Minerals

Gypsum Crystals - Mexico

Rocks

- Rocks are Earth materials made from minerals.
- Most rocks have more than one kind of mineral.
 - Example: Granite
 - Potassium feldspar.
 - Plagioclase Feldspar.
 - Quartz.
 - Hornblende.
 - Biotite
- Some are monomineralic.
 - Limestone (Calcite).
 - Rock salt (Halite).
 - Glacial ice.

Minerals

- If geology was a language: Minerals = Letters of the Alphabet Rocks = Words
- So, in order to understand the language of geology, one must be able to properly identify the letters of the language.
- *Mineralogy* The study of minerals
- *Mineralogist* Someone who studies minerals, their composition, uses, and properties

Malachite crystals – copper carbonate

Galena crystals – lead sulfate

What is a mineral?

<u>Definition</u>: a ¹homogeneous, ²naturally-occurring, ³solid, and ⁴generally inorganic substance with a ⁵definable chemical composition and an ⁶orderly internal arrangement of atoms

Six parts to the definition - each is important and necessary

Does not include "minerals" in the nutritional sense

- Your text covers some basic chemistry terms that I will assume that you already know. If **you** need a refresher, read pages 46-49 in your text and refer to Appendix 3. This material is fair game on a exam.
- e.g. atom, molecule, element, cation, anion, electron, proton, neutron, covalent bond, ionic bond, atomic number, atomic mass, isotopes, etc...

1- Homogeneous

- *Definition*: Something that is the same through and through
 - Cannot be broken into simpler components

2- Naturally Occurring

- Minerals are the result of natural geological processes
 - Man-made minerals are called synthetic minerals (e.g. industrial diamonds)

3- Solid

- Minerals must be able to maintain a set shape nearly indefinitely
 - liquids are not minerals

4- Definable Chemical Composition

- A mineral can be described by a chemical formula
 - Quartz: SiO²
 - Biotite: $K(Mg, Fe)_3 (AlSi_3O_{10})(OH)_2$
 - Diamond: C

5- Orderly Arrangement of Atoms

- Minerals have a fixed atomic pattern that repeats itself over a large region relative to the size of atoms
 - Crystal solid, or crystal lattice: The organized structure of a mineral
 - A glass is not a mineral; no organized structure

6- Generally Inorganic

- *Organic*: A substance composed of C bonded to H, with varying amounts of O, N and other elements. C, alone, is not organic!
- Only a few organic substances are considered minerals, all other minerals are inorganic

Organized Crystal Lattice

• *Glass:* no organized molecular structure

• *Minerals:* organized molecules

- Example: Quartz
 - Although different crystals may look different, they share certain consistent characteristics

Identifying Crystal Structures

• Some mineralogists use x-ray diffraction patterns to identify minerals.

Seeing Into Crystals

- Modern instrumentation allows us to "see" atoms.
 - A beam of electrons passes through material.
 - Atoms scatter electrons, which pass between them.
 - A shadow on the detector indicates a row of atoms.
 - This principle drives the electron microscope.

Crystal Shape – Its Atomic!

• In the end, it is the shape of the crystal lattice that controls the shape and many properties of minerals

Electron microscope picture of galena crystal surface

Hand sample of Galena

Crystal Structure (Lattice)

• Halite *NaCl*

Atomic Bonding & The Crystal Lattice

- Lattice atoms are held in place by atomic bonds.
- Bond characteristics govern mineral properties.
- 5 recognized types of bonds.
 - Covalent.
 - Ionic.
 - Metallic.
 - Van der Waals.
 - Hydrogen.

• Models depict atoms, bonds, and lattices.

Polymorphs: Two minerals that have the same composition but different crystal form

- Diamond: C
 - Carbon atoms covalently bond in tetrahedral networks
 - Forms strong bonds that are hard to break, so diamonds are very hard
 - Diamonds are more dense (3.5 g/cm³) than graphite (2.1 g/cm³)because of formation under great pressure.

- Graphite: C
 - Carbon atoms bond in planar sheets; sheets are weakly bonded
 - Sheets are easy to break; graphite is very soft
 Why are golf clubs and bikes made of graphite?

Mineral Growth

- Minerals can grow by
 - Solidification of a melt
 - Precipitation from solution
 - Solid state diffusion (metamorphic rocks)
 - Biomineralization (shells)
 - Fumarolic mineralization (from a gas)
- Once the 'seed' has formed, other molecules adhere to the seed and the mineral grows.

Mineral Growth

- *Euhedral:* A crystal with well formed crystal faces
 - Forms when there is sufficient space and time for the crystal to grow

A geode with amethyst crystals

- *Anhedral:* A crystal with poorly-formed crystal faces
 - Forms when space and/or time is limited

(Animation)

Mineral Identification

- Since we can't all have x-ray diffraction machines and electron microscopes, we identify minerals by visual and chemical properties called *physical properties*.
- Types of physical properties that geologists use include:
 - Color, Streak, Luster, Hardness, Specific Gravity, Crystal Habit, and Cleavage
- Properties depend upon...
 - Chemical composition.
 - Crystal structure.
- Some are diagnostic.
- Minerals have a unique set of physical properties.

1- Color

• Color may be diagnostic for a few minerals, but in general, a given mineral can have a range of colors.

2- Streak

- The color of the pulverized powder of a mineral.
 - More consistent than color
 - Found by scraping a mineral against a porcelain plate

Various colors of quartz, SiO₂

Hematite (Fe_2O_3) can have various colors, but its streak is always red-brown

• The way a mineral's surface scatters light

Metallic luster

Nonmetallic luster

4- Hardness

- The measure of a mineral to resist scratching
- Represents the strength of bonds in the crystal lattice
 - Measured on a qualitative scale called *Mohs Hardness Scale*

Vitreous luster (Nonmetallic)

Adamantine luster (Nonmetallic)

Moh's Hardness Scale

Fingernail = 2.5

Streak Plate = 6.5

value (kg/mm²), a physical measure of hardness indentation

Quartz = 7۲

Talc =1

۲

٠

۲

Diamond = 10

Glass = 5.5

This doesn't mean that diamonds are 10 times harder than talc... that's why we call this a qualitative measure, not *quantitative* measure

5- Specific Gravity

• Specific Gravity: The weight of a substance divided by the weight of an equal volume of water

- Same as density!!

6- Crystal Habit

• A description of a mineral's consistent shape

Prismatic

Needle-like or fibrous

Blade-like or

Elongated

Fracture and Cleavage

- *Cleavage:* The tendency of a mineral to break along a plane of weakness in the crystal lattice.
- *Fracture:* The mineral breaks in no consistent manner
 - Equal bond strength in all directions
- *Conchoidal Fracture:* The tendency for a mineral to break along irregular scoop-shaped fractures that are not related to weaknesses in the crystal structure

Obsidian, a volcanic glass, and quartz commonly exhibit conchoidal fracture, which is why Indians used them as cutting tools.

Cleavage

- Tendency to break along planes of weakness.
- Cleavage produces flat, shiny surfaces.
- Described by number of planes and their angles.
- Sometimes mistaken for crystal habit.
 - Cleavage is through-going; often forms parallel "steps."
 - Crystal habit is only on external surfaces.
- 1, 2, 3, 4, and 6 cleavage planes possible.

Cleavage

Cleavage

• Examples of Cleavage:

- 3 directions at 90°

- 3 directions NOT at 90°

Special Characteristics

- There are other special characteristics that some minerals exhibit that allow us to identify them
 - Reacts to Acid [Calcite and Dolomite: CaCO_{3 &} Ca(Mg)CO₃]
 - Magnetic [Magnetite: Fe₃O₄]
 - Salty taste [Halite: NaCl]
 - Striations [Plagioclase Feldspar: NaAlSi₃O₈ CaAl₂Si₂O₈, Pyrite - FeS₂, Quartz - SiO₂]

Striations on Pyrite

Calcite reacts with HCl and gives off CO₂

Mineral Compositions

- Only about 50 minerals are abundant.
- 98.5% of crustal mineral mass is from 8 elements.
 - Oxygen O 46.6%
 - Silicon Si 27.7%
 - Aluminum Al 8.1%
 - Iron Fe 5.0%
 - Calcium Ca 3.6%
 - Sodium Na 2.8%
 - Potassium K 2.6%
 - Magnesium Mg
 - All others

74.3% of crustal minerals !!!

Mineral Classes

• Minerals are classified by their dominant anion.

- Silicates	SiO ₂ ⁴⁻	Rock-forming mins
– Oxides	O ²⁻	Magnetite, Hematite
– Sulfides	S-	Pyrite, Galena
– Sulfates	SO ₄ ²⁻	Gypsum
- Halides	Cl ⁻ or F ⁻	Fluorite, Halite
– Carbonates	CO ₃ ²⁻	Calcite, Dolomite
– Native Elements	Cu, Au, C	Copper, Graphite

Silicate Minerals

- Silicates are known as the rock-forming minerals.
- They dominate the Earth's crust.
 - Oxygen and silicon...
 - Make up 94.7 % of crustal volume, and...
 - 74.3 % of crustal mass.

Silicate Minerals

- The anionic unit is the silica tetrahedron.
 - -4 oxygen atoms are bonded to 1 silicon atom (SiO₄⁴⁻).
 - Silicon is tiny; oxygen is huge.
 - The silica tetrahedron has a net -4 ionic charge.
 - The silicate unit can be depicted by...

Silicate Minerals

- Silica tetrahedra link together by sharing oxygens.
- More shared oxygen = lower Si:O ratio; governs...
 - Melting temperature.
 - Mineral structure and cations present.
 - Susceptibility to chemical weathering.

Type of Silicate Structure	Formula	Si:O Ratio
Independent Tetrahedra	SiO ₄	0.25
Double Tetrahedra	Si ₂ O ₇	0.29
Ring Silicates	Si ₆ O ₁₈	0.33
Single Chains	SiO ₃	0.33
Double Chains	Si ₄ O ₁₁	0.36
Sheet Silicates	Si ₂ O ₅	0.40
Framework Silicates	SiO ₂	0.50

Independent Tetrahedra

- Tetrahedra share no oxygens linked by cations.
 - Olivine Group
 - High temperature Fe-Mg silicate.
 - Small green crystals; no cleavage.

– Garnet Group

- Equant crystals with no cleavage.
- Dodecahedral (12 sided) crystals.

Single-Chain Silicates

• Single-chain structures bonded with Fe and Mg.

- Pyroxene Group

- Black to green color.
- Two distinctive cleavages at nearly 90°.
- Stubby crystals.
- Augite is the most common pyroxene.

Double-Chain Silicates

- Double chain of silica tetrahedra bonded together.
- Contain a variety of cations.
 - Amphibole Group
 - Two perfect cleavages
 - Elongate crystals

Sheet Silicates

- 2-dimensional sheets of linked tetrahedra.
- Characterized by one direction of perfect cleavage.
 - Mica Group Biotite (dark) and Mucsovite (light).
 - Clay Mineral Group Feldspar weathering residue; tiny.

Framework Silicates

- All 4 oxygens in the silica tetrahedra are shared.
 - Feldspar Group Plagioclase and potassium feldspar.
 - Silica (Quartz) Group Contains only Si and O.
 - Most complex structure of the silicates

Precious Stones: Gems

- Gems have equivalent mineral names, but gemologists usually name gemstones something marketable.
- Diamonds
 - Made of C
 - Form in high pressure volcanic environments called *kimberlites*

Emeralds, sapphires, and aquamarine are made of the mineral, Beryl

The first kimberlite pipe mine with the DeBeers sorting facility in the distance

Diamonds form in high pressure kimberlite pipes

Diamonds

- Diamonds originate under extremely high pressure.
 - ~ 150 km deep in the upper mantle.
 - Pure carbon is compressed into the diamond structure.
- Rifting causes deep mantle rock to move upward.
- Diamonds are found in kimberlite pipes.

Where Do Mineral Deposits Come From?

Orthoclase feldspar

Quartz

Biotite

Plagioclase feldspar

Where Do Mineral Deposits Come From?

Water carries compounds dissolved in solution

Over time, water can leave behind mineral deposits in rocks or cracks

Where Do Mineral Deposits Come From?

The Three Basic Types of Rocks

We will discuss these three rock types in detail in the next three chapters.