the other deposit types plotted. To determine if 
quantifi ed mineral deposit models would be useful in classifying unknown 
deposits into types, data on the minerals reported present in fi fty-fi ve differ-
ent types of deposits were compiled (Singer et al., 1997) and were used to 
statistically discriminate eight of the deposit types. Using fi fty-eight miner-
als and six generalized rock types, 88 percent of the deposits not used in 
training the neural network were accurately classifi ed into the correct eight 
types (Singer and Kouda, 1997a). Just knowing whether there are marine 
mafi c volcanic rocks or marine felsic to intermediate volcanic rocks near the 
deposits increased the correctly classifi ed deposits in the validation set from 
88 percent to 98 percent. Clearly, digital mineralogy and simple rock types 
can be useful in classifying well-studied deposits. Using the same kind of 
information, the rate of correct classifi cation was only about 53 percent for 
mineral prospects (occurrences only partially explored) (Singer and Kouda, 
1997b). Typically, there is sparse information about mineralogy and even 
associated rock types of prospects. The success of expert economic geologists 



Figure 3.4 Percentages of deposits of selected types with indicated minerals 
reported.
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Figure 3.5 Percentages of selected deposit types observed within 10 km of 
three subtypes of porphyry copper deposits.
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in classifying prospects depends on such information, and additionally they 
use information about spatially associated deposits and prospects that are 
classifi ed.

Digital information on the spatial association of deposits is only available 
for a few deposit types. The pattern that emerges when one looks at the pro-
portion of deposit types spatially associated with the subtypes of porphyry 
copper deposits strongly reinforces the suggested value of such information 
(fi gure 3.5). Epithermal quartz-alunite gold-silver, epithermal Comstock 
gold-silver, and polymetallic replacement zinc-lead are more common near 
the relatively shallow gold-rich porphyry copper deposits, but zinc-lead 
skarn deposits are more common near molybdenum-rich porphyry copper 
deposits. In addition, some of the deposit types that are relatively common 

Figure 3.6 Ages of porphyry copper deposits by subtype.
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within 10 km of porphyry copper deposits, such as polymetallic vein and 
quartz adularia epithermal vein gold-silver types, were not mentioned in the 
descriptive models of Cox and Singer (1986).

Digital models offer the advantages over expert-created descriptive mod-
els in that the information is documented and reproducible and can be used 
in classifi cation and prediction (Singer, 2006). The advantages of digital data 
are evident if the frequency distribution of ages observed in subtypes of 
porphyry copper deposits (fi gure 3.6) are compared to the age of gold-rich 
porphyry copper deposits indicated in the descriptive model shown in table 
3.1—clearly, these deposits as shown by these data have a wider age range 
than estimated by Cox (1986a).

The kind of digital models presented here about attributes associated 
with known deposits is necessary but not suffi cient to discriminate barren 
from mineralized environments; quantifying the attributes of barren envi-
ronments also is necessary for this task. In other words, part of the nature of 
descriptive models, whether made by experts or by using digital data, is that 
these models do not include information about barren areas.
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Perspective

A key function of many forms of quantitative mineral resource assessments 
is estimation of the number of undiscovered deposits. In any given region, 
there is some fi xed but, in most cases, unknown number of undiscovered 
deposits of a given type—the number could be zero or a larger integer. 
Many quantitative resource assessments that are based on a common 
three-part form of assessment (Singer, 1993a) have used expert judgment 
to estimate the number of deposits. Estimates of this unknown number are 
presented in a probabilistic form to refl ect the uncertainty associated with 
the estimate.

Ideally, estimates of number of deposits should rely on analogies with 
similar well-explored geologic settings, just as grades and tonnages of well-
explored deposits serve as analogs of the qualities and sizes of undiscovered 
deposits. Estimates of the number of undiscovered deposits can be derived 
from counts of known deposits per unit area in explored control regions. 
Number of deposits per unit area of the control regions can be used in his-
tograms to show variation of densities by deposit type. Some research has 
been conducted on densities of several deposit types so that these ratios can 
be more widely used as a guide for number-of-deposit estimates (Bliss, Orris, 
and Menzie, 1987; Bliss, Menzie, Orris, and Page, 1987; Bliss and Menzie, 
1993; Bliss, 1992b; Root, Menzie, and Scott, 1992). Most of these studies 
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provide point (i.e., single) estimates of the number of deposits per unit 
area. Singer et al. (2001) summarize the ideas behind these mineral deposit-
density models and provide individual estimates for twenty-seven combina-
tions of deposit types and control locations. Many of the specially selected 
areas they describe provide standards to identify what should be consid-
ered high estimates of number of undiscovered deposits in most situations. 
Thus, many published mineral-deposit densities provide guides that suggest 
upper limits to estimates but are not necessarily useful in providing estima-
tion guides for more likely situations. Four studies that attempt to address 
issues related to variability of deposit densities within a deposit type along 
with questions about effects of map or assessment scale are for low-sulfi de 
quartz-gold veins (Bliss and Menzie, 1993), podiform chromite deposits 
(Singer, 1994a), porphyry copper type-deposits (Singer, Berger, Menzie, and 
Berger, 2005), and volcanogenic massive sulfi de deposits (Mosier, Singer, 
and Berger, 2007). Powerful estimators of the density of deposits, number of 
deposits, and amount of mineralized rock based on analysis of ten different 
types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfi de, 
Franciscan Mn, kuroko massive sulfi de, low-sulfi de quartz-Au vein, placer 
Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control 
tracts around the world have been used to generalize across deposit types 
(Singer, 2008).

Deposit Densities

There are no fi xed methods for making estimates of the number of undis-
covered deposits. On the basis of experience and logic, however, a number 
of techniques can be used directly or as guidelines to make these estimates. 
Each method represents some form of analogy. Most robust of these methods 
is a form of mineral deposit model wherein the numbers of deposits per unit 
area from well-explored control regions are counted for a deposit type and 
the resulting frequency distribution is used either directly for an estimate or 
indirectly as a guideline in some other method. Figure 4.1 presents a hypo-
thetical situation where, for an arbitrary deposit type, the number of discov-
ered deposits is counted in each of twelve well-explored control tracts that 
are permissive for the deposit type, and the areas of each tract are recorded. 
Of course, the distribution of the deposit sizes is consistent with the associ-
ated grade-and-tonnage model.

Ratios of number of deposits per area are histograms showing how com-
monly different deposit densities are present (fi gure 4.2). It is relatively easy 
to determine if an area is well explored for some deposit types, such as 
porphyry copper or placer gold, if the deposits are exposed and the area is 
not heavily vegetated. Because of the diffi culty of recognition of some types 
of deposits, such as sediment-hosted copper, determining the extent and 
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effi ciency of exploration in an area is more diffi cult for these deposit types. 
It is not necessary that the control areas be explored completely, but it is 
necessary that the number of deposits found and the proportion of the area 
explored be estimated. An example of such an adjustment for incomplete 
exploration is presented below for kuroko massive sulfi de deposits in the 
Hokuroku district of Japan. In some situations it is possible to consider min-
eral deposit density as the probability that a deposit of a given type occurs 
within some standard measure of area such as kilometer. We do not use that 
approach here because it requires a strong assumption that there can be one 
and only one deposit within the area.

Figure 4.1 Example of known deposits in well-explored permissive areas 
(A), and histogram of derived deposit densities (B).
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Density Estimation

Deposit-density models have been designed to be used within the three-part 
form of assessment, which affects how the models should be constructed. In 
this kind of assessment, grade-and-tonnage models have the form of frequency 
distributions of tonnages and average grades of well-explored deposits of 
each type—they serve as models for grades and tonnages of undiscovered 
deposits of the same type occurring in geologically similar settings. In three-
part assessments, estimates of number of undiscovered deposits explicitly 
represent the probability (or degree of belief) that some fi xed but unknown 

Figure 4.2 Histograms of the number of podiform chromite (a), volcanic-
hosted massive sulfi de (b), and porphyry copper (c) deposits per 100,000 
km2 per belt. Data are from Singer (2008). 
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number of undiscovered deposits that are consistent with the grade-
and-tonnage model exists in the delineated tracts. Biases can be introduced 
into the resource estimates either by a fl awed grade-and-tonnage model or 
by lack of consistency of the number-of-deposit estimates with the grade-
and-tonnage model. For reasons of consistency, determining a mineral-
deposit density requires unambiguous defi nitions of what is a deposit and 
what are the rules for delineation. Mineral deposit-density models start with 
the areas of well-explored control tracts where the number of deposits that 
are consistent with the grade-and-tonnage model are used to show variation 
of densities by deposit type.

Examples of the control tracts, areas of the tracts, and number of deposits
within the tracts used for mineral deposit densities are shown in table 
4.1. The examples of the information necessary for deposit-density mod-
els represent updated estimates of mineral deposit densities from various 
published sources (summarized in Singer et al., 2001; Singer, 2008). Densi-
ties for low-sulfi de gold-quartz veins are discussed by Bliss, Menzie, Orris, 
and Page (1987), Bliss and Menzie (1993), and Lisitsin et al. (2007). These 
low-sulfi de gold-quartz vein deposits are defi ned in the descriptive model 
by Berger (1986) and are consistent with the grade-and-tonnage model by 
Bliss (1986). It is important to note that the same proximity rule used to 
construct the grade-and-tonnage model was used to defi ne deposits for the 
deposit densities; that is, workings within 1.6 km of each other were treated 
as part of the same deposit. Low-sulfi de gold-quartz vein control areas, 
that is, explored permissive tracts (chapter 7) defi ned on the basis of stan-
dards from the descriptive model, consist of the presence of metavolcanic, 
metasedimentary, and ophiolitic rocks of accreted terranes. Plutonic rocks 
(within 40 km of veins) also intrude these terranes, and the metamorphic 
grade is greenschist facies or lower (Bliss, Orris, and Menzie, 1987). Reported 
densities for low-sulfi de gold-quartz veins vary over a rather narrow range 
from 0.0033 to 0.0054 deposits/km2.

Mineral deposit densities of three subtypes of volcanogenic manganese 
deposits (Mosier and Page, 1988) also rely on deposits that are consistent 
with their respective descriptive and grade-and-tonnage models. The exam-
ples in table 4.1 of mineral deposit densities for placer gold, kuroko massive 
sulfi de (Mosier, Singer, and Berger, 2007), porphyry copper (Singer, Berger, 
Menzie, and Berger, 2005), Climax porphyry molybdenum, and wolframite-
quartz vein deposits further demonstrate the variability of estimates and 
some consequences of assumptions about permissive areas and extent of 
exploration. Some of the assumptions are addressed below.

Permissive Area Sizes

One assumption that might be made is that mineral deposit densities are 
constant across all sized control tracts. A common way to estimate deposit 



Table 4.1. Mineral d eposit-density control areas.

Deposit Typea Control Area Locationb Area (km2) Number
Median Tons 
(millions)

Total Tons 
(millions) Source

Podiform Cr Placer, CA 51 86 0.000065 0.0215 Singer (1994a)
Podiform Cr Nevada, CA 39 38 0.000044 0.00740 Singer (1994a)
Podiform Cr Sierra, CA 35 17 0.000061 0.00591 Singer (1994a)
Podiform Cr Amador, CA 19 8 0.000120 0.00119 Singer (1994a)
Podiform Cr Butte, CA 100 37 0.000085 0.0290 Singer (1994a)
Podiform Cr El Dorado, CA 94 30 0.000136 0.142 Singer (1994a)
Podiform Cr Calaveras, CA 66 17 0.000254 0.00765 Singer (1994a)
Podiform Cr Fresno, CA 133 31 0.000121 0.0492 Singer (1994a)
Podiform Cr Tehama, CA 151 33 0.000072 0.0116 Singer (1994a)
Podiform Cr Tuolumne, CA 107 23 0.000190 0.0511 Singer (1994a)
Podiform Cr Stanislaus, CA 38 6 0.000216 0.00333 Singer (1994a)
Podiform Cr Plumas, CA 208 26 0.000029 0.00209 Singer (1994a)
Podiform Cr St. Barbara, CA 50 6 0.000014 0.000195 Singer (1994a), (2008)
Podiform Cr Tulare, CA 69 7 0.000242 0.00445 Singer (1994a)
Cuban Mn Cuba 1,200 120 0.00293 7.97 Mosier and Page (1988)
Podiform Cr San Louis Obispo, CA 187 16 0.000110 0.0572 Singer (1994a), (2008)
Podiform Cr Glenn, CA 80 6 0.000540 0.0360 Singer (1994a)
Podiform Cr Shasta, CA 261 19 0.000130 0.0217 Singer (1994a)
Podiform Cr Siskiyou, CA 1,221 87 0.000046 0.0917 Singer (1994a)
Kuroko West Shasta, CA 117 8 0.266 11.5 Mosier et al. (2007)
Podiform Cr Del Norte, CA 711 47 0.000101 0.0570 Singer (1994a)
Podiform Cr Alameda, CA 31 2 0.000260 0.00155 Singer (1994a), (2008)
Podiform Cr Mendocino, CA 140 9 0.000021 0.00104 This study

(continued )
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Podiform Cr Humboldt, CA 271 16 0.000048 0.00399 Singer (1994a)
Podiform Cr Santa Clara, CA 112 6 0.000135 0.00103 Singer (2008)
Podiform Cr Lake, CA 277 14 0.000034 0.00232 Singer (1994a), (2008)
Podiform Cr Monterey, CA 60 3 0.000017 0.000308 Singer (1994a), (2008)
Podiform Cr Napa, CA 238 11 0.000137 0.00761 Singer (1994a)
Podiform Cr Trinity, CA 1,034 46 0.000032 0.00646 Singer (1994a)
Kuroko Jerome, AZ 24 1 29.000 29.0 Mosier et al. (2007)
Podiform Cr Sonoma, CA 147 6 0.000331 0.00531 Singer (1994a), (2008)
Kuroko Binghampton, AZ 26 1 0.363 0.363 Mosier et al. (2007)
Kuroko Spain 1,300 48 2.046 1022 Mosier et al. (2007)
Kuroko Chestatee, GA 27 1 1.100 1.10 Mosier et al. (2007)
Franciscan Mn Hokaido, Japan 3,890 117 0.00293 2.04 Mosier and Page (1988)
Tungsten vein SE China 140 4 0.55976 2.24 Singer et al (2001)
Kuroko North Haven, ME 36 1 0.050 0.050 Mosier et al. (2007)
Kuroko East Shasta, CA 73 2 0.306 0.771 Mosier et al. (2007)
Franciscan Mn CA 23,700 450 0.00015 0.904 Mosier and Page (1988)
Cyprus m. Cyprus 1,016 14 0.925 43.6 Mosier et al. (2007)
Kuroko Castine Fm., ME 236 3 0.182 1.00 Mosier et al. (2007)
Kuroko Ashland, AL 81 1 1.300 1.30 Mosier et al. (2007)
Kuroko Kunitomi, Japan 416 5 2.100 2.10 Mosier et al. (2007)
Kuroko Yavapai, AZ 89 1 1.429 1.43 Mosier et al. (2007)
Kuroko Copper Hill, CA 424 4 0.315 1.82 Mosier et al. (2007)
Cyprus m. Betts Cove, CNNF 433 4 2.147 20.3 Mosier et al. (2007)
Kuroko Hillabee, AL-GA 218 2 0.497 2.84 Mosier et al. (2007)

Table 4.1. (continued )

Deposit Typea Control Area Locationb Area (km2) Number
Median Tons 
(millions)

Total Tons 
(millions) Source
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Kuroko Hokoruku, Japan 900 8 10.444 129 Singer et al (2001)
Kuroko Dominican Republic 338 3 1.004 4.74 Mosier et al. (2007)
Kuroko Quoddy Fm., ME 233 2 0.545 1.15 Mosier et al. (2007)
Kuroko Standing Pond, VT 123 1 0.050 0.050 Mosier et al. (2007)
Kuroko Pecos, NM 149 1 2.090 2.09 Mosier et al. (2007)
Cuban Mn Fiji 2,720 18 0.00369 0.170 Mosier and Page (1988)
Placer gold Kenai, AK 3,260 20 1.07152 21.4 Singer et al (2001)
Kuroko Gopher Ridge, CA 1,343 8 0.140 3.67 Mosier et al. (2007)
Cyprus m. Smartville, CA 518 3 0.128 1.51 Mosier et al. (2007)
Kuroko Flin Flon-Snow Lake 2,656 15 0.809 79.2 Mosier et al. (2007)
Placer gold Weisman, AK 2,760 15 1.07152 16.1 Singer et al (2001)
Kuroko Tasmania 825 4 14.804 157 Mosier et al. (2007)
Kuroko Kutcho Creek, CNBC 243 1 22.600 22.6 Mosier et al. (2007)
Kuroko Buchans, CNNB 1,051 4 4.514 20.1 Mosier et al. (2007)
Kuroko Hornblende Gneiss, GA 587 2 0.278 0.706 Mosier et al. (2007)
Kuroko Hawley-Bernard, VT 297 1 0.902 0.90 Mosier et al. (2007)
Qtz.-gold Bendigo, AUVT 7,000 23 0.427 60.9 Lisitsin et al. (2007)
Kuroko Ammonoosuc, ME 1,136 3 0.136 0.650 Mosier et al. (2007)
Cyprus m. Big Mike, NV 420 1 0.100 0.100 Mosier et al. (2007)
Cyprus m. Lokken, Norway 949 2 1.581 25.1 Mosier et al. (2007)
Cyprus m. Sunro, CNBC 480 1 2.780 2.78 Mosier et al. (2007)
Kuroko Snake River, OR 1,071 2 4.469 39.5 Mosier et al. (2007)
Kuroko Myra Falls, CNBC 1,117 2 1.176 5.45 Mosier et al. (2007)
Kuroko Winterville Fm., ME 621 1 33.000 33.0 Mosier et al. (2007)
Porphyry Cu Puerto Rico (8) 1,552 2 172.0 344 Singer et al. (2008)
Porphyry Cu Eocene, Chile (12) 6,913 6 1,285.0 5,002 Cunningham et al. (2008)

(continued )



Porphyry Cu Mio-Plio, AGNT (14d) 5,770 5 300.0 3,306 Cunningham et al. (2008)
Porphyry Cu Olig., Chile (11) 2,429 2 553.0 1,638 Cunningham et al. (2008)
Porphyry Cu Eoc-Olig., Chile (10) 25,690 16 1,852.9 85,581 Cunningham et al. (2008)
Kuroko Orient, Cuba 3,390 2 2.391 11.9 Mosier et al. (2007)
Porphyry Cu Mio-Plio, Chile (14b) 9,284 4 18,671.0 47,284 Cunningham et al. (2008)
Porphyry Cu Mio Central, Peru (6) 53,186 27 518.4 22,745 Cunningham et al. (2008)
Porphyry Cu Mio, Chile (14a) 21,721 8 186.5 5,383 Cunningham et al. (2008)
Kuroko Rudny-Altai, Russia 20,539 8 1.242 206 Mosier et al. (2007)
Porphyry Cu Eoc, Peru (9a) 30,154 11 233.1 6,070 Cunningham et al. (2008)
Porphyry Cu Molong, AUNS (19) 11,500 4 133.0 1,592 Singer et al. (2008)
Porphyry Cu Pale, Peru, Chile (8) 69,087 24 596.5 21,121 Cunningham et al. (2008)
Climax Mo CO 12,000 4 240.1 960 Singer et al. (2001)
Porphyry Cu Mio-Plio, Chile (14c) 24,048 8 657.0 7,025 Cunningham et al. (2008)
Porphyry Cu West Philippine (1) 47,100 16 165.0 2,408 Singer et al. (2008)
Climax Mo NM 3,200 1 423.9 424 Singer et al. (2001)
Porphyry Cu Mio Colombia (5) 58,797 17 179.0 10,503 Cunningham et al. (2008)
Porphyry Cu SE Eur. (15) 77,400 11 350.0 4,248 Singer et al. (2008)
Porphyry Cu Jurassic Colombia (3) 67,709 17 384.2 12,423 Cunningham et al. (2008)
Kuroko Urals, Russia 81,615 19 12.366 634 Mosier et al. (2007)
Porphyry Cu Eoc, Colombia (1) 51,613 12 240.0 10,800 Cunningham et al. (2008)
Porphyry Cu AZ– Mexico (7) 216,700 52 288.0 49,724 Singer et al. (2008)
Porphyry Cu Permian AGTN (16) 29,080 6 308.6 3,553 Cunningham et al. (2008)
Porphyry Cu Central Philippines (2) 76,580 13 78.0 2,627 Singer et al. (2008)
Porphyry Cu Mio-Plio, Chile (13b) 41,799 8 2,945.0 13,965 Cunningham et al. (2008)

Table 4.1. (continued )

Deposit Typea Control Area Locationb Area (km2) Number
Median Tons 
(millions)

Total Tons 
(millions) Source
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Porphyry Cu Mio, Chile–AGTN (13a) 70,587 12 1,285.0 10,720 Cunningham et al. (2008)
Porphyry Cu NV 32,800 5 159.0 1,986 Singer et al. (2008)
Porphyry Cu Yulong, China (18) 93,400 8 92.2 1,698 Singer et al. (2008)
Porphyry Cu Quesnellia, CNBC (5) 221,840 29 285.0 10,945 Singer et al. (2008)
Porphyry Cu East Phillipines (3) 90,480 9 78.0 3,897 Singer et al. (2008)
Porphyry Cu N. Sulawesi, INDO (4) 34,075 2 165.0 330 Singer et al. (2008)
Porphyry Cu Kaz (16) 236,390 17 213.0 7,028 Singer et al. (2008)
Porphyry Cu Cret. Peru (7) 107,297 6 75.3 2,738 Cunningham et al. (2008)
Porphyry Cu Stikinia, CNBC–WA 255,700 15 171.0 4,379 Singer et al. (2008)
Porphyry Cu East China (17) 146,320 6 314.0 3,098 Singer et al. (2008)
Porphyry Cu Eoc, AGTN (15) 83,204 6 194.0 3,784 Cunningham et al. (2008)

a Podiform Cr = podiform chromite, Cuban Mn = Cuban volcanogenic manganese, Kuroko = kuroko massive sulfi de, Franciscan Mn = Franciscan 
volcanogenic manganese, Cyprus m. = Cyprus massive sulfi de, Qtz.-gold = low-sulfi de quartz-gold vein, Climax Mo = Climax porphyry Mo.
b CA = U.S. California, AZ = U.S. Arizona, Spain = Iberian pyrite belt, Spain–Portugal, GA = U.S. Georgia, ME = U.S. Maine, AL = U.S. Alabama, 
CNNF = Canada Newfoundland, VT = U.S. Vermont, NM = U.S. New Mexico, AK = U.S. Alaska, Flin Flon-Snow Lake = Canada Manitoba-
Saskatchewan, Tasmania = Australia Tasmania, CNBC = Canada British Columbia, CNNB = Canada New Brunswick, AUVT = Australia Victoria, 
NV = U.S. Nevada, OR = U.S. Oregon, CO = U.S. Colorado, WA = U.S. Washington, Mio-Plio = Miocene-Pliocene, Mio = Miocene, Pale = Paleo-
cene, Eoc = Eocene, AGNT = Argentina, INDO = Indonesia, SE Eur = Carpathian-Balkan, Kaz = east-central Kazakhstan.
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density is to average the number of deposits per permissive area over a num-
ber of permissive areas. This practice ignores possible effects of size of per-
missive area on deposit densities and ignores the frequency distribution and 
variability of densities. Each of these can have a signifi cant effect on deter-
mining the best way to estimate uncertainty and reduce possible bias in esti-
mated number of undiscovered mineral deposits. These issues are examined 
through studies of podiform chromite, porphyry copper, and volcanogenic 
massive sulfi de deposit densities.

Density of Podiform Chromite Deposits

On the basis of number of discovered exposed podiform chromite deposits 
and area of permissive rocks, the deposit density, averaged over the twenty-
eight sample areas in California (table 4.1), is 0.233 deposits/km2 ultramafi c 
rock (Singer, 1994a, 2007). This estimate is of questionable value, however, 
because the frequency distribution of the untransformed variable (deposits/
area) is signifi cantly skewed and peaked (fi gure 4.2). Thus, a few high values 
have a very large infl uence on the estimate, and probabilistic estimates of the 
number of undiscovered deposits are likely to be biased.

One way to make probabilistic estimates in this situation would be to 
use the mean and standard deviation of the transformed data and the nor-
mal distribution. The frequency distributions of the logarithms of the area 
of ultramafi c rock, number of podiform chromite deposits, and number 
of podiform deposits per square kilometer of ultramafi c rock are not sig-
nifi cantly different from normal distributions. Note that it is more appro-
priate to model the distribution of number of deposits with a discrete 
distribution such as the negative binomial (Agterberg, 1977). As noted by 
Agterberg (1984), the continuous lognormal is equivalent to the discrete 
negative binomial, but use of the lognormal can lead to discrepancies for 
small frequencies.

On the basis of the lognormal distribution and the observed values, in 
90 percent of the cases, the density of podiform chromite deposits would 
be ≥0.046 deposits/km2, in 50 percent of the cases it would be ≥0.094 
deposits/km2, and in 10 percent of the cases it would be ≥0.538 deposits/
km2. The median estimate of 0.094 deposits/km2 is nearly the same as an 
estimate made by dividing the total number of deposits (653) by the total 
area of ultramafi c rock (5,930 km2), that is, 0.110 deposits/km2. This result 
suggests that the method of calculating the deposit density with untrans-
formed data probably yields reliable estimates of the median density only 
when the permissive area is quite large. However, unless many areas are 
used, there is no way to estimate variability and, consequently, no way to 
make probabilistic estimates of the number of deposits without additional 
information. The value of multiple control areas and later the need to con-
sider the size of permissive tracts are examined below for porphyry copper 
deposits.
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Density of Porphyry Copper Deposits

Broad volcanic arcs that formed at approximately the same time are the fun-
damental unit for the delineation of belts permissive for porphyry copper 
deposits (Singer, Berger, Menzie, and Berger, 2005). Much of the information 
in that report is from the database of porphyry copper deposits of the world 
(Singer, Berger, and Moring, 2005) and various geologic maps and additional 
materials. For twenty-one porphyry copper settings from around the world, 
permissive belts were delineated and measured, and deposit densities were 
estimated. Porphyry copper belts were delineated and selected on the basis of 
three main features: (1) extensive exploration for porphyry copper deposits, 
(2) a defi nable geologic setting of the porphyry copper deposits in volcanic arc 
environments, and (3) a diversity of ages of porphyry copper deposit forma-
tion. The twenty-one belts in that report contain about 75 percent of the total 
amount of copper in all known porphyry copper deposits. In the study, the 
only deposits that are counted as porphyry copper deposits, rather than pros-
pects, are those that have been drilled in three dimensions and have published 
estimates acceptable for the grade-and-tonnage models as reported in Singer, 
Berger, and Moring (2005). Porphyry copper prospects are counted separately 
here because in any subsequent resource assessment, only those undiscovered 
deposits that are represented by the grade-and-tonnage models are estimated—
none, some, or all, of the known prospects might belong to that population.

Tracts containing porphyry copper deposits, referred to as control areas 
in Singer, Berger, Menzie, and Berger (2005), were outlined along borders 
of hosting geologic terrane and/or along regional zones of related porphyry 
intrusions with modifi cations on the basis of deposit ages and distributions of 
major structures. Eleven of the porphyry copper control areas were outlined 
on the basis of geologic maps of 1:1,000,000 to 1:1,500,000 scale; geologic 
maps of 1:2,000,000 to 1:2,500,000 scale were used for another eight control 
areas, and two belts were delineated at 1:240,000 to 1:250,000 scales.

The extent to which rocks or sediments younger than the porphyry cop-
per deposits cover the permissive belts or deposits needs to be examined 
for two reasons. First, in most situations, covered permissive tracts cannot 
be considered to be well explored. Therefore, inclusion of covered parts 
of permissive tracts would improperly increase the size of the permissive 
tract. Second, counting mineral deposits that have been found under cover 
as part of the deposit density would distort density statistics and lead to 
misleading or biased estimates of how many undiscovered deposits might 
be present in an assessed tract. Boundaries of mapped rock units form the 
primary basis for drawing limits of permissive belts or tracts. Preliminary 
control area boundaries are typically extended using interpolated geology 
and geophysical surveys, such as aeromagnetics, to identify where younger 
rocks or sediments conceal permissive rocks. Scale of the maps can have 
a strong effect on the extent of cover portrayed—detailed maps commonly 
show more cover than do regional maps. Due to their large aerial extent, 
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porphyry copper deposits located mostly under younger cover can have 
part of their alteration zones exposed. To prevent miscounting deposits that 
belong to the exposed permissive terrain, the percentage of cover associated 
with each deposit was estimated and density estimates were made by count-
ing only those deposits that are at least 50 percent exposed. Thus, deposit-
density estimates are formed from known deposits that are consistent with 
the grade-and-tonnage models and are located in exposed control areas. Of 
the 241 porphyry copper deposits that are in the twenty-one delineated con-
trol areas and that are consistent with the grade-and-tonnage models, 17 
percent or forty-one deposits belong to the covered population.

Percent cover for each deposit was measured from detailed maps and 
cross sections of deposits. The area of each belt (in square kilometers) and 
the percentage of each belt covered by postmineral rocks, sediments and ice 
were estimated. Before deposit-density estimates were made, area permis-
sive for a deposit type should be adjusted for the portion that is covered by 
removing the covered portion because it is considered poorly explored.

Estimates of porphyry copper deposit density (in deposit per square 
kilometer) were formed as the ratio of exposed deposit number to the total 
exposed belt area—covered explored deposits were not included in calcula-
tion. To make the deposit-density estimates accessible to more readers, we 
have also scaled the estimates by multiplying each by 100,000. These modi-
fi ed deposit densities can be considered as the number of porphyry cop-
per deposits per 100,000 km2 of permissive rock—this form of estimate may 
be more easily discussed and remembered because the estimates represent 
whole numbers of deposits. A histogram of porphyry copper densities per 
100,000 km2 using the data in table 4.1 has a skewed distribution like that 
observed for podiform chromite and volcanogenic massive sulfi de deposits 
(fi gure 4.2). With skewed distributions such as in fi gure 4.2, a few high val-
ues have a very large infl uence on the mean density. However, the mean is 
only one measure of central tendency. Uncertainty is shown by the spread 
of the number-of-deposit estimates associated with the 90 percent to the 
10 or 1 percent quantiles—with larger differences suggesting greater uncer-
tainty. The estimates plotted in fi gure 4.2 provide the basis for probabilistic 
estimates of porphyry copper density that are not adversely infl uenced by a 
few large values. Ninety percent of the belts have densities of two or more 
deposits, 50 percent have densities of nine or more deposits, and 10 percent 
of the belts have densities of twenty-nine or more porphyry copper deposits 
per 100,000 km2. Although these probabilistic estimates are an improvement 
over point estimates of density, they can be signifi cantly improved by condi-
tioning these guidelines by the size of permissive tract.

Permissive Areas

When samples are taken that represent small areas, there will be large differ-
ences from sample to sample according to sampling theory. In a number of 
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well-explored regions that each represented a large area, one would expect 
much lower relative variability among the estimates. Thus, the scale of 
observations should have an effect on the variability of mineral deposit den-
sities. For example, if tracts or belts representing larger regions were used 
to make a histogram of deposit density, one would expect that there would 
be fewer observations at the higher and lower densities, which is consistent 
with less variability of the estimates.

The relationship of sample size infl uencing deposit densities was rec-
ognized by Agterberg (1977) in his studies of volcanogenic massive sulfi de 
deposits of the Abitibi region of Canada and was extensively discussed by 
Bliss and Menzie (1993) in terms of distributions and spatial correlations of 
several deposit types. These studies of frequency distributions and spatial 
correlations are typically concerned with variability within mineral deposit 
districts, whereas here we are concerned with variability among larger areas.

A further improvement in understanding the variability of density esti-
mates and in increasing the precision of number-of-deposit estimates can be 
made by examining the relationship between the area permissive for a deposit 
type and the number of deposits in the control tracts (Singer, 1994a). A plot of 
the number of podiform chromite deposits versus the area permissive using 
data in table 4.1 is shown in fi gure 4.3, along with the linear regression line 
and 80 percent prediction intervals to the regression estimates. Estimates of 
the number of podiform chromite deposits can be made from fi gure 4.3 by 
using the logarithm of ultramafi c rock area on the x-axis projected to the 
lower prediction interval for the 90 percent estimate of number of deposits, 
to the regression line for the 50 percent estimate, and to the upper prediction 
interval for the 10 percent estimate. A regression of the area of ultramafi c 
rock on the number of known podiform chromite deposits was presented in 
Singer (1994a). This form of estimation is compared to deposit-density esti-
mates derived from the same tracts discussed above with the data in table 4.1. 
The linear regression line and prediction intervals to the regression estimates 
can be made by using the logarithm of ultramafi c rock area on the x-axis 
projected to the lower prediction interval for the 90 percent estimate of num-
ber of deposits, to the regression line for the 50 percent estimate, and to the 
upper prediction interval for the 10 percent estimate.

Although the correlation coeffi cient is not particularly high (r = 0.50), 
it and the associated regression slope (fi gure 4.3) are signifi cantly different 
from zero at the 1 percent level. The slope of the regression line (b = 0.47) is 
also signifi cantly different from one. A slope of 1.0 would mean that a dou-
bling of permissive area would result in a doubling of the estimated number 
of deposits; that is, the ratio of number of deposits to the size of the permis-
sive area would be independent of the size of the permissive area. Thus, if 
the slope equals 1.0, then the ratio of number of deposits to the size of the 
permissive area would provide an unbiased estimate for areas of any size. 
The fact that the slope is signifi cantly less than 1 means the ratio of depos-
its to size of the permissive area is a biased estimator in many cases. This 
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conclusion is reinforced by the observation that the correlation between 
deposits per area of ultramafi c rock and areas of permissive ultramafi c rock 
(r = −0.55) is signifi cant at the 1 percent level; that is, the deposit density 
decreases as the size of the permissive area increases.

Porphyry copper deposit density is also inversely related to permissive 
area exposed. A similar negative relationship was found for the density of vol-
canogenic massive sulfi de deposits (Mosier, Singer, and Berger, 2007). We are 
not certain of all of the reasons for this relationship to occur, but the relation-
ship must be due in part to the rules used to defi ne a sample that requires each 
tract to contain at least one known deposit. For large regions this works fi ne, 
but when the permissive tracts are quite small, packages of rock that appear to 
be permissive but do not contain a known deposit are excluded from the sam-
ple. Thus, a large permissive region that would be included as a permissive 
control tract would, when subdivided by more detailed and specifi c informa-
tion, have some tracts that contain known deposits and some that would not 
be included in the sample because they do not contain a known deposit.

When assessing undiscovered mineral deposits by type or when developing 
control tracts, the base map selected is typically affected by there being only 

Figure 4.3 Podiform chromite permissive area versus number of deposits. 
Includes 80 percent prediction limits for deposits. Data are listed in table 4.1.
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a limited number of geologic map scales of the region available. Additionally, 
publication scale of the assessment and time limits on the assessors affect map 
scales used. An effect of these limits is the common situation where the map 
scale selected is not ideal because the delineated permissive tract contains the 
geologic units that could host the deposits, but it may also include unreported 
units that could not contain the deposits (Singer and Menzie, 2008). It may 
also contain unreported geologic units that cover the geologic units of inter-
est or unreported parts that are too deep to be permissive. In these situations, 
areas of delineated tracts are larger than necessary due to being infl ated by 
nonpermissive areas that are not accounted for, or by covered areas that are 
poorly explored. More detailed information possibly allows identifi cation of 
local settings that are not permissive for the deposit type. Therefore, groups 
of smaller tracts would tend to have higher deposit densities than the original 
larger tracts because of the exclusion of areas that appear permissive only at 
general scales but none of known deposits are excluded. These map scale 
effects certainly contribute to the negative relationships between deposit den-
sities and permissive areas, as demonstrated by Singer and Menzie (2008). 
Another possible effect might be depth of emplacement of the deposit type. 
The argument is that deeper forming deposit types, such as orogenic gold, 
would be more abundant at greater depths due to the time required for expo-
sure (Wilkinson and Kesler, 2007). However, this is really an issue of more per-
missive area existing at depth, not necessarily a different density of deposits.

Adjustments for Tract Size

Although we may not understand all of the reasons for the negative relation-
ships between deposit densities and sizes of permissive tracts, we can use 
these relationships for predictive purposes. For porphyry copper deposits, 
the linear regression line and confi dence limits to the regression estimates 
constructed with all thirty-three belts in table 4.1 are provided in fi gure 4.4. 
Most of the porphyry copper control areas in table 4.1 are from Singer, 
Berger, Menzie, and Berger (2005) and Singer, Berger, and Moring (2008), 
with updates for the South American control areas from Cunningham et al. 
(2007, 2008). The South American control tracts contain the total tract areas, 
the number of known deposits, and estimates of the number of undiscovered 
deposits. Estimates of the number of porphyry copper deposits can be made 
from fi gure 4.4 by using the permissive area on the x-axis projected to the 
lower prediction limit for the 90 percent estimate of number of deposits, to 
the regression line for the 50 percent estimate, and to the upper prediction 
limit for the 10 percent estimate. To be more precise, the two equations used 
for the prediction lines in fi gure 4.4 can be used:

 R50 = –1.0252 + 0.42788 log10 (area), (4.1)

 L90, U10 = R50 ± t sy|x √(1 + (1/n) + (log10 (area) – 4.622)2/(n – 1)sx
2), (4.2)
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where area is the permissive area in square kilometers, the mean area is 
4.622 km2, t = t10,31df = 1.309, sy|x = 0.2444, n = 33, sx

2 = 0.2912, and the R50,
L90, and U10 estimates need to be used as exponents to the power of 10. 
For example, if the permissive area is 25,000 km2, then the 50th percentile 
estimate would be seven deposits (i.e., 100.8567 or 10(−1.0252+0.42788 log10(25,000)).
The 90th percentile estimate would be three deposits (i.e., 10(0.8567 − 1.309•0.2444 

√ (1+(1/33) + (4.398 − 4.622)^2 /32•0.2912)), and the 10th percentile estimate would be fi fteen 
deposits—these are approximately the same estimates as those determined 
from fi gure 4.4.

The expected number of deposits (1) can be estimated (Aitchison and 
Brown, 1963) as 10 to the power of

 log10 E(N) = log10(N50) + (((log10(N10) – log10(N50))/t)
2)/2. (4.3)

The expected number of deposits estimated by the regression equation 4.3 
can be used as an estimate of the expected number in some alternative guides 

Figure 4.4 Porphyry Cu permissive area versus number of deposits. Includes 
80-percent prediction limits for deposits. Data are listed in table 4.1.
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(chapter 8) to the number of undiscovered deposits. Equation 4.3 can be used 
for porphyry copper deposits or any other deposit type for which the regres-
sion equations have been prepared, such as volcanogenic massive sulfi de 
deposits. Estimates of the number of deposits made with density models are 
for the total number of deposits in a tract. In order to estimate the number 
of undiscovered deposits, the known number of deposits in a tract needs to 
be subtracted from the expected number (equation 4.3) to make a revised 
expected number of undiscovered deposits estimate. Calculation of probabi-
listic estimates of the number of undiscovered deposits after accounting for 
known deposits requires using the revised expected number and the variance 
based on the regression to estimate a new median and revised 90th and 10th 
percentile estimates. The variance from the regression can be estimated as

 varN = ((log10(N10) – log10(N50))/t)
2. (4.4)

The revised estimate of the median number of deposits adjusted for the 
number of known deposits is estimated as 10 to the power of

 log10(N50) = log10(10E(N) – known number) – varN/2. (4.5)

The value log10(N50) can be used in place of R50 in equation 4.2 to make prob-
abilistic estimates of the number of undiscovered deposits after accounting 
for the number of known deposits in a tract. The same procedures work 
for other deposit types, such as volcanogenic massive sulfi de deposits dis-
cussed next.

Density of Volcanogenic Massive Sulfi de Deposits

Control areas for volcanogenic massive sulfi de deposits range in size from 
24 km2 to 82,000 km2 and contain at least one exposed volcanogenic mas-
sive sulfi de deposit (Mosier, Singer, and Berger, 2007). Typically, control 
area sizes represent the extent of exposed rocks permissive for volcanogenic 
massive sulfi de deposits. As noted above, control areas with larger sizes may 
contain some nonpermissive rock units because of the way the units are gen-
eralized on the map, resulting in lower deposit-density values. Control areas 
with smaller sizes are more likely to contain only rock units permissive for 
volcanogenic massive sulfi de deposits, thus resulting in higher deposit den-
sities. Mineral deposit densities are inversely related to the size of the per-
missive control areas (r = −0.8, n = 38). This relationship suggests that the 
size of the permissive area can be used directly to estimate the number of 
deposits.

The linear regression line and prediction limits to estimate the number 
of deposits for individual permissive areas are based on thirty-eight control 
areas. For more precise estimates than can be shown in a plot, the following 
two equations are provided:
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 R50 = –0.5846 + 0.3846 log10(area), (4.6)

 L90, U10 = R50 ± t sy|x √ (1+(1/n) + (log10(area) – 2.637)2/(n – 1)sx
2), (4.7)

where area is the area that is permissive in square kilometers, the mean area 
is 2.637 km2, t (Student’s t at the 10 percent level with 36 degrees of freedom 
[t10,36df]) is 1.306, sy|x (standard deviation of number of deposits given area) 
is 0.3379, n = 38, sx

2 (variance of area) is 0.5258, and the R50, L90, and U10

estimates need to be used as exponents to the power of 10. For example, if 
the permissive area is 22,900 km2, then the 50th percentile estimate would 
be twelve deposits (i.e., 101.092 or 10(−0.5846 + 0.3846 log10(22,900) )). The 90th percen-
tile estimate would be four deposits (i.e., 10(1.092 − 1.306•0.3379 √ (1+(1/38) + (4.360 − 2.637)

^2 /37•0.5258)), and the 10th percentile estimate would be thirty-fi ve deposits. 
These estimates represent the total number of volcanogenic massive sulfi de 
deposits in a permissive tract of 22,900 km2, and any discovered deposits 
would need to be subtracted to estimate the number of undiscovered depos-
its. These estimates of 4, 12, and 35 or more deposits can be compared with 
those made by experts for a largely covered tract of the same area of 30, 
65, and 85, or more kuroko massive sulfi de deposits at the 90th, 50th, and 
10th percentiles (tract LS04 in Ludington and Cox, 1996), demonstrating the 
value of this density method of estimating the number of deposits.

Densities of All Deposit Types

Analyses discussed above of podiform chromite, porphyry copper, and vol-
canogenic massive deposits strongly suggest that, at least within a deposit 
type, size of permissive tract should be used to help make unbiased esti-
mates of number of deposits (fi gure 4.5). Examination of table 4.1 hints at 
another possible tool to help in making estimates—median deposit size 
seems to be related to deposit density. Examples in table 4.1 are ordered in 
decreasing density. Those familiar with some of these deposit types might 
notice that there is a general tendency of the deposits to be progressively 
larger down table 4.1. A plot of deposit size as measured by deposit tonnage 
versus deposit density (fi gure 4.6) demonstrates the strong relation between 
these variables across deposit types. The regression is signifi cant at the 1 
percent level, and deposit size explains 75 percent of the variability in den-
sity (Singer, 2008).

Rather than developing the relationship between deposit size and den-
sity, it seems that more progress might be made by considering both deposit 
size and permissive area to predict deposit density.

To be more precise, two equations estimated from the updated data in 
table 4.1 can be used (Singer and Kouda, 2008):

 R50 = 4.2096 – 0.4987 log10area – 0.2252 log10size, (4.8)
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 L90, U10 = R50 ± t sy|s,a √(1 + 1/n + (log10area – 3.173)2

(log10size – –0.3292)2/(n – 1)sssa), (4.9)

where area is the permissive area in square kilometers, the mean area is 
3.1727 km2, the mean deposit size in log tonnage is −0.32923, t = t10,106df = 
1.2896, sy|s,a = 0.34841, n = 109, ss = 2.6151, sa = 1.1879, and the R50, L90, and 
U10 estimates need to be used as exponents to the power of 10. For example, 
if the deposit type being assessed has a median size of 10 million tons and 
the permissive area is 900 km2, then the 50th percentile estimate would be 
three deposits, that is, (900/100,000)•10(4.2096 −0.4987 log10(900) − 0.2252log10(10) ). The 
factor 900/100,000 is used to adjust for the regression equations estimating 
density/100,000 km2, so we must account for the size of the tract (900 km2)
to estimate the number of deposits. The 90th percentile estimate would be 

Figure 4.5 Density of deposits/100,000 km2 versus the permissive area (in 
km2): podiform chromite deposits, volcanogenic (Cyprus + kuroko) massive 
sulfi de deposits, and porphyry copper deposits with their respective 
regression lines. Densities of deposits/km2 (without the 100,000 km2 scaling 
used in the plot) are 1.64 area—0.53, 0.26 area—0.62, and 0.14 area—0.61
for chromite, sulfi de, and copper, respectively. Data are listed in table 4.1. 
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one deposit, that is, (900/100,000)•10(2.5112 − 1.2896•0.3484 √ (1+(1/109) + (2.954 − 3.1727)^2 

• (1.0 − −0.3292)^2 /108•2.615• 1.188) ), and the 10th percentile estimate would be eight 
deposits. Regression equation 4.8 using both permissive area and deposit 
size explains 91 percent of the variability in deposit density. Although the 
equation was developed with only 109 control areas, the high percentage of 
the variation in the number of deposits explained by area and deposit size 
suggests that the equation and its associated prediction interval equations 
are quite robust. A plot of deposit density compared to deposit size and size 
of permissive tract (fi gure 4.7) demonstrates how these variables are related 
across deposit types.

A comparison of estimates from equations 4.8 and 4.9 to those of experts 
is available from a study on orogenic gold under cover in the Stawell zone of 
Victoria, Australia, reported by Lisitsin et al. (2009). The combined estimates 
by fi ve experts of the number of undiscovered gold deposits under cover 
was 10, 33, and 60 deposits at the 90, 50, and 10 percent certainty levels, 
whereas the regression estimates are 11, 33, and 94. Except for less uncer-
tainty expressed by the experts as shown by their 10 percent estimate being 
lower than the regression estimate, the estimates are not different. The experts 
did not know the regression estimates at the time they made their estimates.

Figure 4.6 Median deposit size in millions of tons for all deposit 
types versus deposit density in deposits/100,000 km2. Coeffi cient of 
determination (R2) = 0.77. Data are listed in table 4.1.
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Because all available data were used to develop this density model, no 
truly independent verifi cation with known well-explored deposits is pos-
sible at this time, but there are a few indirect tools to better understand the 
strengths and weaknesses of the model. The expected number estimate for 
the regression model can be used as the mean of a Poisson distribution in 
order to compare the widths of the 90th and 10th percentile estimates of 
the two procedures. In all cases examined, the Poisson distribution has a 
smaller range of estimates than does the regression model. Many subjec-
tive estimates made in various assessments seem to fall between the Pois-
son distribution and regression estimates. The differences between the 
regression estimates and the Poisson estimates are most noticeable at the 
number-of-deposit estimates associated with the 10th percentile. Without 
independent verifi cation, it is not possible to determine which, if any, of 
these methods of making estimates to rely upon. However, if the goal is 
to mimic expert estimation, a close approximation can be made in many 

Figure 4.7 Variation of deposit density with change in size of permissive 
tract and median deposit size.
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cases by using the universal regression model (equations 4.8 and 4.9) and 
substituting the upper, 10th percentile estimate by twice the median, 50th 
percentile estimate.

The same two variables also allow prediction of the total amount of min-
eralized rock of the deposit type in a permissive tract (Singer, 2008):

 Log(total tonnage) = –1.038 + 0.6784 log(area) + 0.6193 log(size),      (4.10)

where total tonnage is an estimate of the total tonnage of all mineralized 
rock in the delineated tract of the deposit size of size. About 95 percent of 
the variability in total tonnage in a tract is explained by this equation (R2

= 0.95). Mineral deposits in this study range over more than ten orders of 
magnitude in size and ten different types of deposits providing a basis for 
generalization.

Concluding Remarks

The deposit-density models presented here are powerful tools in estimation 
of the number of undiscovered mineral deposits. The universal regression 
model presented here provides unbiased and reasonable estimates in most 
situations. These models were typically constructed with mineral deposits 
defi ned by certain consistently applied rules, such as distance to adjacent 
deposits; there are grade-and-tonnage models that follow these rules, and 
the permissive tracts or belts also were defi ned by consistent rules. As a 
consequence, these density models should not be expected to be applicable 
to other situations such as belts of rock that are not permissive. For most 
deposit types, the relationships developed here represent robust methods to 
estimate the numbers of deposits and the total resources in delineated tracts. 
For some deposit types, these predictors might not work properly because of 
the diffi cultly of delineating the boundaries of permissive rocks. For exam-
ple, permissive tracts for Mississippi Valley Zn-Pb deposits might need to 
be delineated over broad areas where the only geologic information is the 
presence of carbonate rocks. A related situation might occur where there are 
widespread covering materials and the permissive geology under the cover 
represents a small part of the total area but cannot be separately delineated. 
In such cases, the regression equations presented here would tend to over-
estimate the resources. Careful integration of geophysics and extrapolated 
geology would reduce the number of such problems, however.

The strength of the relationships (R2 = 0.91 for density and 0.95 for 
mineralized rock) argues for the broad use of these predictors of number 
of deposits and total resources. Of course, where specifi c deposit-density 
models exist, they are likely to lead to better estimates in that they would 
have lower variances and should be used rather than the general models 
presented here. Deposit densities can now be used to provide a guideline for 
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expert judgment or used directly for estimates of the numbers of most kinds 
of mineral deposits. Even where deposit densities are applicable, they are 
probably best used as guidelines to fi nal estimates. Density estimates should 
be the fi nal estimates on the number of undiscovered deposits only where 
no information is available to refi ne the estimates.
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Perspective

Estimated undiscovered mineral resources are based on grade-and-tonnage 
models made up of deposits of varying economic viability (chapter 6). Many 
deposits used in grade-and-tonnage models have not been developed because 
they cannot yet be mined economically. Although technological advances 
act over time to lower mining costs and environmental impacts, thereby 
allowing formerly uneconomic deposits to become operating mines, some 
deposits in these models might “never” be mined for one or more of a vari-
ety of reasons, including relatively low tonnages and grades, deep burial, or 
occurrence in or near environmentally sensitive areas.

Few nonacademic problems related to mineral resources are resolved by 
knowing the amount of metal that exists in some piece of land. Mineral policy 
issues and problems typically revolve around the effects of minerals that might 
be economically extracted. This is true if the problem concerns exploring or 
developing minerals, values of alternative uses of the land, or environmental 
consequences of minerals development. In resource assessments of undiscov-
ered mineral deposits and in the early stages of exploration, including plan-
ning, a need for prefeasibility cost models exists. In exploration, these models 
separate economic from uneconomic deposits to help focus on targets that can 
benefi t the exploration enterprise. In resource assessment, these cost models 
can be used to eliminate deposits that would probably be uneconomic even if 
discovered and allow estimation of the social value of the resources. Data used 

 5
Economic Analysis
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in grade-and-tonnage models do not necessarily represent economic deposits. 
Many of the deposits used in the models were found not to be economic and 
were not mined, whereas other deposits were mined long ago under economic 
conditions that no longer exist.

In this chapter we briefl y explore some alternative measures of value used 
in assessments and then develop the basis for simplifi ed economic fi lters to 
separate the clearly economic from the clearly uneconomic deposits. The 
equations used are not diffi cult, but they require care in their application 
because many of the apparently small cost factors can have large effects on 
the fi nal economic discrimination.

Alternative Measures of Value

In addition to measuring or estimating resources in terms of the amount of 
metal, other measures have been advocated. One easy way to measure value 
is gross-in-place value, which can be calculated by multiplying the total 
amount of metal by some average price of the metal. The advantage of gross-
in-place value is that it provides a common measure across different kinds 
of resources, such as minerals or timber. The disadvantage of gross-in-place 
value is that it neglects the costs of producing the materials, which could 
exceed the value of some or all of the undiscovered deposits, and it ignores 
the indirect benefi ts that fl ow from related economic activity. Even where 
some form of simplifi ed cost model is accepted, the cost models may be used 
with regional input/output models to produce estimates of employment or 
taxes generated by possible mining of the yet-to-be-discovered resources 
and indirect economic benefi ts (Gunther, 1992). A variant of gross-in-place 
value applies the gross value only to the deposits that are predicted to be 
economic by a simplifi ed cost fi lter (Harris and Rieber, 1993). In addition 
to measures such as net present value (used in this chapter), some analysts 
use measures such as internal rate of return and net smelter return (Wellmer, 
Dalheimer, and Wagner, 2008). The selection of an appropriate measure of 
value depends on the intended use of the assessment.

ASSESSMENT EXAMPLE

An assessment intended for general land use planning was of interest 
to some land managers near Medford, Oregon, in the 1980s because 
of the possible development of several nickel deposits. Existence of a 
nickel deposit near Riddle, Oregon, that was nearing the end of min-
ing added to the interest in the other laterite Ni deposits in the area. 
At a time when the U.S. Geological Survey was not allowed to per-
form economic analyses, its assessment of mineral resources in the

(continued )
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Simplifi ed Cost Models

Here we examine simplifi ed cost models for mining and benefi ciation (mill-
ing). These models, which derived from those developed by the staff of the 
U.S. Bureau of Mines to assist in mineral-resource assessments (Camm, 1991, 
1994; Smith, 1992), do not require an engineering background or detailed 
designs of full cost models to use. Thus, they can be used for estimating project 
economics in an assessment or the early stages of a mineral exploration pro-
gram. The models can be applied to a number of types of deposits, and can be 
adjusted for changes in the location of the deposit or changes in prices. The 
models are capable of generating cost estimates at a level of uncertainty that is 
common to prefeasibility studies commonly performed by mining companies 
before extensive drilling of a prospect. Camm (1991) presented models of the 
capital and operating costs required to build and operate a mine and mill and 
the infrastructure that supports them. These models do not estimate the costs 
of preproduction exploration, permitting, environmental studies, taxes, cor-
porate overhead, site reclamation, concentrate transportation, or smelter and 
refi nery charges. Due to economics of scale, we can expect that the higher the 
rate of production per unit of time, the lower the cost per unit of volume. Thus, 
capacity to produce is a central focus of economic cost estimation. All cost esti-
mates in the U.S. Bureau of Mines method are derived from the estimated daily 
mining capacity or its derived estimated mine life. Because of this, unbiased 
estimates of daily mining capacities are critical. Mining capacity and depth are 
used to estimate capital investments that vary by mining method and to esti-
mate milling capital investments that vary by type of mill. Equations for oper-
ating costs of mines and mills are also a function of capacity and depend on the 
mining and mill method. These various estimates, along with assumed metal 
prices and rate of return, provide a basis for estimating an economic fi lter.

ASSESSMENT EXAMPLE (continued )

Medford Quadrangle (Singer et al., 1983) needed to provide useful 
information about the possibility of development of these Ni deposits. 
By plotting the average nickel grades and tonnage of ore of both the 
local deposits of interest and worldwide laterite Ni deposits, it was 
possible to show that the local deposits are much smaller and lower in 
Ni grades compared to known lateritic deposits elsewhere that were 
not being mined. The local deposits are signifi cantly lower in grade 
and tonnage than other deposits that were being mined. While not 
an economic assessment, this analysis clearly demonstrates the rela-
tive disadvantages that the Oregon/California deposits would have to 
overcome if they were to be mined.



Economic Analysis  69

Capacity and Mine Life

In Camm’s (1991) report, daily mining capacities are calculated using Tay-
lor’s rule (Taylor, 1978, 1986) from the total amount of ore in the deposit as

 Cm = (Td
0.75)/71.725, (5.1)

where Cm is mine capacity in metric tons per day, T is resource tonnage in 
metric tons, and 350 operating days per year (7 days/week) are assumed. 
Camm and Taylor used short tons, but we have chosen to keep our equations 
metric. For 260 operating days per year (5 days/week), the equation is

 Cm = (Td
0.75)/53.282. (5.2)

The general form of the cost models is

 Y = A*(C)B, (5.3)

where Y is the cost estimate, C is the daily capacity of the mine or mill, and 
A and B are constants. The capacity of the mine or mill varies depending 
on the tonnage of material being mined or milled and the rate at which the 
facility is operated. The daily capacity of the facility is the key variable in 
these models. Tonnage (Td) is modifi ed to account for recovery and dilution 
that vary from mining method to mining method and, to a lesser extent, 
mine to mine. The adjustment factors we use (table 5.1) are the same as 
Camm’s (1991). The tonnage of material to be mined (Tm) is calculated from 
the deposit tonnage. This tonnage is adjusted for dilution and recovery by 
the following equation:

 Tm = (Td
0)*(rfm)*(1+dfm), (5.4)

Table 5.1. Mine dilution and recovery factors (Camm, 1991).

Mining Method
Dilution Factor 
(dfm), %

Recovery Factor 
(rfm), %

Adjustment Factor 
rfm(1 + dfm )

Open pit 5 90 0.945
Block caving 15 95 1.0925
Cut and fi ll 5 85 0.8925
Room and pillar 5 85a 0.8925
Shrinkage stope 10 90 0.99
Sublevel longhole 15 85 0.9775
Vertical crater retreat 10 90 0.99

a Assumes pillar extraction.
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where Td is the tonnage of ore, rfm is the mine recovery factor, and dfm is 
the mine dilution factor. Table 5.1 lists these values for seven types of 
mines.

Mine life can be estimated from ore tonnage and daily capacity that was 
estimated in equations 5.1 and 5.2 as

 L = Td/(Cm•350), (5.5)

assuming 350 operating days per year, or

 L = Td/(Cm•260), (5.6)

assuming 260 operating days per year.
In addition, if the deposit is to be mined by open-pit methods, the tonnage 

of material to be mined must be adjusted to account for overburden. The 
stripping ratio, SR, of the deposit is the tonnage of waste material divided 
by the tonnage of ore and can be calculated as

 SR = 0.667*(1.597*D*Td
−0.333 + 1)3 − 1.667,  (5.7)

where Td is the tonnage of ore in metric tons, and D is the depth to the 
bottom of the deposit measured in meters. The capacity, Cm, in tons per 
day, of an open-pit mine with strip ratio SR and tonnage of ore Td may be 
calculated as

 Cm + (SR + 1)*Tm/(L*dpy). (5.8)

If the mine works 350 days per year (dpy) or 260 dpy, then equation 5.6 may 
be combined with equation 5.1 and rewritten, respectively, as follows:

 Cm = ([SR + 1]*Tm
0.75)/71.725 (5.9)

 Cm = ([SR + 1]*Tm
0.75)/53.282 (5.10)

The mining capacity estimates form the basis for estimating capital expen-
ditures and operating expenses discussed below. However, milling capital 
and operating expenses in some cases are based on capacities that are differ-
ent than mining capacities because the waste products from mining are not 
typically processed in the milling operations. For milling, the capacities are 
estimated as

 Cml = (Tm
0.75)/71.725, (5.11)

 Cml = (Tm
0.75)/53.282. (5.12)
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Capital Expenditures

The capital and operating cost equations presented in this section 
(tables 5.2, 5.3) and the following section can be used if the deposits being 
evaluated are located in the western United States, on which these mod-
els were based. Outside of the western United States, cost-factor differences 
for individual cost categories can be used to modify base case equations 
(Long and Singer, 2001). For example, capital costs and operating costs in 
Alaska are estimated to be 1.80 and 1.40 times higher, respectively, than the 
base case. Analysis by Penney et al. (2004) demonstrated the importance of 
including infrastructure costs in considering the economics in remote loca-
tions (see chapter 10). To apply these models to Alaska, one must multiply 
the base case cost equations for appropriate categories by the associated cost 
differential to obtain a new cost model.

Table 5.2. Mine cost equations (Camm, 1991, except where modifi ed).

Mining Method Capital Cost Operating Cost

Open pit 2,920 Cm
0.917 5.58 Cm

−0.148

Block caving 70,000 Cm
0.790 52.2 Cm

−0.217

Cut and fi ll 1,310,000 Cm
0.461 299 Cm

−0.294

Room and pillar 104,000 Cm
0.644 38.5 Cm

−0.171

Shrinkage stope 190,000 Cm
0.620 81.8 Cm

−0.100

Sublevel longhole 121,000 Cm
0.552 45.4 Cm

−0.181

Vertical crater retreat 48,600 Cm
0.747 55.1 Cm

−0.206

Cm = capacity in metric tons/day

Table 5.3. Mill cost equations (Camm, 1991, except where modifi ed).

Milling Method Capital Cost Operating cost

Autoclave-CIL-EW 104,000 Cml
0.778 84.5 Cml

−0.196

CIL-EW 53,800 Cml
0.745 90.3 Cml

−0.281

CIP-EW 392,000 Cml
0.540 112.0 Cml

−0.303

CCD-MC 438,000 Cml
0.584 137 Cml

−0.300

Float-roast-leach 508,000 Cml
0.552 109 Cml

−0.246

Flotation 1 product 98,800 Cml
0.667 55.1 Cml

−0.206

Flotation 2 product 88,300 Cml
0.702 159 Cml

−0.336

Flotation 3 product 89,600 Cml
0.708 163 Cml

−0.344

Gravity 143,000 Cml
0.529 72.1 Cml

−0.364

Heap leach 312,000 Cml
0.512 34 Cml

−0.223

Solvent extraction-EW 15,500 Cml
0.596 3.26 Cml

−0.145

Cml = capacity in metric tons/day For abbreviations, see text.
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Capital expenditures used here represent the total reported over the life of 
a mine. Frequently, mining operations are observed to spread out their capital 
expenditures by means of mine or mill expansions over a period of years. The 
simplifi ed nature of the economic analysis used assumes that capital expendi-
tures are made at the beginning of the fi rst year and that mining/mill capacities 
remain constant until the deposit is depleted. Although it is not diffi cult to 
adjust by means of discounting any capital expenditures made after the initial 
expenditure so that all investments can be counted the same, it does involve 
some complexity to account for present values of variable rates of production 
that result from these investments.

The mill or benefi ciating cost models have the same general form as those 
for mine cost, and like the mine cost models, the daily capacity of the facility is 
the key variable in these equations. The simplifi ed cost models estimate capital 
and operating costs for eleven types of mills—carbon-in-leach-electrowinning 
(CIL-EW), autoclave-CIL-EW, carbon-in-pulp (CIP), countercurrent decantation-
Merrill Crowe (CCD-MC), fl oat-roast-leach, one-product fl oatation, two-product 
fl oatation, three-product fl oatation, gravity, heap leach, and solvent extraction-
electrowinning. For each type of mill, Camm (1991) presented equations that 
estimate the capital and operating costs associated with up to ten categories of 
expenses, including labor equipment, steel, fuel, lube, tires, construction mate-
rial, electricity, reagents, and sales tax. He also presented summary equations 
that estimate capital and operating costs directly. Table 5.3 lists his summary 
equations (modifi ed to metric units) that estimate the capital and operating 
costs of each milling method.

Each cost estimate of underground mining methods assumes that the 
mine has an adit entry. Mines having a shaft entry need to have the addi-
tional capital cost of the shaft. The capital cost equation for a shaft after 
Camm (1991) is

 Shaft cost = 322•D0.851 • Cm
0.489, (5.13)

where Cm is capacity of mine in metric tons per day, and D is depth of the 
shaft to the bottom of ore in meters.

Operating Costs

Operating cost of mines and mills (tables 5.2, 5.3) depend on the mining and 
milling method and are a function of capacity. Mines having a shaft entry need 
to have the additional operating cost of the shaft added. The operating cost 
equation for a shaft from Camm (1991) is:

 Shaft operating cost = 0.838•D0.705 • Cm
−0.338, (5.14)

where Cm is capacity of mine in metric tons per day, and D is depth of the 
shaft to the bottom of ore in meters.
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These simplifi ed capital and operating cost models can be used as eco-
nomic fi lters during the early stages of mineral exploration and in mineral-
resource assessment.

Economic Filter

Given an appropriate mining method and depth of a deposit, the depos-
it’s tonnage is all that is needed to estimate various mining costs using 
the equations above. The deposit’s grade(s) can, when combined with 
assumed recoveries and metal prices, be used to estimate the deposit’s 
ore value per ton. Value of production per year can be calculated by mul-
tiplying the difference between value per ton and total cost per ton by 
capacity per day times number of operating day per year (350 days used 
here).

The life of the mine estimate is then used with the value of production 
per year and an acceptable rate of return (10 percent used here) in a standard 
net present-value equation in a spreadsheet to estimate a deposit’s present 
value of production. The present value of production minus the estimated 
capital expenditure for the deposit is the present value of the deposit. If the 
deposit’s net present value is positive, the fi lter is predicting that the mine is 
profi table. Negative present values predict economic failure at the assumed 
metal prices and rate of return.

For a particular tonnage, the dividing (or breakeven) line between eco-
nomic and uneconomic can be estimated by adding the estimated operat-
ing cost to the capital expenditure divided by capacity times operating 
days per year times the present value of a dollar for the life of the mine. 
That is,

 BE = TOC + MOC/(350•Cml•PV), (5.15)

where BE is the breakeven value ($/t), TOC is total operating cost ($/t), MOC 
is the total capital expenditure ($), 350 is days per year, Cml is the mill capac-
ity (t/day), and PV is the present value of one dollar at the selected rate of 
return for the life of the mine in years (Singer, Menzie, and Long, 1998). 
The breakeven value could be viewed as the grade (expressed in $/ton) at 
which the specifi c deposit and mining method are just economic. To account 
for variability and uncertainty in most of the inputs to these estimates, we 
have taken 0.7 and 1.3 of this breakeven value to estimate boundaries for 
uneconomic, marginal, and economic deposits.

As an example, the seventy-fi ve deposits used in the polymetallic vein 
grade-and-tonnage model (Bliss and Cox, 1986) are assumed to be located 500 m 
below the surface and are mined by cut-and-fi ll method. The prices  metals are 
copper, $3.40/lb; gold, $630/oz; silver, $11/oz; zinc, $1.50/lb; and lead, $0.50/
lb. Using the equations above, 260 days per year mining, and a 10 percent return 
on capital, most of the deposits have negative net present values and are not 
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Figure 5.1 Histogram of the net present value of polymetallic vein deposits 
used in published grade-and-tonnage model (Bliss and Cox, 1986) and 
costs from Singer, Menzie, and Long, (2000).
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Figure 5.2 Breakeven line separating economic from uneconomic 
polymetallic vein deposits (same deposits and conditions as in fi gure 5.1).

economic to mine (fi gure 5.1). Despite the average net present value of these 
deposits being $24 million under the stated conditions, 67 percent of the depos-
its have negative values. Some example grade, tonnage, and economic costs and 
returns (tables 5.4, 5.5) show that the costs of mining smaller deposits exceed 
their values. This is further emphasized in fi gure 5.2, where even values greater 
than $1,000/ton do not guarantee economic success.
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Summary

Although not all costs are included and the estimates are rough, these mod-
els serve to discriminate clearly uneconomic from clearly economic depos-
its at an early assessment stage. The forms of these equations appear to be 
robust, but the coeffi cients to the equations are based on costs estimated 
more than twenty years ago and need to be estimated using modern costs. In 
addition, the coeffi cients to the fundamental equations relating mine capac-
ity to tons of ore (equations 5.1, 5.2) recently have been found to require 

Table 5.4. Example of grades, tonnages, life, and capacity of 10 polymetallic vein 
deposits.

Tons 
(metric) Cu (%) Zinc (%) Lead (%) Au (g/t) Ag (g/t)

Life
(years)

Capacity
(t/day)

1,100 0.5 4 12 0 230 1.3 3.3
7,990 0 2.98 1.85 0.016 65.8 2.1 15.0
212 0.12 0 6.1 7.2 277 0.9 1.0
18,400 0.026 5.89 25.2 0.032 3660 2.6 27.0
12,000 0 0 5 0 2060 2.3 20.0
410 11 0 1.4 21 6630 1.0 1.6
4,150 0 16.9 41 0.06 2628 1.8 9.0
5,490 0.29 4.02 5 2.9 29.2 1.9 11.0
2,600 0.29 6.4 17 12 324 1.6 6.3
195,000 0.23 18 16 9.2 290 4.7 160.0

Table 5.5. Estimated economic costs and returns for the 10 deposits in table 5.4.

Shaft
Capital
(thou-
sand $)

Shaft
Operat-
ing Cost 
($/t)

Mine
Capital
(thou-
sand $)

Mine
Operat-
ing Cost 
($/t)

Mill
Capital
(thou-
sand $)

Mill
Operat-
ing ($/t)

Present
Value 
(million $)

Break
even
($/t)

Value 
Ore
($/t)

114 45 2,270 210 204 106 −2.6 2,980 333
236 27 4,500 140 579 65 −6.0 1,000 124
62 22 1,280 300 86 160 −1.5 7,910 259
320 22 6,010 110 898 52 11.6 653 1,400
274 24 5,180 120 717 58 −2.2 809 596
80 58 1,610 260 121 137 −0.9 5,320 2,580
186 32 3,590 160 410 76 0.7 1,420 1,600
206 30 3,960 150 475 71 −4.7 1,220 243
157 36 3,050 170 320 86 −2.7 1,830 659
761 12 13,600 67 3,110 29 107.0 225 936
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new coeffi cients. Long’s (2009) analysis shows that real mining capacities 
are higher than suggested by the Taylor equation and are signifi cantly differ-
ent for underground versus open-pit or underground block caving mining. 
These results in turn require reexamination of the relations between capaci-
ties and capital and operating costs. We hope this important research will be 
conducted in a timely manner.
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Perspective

Mineral deposit models are important in quantitative resource assessments 
for two reasons: (1) grades and tonnages of most deposit types are signifi -
cantly different (Singer, Cox, and Drew, 1975; Singer and Kouda, 2003), 
and (2) deposit types occur in different geologic settings that can be identi-
fi ed from geologic maps. If assessments were only conducted to estimate 
amounts of undiscovered metals, we would need contained metal models, 
but determining whether the metals might be economic to recover is an 
important quality of most assessments, and grades and tonnages are neces-
sary to estimate economic viability of mineral deposits (see chapter 5). In 
this chapter, we focus on the fi rst part of three-part assessments: grade-and-
tonnage models. Too few thoroughly explored mineral deposits are avail-
able in most areas being assessed for reliable identifi cation of the important 
geoscience variables or for robust estimation of undiscovered deposits, so 
we need mineral-deposit models that are generalized. Well-designed and 
well-constructed grade-and-tonnage models allow mineral economists to 
determine the possible economic viability of the resources in the region and 
provide the foundation for planning. Thus, mineral deposit models play 
the central role in transforming geoscience information to a form useful to 
policy-makers. Grade-and-tonnage models are fundamental in the devel-
opment of other kinds of models such as deposit-density and economic 
fi lters.

 6
Grade-and-Tonnage Models
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Frequency distributions of tonnages and average grades of well-explored 
deposits of each type are employed as models for grades and tonnages of undis-
covered deposits of the same type in geologically similar settings. Grade-and-
tonnage models (Cox and Singer, 1986; Mosier and Page, 1988; Bliss, 1992a, 
1992b; Cox et al., 2003; Singer, Berger, and Moring, 2008) combined with esti-
mates of number of undiscovered deposits are the fundamental means of trans-
lating geologists’ resource assessments into a language that decision-makers can 
use. For example, creation of a grade-and-tonnage model for rhyolite-hosted 
Sn deposits in 1986 demonstrated for the fi rst time that 90 percent of such 
deposits contain less than 4,200 tons of ore. This made it clear that an ongoing 
research project by the U.S. Geological Survey on this deposit type could have 
no effect on domestic supplies of tin, and the project was canceled.

Grade-and-tonnage models specifi cally prepared for assessments show the 
frequencies of different sizes and grades of each mineral deposit type based on 
data collected on thousands of well-explored deposits from around the world. 
For each deposit type, these models help defi ne a deposit, as opposed to a 
mineral occurrence or a weak manifestation of an ore-forming process. Data uti-
lized to construct these models include average grades of each metal or mineral 
commodity of possible economic interest and the associated tonnage based on 
the total production, reserves, and resources at the lowest possible cutoff grade 
(Singer et al., 1980; Orris and Bliss, 1985; Bliss and Jones, 1988; Singer, Mosier, 
and Menzie, 1993; Cox et al., 2003; Singer, Berger, and Moring, 2008; Mosier, 
Berger, and Singer, 2009). These data represent an estimate of the endowment 
of each of many known deposits so that the fi nal models can accurately repre-
sent the endowment of all undiscovered deposits (Singer, 1994b).

Representation of Grade-and-Tonnage Models

Grade-and-tonnage models are presented in a graphical format to make it easy 
to compare deposit types and to display the data. The plots show grade or ton-
nage on the horizontal axis, and the vertical axis always is the cumulative pro-
portion of deposits (fi gures 6.1, 6.2, 6.3). All tonnages are reported in millions 
of metric tons. Grades not available (always for by-products) are represented 
as below the lowest value plotted and are therefore not shown. Plots of the 
same commodity or tonnages are presented on the same scale; a logarithmic 
scale is used for tonnage and most grades. Each dot represents an individual 
deposit (or, rarely, a district for some models), cumulated in ascending grade or 
tonnage. Where a large number of deposits is plotted (e.g., in Cox and Singer, 
1986), individual numbers represent a count of the number of deposits.

Grade-and-tonnage data are usually displayed either as univariate or as 
bivariate plots. In univariate plots, the data are sorted from smallest to largest 
and are plotted against the proportion of the deposits that are as large as or 
larger than each deposit (fi gures 6.1, 6.2, 6.3). The median of the data (50th 
percentile) is either the observed median or is estimated from logged data, 
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Figure 6.1 Cumulated frequency of ore tonnages of porphyry Cu deposits. 
Each dot represents an individual deposit. Intercepts for the observed 
90th, 50th, and 10th percentiles and the lognormal distribution are plotted. 
Reprinted from Singer, Berger, and Moring (2008). 

the 90th and 10th quantiles are either observed quantiles or are calculated 
using the standard deviation of the logged data, and a curve is fi tted to these 
data. Observed quantiles are desirable when a lognormal distribution is not 
appropriate or when there are missing grades because fewer assumptions are 
required about why some grades are missing. The horizontal scale in each of 
these fi gures is logarithmic. A univariate plot is made for tonnage and each 
grade for which a signifi cant proportion of the deposits report grades. The 
scales and intervals for tonnage and each commodity, such as copper, are the 
same for all deposit types to allow direct comparisons of types.

To compare amounts and qualities of resources among deposit types in 
one fi gure, deposit models may be plotted in grade-and-tonnage space (fi g-
ure 6.4). Because data in grade-and-tonnage models vary logarithmically, 
plotting all of the deposits in several models may show so much scatter that 
comparison of central tendencies of the models may be lost. Therefore, it is 
common to plot an ellipse centered on the means of grade and tonnage plus 
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and minus one standard deviation and the long axis of the ellipse oriented 
relative to the correlation of grade and tonnage. Calculations of the mean 
and standard deviation are with logged data, and the plotted axes use a log 
interval. Centers of the ellipses represent medians because means of lognor-
mal distributions are estimates of medians when the antilog is taken. Slopes 
of ellipses are different than zero only when the correlation between grade 
and tonnage is signifi cantly different than zero. Each ellipse contains about 
45 percent of the deposits of the type. To show effects of large deposits, an 
elephant is located at the median tonnage and grade of the fi ve largest depos-
its (in terms of contained metal). Diagonal lines in fi gure 6.4 represent equal 
gold content. Points on a line all contain the same amount of gold, but as one 
moves to the right on the line, the grade at each point declines. Although 
they plot in different places in fi gure 6.4, many hot-spring Au-Ag deposits 
are similar to Comstock epithermal Au-Ag deposits in terms of their geo-
logic characteristics. Hot-spring Au-Ag deposits are thought to have formed 
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Figure 6.2 Cumulated frequency of copper grade of porphyry Cu deposits. 
Each dot represents an individual deposit. Intercepts for the observed 
90th, 50th, and 10th percentiles and the lognormal distribution are plotted. 
Reprinted from Singer, Berger, and Moring (2008). 
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in the upper parts of geothermal systems, whereas Comstock deposits are 
thought to form slightly deeper in these systems. The Witwatersrand dis-
tricts of South Africa that have dominated world gold production for almost 
100 years plot in separate grade-and-tonnage space than other gold-bearing 
deposits. Finally, notice the point marked “Bre-X,” which represents the 
Busang deposit in Kalimantan, Indonesia. This is the grade and tonnage 
reported for one of the most famous mining scams in recent years. The fact 
that no deposit types fall anywhere near it demonstrates that grade-and-
 tonnage plots sometimes can be used to identify anomalous deposits.

When Is a New Model Needed?

The purpose of grade-and-tonnage models is to provide unbiased representa-
tions of the grades and tonnages of undiscovered mineral deposits in a tract or 
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belt. A new model is required in any situation where an existing grade-and-
tonnage model can be shown to be a biased model of the undiscovered depos-
its. When only one or two explored examples of a deposit type are known in a 
local area, it is common to believe that the deposits represent a special subtype 
or new type because the deposits are almost never exactly the same as the “typi-
cal” deposit in every respect. Local deposit grades and tonnages are never the 
same as model median or mean grades or tonnages, and typically some unusual 
mineral or some trace element is present that is not mentioned in the model.

To avoid the situation where every deposit is considered to be unique and 
therefore prediction is not possible, the well-explored—that is, completely 
drilled—known deposits in the local area should always be tested to see if they 
are statistically different from the general model. The known deposits falling 
on the published grade-and-tonnage model is not an adequate test because 
all of the known deposits might have tonnages that are on the low tonnage 
part of the model, suggesting a mismatch between known deposits and the 
model. Tonnages and grades of the known deposits in an area being assessed 
should always be properly tested against the model before the assessment. 
With respect to the issue of providing representations of the grades and ton-
nages of undiscovered mineral deposits in a tract or belt, the most appropriate 
test is a t-test of the average tonnage and grade(s) of the local deposits com-
pared to the model. Of course, all of the data should be in log form. The t-test 
gives the probability that the difference between the two means happened by 
chance alone. Typically, the tests have been if the probability of t is less than 
0.01, then the difference is deemed signifi cant, that is, not caused by chance, 
and we reject the hypothesis that the known deposits in the tract are a random 
sample from the model. The probability level of the test, 0.01, was selected in 
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an attempt to balance the costs associated with making an error of rejecting a 
model when it is appropriate and the error of accepting a model when it is not 
appropriate (type I and type II errors). For each tract that contains at least one 
deposit that is deemed well enough explored to be included in the grade-and-
tonnage model, the tonnages and grades of all of the well-explored deposits 
in that tract should be compared to the remaining well-explored deposits in 
the world that are part of the general grade-and-tonnage model. In situations 
where no well-explored deposits are known in a tract, we assume that the 
general model containing all deposits is the best representative of the undis-
covered deposits in the tract, because we have no basis of selecting a more 
specifi c model for the tract. The cost of rejecting the general model, if in fact 
it is the correct model, is the introduction of a biased model. Rejection of 
the general model suggests that one is confi dent that the undiscovered local 
deposits contain less variability than does the general model. This is a strong 
statement that needs to be documented.

If the well-explored deposits are signifi cantly different in size or grade, 
then the local deposits should be examined to see if they belong to a geologi-
cally homogeneous subset of the original grade-and-tonnage model. Only 
if all of these conditions are met should a new model be constructed along 
with a consistent descriptive model (Menzie and Singer, 1993). Where a dif-
ferent model is needed, the guiding principle should be to provide an unbi-
ased model of the grades and tonnages of the undiscovered deposits in the 
tract. Given two models that provide unbiased estimates, pick the one with 
the larger number of deposits because it will be more robust.

AN EXAMPLE

Test of appropriateness of the global porphyry copper grade-and-ton-
nage model containing 370 (380 minus the 10 in Yulong) deposits to 
the Yulong belt of China’s ten well-explored deposits in 2007:

t = (8.005–8.234)/0.2.21 = –1.67

with 378 degrees of freedom, mean tonnage of Yulong deposits = 
8.005, mean tonnage of the world = 8.234, and pooled standard error 
= 0.2021. The probability of t = −1.67 with 378 degrees of freedom is 
0.095. We conclude that differences as large as seen here between ton-
nages of porphyry copper deposits in China and worldwide porphyry 
copper deposits happen by chance alone about 10 percent of the time. 
Therefore, we accept the global model as appropriate for undiscov-
ered porphyry copper deposits of Yulong, China. Similar results were 
observed for Cu grades (p = 0.33).



AN EXAMPLE

In an assessment of undiscovered mineral resources of Nevada (Cox 
et al., 1996; Singer, 1996), it was assumed that the undiscovered de-
posits could be represented by certain grade-and-tonnage models, but 
it was critical to test the appropriateness of the models to Nevada. A 
reasonable test was to compare the grades and tonnages of the depos-
its from Nevada to the global grade-and-tonnage models.

For example, there are seven known porphyry copper deposits (Ye-
rington, SFS, MacArthur, Bear, Ely, Ann Mason, and Copper Canyon) 
that are defi ned in the same way as deposits in the porphyry cop-
per descriptive model (Cox, 1986a) and the grade-and-tonnage model 
(Singer, Mosier, and Cox, 1986). In fi gure 6.5, tonnages of these de-
posits are plotted on the general porphyry copper tonnages model. 
There is no clear clustering of the Nevada deposits compared to the 
global model. To make sure that the general model is appropriate for 
Nevada, a t-test of the tonnages of the deposits in Nevada compared 
to the tonnages of the general model should be performed with logged 
tonnage data:

t = (8.175–8.355)/0.2572 = –0.698,

with 207 degrees of freedom, the mean tonnage for Nevada deposits 
= 8.355, the mean tonnage for the world (excluding Nevada deposits) 
= 8.175, and the pooled standard error = 0.2572. The probability of 
t = −0.698 with 207 degrees of freedom is 0.486. Similar plots and 
tests were performed on copper grade with the same general result. 
Thus, we can conclude that differences as large as seen here between 
tonnages of porphyry copper deposits in Nevada and worldwide por-
phyry copper deposits can happen by chance alone about 49 percent 
of the time. Therefore, the global model was accepted as appropriate 
for undiscovered porphyry copper deposits of Nevada.

AN EXAMPLE

Two Jurassic kuroko-type massive sulfi de deposits were known in a 
part of southern Oregon where a mineral resource assessment was 
being prepared (Singer et al., 1983). The two previously mined and 
thoroughly explored deposits (fi gure 6.6) were found with a t-test to 
be signifi cantly lower in tonnage (p < 0.001) than the general kuroko 
grade-and-tonnage model (Singer, 1993b). Clearly, a new grade-and-
tonnage model was needed here.
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Nevada and porphyry copper deposit model (1996).
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AN EXAMPLE

A porphyry copper deposit has a reported inferred plus indicated re-
source of 1,551 million tons with a copper grade of 1.03 percent and 
a gold grade of 0.35 g/t gold at a 0.6 percent copper equivalent cutoff 
and 3,110 million tons at 0.68 percent Cu and 0.24 g/t gold at a 0.3 per-
cent copper equivalent cutoff grade. In this situation, the tonnage and 
average grades associated with the 0.3 cutoff grade would be used.

Construction of Grade-and-Tonnage Models

Construction of grade-and-tonnage models involves multiple steps, the fi rst 
of which is the identifi cation of a group of well-explored deposits that are 
believed by others or the modeler to belong to the mineral deposit type being 
modeled. A descriptive model is commonly prepared as well, and the attri-
butes of each deposit in the group are compared with it to ensure that all are 
of the same type. These data include average grades of each metal or mineral 
commodity of possible economic interest and the associated tonnage based 
on the total production, reserves, and resources at the lowest possible cutoff 
grade. All further references to tonnage follow this defi nition. These data 
represent an estimate of the endowment of each known deposit so that the 
fi nal model can represent the endowment of all undiscovered deposits.

Grade-and-tonnage Data

When planning a mine, it is common to calculate tonnage and grade at differ-
ent cutoff grades. This allows engineers to plan the mine under several sce-
narios of cost of materials and prices for commodities. The word “reserves” 
applies to material that is well characterized and can be produced at a profi t. 
Resources include reserves and additional material that is too low grade to 
currently be profi tably produced. As prices and costs change during min-
ing, reserves of deposit may be updated. Often, costs of mining decrease as 
mining takes place, and lower grade material that was not initially thought 
to be economic to produce will be able to be profi tably mined. Grade-and-
tonnage models used in three-part assessments represent the grade and total 
tonnage of a deposit before any material is removed. This means that current 
resources at the lowest cutoff grade are added to past production. Grade-
and-tonnage models use resource fi gures, that is, grades and tonnages cal-
culated at the lowest cutoff grade, to represent the mineralized material in 
a deposit in order to allow for possibly different technologies and mining 
costs to be assumed.
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AN EXAMPLE

By the end of 1996, mining at Nanisivik in Canada had produced 
104,400 short tons of lead, 1,339,000 short tons of zinc, and 15,130,000 
troy ounces of silver from 14,750,000 short tons of ore. In addition, 
the reserves at that time were 22,300 tons of lead, 361,000 tons of zinc, 
and 4,810,000 ounces of silver in 4,460,000 tons of ore. The mill re-
covered 87 percent of the lead, 95 percent of the zinc, and 79 percent 
of the silver.

The premining lead grade can be calculated as

(104, 400 st/0.87 + 22,300 st)/(14,750,000 st + 4,460,000 st) 
= 142,300/19,210,000 = 0.74% lead.

The premining zinc grade is

(1,339,200 st/0.95 + 361,000 st)/19,210,000 st = 9.2% zinc.

The silver grade is

(15,130,000 oz/0.79 + 4,810,000 oz)/19,210,000 st 
= 1.25 oz silver per short ton of ore.

In metric units, the silver grade is

1.25 oz/st•34.285 gst/oz t = 42.8g/t Ag 
and the deposit size is 19,210,000 st•0.907 = 17,400,000 t.

Plotting the Data

The next step is to plot the data. For tonnage and most grades, a transfor-
mation to logarithms is necessary to remove skewness. Histograms, normal 
probability plots, cumulative frequency plots, and empirical quantile func-
tion plots are all useful, as is the examination of skewness and kurtosis 
statistics. Bivariate (scatter) plots of each pair of variables should also be 
constructed. An artifi cial example of tonnages and zinc grades of twenty 
deposits serve to demonstrate how to plot grade-and-tonnage data. Deposits 
in table 6.1 have tonnages reported in millions of metric tons, zinc grades 
in percentages, and the log10 of tonnages and grades are shown. A plot of 
average zinc grade versus tonnage (logged data) shows no problem clusters 
or groupings of the deposits, and the correlation coeffi cient (r = 0.13) is not 
signifi cantly different than zero (fi gure 6.7). 

In table 6.2, the deposits are sorted from lowest tonnage to highest, 
and a new column contains the cumulative proportion of the twenty 
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deposits (20/20, 19/20, 18/20, etc.). A plot of the cumulative proportion 
of deposits against log tonnage represents the basic tonnage model (fi gure 
6.8). To be consistent with other tonnage plots, major ticks on the x-axis 
are 0.6 units (in logarithms) and one of the ticks is at 2.0 (100 million 
tons). Two scales are used for the x-axis in this example—the upper scale 
represents the logged data as plotted and is useful for placing the 90, 
50, and 10 percentiles, whereas the lower scale represents the antilog 
of the upper scale, which can replace the upper scale after plotting the 
quantiles. The 50th percentile of tonnage can be estimated by the mean 
of the logged data listed in table 6.1 (i.e., 0.774). The 10th quantile is esti-
mated as the mean plus 1.282 times the standard deviation in table 6.1 
(i.e., 1.672). Similarly, the 90th quantile is the mean minus 1.282 times 
the standard deviation (i.e., −0.124). A vertical line with an arrow at the 
end is placed at 0.774 on the x-axis and drawn up to the 0.5 proportion 
of deposit on the y-axis. A horizontal line from the vertical line is drawn 
to the right side of fi gure 6.8. Below the arrow the antilog of the mean is 
placed. The same procedure is used to the 90th and 10th quantiles. At 
this point, the logged values on the x-axis are no longer needed and can 
be removed. In the upper right corner of the plot, the number of deposits 

Table 6.1. Data on tonnages and Zn grades for example plots.

Deposit Tons (millions) Zn (%) Log Tons Log Zn

A 0.16 1.7 −0.796 0.230
B 4 2 0.602 0.301
C 4.1 5.4 0.613 0.732
D 22 5.1 1.342 0.708
E 33.4 3.22 1.524 0.508
F 9 9.5 0.954 0.978
G 5 6.4 0.699 0.806
H 0.74 10.2 −0.131 1.009
I 0.459 4.27 −0.338 0.630
J 10 6 1.000 0.778
K 10.9 8.3 1.037 0.919
L 80 9.2 1.903 0.964
M 2.68 4.9 0.428 0.690
N 3.52 5.86 0.547 0.768
O 1.39 9.6 0.143 0.982
P 29.8 6.3 1.474 0.799
Q 80 2.1 1.903 0.322
R 4.8 5.49 0.681 0.740
S 11.67 8.5 1.067 0.929
T 6.8 8.7 0.833 0.940

Mean 0.774 0.737
St. Dev. 0.701 0.235
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is listed. Smoothed curves can be drawn through the three fi xed quantile 
locations if desired.

The reader may have noticed that tonnages associated with the propor-
tion of deposits in table 6.2 could have been used as estimates in fi gure 6.8. It 
is also possible to sort from largest to lowest tonnage and estimate the cumu-
lative proportion of deposits—this produces estimates different than those 
in table 6.2. Algorithms in many computer programs provide compromise 
estimates. It is certainly possible to use a different algorithm to make these 
estimates. Because we have tested the frequency distribution of tonnage here 
(and in all models) and found that the distribution is not signifi cantly differ-
ent than a lognormal distribution, we have used the lognormal to estimate 
the quantiles. The purpose of these plots is to provide an easy way to com-
pare deposit types and also to identify possible errors in the models.

In an example of some of the steps in constructing a new grade-and-
tonnage model, two Jurassic kuroko-type massive sulfi de deposits in 
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southern Oregon where a mineral resource assessment was being pre-
pared were found to have tonnages signifi cantly different than the general 
kuroko massive sulfi de model (Singer et al., 1983). Examination of other 
Mesozoic kuroko-type massive sulfi de deposits hosted in similar rocks 
in the western United States and Canada suggested that the tonnages and 
grades of the two Oregon deposits were similar to this subgroup of kuroko 
deposits (Singer et al., 1983). Although the frequency distribution of ton-
nage for this new group was determined to be signifi cantly skewed in 
1983, the model was not reexamined until 1988 during an analysis of 
Nevada’s resources, which illustrates the iterative nature of constructing 
and revising deposit models. When Britannia and one other Cretaceous 
deposit were removed, the frequency distribution of tonnage was not sig-
nifi cantly skewed. This new grade-and-tonnage model is associated with 
the descriptive model for kuroko massive sulfi de deposits (Singer, 1986); 
however, only kuroko deposits of Triassic or Jurassic age in North Amer-
ica were used to construct this subset. Because many of the deposits lie in 
the western foothills of the Sierra Nevada in California, the name “Sierran 
kuroko” is given to the group (Singer, 1992). These deposits are signifi -
cantly lower in tonnage than the worldwide kuroko group, but they are 
not different in copper grade. Although gold grades of the Sierran kuroko 

Table 6.2. Data sorted on tonnages with Zn grades for example plots.

Deposit
Tons 
(millions) Zn (%) Log Tons Log Zn Proportion

A 0.16 1.7 −0.796 0.230 1
I 0.459 4.27 −0.338 0.630 0.95
H 0.74 10.2 −0.131 1.009 0.9
O 1.39 9.6 0.143 0.982 0.85
M 2.68 4.9 0.428 0.690 0.8
N 3.52 5.86 0.547 0.768 0.75
B 4 2 0.602 0.301 0.7
C 4.1 5.4 0.613 0.732 0.65
R 4.8 5.49 0.681 0.740 0.6
G 5 6.4 0.699 0.806 0.55
T 6.8 8.7 0.833 0.940 0.5
F 9 9.5 0.954 0.978 0.45
J 10 6 1.000 0.778 0.4
K 10.9 8.3 1.037 0.919 0.35
S 11.67 8.5 1.067 0.929 0.3
D 22 5.1 1.342 0.708 0.25
P 29.8 6.3 1.474 0.799 0.2
E 33.4 3.22 1.524 0.508 0.15
L 80 9.2 1.903 0.964 0.1
Q 80 2.1 1.903 0.322 0.05
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deposits are not signifi cantly different than the general kuroko deposits, 
some of the deposits in the Sierran group were primarily mined for gold in 
their early production stages, and much of this early production was prob-
ably unreported. The reason for the lower tonnage and possible higher 
gold grades is not known. Speculative reasons include (1) a short-lived 
volcanic arc and therefore not enough time to form large deposits, (2) 
poor preservation of deposits, (3) shallow emplacement of deposits, and 
(4) postdeposition tectonic tilting and erosion. Construction of this model 
demonstrates (1) situations where regional models are justifi ed, (2) the 
usefulness of plotting data, and (3) the iterative nature of building grade-
and-tonnage models.
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The Lognormal Distribution

Use of probability paper or Q-Q plots provides the experienced analyst a 
quick method of judging whether the population may feasibly be lognormal, 
but they should not be regarded as a rigorous statistical test. For sixty-seven 
deposit models, Singer (1993a) rigorously tested tonnages for lognormality 
using the Dallal and Wilkinson (1986) modifi ed Lilliefors test and the joint 
moment-ratio ( b1 and b2) tests shown by Shapiro, Wilk, and Chen (1968) 
to be quite sensitive to nonnormality. Both sets of tests are recommended by 
Stuart, and Ord (1991) and the joint moment-ratio ( b1 and b2) tests are 
recommended by Aitchison and Brown (1963). Singer (1993a) shows that 
fi ve of the sixty-seven tonnage distributions are signifi cantly different (either 
skewed or peaked) than lognormal at the 1 percent level. In addition to the 
above results as an empirical basis for believing that the lognormal distribu-
tion is an appropriate model for most observed mineral deposit tonnages, a 
long and distinguished history of scientifi c publications provides a theoreti-
cal and empirical basis (Aitchison and Brown, 1963; Allais, 1957; Brinck, 
1967; Matheron, 1959; Rasumovsky, 1940).

Typically, a lognormal distribution fi ts observed distributions of homoge-
neous populations of variables representing weights, lengths, volumes, and 
grades of trace quantities. It tends to not fi t distributions of elements that 
have grades greater than about 10 percent, such as Fe, Mn, and Al, that can 
sometimes be made approximately normally distributed by the square root 
transformation, but they commonly have mineralogical limits that reduce 
the usefulness of transformations. Barite ore grades are an example of distri-
butions skewed to the left and not easily transformed to normality.

Sources of Errors in Building Models

Mineral deposit modeling errors can be caused by mixed geologic environ-
ments, poorly known geology, data recording errors, mixed deposit and 
district data, mixed mining methods, or incomplete production/resource 
estimates. Constructing grade-and-tonnage and descriptive models is an 
iterative process wherein the modeler attempts to identify and remove these 
errors. The plots and statistics help discover if the data contain multiple 
populations or outliers.

Based on our experience with a large number of models, deviations from 
lognormality, outliers, or subgroups are all cause for reexamination of the 
data. Also suggestive of problems are large standard deviations for tonnage, 
such as those greater than 1.0, and signifi cant correlations between tonnage 
and grade. If any of these conditions exist, the data should be checked for 
correctness of data entry, data reporting errors, mixed sampling units, and, 
lastly, correctness of the geologic reasoning that led to the classifi cation of 
the individual deposits. If subgroups of data exist, one or more geologic 
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attributes of the subgroups probably will be different, which suggests the 
descriptive model may need reexamination. In most cases, the process of 
model building requires multiple iterations. Two related factors that make 
revisions of grade-and-tonnage models necessary are the use of grade-and-
tonnage estimates from incompletely explored deposits and the use of data 
on new or incompletely understood deposit types.

Although it is not possible to guarantee that a model will never be 
revised, a model will probably be stable if (1) tonnage and grades of com-
modities that constitute less than 10 percent of the ore are not signifi cantly 
different from a lognormal distribution, (2) at least twenty deposits are 
used, (3) standard deviations for tonnage are less than 1.0, and (4) there are 
no signifi cant correlations between tonnage and grade. Only two deposits 
are required to construct a grade-and-tonnage model, but the statistical 
estimators will not be very stable—with typically skewed distributions of 
raw grade-and-tonnage data, twenty or more deposits are recommended 
for stable estimates. Figure 6.9 gives an example of the value of plots and 
statistics: the distribution of tonnage is signifi cantly skewed, as demon-
strated by the seven orders of magnitude range of tonnages in the plot, 
has a standard deviation greater than 1.0 (1.7), and is correlated with gold 
grade (r = −0.7) in a proposed gold skarn model. In this example, reasons 

100101.1.01.001.00010.00001
1

10

100

1000
Gold skarn deposits 

Deposit size (millions metric tons)

G
ol

d 
gr

ad
e 

( 
g/

t )

Adit

Near unexplored mineralization

1 year prod.

2 years prod
(part of dist.)

2 mines in
same deposit

District

r = –0.7**
s.d. (tons) = 1.7
skewness (t) = –0.8*
log10 data

Figure 6.9 Average gold grades versus deposit tonnage for gold skarn 
deposits used in a grade-and-tonnage model. Data from Theodore et al. 
(1991). r = correlation coeffi cient; s.d. is standard deviation of log10 data. 
*Signifi cant at the 5 percent level; **signifi cant at the 1 percent level.



94  Quantitative Mineral Resource Assessments

for these problems can be identifi ed as incomplete records of production 
or resources, mixed deposit and district data, and mixed mining methods. 
The wide range of tonnages is linked to the range of data types from adits 
to districts.

For some deposit types, such as placer Au, a correlation between ton-
nage and gold grade is due in part to the effects of different, but largely 
inseparable, mining methods that have been used (Bliss, Orris, and Men-
zie, 1987). A small subset of placer data, for which mining method (not 
representative of all data) is known, shows that the correlation between 
tonnage and gold grade is signifi cant if all data are included, but it is not 
signifi cant if placers predominantly mined by dredging are removed from 
those mined by small-volume methods (fi gure 6.10). In such situations, the 
model will remain unmodifi ed until the effects of mining method can be 
related to grades and tonnages and the descriptive model can be revised to 
refl ect where different mining methods are applicable, such as low relief 
areas for dredges.

Sampling Unit Deposit Rules

An important consideration at the data gathering stage is the question of 
what the sampling unit should be (Singer, 1993b). We would like to have 
our sampled population (deposits) represent the target population (undis-
covered deposits) about which we will be making inferences. The geologic 
and mining literature contains many terms such as district, zone, ore body, 
lens, shaft, vein, bench, and mine that might be considered as possible 
sampling units. These terms are applied in different ways by different 
groups at different points in time, making them undesirable as our sam-
pling unit. For the most part, the data included in published grade-and-
tonnage models represent individual deposits, but in some instances such 
data are mixed with data representing districts. Grade-and-tonnage data 
are available to varying degrees for districts, deposits, mines, and shafts. In 
many cases, old production data are available for some deposits and recent 
resource estimates are available for other deposits. Probably the most com-
mon error in constructing grade-and-tonnage models is mixing old produc-
tion data from some deposits with resource data from other deposits (fi gure 
6.9). It is extremely important that all data used in the model represent 
the same sampling unit because mixing data from deposits and districts or 
old production and recent resource estimates usually produces bimodal or 
at least nonlognormal frequencies and may introduce correlations among 
the variables that are artifacts of the mixed sampling units (fi gure 6.9). 
Models constructed using data from mixed sampling units are of ques-
tionable value because the frequencies of tonnage and grade observed are 
directly related to the proportion of deposits from each sampling unit and 
are unlikely to be representative of the proportion in the undiscovered 
deposits being estimated.



Grade-and-Tonnage Models  95

For deposit models, we try to use a spatial rule to determine which ore 
bodies should be combined so that we can have a consistent sampling unit 
that can be applied to the undiscovered deposits. For example, ore bodies 
of both kuroko and Cyprus-type massive sulfi des were combined into single 
deposits based on a 500-m rule of adjacency (Mosier, Singer, and Salem, 
1983). Effects of map scale on the possible defi nitions of a deposit are dem-
onstrated by the kuroko deposits of the western part of the Hokuroku dis-
trict (Ohmoto and Takahashi, 1983) in Japan (fi gure 6.11). It is clear from 
fi gure 6.11 that kuroko deposits could be defi ned as very small bodies 
depending on the scale of the map. When the 500-m rule of adjacency for 
these deposits is applied, only three deposits are defi ned. All of the smaller 

Figure 6.10 Average gold grades versus tonnage for deposits in the placer 
Au grade-and-tonnage model. The correlation is not signifi cant (n.s.) 
for placers that have not been dredged but is signifi cant (**) for all data 
including placers dredged.
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parts were added together, as were their grades and tonnages, for the grade-
and-tonnage model. In another example, deposits in a recent report on 
porphyry copper deposits (Singer, Berger, and Moring, 2008) consistently 
follow two operational rules to defi ne a deposit in the grade-and-tonnage 
model: (1) all mineralized rock or alterations within 2 km were combined as 
one deposit, and (2) grade-and-tonnage data reported for deposits, includ-
ing average grade of each metal and associated tonnage, were based on total 
production, reserves, and resources at the lowest possible cutoff grade for 
thoroughly delineated deposits. These operational rules, including the 
spatial rules defi ning the sampling unit, are necessary for defi ning depos-
its in order to ensure that deposits in grade, tonnage, and deposit-density 
models consistently correspond to both discovered and estimated undis-
covered deposits. Some examples illustrate the effects of the application of 
this rule. In many compilations of mineral deposits, Chuqui Norte, Exotica, 
Radomiro Tomic (Pampa Norte), and Chuquicamata in Chile are reported as 
separate deposits, whereas in Singer, Berger, and Moring (2008) they were 
reported as one deposit because of the 2-km rule. El Pachon in Argentina 
and Los Pelambres in Chile are two parts of the same deposit, frequently 
reported as separate deposits. Information about such rules is available in 
the references. Although the specifi c distance for these rules is arbitrary, 
the distance should be such that information is available to enforce the rule 
consistently. Application of spatial rules can signifi cantly affect a grade-
and-tonnage model—not applying such rules leads to a poorly defi ned 
model and possibly introducing biased estimates of the grades and ton-
nages of the undiscovered deposits.

Additions to Reserves

Poorly reported grade-and-tonnage data used to construct grade-and-tonnage 
models are another possible problem. Mining enterprises must spend money 
and time to prove reserves and resources. As an economic activity, proving 
reserves and resources should be conducted to determine if the deposit is 
economic to mine at an acceptable level of risk and to plan the mining activ-
ity. It would be unwise to expend money now when there is no benefi t until 
the distant future. Also, in some localities, reserves are taxed, so there is 
an incentive to not drill and report reserves until necessary. Thus, for most 
kinds of mining and in most localities, reserves and resources are drilled 
and reported over a period of years as mining progresses. Because the ton-
nages used in grade-and-tonnage models represent the total of production, 
reserves, and the various categories of indicated and inferred resources, the 
conversion of some of the inferred or indicated into the reserve category 
should not signifi cantly change the tonnages in the model because mate-
rial is just moving from one to another category within the total tonnage. 
Uncertainties about the values of the various categories might be reduced 
by additional drilling. However, if there is a large increase in the price of a 
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commodity, it is possible that new resources might be identifi ed based on a 
lower cutoff grade than was ever considered before, thus causing an addition 
to resources. There are also deposit types, such as sediment-hosted gold, 
that are initially so poorly understood that parts of the deposit, such as deep 
sulfi de ore, are not drilled for many years (Singer, 1993b). Not recogniz-
ing these situations will lead to incomplete and therefore biased grade-and-
tonnage models.
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Figure 6.11 Kuroko massive sulfi de deposits of the western part of the 
Hokuroku district. After Ohmoto and Takahashi (1983).



98  Quantitative Mineral Resource Assessments

Signifi cant Digits

It is easy to forget that data employed in construction of grade-and-tonnage 
models have quite a bit of uncertainty associated with them. For example, 
reserves are defi ned as an estimate of unmined resources known with the 
least uncertainty. But even past production fi gures contain recording errors 
and unclear information about recovery. For these reasons, it seems prudent 
to report grade-and-tonnage model fi gures such as median tonnages to not 
more than two signifi cant digits. Depending on the precision of the estimate, 
rounding to the second signifi cant fi gure should be suffi cient. For example, 
10,743,724 tons at 7.23 per cent could be stated as 11 million tons at 7.2 
percent.

Size-Biased Sampling

In petroleum resource exploration, larger deposits tend to be found earlier 
than smaller deposits as a play develops (Drew, 1990). With exception of 
a few petroleum-bearing basins, the volume of individual petroleum pools 
is highly correlated with surface projection area of the pools. Thus, even if 
geology and geophysics provided no useful information, the larger pools 
should tend to be found earlier than the smaller pools—the success of these 
disciplines (Drew, 1990) only strengthens the relationship. The gradual addi-
tions to individual petroleum pool reserves over time adds to the appear-
ance of larger pools being discovered earlier, but even when this effect is 
adjusted for, larger pools tend to be discovered earlier. This observation in 
petroleum exploration is of some importance to the assessment of undis-
covered mineral deposits because if the same relationship exists in mineral 
exploration, some adjustment of grade-and-tonnage models might be nec-
essary. Finding larger deposits early would reduce the sizes and values of 
remaining deposits.

The order of discovery of sediment-hosted gold deposits in Nevada 
demonstrates how an additions-to-reserves situation can masquerade as 
size-biased sampling (fi gure 6.12). By 1987, deposit size was becoming sig-
nifi cantly smaller as exploration progressed. The distribution of tonnage 
was signifi cantly skewed toward larger tonnages due to the two very large 
deposits that were found relatively early in the exploration process (fi gure 
6.13). No geologic reason has been found to distinguish these large deposits 
from the other deposits, but these two deposits appear to be more thoroughly 
explored both laterally and vertically than most of the other deposits plot-
ted. The deep sulfi de mineralization fi rst recognized in these two deposits 
was initially considered as refractory and therefore uneconomic. This sug-
gests that many of the other deposits will eventually be found to be much 
larger than now estimated. The problem in constructing a grade-and-ton-
nage model of undiscovered sediment-hosted gold deposits is to somehow 
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represent the deposits after the additions to reserves while only having data 
from two completely drilled deposits. One solution is suggested in fi gure 
6.13, where the tonnage curve is moved over to cover the two largest deposits 
and yet retain the same slope curve. This solution is far from ideal because 
two deposits are controlling most of the model, but using the unadjusted 
model would clearly misrepresent the tonnages of undiscovered deposits 
even more poorly.

Most economic geologists believe that there should be an inverse rela-
tionship between mineral deposit discovery order and deposit size, but few 
studies document this relationship for mineral deposits (Stanley, 1992). One 
study on metal-bearing deposits showing a pattern of fi nding larger deposits 
early in the exploration process used mercury deposits in California (Chung, 
Singer, and Menzie, 1992). Epithermal gold deposits in Nevada and carbon-
atite deposits in Brazil show no relationship between size and discovery 
order—in both cases, however, large discoveries were made late in the explo-
ration process in areas of diffi cult access. In the case of carbonatite deposits 
in Brazil, perhaps the largest deposit, Seis Lagos, was discovered in recent 
years in the remote headwaters of the Amazon River. The larger Nevada 
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epithermal gold deposits discovered in 1890–1910, such as Tonopah and 
Goldfi eld, are located off the commonly used migration paths to  California
during the California gold rush, which is where most Nevada epithermal 
deposits discovered in 1840–1870 are located.

For some deposit types, such as porphyry copper, there is evidence that 
the larger deposits should be discovered earlier than smaller deposits (Singer 
and Mosier, 1981b). For both covered and exposed porphyry copper depos-
its, the area of the sulfi de zone (disseminated pyrite) is an important deter-
minant of discovery chances. Because there is a strong positive relationship 
between area of sulfi des and the copper contained in the deposits, larger 
deposits should be discovered earlier than smaller deposits (Singer and 
Mosier, 1981b). However, this is only true within fi xed exploration settings 
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such as an exposed permissive rock that has all parts equally accessible. 
Where the exploration setting changes, for example, looking under shallow 
cover with a particular technique, then the process of fi nding larger deposits 
starts over—Boldy (1977) demonstrates the effect of exploration method on 
deposit size discovery order in the search for massive sulfi de deposits.

A notable difference between the petroleum and mineral industries is 
the amount of information available on exploration that might be used to 
demonstrate size-biased sampling. Among the consequences of the paucity 
of data on exploration history on minerals exploration in some parts of the 
world is the diffi culty of making convincing cases for size-biased sampling 
and, perhaps more important, the diffi culty in constructing unbiased grade-
and-tonnage models that take this possible bias into account. Where data 
permit, one possible approach would be to construct grade-and-tonnage 
models that are conditioned (with linear regression) on discovery order.

Economic Effects on Grade-and-Tonnage Models

Deposits strongly suspected to be small or very low grade are seldom sampled 
well enough to be characterized in terms of grade and tonnage; therefore, 
one would expect that the sample of many deposit types would be truncated 
by economics. Effects of economic fi ltering should be most evident in plots 
of grade versus tonnage for which the combination of low grade and low ton-
nage should be missing. For almost any conceivable distribution of grades 
and tonnages before economic fi ltering, the removal of low-grade and low-
tonnage deposits due to economics would cause a negative correlation in the 
remaining data because the lower grade and lower tonnage deposits would 
not be reported (Harris, 1984). The uncommonness of negative correlations 
in more than sixty-fi ve published grade-and-tonnage models (Singer, 1993a) 
suggests economic fi ltering is not severe. At least 40 percent of the deposits 
used in these models are noneconomic today. For example, at least 50 per-
cent of the deposits used in the grade-and-tonnage models for porphyry cop-
per deposits have never been developed, even though most were explored 
more than fi fteen years ago (fi gure 6.14). The expected missing low-grade 
and low-tonnage deposits are present, and the low positive correlation is 
signifi cant at the 5 percent level—hardly evidence of economically fi ltered 
data. Thirty of the thirty-three porphyry Mo, low-F deposits in that grade-
and-tonnage model (90 percent) have never been developed. The majority of 
the 435 podiform chromite deposits from California and Oregon were mined 
only when there was a subsidy. Perusal of the fi gures in Cox and Singer 
(1986) and Bliss (1992a) reveals many examples of both small deposits and 
low-grade deposits. There is also the question of whether possibly missing 
small deposits would have any effect on an assessment.

Potential metal supply is dominated by the very few largest tonnage 
deposits, as shown by Singer and DeYoung (1980), who also pointed out that 



102  Quantitative Mineral Resource Assessments

inverse correlations between grade and tonnage are surprisingly rare. There-
fore, a low-grade deposit will not necessarily be large. As a consequence, 
most low-grade deposits are not likely to have huge resources, and omitting 
a few low-grade or small-tonnage deposits will not seriously degrade the 
predictions of potential supplies of most commodities.

From the preceding discussion, it is clear that most of the published 
grade-and-tonnage models include a signifi cant proportion of noneconomic 
deposits and that, in most cases, low-grade or low-tonnage deposits not 
included in the models would have negligible effect on potential supply 
estimates. In the view of most economic geologists, however, low-grade and 
particularly low-tonnage deposits are underrepresented in the models. The 
missing low-grade and small-tonnage deposits suggest that grade-and-ton-
nage models represent a biased sample of the large number of low-grade 
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or small-tonnage occurrences and prospects found during exploration. This 
difference between the population represented by the grade-and-tonnage 
model and the population that may exist in the earth must be considered 
when the number of undiscovered deposits is estimated (see chapter 8).

It might be argued that the grade-and-tonnage models should be extended 
to include not only deposits but also occurrences that are typically very 
small concentrations of a mineral. If the problem of possible biases due to 
incomplete exploration of these occurrences is neglected, then it is pos-
sible to construct such models; the tonnage model would of course have 
a much lower median. Because quantitative assessments require that the 
estimated number of undiscovered deposits be consistent with the grade-
and-tonnage model, the process of estimating the number of deposits might 
be more diffi cult because of the much larger number of “deposits” (includ-
ing occurrences) to be estimated. An economic analysis of the results of 
this assessment would show that the occurrences and probably some of the 
estimated undiscovered deposits would be uneconomic. Thus, the effect of 
including occurrences in the grade-and-tonnage model would be to increase 
work in the assessment but yet not affect the fi nal answer in any way.

Intradeposit Grade Variation

Data used to construct the grade-and-tonnage models have differing and fre-
quently unknown cutoff grades. In principle, improved price or productivity 
should lower the cutoff grade, which in turn should add new deposits that 
have average grades above the new cutoff and increase the tonnage of those 
deposits currently under production. Lasky’s (1950) analysis of the relation-
ship between cumulative tonnage and average grade of mineralized material 
demonstrated that different cutoff grades can signifi cantly change total ton-
nages and average grades. The close correspondence of Lasky’s equation to 
observed data over the range of grades for which data exist has been shown 
to be a consequence of the lognormal distributions of grades (Matheron, 
1959). However, as shown by DeYoung (1981), projection of Lasky’s method 
to lower grades is limited because the mathematical formulation predicts 
physically impossible situations below some limiting grade.

Taylor (1985) combined the theoretical aspects of the lognormal distri-
bution with actual examples and economic analysis to show how cutoff 
grades can, in practice, affect grades and tonnages. He concluded that the 
cutoff grade must be near the median of the deposit population in order to 
recover a reasonable proportion of the metal content in a tonnage fraction 
that is suffi ciently large to have spatial continuity and to be minable. He also 
observed that many cutoff grades of mines are located at or near the deposit 
population medians. Thus, although wide variability in tonnages and aver-
age grades may result from changes in cutoff grades, in practice operators are 
limited by economics and by the consequences of needing spatial continuity 
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and with the lognormal distribution to a rather narrow range of cutoff grades. 
Exceptions may exist, however, owing to differences in mining methods that 
signifi cantly affect operating costs such as the very low costs of dredge min-
ing and heap leaching for gold. Although further work is needed to defi ne 
the relation of cutoff grade to these models, the effect of cutoff grades on 
grade-and-tonnage models may not be as pronounced as suspected provided 
the mining method is the same.
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Perspective

The nonuniform global distributions of metals discussed in chapter 2 are 
also evident within most countries. Knowledge of the spatial distributions 
of mineral resources is invaluable in planning. In order to be able to consis-
tently assess the undiscovered mineral resources of regions, as the second 
part of three-part assessments, areas should be delineated where geology 
permits the existence of deposits of one or more specifi ed types. These areas, 
called permissive tracts, are based on geologic criteria derived from deposit 
models that are themselves based on studies of known deposits outside and 
perhaps within the study area. Thus, deposit models play the central role 
in identifying relevant information and in integrating the various kinds 
of information to delineate permissive tracts. Permissive boundaries are 
defi ned such that the probability of deposits of the type delineated occurring 
outside the boundary are negligible, that is, less than 1 in 100,000.

Areas are excluded from these tracts only on the basis of geology, knowl-
edge about unsuccessful exploration, or the presence of barren overburden 
exceeding some predetermined thickness. A geologic map is the primary local 
source of information for delineating tracts and identifying which are per-
missive for different deposit types. Map scales affect the quality and nature 
of information available for delineations and determine the extent to which 
geologic units are combined and how cover is represented. Probably the sec-
ond most important kind of information is an inventory of known deposits 

 7
Delineation of Permissive Tracts
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and prospects in and near the region being assessed. Tracts may or may 
not contain known deposits. Because of incomplete deposit descriptions, it 
often is diffi cult to identify deposit types for many prospects, occurrences, 
and some deposits, but those that can be identifi ed increase confi dence in 
domains delineated for the deposit type. Typed prospects may indicate the 
possibility of some deposit types where the type had not been expected or 
place limits on the kinds and sizes of deposits that could occur elsewhere. 
The map of deposits and occurrences classifi ed into deposit types then 
serves as a check on the accuracy of the delineation of tracts permissive for 
types rather than a determinant of the delineation. Geochemistry of stream 
sediments, rocks, or soils may suggest deposit types and aid delineation of 
domains for some deposit types. Geophysical tools contribute by identifying 
extensions of permissive rock units under cover and identifying rock units 
in poorly mapped areas; in some cases, geophysics can identify favorable 
rock units, such as hydrothermally altered rocks. Permissive boundaries are 
reduced only where it can be fi rmly demonstrated that a deposit type could 
not exist.

Early in an assessment it is important to review available deposit models 
for deposit types that may be present in the region. The focus should be on 
what types of deposits could be in the region rather than upon what types of 
deposits are known to occur.

Permissive versus Favorable

It is natural to want to order the tracts into those that are more favorable 
and tracts that are less favorable. Delineation of favorable areas frequently 
is applied in different ways by different people because of the diffi culty of 
defi ning commonly acceptable operational rules for the term “favorable.” 
Favorableness of different tracts can be captured by the estimated number 
of undiscovered deposits of various types and by the possible value of those 
types. In three-part assessments, it is desirable to subdivide a permissive 
tract into two or more new tracts that have different kinds of information, 
different numbers of undiscovered deposits, or possibly different amounts 
of uncertainty about the number of deposits. One delineation strategy is to 
move boundaries outward from known deposits (fi gure 7.1). This might be 
considered the delineation of favorable areas in that known deposits are 
sometimes viewed as more likely to be near undiscovered deposits. How-
ever, in three-part assessments we try to delineate permissive areas, which 
can be considered as close to a yes/no decision as is practicable. Although 
favorable areas (in the sense of a larger number of undiscovered deposits) are 
a subset of permissive areas, they represent very different concepts because 
they represent a range of degrees. Their boundaries will coincide only if 
exploration coverage is very thorough and completely effective—a fairly 
unusual situation. Designation of a tract as permissive does not imply any 
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special favorability for the occurrence of a deposit, nor does it address the 
likelihood that a deposit will be discovered there if it exists. Favorableness 
for a deposit type is represented by the number of undiscovered deposits 
that are perceived to exist in a tract.

Three strategies have been used to develop a list of candidate deposit types 
in the early stages of delineation of permissive tracts: (1) comparison with areas 
of broadly similar geology, (2) projection of deposit types from adjacent regions 
whose geology extends into the region, and (3) use of deposits associations to 
infer additional types that have yet to be discovered from the presence of asso-
ciated types. The boundaries of the regions must be consistently defi ned, and 
the tract boundaries need to have been defi ned consistently with the region 
boundaries. A region can be delineated as permissive for a deposit type with-
out having any known deposits of the type (fi gure 7.1). The various kinds of 
information available for an assessment play different roles in the delineation 
process.

Types of Information

Geology

A geologic map is the primary source of information for delineating tracts 
and identifying which tracts are permissive for different deposit types. 
Descriptive deposit models identify the tectonic setting and geologic envi-
ronment of each deposit type. Understanding and recognizing the geologic 
settings associated with different deposit types require an experienced geol-
ogist and a quality geologic map. The best available map that is consistent 
with the scale of the fi nal assessment map typically becomes the base map 
for the assessment. Identifi cation of the “best” map is a function of whether 
a map differentiates rock and age units that have a bearing on recognizing 
the geologic setting of a deposit type. Geologic cross sections are essential 
to projecting surface geologic relations into the subsurface. Also useful are 
maps that identify the extent of cover. Although the most recent geologic 
map typically is the most desirable, this is not always true.

ASSESSMENT EXAMPLE

Working together, the geologic surveys of Argentina, Chile, Colombia, 
Peru, and the United States used a three-part assessment to delineate 
permissive tracts and to make probabilistic estimates of the amounts 
of copper, molybdenum, silver, and gold in undiscovered porphyry 
copper deposits in the Andes (Cunningham et al., 2007, 2008). The 
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Frequently, it is necessary to augment published geologic maps because 
the delineation must include undiscovered resources under cover. In these 
situations, the geology under cover needs to be estimated. Here geophysical 
information must play a central role. In some situations, known mineral 
deposits can help extrapolate the geology under cover.

Known Deposits

Classifi cation of known deposits and occurrences into deposit types serves at 
least two purposes in quantitative assessments. A map of the typed deposits 
and occurrences demonstrates at least part of the spatial extent of processes 
that make specifi c deposit types (chapter 3). Locally, classifi ed occurrences 
can indicate the presence of geology that is not expressed on the geologic 
map—skarn mineralization in several places of Nevada was used this way 
to identify where igneous intrusions not shown on the geologic map existed 
and therefore other deposit types related to igneous intrusions could occur 
(Cox et al., 1996). The presence of one deposit type, such as polymetallic 
veins, can be used to infer possibilities of other, related deposit types, such 
as porphyry Cu or Mo (Drew and Menzie, 1993). As a second purpose of 
classifying deposits, some of the many occurrences might, upon through 
exploration, be found to be a mineral deposit in the sense of being from 
the population of deposits on the model’s grade-and-tonnage distributions. 
Mineral deposits are not the same as occurrences. Although the presence 
of typed occurrences indicates that the same processes that made a deposit 
took place, the vast majority of occurrences are, and will remain, just small 
manifestations.

Many large regions have thousands of records on occurrences that are 
diffi cult and time-consuming to classify because of the sparse information 
that has been gathered. Perhaps more important, even when properly classi-
fi ed, most mineral occurrence information is redundant. A small number of 

assessment represents one part of a project coordinated by the U.S. 
Geological Survey to assess the copper resources of the world in 
order to inform exploration managers, land-use planners, and policy-
makers. In addition to interest in the assessment that was expressed 
by mining companies from many countries and by government agen-
cies in the assessed countries, interest was expressed by international 
development agencies because the assessment demonstrated the cen-
tral role of quality geologic maps in predicting and guiding regional 
development.
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AN EXAMPLE

Estimating Undiscovered Deposits: Low-Sulfi de Au Deposits 
in Venezuela

The Guayana Shield contains an Archean granulite metamorphic 
terrane and a Lower Proterozoic granite-greenstone terrane (Schru-
ben et al., 1997). A number of deposits of Au in veins were known 
to occur on the shield. The fi rst step in assessing the potential of the 
region to contain additional undiscovered Au deposits was to de-
termine if the Venezuelan Au veins were similar to known deposit 
models. The Au occurred in veins and vein systems in greenschist-
facies metamorphic rocks of greenstone belts and eugeosynclinal 
sequences, which is similar to the environment described in the 
low-sulfi de Au-quartz vein (LGV) deposit model (Berger, 1986). 
To test the applicability of the LGV deposit model, the grades and 
tonnages of the twenty-seven known Venezuelan Au deposits were 
compared with the LGV grade-and-tonnage model and were found 
to be very similar. Thus the LGV deposit model seems to be a good 
representation of the Venezuelan Au deposits. The geoscience data 
available was largely at regional scale and was not suffi ciently de-
tailed to identify individual Au veins. The tract was composed of 
the greenstone belt and eugeosynclinal rock unit (fi gure 7.2). The 
tract has an area of 13,000 km2.

know mineral deposits, when carefully studied, often provides much more 
information than occurrence data. Many mineral resource assessments have 
an unstated assumption that being able to predict locations of occurrences 
has the same value to governments or companies as being able to predict 
the numbers and locations of mineral deposits. Just because many min-
eral deposits were, at one time, considered occurrences does not mean that 
knowing locations of all occurrences is a prerequisite to assessing or fi nding 
economic deposits. It is a common misconception among beginning asses-
sors that one must have all occurrence data and that it must be classifi ed 
into deposit types. It should also be remembered that some areas requiring 
assessments contain no known deposits or occurrences and yet may contain 
undiscovered deposits.



Figure 7.2 Geologic map of Guayana Shield in Venezuela with know gold deposits and occurrences. After 
Schruben et al. (1997).
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Figure 7.3 Delineation of tracts permissive for porphyry copper deposits in 
South America. From Cunningham et al. (2008).
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Geophysics

Geophysics can play several roles in delineation of permissive tracts. If the 
assessment is of a small area so that the resolution of the geophysical method 
would not miss a deposit or alteration zone that would always be recognized, 
then geophysics could be used directly for delineation. This is not the typi-
cal situation, however; more commonly, the scale of the survey is not able 
to detect deposit-size or deposit-related attributes. In a more common role, 

AN EXAMPLE

Tracts delineated as part of an assessment of porphyry copper deposits 
in South America of Phanerozoic Age to a depth of 1 km below the 
earth’s surface were confi ned to broad igneous arcs that formed at ap-
proximately the same time (Cunningham et al., 2008). Porphyry copper 
deposits form in island and continental volcanic-arc subduction-bound-
ary zones. The twenty-six delineated tracts (fi gure 7.3) are believed to 
contain most of South America’s undiscovered resources of copper. The 
sixty-nine known porphyry copper deposits in the Andes that meet the 
well-explored and 2-km spatial rules set forth (Singer, Berger, and Mor-
ing, 2005) to defi ne a porphyry copper deposit in contrast to a prospect 
or occurrence are distributed in eighteen of the tracts, whereas the other 
eight tracts contain no known deposits. Tracts were subdivided where 
reasons existed to suspect spatial differences in the density or prob-
ability of occurrence of undiscovered deposits within the tract. The as-
sessment team used the distribution of discovered deposits, appropri-
ate prospects, similar-aged intrusive and volcanic rocks of comparable 
magmatic arcs, similar-aged altered rocks, fault and tectonic control, 
available geophysics and geochemistry, regional and deposit-model ex-
perience, and projected geology under cover. After initial data collation, 
the assessment of the Andes began with preliminary tract delineation, 
analysis of known deposits and appropriate grade-and-tonnage mod-
els, and estimation of numbers of undiscovered deposits. Although the 
boundaries of most of the preliminary tracts changed as the assessment 
progressed, having these tracts available as a starting place, together 
with appropriately tested, selected, or constructed grade-and-tonnage 
models, and preliminary estimates of numbers of undiscovered depos-
its using deposit-density models, greatly increased the effi ciency of the 
international assessment team. Digital tract maps could not be con-
structed directly from the digital geologic maps. Geologic maps show 
rocks exposed at the earth’s surface, whereas permissive terranes ex-
tend beneath surfi cial deposits of younger rocks and sediments. Maps 
used for delineation were at a 1:1,000,000 scale. This assessment dem-
onstrated the value of doing a preassessment before the general meeting 
and of selecting qualifi ed experts in the economic geology of the region 
and in assessment methods.
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preliminary tract boundaries can be extended using geophysical surveys, 
such as aeromagnetics, to identify where the permissive rocks are concealed 
by younger rocks or sediments (fi gure 7.4). A geologic map is the primary 
source of information for delineating tracts. This presents a challenge to 
assessors because, for most areas, geologic maps of the rocks beneath cover 
are not available. Even where rocks are exposed, geophysics is commonly 
used to determine the extent both laterally and vertically of geologic units.

For example, analysis of regional gravity data was used by Jachens, 
Moring, and Schruben (1996) to estimate the thickness of Cenozoic cover 
in Nevada and to produce a gravity map from which the effects of thick 

Endeavour

150º E

30º S

Cadia Hill-
Ridgeway

Molong porphyry 
copper belt, NSW

Covered areas 

Interpreted Ordovician volcanic arc and intrusive rocks

(beneath cover), based on aeromagnetic data New

South Wales, Australia 

(modified after Scheibner, E., 1998, Geology of New South Wales - synthesis. Volume 2, 

Geological evolution: Geological Survey of New South Wales, Memoir Geology 13(2), 666 p)

Figure 7.4 Example of delineating permissive tract under cover: interpreted 
Ordovician volcanic arc and intrusive rocks (under cover), based on 
aeromagnetic data, New South Wales, Australia. Solid circles are well-
explored porphyry copper deposits, and open circles are not completely 
explored deposits. Modifi ed after Scheibner (1998).
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deposits of young rock and unconsolidated sediments have been removed. 
Their map was also used to help identify the lithologies of the concealed 
basement, to delineate major crustal structures and boundaries, and to iden-
tify plutons and concealed calderas, all of which can refl ect geologic envi-
ronments permissive for certain types of mineral deposits. In the same study 
of Nevada’s resources, analysis of magnetic data (Blakely, Schruben, and 
Moring, 1996) focused on the distribution of near-surface magnetic sources 
in order to delineate bodies of shallowly buried magnetic rock. Typically 
these are Tertiary and Quaternary volcanic rocks. The information provided 
by this analysis affected the mineral resource analysis in that certain types 
of mineral deposits are associated with magnetic rocks.

Geochemistry

In most situations, geochemistry does not affect delineation boundaries. 
It can reduce the aerial extent of tracts only where the absence of an anomaly 
is defi nitive in ruling out the possibility of existence of the kind of deposit 
being assessed. Suites of elements are not unique to a single deposit type, 
but rather, could occur in several different deposit types. This emphasizes 
the point that the assessment is deposit-type specifi c. In uncommon situa-
tions, geochemistry can aid in delineation. Some examples might include 
identifying areas permissive for diamonds in regions of glacial till, or other 
deposit types in areas of deep weathering where the underlying rocks cannot 
be recognized. Geochemistry in both situations is being used to help map the 
permissive geologic settings.

Exploration History

Preliminary tracts should be examined to determine if parts of the tract have 
been previously explored for the deposits type under consideration. If parts 
of the tract have been explored so thoroughly that they can be confi dently 
said to lack deposits, they should be eliminated from the tract. For some 
deposit types, extensive exploration might provide such evidence, but for 
many deposit types, only close-spaced drilling or overburden thicker than 
the delineation limit can be used to exclude areas. Exploration is frequently 
done with a specifi c guiding idea or model and does not necessarily test 
for the possibility of other kinds of deposits. Typically, exploration history 
plays a larger role in estimation of number of undiscovered deposits than it 
does in delineation (chapter 8).

Map Scale

Delineations are fundamentally based on some form of geologic map and 
are linked to the descriptive models. The contents of the descriptive model 
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(chapter 3) might be correct but are not useful at the scale of the base maps 
used in many mineral resource assessments. In general, scales of observa-
tions in the “Geological Environment” section of descriptive models have 
not been identifi ed, and yet scales are important in the application of these 
models in assessments. The scale of the base map also limits the informa-
tion available to perform delineations and to portray delineations. Data reso-
lution on a paper map is tied to the map’s scale. Resolution is the degree 
to which entities can be discriminated on the map. Resolution limits the 
minimum size of feature that can be represented. Typically, a line cannot be 
drawn much narrower than about 0.5 mm. Therefore, on a 1:250,000-scale 
paper map, the minimum distance that can be represented is about 125 m. 
On a 1:1,000,000-scale paper map, the resolution is 500 m.

For example, in an assessment of Nevada’s mineral resources (Cox et al., 
1996), the tract permissive for pluton-related deposits was defi ned as an 
area extending 10 km outward from the outcrop of a pluton or, in the case 
where the pluton had a geophysical expression, from the inferred subsurface 
boundary of the pluton based on its geophysical expression. It also includes 
plutons whose presence was inferred from geophysics or from the occur-
rence of skarn mineralization. Some pluton-related deposit types such as 
skarns are known to occur less than about 2 km from the pluton contact; 
however, the authors could not be portray this more appropriate boundary 
at the published 1:1,000,000 scale of the map because they would appear as 
narrow slivers scattered throughout the map.

Cover

Years ago when the authors were doing research for their Ph.D. degrees, they 
independently discovered that the most useful geologic predictor of metal 
production was the percentage of cover, such as alluvium. The more cover, 
the lower historic metal production. The reason for the relationship has 
more to do with diffi culty of exploring under cover than it does the existence 
of undiscovered metal-bearing deposits under cover. Undiscovered mineral 
deposits commonly occur beneath some sort of cover (e.g., alluvium). There-
fore, to be meaningful, an assessment must be able to predict what might 
be present in covered areas. A geologic map is the primary local source of 
information for delineating domains and identifying which domains are per-
missive for different deposit types. This presents a challenge to assessors 
because, for most areas, geologic maps of the rocks beneath cover are not 
available.

Regional or metallogenic settings of mineral deposits can provide guides 
on general locations of deposits under cover if the geology can be projected 
under cover (fi gure 7.4). Fortunately, some scientists have experience in 
making geologic maps under cover. The Australians have had to deal with 
the problem of cover for some years (Wilford, 2000). As might be guessed, 
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however, the methods require detailed geophysics, which, because of its 
expense, can be applied only in relatively small areas. One area of active 
research that should prove useful in locating possible places of mineraliza-
tion under cover is structural geology. Many faults can be identifi ed under 
cover with geophysics—some kinds of faults are related to certain types of 
mineralization such as porphyry copper deposits (Berger, Drew, and Singer, 
1999).

About 50 percent of the surface is covered by apparently barren rocks 
and sediments in many large regions, such as Australia, the United States, 
and parts of Europe. Because the majority of mineral deposits exposed at the 
surface are believed to have already been found, a prime concern of assess-
ments in such cases is the nature of and depth to possible mineralized sys-
tems under this cover. Resource assessments of areas with resources under 
cover must rely on extrapolation from surrounding areas, new geologic maps 
of the rocks under cover, or analogy with other well-explored areas that can 
be considered training tracts.

Cover has a profound effect on methods and procedures of conducting 
assessments. Known deposits and occurrences are present on the margins 
of covered tracts in fortunate cases. Geology under cover is seldom known. 
Geophysical methods typically have responses that are variably attenuated 
depending upon thickness of cover—geochemical responses are even more 
attenuated. Many powerful assessment methods that have been developed 
in recent years have been based on relationships of geochemical and geo-
physical variables to deposits learned from exposed deposits. In order to use 
these methods in covered regions, the relationships need to be reexamined 
based on conditions under cover—not an easy task because of sparse infor-
mation on deposits under cover.

Geographic Information System Delineation

With the power of modern computers and digital data sets, there is consid-
erable interest in using GIS technology to delineate permissive tracts or to 
identify possible targets. Where permissive rocks are exposed, this technol-
ogy allows rapid and precise delineation. The use of GIS techniques has 
been recommended as reproducible, objective, accurate and more rapid than 
expert approaches (Raines and Mihalasky, 2002). Where permissive rocks 
are covered by younger geologic units such as sediments or volcanic ash or 
by tectonically emplaced cover, these claims are questionable.

Typically in a GIS-based approach, delineations under cover are dealt 
with by using a buffer around the exposed permissive rock (Ludington et al., 
2008). The buffer is commonly described as the optimum prediction dis-
tance where the distance has the maximum association (called maximum 
contrast) of known mineral deposits with the layers being considered in the 
training data (Carranza and Hale, 2002; Raines and Mihalasky, 2002). When 
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these contrasts have the strongest confi dence levels, it is argued that an opti-
mal distance for prediction of the occurrence of mineral deposits has been 
determined. The problem is that the number of discovered mineral deposits 
diminishes as one moves away from exposed bedrock because of either the 
absence of a permissive geologic setting for the deposit type or, more com-
monly, the lack of suffi cient and effective exploration as one moves away 
from exposed bedrock to covered bedrock in most places. Thus, the number 
of mineral deposits that have been discovered under cover is clearly a biased 
sample of the number of existing deposits under cover in a permissive geo-
logic setting, and “optimum prediction distance” is a misnomer.

Unless the geologically permissive rocks are specifi cally mapped using 
interpolated geology and geophysics, the basis for the delineation under the 
cover violates the principals of delineating permissive tracts. For example, if 
a buffer zone around the exposed permissive rocks were used to delineate the 
permissive tract under cover in fi gure 7.4, the extent of covered permissive 
rock would have been incorrectly estimated, resulting in poor estimation 
of the number of deposits under cover, and it also would have completely 
missed the part of New South Wales that is permissive for covered porphyry 
copper deposits. Thus, decision-makers would be misinformed about both 
locations and amounts of mineral resources, leading to misallocation of 
human and fi nancial resources. The advantage of the GIS techniques being 
more rapid than expert approaches to delineation under cover is of question-
able value if the results are biased and inconsistent with the other parts of 
the assessment. Using GIS buffers to delineate permissive rocks under cover 
results in tracts that are inconsistent with true permissive rock boundar-
ies and are inconsistent with other parts of three-part assessments, such as 
matching the geologic setting of the deposits type and estimating the number 
of deposit using deposit-density models (Singer, 2008). The quickest way off 
of a mountain might be jumping off a cliff, but that is probably not the best 
way to get down.

Subdivision of Tracts

If an area being assessed has different scale geologic maps or different qual-
ity maps, it may be desirable to delineate separate tracts to represent differ-
ent qualities or amounts of information. Similarly, if a tract has parts where 
there is reason to believe that deposits are more or less likely to exist than 
in other parts of the tract, the tract should be divided into subtracts. Ideally, 
the probability of the existence of a deposit would be the same everywhere 
within a tract, and a permissive tract should be subdivided to try to accom-
plish this equal probability state. Because probabilities of deposit occurrence 
are not commonly estimated within tracts, a more practical guide would be 
that tracts should be divided whenever the expected number of deposits or 
the level of uncertainty varies within a tract. Having the same probability 
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of deposit occurrence with a tract makes it easier to statistically divide or 
recombine tracts and associated estimated number of deposits, if that ever 
became necessary.

Concluding Remarks

Delineating tracts that are permissive for undiscovered deposits relies on 
linking of geologic settings of deposit types as identifi ed in models to geo-
logic environments as interpreted from maps. Deposit models play the cen-
tral role in identifying relevant information and in integrating the various 
kinds of information to delineate permissive tracts. Map scales used in 
preparing mineral deposit models and in delineation of permissive tracts 
therefore are central to properly prepared assessments. When assessing 
undiscovered mineral deposits by type, the base map selected is typically 
affected by the availability of only a small number of geologic map scales of 
the area, publication scale of the assessment, and time and space limits on 
the assessors. A frequent effect of these limits is that the map scale selected 
is not ideal, because the delineated permissive tract containing the geologic 
units that could host the deposits may also include unreported units that 
could not contain the deposits. The delineated tract may also contain unre-
ported geologic units that cover the geologic units of interest or unreported 
parts that are too deeply buried to be permissive. In these situations, areas of 
delineated tracts are larger than necessary due to infl ation by unaccounted 
for nonpermissive areas, or by covered areas that are poorly explored (Singer 
and Menzie, 2008).

Because of reliance of these assessments on the link between deposit 
types and geology, assessing mineral resources under cover has a great deal 
of uncertainty in delineated boundaries and in associated estimates of num-
ber of deposits. For this reason, considerable effort is warranted in mapping 
the geology under cover. Better quality and detail in maps also can signifi -
cantly reduce the risk of exploration failure as discussed in chapter 10.
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Perspective

The third part of three-part assessments is the estimate of some fi xed but 
unknown number of deposits of each type that exist in the delineated tracts. 
Until the area being considered is thoroughly and extensively drilled, this 
fi xed number of undiscovered deposits, which could be any number includ-
ing 0, will not be known with certainty. This number of deposits has mean-
ing only in terms of a grade-and-tonnage model. If this requirement did not 
exist, any wisp of minerals could be considered worthy of estimation, and 
even in small regions, we would need to estimate millions of “deposits.” For 
example, it is not diffi cult to imagine tens of thousands of fi st-sized skarn 
copper “deposits” in parts of western United States—even in this example, 
we have used “deposit” size to provide important information. In another 
example, Wilson et al. (1996) estimated fi ve or more epithermal gold vein 
deposits at the 90 percent level but provided no grade-and-tonnage model, 
so these estimated deposits could be any size. To provide critical information 
to decision-makers, the grade-and-tonnage model is key, and the estimated 
number of deposits that might exist must be from the grade-and-tonnage 
frequency distributions.

In three-part assessments, the parts and estimates are internally consis-
tent in that delineated tracts are consistent with descriptive models, grade-
and-tonnage models are consistent with descriptive models and with known 
deposits in the area, and estimates of number of deposits are consistent with 

8
Estimating the Number of Undiscovered 
Deposits
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grade-and-tonnage models. Considerable care must be exercised in quantita-
tive resource assessments to prevent the introduction of biased estimates 
of undiscovered resources. Biases can be introduced into these estimates 
either by a fl awed grade-and-tonnage model or by the lack of consistency of 
the grade-and-tonnage model with the number-of-deposit estimates. For this 
reason, consistency of estimates of number of deposits with the grade-and-
tonnage models is the most important guideline. Issues about consistency 
of mineral deposit models are discussed in chapters 3 through 6. Grade-
and-tonnage models (chapter 6), which are the fi rst part of three-part assess-
ments, are of particular concern. In this chapter, the focus is on making 
unbiased estimates of the number of undiscovered deposits.

Estimates of number of deposits explicitly represent the probability (or 
degree of belief) that some fi xed but unknown number of undiscovered 
deposits exist in the delineated tracts. As such, these estimates refl ect 
both the uncertainty of what may exist and a measure of the favorability of 
the existence of the deposit type. Uncertainty is shown by the spread of the
number-of-deposit estimates (quantiles) associated with the 90 percent 
quantile to the 10 or 1 percent quantile (fi gure 8.1)—a large difference in 
the numbers suggests great uncertainty. Favorability can be represented by 

Figure 8.1 Three estimates of “n” or more deposits (shaded) along with 
interpolated values.
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the estimated number of deposits associated with a given probability level 
or by the expected (mean) number of deposits.

Why Estimate Quantiles?

In the fi rst modern quantitative resource assessment, Allais (1957) used a 
Poisson distribution to model the occurrence of mineral deposits—justifi ca-
tion for its use was an unpublished study of the number of mineral deposits 
exceeding a certain value in eighty-nine French administrative divisions. 
The Poisson distribution has several advantages over some alternative dis-
crete distributions, such as requiring estimation of only one parameter and 
simple calculation of the probability of individual numbers of deposits 
 (fi gures 8.2, 8.3). A Poisson distribution is also easy to work with mathemati-
cally. Among the properties of the Poisson distribution are that the mean is 
equal to the variance, and each sample outcome is independent from sample 
to sample. Thus, if a mineral deposit exists in a cell, the probability that 
the adjacent cell contains a deposit is not affected. A number of studies 
of deposit density suggest that this independence assumption may not be 
appropriate—that is, deposits seem to be clustered in space (see summary in 
Harris, 1984). Negative binomial distributions seem to fi t the observed distri-
butions of deposits more commonly than do Poisson distributions. Negative 
binomial distributions require estimation of two parameters, have variances 
that are greater than their means, and have the property that knowing a cell 
contains a deposit would change the estimate that the adjacent cell contains 
a deposit.

When assessors are not constrained by a specifi c probability distribution, 
the estimates do not always fi t distributions that assume a constant probabil-
ity such as the Poisson distribution. For example, about half of the estimates 
of numbers of copper-bearing deposit types that were made in an Alaskan 
assessment (Eberlein and Menzie, 1978; Grybeck and DeYoung, 1978; MacK-
evett, Singer, and Holloway, 1978) were found to be consistent with Pois-
son distribution, but about half were not and required a negative binominal 
distribution (Harris, 1984). Griffi ths and Ondrick (1970) demonstrated with 
simulation that even where a Poisson distribution fi ts the original frequency 
of deposits, introducing cover over part of the area induces clustering of 
deposits, rejection of the Poisson distribution, and fi t of the observed dis-
tribution of deposits to the negative binomial distribution. A histogram of 
a negative binominal distribution looks different than one from a Poisson 
distribution in that it has a higher frequency of deposits on the high number 
of deposits (right-hand) side. That is, the right side of a negative binomial 
distribution has more probability than does a Poisson distribution (heavier 
tails). Estimation of numbers of deposits should allow for this possibility.

Number-of-deposit estimates can be made using in any of several forms. 
One form is to elicit the entire frequency distribution that describes the 
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Figure 8.2 Distribution of number of mines in cells in the Basin and Range 
mines compared to the number in a Poisson distribution with the same 
mean (154 mines, 357 cells). After Slichter (1960).
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probability of the tract containing a given number of deposits. This method 
can be used if only a few deposits are expected to occur in the tract but is 
cumbersome if the estimated number of deposits is large or has a high uncer-
tainty. A second form is to use a triangular distribution to estimate the entire 
probability distribution by eliciting estimates of the lowest, highest, and 
most common number of deposits. If the distribution is nearly symmetrical, 
a triangular distribution can give a satisfactory representation of the distri-
bution of undiscovered deposits. However, the triangular distribution will 
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lead to biased estimates if the real probability distribution is highly skewed. 
The most commonly used method of estimating undiscovered deposits is to 
elicit an estimate of a number of deposits that the tract will equal or exceed 
at given probabilities. Commonly, estimates are made in quantile form. That 
is, numbers of deposits are elicited that estimate the number of deposits 
or more that may be present in the tract at a 90 percent level, a 50 percent 
level, and a 10 percent level. If necessary, estimates can also be made at a 

Figure 8.3 Distribution of number of mines in cells in Ontario compared to 
the number in a Poisson distribution with the same mean (147 mines, 185 
cells). After Slichter (1960).
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5 or 1 percent level. Interpretation of these quantile estimates requires care. 
Because of their format where the number of deposits is represented by at 
least so many deposits (Root, Menzie, and Scott, 1992), a unique underly-
ing probability distribution cannot be specifi ed on the basis of the elicited 
distribution alone. Root, Menzie, and Scott (1992) provide a methodology 
for obtaining a probability distribution that is consistent with these quantile 
estimates. The probability distribution is required if one wants to use Monte 
Carlo simulation to properly combine estimated numbers of deposits with 
grade-and-tonnage models to estimate total undiscovered resources and 
their associated uncertainty in the tract.

Whether commonly observed deposit clustering is caused by natural clus-
tering of deposits or is a consequence of the interaction of how we sample 
the distribution of deposits, a frequency distribution with heavier tails than 
a Poisson must be expected and allowed in a quantitative assessment. All 
evidence available in hundreds of estimates of number of deposits in tens 
of three-part assessments suggests that a signifi cant proportion of estimates 
of number of deposits should have some skewness toward the right and that 
negative skewness of estimates is quite unlikely (see, e.g., fi gure 4.2). For 
all of these reasons, in three-part assessments number-of-deposit estimates 
are made for the number of deposits associated with the 90, 50, 10, 5, or 1 
percent quantile without the requirement that the estimates fi t any specifi c 
frequency distribution.

Effects of Subdividing Tracts

We recommend in chapter 7 on delineation that during an assessment, a 
tract should be subdivided whenever different degrees of uncertainty or dif-
ferent likelihoods of containing deposits can be identifi ed within the tract. 
For each of the new tracts, separate estimates of the number of undiscovered 
deposits should be made. After the assessment is complete, it is not uncom-
mon that there are requests to subdivide tracts and associated estimates of 
number of deposits. In situations where a Poisson distribution fi ts the esti-
mated number of deposits for a tract, such as in the example in fi gure 8.4, 
the constant probability and the mathematical properties of the distribu-
tion allow relatively easy subdivision of the estimates into new estimates 
that have means proportional to the areas of the new subtracts, as shown in 
fi gure 8.5. This is accomplished by fi rst estimating the expected number of 
deposits using the following equation (Singer and Menzie, 2005):

E(n) = 0.233 (N90) + 0.4 (N50) + 0.225 (N10) + 0.045 (N05) + 0.03 (N01), (8.1)

where Nx = the estimated number of deposits at the xth percentile. If only the 
90th, 50th, and 10th percentiles have been estimated, use the 10th estimate 
for the 5th and 1st also. This equation closely approximates the expected 
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number of deposits estimated in the MARK3 simulation program (Root, 
Menzie, and Scott, 1992). The expected number of deposits is then used as 
the mean (λ) in a Poisson distribution to generate cumulative probabilities 
to compare with the estimates in the original tract. If the number of deposits 
associated with the 90th, 50th, 10th, 5th, and 1st percentiles of the Pois-
son distribution closely match those of the tract estimates, the tract can be 
subdivided with each new mean (λ) of a subtract proportional to its relative 
area; that is, the expected number (E(n) ) from equation 8.1 is divided by 
the proportional area of each subtract, and the new values are estimates of 
the tract’s mean, which becomes the mean (λ) in a Poisson distribution. This 
new mean can then be used with the Poisson distribution to generate the esti-
mates at the appropriate percentiles. However, when the negative binomial 
distribution or some other distribution that has heavier tails than the Poisson 
distribution fi ts the estimated number of deposits, there is no tractable way 
to subdivide the tract and have the estimated number of deposits refl ect both 
the expected number of deposits and the uncertainty of the estimate.
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Figure 8.4 Estimated number of deposits or more that is consistent with a 
Poisson distribution that has a mean of six deposits.
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Estimating Number of Deposits

This section briefl y examines (1) factors that infl uence estimation of undis-
covered deposits, (2) development of methods to estimates numbers of 
undiscovered deposits, and (3) recent U.S. Geological Survey (USGS) prac-
tice in estimating numbers of undiscovered deposits.

The fi rst factor that infl uences the estimation of undiscovered depos-
its is the intended use of the estimate. Because the three-part method uses 
grade-and-tonnage models to estimate the mineral endowment of areas, it 
is important that estimated undiscovered deposits be compatible with the 
grade-and-tonnage models. That is, one should expect 80 percent of the esti-
mated deposits to lie between the 90 and 10 percentile estimates of the ton-
nages (or grades) depicted in the appropriate model and half of the estimated 
deposits to exceed the median of the distribution.

A second factor that infl uences the estimation of undiscovered deposits is 
the available geologic data: its amount, type, and nature. For example, differ-
ent types of geoscience data vary in the effectiveness with which they refl ect 
different types of deposits. In addition, the density and spatial distribution 

Figure 8.5 Estimated number of deposits or more for two tracts representing 
one-third and two-thirds of the area of a tract where number of deposits is 
distributed as a Poisson distribution with mean (l) = 6.
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of sampling associated with the survey affect the estimation of undiscovered 
deposits. Further, one must consider the nature of the responses themselves. 
Are a number of anomalous samples present, or are values within back-
ground levels? Finally, one must combine different types of geoscience data 
to develop estimates. What constitutes an appropriate combination of data 
varies with deposit type, and the logic for combining different data may also 
vary with deposit type.

A third factor that infl uences estimation of undiscovered deposits is the 
mineral exploration that has taken place in the area: its type, amount, spa-
tial distribution, and effectiveness. In extreme cases where exploration has 
been thorough, estimates of undiscovered deposits may be reduced to zero. 
More commonly, exploration is only partial; in such cases, the effects on 
undiscovered resource estimates may be diffi cult to interpret. One effect 
of exploration that has been suggested by many authors, including Singer 
and Mosier (1981b), is that the previous exploration may have discovered 
the larger deposits, and remaining, undiscovered deposits may be, on aver-
age, smaller than those already found. In such cases, undiscovered deposits 
would not be comparable to those in grade-and-tonnage models.

In the assessment, an important factor affecting estimates of number of 
deposits is the proper distinction between known deposits and prospects. 
Deposits referred to as “discovered” or “known” are reported in the published 
literature to be well explored in three dimensions and not open in any part and 
to have published tonnages and grades. Explored metal occurrences not meet-
ing these criteria are classifi ed as prospects even if they are being mined if there 
is an indication that more resources are expected. Such a defi nition is neces-
sary to avoid either double counting or missing some resources. Some of these 
prospects typically represent some of the undiscovered deposits estimated.

Historically, two end-member approaches to estimate numbers of undis-
covered deposits have been used or recommended. The fi rst approach uses 
traditional statistical methods, including discrete frequency distributions, 
and multivariate statistical methods. The second approach uses expert 
judgment to estimate the numbers of undiscovered deposits that may occur 
in delineated tracts. While application of traditional statistical method is 
appealing because it seems to offer a rigorous, objective way to estimate 
undiscovered resources, in practice applications of traditional statistical 
methods have not been very satisfying except for the deposit density mod-
els. Most models are not very fl exible with regard to the amounts and kinds 
of information they use. Commonly, mineral assessments are needed for 
regions with highly variable geoscience information, which makes the tradi-
tional statistical methods less useful.

What Is Being Estimated?

In order to capture all resources from known deposit types, it is necessary 
to have some rules about how different categories of resources are counted. 
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The concern is that everything is counted (or estimated) once, but only once. 
In general, we simply need to estimate the number of undiscovered deposits 
because the discovered deposits are already counted. In practice there are 
some gray areas that need to be resolved. Where a deposit is thoroughly 
drilled but the information has not been made public, the deposit should 
be counted as undiscovered (with high certainty). Mineral deposits that are 
only partially explored are counted as undiscovered if assessors believe that 
the deposits would, upon further drilling, be from the same distribution of 
sizes and grades as represented in the grade-and-tonnage model—this may 
seem strange if the partial resource estimates are well established. The prob-
lem is that if deposits in this situation were counted as known deposits, 
the grade-and-tonnage model would not be appropriate, and any resources 
added through time to these deposits would not accounted for in any cat-
egory. These kinds of situations help demonstrate the value of using care in 
performing the assessment.

Can Experts Estimate Number of Deposits: 
An Experiment

When geologists place on a map an inferred contact between two rock 
units that has not been seen, subjective judgment is used. The same is true 
when tectonic boundaries are placed on maps in large regions. Every day 
each of us makes subjective judgments, and there is strong evidence that 
a Bayesian probability process is fundamental in learning (Kording and 
Wolpert, 2004).

Subjective probabilities such as used here variously have been called 
degrees of belief or propositional probabilities. The oldest and probably 
most commonly practiced form of subjective estimation is gambling. For 
example, Stern (1991) showed that the distribution of actual margins of vic-
tory versus predicted point spreads in National Football League games has 
a mean of zero, indicating that nonscientists can make unbiased subjective 
estimates. Geologists commonly make similar estimates that, although not 
explicitly quantitative, are subjective and have uncertainty, such as making 
geologic cross sections. Examples from different fi elds of study (Murphy and 
Winkler, 1984; Stern, 1991) demonstrate that under some conditions subjec-
tive estimates can be unbiased and reliable. For example, fi gure 8.6 plots 
more than 150,000 subjective estimates made by meteorologists of the prob-
abilities of precipitation against the observed relative frequency of precipi-
tation. For every forecast probability except the 100 percent estimates, the 
estimates fall on the expected 1:1 slope, demonstrating unbiased estimates.

Use of expert judgment to estimate the number of undiscovered depos-
its within tracts has caused concern by some geologists about the “accu-
racy” of the assessments (Harris and Rieber, 1993). Usually critics call for 
a demonstration of a place where an assessment has predicted the occur-
rence of a mineral deposit in advance of exploration. While such examples 
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impressively document assessment successes such as the discovery of Peb-
ble Copper in Alaska after a published estimate (MacKevett, Singer, and Hol-
loway, 1978), they may not provide the best basis for evaluating a mineral 
assessment.

To test whether geologists could make unbiased estimates of the num-
ber of deposits, an experiment was conducted with well-explored areas to 
compare geologists’ estimates with the number of known deposits. A pool 
of thirteen areas was developed to mitigate possible recognition of individ-
ual areas by the geologists. In the experiment, ten areas and their data sets 
were randomly assigned to each of twenty-four geologists. This resulted in 
a total of 239 possible experiment sets (one geologist only had nine areas). 
In general, recognition of areas was not a problem because the data sets 

Figure 8.6 Comparison of subjectively estimated chance of precipitation and 
observed frequency. Numbers near symbols represent number of estimates 
at that forecast probability. The straight line represents no bias. After 
Murphy and Winkler (1984).
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had all geographic names and coordinates removed and were prepared in 
odd shapes and sizes that tend to reduce recognition. In cases where geolo-
gists thought they recognized areas, they were asked to record their guess 
and proceed with the experiment as though they did not “know” if they 
were correct. In most cases, the geologist’s guesses proved erroneous. In a 
few cases, geologists recognized one of the areas and another area was sub-
stituted for the compromised area. In one case a geologist recognized four 
areas, and thus only nine measurements were available for that geologist.

The areas were from throughout the North American Cordillera, all from 
geologic settings that, considered broadly, contain one or more porphyry 
copper deposits, which was the deposit type estimated. Some of the specifi c 
areas are believed to be barren of porphyry copper deposits; others con-
tain one or more deposit. Areas barren of porphyry copper deposits may 
host other types of mineral deposits. The areas ranged in size from 57 to 
1,210 km2 (22–468 square miles); the median size of the thirteen areas is 
342 km2 (132 square miles).

Data available for the areas include geologic maps, stream sediment 
geochemical samples, aeromagnetic data, and mineral occurrence data. 
All data sets contain geologic maps that vary in scale from 1:48,000 to 
1:250,000. Two maps are 1:48,000, seven are 1:62,500, one is 1:63,360, and 
three are 1:250,000. All maps show important lithologic and structural 
units. Smaller scale maps tend to show only the boundaries and litholo-
gies of igneous units and larger structural features; larger scale maps show 
phases and compositions of individual intrusives and show more detailed 
structural features. Only one map shows hydrothermally altered rocks, but 
two others show locations where sulfi de minerals were encountered dur-
ing fi eld mapping. All data sets also contain stream sediment geochemistry 
data. Density of sampling varies from 0.031 samples to 0.48 samples/km2.
Geochemical data are 33-element semiquantitative spectrographic determi-
nations. The sample media were generally the 80-mesh fraction of stream 
sediments. Nine of the thirteen data sets contain aeromagnetic data; fl ight 
line spacing varied from 0.8 to 8 km (0.5–5 miles) spacing. Eleven of the 
thirteen areas have mineral occurrence maps and short descriptions of the 
occurrences. Locations and descriptions of porphyry copper deposits were 
removed from the data set, but associated deposit types such as vein and 
skarn deposits were left in the sets.

Because the size of the thirteen areas was limited, the number of por-
phyry copper deposits present ranged from 0 to 2 deposits. To determine 
how well each geologist estimated the number of deposits, the expected 
(mean) number estimated by that geologist for each area was plotted against 
the observed number of deposits. Thus, if a geologist perfectly estimated 
the number of deposits in each of ten areas, the plotted points would fall 
on x,y-coordinates of 0,0, 1,1, and 2,2, forming a straight line with a slope 
of 1.0, and the correlation coeffi cient would be 1.0. The more the slope and 
the correlation coeffi cient deviated from 1.0, the worse the geologist was at 
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estimating the number of porphyry copper deposits. A reasonable test is if 
the correlation coeffi cient is signifi cantly greater than zero, then the geolo-
gist can be considered to have demonstrated an ability to estimate the num-
ber of deposits. In table 8.1, we can see that some geologists were excellent 
at estimating number of porphyry copper deposits, and others were not as 
good. This experiment demonstrates that not all geologists should be con-
sidered experts at estimating number of mineral deposits. It also shows that 
some geologists are capable of making unbiased estimates of the number of 
undiscovered mineral deposits. It is also possible that, with some training 
and calibration, those geologists who did not do as well at estimating por-
phyry copper deposits might become trusted experts.

Can these individual estimates be improved upon? In many resources 
assessments, a group of experts make independent estimates and then 
make consensus estimates, as discussed below. In the experiment testing 

Table 8.1. Results of twenty-four geologists’ esti-
mates of number of porphyry copper deposits.

Geologist r df b2

 1 0.785** 8 1.54
 2 0.771** 8 1.04
 3 0.887** 8 1.71
 4 0.686* 8 0.986
 5 0.382 8 0.544
 6 0.851** 8 4.79
 7 0.685* 8 0.772
 8 0.338 8 0.458
 9 0.550 8 0.903
10 0.044 8 0.058
11 0.741* 8 2.11
12 0.006 8 0.063
13 0.627 8 0.354
14 0.082 8 0.154
15 0.611 8 0.739
16 0.795** 8 0.718
17 0.819** 8 1.27
18 −0.138 8 −0.059
19 0.744** 8 0.948
20 0.639 7 1.55
21 0.336 8 0.514
22 0.398 8 1.21
23 0.723* 8 1.95
24 0.569 8 0.807

r = correlation coeffi cient, df = degrees of freedom, b2 = 
slope of regression line.
* = signifi cant at 5% level, ** = signifi cant at 1% level.
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geologists for their ability to make estimates, the geologists were never 
brought together because the experiment was carried out over several years 
and different parts of the country. However, we can test to see if the average 
of the group improves the estimates. In fi gure 8.7 the expected value (aver-
age) of the estimates of geologists is plotted against the observed number of 
deposits for the thirteen tracts. Only the eleven geologists who demonstrated 
an ability to estimate porphyry copper deposits by having estimates signifi -
cant at the 5 or 1 percent level were used in this plot. The correlation coeffi -
cient is 0.85, which is highly signifi cant, and the slope of the regression line 
is 1.58, which is not signifi cantly different than the ideal value of 1.0. From 
this we conclude that groups bring some stability to the estimation process; 
that is, they can reduce the variability of the estimates. Interestingly, when 
all twenty-four of the geologist were included is this kind of plot, the corre-
lation only decreased to 0.74, which is signifi cantly different than zero, and 
the slope changed to 1.7 which is also not signifi cantly different than 1.0. 
Thus in this experiment with twenty-four estimators, the power of the group 
made up for the less able estimators. In actual assessments with smaller 
number of estimators, it is not clear that one should rely on a few able esti-
mators to cover for estimators who are not able.

The decades of experience of subjective and objective forecasting in mete-
orology provide insight into how the process of making subjective assess-
ments in mineral resources might be improved. Murphy and Winkler (1984) 
found that consensus schemes performed better than almost all individual 
forecasters and that the best forecasts were made when objective forecasts 
were part of the information supplied to subjective forecasters. Among their 
recommendations were more effective use of many information sources, 

Figure 8.7 Comparison of estimated number (Nest) of porphyry copper 
deposits to number of deposits known (Nobs) in blind test of thirteen tracts 
by eleven geologists designated as experts. r = correlation coeffi cient. 
**Correlation signifi cantly different than 0.0 at the 1 percent level.
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motivation to encourage forecasters to improve their performance, provision 
of formal procedures to assist forecasters in quantifying their uncertainty in 
terms of probability, and quick and extensive feedback concerning perfor-
mance. Quick and extensive feedback might be diffi cult to apply in mineral 
resource assessments, except possibly through training exercises such as the 
one discussed above. The emphasis here on subjective estimation and the 
use of objective guidelines stems from our belief that few objective quantita-
tive methods have yet to be shown to be consistently effective and unbiased 
in estimating the number of undiscovered deposits. Even the powerful min-
eral deposit-density models should not be relied upon in all cases (see dis-
cussion in chapter 4). It is important to note that three-part assessments are a 
form of product, not a method, and therefore do not preclude the use of any 
method that is consistent with the other parts of the assessment. We should 
always use the best possible methods of making quantitative assessments.

Estimation Process

The goal in making number of undiscovered deposit estimates is to make 
unbiased estimates of the number with a method(s) that produces the min-
imum variance. Commonly, expert judgment is used because of the high 
uncertainty of such estimates and, more important, the data upon which 
such estimates must be made typically represent a mixture uneven in cover-
age, types, and quality. A formal elicitation process is used in that particu-
lar criteria are used, experts are selected, the method is designed, and the 
response mode is specifi ed (Meyer and Booker, 2001). The general approach 
used by the USGS in estimating numbers of undiscovered deposits in three-
part assessments has evolved on the basis of experience in earlier assess-
ments and the results of experiments to test the ability of experts to estimate 
undiscovered deposits. Some of the changes the USGS has adopted in using 
experts to estimate undiscovered deposits have included use of digital infor-
mation in mineral deposit models, use of teams of experts to estimate undis-
covered deposits, calibration of estimators through the use of formal training 
sets or through apprenticeship, formalization of the process by which esti-
mates are elicited, introduction of statistical guides such as deposit densities 
to assist experts, and development of mechanisms that feedback implica-
tions of their estimates to the estimators.

Commonly, the USGS has used teams of estimators that have included 
experts in the geology of the region being assessed, economic geologists who 
are experts on the deposit type(s) being assessed, and resource analysts who 
are experienced with the resource assessment process. Only team members 
who are comfortable with making estimates are asked to do so. Team mem-
bers who are not comfortable with the estimation process act as consultants 
in their area of expertise. Individual team members study the available geo-
science data for the region to be assessed before attending the assessment 
session. The resource analyst knowledgeable about statistics will test the 
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area’s known deposits to determine if the global grade-and-tonnage model(s) 
are signifi cantly different than the local deposits that have been drilled in 
three dimensions (see chapter 6). It is not enough to note that the known 
deposits fall on the published grade-and-tonnage model because all of the 
known deposits might have tonnages that are on the low tonnage part of the 
model. The purpose of grade-and-tonnage models is to provide unbiased 
representations of the grades and tonnages of undiscovered mineral depos-
its in a tract. Tonnages and grades of the known deposits in an area being 
assessed should always be tested against the model before the assessment. If 
there are signifi cant differences, new grade-and-tonnage models might need 
to be developed.

The assessment session begins with an overview by the leader of the pur-
pose, goals, and plans for the meeting. A short overview on the properties of 
statistics of quantiles is useful at this point also. This is followed by presen-
tation of the available geoscience data for the region by the regional experts. 
Once the types of deposits that might occur in the region have been identi-
fi ed and tracts have been delineated (see chapter 7) that might contain undis-
covered deposits of these types, then assessment proceeds to estimation of 
the number of undiscovered deposits. Before the estimation, any appropri-
ate guides such as deposit densities should be presented to the estimators. 
In addition, the estimators would be reminded that half of each number-of-
deposit estimate should exceed the deposit type’s median tonnage—this is 
an excellent way to identify possible biased estimates or misunderstandings 
about what is being estimated.

Two general strategies tend to be used for estimation. The fi rst relies on a 
comparison of regions geologically similar to the one being evaluated. In this 
approach, the geologist compares relevant features of the region with those 
of other well-explored regions, and after evaluation of these features and the 
sizes of the regions, the expert makes subjective estimates of the number 
of deposits in the domain at fi xed probability levels. This approach, which 
relies on the expert’s mental frequency distribution of deposits in regions 
with similar characteristics and areas, may be used with both regional-scale 
and more detailed data. Mineral deposit densities, which were discussed 
in chapter 4, are useful decision aids that can help in using this method of 
estimation. However, when mineral deposit densities are used to estimate 
numbers of undiscovered deposits, the estimates must be adjusted to refl ect 
any risk that the tract being evaluated is barren. This is done by multiplying 
each estimate by one minus the probability that the region is barren, that is, 
the probability that the tract has zero deposits of the type being estimated.

The second approach relies on identifying potential exploration targets for 
the type of deposit being estimated. This requires detailed information. In 
this case, individual targets can be compared to descriptive deposit models 
to evaluate the likelihood that they are deposits of the type being estimated. 
If the method of target identifi cation is used as the geologic basis for estima-
tion, the frequency distribution must be formed from probabilities assigned 
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to individual targets. For example, a region may contain three targets. One 
may exhibit many features associated with a particular deposit type but may 
not have been suffi ciently explored to establish if it is, in fact, a deposit. The 
expert may believe that the probability of this target being a deposit is very 
high and assign it a value of 0.9. A second target may have some features of 
known deposits but may differ in some important aspect; the expert might 
assign a probability of 0.3 to this target. The third target may only be inferred 
on the basis of geophysical properties of the deposit or associated rocks. In 
this case, the expert would usually assign the target a low probability (0.05) of 
being a deposit. Cox (1993) provides one example of this method. If the prob-
abilities that individual targets are deposits are mutually independent, the 
probability distribution of deposits in the domain can be calculated explicitly. 
The probability that the domain contains 0, 1, 2, and 3 deposits is 0.0665, 
0.6305, 0.2895, and 0.0135, respectively. This frequency distribution can be 
combined to give the probability that the domain contains at least 0, 1, 2, and 3 
deposits; these probabilities are 1.0, 0.9335, 0.303, and 0.0135, respectively.

After each geologist has made their initial estimates of the numbers of 
undiscovered deposits present in the tract, the results are recorded and 
examined. The results are analyzed for the possibility of bias. The analysis 
focuses on estimates that are higher than the highest deposit-density estimate 
for the type, estimates that imply more metal in the tract than the amount 
know in the world, and estimates that either underestimate uncertainty or 
are skewed toward the right. If there is a large difference between the esti-
mates by different scientists, a discussion takes place focusing on what evi-
dence led the estimators to their estimates. Attention is paid to the high and 
low estimates. The purpose of the discussion is not to force a consensus but 
rather to ensure that all relevant information has been shared among the esti-
mators and to reduce the chance of bias. After the discussion, estimators are 
offered the opportunity to change their estimates in light of new information. 
The changes are recorded and consensus estimates are formed. One method 
of forming consensus estimates is to suggest the median estimate of each 
quantile. Like a jury, if consensus is not reached, you have a “hung jury” and 
might need to declare a mistrial—to our knowledge, this has not happened.

In each case, the scientists must weigh the geoscience and explora-
tion information. A number of the guidelines for making these estimates 
listed in table 8.2 were used by a team estimating undiscovered resources 
in Nevada (Cox et al., 1996). Some estimators used the number of known 
deposits per unit area of exposed permissive rocks multiplied by the area 
of permissive rock concealed by less that 1 km of postmineral rocks and 
sedimentary deposits, as in the above example of porphyry copper depos-
its. Some made their estimates on the basis of number of deposits known 
in well-studied areas of similar geology elsewhere in the world. Others 
depended on the number of occurrences that might become deposits as a 
result of more complete exploration, and still others were infl uenced by 
the number of exploration “plays” that could be visualized for the deposit 
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type in question. Even where estimation guidelines and density of deposits 
models are available, it seems prudent to rely on mineral deposit specialists 
to make or modify the fi nal estimates because they can bring their experi-
ences and observations to the process. Evidence from experienced experts 
making independent estimates under these conditions indicates consistent 
estimates (fi gure 8.8).

Guidelines

Estimates are by deposit type and must be consistent with the grade-and-
tonnage model and not with the population of mineral occurrences or weak 

Table 8.2. Guidelines for number of deposits estimates.

Guideline Example References

Grade-and-tonnage model All
Frequency of deposits from 

well-explored areas 
(deposit density)

U.S. Alaska MacKevett et al. (1978) etc.

Western USA Drew & others (1986)
Costa Rico Singer (1994a)
Venezuela Cox (1993)
Australia Scott (2000)
General Bliss & Menzie (1993)

Singer & others (2001)
Singer Berger, Menzie, and 

Berger (2005)
Mosier & others (2007)
Lisitsin & others (2007)

Local deposit extrapolations U.S. Alaska Singer and MacKevett (1977)
U.S. Alaska Root & others (1992)
Japan Kouda and Singer (1992)

Counting and assigning 
probabilities to anomalies

U.S. Alaska
Puerto Rico

Reed & others (1989)
Cox (1993)

Process constraints Worldwide Drew and Menzie (1993)
Relative frequencies of 

related deposit types
Worldwide Drew and Menzie (1993)

Area spatial limits Worldwide Singer and Mosier (1981b)
Ratio of occurrences to 

deposits
Worldwide Anderson (1982)

Total known metal U.S.A
Statistical guides—coeffi cient 

of variation
All Singer and Menzie (2005)

Exploration extent and 
effi ciency

All
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Figure 8.8 Comparison of 50th percentile estimates of the number of 
undiscovered porphyry copper deposits by each expert and the consensus 
estimates for tracts in South America. After Cunningham et al. (2008).
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manifestations of an ore-forming process (Singer, 1994b). Thus, the estimated 
number of deposits must match the percentile values of the grade-and-
tonnage model. For example, for any estimate, approximately half of the 
estimated undiscovered deposits should be larger than the median tonnage, 
and about 10 percent of the deposits should be as large as the upper 10 percent 
of the deposits in the tonnage model. If the grade-and-tonnage model is con-
structed with district data, then the number of undiscovered districts should 
be estimated. Some mineral deposit models, such as kuroko massive sul-
fi de deposits, were constructed with spatial distance rules such as a 500-m 
rule for combining mineralization—the same rule must be applied when the 
number of undiscovered deposits is estimated. Well-explored deposits in 
the study area that have published grades and tonnages are counted as dis-
covered deposits, whereas those without published estimates are counted as 
undiscovered in order to avoid double counting. The consistency of grade 
and tonnages to the number-of-deposits requirement is the most important 
guideline for making estimates. The expected number of deposits is not 
recommended for this comparison with the grade-and-tonnage distribution 
because it is the numbers of deposits at the 90 percent quantile, 50 percent 
quantile, and at the 10 or 1 percent quantiles that are estimated and adjusted 
if necessary.
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There are no fi xed methods for making estimates of number of undis-
covered deposits. On the basis of experience and logic, however, a number 
of methods can be used directly or as guidelines to make these estimates 
(table 8.2). In most three-part assessments, the fi nal estimates were made 
subjectively by experts and many have employed one or more of the meth-
ods in table 8.2 as guidelines.

Most guidelines represent some form of analogy. Most robust of these is a 
form of mineral deposit model wherein the number of deposits of each type 
per unit area from well-explored regions (Bliss and Menzie, 1993; Singer 
et al., 2001; Singer, Berger, Menzie, and Berger, 2005; Mosier, Singer, and 
Berger, 2007) is counted and the resulting frequency distribution is used 
either directly for an estimate or indirectly as a guideline in some other 
method (see chapter 4). Although Allais (1957) employed this method of 
estimating number of undiscovered deposits, many kinds of deposits were 
mixed together in his analysis.

Recognition that mineral deposits are uncommon and economic depos-
its are even less common was used by the Homestake Mining Company as 
a guideline in exploration planning because the success of an exploration 
program is dependent upon both the probability of discovering deposits and 
the value of the deposits that are discovered (Anderson, 1982). Homestake 
used published studies to estimate the probability of success at different 
stages of exploration. The largest study on metal exploration reported 5,718 
reconnaissance examinations (approximately occurrences), 536 targets to 
be drilled, and 83 deposits developed (Anderson, 1982). Thus, we have a 
general guideline that between 1 and 10 percent of occurrences might be 
mineral deposits consistent with grade-and-tonnage models.

The coeffi cient of variation can be used to explore a variety of estimates 
between the extremes from either the deposit-density–based estimates or 
the Poisson distribution. A Poisson distribution with the same mean as esti-
mated using deposit-density regression leads to estimates having a lower 
coeffi cient of variation and implies no clustering of deposits, whereas the 
regression approach suggests clustering of deposits. These statistical guides 
allow simple estimation of the number of undiscovered deposits in exposed 
or covered permissive terranes. This is accomplished by fi rst estimating the 
standard deviation of the number of deposits using the following equation:

s
x = 0.121 – 0.237 N90 – 0.093 N50 + 0.183 N10 + 0.073 N05 + 0.123 N01, (8.2)

where Nx = the estimated number of deposits at the xth percentile. If only 
the 90th, 50th, and 10th percentiles have been estimated, use the 10th esti-
mate for the 5th and 1st also. A dimensionless measure of the spread of a 
distribution, the coeffi cient of variation, can be used to aid in selection of 
an appropriate distribution and to represent the uncertainty of the estimated 
number of deposits. It is defi ned as sx/λ (λ is the expected number) and is 
represented here as percent relative variation.



AN EXAMPLE

In the state of Nevada there are seven known deposits that are defi ned 
in the same way as deposits in the porphyry copper descriptive and 
grade-and-tonnage models (see Singer et al., 2001). The tract permis-
sive for all pluton-related deposits, including porphyry copper, cov-
ers about 41 percent of the area of the state (Cox et al., 1996). The 
well-explored, exposed permissive rocks in Nevada cover an area of 
about 32,800 km2; fi ve of the known porphyry copper deposits are 
in this exposed region. Areas covered by more than 1 km of material 
are excluded from consideration. Concealed permissive areas within 
1 km of the surface are about 84,500 km2 in extent. Two of the known 
porphyry copper deposits are completely covered by younger materi-
als and cannot be considered to belong to the population of deposits 
that are well explored and exposed. If we assume that there are no 
additional porphyry copper deposits to be discovered in the exposed 
plutons in Nevada, then fi ve deposits per 32,800 km2 (the exposed 
permissive area) equals 0.00015 porphyry copper deposits/km2. We 
can use this density of deposits to estimate the expected (mean) 
number of undiscovered porphyry copper deposits in Nevada. Thus, 
0.00015 porphyry copper deposits/km2 times 84,500 km2 of covered 
permissive area equals an expected 12.9 concealed deposits, minus 
the two discovered deposits, which leaves eleven undiscovered con-
cealed deposits that are defi ned in the same way as the deposits in 
the porphyry copper grade-and-tonnage model. Using the regression 
equation for porphyry copper deposits (equations 4.1, 4.2) leads to 
estimates of 6, 12, and 26 or more deposits at the 90, 50, and 10 per-
centiles. After subtracting the two known deposits, the estimates are 
5, 10, and 22 or more deposits, with an expected number of deposits 
of eleven using equation 8.1. For comparison purposes, the subjec-
tive estimate of the expected number of undiscovered porphyry cop-
per deposits in Nevada by Cox et al. (1996) is nine deposits. Thus, 
using a relatively local extrapolation of deposit density and a global 
porphyry copper density equation leads to expected number of un-
discovered deposit estimates of eleven deposits, which is almost the 
same as the subjective expert estimate of nine deposits. These esti-
mates are not completely independent because one of the experts 
used the local extrapolation to guide his independent estimates, but 
the local Nevada extrapolation was not used in development of the 
global equations (equations 4.1, 4.2).
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AN EXAMPLE

In an unpublished study, four geoscientists made subjective probabi-
listic estimates of the number of undiscovered hot-spring mercury de-
posits in a 1:250,000-scale quadrangle in Alaska. They made indepen-
dent estimates at the 90th, 50th, and 10th percentiles (table 8.3). The 
10th percentile, for example, is the number of deposits for which there 
is at least a 10 percent chance of that number of deposits or more.

It was pointed out to participant D that because the number-of-
deposit estimates must be consistent with the grade-and-tonnage 
model, his estimates imply that there is more undiscovered mercury 
in this quadrangle than has been found in the world in this deposit 
type. He replied that he was estimating wisps of cinnabar, not deposits 
consistent with the grade-and-tonnage model. In this case, knowledge 
of the total known amount of metal provided a guide to a fl awed esti-
mate by an economic geologist. Using a variety of different guidelines 
for estimates provides a useful cross-check of assumptions that may 
have been relied upon.

Table 8.3. Independent estimates by four scientists of the number of undis-
covered hot-spring Hg deposits in a quadrangle in Alaska.

Participant A B C D

90 percent chance of at least 1 1 2 9,000 deposits
50 percent chance of at least 3 2 4 10,000 deposits
10 percent chance of at least 6 6 7 11,000 deposits

AN EXAMPLE

In a study of undiscovered resources of Medford, Oregon (Singer 
et al., 1983), two geoscientists made subjective probabilistic esti-
mates of the number of undiscovered kuroko massive sulfi de depos-
its (table 8.4).

Estimates by expert B refl ected the twenty-seven known kuroko-type 
occurrences in this 1:250,000-scale quadrangle. When expert B was asked 
whether half of each of his estimates would be larger than the median 0.3 
million tons of the Sierran kuroko model, he said no and revised his esti-
mates to a number similar to those of expert A. Having a common under-
standing of the need for consistency of the number-of-deposit estimates 
with the grade-and-tonnage model encouraged a consensus estimate to 
be made.

(continued )
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AN EXAMPLE

In a study of tin resources of Alaska, the method of assigning prob-
abilities to anomalies was used to estimate the number of undis-
covered deposits (Reed et al., 1989). The Seward Peninsula in 
Alaska contains two known lode Sn deposits, a skarn (Lost River) 

AN EXAMPLE

In an unpublished study, one geologist estimated the number of un-
discovered Climax porphyry molybdenum deposits in one 1:250,000-
scale quadrangle of Colorado (table 8.5).

If the estimates were consistent with the grade-and-tonnage model, 
then the expected amount of molybdenum in deposits of this type in this 
single quadrangle would be two times the amount found in all known de-
posits. The estimates refl ect the belief that every exposed and unexposed 
pluton might contain very low-grade molybdenum mineralization in the 
1:250,000-scale quadrangle. Thus, the amount of molybdenum that is 
known to exist globally demonstrates that this set of estimates of number 
of undiscovered deposits is unrealistic, and the geologist should reexam-
ine the grade-and-tonnage model and the implications of his estimates.

Table 8.5. Estimates by a geologist of the number of undiscovered Climax 
porphyry Mo deposits in Leadville, Colorado.

Participant A

90 percent chance of at least 4 deposits
50 percent chance of at least 20 deposits
10 percent chance of at least 38 deposits

AN EXAMPLE (continued )

Table 8.4. Preliminary independent estimates by two geologists of the number 
of undiscovered kuroko massive sulfi de deposits in Medford, Oregon.

Participant A B

90 percent chance of at least 1 27 deposits
50 percent chance of at least 2 50 deposits
10 percent chance of at least 5 110 deposits
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and a stockwork/greisen (Kougarak), and a number of Sn occur-
rences that are associated with highly evolved 72- to 80-million-
year-old epizonal biotite granites that intrude rocks of the York and 
Seward terranes. The York terrane consists of carbonate rocks of 
Ordovician to Mississippian age. The Seward terrane is primarily 
composed of early Paleozoic and possibly Precambrian schist and 
marble of blueschist, greenschist, and amphibolite facies. Evolved 
granites or their contact zones crop out at Cape Mountain, Potato 
Mountain, Ear Mountain, Lost River, Black Mountain, and Serpen-
tine Hot Springs. Only the upper contact of the granite is exposed 
at most of these occurrences. This indicates that erosion is just now 
beginning to expose parts of the intrusive systems that could contain 
Sn deposits. It also suggests that other evolved granites may occur 
but not crop out. Industry had conducted a detailed aeromagnetic 
survey of the region that supplemented the USGS gravity survey.

An integrated geophysical model was used to delineate known 
granites and to identify concealed granites. Evolved granites were 
identifi ed at ten locations (table 8.6). The geology of the Seward Pen-
insula is permissive for tin vein, greisen, skarn, and replacement 
deposits. A decision tree was used to evaluate the geologic, mag-
netic, and gravity data, and identify which types of deposits could 
occur around each of the granite plutons, and examine probabilities 
of deposits occurring.

Not all targets are necessarily deposits, and some deposits may 
not be identifi able by methods used. On the basis of the assigned tar-
get probabilities and number of targets, the authors made subjective 
estimates of 5, 9, and 15 or more skarn tin deposits at the 90, 50, and 
10 percentiles.

Table 8.6. Estimation of number of skarn tin deposits in the Seward 
Peninsula, Alaska (after Reed and others, 1989).

Pluton Number Targets Probability Expected Number

Cape Mtn. 2 1.0 2
Potato Mtn. 0 — 0
Ear Mtn. 2 1.0 2
Lost River 3 0.66 2
Black Mtn. 1 1.0 1
Divide 1 0.66 0.66
American River 1 0.5 0.5
Kougorak 2 0.5 1.0
Harris Dome 1 0.5 0.5
Serpentine Hot 

Springs
1 0.5 0.5

Total 10.2
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AN EXAMPLE

In a 50,000 km2 region permissive for porphyry copper deposits, the 
regression density model (equations 4.1, 4.2) would give 90, 50, and 
10 percentile estimates of 5, 10, and 20 deposits, respectively, and 
an expected number of 10.2 deposits from equation 4.3. This regres-
sion distribution has a coeffi cient of variation of 82 percent. Using 
the expected number of deposits from the above regression, a Pois-
son distribution has estimates of 7, 11, and 15 deposits, respectively, 
and a much smaller coeffi cient of variation of 31 percent (table 8.7). 
Between these two end-member coeffi cients of variation there is a 
complete range of possible distributions that can be represented by 
either a negative binominal distribution or a distribution-free model 
generated by MARK3.

Only two of the many possible intermediate models are presented 
in table 8.7. Possible estimates using MARK3 are placed in equation 
8.1 to ensure that they generate the same expected number of deposits 
as the density regression (equation 4.3), and acceptable estimates are 
placed in equation 8.2 so the coeffi cient of variation can be calcu-
lated. Possible estimates using the negative binominal distribution are 
generated by varying p and k parameters so that the expected value 
matches that of the density regression. With a coeffi cient of variation 
of 82 percent, the regression estimates can be viewed as represent-
ing the most uncertainty about the true number of deposits and that 
the deposits are clustered, whereas the Poisson distribution suggests 
less uncertainty and no clustering of deposits. Although the negative 
binomial distribution can be used for quantile estimates at intermedi-
ate coeffi cients of variation, it is somewhat awkward to work with, 
whereas MARK3 regression estimates from equations 8.1 and 8.2 are 
quite easy to generate.

Table 8.7. Some quantile estimates of the number of deposits and 
coeffi cients of variation of select distributions, where the expected number 
of deposits is 10.2, and p = 0.163, k = 2 for the negative binomial 
distribution.

Percentile Regression
Negative
Binomial MARK3 Poisson

90th 5 3 5 7
50th 10 9 10 11
10th 20 23 16 15
5th 25 28 20 16
1st 39 39 27 19
Coeffi cient of 

variation (%)
82 77 55 31
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Suspicious Characters

Numerals representing estimated number of deposits provide information 
that can be helpful in refi ning estimates. The discussion in chapter 6 on 
signifi cant digits in grade-and-tonnage models is relevant to the same issue 
with number-of-deposit estimates. Specifi cally, use of any more than two 
signifi cant digits is misleading when reporting the expected number of 
deposits as estimated from equation 8.1 or the MARK3 program (chapter 9).

Much more subtle are the implied precision and knowledge expressed in 
the number-of-deposit estimates. When the numbers estimated at the 90th, 
50th, and 10th percentiles are all greater than zero, the shape of the fre-
quency distribution is fairly well determined, and the expected number of 
deposits cannot be greatly changed by estimates at the 5th and 1st percen-
tiles. For example, estimates of 10, 15, and 20 deposits at the 90th, 50th, 
and 10th percentiles have fourteen expected deposits when the 5th and 1st 

AN EXAMPLE

In the example below, from Antarctica, no known porphyry copper 
deposits have been drilled because mining exploration is forbidden 
there (Singer et al., 2005). In Antarctica there is a belt of rocks similar 
to those in the Andes of South America. The widespread Mesozoic 
and Cenozoic intrusive and volcanic calc-alkaline rocks in the Ant-
arctic Peninsula and eastern Ellsworth Land are considered a south-
ward extension of the Andes of western South America (Rowley et al., 
1983). On the basis of a 1:5,000,000-scale geologic map by Craddock 
(1972), the belt is about 1.7 million km2 in extent, including shelf 
ice, permanent snow and ice, and water. The land areas, including 
areas mapped as permanent snow and unknown geology, cover about 
1 million km2. Exposed permissive parts of the Andean belt in Ant-
arctica are about 76,000 km2 in extent. Using the regression equations 
for porphyry copper deposits (equations 4.1, 4.2) leads to estimates of 
90 percent, 50 percent, and 10 percent chance of at least 5, 12, and 24 
undiscovered porphyry copper deposits, respectively, in this belt.

Although no porphyry copper deposits have been thoroughly ex-
plored in Antarctica, a number of prospects have been documented. 
Pride et al. (1990) examined four prospects in the northern Antarctic 
Peninsula, and three additional prospects are documented by Rowley 
et al. (1988, 1975). Rowley, Williams, and Pride (1991) summarize 
these prospects and discuss about twenty-fi ve additional occurrences 
that have some characteristics in common with porphyry copper de-
posits. Thus, the estimates made with deposit densities of number of 
undiscovered porphyry copper deposits that are consistent with the 
grade-and-tonnage models certainly seem reasonable.
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percentile estimates are 20 and 20, but only fi fteen expected deposits when 
the 5th and 1st estimates are 25 and 40 deposits. Furthermore, the estimates 
of 25 and 40 deposits imply a great deal more precision and knowledge than 
suggested by the estimates associated with the 90th, 50th, and 10th percen-
tile estimates. Estimates at the 5th and 1st percentiles are intended for use 
when estimates at the 90th and 50th percentiles are zero so that the shape of 
the distribution can be simulated (chapter 9).

Risk Factor

If density models (chapter 4) are used to estimate the number of deposits, 
then a risk factor that expresses the probability that a region might not con-
tain deposits might be necessary. The density models in chapter 4 were con-
structed in a way that excludes barren areas, so when a density estimate is 
made for a tract for which there is some chance of no deposits, that prob-
ability of zero deposits should be explicitly estimated.

Bias in Estimation

Bias exists when estimates consistently deviate from the true value 
(chapter 1). In estimating undiscovered mineral deposits, it is rare when the 
true number of undiscovered deposits is known in any useful time frame, 
so there is a question of how one might determine whether estimates are 
biased. As noted by Meyer and Booker (2001), estimation process issues can 
point to bias, such as the expert not following normative statistical or logical 
rules. These kinds of bias might be identifi ed, for example, when the expert 
has a high estimate for one deposit type in a given tract and a low estimate 
for the same deposit type in another tract that is stated by the expert to be not 
different. Another example would be when the expert states that the depos-
its are clustered in space and yet makes number-of-deposit estimates that 
are consistent with a Poisson distribution, suggesting spatially independent 
deposit locations.

The most straightforward way to identify bias in estimates of number 
of deposits is to use the same tools that are available for guidelines for the 
estimates. Number-of-deposit estimates that are inconsistent with the guide-
lines should at the least raise questions about possible bias. If the estimates 
are noticeably different than one or more guidelines, one should defi nitely 
reexamine the estimates and/or the guidelines. In our experience, the prob-
lem is typically due to an error in an underlying assumption of the asses-
sor. Typical reasons for overestimation of undiscovered deposits include (1) 
estimating the number of occurrences or geochemical anomalies instead of 
mineral deposits, (2) estimating the number of occurrences or “deposits” 
that have tonnages greater than some minimum, and (3) political consider-
ations. The estimated undiscovered deposits must be considered to be from 
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the same frequency distributions as the grade-and-tonnage model in order 
for the estimate of resources to be unbiased.

Using a minimum tonnage to defi ne a deposit (either known or undiscov-
ered) can cause a biased estimate of the number of undiscovered deposits 
because a large number of incompletely explored mineralized systems may 
be known that can never fi t the grade-and-tonnage model of mineral depos-
its. That is, some of the estimated “deposits” will be from the upper tail of 
the frequency of incompletely explored mineralized systems and not from 
the same frequency distribution of tonnages of true mineral deposits. There-
fore, resources calculated from the combined number-of-deposit estimates 
and the grade-and-tonnage model will be biased upward.

Lack of consistency between estimates of number of undiscovered mineral 
deposits and grade-and-tonnage models can lead to bias in the form of severe 
overestimation of undiscovered resources. To insure unbiased resource esti-
mates, the estimated undiscovered deposits must have the same frequencies 
of tonnages and grades as the grade-and-tonnage model. This means not only 
that 90 percent of the estimated deposits are as large as the largest 90 percent 
of deposits in the model, but 50 percent are as large as the median model 
tonnage, and 10 percent are as large as the largest 10 percent in the model. 
This relationship holds for each estimate of number of undiscovered depos-
its regardless of the certainty of the estimate. In addition, some models were 
constructed with spatial distance rules such as the 500-m rule for combin-
ing mineralization in the kuroko massive sulfi de model (Mosier, Singer, and 
Salem, 1983)—these same rules must be applied to the number of undiscov-
ered estimates. Use of the guidelines is crucial to the generation of unbiased 
estimates and to the identifi cation of possible biases.

For example, by 1996, about 5,500 metric tons of gold had been discov-
ered in various kinds of deposits in Nevada. In an assessment of undiscov-
ered base and precious metal-bearing deposits in that state, Cox et al. (1996) 
and Singer (1996), estimated about 4,000 tons of gold in deposits in the 
upper 1 km. This total estimate can be derived by summing the expected 
number of gold-bearing deposits times the expected average grades and the 
expected tonnage of each deposit type. According to an economic geolo-
gist critical of this form of assessment and knowledgeable about Nevada, 
these estimates of undiscovered gold are low by a factor of 100. Thus, he 
estimates that there are 400,000 tons of gold yet to be discovered in Nevada. 
If he were right, the 400,000 tons of gold in Nevada would represent about 
two times the total amount of gold discovered through history in the whole 
world (Singer, 1995). In this case, the guideline of global content is used to 
demonstrate that a subjective estimate made without critical thinking can 
be biased.

Some estimators assume that it is better to make conservative or liberal 
estimates to avoid errors. Conservative or liberal in this context are just other 
words for biased, which is a serious error. Logic dictates that estimates be 
unbiased and explicitly state the uncertainty. Fortunately, number-of-deposit 
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estimates in three-part assessments are very hard to bias because they must 
be consistent with the grade-and-tonnage model, the descriptive model, and 
all information available, and they are typically made by consensus.

Summary

The goal of many assessors is to make unbiased quantitative assessments in 
a format needed in decision-support systems so that the consequences of 
alternative courses of action can be examined. Internally consistent descrip-
tive, grade-and-tonnage, deposit-density, and economic models, and the 
design of three-part assessments reduces the chances of biased estimates of 
the undiscovered resources. Biases can be introduced into these estimates 
either by a fl awed grade-and-tonnage model or by the lack of consistency of 
the grade-and-tonnage model with the number-of-deposit estimates.

Estimates of number of undiscovered deposits explicitly represent the 
probability (or degree of belief ) that some fi xed but unknown number of 
undiscovered deposits exist in the delineated tracts. As such, these estimates 
refl ect both the uncertainty of what may exist and a measure of the favorabil-
ity of the existence of the deposit type. Although there are no fi xed methods 
for making estimates of number of undiscovered deposits, guidelines to help 
make these estimates are available. Using a variety of different guidelines for 
estimates both provides a useful cross-check of assumptions that may have 
been relied upon and signifi cantly reduces the chances of biased estimates. 
Guides include the following:

1. The deposit frequency distribution is expected to be either Poisson 
or, perhaps more likely, negative binominal with heavy right tails.

2. About half of each estimate should be larger than the median ton-
nage and median grade of the deposit type being estimated.

3. Rough estimates can be made with the universal regression equation 
that relates permissive area and deposit size to number of deposits.

4. More refi ned estimates are available as deposit-density models for 
some deposit types.

Until new more refi ned estimation guidelines are available, it seems pru-
dent to rely on the universal regression equation followed by mineral 
deposit specialists to make subjective estimates because the specialists 
can apply their experiences and observations to the process. This kind 
of activity is not unusual; geologists commonly make estimates that, 
although not explicitly quantitative, are subjective and have uncertainty, 
such as making geologic cross sections. Experience from meteorology sug-
gests that consensus schemes perform better than most individual esti-
mators, and the best estimates are made when objective estimates such 
as those from guides (table 8.2) are part of the information supplied to 
subjective estimators.
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Sensitivity analysis of porphyry copper deposits shows that the greatest 
opportunity for reducing uncertainty in exploration and resource assess-
ment lies with lowering the uncertainty associated with tonnage estimates. 
This means that selection of the proper grade-and-tonnage model is prob-
ably more critical to the fi nal assessment than small errors in the num-
ber-of-deposit estimates. By following the procedures presented here and 
consistently applying the guidelines, signifi cant biases in estimated number 
of undiscovered deposits are unlikely.

Once estimates of the number of undiscovered deposits have been 
obtained, the quantifi cation of undiscovered mineral resources using the 
three-part methodology is complete. Depending upon what question the 
assessment is to answer, additional analysis might be required. It is very 
likely that data on discovered resources will need to be gathered to complete 
the picture of the mineral resources of the region. Also it may be necessary to 
combine the estimates of undiscovered deposit with the grade-and-tonnage 
data via Monte Carlo simulation and to evaluate the proportion of the result-
ing resources that will be economic under assumed conditions. We have 
already discussed the use of engineering cost models (chapter 5) to perform 
part of this analysis, and refer the reader to Root, Menzie, and Scott (1992) 
for a detailed discussion of simulation and chapter 9 for an overview.
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Perspective

Now that all of the fundamental parts of a quantitative mineral resource 
assessment have been discussed, it is useful to refl ect on why all of the work 
has been done. As mentioned in chapter 1, it is quite easy to generate an 
assessment of the “potential” for undiscovered mineral resources. Aside 
from the question of what, if anything, “potential” means, there is the more 
serious question of whether a decision-maker has any use for it. The three-
part form of assessment is part of a system designed to respond to the needs 
of decision-makers. Although many challenging ideas are presented in this 
book, it has a different purpose than most academic reports. This book has 
the same goal as Allais (1957)—to provide information useful to decision-
makers. Unfortunately, handing a decision-maker a map with some tracts 
outlined and frequency distributions of some tonnages and grades along 
with estimates of the number of deposits that might exist along with their 
associated probabilities is not really being helpful—these need to be con-
verted to a language understandable to others. This chapter summarizes how 
these various estimates can be combined and put in more useful forms.

If assessments were conducted only to estimate amounts of undiscovered 
metals, we would need contained metal models and estimates of the number 
of undiscovered deposits. Grades are simply the ratio of contained metal to 
tons of ore (chapter 6), so contained metal estimates are available for each 
deposit (table 9.1).

9
Integration of Grades, Tonnages, Number 
of Deposits, and Economic Effects
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In the simplest of all cases, one could estimate the expected number of 
deposits with equation 8.1 (see chapter 8) and multiply it by the expected 
amount of metal per deposit, such as the 27,770 tons of copper in table 9.1, 
to make an estimate of the expected amount of undiscovered metal. As 
pointed out in chapter 1, expected amounts of resources or their values 
can be very misleading because they provide no information about how 
uncommon the expected value can be with skewed frequency distributions 
that are common in mineral resources; that is, uncertainty is ignored. In the 
next simplest case, one could use a Poisson distribution to represent the 
number of undiscovered deposits with a mean equal to the expected num-
ber of deposits. A lognormal distribution with the same mean and standard 
deviation as the logged metal content in the model deposits would be used 
to represent contained metal in undiscovered deposits. This situation can 
be solved analytically as shown by Allais’s study of the Algerian Sahara 
(Allais, 1957), where he used value rather than contained metal. This for-
mulation could also be solved with a simulator that would take little time 
to prepare and run because only two standard distributions are used and 
independence between them is reasonable to assume. It is tempting to 
think that one could just add or, if appropriate, multiply the percentiles 
of the various frequency distributions together. Unfortunately, this is very 
dangerous mathematically because in most situations these percentile val-
ues are not additive, as shown in the example of fi gure 9.1. Simulation is 
required in these situations.

In the next level of complexity, a Poisson distribution would again rep-
resent the number of undiscovered deposits and lognormal distributions 
would represent the distributions of tonnage of ore and of grades with the 
assumption of independence of grade and tonnage (see chapter 6 for details). 
This can also be solved analytically for metal content or gross value but may 
be misleading if there are any signifi cant correlations among the variables. 
Taking correlations into account increases the complexity to the point where 
simulation is preferred. This is the formulation used by Drew et al. (1986) 
in an early version of a Monte Carlo simulator called MARK3. This method 
also underestimates total uncertainty if the experts believe that there is 

Table 9.1. Grades, tonnages, and contained copper in hypothetical 
grade-and-tonnage model.

Deposit Tons Cu Grade % Tons Cu

A 6,400,000 1.7 108,800
B 221,000 1.2 2,652
C 93,000 4.37 4,064
D 1,260,000 1.6 20,160
E 447,000 0.71 108,800

Mean  =  27,770
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clustering of deposits because the Poisson distribution requires an assump-
tion of independence of values in space, and it has a lower variance than do 
clustering distributions (see chapter 8).

Determining whether the undiscovered metals might be economic 
to recover is an important output of most assessments, and grades and 
tonnages are necessary inputs needed to estimate economic viability 
of mineral deposits (chapter 5). Thus, in order to be able to provide 
decision-makers with information about undiscovered mineral resources 
in a form demonstrating possible consequences of their decisions, it is 
necessary to have a general simulator that incorporates economic fi lters. 
How the economic effects are incorporated in a simulator is discussed 
after the simulation of tonnages and grades and number of undiscovered 
deposits are presented.

Number of Deposits

In chapter 8 we noted that estimates of number of deposits explicitly rep-
resent the probability (or degree of belief) that some fi xed but unknown 
number of undiscovered deposits exist in the delineated tracts. Uncertainty 
is refl ected by the spread of the number-of-deposit estimates (quantiles) 
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Figure 9.1 Simulations of two random normal distributions (mean = 0.0, 
standard deviation = 1, mean = 0.5, standard deviation = 1) showing that 
although the means can be mathematically added (0.601 = 0.601), adding 
the 90th quantiles produces different results than obtained from the 
quantiles of the sum of the two variables (2.43 ≠ 2.90), as does adding the 
median (0.555 ≠ 0.718) and the 10th quantiles (–1.25 ≠ –2.09).
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associated with the 90 percent quantile to the 10 or 1 percent quantile, with 
a large difference in the numbers suggesting great uncertainty. To represent 
the probabilities of each possible number of deposits that may exist, we 
need to either have made individual estimates of the probability for each 
of these possible numbers of deposits or have a shortcut. For small num-
bers of deposits, estimating the probabilities might be reasonable, but for 
larger numbers of deposits, this procedure becomes impractical. If we were 
willing to make some assumptions, we might use the well-known Poisson 
distribution to estimate these individual probabilities. Because the assump-
tions required with the Poisson distribution are not always appropriate (see 
chapter 8), we use another, less restrictive way to estimate the probabilities 
for each possible number of deposits.

In the MARK3 program (Root, Menzie, and Scott, 1992), an algorithm was 
presented for estimating the probabilities associated with the intermediate 
numbers of deposits between estimated the number of deposits that may be 
present in the tract at a 90 percent level, a 50 percent level, and a 10 per-
cent level. Interpretation of these quantile estimates requires care. Because 
of their “at least” format (Root, Menzie, and Scott, 1992), a unique underly-
ing probability distribution cannot be specifi ed on the basis of the elicited 
distribution alone. Root, Menzie, and Scott (1992) provide a methodology 
for obtaining a probability distribution that is consistent with these quan-
tile estimates. The shaded areas in fi gure 9.2 indicate regions where distri-
butions are consistent with 90, 50, and 10 percentile estimates of 1, 2, or 
4 deposits. An infi nite number of distributions are consistent with the three 
estimates of number of deposits. Root et al.’s method chooses a distribution 
that is approximately in the middle of all possible choices, as indicated by 
the MARK3 estimates at each number of deposits in fi gure 9.2.

In some cases, it is desirable to make estimates at the 5 and 1 percent 
levels, so here we include a version of Root et al.’s algorithm that has been 
expanded to include estimating probabilities associated with number of 
deposits estimated at the 90, 50, 10, 5, and 1 percent levels (see appendix 2). 
The fi ve number-of-deposit estimates associated with these percent levels 
divide the possible nonnegative integers into six intervals: 0 to N(9), N(9) 
to N(5), N(5) to N(1), N(1) to N(05), N(05) to N(01), and N(01) to infi nity. 
Integers in these six intervals receive 10%, 40%, 40%, 5%, 4%, and 1%, 
respectively of the unit probability. In Root et al.’s method of allocating 
probabilities, the numbers associated with N(9) and N(5) lie half in each of 
the two intervals of which they are endpoints, and they receive probability 
from each, but half of what an interior point gets. N(01) receives half of what 
the interval N(05) to N(01) receives plus 0.01. The largest possible number 
of deposits that is given a probability is that associated with N(01). An algo-
rithm to allocate the total probability among all possible number of deposits 
is described in appendix 2.

An example of how the algorithm allocates the probabilities is shown 
in fi gure 9.3. Cumulative probabilities like those shown in fi gure 9.3 are 
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used in the MARK3 simulator to properly weigh the frequencies of different 
numbers of deposits, as illustrated in fi gure 9.4. There is an option in the 
simulator where the user can specify the probability of zero deposits: the 
probabilities for integers greater than zero are multiplied by a constant to 
keep the total probabilities equal to 1. In operation, the simulator starts by 
selecting a random number between 0 and 1 that is drawn from a uniform 
distribution. This random number is used to select a number of deposits 
from the y-axis shown in fi gure 9.4. The simulator then draws that number 
of tonnages from the distribution of tonnages in grade-and-tonnage model of 
the appropriate deposit type.

Tonnages and Grades

In each version of the MARK3 program, there are fi les representing the grades 
and tonnages of each deposit type that are the source data for the grade-
and-tonnage models (chapter 6). The deposit data in these fi les are grouped 
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Menzie, and Scott (1992).
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according to suites of metals that have been reported. For example, in table 
9.2 the grade-and-tonnage data for 31 carbonatite deposits are grouped into a 
suite of 7 deposits with niobium and rare-earth grades reported, 17 deposits
with only niobium reported, and 7 deposits with only rare-earth grades 
reported. Regardless of the kind of simulation performed in MARK3, these 
groups are selected in proportion to the frequency of deposits in each group. 
For instance, when a simulation requires the selection of a tonnage from a 
carbonatite deposit, 17 out of 31 times it will select from the group of deposit 
tonnages that only have niobium reported.

Using Root et al.’s methods, these suites form the basis for distributions 
and dependencies in two ways to perform the simulations of grades and ton-
nages. One option uses approximations of lognormal distributions, and the 
other uses approximating piecewise linear distributions. The second, more 
commonly used, is called the empirical option, and the fi rst is called the 
lognormal option. The user of the simulation program selects the desired 
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Figure 9.4 Schematic illustration of the MARK3 simulator when the 
estimated number of deposits is 2 at the 90% level, 4 at the 50% level, 
and 7 at the 10% level. The deposit type is porphyry copper. Cf stands for 
cumulative frequency. Original fi gure by W. David Menzie, Don Singer and 
Joe Briskey. 

option. Because of the complexity of the algorithms needed to account for 
dependencies among the variables and for producing unbiased representa-
tions of the model grades and tonnages, a detailed description of the methods
is not produced here, and the reader in referred to the original source (Root, 
Menzie, and Scott, 1992).

Regardless of which option is selected, the basic nature of the simulation 
can be illustrated in fi gure 9.4. As noted above, the Monte Carlo simulator 
draws random numbers between 0 and 1.0. For each of the 4,999 draws, a 
number of deposits is selected, and for that number of times, the simulator 
selects the suite and a tonnage and as many commodity grades as exist in 
the suite. Output from the simulator typically displays tables of frequencies 
of number of deposits, tonnages, and contained metals. In addition, plots of 
cumulative frequencies as shown in fi gure 9.4 are available. The procedures 
used in Root et al.’s algorithms properly represent the frequencies of number 
of tonnages, grades, and contained metals, as demonstrated by fi gure 9.5. 
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Table 9.2. Grade and tonnage data for carbonatite deposits grouped according to 
suites of metals reported.

Deposit Metric Tons/106 Nb2O5 Grade % RE2O5 Grade %

Bayan Obo 750 0.1 4.1
Araxa 462 2.48 0.033
Oka 221 0.23 0.1
Mrima Hill 50.8 0.67 0.59
Iron Hill 36.3 0.25 0.01
Catalao I 21 0.98 1.016
St. Honore 

(Soquem)
16 0.69 0.0088

Panda Hill 272 0.3
Salitre II 200 2
Tapira 166 1.18
Martison Lake 140 0.35
Sukula 118 0.25
Mbeya 116.9 0.31
Nemogos (Lackner 

Lake)
112.2 0.236

Serra Negra 60 1.5
Sove 55.3 0.23
James Bay 36.3 0.52
Dominion Gulf 33 0.39
Lueshe 30 0.35
Ondurukurme 7.2 0.3
Bingo 7.1 2.86
Catalao II 2 2.18
Manitou Island 1.9 0.86
Kaiserstuhl 0.63 0.5
Phaloborwa 2210 0.57
Amma Dongar 105 3
Mountain Pass 90 5
Mushgia Khudag 6.1 1.37
Pococ de Cardas 6 5
Ludiin Gol 0.37 3.2
Kangankunde 0.3 4.7

Here, the average content of metals, calculated in the same way as in table 
9.1, is plotted against the mean content of the same metals for several differ-
ent deposit types; the correlation coeffi cient between the input metals and 
the simulated output metals is greater than 0.99, and the slope of the regres-
sion line is 1.0, demonstrating that the simulator introduces no bias. These 
simulations were done with the empirical option of the program (Duval, 
2004). In general, the empirical option is most commonly selected largely 
because it so faithfully reproduces the original data. Software implementing 
these features is available in Bawiec and Spanski (2009).
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ASSESSMENT EXAMPLE

In 1976, the U.S. Congress instructed the Bureau of Land Manage-
ment (BLM), in the U.S. Department of Interior (DOI), to review public 
lands under its jurisdiction for suitability as wilderness areas. The 
U.S. Geological Survey (USGS) and the former U.S. Bureau of Mines 
(USBM), sister agencies of BLM in DOI, were required to perform min-
eral surveys on proposed lands to inform DOI, which would make 
recommendations about the lands to Congress. Reports from USGS 
and USBM on 2 million acres of BLM proposed wilderness areas were 
complete by the 1980s (Beikman et al., 1983). Areas were assessed as 
having high, medium, or low potential for mineral commodities or for 
types of mineral deposits. By 1985, offi cials in DOI began to question 
the utility of these qualitative assessments as a basis for making deci-
sions on lands containing multiple resources.

Designating areas wilderness required developing an environ-
mental impact statement (EIS) and holding public hearings. If USGS 
and USBM mineral surveys were completed before the fi nal EIS, 

156



BLM included these studies as part of the EIS. Many mineral sur-
veys were completed after the EISs (Marcus et al., 1986), but surveys 
in Nevada and Colorado were completed in time in early 1990. In 
1990, the Colorado BLM offi ce fi nalized its recommendations with-
out making changes based on the mineral surveys. The Nevada BLM 
offi ce recommended changing four areas from suitable to unsuit-
able for wilderness, and changed boundaries of three other areas.

In May 1991, DOI instructed the USGS to perform quantitative as-
sessments for nine areas in Nevada and Colorado previously deter-
mined to contain signifi cant high or moderate potential for undiscov-
ered or discovered mineral resources. Assessment teams performed 
three-part assessments only on deposit types identifi ed in the original 
wilderness reports. Estimates of numbers of deposits were combined 
with appropriate grades and tonnages models using the MARK3 simu-
lation program. Because the USBM did not have personnel resources 
to conduct economic evaluations using the potential supply metho-
dology, gross-in-place values of undiscovered resources in the areas 
were calculated. In late June, results for the nine areas were transmit-
ted to BLM and USBM and published in August after additional study 
areas in Oregon and Utah were evaluated at DOI’s request (McCammon 
et al., 1991). The quantitative assessment report clearly stated that in 
four of the areas, there was a signifi cant chance that the gross-in-place 
value of undiscovered mineral resources was negligible.

BLM took the position that changes to wilderness proposals for-
mulated by their state offi ces might require a supplemental EIS and a 
period of public discussion. A Colorado newspaper, the High Country 
News (15 July 1991, p. 4), published an article where they quoted BLM 
offi cials opposing changes to the wilderness proposals and quoted rep-
resentatives of environmental groups who characterized the review 
as a reevaluation, and expressed the opinion that it violated the law 
because it took place after the fi nal EIS. On 3 September, an Assistant 
DOI Secretary determined that two Colorado, three Nevada, and six 
Utah wilderness study areas be excluded from DOI’s wilderness pro-
posals. BLM appealed the decision to the secretary of DOI, who agreed 
to reinstate one Nevada and fi ve Utah wilderness study areas. In Octo-
ber 1991, several environmental groups fi led suit against the secretary 
of DOI, asking that the secretary be found in violation of the law and 
quantitative assessments be released as supplemental EISs.

These policy and political actions were also joined with consider-
able criticism of quantitative mineral resource assessment following 
the decisions (see Drew, 1997). During the fall of 1991, criticism of the 
three-part quantitative assessment from within and outside the USGS 
was intense. In the face of this criticism, the USGS let a contract to con-
duct a review of the quantitative-mineral-resource assessment meth-
odology. The review committee in its report (Harris and Rieber, 1993) 
concluded, “Many of the recent criticisms of the methodology are ei-
ther fundamentally incorrect or exaggerated in terms of their technical 

(continued )
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Economic Effects

Each of the 4,999 realizations of the simulation that produces a deposit 
(not all necessarily do) has a tonnage and one or more associated grades. 
Because only some of the deposits used to create grade-and-tonnage models 
were economic to mine, it is not clear which, if any, of the simulated undis-
covered deposits might be economic to mine in the future. Simulated grades 
and tonnages along with assumed prices of metals allow the calculation
of value per ton and gross value of each deposit. Costs of each of these 
simulated deposits could be estimated by using the cost models discussed 
in chapter 5.

Selection of the appropriate cost model depends on the nature of the 
deposit type being simulated and on location effects such as access and 
depth to the deposit. Each deposit type tends to have a particular shape and 
form, which are important determinants of appropriate mining methods. 
In addition, there is a history of mining methods linked to certain deposit 
types. Deposits that are remote and that do not have existing infrastructure 
are costlier to develop and mine, so these costs should be accounted for 
in some way. Depth of the deposit affects decisions about whether under-
ground mining is required and costs associated with deeper mining, such as 
capital and operating costs. Because modern cost coeffi cients are still being 
researched, in 2008 there still was no publicly available version of software 
implementing economic fi lters.

ASSESSMENT EXAMPLE (continued )

merit.” The panel recommended gross-in-place value be replaced by 
reduced-gross-in-place value for deposits that would be economic 
when potential supply analysis could not be made. National elections 
in 1992 led a new Secretary of the Interior, who overturned his pre-
decessor’s decision regarding the Colorado, Nevada, and Utah wilder-
ness areas.
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Perspective

It is commonly said that mineral exploration is a risky business, but what 
does that really mean? Although exploration can be fi nancially rewarding, 
there is a high probability that a single venture will be a failure. Risk is 
defi ned as chance of failure or loss and its adverse consequence (i.e., failure 
or loss). Risk differs from uncertainty in that uncertainty simply means lack 
of knowledge of the outcome or result, whereas risk involves a loss. Thus, 
one could be uncertain of an outcome, but not necessarily be at risk of los-
ing something. In risk analysis, two quantities are estimated: the magnitude 
(severity) of the possible adverse consequence(s), and the likelihood (prob-
ability) of occurrence of each consequence. Procedures of risk analysis are 
well established, if not simple, and are applied in both business and engi-
neering (Aven, 2003; Bárdossy and Fodor, 2004; Davis and Samis, 2006). 
Mineral exploration is an economic activity involving risk and uncertainty, 
so risk also must be defi ned in an economic context in which the extent of 
the loss is defi ned. Successful mineral exploration strategy requires identifi -
cation of some of the risk sources and consideration of them in the decision-
making process so that controllable risk can be reduced.

It is not uncommon to see recommendations that exploration fi rms should 
accept all projects with positive expected monetary values—that is, projects 
that have a positive economic value after being multiplied by the probabil-
ity of deposit discovery and subtraction of exploration costs. Clearly, this 

10
Exploration Risk
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strategy would be unwise for a fi rm with limited resources if the chance 
of failure were signifi cant. Both expected monetary values and the prob-
abilities of various outcomes such as economic failure should be considered 
in the decision-making process. Because economic return, when measured 
by net present value, is closely related to the size of mineral deposits, and 
because deposit sizes can be represented by highly skewed frequency dis-
tributions, achieving expected monetary or higher values tends to be a low-
probability outcome. This and the typical rareness of mineral deposits are 
the fundamental reasons for the high risk in mineral exploration. Mineral 
exploration can be viewed as a process in which resources are successively 
expended to reduce the uncertainty about where, how large, and how rich 
undiscovered mineral resources are. It can be characterized as a multistage 
search process in which only the last stage, drilling or digging, is usually 
defi nitive. At each stage, an attempt is made to reduce the area to which the 
next, typically more expensive, stage of search is applied. Each stage may 
be viewed as an attempt to discriminate between areas that contain valuable 
deposits and areas that do not. Because deposit detection is probabilistic, at 
each stage, classifi cation errors of both types (i.e., rejecting valuable deposits 
and accepting nonvaluable prospects) and their associated costs must be 
 balanced against the possible gains of discovering an economic deposit.

The exploration department of a major zinc producer found it essential 
to document a robust decision-making process in order to maintain internal 
and investor support (Penney et al., 2004). Zinc deposits from around the 
world were classed by type, grade, and tonnage models developed for each, 
cost fi lters were applied to each, and tracts around the world were delineated 
where the types could occur (Penney et al., 2004). Their process was the 
same as that recommended in this book, with the exception that they ranked 
or scored tracts rather than estimating the number of undiscovered deposits.

There is a close connection between planning for exploration and the kind 
of mineral resource assessments discussed in this book in that the uncertain-
ties are explicitly identifi ed and quantifi ed in these assessments. Explora-
tion risk is a function of the rareness of mineral deposits and of the skewed 
distributions of tonnage and grade (chapters 2 and 6). Very large deposits are 
needed to sustain supply and are more likely than small deposits to have 
high net present values, and economic trends require larger sized deposits 
in order to take advantage of economies of scale (chapter 5). Many major 
exploration companies today require a minimum size of what is commonly 
called a “world-class” deposit. Exploration risks for these deposits can be 
reduced using strategies based on geology, statistics, and economics. The 
analysis by Penney et al. (2004) demonstrated the importance of including 
infrastructure costs in considering the economics in remote locations (see 
chapter 5). Selection of deposit types that had a high probability of being 
economic given seven infrastructure categories was a critical step in their 
decision-making about where to explore. Remote locations with no existing 
infrastructure signifi cantly reduced the number of desirable deposit types.
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Here we present the basic ideas of risk as they apply to exploration—a 
basic equation provides a way to examine risk in this chapter. The most 
direct way of reducing risk by increasing the number of prospects exam-
ined is considered fi rst. Another way to reduce risk is lowering the proba-
bility of failure by directing exploration to deposit types that have a higher 
probability of being found. Risk reduction is then considered through 
using targeted geologic settings. Various means are also available to reduce 
economic risk in the exploration, development, and mining phases (Moore 
and Drew, 1979). Finally, we discuss risk reduction by using prior infor-
mation and by changing the assumption of independence in a sequence 
of exploration examinations, that is, by learning. Although it is implic-
itly assumed that multiple decisions are made in an exploration program, 
some of the tools presented here can be used in small companies for single-
event decisions. The ingredients for exploration risk analysis are the three 
parts of assessments that form the core of this book, along with the deposit 
models.

Basics of Risk

In its most elemental form, risk can be considered the probability of failure 
(and its associated cost). For example, if we predict heads when a fair coin 
is fl ipped, the risk of failure is that tails might be the result. In the long term, 
under these conditions, we expect that our probability of losing on any sin-
gle coin toss will be 0.5. We can also ask what is the probability of two losses 
(tails) in a row. If the results of one coin toss have no effect on the next coin 
toss, the events are independent, and the probability of two losses is 0.25 
(i.e., 0.5 × 0.5). We can also calculate the probability of at least one success 
(head) as 1 minus the probability of both coin tosses being tails (1.0 − 0.5 × 
0.5), or 0.75. The same rules apply if there are three coin tosses; the prob-
ability of at least one success is 1.0 − 0.5 × 0.5 × 0.5, or 0.875. Generalizing 
this: the probability of at least one success can be estimated as 1.0 minus the 
probability of failure multiplied by itself as many times as there are trials:

 Psuccess = 1 − (pfailure)
n (10.1)

where pfailure is the probability of failure in one trial, and n is the number of 
trials. These simple concepts form the foundation for examining exploration 
risk and reducing it to acceptable levels. In the following sections, each part 
of this equation is examined.

Slichter (1960) said that the only way to avoid gambler’s ruin in mineral 
exploration (equation 10.1) was to have enough capital to have many trials, 
that is, have a large n (see fi gure 10.1). Thus, the classic way to reduce risk 
in exploration is to increase the number of prospects examined (n). Consid-
eration of this was central to the successful exploration and discovery of 
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the Middle Tennessee zinc deposit at Elmwood, Tennessee (Callahan, 1977). 
The number of prospects that must be examined for a fi xed probability of at 
least one success, (Psuccess), can be calculated as

 n = log (1 − Psuccess)/log  (pfailure). (10.2)

Risk reduction by increasing the number of prospects examined, whether 
through submittals from other companies or from internal prospect genera-
tion, should give a signifi cant advantage to large fi rms because only they 
would have the fi nancial resources to pursue such a policy. Joint venturing, 
where exploration expenses, responsibilities, and benefi ts are shared among 
companies, is the most common way to take advantage of this method of 
risk reduction, such as discoveries at Yanacocha, Peru, Ladolam, Papua New 
Guinea, and Lone Tree, Nevada (Sillitoe, 1995). Along with the reduced risk 
of economic failure comes a reduced fi nancial return in joint ventures. Even 
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with very large resources for exploration, at some point, expenses of explo-
ration can exceed the value of the target found, so there are limits to this 
method. However, there are other ways to reduce exploration risk that have 
some advantages over this brute force method.

Risk Reduction by Changing Probability of Failure

It is clear from fi gure 10.2 that if the probability of failure in a single trial 
can be reduced, then the probability of at least one success increases dra-
matically for a given number of trials. Looking for targets that are easier to 
fi nd can reduce the probability of failure per trial where a trial refers to the 
examination of a prospect or a deposit that might be economic.

In mineral exploration, discovering easier to fi nd targets means look-
ing for more widely occurring and typically smaller deposits, or looking 
in places previously unexplored. The problem is that at some point, the 
deposits are so small that they are not economic to mine. Small deposits and 
occurrences are relatively numerous, so they would quickly consume avail-
able exploration and development money if they were the target (chapter 5). 
The importance of target size on exploration risk can be shown by the fol-
lowing equation in which the expected amount of metal is estimated from a 
population of deposits (Singer and Kouda, 1999a):

 E(metal) = E(n) • 10(ûtons + vartons/2 + ûgrade + vargrade/2) (10.3)
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where E(metal) is the expected amount of metal, E(n) is the expected num-
ber of deposits, ûtons is the mean of logged tonnage, vartons is the vari-
ance of tonnage, ûgrade is the mean of logged grade, and vargrade is the 
variance of grade. An important measure of economic success, net present 
value ( chapter 5), depends on contained metal—sensitivity of the expected 
amount of metal to number of deposits, and their grades and tonnages, can 
be estimated from equation 10.3. An example using equation 10.3 with por-
phyry copper deposits is shown in fi gure 10.3. A 10 percent change in mean 
grade (base change = 1.1 or 0.9) results in a 55 percent increase (change 
in expected metal = 1.55) or 35 percent decrease in expected metal con-
tent. Expected metal content changes 10 percent when there is a 10 percent 
change in the expected number of deposits. A 10 percent variation in mean 
tonnage results in a 650 percent increase (data not shown) or 85 percent 
decrease in expected metal content (fi gure 10.3). Variation in mean tonnage 
is of overwhelming importance in determining metal content. Although 

1.31.21.11.00.90.80.7
0

1

2

3

4

5

Number of deposits
Tons
Variance tons
Variance grade
Grade

Change from base expected value

C
ha

ng
e 

in
 e

xp
ec

te
d 

am
ou

nt
 o

f m
et

al

Figure 10.3 Sensitivity of expected amount of copper in porphyry copper 
deposits with respect to possible changes in expected number of deposits 
and means and variances of log tonnage and log copper grade.



Exploration Risk  165

we have assumed that the distribution of deposit sizes and grades can be 
represented by independent lognormal distributions in equation 10.3, any 
distribution that honors the highly skewed nature of deposit tonnages will 
produce similar results (chapter 2). Based on these results, the greatest 
opportunity for reducing uncertainty and risk in exploration and resource 
assessment seems to be by lowering the uncertainty associated with tonnage 
estimates, followed in importance by uncertainty associated with grade esti-
mates. Exploration enterprises therefore commonly use an economic fi lter 
(Penney et al., 2004; see also chapter 5) that is made operational by requir-
ing a minimum size deposit. This points to the principal source of risk in 
mineral exploration: in order to be economically successful, explorationists 
seek a rare occurrence in nature, a mineral deposit, and they seek the least 
common size of mineral deposit, the exceptionally large deposit.

ASSESSMENT EXAMPLE

Assisting industry in making informed decisions on high-risk explora-
tion in poorly explored areas covered by shallow sediments was the 
main goal of GeoScience in Victoria, Australia, in their assessment of 
undiscovered gold in the Bendigo Zone (Lisitsin et al., 2007). More 
than 2,000 metric tons of gold have been produced from an area of 
about 15,000 km2 in the central, mostly exposed, part of the Bendigo 
Zone. The Cenozoic cover effectively masks the prospective 7,600 km2

Paleozoic rocks of the northern Bendigo Zone and precluded the 
large-scale early gold prospecting that led to discoveries of the gold 
deposits in the exposed area to the south. Although there was an 
estimated 90 percent chance of 15 or more and a 50 percent chance of 
24 or more undiscovered deposits, most of the total undiscovered gold 
is expected to be in deposits that contain more than 31 tons (1 mil-
lion ounces) of gold. Risk of exploration failure critically depends on 
the success of fi nding one of the few largest deposits from the highly 
skewed distribution of gold in this kind of deposit—critical informa-
tion in exploration planning (see chapter 6).

Identifi cation of minimum size deposits can be addressed by recognizing 
and using the signifi cant differences in grades and tonnages among dif-
ferent types of mineral deposits (chapter 6). These differences are clearly 
demonstrated in fi gure 10.4, where, if the objective is fi nding a world-class 
gold deposit (at least 100 tons of gold), in porphyry Cu, Homestake Au, or 
Comstock epithermal Au deposits, then porphyry copper deposits require 
fewer deposits to be examined than either of the deposit types noted for 
their gold, all other things being equal. Similar differences of the proportion 
of world-class deposits exist among deposit types for other metals (tables 
10.1 through 10.5).
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Figure 10.4 Probability of at least one deposit containing at least 100 tons of 
gold plotted against number of deposits needed to be examined by deposit 
type.

Because of the high correlation between tonnage of ore and tonnage of 
contained metal in deposit types (Boldy, 1977; Singer, 1995) and the com-
mon association of lead and zinc, many world-class lead deposits are also 
world-class zinc and perhaps world-class silver deposits. Thus, although the 
goal may be stated in terms of one contained metal, the chances of success 
can be affected by searching for different deposit types also affecting where 
exploration takes place because of the linkage between deposit types and 
geologic settings. This strategy was key to Homestake’s success in fi nding 
the McLaughlin hot-spring gold deposit (Anderson, 1982).

These chances must be weighed against the profi tability of different 
types, abilities of the searchers, number of undiscovered deposits that 
might exist, areas available for search, and regional or local differences 
within types. One might choose to search for Mississippi Valley Zn-Pb 
districts or kuroko massive sulfi de deposits of which perhaps 90 percent 
of known deposits or districts have been economic, before searching for 



Table 10.1. Percent of world-class gold deposits by deposit type.

Deposit Type Number of Deposits
Percent Deposits 

>100 t gold

Epithermal quartz alunite Au 24 29
Sediment-hosted Au 48 17
Porphyry Cu 422 20
Hot-spring Au-Ag 27 11
Comstock epithermal vein 166 4
Homestake Au 243 11
Creede epithermal vein 31 6
Low-sulfi de Au-quartz vein 413 6
Replacement-skarn Zn-Pb 147 1
Kuroko massive sulfi de 421 2

Table 10.2. Percent of world-class copper deposits by deposit type.

Deposit Type Number of Deposits
Percent Deposits 

>2 × 106 t Cu

Sediment-hosted Cu 141 15
Porphyry Cu 422 32
Kuroko massive sulfi de 421 1

Table 10.3. Percent of world-class zinc deposits by deposit type.

Deposit Type Number of Deposits
Percent Deposits 
>1.7 × 106 t Zn

Mississippi Valley Zn-Pb 111 20
Shale-hosted Zn-Pb 57 39
Replacement-skarn Zn-Pb 147 14
Sandstone-hosted Pb-Zn 22 10
Kuroko massive sulfi de 421 7
Creede epithermal vein 31 3

Table 10.4. Percent of world-class lead deposits by deposit type.

Deposit Type Number of Deposits
Percent Deposits 

>1 × 106 t Pb

Shale-hosted Zn-Pb 57 39
Mississippi Valley Zn-Pb 111 11
Replacement-skarn Zn-Pb 147 16
Sandstone-hosted Pb-Zn 22 18
Kuroko massive sulfi de 421 2
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porphyry copper deposits of which about 50 percent have not been devel-
oped. Information from data used to construct grade and tonnage mod-
els (chapter 6) is useful in determining chances of different size deposits 
occurring. If the number of known deposits is proportional to the num-
ber yet to be discovered, then one would search for kuroko type deposits 
with more than 400 discovered, rather than the four times more scarce 
Mississippi Valley Zn-Pb districts or the less common sediment-hosted 
gold deposits.

Risk Reduction within Deposit Types

The strategy of focusing exploration only on world-class deposits has the 
advantage that the risk of economic loss from mining an uneconomic deposit 
is signifi cantly reduced at the expense of having few or no deposits to exam-
ine. That is, there may be no economic world-class deposits remaining to be 
discovered in a specifi c exploration setting. There is also the potential loss 
of deposits that are economic but are not examined because they appear to 
be smaller than some predetermined size. By increasing economic risk, it is 
possible to reduce the risk of not fi nding a mineral deposit. The balancing 
of economic fi lters, geologic theory, and the distribution of deposit sizes 
remaining in an exploration setting provides opportunities for risk reduc-
tion (Penney et al., 2004).

Experience in petroleum exploration demonstrates that larger deposits 
tend to be discovered early in an exploration play (Drew, 1990). Finding 
larger deposits or pools early reduces the sizes and values of remaining 

Table 10.5. Percent of world-class silver deposits by deposit type.

Deposit Type Number of Deposits
Percent Deposits 

>2,400 t Ag

Replacement-skarn Zn-Pb 147 25
Shale-hosted Zn-Pb 57 19
Creede epithermal vein 31 16
Sediment-hosted Cu 141 4
Epithermal quartz alunite Au 22 9
Mississippi Valley Zn-Pb 111 3
Porphyry Cu 422 9
Comstock epithermal vein 166 5
Kuroko massive sulfi de 421 6
Cu skarn 70 1
Polymetallic vein 75 1
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deposits and affects discovery chances because discovery chances are a 
function of deposit size. In an analysis of petroleum exploration of the Pow-
der River Basin, Wyoming, Drew (1975) showed that some explorationists 
were able to reduce their risk of failure by about 43 percent by exploring 
around the discovery of a large deposit. This risk reduction came at a price 
of fi nding only 36 percent as much oil per hole.

The only published study on metal-bearing deposits showing a pattern 
of fi nding larger deposits early in the exploration process was on mercury 
deposits in California (Chung, Singer, and Menzie, 1992). Epithermal gold 
deposits in Nevada and carbonatite deposits in Brazil show no relationship 
between size and discovery order—in both cases, however, large discover-
ies were made late in the exploration process in areas of diffi cult access. 
In the case of carbonatite deposits in Brazil, one of the largest deposits, 
Seis Lagos, was discovered in recent years in the remote headwaters of the 
Amazon River. The larger Nevada epithermal gold deposits discovered in 
1890–1910, such as Round Mountain and Goldfi eld, are located off the paths 
to California, which is where most Nevada epithermal deposits discovered 
in 1840–1870 are located.

It has been shown that for some deposit types, such as porphyry 
copper, the larger deposits should be discovered earlier than smaller 
deposits (Singer and Mosier, 1981b). However, this is true only within 
fi xed exploration settings such as an exposed permissive rock that has 
all parts equally accessible. The relationship between the size of miner-
alized area and chance of discovery was used successfully in the search 
for the Mississippi Valley-type deposit at Elmwood, Tennessee (Callahan, 
1977). When the exploration setting changes, for example, looking under 
shallow cover with a particular technique, then the process of fi nding 
larger deposits starts over—Boldy (1977) demonstrated the effect explo-
ration method on deposit size discovery order in the search for massive 
sulfi de deposits. Based on an analogy with petroleum exploration, one 
could reduce the risk of exploration failure by following other’s discov-
eries in a new exploration setting but expect to fi nd smaller, perhaps 
uneconomic deposits.

Alternatively, one could reduce the risk of fi nding an uneconomic deposit 
by focusing on frontier exploration areas and taking advantage of the rela-
tionship between the size of deposits and the chance to discover them. Boldy 
(1977) discusses this trade-off in the search for volcanic-hosted massive sul-
fi de deposits in Canada. An example illustrating these kinds of possibili-
ties for porphyry copper deposits is presented in fi gure 10.5. Because of the 
strong positive relationship between area of sulfi des (disseminated pyrite) 
and the deposits’ contained copper, a large sulfi de system would be a good 
sign that a large porphyry copper deposit might be present. The presence of a 
very large sulfi de system and a strong relationship as demonstrated in fi gure 
10.5 encouraged continuing exploration of the Pebble Copper property until 
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Figure 10.5 Altered area of sulfi des (in km2) versus thousands of tons of 
contained copper in porphyry copper deposits with linear regression line. 
Change in copper contained in the Pebble Copper deposit between 2004 
and 2008 drilling results are indicated by arrow. The correlation coeffi cient 
(r = 0.53) is signifi cantly different than zero at the 1 percent level.

a very large deposit was discovered by 2008. Another frontier exploration 
area is under cover.

Large potential rewards motivate exploration for mineral deposits under 
cover. Increased interest is driven by opportunities to fi nd large deposits. 
Under cover is the only place remaining to be explored in some regions. 
Very large deposits are more likely to have high net present values (chap-
ter 5), and they are more likely to be discovered in early stages of explora-
tion (Singer, 2005; Singer and Kouda, 2006). With large rewards come lower 
chance of discovery, higher exploration costs, and higher risk of economic 
loss. Capital costs of underground mining can be 70 percent more and oper-
ating costs more twice those of surface mining. Net present values can be 
less than half of the similar deposits on the surface. Higher underground 
mining costs can be offset by larger deposits, higher commodity prices, or 
higher grades.
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ASSESSMENT EXAMPLE

Although intended to be a prototype for a U.S. national assessment 
and to aid managers such as the Bureau of Land Management, the 
greatest benefi t of the U.S. Geological Survey’s three-part assessment 
of Nevada may have been reducing exploration risk. Nevada’s position 
as the nation’s largest silver producer 130 years ago and as the larg-
est gold producer in 1988 is striking considering that more than 50 
percent of Nevada’s 286,200 km2 surface is covered with apparently 
barren rocks and sediments. Because the majority of mineral depos-
its exposed at the surface are believed to have already been found, 
a prime concern of this twelve-chapter assessment prepared by thir-
teen scientists was the nature of and the depth to possible mineralized 
systems under this cover. Analysis of regional gravity data was used 
(Jachens, Moring, and Schruben, 1996) to estimate the thickness of 
Cenozoic cover and to produce a gravity map from which the effects of 
thick deposits of young rock and unconsolidated sediments have been 
removed. This map is also used to help identify the lithology of the 
concealed basement, to delineate major crustal structures and bound-
aries, and to identify plutons and concealed calderas, all of which can 
refl ect geologic environments permissive for certain types of mineral 
deposits. Perhaps the most important result of the gravity analysis 
related to mineral resources is the conclusion that vast new areas of 
Nevada may be amenable to exploration for basement-hosted mineral 
deposits. The previously undocumented extent of basement lying at 
a depth of less than 1 km represents an important target for mineral 
exploration and signifi cantly reduced exploration risk (see chapter 7).

Exploration risks under cover can be reduced by using the three parts 
of assessments and related models and data: (1) grade-and-tonnage and 
economic fi lters to provide guides to select appropriate deposit types, (2) 
descriptive and deposit density models as guides to general location and 
numbers of deposits, and (3) quantitative properties of mineral deposit sizes, 
shapes, and orientations of spatially related variables to guide exploration 
and to reduce location errors.

If a particular size of deposit is being sought, it is possible to determine 
the permissive tract’s area necessary to be assured of a certain probability 
of a deposit from the equations developed for deposit densities (chapter 4). 
For example, if a deposit size of 1 million tons is the target of exploration 
and the decision-maker requires that there be a 90 percent chance of at 
least one deposit, the permissive tract should be at least 320 km2 in extent 
(fi gure 10.6). If one wants to be assured of at least two deposits containing 
one million tons, the permissive tract is not twice the area required for one 
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deposit, but needs to be about 1,000 km2 in extent (fi gure 10.6). These esti-
mates would only be valid for permissive tracts that are consistent with the 
deposit models and rules used for permissive tracts as described in chapter 
7. Careful applications of the models presented in this book allow improved 
identifi cation and, ideally, reduction of exploration risks.

Risk Reduction from Political and Security Sources

The risk of loss of investment or personnel due to instability of a government 
can be the key factor in an exploration decision. As pointed out in an article 
in Mining Journal (1998), in some countries the government has ceased to 
function or is unable to maintain law and order. Expropriation or security of 
tenure may be risks in some countries. In some countries, the severance of 
the right to explore from the right to mine causes risk of loss of exploration 
investment.
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Changes in a government’s tax policy can introduce considerable risk to 
companies if the taxes or ownership rules appear to prevent the company 
from making a profi t. Governments are typically motivated by the desire to 
get a “fair share” of the peoples’ resources, but making the share too large 
can result in reduced or no future exploration. Historically, when govern-
ments have adjusted their expected share to realist levels, companies are 
slow to return because uncertainties then exist about future policies.

Among the ways to reduce political or security risk are to involve inves-
tors who are unlikely to be expropriated, to avoid countries where the risk 
is high, or to require a high rate of return on an investment. A high rate of 
return translates into a short payback period—thus shortening the exposure 
period and, if there are many independent investments, reducing the aver-
age risk of loss. Because poverty and the distribution of income are at the 
root of instability in some countries, requiring a very high rate of return may 
add to instability by breeding resentment.

Risk Reduction from Economic Sources

Most risk of failure for economic or technical reasons stems from commodity 
prices being lower than expected, ore reserves being lower than estimated, 
costs being higher than estimated, and benefi ciation diffi culties such as poor 
recovery, currency exchange rates, or delayed development (Hedger, 2008). 
Acts of nature such as fl oods also introduce risk, as shown by the drought 
at the Ok Tedi mine in Papua New Guinea in 1997. Some recommend that 
risk be adjusted for by increasing the economic return required for an invest-
ment. This strategy is suitable only where there are multiple investments 
with independent risk factors. In mineral exploration and development, 
other, more specifi c actions can frequently be taken to reduce risk.

For large low-grade deposits, errors in grade estimates are a major source 
of risk. Reliability of grade and tonnage ore reserve estimates is typically a 
function of the amount of information gathered. If actual grades or tonnage are 
below certain values, the deposit will be uneconomic—that is, there will be 
economic loss. Drilling more holes both decreases the expected value of the 
deposit and reduces the uncertainty of the value of the deposit. The marginal 
benefi t of obtaining more information to reduce the risk of a bad investment 
must be balanced against the costs in money and time of additional informa-
tion (Mackenzie, 1994). Figure 10.7 can be viewed as a general scheme for 
representing the trade-offs between gathering more information and reducing 
uncertainty of an economic return. Unfortunately, some risks, such as those 
due to price, may not be controllable by gathering more information.

Large variation in commodity prices is common in the mineral industry. 
This is one reason that world-class gold deposits are sought as exploration 
targets—world-class deposits tend to be less affected by commodity prices. 
This helps in the consideration of whether a deposit is economic to mine, 
but price variation during mining can also close a mine. Variation of prices 
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during the mine’s life can effectively be controlled by hedging. Thus, for 
some of the entire mine’s future output, a contract is agreed to for the sale 
to a specifi c customer for a fi xed price. In addition to such forward sales, 
various options contracts may be bought and sold in a hedge strategy. When 
prices fall after the agreement, the seller is viewed as wise, but the con-
verse is also true—both the buyer and the seller have reduced uncertainty 
for a price. Another method of reducing risk associated with metal price 
variability is to seek mineral deposits that contain multiple metals in the 
hope that when one metal price declines, the other metal prices may move 
higher. For some periods of time metal prices move independently or even 
inversely, but, over the long term, many tend to move together, thus mitigat-
ing any risk reduction function.

Although not part of exploration in the context used here, it is possible 
to reduce the risk of loss in mining by sequentially developing and expand-
ing a mine—thus reducing the capital exposed at early stages and reducing 
the present value of that risked capital. This strategy might also be effective 
where there is risk of loss due to governmental instability. Some mining and 
processing methods such as open-pit, heap-leach, or underground shrinkage 
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limit 100(1-x)% confidence
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limit 100(1-x)% confidence
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and reliability

100(x)% of total area below lower confidence limit
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2. Increases the lower confidence limit toward the expected value

Figure 10.7 Relationship between increasing information and reduced 
uncertainty and return. After Mackenzie (1994).
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stope are particularly convenient for this strategy. Because this strategy is 
easier to employ in some types of mineral deposits than in others, it can play 
a role in risk reduction in the exploration stage by affecting deposit types 
sought. Sediment-hosted gold deposits are an example of a type ideal for 
sequential development—Carlin’s mining rate was sequentially increased to 
12 times as many tons per year over a 25-year period, and Jerritt Canyon’s 
rate was increased to fi ve times as much over an 11-year period.

Risk Reduction Using Prior Information and Learning

Up to this point, we have assumed that the probability of discovering a 
deposit is unrelated to the success or failure of previous examinations. Infor-
mation on the results of early exploration can be used to adjust the views 
about the existence of a deposit greater than some size. Let D = a deposit of 
size X or larger exists, d = a deposit of size X or larger does not exist, B = a 
deposit of size X or larger is found, and b = a deposit of size X or larger is 
not found. The probability of missing a deposit given that it exists can be 
considered the risk and be represented as

β = P(b | D). (10.4)

Using Bayes’s formula, we can determine the probability that a deposit of 
size X exists, given that it was not found:

 P(D | B) = P(B | D) P(D)/(P(B | D) P(D) + P(B | D) P(D)) (10.5)

Because P(b | d) = 1 and P(d) = 1 − P(D), we can simplify equation 10.5 
(Gilbert, 1987) to

 P(D | b) = β P(D) / (β P(D) + 1−P(D)). (10.6)

Figure 10.8 shows the large affects due to changes in the probability of miss-
ing a deposit as calculated from equation 10.6. For example, if the prior 
probability of a deposit existing is 0.5 and the probability of missing is 0.5, 
equation 10.6 provides a revised probability of existence, given failure to 
fi nd of 0.33. But if the conditions are the same except that the probability of 
failure is 0.1, the revised probability of existence becomes 0.09. Revisions 
of existence probabilities are most noticeable where the prior probability is 
greater than 0.5 (fi gure 10.8). Now, with equation 10.6 and fi gure 10.8, we 
show the effects of learning about the success or failure of past trials and 
changing the probability of the existence of a deposit with that information. 
This, in turn, would change the probability of detection of a deposit in the 
next trial.

In equation 10.1 where we examined the basics of risk, we made an 
assumption that the results of one coin toss have no effect on the next coin 
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toss—this assumption allowed us to examine exploration risk reduction by 
brute force. There is another form of learning where understanding of the 
geology and deposit model might be modifi ed as exploration progresses. 
This form of learning, if successfully applied, can have a profound effect on 
reducing risk in exploration; poorly applied, it can lead to complete failure. 
Key to successful application of this form of risk reduction is the nature of 
the exploration organization. Clearly, organizational culture needs to encour-
age learning and willingness to reject present models if warranted and yet 
maintain focus. Rose (1992) discusses organizational traits that adversely 
affect profi ts in petroleum exploration fi rms—many involve risk aversion 
behavior that discourages the very learning that can perhaps most signifi -
cantly reduce exploration risk.

Summary

Risk in mineral exploration is examined so the sources of risk can be iden-
tifi ed and incorporated in the decision-making process in order to reduce 
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controllable risk. Risk is defi ned as the chance of failure or loss. Explora-
tion is an economic activity involving risk and uncertainty, so risk also 
must be defi ned in an economic context. Both expected monetary values 
and the probabilities of various outcomes such as economic failure should 
be considered in the decision-making process. Because economic return 
when measured by net present value (chapter 5) is closely related to the size 
of mineral deposits, and because deposit sizes are represented by highly 
skewed frequency distributions, achieving expected monetary or higher val-
ues tends to be a low-probability outcome. This and the typical rareness of 
mineral deposits are the principal reasons for high risk in mineral explora-
tion. Models, data, and assessment guides presented in the chapters of this 
book can be used effectively to identify and reduce some exploration risks.

Risk reduction focuses on the strategies using geology, economics, and 
statistics. A fundamental way to reduce risk is by increasing the number of 
prospects examined, such as used in the discovery of Elmwood, Tennessee 
(Callahan, 1977). Joint venturing, where exploration expenses, responsibili-
ties, and benefi ts are shared among companies, is the most common way to 
take advantage of this method of risk reduction.

A second fundamental way of risk reduction is to reduce the probability of 
failure per prospect. Balancing of economic fi lters, geologic theory, and the dis-
tribution of deposit sizes remaining in an exploration setting provides opportu-
nities to lower the probability of failure per prospect. The greatest opportunity 
for reducing uncertainty and risk in exploration and resource assessment lies 
with lowering the uncertainty associated with tonnage estimates, followed in 
importance by uncertainty associated with grade estimates. Exploration enter-
prises therefore commonly use an economic fi lter that is made operational by 
requiring a minimum size deposit. This is why world-class mineral deposits 
are the primary exploration targets of many mining fi rms. Identifi cation of 
minimum size deposits can be addressed by recognizing and using signifi cant 
differences in grades and tonnages among deposit types. For example, a sedi-
ment-hosted gold (Carlin type) deposit is much more likely to be world-class 
than is a low-sulfi de quartz-gold vein deposit.

Experience in petroleum exploration demonstrates that larger deposits 
tend to be discovered early in an exploration play. Finding larger deposits 
early reduces the sizes and values of remaining deposits and affects dis-
covery chances. Some petroleum explorationists have reduced their risk of 
failure by using the strategy of exploring around discoveries of large depos-
its. This risk reduction comes at a price of fi nding less oil per hole. Based on 
an analogy with petroleum exploration, one could reduce the risk in mineral 
exploration by following others’ discoveries in a new exploration setting, 
but the explorationists should expect to fi nd smaller, perhaps uneconomic 
deposits. Alternatively, one could reduce the risk of fi nding uneconomic 
deposits by focusing on frontier exploration areas such as under cover and 
taking advantage of the relationship between the size of deposits and the 
chance to discover them.
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Most risk of failure for economic or technical reasons stems from com-
modity prices being lower than expected, ore reserves being lower than 
estimated, costs being higher than estimated, benefi ciation diffi culties such 
as poor recovery, currency exchange rates, or delayed development. Some 
recommend that risk be adjusted for by increasing the economic return 
required for an investment. This strategy is suitable only where there are 
multiple investments with independent risk factors. Variation of prices dur-
ing the mine’s life can effectively be controlled by hedging. Another method 
of reducing risk associated with variability of metal prices is to seek min-
eral deposits that contain multiple metals in the hope that when one metal 
price declines, the other metal prices may move higher. Although not part of 
exploration, it is possible to reduce the risk of loss in mining by sequentially 
developing and expanding a mine, thus reducing the capital exposed at 
early stages and reducing the present value of that risked capital. Some min-
ing and processing methods such as open-pit, heap-leach, and underground 
stoping are particularly convenient for this. Because this strategy is easier to 
employ in some types of mineral deposit than in others, it can play a role in 
risk reduction in the exploration stage by affecting deposit types sought.

The third fundamental way to reduce risk is to use prior information to 
modify estimates or to change the assumption of independence in equation 
10.1, that is, to learn. With Bayes’s formula, the effects of learning about the 
success or failure of past trials can be used to change the probability of the 
existence of a deposit. This, in turn, would change the probability of detec-
tion of a deposit in the next trial.

Other forms of learning are where geologists learn through training or 
the experience of others or where understanding of the geology and deposit 
model might be modifi ed as exploration progresses such as in the discov-
ery of McLaughlin (Anderson, 1982). This form of learning, if successfully 
applied, can have a profound effect on reducing risk in exploration; poorly 
applied, it can lead to complete failure. Perhaps the most important way to 
reduce exploration risk is to employ personnel with the appropriate experi-
ence and yet who are still learning.
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Perspective

The difference between the ideas presented by Allais (1957) fi fty years ago 
and those presented in this book refl ect a signifi cant growth in knowledge 
since his work, and the recognition of the value of, and ways to capture, geo-
logic information. We now can use geologic maps to divide large regions into 
parts that could contain different kinds of mineral deposits, and we know 
that these different kinds of mineral deposits are signifi cantly different in 
the amounts and qualities of minerals of interest to society, which affect 
chances that the deposits will be sought, found, and exploited by society. It 
is important to remember that our goal is to provide unbiased estimates of 
undiscovered mineral resources and then to minimize the uncertainty asso-
ciated with the estimates.

Here we point out where there are opportunities to improve the three-part 
form of quantitative mineral resource assessment. Many of these opportuni-
ties come from identifi ed sources on uncertainties in present assessments 
of all kinds, such as assessing resources under cover. Some of the improve-
ments can be made in parts of the present assessments that are not completed 
such as economic fi lters. Additional opportunities come from the possibili-
ties of harnessing the power of new technologies such as probabilistic neural 
networks to well-designed applications in these kinds of assessments.

Future quantitative assessments will be expected to estimate quan-
tities, values, and locations of undiscovered mineral resources in a form 

11
The Future of Quantitative Resource 
Assessments
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that conveys both economic viability and uncertainty associated with the 
resources. Uncertainties about undiscovered resources can be addressed and 
reduced through improved mineral deposit models, better economic fi lters 
and simulators, and application of new technologies to integrate information 
and by better dealing with geographic uncertainty due to covered terrains 
(Singer, 2001). Finally, all of these possible ways to improve assessments 
rely on careful applications of the tools.

Research Opportunities Related to Models

Research opportunities in quantitative resource assessment could be iden-
tifi ed in at least three ways: (1) by listing unfi nished or fl awed parts of 
assessment tools, (2) by pointing to new technologies that could improve 
assessments, and (3) by focusing on tasks that could most signifi cantly 
reduce uncertainties in assessments, and here we consider each. First we 
examine mineral deposit modeling opportunities, including economic fi l-
ters. Next we consider improvements needed in combining estimates. An 
overview of some advanced technologies that might improve future assess-
ments is followed by a section on one of the great sources of uncertainty in 
assessments likely to be more common in the future—covered terranes.

Mineral-deposit models are important in quantitative resource assess-
ments for two reasons: (1) grades and tonnages of most deposit types are 
signifi cantly different, and (2) deposit types are present in different geologic 
settings that can be identifi ed from geologic maps. Mineral-deposit models 
are key in combining geoscience information for delineation. Many descrip-
tive models suffer from not indicating the map scale of geologic observa-
tions that may be important in assessments. Thus, there are parts of the 
general geologic settings section of descriptive models that list attributes 
that are observable only in very detailed geologic maps, which typically are 
not available in assessments. These descriptive models can be signifi cantly 
improved by having map scales associated with attributes explicitly indi-
cated. Attempts should also be made to capture more regional information 
that is commonly observable in assessments and is relevant to delineating 
permissive settings for deposit types. Ideally, these improvements can be 
documented through counts of the frequencies of occurrence of the attributes 
associated with known deposits—that is, in digital models. These changes 
will build the needed foundation for improved delineation of deposit types 
using digital information.

In chapters 2 and 6 we demonstrated how important uncertainties about 
grades and particularly tonnages of undiscovered deposits are to an assess-
ment. Selecting the correct deposit model is the most important way of 
controlling these errors because of the dominance of tonnage, and because 
deposit models are the best-known predictor of tonnage. However, even 
identifying the correct deposit type leaves a great deal of uncertainty about 
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possible tonnages of undiscovered deposits. Where some deposits have been 
discovered and drilled in a region, the question about whether the larger 
deposits have been discovered early arises. With new research it is possible 
that a convincing case for size-biased sampling can be made. Research also 
can lead to the construction of unbiased grade-and-tonnage models that take 
this possible effect into account.

Of great interest to assessors and to those involved in exploration ven-
tures is the possibility of predicting where the largest undiscovered deposits 
of a type might occur. To date, research on the topic has met with little suc-
cess. Some regional differences of sizes of deposit types, such as the signifi -
cantly higher tonnage than the general porphyry copper deposit type in the 
Eocene tract of Chile (Cunningham et al., 2008), suggest that such patterns 
exist and might be predictable. The strong relations among median deposit 
tonnage, number of deposits, and aerial extent of permissive tract (Singer, 
2008) suggest that larger deposits require larger geologically permissive set-
tings. It seems likely that success in predicting where larger deposits occur 
will depend on demonstrating a positive relationship between the size of 
host environments, such as permissive basins for sediment-hosted deposits 
and/or structural settings for many deposit types, and sizes of deposits.

People are interested in the larger deposits because the economies of scale 
make mining large deposits desirable. Our ability to estimate the economics 
of undiscovered deposits depends on the quality of our economic cost fi lters 
(chapter 5). Much of the fundamental work upon which our cost estimates 
are based is quite dated and in need of testing and upgrading. Long (2009) 
suggests that the fundamental relationship between deposit size and mining 
capacity that has been used for many years needs to be modifi ed. Other rela-
tions between capacity and capital and operating costs might also benefi t 
from new research.

Determining whether the undiscovered metals might be economic to 
recover is an important output of most assessments, and grades and tonnages 
are necessary inputs for estimating economic viability of mineral deposits. 
As noted in chapter 9, in order to be able to provide decision-makers with 
information about undiscovered mineral resources in a form demonstrating 
possible consequences of their decisions, it is necessary to have a general 
simulator that incorporates economic fi lters and captures the uncertainty of 
resource amounts and values. Software that properly combines the grades 
and tonnages and properly captures their relationships has been available 
on computer platforms that no longer exist. Results of attempts to modernize 
these programs and incorporate economic fi lters are not yet available.

Advanced statistical learning methods such as probabilistic neural net-
works and other kinds of kernel methods offer the power either to provide 
guidelines to experts for their estimates or to make the estimates required in 
assessments. There is abundant evidence that probabilistic neural networks 
can classify deposits as well as experienced economic geologists (Singer, 
2006; Singer and Kouda, 2003). Probabilistic neural networks have been 
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shown to produce unbiased probabilities if properly trained and tested. 
There is no reason that they could not estimate probabilities of different 
geologic settings associated with different deposit types. Nonlinear models 
such as neural networks should be able to effi ciently integrate geophysical 
and geologic variables in delineating mineral terrains. In order to generalize, 
it will be necessary to train the system using digital geology and geophysics 
near known deposits of a specifi c type. It will then be necessary to test the 
predictions with similar deposits not used in the training. To demonstrate 
robustness of results, it will be necessary to train and test the system in 
several different geologic settings of the selected deposit type from around 
the world.

Research Opportunities Related to Covered Terrains

Delineating locations that are permissive for undiscovered deposits relies 
on linking of geologic settings of deposit types as identifi ed in models to 
geologic environments as interpreted from maps (chapter 7). Because of reli-
ance of these assessments on the link between deposit types and geology, 
assessing mineral resources under cover has a great deal of uncertainty in 
delineated boundaries and in associated estimates of number of deposits. 
Attempts at making objective delineations using digital systems have been 
less than satisfactory because they have not delineated for specifi c types 
of deposits, they have delineated occurrences rather than deposits, or they 
have produced delineations based on some arbitrary scale rather than prob-
abilities. In addition, none of the existing digital methods studied addresses 
resources under cover. Even the few methods that have been developed for 
large regions failed in the important area of assessing mineral resources 
under cover. Research needs to be performed to develop ways to objectively 
delineate areas permissive for undiscovered mineral resources remotely 
through cover based on geophysics and extrapolated geology (Hedger, 2008; 
Porwal, 2007).

Assessments of areas with resources under cover must rely on extrap-
olation from surrounding areas, new geologic maps of rocks under cover, 
or analogy with other well-explored areas that can be considered training 
tracts. Cover has a profound effect on uncertainty and on methods and pro-
cedures of assessments because geology is seldom known and geophysical 
methods typically have smoothed responses. Mineral exploration enter-
prises have increasingly been looking for undiscovered deposits under the 
cover of overlying rocks and sediments. The reasons are that, in some parts 
of the world, under cover is the only place remaining to be explored, and the 
belief that the opportunity to fi nd very large deposits may be excellent under 
cover. Very large deposits are needed to sustain supply and are more likely 
to have high net present values than are small deposits. Even in parts of the 
world where exploration of exposed rocks is only partially complete, the 
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belief that the larger deposits tend to be found early in the exploration pro-
cess suggests that the new frontier of exploration under cover increase the 
chances of discovering world-class deposits—important discoveries under 
cover such as Olympic Dam, Spence, Esperanza, Toki, Gaby, Mansa Mina, 
Far Southeast, Cannington, and Pogo reinforce these beliefs.

Deposit models used with local geology can be applied to defi ne per-
missive tracts by deposit type. Deposit types are present in broad geologic 
settings that can be identifi ed from geologic maps and the permissive set-
tings can, at least in a broad sense, be projected under cover. Assessments 
or planning exploration under cover must rely on extrapolation from sur-
rounding areas, new geologic maps of the rocks under cover, and analogy 
with other well-explored areas to defi ne general belts to explore. Mineral 
deposit models that capture the quantitative properties of mineral deposits 
provide information about the sizes, shapes, and orientations of spatially 
related variables. These variables include spatially related deposits types, 
alteration zones, geochemical haloes, geophysical responses, and structural 
settings. These digital deposit models would be constructed from well-
explored deposits elsewhere. Relationships of these variables and mapped 
geology and geophysics at the appropriate scales could be integrated using 
the advance learning methods mentioned above to delineate under cover.

Regional or metallogenic settings of mineral deposits can provide guides 
on general locations of deposits under cover if the geology can be projected 
under cover. Fortunately, some scientists have experience in making geo-
logic maps under cover. The Australians have had to deal with the prob-
lem of cover for some years (Wilford, 2000). As might be guessed, however, 
the methods require detailed geophysics that, because of its expense, can 
be applied only in relatively small areas. One area of active research that 
should prove useful in locating possible places of mineralization under 
cover is structural geology. Many faults can be identifi ed under cover with 
geophysics—some kinds of faults are related to certain types of mineraliza-
tion such as porphyry copper deposits (Berger, Drew, and Singer, 1999).

Beyond Digital

Even with the advances already made through quantitative models and 
advanced statistical methods, and those on the horizon, in our view it is 
important to keep expert economic geologists involved in the process. Unfor-
tunately, there are cases where equations or advanced statistical, mathemati-
cal, or economic methods have been applied where they are not appropriate. 
Understanding unstated and underlying assumptions and implications of 
using a method are still critical in assessments. An example where an expert 
economic geologist would be helpful is in delineating the deeply emplaced 
central part of the Sierra Nevada Batholith as permissive for porphyry cop-
per deposits that form less than 5 km below the surface. An example where 



184  The Future of Quantitative Resource Assessments

knowledge of applied statistics would help is the use of various forms of the 
Bayes equation to combine multiple observations or variables in order to 
make probabilistic estimates—such estimates are commonly biased upward 
(Singer and Kouda, 1999b). Perhaps the most damaging example is the wide-
spread use of spatial buffers around geologic units in delineating permissive 
tracts because it is easy. This practice results in large areas that can be dem-
onstrated to be not permissive and, even worse, large permissive areas that 
are excluded—particularly permissive settings under cover—all for the lack 
of an expert geologist to interpret the geology.

The decades of experience of expert and objective forecasting in meteo-
rology provide insight into how the process of making assessments of undis-
covered mineral resources might be improved. Murphy and Winkler (1984) 
found that consensus schemes performed better than almost all individual 
forecasters and that the best forecasts were made when objective (i.e., com-
puter generated) forecasts were part of the information supplied to expert 
forecasters. We should always use the best possible methods of making 
quantitative assessments—it would be unwise to leave the human expert 
out of the fi nal product.
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1 pound (abbr. lb) = 0.45359 kilograms
1 troy ounce (abbr. oz) = 31.103 grams
1 grain = 0.0648 grams
1 metric ton, or tonne (abbr. t) = 1,000 kilograms = 2,204.6 

pounds = 1.1023 short tons
1 short ton (abbr. st) = 2,000 pounds = 0.907185 metric ton
1 long ton (abbr. lt) = 2,240 pounds = 1,016.0 kilograms
1 mile (statute) = 5,280 feet = 1,760 yards = 1.6093 kilometers
1 nautical mile = 1.852 kilometers
1 kilometer (abbr. km) = 1,000 meters = 0.62139 miles
1 square kilometer (abbr. km2) = 0.386100 square miles
1 yard = 3 feet = 0.9144 meters
1 foot (abbr. ft) = 0.3048 meter
1 square foot = 0.0929 square meters
1 acre = 4,047 square meters
1 hectare = 2.5 acres
1 cubic yard (abbr. yd3) = 0.7646 cubic meters
1 fl ask (of mercury) = 34.473 kilograms or 76 pounds
1 carat (gem stones) = 0.2 grams
1 U.S. gallon = 3.785 liters
1 imperial gallon = 4.546 liters
1 barrel = 42 U.S. gallons
1 inch on a 1:250,000-scale map = 4 miles (approx.)

Appendix 1: Conversion of Units
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To convert short tons to metric tons, multiply short tons by 0.907185.
To convert ounces/short ton to grams/metric ton, multiply oz/st by 

34.285 (i.e., 31.103 g/0.907185 st).
To convert ounces/long ton (Australian usage) to grams/metric ton, 

multiply oz/lt by 30.61 (i.e., 31.103 g/1.0164 lt).
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Here we reprint the code for the algorithm used for estimating probabilities 
of number of deposits and expected number of deposits, an extension of 
the Root, Menzie, and Scott (1992) method for three estimates of number of 
deposits to fi ve estimates.

P[n] is the probability of n deposits
N9, N5, N1, N05, and N01 are user-supplied number of deposit
estimates at the 90th, 50th, 10th, 5th, and 1st percentiles
S1, S2, S3, S4, and S5 are values used in calculations
n is the number of deposits
expect is the expected (mean) number of deposits
 S1 = 1 + 2 * N9
 if N9 = N5 then S2 = 1
 else S2 = 2 + 2 * (N5-N9 − 1)
 if N = N1 then S3 = 1
 else S3 = 2 + 2 * (N1-N5 − 1)
 if N1 = N05 then S4 = 1
 else S4 = 2 + 2 * (N05-N1 − 1)
 if N01 = N05 then S5 = 1
 else S5 = 2 + 2 * (N01-N05 − 1)
 sum = 0.0
 expect = 0.0
 for n = 0 to N01 do
  begin
   if (n < N9) then P[n] = 0.2/S1

Appendix 2: Algorithm for Estimating Prob-
abilities for a Set of Number-of-Deposit 
Estimates
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   else
    begin
     if (n = N9) then
      begin
       P[n] = 0.1/S1 + 0.4/S2
       if (N9 = N5) then
        begin
         P[n] = P[n] + 0.4/S3
         if N5 = N1 then P[n] = P[n] + 0.05/S4
         if N5 = N05 then P[n] = P[n] + 0.04/S5
        end
       end
     else
      begin
       if (n < N5) then
        begin
         P[n] = 0.8/S2
         if N9 = N5 then P[n] = 0.8/S3
        end
       else
        begin
         if n = N5 then
          begin
           P[n] = 0.4/S2 + 0.4/S3
           if N5 = N1 then
            begin
             P[n] = P[n] + 0.05/S4
             if N1 = N05 then P[n] = P[n] + 0.04/S5
            end
          end
         else
          begin
           if n < N1 then
            begin
             P[n] = 0.8/S3
             if N5 = N1 then P[n] = 0.0
            end
           else
            begin
             if (n = N1) then
              begin
               P[n] = 0.4/S3 + 0.05/S4
               if N1 = N05 then P[n]=P[n] + 0.04/S5
              end
             else
              begin
               if n < N05 then P[n] = 0.1/S4
               else
                begin
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                  if n = N05 then P[n] =
 0.05/S4 + 0.04/S5
                 else
                  begin
                   if n < N01 then P[n] = 0.08/S5
                    else
                    begin
                    if n = N01 then
                     begin
                      P[n]=0.08/S5+ 0.01
                      if N01 = N05 then
                      P[n] = P[n] + 0.025
                     end
                    end
                  end
                end
              end
            end
          end
        end
      end
    end
  end
 for n = 0 to N01 − 1 do
  begin
   sum = sum + P[n]
  end
 P[N01] = 1.0 − sum
 for n = 1 to N01 do
  begin
   expect = expect + P[n] * n
  end
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Accuracy is the closeness of a measurement or estimate to the 
true value.

Analysis of variance is a statistical method of testing the equivalence of 
mean values from more than one group or class.

Anchoring is the tendency of an individual to use and adjust from an 
initial value in making an estimate.

Anomalous describes a group of samples that signifi cantly differ from 
others in the group.

Background is a group of values characteristic of the most common 
samples in a population—typically nonmineralized.

Bayesian estimate is the use of Bayes’s theorem in which a prior 
probability can be modifi ed or updated by new information to produce a 
revised or posterior estimate.

Bias is a deviation of the value or estimate from the true value, for 
example, when an estimator such as a mean signifi cantly over- or 
underestimates the true value. A biased sample or estimate is not accurate. 
Bias occurs when an estimate does not follow normative statistical or 
logical rules.

Bimodal distribution is a frequency distribution that has two humps or 
modes. It is typically two distributions combined.

Glossary



192  Glossary

Block caving is an underground mining method used for (1) large ore 
bodies, (2) massive ore bodies that have large vertical extension, and (3) 
rock that will cave and break into manageable masses.

Capital expenditure is money invested in the development of an operation.

Cash fl ow is net expenditures and income in a period of time (usually a 
year).

Censored data are measurements for some population where some units 
are not available, such as those not reported, or reported as trace, or not 
detected.

Coeffi cient of variation is the standard deviation divided by the mean. 
It is sometimes expressed as a percent and can be considered a relative 
standard deviation.

Cover is typically younger sediments or rocks that are over older mineral 
deposits. The term can also be applied to older rocks or sediments that are 
tectonically placed over rocks that host mineral deposits.

Crustal abundance is the concentration of an element in the earth’s crust. It 
can also represent the concentration of a chemical compound, such as salt, 
or a mineral, such as emerald.

Cutoff grade is the lowest grade of a material that can be included into 
a resource estimate. Mineral resource estimates may include material 
below the selected cutoff grade to ensure that the mineral resources 
comprise bodies of mineralization of adequate size and continuity to 
show reasonable prospects for eventual application of a feasible mining 
method.

Decision analysis is the application of structured procedures for choosing 
optimal decisions in the face of uncertainty. The procedure involves 
breaking the complex problem into tractable parts.

Degrees of freedom refers to the number of samples minus the number of 
parameters estimated. For the strength of a linear relationship between two 
variables, the degrees of freedom are the number of samples minus 2.

Dematerialization is an economic term about the relative or absolute 
reduction of the quantity of materials required to serve some function in 
society.

Deposit density model is the frequency distribution of number of deposits 
from the grade and tonnage model per unit of permissive control area. It 
is commonly applied in a regression of number of deposits versus area 
permissive. It is used to estimate number of deposits or as a guide for 
making estimates.

Disaggregation is breaking the problem into component parts to make it 
easier to solve.
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Discounted cash fl ow is the cash fl ow for a number of years adjusted to one 
point in time by a discount factor such as an interest rate.

Discriminatory could mean either necessary or suffi cient.

Essential refers to a situation in which, if the evidence is false (event did 
not happen), then the probability of a deposit is zero.

Expected value is the fi rst moment of a probability density function 
that corresponds to the mean. It is the most common measure of central 
location of a random variable.

Expert is a person who has a background and experience in the subject 
matter at the desired level of knowledge and is viewed as qualifi ed to make 
estimates or provide advice on the topic of interest.

Expert judgment refers to judgments, advice, or estimates by subject-matter 
experts.

Exploration play is the exploration for a cluster of petroleum 
accumulations.

Gambler’s ruin is the fact that a gambler will almost certainly go broke 
in the long run against an opponent with much more money, even if the 
opponent’s advantage on each turn is small.

GDP is gross domestic product.

GIS is geographic information system

Grid is the systemic spatial array of points, samples, lines, or drill holes. 
Commonly the grid is represented by a square, rectangular, or hexagonal 
array.

Independent events are events that have no infl uence on each other.

Inferred mineral resource is that part of a mineral resource for which 
the overall tonnages, grades, and mineral contents can be estimated 
with a reasonable level of confi dence. It is based on geologic evidence 
and apparent geologic and grade continuity after applying economic 
parameters. It is derived from information gathered through appropriate 
techniques from locations such as outcrops, trenches, pits, workings, and 
drill holes, and is limited or of uncertain quality and reliability in some 
way. An inferred mineral resource has a lower level of confi dence than that 
applying to an indicated mineral resource.

Interval scale is a scale of measurement of a variable that uses numbers 
with a fi xed unit of measure to identify the attribute.

Lognormal distribution is a skewed distribution that can be transformed 
into a normal distribution by taking the logarithm of the values.

Mean is the numeric average of a set of values calculated by summing the 
values and dividing by the number of values. For distributions skewed to 
the right, the mean plots to the right of the mode (highest frequency) and to 
the right of the median (50th percentile).
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Median is the value above and below which half the population lies (50th 
percentile).

Metal endowment is the sum of metal in all occurrences with specifi ed 
characteristics, such as concentration, size, and depth (Harris, 1984).

Mineral deposit is a mineral occurrence of suffi cient size and grade that it 
might, under the most favorable of circumstances, be considered to have 
economic potential.

Mineral deposit type is a group of deposits sharing a relatively wide variety 
and large number of attributes (Cox, Barton, and Singer, 1986).

Mineral occurrence is a concentration of a mineral (usually, but not 
necessarily, considered in terms of some commodity, e.g., copper, barite, 
or gold) that is considered valuable by someone somewhere or that is of 
scientifi c or technical interest. Typically, exploration is incomplete and 
information is sparse regarding mineral occurrence (Cox, Barton, and 
Singer, 1986).

Mineral prospect is a mineral occurrence that has been drilled or 
investigated in some detail and is believed to have a moderate or small 
chance of becoming economically viable.

Mineral resource is a concentration or occurrence of material of economic 
interest in or on the earth’s crust in such form, quantity, and quality that 
there are reasonable prospects for eventual economic extraction.

Model is a simplifi ed representation of a natural reality.

Monte Carlo simulation is a computer method of randomly sampling 
probability distributions so that they can be combined and the variables’ 
properties can be investigated.

Necessary refers to a situation in which, if the evidence is false (something 
does not exist), then the probability of a deposit decreases.

Net present value is a measure of the value of an investment after 
discounting the cash fl ow at a rate of return and subtracting an initial 
capital investment.

Nominal scale is a scale of measurement of a variable that uses labels or 
names to identify the attribute.

Normal distribution is a probability distribution function that is 
symmetrical about the mean, which is the same as the median and the 
mode. The mean is independent of the variance.

Ordinal scale is a scale of measurement of a variable that uses the order or 
rank of nominal data as a measure to identify the attribute.

Parameter is a fi xed characteristic of a probability distribution such as 
the population mean. Parameters are known only when all samples of the 
population are available. In most practical cases, parameters are estimated 
and should be called estimates.
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Percentile is the value that divides the area of a frequency distribution 
into specifi c percentages. For example, the 10th percentile is the value of a 
distribution such that 10 percent of the distribution is smaller and 90% of 
the distribution is larger.

Permissive tract is a geographic area delineated such that the probability of 
deposits of the type delineated occurring outside the boundary is negligible 
(i.e., <1 in 100,000–1,000,000).

Poisson distribution is a discrete probability distribution that is often 
useful in estimating the number of uncommon events such as mineral 
deposits.

Poisson process is a process in which events occur randomly and 
independent of each other at a fi xed rate in time or space.

Population is the entire theoretical or existing set of items under study.

Posterior probability is a probability that has been revised by additional 
information.

Precision is a measure of the closeness of agreement among individual 
measurements, for example, the variability about the mean of a group of 
sample values.

Prediction interval is an interval estimate for an individual value.

Prior probability is an initial estimate of the probability of an event.

Probability is a number between 0 and 1 inclusive that represents the 
chance of an event. It is commonly thought of as the relative frequency of 
the occurrence of an event.

Probability distribution is a description of the distribution of probabilities 
for different values of a random variable.

Probable (indicated) reserves are reserves for which quantity and grade 
and/or quality are computed from information similar to that used for 
proven (measure) reserves, but the sites for inspection, sampling, and 
measurement are farther apart or are otherwise less adequately spaced. 
The degree of assurance, although lower than that for proven (measured) 
reserves, is high enough to assume continuity between points of 
observation.

Proven (measured) reserves are reserves for which (1) quantity is computed 
from dimensions revealed in outcrops, trenches, workings, or drill holes 
and grade and/or quality are computed from the results of detailed 
sampling, and (2) the sites for inspection, sampling, and measurement are 
spaced so closely and the geologic character is so well defi ned that size, 
shape, depth, and mineral content of reserves are well established.

Qualitative assessment is an assessment where the product is presented as 
labels or names.
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Quantile is a number that partitions the values of a frequency into n classes 
containing the same number of data. The quantile that divides a frequency 
distribution into two classes is the median.

Quantitative assessment is an assessment where the product is presented 
as numerical values.

Random variable is a numerical result that has an associated probability 
distribution and is from an experiment.

Range is the difference between the maximum and minimum values of a 
sample and depends on the number of samples taken.

Ratio scale is a scale of measurement of a variable that uses numbers as 
a unit of measure to identify the attribute and in which the ratio of two 
values is meaningful.

Reserve is that part of a mineral deposit that could be economically and 
legally extracted or produced at the time of the reserve determination.

Resource is a concentration of naturally occurring solid, liquid, 
or gaseous material in or on the earth’s crust in such form that economic 
extraction of a commodity from the concentration is currently or 
potentially feasible.

Risk is the probability and the associated cost of an undesirable outcome 
(ISO standard).

Robust refers to a model, estimate, or method that tends to produce 
correct prediction or estimates regardless of error in or problems with 
the data.

Room-and-pillar mining is removing ore from rooms while leaving pillars 
in place to support the roof of the room.

Sampled population is the set of population units available for 
measurement.

Sensitivity analysis is a set of techniques used for assessing the relative 
importance of model input factors.

Shrinkage stope mining is mining upward, creating a sloping underground 
room.

Skewed describes a frequency distribution that is not symmetric. Skewed 
right means the tail is on the right. Skewed distributions are common for 
variables measuring length, volume, mass, or value.

Subjective probability is an estimate of the chances of an event made by an 
individual.

Suffi cient refers to a situation in which, if the evidence is true (does exist), 
then the probability of a deposit increases.

Target population is the population for which inferences will be made.
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t test is a statistical test of the equality of group means. It is based on the 
t distribution and is commonly used whenever the population standard 
deviation is unknown.

Type I error is the rejection of the null hypothesis when it is true. The risk 
of this is the level of signifi cance.

Type II error is the acceptance of the null hypothesis when it is false. The 
probability of making a Type II error depends on the alternative value and 
its distribution.

Uncertainty is lack of knowledge of the outcome or result. In many cases it 
can mean the variability of outcome.

Variable is a quantity that can take on any one of a given set of values.
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