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Preface

Interest in the plastic deformation of rocks arises mainly from its application in the
Earth sciences, especially in structural geology and tectonics. Its experimental
study has consequently been pursued mainly in laboratories associated with
geology or geophysics departments or institutes. However, the physical mecha-
nisms involved are of considerable interest in materials science and some workers
in the field of rock deformation have had a materials science affiliation.

There are a number of aspects to the study of rock deformation, including

• Establishment of the rheological laws for the rocks, that is, the stress-strain-time
relationships under particular conditions,

• Mechanisms of the deformation and the relationship between these and the
specific rheological laws and microstructural features of the rock,

• Role of environmental variables (pressure, temperature, chemical activities,
pore pressure) on the deformation behaviour,

• Development of fabric and multi-grain structural features on scales accessible in
the laboratory, e.g. crystallographic preferred orientations, cleavages, micro-
folding, metamorphic differentiation, etc.,

• Relation of the deformation aspects to petrological and other aspects of the rock,
involving questions of influence of stress or strain on phase transformation and
stabilities, rates of metamorphic change, preservation of the setting of radio-
active clocks.

The study of the plastic deformation of minerals and rocks is also of consid-
erable interest as a topic in materials science. The knowledge of the deformation
behaviour of materials involving ionic and covalent bonding is extended by
including minerals, and, in particular, the silicate minerals comprise an especially
interesting group of materials in which the silicon–oxygen bond plays a special
role, particularly in regard to the influence of water. Our subject will in fact be
presented here mainly as an aspect of the materials science of rocks and minerals,
a topic both of intrinsic interest and of underlying importance for application in
geology and geophysics.
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In the application of the results of laboratory studies on rheology of rocks to
natural situations in the earth, the extrapolation to the geological timescale pre-
sents severe difficulties. Limitations of time and equipment restrict the strain rates
that can be reasonably investigated in the laboratory to a range of 10-2 or 10-3 s-1

to about 10-6 or 10-7 s-1 if strains of at least a few percent are required, whereas
the strain rates of interest in the earth are generally less than 10-10 s-1 and, in the
majority of applications, probably in the range 10-12–10-14 s-1. Thus measure-
ments made over a range of three or four orders of magnitude have to be
extrapolated over a further range of six to eight orders of magnitude, a daunting
prospect. Several difficulties are involved in such an extrapolation. First, there
tends to be considerable scatter of results of tests on rock specimens and so the
accuracy of the rheological relations established in the laboratory tends to be
inadequate for such a long extrapolation; however, careful selection of material for
uniformity, and testing of a sufficient number of specimens can minimise the
uncertainties from scatter. More serious is the question of determining whether the
nature of the deformation behaviour studied in the laboratory is the same as that
involved in the natural situation so that the same rheological laws can be expected
to apply; it therefore has to be established that the deformation process is the same
in both cases, which requires particular study of the microstructural imprints of
these mechanisms. The study of the mechanisms of deformation therefore takes on
a particular importance in experimental rock deformation, not only for its intrinsic
interest in a materials science sense, but also for establishing the nature of the
microstructural evidence that must be correlated with that observed in the naturally
deformed rocks in order to justify extrapolation of the laboratory results to the
natural situation on the grounds that the same processes are dominant in both
situations.

The nature of the extrapolation problem can be illustrated with reference to a
so-called deformation mechanism map. Such a diagram illustrates that there are a
number of modes or mechanisms of deformation, each with its own flow law; the
particular mode that dominates is determined by the combination of stress (or
strain rate) and temperature that is imposed on the rock. It follows that extrapo-
lation of a particular flow law is only justified within the stress (or strain-rate) and
temperature domain within which that mechanism predominates. It is also to be
emphasised that a particular deformation mechanism map only applies for a par-
ticular combination of environment and structural state of the specimen; for
example, changing the grain-size or the activities of minor chemical components
may change both the values of the parameters in a given flow law and the limits of
the domain within which it is valid. Extrapolation to geological conditions is
therefore a difficult matter and one in which it can only be expected that
approximate conclusions or limits can be arrived at after detailed considerations of
evidence bearing on mechanisms of deformation.

Since the mid-nineteenth century when Sorby and other pioneers introduced
microscopical studies of the materials of technology, any comprehensive approach
to the mechanical properties of materials has included some attention to the
deformation processes at the microstructural level. At first the focus tended to be
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on processes at the scale of the crystals in polycrystalline materials, and it is of
particular historical interest in the present context that the earliest studies in crystal
plasticity were carried out with the minerals, halite and calcite. However, work on
metals soon came to dominate the scene for several reasons, including the ductility
and technical importance of metals and the development of methods for growing
large single crystals and for revealing their crystallographic details by X-ray dif-
fraction. It thus came about that it was in the field of metallurgy that many of the
basic concepts of crystal plasticity and of the flow of polycrystals were developed.
Consequently, it was from this field that many basic concepts were later carried
over for application to other materials such as rocks, although independent lines of
approach were also developed in particular areas as interest arose, for example, in
soils and polymers.

Such was the situation up to the 1950s. However, during the recent decades the
scope of research on mechanical and related properties and its application has
broadened out considerably and has come to encompass as well a wide variety of
non-metallic materials in a more integrated approach. Consequently the term
‘‘materials science’’ has commonly replaced ‘‘metallurgy’’ when speaking of the
study of the fabrication and properties of materials of potential technical appli-
cation. There is now considerable knowledge of the properties of materials in such
distinctive categories as metals, semiconductors, ceramics, oxides in general,
glasses, plastics and elastomers, nanomaterials, soils and ice, and there are valu-
able insights to be gained from comparative studies between the various groups.
The category of minerals and rocks, although the subject of some engineering and
geological interest since time immemorial, is one of the latest to ‘‘come of age’’ in
materials science extending again the range of this subject into yet further regions
of distinctive behaviour while still demonstrating much that is common with other
materials. The first chapter summarises some of the characteristic aspects of
minerals and rocks as materials.

Much of the present text was written in the 1980s. However, the basic material
science concepts of relevance to the study of rock deformation were already
established by this time and so it is felt that this presentation is still of relevance.
A limited amount of updating has been done and some later references added.

I am very indebted to Ian Jackson for careful reading of the text and to John Fitz
Gerald for assistance in the preparation of the micrographs.
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Chapter 1
The Nature of Minerals and Rocks
as Materials

1.1 General

The classification, genesis, and geological role of the various minerals and rocks
are well covered in standard textbooks of mineralogy and petrology (Deer et al.
1992; Mueller and Saxena 1977; Best 2003; Nesse 2000; Perkins 2002; Philpotts
and Ague 2009; Vernon and Clarke 2008; Wenk and Bulakh 2004; Yardley 1989).
Here we review briefly some of the characteristics of minerals and rocks that are
relevant from a materials science point of view. Minerals show a wide range in
physical and chemical properties, and rocks have the additional complexity of the
textural and structural variety of polycrystalline materials. However, there are
some generalizations that can be made. Thus, most minerals are electrically
insulating, optically transparent in thin sections, and brittle under ordinary atmo-
spheric conditions, and many are silicates in chemical constitution.

In the next two sections, we look at aspects of minerals and rocks that are of
particular relevance to their mechanical properties. In the case of minerals, this
involves the nature of the chemical bonding and of the defects in their crystal
structures. In the case of rocks, particular importance attaches to the nature of the
grain boundaries in intact rock and of pore structure in porous rock.

1.2 The Constitution of Minerals

1.2.1 Atomic Bonding

In their physical and chemical nature minerals cover a wide range. However,
comparing them with materials that are well studied because of technological
importance, they tend to be nearest to the oxides. The majority of rock-forming
minerals are, in fact, either oxides or oxy-salts, with the silicates forming the
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largest and most distinctive class, while the sulfides, of special importance in ore
deposits, form a rather separate class in respect of their properties. The mechanical
properties of minerals are mainly determined by their crystal structure, the nature
of their bonding, and the properties of their crystal defects. The crystal structures
are well known from X-ray diffraction studies and need not be elaborated here
(Bragg and Claringbull 1965; Deer et al. 1992; Wenk and Bulakh 2004). In this
section, we consider crystal bonding and defects (Barrett et al. 1973, Chap. 2;
Frank-Kamenetskaya et al. 2004; Hammond 2001; Kelly et al. 2000; Kittel 1976,
Chap. 3; Phillips 1975; Putnis 1992; Rohrer 2001; Sands 1969; Schmalzried 1995).

Bonding is atomic interaction that arises mainly through the valence electrons
and is related to the electron density distribution. The overall strength of bonding
is represented in the cohesive energy, the difference in total energy of the atoms
when separated and when assembled in the crystal structure. The mechanical
properties are sensitive to the nature of the bonding. In minerals, this nature
generally falls somewhere in the continuous range between the limiting cases of
ionic or heteropolar bonding and covalent or homopolar bonding. In ideal ionic
bonding, valence electrons are completely transferred from the more electropos-
itive to the more electronegative atoms and the interaction between them can be
fairly satisfactorily viewed as a classical electrostatic one between spherical ions.
In ideal covalent bonding, in contrast, valence electrons are equally shared
between the atoms and tend to be distributed spatially in such a way as to define
directional bonds; the bonding results from the electrons occupying lower energy
states than when localized on either atom and require a quantum–mechanical
explanation.

The theoretical analysis of bonding may be approached either in terms of
individual atom–atom bonds, as in molecular orbital and valence bond theories, or
in terms of the total assemblage of atoms of the crystal, as in energy band theory
(Adler 1975; Coulson 1961; Harrison 1980; Kittel 2005; Madelung 1978, Chap. 8;
Marfunin 1979, Chaps. 3 and 4; Martin 2004; Weaire 1975). Energy band theory
explains why most minerals are insulators. This property arises from the existence
of a band gap separating the valence band of energy states, fully occupied by the
valence electrons, from the next band of possible but unoccupied energy states
known as the conduction band. For strongly ionic crystals the band gap tends to be
wide (order of 10 eV, � kT) but it can be relatively narrow for crystals with a
considerable degree of covalency in the bonding (for example, 3.6 eV for ZnS and
0.3 eV for PbS). Another important property of the electron energy distribution is
the Fermi energy or chemical potential of the electrons, that is, the energy level of
an extra electron in equilibrium with the existing electron population of the crystal;
for the pure insulator, the Fermi energy lies in the middle of the band gap but its
level can be strongly influenced by impurities.

Although the cases of pure covalent bonding (C, Ge, Si) and of highly ionic
bonding (alkali halides) are well characterized, it has proved to be difficult to specify
quantitatively the degree of ionicity in intermediate cases. The initial approach of
Pauling was through electronegativity, that is, the relative ability of an atom to attract
electrons, and various measures of this property have been proposed, most
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corresponding more or less to the sum of the ionization energy and the electron
affinity (Flynn 1972; Kittel 2005; Samsonov 1968). Clearly, the degree of ionic
character (ionicity) will tend to increase with increasing difference in electroneg-
ativities of anion and cation but there is no general agreement on how to express the
ionicity quantitatively in terms of electronegativities or of other parameters. The
usual approach has been to try to identify measures of the homopolar and ionic
components of the bonding based on observed properties that reflect the distribution
of electron density; thus the definitions of Pauling (1960, 1971), Phillips (1968, 1969,
1970, 1973), van Vechten (1969a, b), Kowalczyk et al. (1974), Hübner and Leon-
hardt (1975), Stewart et al. (1980) and Guo et al. (1999) are variously derived from
thermochemically determined electronegativities, dielectric constant, spectroscopic
parameters and ‘‘orbital electronegativities’’ calculated from ionization potentials
and electron affinities.

A generally useful scale for comparing ionicities appears to be that of Phillips
and Van Vechten, initially only applied to the binary compounds ANB8-N

(N = group in the periodic table) but extended to other compounds by Levine
(1973a, b); as well as the references above, see Ramakrishnan (1974) for a simple
exposition and Madelung (1978, pp. 331–352) for further discussion of this and
other measures; also Catlow and Stoneham (1983). The Phillips-Van Vechten
ionicities are obtained as follows:

1. Resolving the crystal potential into a covalent component, corresponding to an
average of the properties of the two atoms, and an ionic component, corre-
sponding to their difference, an average band gap Eg is defined as Eg ¼ E2

c

�

þE2
i Þ

1
2;where Ec; Ei are components of the band gap expressing the covalent and

ionic character, respectively.
2. Eg is obtained from the observed static dielectric constant.
3. Ec is determined from an empirical formula relating it to the interatomic

spacing, using the purely covalent C and Si to calibrate this relationship; thence
E2

i ¼ E2
g � E2

c is obtained.

4. The ionicity parameter fi is defined as fi ¼ E2
i =E2

g; 0� fi� 1:

Selected values of fi are given in Table 1 from Levine (1973a, b).
The general trends and relative positions are similar to those given by Pauling

(1960), Kowalczyk et al. (1974), and Hubner and Leonhardt (1975), although there
are a few discrepancies.

An alternative approach to determining the degree of ionicity in bonding is to
start with the electron density distribution from an accurate X-ray structure
determination and resolve it into spherically averaged components (‘‘pseudo
atoms’’) centered on each site and a non-spherical component representing the
covalent bonding; this enables one to determine a net or residual charge for each
atom, from which an ionicity may be derived by comparing this charge with the
formal charge corresponding to full ionization according to the chemical valency
(for example, Stewart 1976). In this way the net charge on Si in a-quartz has been
determined to be about 1 electron unit, compared with a formal charge of 4 for
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fully ionic bonding (Stewart et al. 1980). Therefore, Stewart et al., defining an
ionicity parameter equal to (net charge)/(formal charge), have concluded that the
Si–O bond in quartz has only 25 % ionic character. However, Pauling (1980) has
argued, on the basis of his view of bonding, that a net charge of 1 on the Si
corresponds to 50 % ionic character for the Si–O bond, which would also corre-
spond more nearly with the 57 % given on the dielectric scale (Table 1), although
still not with the nearly 100 % ionicity deduced by Rosenberg et al. (1978) from
observations on Compton scattering. The Si–O bond may have slightly greater
ionicity in the stishovite structure (Kirfel et al. 2001).

In spite of the difficulty and subjectivity involved in defining ionicity, some
conclusions of a relative nature can be reached from Table 1 that are generally
consistent with the various views and measures of ionicity:

1. The substances listed in the first column are highly ionic and can usually be
treated as purely so in a first approximation.

2. Covalent character is likely to have some influence for substances listed in the
second column, perhaps only minor in the first few cases but more significant in
the last few, although probably not overshadowing the ionic component.

3. The substances in the third column can be expected to be strongly influenced in
their properties by the covalent aspect of the bonding, this being predominant in
the semiconductors.

1.2.2 Crystal Defects

There are many types of defects in mineral crystals, all of which represent some
sort of departure from the perfect periodicity of the ideal crystal. For brief surveys,
see Bollmann (1970), Barret et al. (1973, Chap. 3), Fine (1975), Schmalzried

Table 1 Phillips and van Vechten ionicities (after Levine 1973a, b)

CaF2 0.97 FeO 0.87 SiO in Mg2SiO4 (0.62)b

CsCl 0.96 MgO 0.84 SiO2 0.57
AgCl 0.96a Al2O3 0.80 GeO2 (quartz) 0.51
KCl 0.95 GeO2 (rutile) 0.73 ClO in NaClO3 0.49
NaCl 0.94 TiO2 0.69 PO in AlPO4 0.48
NaI 0.93 Fe2O3 0.68 InSb 0.33
CaO 0.92 AlO in AlPO4 0.65 SiC 0.20
LiF 0.91 PbS 0.63 Si 0

ZnS 0.62
BeO 0.62

a Phillips’ (1970) value is 0.86 for AgCl by the same method, the difference being that Levine
(1973a) has assumed a greater contribution of d-electrons to the valence band; for the other
AN B8–N compounds listed above, Phillips figures are very close to Levine’s.
b Estimated by analogy with ionicities of 0.63 and 0.58 determined for the SiO bond in mag-
nesian olivine and quartz, respectively, by Tossell (1977) using the ionicity scale of Kowalczyk
et al. (1974) and observations on X-ray spectra.

4 1 The Nature of Minerals and Rocks as Materials

http://dx.doi.org/10.1007/978-94-007-5545-1_3


(1981), Tilley (1986, 1998, 2008), and Kelly et al. (2000). Crystal defects can be
conveniently classified dimensionally as point, line, interfacial, and bulk defects.

Point defects are generally regarded as being of particular importance for
transport properties such as diffusion and electrical conductivity. Basically, they
arise either at a normal atom site through the absence of the atom (vacancy) or the
substitution of another type of atom (substitutional; usually a foreign atom), or at a
site not normally occupied through the insertion of an extra atom (interstitial; may
be foreign or not). The defects involving foreign atoms are called extrinsic defects,
as opposed to intrinsic or native defects. In compounds, combinations of these
single defects occur, especially if stoichiometry or charge balance is to be pre-
served; thus, in binary compounds a Schottky pair is a pair of vacancies, one of
each type, and a Frenkel pair is a combination of a native interstitial and its
corresponding vacancy (sometimes restricted to the cation).

The principal line defect is the dislocation, of central importance in crystal
plasticity and discussed later (Chap. 6). Stacking faults, twin boundaries, antiphase
boundaries, and crystallographic shear surfaces are the simplest of the interfacial
or extended defects. Crystallographic shear surfaces (Wadsley defects) can,
however, occur in such concentrations as to be regarded as an aspect of the
structure itself rather than a perturbation, especially if periodically spaced as in
Wadsley shear phases, common in certain non-stoichiometric oxides, such as those
of W, Ti, and Nb (Fine 1975; O’Keeffe and Hyde 1985, 1996). High concentra-
tions of point defects can also be clustered and ordered, as in the case of the
vacancies in wüstite, Fe1-xO. These assemblages can be regarded as volume
defects. Other volume defects are cavities, precipitates, and precipitation segre-
gations, for example, Guinier–Preston zones (Guinier 1938; Preston 1938).

The presence of defects can change the electronic structure and properties of a
crystal significantly. A small perturbation of the crystal potential may be insuffi-
cient to split off any electron energy levels to positions outside the bands of the
perfect crystal but, when the perturbation exceeds a certain amount, localized
energy states can appear in the band gaps of insulators, corresponding to attenu-
ated rather than propagating wave functions (Adler 1975; Flynn 1972, p. 190;
Madelung 1978, p. 378). Such localized states can be treated as approximating a
hydrogen-like situation if the perturbing potential is not too great, in which case
the localized levels lie near to the band from which they are split off and are said to
be ‘‘shallow’’ levels within the band gap. As the defect states fall deeper in the gap,
electrons occupying them become more strongly localized and treatment by a
hydrogen-like approximation is no longer valid. Defects such as substitutional
impurities of higher nuclear charge tend to give rise to occupied localized levels
falling below the conduction band of the pure crystal and are known as donors;
the converse acceptor defects, deficient in nuclear charge, tend to give rise to
unoccupied localized levels above the valence band. When a donor level is
unoccupied or acceptor level occupied, the defect is said to be ionized or charged.
In strongly ionic materials, impurity states tend to be highly localized because of
the relatively low dielectric constant and the impurity defects are often ionized in
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the ground state (for further discussion on the charge state of impurities in ionic
crystals, see Flynn 1972, p. 579).

In view of the roles of the various types of crystal defects in mechanical properties,
their concentrations can be of particular interest. The dislocation content of a crystal
depends on its history and degree of annealing, that is, on the kinetics of rear-
rangement and annihilation of the dislocations and not on equilibrium thermody-
namic considerations; in fact, except possibly at temperatures in the neighborhood of
the melting point, a crystal in thermodynamic equilibrium is predicted to be free of
dislocations (Friedel 1964; Nabarro 1967, p. 688). A similar situation probably
applies for many volume defects. However, point defects can exist in finite con-
centrations in crystals in thermodynamic equilibrium, and the equilibrium can often
be attained in laboratory times at temperatures well below the melting point. These
concentrations are governed by chemical equilibrium considerations (‘‘defect
chemistry’’) which can be lengthy and complicated but which involve basically the
following steps (Flynn 1972, pp. 207–216; Kröger 1974, Chaps. 9–14; Libowitz
1975; Madelung 1978, pp. 397–406; Mrowec 1980, Chap. 1; Smyth 2000; van Gool
1966):

1. Identify all relevant defect species, atomic and electronic, and the reactions
between them that are thought to be of interest, paying particular attention to the
states of charge and taking into account ionization of defects, formation of
associates, changes in occupancy of valence and conduction bands, and interac-
tions with the environment. Physical insights play an important part at this stage.

2. Apply the law of mass action to each reaction; that is, for the reaction

aAþ bBþ . . .: ¼ cC þ dDþ . . .:

Obtain

aa
Aab

B. . .:=ac
Cad

D. . .:
� �

¼ K ¼ exp �DG0=RT
� �

or

a ln aA þ b ln aB þ . . .� c ln aC � d ln aD. . . ¼ ln K ¼ �DG0=RT

where aA; aB; . . . are the activities of the defect species A; B; . . .; K is the ther-
modynamic equilibrium constant, DG0 is the standard Gibbs function for the
reaction, R is the gas constant, and T is the absolute temperature (see, for example,
Atkins 1986, pp. 213–218), noting that:

a. aA ¼ cAxA. . . where cA. . . are the activity coefficients and xA. . . the mole
fractions of A. . .

b. if molar concentrations cA. . . are used in place of mole fractions xA. . .; the
values of cA. . .; K and DG0 must be adjusted accordingly, now expressing DG0;
for example, in kJ m-3 instead of kJ mol-1 and taking care about definition of
standard states (Atkins 1986, p. 186).
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c. the notation ½A�. . . is variously used for both mole fractions and molar con-
centrations (cf. Kröger 1974, p 34).

It is to be further noted that in any ionization process in which an electron is
interchanged between a localized state for the defect and the collective population
of delocalized electrons, the chemical potential for the latter is given by the Fermi
level, to be used in determining DG0

3. Write down the condition for electrical neutrality of the crystal, taking into
account the effective charge of each defect and including electrons added to the
conduction band and electron holes added to the valance band by the reactions
(the effective charge of a defect is the difference in charge of a crystal with the
defect and of the perfect crystal; the cryptic symbols �, prime, and x are com-
monly used for positive, negative, and zero effective charges to avoid confusion
with the usual absolute or formal charge states designated +, -, and 0).

4. Solve the simultaneous equations of (2) and (3) in order to obtain whatever is
being sought in the way of relationships between defect concentrations or
expressions for unknown concentrations in terms of experimentally controlled
quantities such as temperature and the activities of components in the envi-
ronment. In carrying through these calculations, it is often convenient to
introduce approximations for particular ranges of the variables, first by taking
into account the relative magnitudes of the equilibrium constants K, some of
which may be assumed to be negligibly small compared with others even if
absolute values are not known, and second by only considering the most
abundant defect of each charge sign when writing the condition of electro-
neutrality (Brouwer’s approximation). The latter approximation often enables
particular ranges to be defined in which the logarithm of a defect concentration
can be expressed as a simple power of the activity or partial pressure of a
component in the environment (for example, the oxygen fugacity).

For an example of such considerations in the case of olivine, see Stocker
(1978a, b).

1.2.3 Order–Disorder

In some crystal structures, it can happen that certain types of sites in the unit cell
can be occupied nearly equally favorably by two different species of atom. It is
then possible that, from unit cell to unit cell or among sites within a unit cell, these
sites can be occupied by the two species non-randomly, in which case the crystal
structure is said to be ordered. For reasons of entropy, there tends to be a fairly
sharp transition from the ordered to the disordered state as the temperature is
increased, the sharpness of the transition being a result of its ‘‘cooperative’’ nature
(Christian 1975, p. 206 et seq; Massalski 1983). If the ordering consists simply of a
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statistical tendency to order in the neighborhood of a given site, it is known as
short-range ordering but of it persists over large domains it is known as long-
range ordering. Mistakes or faults in the long-range ordering give rise to antiphase
boundaries separating antiphase domains. Long-range ordering introduces a longer
periodicity into the structure, to which the term superlattice is attached. For an
example of long-range ordering in a mineral, see Redfern et al. (2000)

When long-range ordering is not complete, the degree of ordering can be
described by the Bragg–Williams long-range order parameter S, defined by

S ¼ p� r

1� r
ð1:1Þ

where p is the probability that a given site is occupied by a given species of atom
and r is the fraction of this species that could potentially occupy this site. The
parameter S can thus vary from zero for complete disorder to unity for complete
order. The degree of short-range ordering, in contrast, is defined by the Bethe
short-range order parameter s; defined by

s ¼ q� qr

qm � qr
ð1:2Þ

where q is the actual fraction of unlike atoms on neighboring sites and qr; qm are
the corresponding fractions at maximum randomness and maximum order,
respectively.

1.3 The Constitution of Rocks

1.3.1 Rocks as Aggregates of Grains

Rocks, as aggregations of mineral grains, have mechanical properties mainly
determined by the following factors:

1. The properties of the mineral grains themselves, as surveyed in the previous
section, assuming that the deformation is penetrative to the grain scale.

2. The mutual interactions of the mineral grains, especially as it affects the
intragranular deformation.

3. The manner in which the grains are stuck together, including the nature of the
grain boundaries and of any binding cements.

4. The ease of access of fluids, involving both porosity and permeability.
5. The existence of a hierarchy of structures on different scales, as, for example, in

conglomerates, oolites, layered complexes, or chemically segregated rocks.

Strain compatibility between grains undergoing plastic deformation is a com-
plicated issue in rocks because of the tendency to low symmetry in the mineral
grains, the existence of contrasting properties between different types of grains in
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polyphase rocks, and the variety of possible accommodating mechanisms that may
arise. This topic will be discussed later (Chaps. 5–7).

In respect of intergranular attachment, rocks present a wide spectrum as they
range from zero-porosity monomineralic polycrystalline bodies to granular masses
that are little more than consolidated soils. The intergranular region in rocks thus
shows great variety and is often of the utmost importance for mechanical prop-
erties. At the one extreme, it may consist of clean, intact grain boundary between
identical or differing phases, with structural properties akin to those of grain
boundaries in metals. At the other extreme, the grains are separated by a more or
less continuous layer of a cementing material, itself often polycrystalline but much
finer grained. Between these two extremes are boundaries containing precipitates,
films and voids, or cracks in various extents at the contact between the two grains.

1.3.2 Simple Grain Boundaries

While a clean, intact grain boundary between identical phases may be uncommon
in practice, the concept of it provides a point of reference for many discussions and
forms a basis for explaining properties that are insensitive to the presence of
impurities. The study of such grain boundaries has advanced considerably since
around 1970, the general trends being covered in the following reviews and col-
lections of papers; Bollmann (1970, 1982), Hirth and Balluffi (1973), Smith and
Pond (1976), Ashby et al. (1978), Chadwick and Smith (1976), Johnson and
Blakely (1979), Priester (1980), Balluffi et al. (1981), Hahn and Gleiter (1981),
Clarke (1987), Doherty et al. (1997), Farkas (2000), Flewitt and Wild (2001). In
the present context, the succinct review of Balluffi et al. (1981) is especially
relevant. We shall now attempt to summarize briefly the main concepts that have
evolved. It should be recalled first that the complete geometric specification of a
planar segment of grain boundary involves not only the relative orientation and
translation of the two joining crystal lattices but also the orientation and position of
the grain boundary itself, requiring, in general, nine parameters. There have been
two main conceptual approaches to the analysis of the grain boundary structure,
the earlier one a formal geometrical approach with emphasis on periodicities and
dislocations, the other, more recent, an analytical or atomic approach derived from
computer modeling of atomic interactions, with an emphasis on vacancies.

The geometrical approach. Since the grain boundary is a region where the
influence of the two periodic structures of the grains overlaps or interacts, this
region, or ‘‘core’’ of the grain boundary, can itself be expected to have a periodic
structure in some degree. This structure is described with reference to the fol-
lowing periodic lattices:

1. The individual crystal lattices of the grains.
2. The CSL, coincidence site lattice (Friedel 1926; Kronberg and Wilson 1949):

Given the crystal lattices defined in each grain but extended through all space,
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the CSL consists of those lattice points of the two coexisting crystal lattices that
coincide in space. The fraction of the lattice points that coincide is designated
by 1=R, where R is an integer. A low value of R and therefore a relatively small
CSL unit cell represents a rather special orientational and translational rela-
tionship between two grains. For more general relationships a CSL may or may
not exist.

3. The O-lattice (Bollmann 1970): Given the crystal lattices defined in each grain
as before, an O-lattice is formed by any set of equivalent points within the unit
cells of the two coexisting crystal lattices that coincide in space. These points
are then called O-points (analogous to the pattern of light areas in a trans-
mission Moiré pattern in two dimensions). An O-lattice exists for all rela-
tionships between two grains. If a CSL exists, it represents a special case of an
O-lattice in which the O-points are crystal lattice points. Other special cases
arise where the relationship between the two crystal lattices is a rotation about a
common low-index axis or a matching of planes across the boundary. Thus, the
O-lattice is fundamental to all considerations of grain boundary core structure.
However, it is to be understood that it is only the O-points that define the
O-lattice and that we have to consider additionally the pattern of crystal lattice
points that fall within the O-lattice unit cells. This pattern may vary from one
cell to the next and may or may not be periodic. Thus, there are special rela-
tionships between the two crystal lattices for which there is a finite number of
different patterns within the unit cells (called ‘‘pattern elements’’ by Bollmann),
or even a single one, and the total pattern is then periodic. In the latter case, the
number N 0 of crystal unit cells per period of the pattern is a measure of the
overall degree of coincidence of all points within the crystal lattice unit cells,
N 0 being smaller the better this fit, in a manner somewhat analogs to that in
which R is a measure of the degree of crystal lattice site coincidence but with
more profound implications for the energy of a grain boundary configuration.

4. The DSC lattice (‘‘displacement shift complete’’) (Sutton and Balluffi 1995): In
defining the DSC lattice, it is assumed that the two crystals are in a special or
optimal relationship (having either a CSL of low R or, at least, an O-lattice of
low N 0) so that there is a periodicity in the pattern of crystal lattice points, as
just discussed. The DSC lattice is then derived from all displacements con-
necting pairs of crystal lattice points in this pattern which preserves the overall
pattern; it is the coarsest lattice that can accommodate all the crystal lattice
points of the two crystals (note: not all the DSC lattice sites or equivalent points
are occupied by crystal lattice points, the pattern itself having the periodicity
not of the DSC lattice but of a multiple or sublattice of the CSL or the
O-lattice). The DSC lattice has a sort of reciprocal relationship to the corre-
sponding CSL or O-lattice in the sense that the higher is R or N 0 the smaller is
the spacing of the DSC lattice.

So far we have considered the relationships between the two crystals that are to
share a boundary. Now we consider the location and structure of the boundary
itself. A grain boundary can be viewed as a particular plane located within the
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O-lattice. For best fit, and therefore presumably minimum energy, this plane will
pass as much as possible through O-lattice points. Since the O-lattice points
represent sites of a maximum degree of coincidence of the two crystal structures,
and since the regions halfway between these points [that is, the intersections with
the cell walls in the sense of Wigner-Seitz cells (Wigner and Seitz 1933)] represent
regions of maximum misfit, the grain boundary can be viewed as made up of
regions of good fit separated by dislocation lines having a Burgers vector equal to
a crystal lattice vector and a spacing corresponding to the periodicity of the
O-lattice (the elements of dislocation theory are summarized in Chap. 6). These
dislocations are known as primary grain boundary dislocations. Such a description
of a grain boundary corresponds well with observation in the case of small-angle
boundaries but it is more a geometrical formalism for high-angle grain boundaries
where the dislocation cores will overlap, even allowing for some relaxation along
the grain boundary to maximize the areas of good fit. However, it is generally held
that, to minimize energy, the structure of the core of high-angle grain boundaries
will adjust itself to conform as far as possible to the nearest low energy config-
uration, such as that of a CSL of low R, and that the remaining misfit will be
concentrated in a further network of dislocations known as secondary grain
boundary dislocations. Burgers vectors of the latter dislocations are vectors of the
DSC lattice, thus revealing the significance of its introduction (note that in
imagining the formation of such a dislocation, the Volterra cut must be made in the
grain boundary itself). Such dislocations have also been imaged by TEM although
their smaller Burgers vectors make the imaging more difficult. Both types of grain
boundary dislocation are described as intrinsic dislocations since they represent
aspects of the intrinsic structure of the ideal or equilibrium grain boundary core
formed between two perfect crystals. It may also be noted that steps or ledges in
the boundary can be intrinsically associated with grain boundary dislocations.

Just as a perfect dislocation can have defects introduced into it, so defects can
be added to the ideal grain boundary, in particular, vacancies and other disloca-
tions known as extrinsic dislocations. Extrinsic dislocations can be imagined as
arising when a boundary is formed between two imperfect crystals or when a
crystal dislocation is moved from the grain interior into the boundary. In the latter
case the dislocation may dissociate into other grain boundary dislocations having
Burgers vectors of both the crystal lattice and the DSC lattice if it is energetically
favorable to do so. If a sufficient number of dislocations is introduced, the structure
of the grain boundary core may be regarded as being transformed by incorporating
a regular array of the new dislocations as intrinsic grain boundary dislocations.
One of the principal differences between intrinsic and extrinsic dislocations lies in
the absence of long range stress fields around the former on account of their
regular spacing, while extrinsic dislocations can show a stress field that appre-
ciably penetrates the adjacent grains.

The analytical or atomistic approach. The geometrical approach to the grain
boundary core structure just outlined takes little account of the nature of the crystal
structure and bonding type and has naturally found most application in metals
where the structure is simple and the bonding non-directional and non-polar. In the
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atomistic approach the interatomic forces between atom pairs form the starting
point for a computer simulation of the grain boundary core structure. The energy
of a representative group of atoms constituting the core structure is calculated
assuming a pairwise interaction potential and the atomic configuration found that
minimizes this energy with respect to variations in atomic positions and to slight
relative translations of the two crystals (see, for example, Balluffi et al. 1981;
Farkas 2000; Gleiter 1979; Guyot and Simon 1976; Hahn and Gleiter 1981;
Harrison et al. 1976; Karki and Kumar 2007; Mishin and Farkas 1998; Priester
1980). Although such calculations have many limitations, when applied to metals
they have generally indicated that the grain boundary core is very narrow, of the
order of two atomic distances, that there exist energy minima for certain relative
orientations of the grains, and that there are often tendencies for delocalization of
vacancies and dislocation cores with accompanying reduction in the free volume
associated with these defects. Also it has been found that the deduced structure of
the grain boundary core can generally be described in terms of the linking of
polyhedral groups of atoms (Ashby et al. 1978; Pond et al. 1979). Less progress
has been made with similar calculations for the more complicated situations
involving non-metallic compounds of relevance to mineral systems but it may be
expected that the above general findings for metals will probably again apply and,
in particular, that polyhedral grouping will be an important concept in describing
the structure of the grain boundary core. However, as with metals (Gleiter 1979), it
may be that for more refined treatment the electronic energy structure of the grain
boundary will also have to be taken into account.

Some idea of the likely properties of grain boundaries specific to mineral systems
can be gained from reviews on grain boundaries in ceramics by Kingery (1974) and
Balluffi et al. (1981). On the whole, similar geometrical properties can be expected to
those for metals, with perhaps a greater tendency to faceting. Also the width of the
grain boundary core can again be expected to be very narrow; an estimate by Ricoult
and Kohlstedt (1983), based on extrapolation from electron diffraction studies on
low-angle boundaries, indicate that for high-angle grain boundaries in olivine the
width will be less than about 1 nm, that is, similar to the unit cell dimensions. Specific
studies on minerals include Wirth (1986), Johnson et al. (2004), Hiraga et al. (2004),
Kuntcheva et al. (2006), and Drury and Pennock (2007). However, mineral grain
boundaries are likely to have electrical charges associated with them and a greater
variety in core structure can be expected than in metals because of the greater range in
types of bonding and interatomic potentials. Finally, impurity segregation and pre-
cipitation at grain boundaries will be of particular importance in mineral systems,
both because of their relative impurity and because of strong electrical interactions
between grain boundaries and impurities.

Similar notions can probably be extended to the interphase boundaries between
different minerals, which exist in all but the simplest rocks. One may speculate that
the polyhedral grouping of atoms in a narrow core region will again be important,
perhaps with affinities to intermediate structures, but the geometrical properties of
the interface region will be complicated by the lack of commensurateness between
the two crystal lattices (Warrington 1980). For references on interphase
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boundaries, see the three-yearly proceedings of the International Conferences on
Intergranular and Interphase Boundaries. Farver and Yund (1995) and Keller,
Hauzenberger and Abart (2007) deal with diffusion in interphase boundaries.

1.3.3 Solute Segregation, Extra Phases, and Void Space
at Grain Boundaries

In considering the segregation of impurities or heterogeneity in chemical com-
position in or near grain boundaries, a distinction must first be made between
equilibrium and non-equilibrium situations. At equilibrium, segregation appears to
be confined to the core regions of grain boundaries, of the order of 1 nm in
thickness or less. Observations have been mainly carried out on metals, involving
measurements on grain boundary energies and direct analyses on grain boundary
fracture surfaces using Auger electron spectroscopy (Hondros 1976; Seah and
Hondros 1973). However, a few observations on ceramics and minerals, such as
aluminium oxide (for example, Johnson 1977) suggest that similar effects may be
expected in rocks although the quantitative aspects may be rather different because
of differences in defect formation energies and, in ionic materials, the concen-
tration of electrical charge in grain boundaries tends to be an important additional
factor (Hall 1982; Kingery 1974). Similar considerations can also be expected to
apply to individual dislocations and to low angle or subgrain boundaries.

The reason for grain boundary segregation is envisaged to lie in the existence of
a variety of sites different from those in the interior of the grains, a situation
analogs to that at the surface of a crystal although less pronounced. Thus, ther-
modynamical considerations similar to those for surfaces have been applied
(Hondros and Seah 1977; McLean 1957), involving the equivalent of a Langmuir
adsorption isotherm expressing the concentration of a species in the boundary in
terms of the concentration of available sites and an energy of segregation or
binding energy; typically 0–20 kJ mol-1 for solute impurities in metals (Seah and
Hondros 1973), comparable to that for physisorption (Atkins 1986, p. 772). The
segregation commonly amounts to less than a monolayer, especially at high
temperatures. However, multilayers of two or more atoms thickness have also been
observed, analogous to multilayer adsorption of gases on surfaces (Seah and
Hondros 1973), For non-metallic materials space charge effects may lead to some
broadening of the profile of segregation (Hall 1982; Yan et al. 1983) but it is not
clear that this effect is generally very important (Johnson 1977); for example, Tiku
and Kröger (1980) find the effect on conductivity in Al2O3 to be small. There have
been suggestions that in some cases the segregation may lead to new structures in
the grain boundary core (Guttmann 1977) and atomistic aspects have been con-
sidered (Vitek and Wang 1982). The extent of segregation can be expressed by a
grain boundary enrichment ratio relative to the grain interiors. Enrichment ratios
from unity to 105 have been shown to be inversely related to the solid solubility in
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the grains (Bender et al. 1980; Dobson et al. 2007; Johnson 1977; Kingery et al.
1979; Seah and Hondros 1973; Unertl et al. 1977). The enrichment ratio may also
vary with the nature of the boundary (Balluffi 1979).

In contrast to the highly localized nature of equilibrium segregation in grain
boundaries, systems that are not in equilibrium may show gradients in chemical
composition that extend much further into the grains, even tens or hundreds of
microns (Westbrook 1969). Such gradients can generally be viewed as frozen-in
transients in systems that are in course of adjustment to changing conditions, most
commonly involving the precipitation of excess solute as the solid solubility
decreases during cooling (Kingery 1974); presumably the precipitation occurs in
the grain boundaries because of easier nucleation there (Clemm and Fisher 1955).
The process has been modeled by Cai (1991) and Xu (1987).

Minor phases present in the boundary regions between the major phases can be
of special importance in the experimental deformation of rocks. These accessory
phases may be of igneous origin, be formed during metamorphism or weathering,
or represent cements in sedimentary rocks. They commonly give rise to a fluid
phase at elevated temperatures, either because of dehydration of hydrous phases or
because of partial melting related to a relatively low solidus in the system of
phases present. Interest attaches to the role of such fluid phases in grain boundaries
both from the point of view of interpreting high temperature experimental
observations and for possible application to natural systems such as migmatites or
low velocity regions in the lithosphere.

The influence of a small amount of melt on the flow properties of a rock
depends on the distribution of the melt, which in turn is related to its amount and to
the relative solid–solid and solid–liquid interfacial energies, cSS and cSL. If a
simple grain boundary intersects a pocket of melt and thermodynamic equilibrium
is established, the grain-melt interfaces will take on spherical curvatures and the
dihedral angle h where these interfaces meet the grain boundary (Fig. 1.1) is
governed, in the absence of anisotropy, by the following considerations (Bulau
et al. 1979; Raj 1981; Raj and Lange 1981; Smith 1948, 1952; Wray 1976):

1. When cSL� cSS=2; the dihedral angle h ¼ 0: The melt will then tend to pene-
trate the total grain boundary area and so have a maximum direct mechanical
effect. However, taking into account also the maximization of the interfacial
curvature, complete wetting of the grain boundaries at equilibrium for a fixed
grain size will not occur unless the relative volume of melt exceeds about 21 %,
depending on the exact grain shapes (Wray 1976); below this fraction, the melt
will tend to concentrate in the 3-grain and 4-grain junctions and to be not
interconnected. The case h ¼ 0 is only to be expected where there is very close
chemical affinity between solid and melt.

2. When cSS=2\cSL\cSS; then cos h ¼ cSS=2cSL and 0\h\60�: The melt will
tend to take up a prismatic configuration in the 3-grain junctions (grain edges)
and the volume fraction at which equilibrium interconnection occurs will
decrease from about 21 % to about 0.6 % as h increases from 0 to 60� (Wray
1976). In contrast, the volume fraction at which complete wetting or separation
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of the grains occurs will become larger than 21 % when h exceeds zero. The
case 0\h\60� might be expected to be common where the melt is moderately
similar chemically to the solid and cSL is somewhat less than cSS because of
greater ease of atomic configurational adjustment and the liquid–solid boundary
being the predominating factor. The observations of Waff and Bulau (1979,
1992) on annealed olivine-basalt mixtures fall in this category, the values of cSS

and cSL being about 0.9 and 0.5 J m-2, respectively (Cooper and Kohlstedt
1982), and the grain boundaries themselves being shown to be free of melt
within a resolution of 2 lm (Vaughan and Kohlstedt 1982).

3. When cSL [ cSS, then h [ 60� and the melt will tend to be segregated in tet-
rahedral pockets at 4-grain junctions (grain corners). The volume fraction for
interconnection of the melt at equilibrium increases as h increases, up to about
30 % for h ¼ 180�, and substantially larger amounts of melt are needed to
surround the grains completely for all values of h in this range. The case
h[ 60� is likely to arise when melt and solid are strongly dissimilar
chemically.

In practice, long annealing times may be necessary to achieve the equilibrium
configurations (*200 h at 1,240 �C for grain size *50 lm in Waff and Bulau’s
study). Many specimens in laboratory studies may therefore have non-equilibrium
distributions of melt in the form of widespread grain boundary films and irregu-
larly shaped pockets of melt occurring wherever the melt was formed initially.

Similar considerations apply to interfaces between solid phases, although tor-
que terms may sometimes have to be included in the dependence of interfacial
energy on interface orientation (Cahn 1982). Here, however, equilibrium may be
approached even more slowly than for the liquid–solid case and there may be more
situations where anisotropy cannot be neglected.

The nature of void or pore structure associated with grain boundaries is of
paramount importance in determining the permeability of a rock but it can also
influence the mechanical properties; for example, at low temperatures, voids may
act as nuclei for microcracks and at high temperatures they may contain fluids that
promote diffusional creep. Void space may be of many origins and have many

θ
s

s
L

Fig. 1.1 Defining the
dihedral angle h between the
solid–liquid (S–L) interfaces
and their junction with a
solid–solid interface (S–S)
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configurations, the configurations tending more to reflect the history of formation
than the influence of the thermodynamic factors discussed above and so making
generalization difficult. Commonly voids will represent space occupied during the
genesis of the rock by aqueous fluids since lost or space formed by microcracking
under external or internal stresses, and they may be re-filled in various degrees by
material deposited later. Microcracks may also be transgranular and other pores
such as fluid inclusions may be found within grains. For further information, see
David et al. (1999).
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Chapter 2
Thermodynamics

2.1 General

Thermodynamics is the theory of the interaction of heat and work and of their
relationship to the physical properties and processes in material systems, dealt with
at the macroscopic scale. One of its principal uses is therefore to provide con-
straints on the constitutive equations that describe the state of systems or the
processes occurring in them. The foundation of thermodynamics consists of a
minimal number of postulates or empirical laws drawn from experience. However,
it has also been proposed that it can be regarded as being rooted in some universal
and fundamental concepts of symmetry or invariance under transformation that
apply to physical laws (Callen 1974). The scope of thermodynamics has tradi-
tionally been limited mainly to systems in equilibrium but has more recently been
extended to deal also with non-equilibrium situations. We shall give here a brief
summary of the principal results of these two branches of the theory.

2.2 Equilibrium Thermodynamics

We first recall the elements of classical equilibrium thermodynamics (or ther-
mostatics). We take the concepts of heat Q and work W to be understood from
classical physics or physical experience. However, because of path dependences,
these quantities are inadequate for the proper description of the state of a physical
system at any instant, for which further concepts are required (for general texts, see
Callen 1960; Denbigh 1971; Guggenheim 1985; Callen 1985; for general texts, see
Pippard 1957).

Thermodynamics therefore begins with the introduction of the macroscopic
concept of the energy of a system, which is defined in terms of its conservation,
through the First Law, as function of state called the internal energy U.
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Only changes in the energy of a system can be measured and these changes derive
from work done on the system or from heat or substance added to the system. The
internal energy is thus an extensive variable of fundamental importance in
describing the state of the system. Other extensive or additive variables of similar
importance are the amount of substance in the system and the dimensions of the
system, if mechanical work is involved, or analogous parameters associated with
other forms of work (electrical, etc.). For simplicity in exposition we shall here
only consider systems having as the other extensive variables the volume V and
the amounts of substance (moles) ni of each of i components (ni ¼ Ni=L where Ni

is the number of molecules or entities of substance i and L is the Avogadro
number). The state of such a system is then completely specified by U, V and ni if
it is at equilibrium.

However, we also wish to consider systems in which changes of state (transi-
tions or processes) are occurring and to establish criteria of equilibria. Further, it is
well known that real physical processes are irreversible or dissipative in some
fundamental sense and we need a criterion for determining the direction of change.
In order to deal with these aspects, another extensive variable and function of state
called the entropy S is introduced through the Second Law, according to which, in
an isolated system, entropy is unchanged (DS ¼ 0) in a reversible process and
increases (DS [ 0) in an irreversible process. This law can be restated to give a
criterion of equilibrium, namely, that in an isolated system the entropy is a
maximum at equilibrium.

Some insight into the nature of entropy can be obtained from the molecular
point of view of statistical mechanics, in which entropy is given by S ¼ k ln g
where k is the Boltzmann constant and g is the number of quantum states acces-
sible to the system and assumed to be equally probable (Kittel and Kroener 1980,
Chap. 2), that is, the number of different microscopic possibilities or configurations
under which the given thermodynamic state can be realized. Macroscopically, it
can only be stated that the entropy is a function of the other extensive variables,

S ¼ S U; V ; nið Þ ð2:1Þ

This relation serves as a fundamental relation from which all other properties of
the thermodynamic system in equilibrium can be derived, since the specification of
the extensive variables fully characterizes the state of the system. From consid-
eration of the differential of S in the case of the reversible addition of an amount of
heat DQ to the system at constant V and ni it follows that DS ¼ DQ=T , or S ¼R

DQ=T where the integration path is a reversible path; in the irreversible case,
DS [ DQ=T but no other statement can in general be made, that is, we cannot in
general define an entropy exactly in a system out of equilibrium unless some
restrictive statements are made about the nature of the system.

The fundamental relation in the ‘‘entropic form’’ (2.1) can be rewritten in the
‘‘energetic form’’

U ¼ U S; V ; nið Þ ð2:2Þ
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From the differential of U the following (energetic) intensive variables are
defined:

absolute temperature T � oU

oS

� �

V ;ni

pressure p � � oU

oV

� �

S;ni

ðelectroÞ chemical potential

of the ith component l i �
oU

oni

� �

S;V ;nj6¼i

The intensive variables enable one to deal with the coupling of the system to its
environment. Using them the relation (2.2) can be rewritten in the Gibbs form

dU ¼ TdS� pdV þ
X

i

lidni ð2:3aÞ

or in the Euler form

U ¼ TS� pV þ
X

i

lini ð2:3bÞ

If follows from (2.3) that the above criterion of equilibrium can be restated in
terms of minimizing the internal energy at constant S; V; ni.

In practice it is often convenient to use one or both the intensive variables T , p
as independent variables instead of the respective conjugate extensive variables S,
V used in writing (2.2). Such transformation leads to the definition of the addi-
tional functions,

Helmholtz freeð Þ energy A � A T; V ; nið Þ ¼ U � TS

enthalpy H � H S; p; nið Þ ¼ U þ pV

Gibbs freeð Þ energy G � G T ; p; nið Þ ¼ U þ pV � TS;

to equivalent forms of the fundamental relations (2.3),

dA ¼ �SdT � pdV þ
X

lidni ð2:4Þ

dH ¼ TdSþ Vdpþ
X

lidni ð2:5Þ

dG ¼ �SdT þ Vdpþ
X

lidni ð2:6Þ

and to corresponding extremum conditions for equilibrium under constraint of the
specified independent variables (for example, the Gibbs energy G is a minimum at
equilibrium when T , p and ni are the independent variables). There are many
mathematical relations between the various parameters or functions of state so far
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introduced and others derivable from them, which constitute much of the useful
content of thermodynamic theory and are summarized in textbooks (for example
Callen 1960, Chaps. 3 and 7; Denbigh 1971, pp. 89–98). One such relation of
particular importance is the Gibbs–Duhem relation expressing an interdependence
among the intensive variables,

SdT � Vdpþ
X

nidli ¼ 0 ð2:7Þ

In the application of the thermodynamic principles to a real physical situation,
it is necessary to know the explicit form of the fundamental relation, in any of its
equivalent versions (2.1)–(2.6), in order to fully express the physics of the sit-
uation, although the search for this explicit form is not strictly part of thermo-
dynamics itself. The physics of the situation can alternatively be introduced in
the form of equations of state, which are explicit relations between the inde-
pendent extensive variables and the intensive variables, such as the ideal gas
laws V ¼ nRT=p and U ¼ 3nRT=2 (R ¼ Lk).

Since systems at equilibrium are homogeneous within regions free from internal
walls it is sufficient to discuss the total amounts S; U; V ; ni; G; . . .. . . of the
extensive properties within the homogeneous regions. However, in chemical
thermodynamics, it is often useful to normalize the extensive properties to the total
amount of substance n (¼ Rni) in the system to give, respectively, the molar
quantities Sm; Um; Vm; xi; Gm; . . .. . . (where Sm ¼ S=n. . . and xi = mole fraction
of the i’th component); further, the molar quantities may be partitioned among the
components of substance as the partial molar quantities, noting that the partial
molar Gibbs energy is identical to the chemical potential.

2.3 Non-Equilibrium Thermodynamics

We now turn to systems out of equilibrium. Here, the thermodynamic treatment
rests on less well-defined foundations than does classical equilibrium thermody-
namics. There exist, in fact, a number of distinct approaches of diverse aims, but
two major branches of theory can be distinguished, characterized by Germain
(1974) as the ‘‘ambitious attitude’’ and the ‘‘cautious attitude’’. The former, var-
iously labeled as rational thermodynamics or continuum thermodynamics, claims
to attempt the broadest possible analysis. It aims not to depend on generalization
from classical equilibrium thermodynamics but to deal ab initio with processes
(described by constitutive relations) rather than with states. The physical specifi-
cation of the system at any instant involves not only the values of the measurable
parameters at that instant but also their histories at all previous instants, expressed
as functionals such as hereditary integrals (Malvern 1969, pp. 256, 319). The
concepts of temperature and entropy are introduced as primitive quantities. No
attempt will be made to expound this approach here (see Coleman 1964; Day
1972; Noll 1974; Truesdell 1984).
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The alternative and more conservative approach is to retain the concept of local
state in giving the physical specification of a system at any instant. The postulate
that a local state exists is often taken as being equivalent to assuming some form of
local equilibrium (Glansdorff and Prigogine 1971, p. 14) but it can have a wider
meaning (Lavenda 1978, p. 77). Attempts to justify this postulate usually point to
the relaxation time for fluctuations at the atomic scale being short compared with
the timescale of the macroscopic processes to which the theory is applied. Where
the local state cannot be fully specified in terms of measurable macroscopic
variables it is assumed that there exist additional internal or hidden variables (for
example, dislocation density) which complete the description of the local state.
The importance of the postulate of a local state is that it enables many concepts to
be carried over from classical equilibrium thermodynamics, such as the concepts
of entropy and energy as scalar potentials and the Gibbs–Duhem and the Gibbs
relations (2.3a) and (2.7). The production of entropy envisaged by the Second Law
for irreversible processes is then discussed with a view to placing constraints on
the laws governing these processes, especially in relation to their stability. The
applications have commonly been confined to processes in systems not very far
from equilibrium, the theory for which is termed the linear thermodynamics of
irreversible processes. The theoretical situation for more general applications is
less well developed, and still to a considerable extent the subject of research. Thus
there have been attempts to develop the theory of the nonlinear thermodynamics of
irreversible processes applicable to systems far from equilibrium; see for example,
Glansdorff and Prigogine (1971), who introduce the concept of dissipative struc-
tures; also Lavenda (1978). Other applications have been to processes such as
friction or ideal plasticity where dissipation is equally important no matter how
slowly the process proceeds, for example, Kestin (1966) and Nemat-Nasser
(1974). The remainder of these notes will concern linear thermodynamic theory
under the assumption of the existence of a local state, as expounded by Denbigh
(1951), Meixner and Reik (1959), de Groot and Mazur (1962), Katchalsky and
Curran (1965), Prigogine (1967), Fisher and Lasaga (1981), Kuiken (1994),
Martyushev and Seleznev (2006), Holyst (2009), Kleidon (2009), and others.

The starting point for the linear thermodynamics of irreversible processes is the
Second Law and the concept of entropy production in an irreversible process. In
any irreversible change in a system, the rate of change in entropy is made up of a
part due to entropy flow from the surroundings and a part due to changes within the
system. The latter part is known as the rate of entropy production, or simply the
entropy production, and designated r per unit volume; according to the Second
Law it must be positive. In the energy representation of the evolution of the
system, the corresponding quantity is Tr; which is sometimes called a dissipation
function or potential since it represents the rate at which irrecoverable energy or
work must be supplied or done to maintain the process. The dissipation function
can be written in the form

Tr �
X

a

JaXa [ 0 a ¼ 1; 2; 3. . . ð2:7Þ

2.3 Non-Equilibrium Thermodynamics 25



where Ja are the rates of change of local extensive parameters and Xa are conjugate
intensive parameters, the summation being over all the component processes
contributing to the entropy production. There can be some ambiguity in the fac-
toring of the terms of (2.7) into the Ja and Xa but no serious confusion arises if
consistent rules are followed (Miller 1974).

Where heat flow, diffusion, and chemical reactions are to be taken into account,
the dissipation function can be expressed in the following terms (Katchalsky and
Curran 1965, Chap. 7)

Tr ¼ JQ : T grad
1
T
þ Ji : T grad � li

T

� �
þ dn

dt
A ð2:8aÞ

or

Tr ¼ JS : grad �Tð Þ þ Ji : grad �lið Þ þ dn
dt

A ð2:8bÞ

where JQ, JS and Ji are vectors representing the currents or rates of flow of heat,
entropy, and substance i, respectively, dn=dt is a scalar representing the rate of
advancement of the chemical reaction (n is the extent of chemical reaction), and
A ¼ �

P
mili is the chemical affinity driving the reaction (mi are the stoichiometric

coefficients for the reaction). In cases involving viscous flow, electric and mag-
netic effects, or other dissipative processes, further terms can be added. The factors
JQ, JS, Ji and dn=dt in (2.8a) can be clearly identified as the extensive parameters
Ja in (2.7) and their multiplying factors are then the respective conjugate intensive
parameters Xa. The seeming ambiguity regarding the intensive parameter conju-
gate to Ji arises from the different ways in which the total dissipation is partitioned
between the different terms in (2.8a) and (2.8b). The form (2.8a) is appropriate
where flow of heat and diffusion of substance are being individually and simul-
taneously measured in the presence of a temperature gradient, in which case it is
evident that the intensive parameter driving the diffusion is to be taken to be
T grad li=Tð Þ. The form (2.8b) is appropriate when the entropy changes associated
with the movement in the temperature gradient of the measurable heat and of the
substance (through its heat content) are brought together in the factor JS; although
the latter quantity is not directly measurable, the form (2.8b) is useful in indicating
that, in the absence of a temperature gradient, the intensive parameter driving the
isothermal diffusion can be taken to be grad(-li).

In the entropy representation, the interest centers on r; the rate of entropy
production itself, instead of on Tr: Again r is written as a sum of terms that are the
products of extensive and intensive parameters and, somewhat confusingly, the
same symbols are often used as were used in (2.7) for Tr; further, r or r=2 is often
taken as a dissipation function or potential. In both representations, the Ja factors
are commonly termed ‘‘fluxes’’ or ‘‘flows’’, although these terms are scarcely
appropriate for quantities such as dn=dt, and the Xa are variously termed the
‘‘thermodynamic forces’’ or ‘‘affinities’’, regardless of whether being in energy or
entropy representation and in spite of the 1=T factor subsumed in the Xa in the
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latter case. The applications of the linear thermodynamics of irreversible processes
now follow from consideration of the quantities in the terms of Tr and of the
inequality expressed in (2.7).

The physics of the processes is expressed in the relationships between the forces
and fluxes, Xa; Ja; known as the phenomenological, constitutive, or kinetic rela-
tions or as the thermodynamic equations of motion; their role is in many respects
analogous to that of the equations of state relating extensive and intensive quan-
tities in equilibrium thermodynamics. One of the main activities of thermodynamic
theory has been to place constraints on the relations between the thermodynamic
variables and to discuss criteria for stability and stationary states. However,
whereas the constraints governing the quantities entering the equilibrium equations
of state can generally be stated independently of the particular nature of these
equations, it is very difficult to establish laws of general validity governing the
quantities entering the phenomenological equations for an arbitrary non-equilib-
rium situation. Substantial progress has only been made for certain classes of
situations, chiefly for those close to equilibrium. We therefore restrict consider-
ations to the latter and in particular to the situations in which the relationships
between forces and fluxes can be written in the linear form

Ja ¼
X

b

Lab Xb b ¼ 1; 2; 3. . . ð2:9Þ

where Lab are constants, often called the phenomenological or kinetic coefficients. In
writing the phenomenological relations in the form (2.9), the quantities Xb; Ja are
treated as scalars but in practice they can represent scalar quantities or the Cartesian
components of vector or tensor quantities. The relations (2.9) take into account the
possibility of coupling effects between non-conjugate forces and fluxes, for example,
coupling between heat flow and diffusion or between the diffusion of different spe-
cies. It is now possible, using (2.9), to write (2.7) in the form

Tr ¼
X

a;b

LabJaJb� 0 ð2:10Þ

which has important consequences.
The principal initial success of the linear thermodynamics of irreversible pro-

cesses lies in the enunciation of the Onsager (1931a) reciprocal relations

Lab ¼ Lba ð2:11Þ

which express a symmetry between coupling effects. Note that some elaboration of
(2.11) is needed when magnetic fields or rotational effects are present or the forces or
fluxes are mixed in respect of being odd or even in tensorial character; see Casimir
(1945) and Meixner and Reik (1959). Much has been written concerning the statistical
mechanical derivation of (2.11) using a fundamental principle of microscopic
reversibility; for critical discussion and references, see Lavenda (1978, Chap. 2): also
Callen (1960). However, (2.11) can also be treated as an empirical axiom of
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macroscopic theory adequately supported by experimental observation (Miller 1974).
Curie’s principle concerning the symmetry relationships between cause and effect
(Curie 1894; Paterson and Weiss 1961) is also often invoked to constrain further the
possible values of Lab; this principle being paraphrased to state that no direct coupling
occurs between processes described respectively by quantities of odd and even
tensorial character, for example, between chemical reaction (scalar) and diffusion
(vector). Then, we can put Lab ¼ 0 where a ; b a 6¼ bð Þ refer to two such processes,
although this does not prevent indirect interference occurring (Prigogine 1967,
p. 89). Other possible constraints on the Lab are discussed by Fisher and Lasaga 1981.

One can expect non-equilibrium thermodynamics to be concerned also with the
likely paths to be followed by processes, with the nature of stationary states, and with
questions of stability, in analogy with topics in equilibrium thermodynamics such as
the criteria of equilibrium and conditions governing phase transitions. Actually,
when not ignored, these non-equilibrium topics appear to be the subject of consid-
erable debate and research, and only a few general remarks are appropriate here (for a
summary on stability considerations, see Prigogine 1980). It seems that a general
principle of fundamental and far-reaching importance is the principle of least dis-
sipation of energy (Lavenda 1978, Chap. 6; Onsager 1931a, b). In the particular case
of linear phenomenological laws, it follows that a system will evolve in the direction
of diminishing rate of entropy production, towards a state characterized by a mini-
mum rate of entropy production (Prigogine 1967). However, in a completely
unconstrained situation this minimum rate will be zero, reached when all irreversible
processes have stopped and equilibrium is attained. In order to maintain a stationary
or steady non-equilibrium state, that is, one that no longer evolves with time, it is
therefore necessary to constrain at least one term in the dissipation function Tr to be
nonzero, that is, to hold at least one of the thermodynamic forces Xa at a constant,
nonzero value. It follows that in the stationary state all unconstrained parameters Xa;
Ja will become zero. Thus the stationary state in any system in which linear processes
are occurring is that in which the rate of entropy production is a minimum under
certain auxiliary conditions such as specified nonzero values for at least one of the Xa

or Ja; and this state will be stable.
For corresponding considerations in nonlinear and far from-equilibrium situations,

including the occurrence of stable ‘‘dissipative’’ structures, see (Glandsdorff and Prigogine
1971; Lavenda 1978; Prigogine 1980; Fisher and Lasaga 1981 and Ross 2008).
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Chapter 3
Rate Processes

3.1 Introduction

3.1.1 General Considerations

We now proceed to some general considerations of processes in material systems.
A rate process in any system may be defined as a course of change in the system as
a function of time. Very broadly, three types of rate processes may usefully be
distinguished; reactions, transport processes, and deformations.

Reactions are changes in the nature of the components of substances in a
system. They may be simple transformations of the type A ? B, such as
polymorphic phase transitions and solid-state recrystallization, involving one
‘‘reactant’’ A and one ‘‘product’’ B. Or they may be chemical reactions involving
two or more reactants and/or products. In all cases, the course of change with time
can be represented by a scalar quantity.

Transport processes are those that bring about a spatial redistribution of any of
the extensive quantities that characterize the system (see Chap. 2 for the ther-
modynamic definition of extensive and intensive variables and of other concepts
introduced here). Examples are heat flow and diffusion. Such processes are nor-
mally considered as occurring in a continuous system, or continuum, in contrast to
the homogeneous finite system of classical thermodynamics. The course of change
with time is now, in general, represented by a vector quantity.

Deformation processes in which energy dissipation occurs are also rate pro-
cesses insofar as the rate of deformation is a significant variable. In this case, the
course of change with time is, in general, a second rank tensor and the system may
be viewed as finite and homogeneous or as a continuum depending on whether
homogeneous or inhomogeneous deformation is concerned. We shall not consider
deformation processes further in this chapter but shall return to them in the later
chapters.

M. S. Paterson, Materials Science for Structural Geology,
Springer Geochemistry/Mineralogy, DOI: 10.1007/978-94-007-5545-1_3,
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In more complex cases, two or more of the above types of rate processes may
be identifiable as occurring simultaneously. For example, in heterogeneous
chemical reactions, both reaction and diffusion are involved. However, in such
cases, one of the constituent processes is usually rate controlling; normally, the
slowest one if the processes are sequentially dependent on each other.

3.1.2 Theory of Rate Processes

The theoretical treatment of rate processes can be approached from two points of
view, the thermodynamic and the kinetic. However, while at first sight the two
approaches may appear distinct, they are necessarily eventually related or
equivalent.

In the thermodynamic approach, the change in the system is viewed, somewhat
formally, as a response to the system not being at equilibrium. The general con-
siderations of non-equilibrium thermodynamics, as sketched out in Chap. 2, are
applied. A specific process is discussed in terms of a measure of the departure from
equilibrium, a measure of the response of the system to this departure, and a
quantitative relationship between these two measures, involving some material
parameters. The linear thermodynamics of irreversible processes provides con-
straints on this relationship in cases where the system is not very far from equi-
librium. Nonlinearity appears when systems are far from equilibrium and new
phenomena may then be involved, as exemplified by the transition from laminar to
turbulent flow in fluid dynamics or by oscillations and dissipative structures in
chemical reactions (Glansdorff and Prigogine 1971). No attempt will be made here
to deal with nonlinear systems, although they may be important in connection with
some actual geological structures (Fisher and Lasaga 1981).

The treatment of processes taking into account the atomic structure of matter
and the existence of fluctuations in the fine-scale distribution of energy leads one
into statistical mechanics. This approach, often termed kinetic theory, especially in
connection with gases, views the change in the system directly in terms of
instantaneous or spontaneous elementary events, such as reactions between col-
liding molecules or motions of diffusing atoms, and of the macroscopic summation
of these events in time. In this approach, the primary quantities in the macroscopic
description are the concentrations of the entities involved in the elementary events,
whereas in the thermodynamic approach the primary quantities are the activities
which add a ‘‘thermodynamic weighting’’ to the concentrations through the
inclusion of the activity coefficients in order to make practical application of ideal
thermodynamic laws.

Associated with the kinetic approach and in parallel with the thermodynamic
approach, there has also been the establishment of a phenomenological or
empirical framework in what may be termed empirical kinetics. This development
has often occurred earlier and independently of the thermodynamic approach and
is illustrated in empirical relations such as the Arrhenius law and Fick’s laws of
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diffusion. Compared with the thermodynamic/formal kinetic approaches, the
formalisms of empirical kinetics tend to be more specifically adapted to individual
processes and perhaps less concerned with the proper identification of driving
forces, that is, with the true ‘‘dynamics’’. However, we shall attempt to bring out
connections between the two approaches.

3.1.3 Temperature and Pressure Dependence

The rate of change in a system is observed to be not solely dependent on the degree to
which the system departs from equilibrium, as defined in a classical or homogeneous
system by a given variable not being an extremum or in a continuous system by a
variable being nonuniform. The rate may also depend on the values of other variables
even if they are not changing with time themselves. Most notable of these variables is
the temperature. Where the influence of temperature is significant, the process is said
to be thermally activated. Other processes may appear to be athermal, at least to a first
approximation, as in the case of martensitic transformations or crystal plasticity at
relatively low temperatures, but such cases become less common at higher
temperatures. Pressure may also enter as a significant variable influencing the rate of
a process, especially if substantial volume changes are involved.

The dependence of the rate of thermally activated processes on the temperature
can normally be expressed in the exponential form

rate ¼ Ae�
Q

RT ð3:1Þ

where Q is a parameter with the dimensions of energy per unit amount of sub-
stance, called the activation energy, A is a constant, T is the thermodynamic or
absolute temperature, and R is the gas constant, 8.314 J K-1 mol-1 (R ¼ Lk;
where L is the Avogadro number and k the Boltzmann constant). The symbol E or
Ea is often used instead of Q for the activation energy and is in many respects
preferable, but Q has been widely used in the materials science literature, espe-
cially for the empirically determined quantity, and is retained here for this reason.
As an empirical expression, the factoring of the multiplier of 1=T in (3.1) into Q=R
is, of course, arbitrary, but it serves to facilitate comparison with theoretically
derived formulae in which kT appears as the fundamental temperature from sta-
tistical thermodynamics.

In a wide range of rate processes, the relation (3.1), known as the law of
Arrhenius (1889), is found empirically to apply, with constant Q, over a substantial
interval of temperature. This law was originally established empirically, but it can
also be shown to be plausible from a statistical mechanical point of view. How-
ever, the proper theoretical justification of the form (3.1) requires a specific
treatment for each process (cf. Flynn 1972, Chap. 7 for diffusion).
Some properties of the exponential temperature dependence can be seen in the plot
of exp �Q=RTð Þ versus T for different values of Q shown in Fig. 3.1. Particularly
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striking features are the rapid decrease in order of magnitude of the absolute value
and the increase in temperature sensitivity (slope) at given temperature as Q is
increased. The increase in temperature sensitivity as the temperature decreases at
fixed Q is also evident. These properties are less obvious in the usual experimental
plots of ln rateð Þ versus 1=T ; which give straight lines for fixed values of Q.

The pressure may also influence the rate of a process, although its effect tends
to be less marked than that of the temperature. To take the influence of pressure
into account, (3.1) can be rewritten in the form

rate ¼ Ae�
Q0þpV�

RT ð3:2Þ

where Q0 is the activation energy at zero or other reference pressure, p is the
pressure relative to the reference pressure, and V� is a parameter having the
dimensions of volume per unit amount of substance and known as the activation
volume; V� is commonly found to be constant for measurements over an appre-
ciable range of pressure. Again, the form (3.2) is supported empirically but it can
be rationalized in a similar way to that given for (3.1) by postulating that the
threshold level of energy for activating the elementary microscopic events must
include an amount sufficient to provide the work required for the momentary
increases in volume occurring locally during the events.

It is to be noted that, as introduced here, the activation energy Q or Q0 þ pV in
(3.1) and (3.2) is a kinetically rather than a thermodynamically defined quantity
and so, strictly, is not to be identified immediately with one of the thermodynamic
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Fig. 3.1 Trends in activation rates with temperature T and activation energy Q
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molar energy functions such as Um, Am; Hm; and Gm (Chap. 2), although it is
sometimes called the activation enthalpy because of a formal similarity to an
enthalpy. Only in connection with a particular model in which the process is
specified in thermodynamic terms, as in the transition state theory, can Q be
properly identified with a thermodynamic energy function or potential. If tem-
perature and pressure are the independent variables, the appropriate quantity to use
is the molar Gibbs energy, in which case the specification of Q as an activation
enthalpy presumes that the entropy term in the Gibbs energy has been subsumed in
the pre-exponential constant. In any case, in the determination of Q from an
‘‘Arrhenius plot’’ of ln rateð Þ versus 1=T ; the slope gives only the enthalpy part.
When the concept of activation energy is used in describing experimental situa-
tions where no single activated process has been identified or where it is possible
that several are involved, it is appropriate that the term be qualified as the
empirical, experimental, and/or apparent activation energy. In this case, it is
simply a measure of the sensitivity of the measured macroscopic rate to change in
temperature.

3.2 Reaction Kinetics

3.2.1 Thermodynamic Approach

A reaction can be represented in general in the form

mAAþ mBBþ � � � ! mPPþ mQQþ � � � ð3:3aÞ

where A, B,… are the reactants and P, Q,… are the products. The symbols A, B,…
and P, Q,… serve first to identify the components involved in the reaction, and
second to represent a unit amount of the component that is consumed or produced
when the reaction occurs. The dimensionless quantities mi are termed the stoi-
chiometric coefficients, which normally will be integers without a common divi-
sor. It is conventional to take the mi to be negative for reactants and positive for
products, in which case we have the following algebraic balance:

0 ¼ mAAþ mBBþ � � � þ mPPþ mQQþ � � � ð3:3bÞ

A simple phase transformation or similar change can also be represented by the
form (3.3), with only one ‘‘reactant’’ and one ‘‘product’’, both mi being of unit
magnitude.

In a thermodynamic approach, one can consider a time interval dt during which
�dni ¼ �midn of each reactant is consumed and dni ¼ midn of each product pro-
duced, where n is a quantity termed the advancement or extent of reaction;
thus dni=dt ¼ midn=dt is the rate of increase in the amount of each component
i during the reaction and is a measure of the rate of reaction (in mol s-1 in SI.
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units). The quantity dn=dt is called the rate of reaction (Atkins 1986, p. 651).
When the system is taken to be a unit volume, dni=dt becomes the rate of change
in the amount-of-substance concentration of the component i, designated dci=dt or
d i½ �=dt; a measure that can be extended to continuous systems (SI. units
mol m-3 s-1). When dni=dt or dci=dt is used to specify the rate of reaction care
must be taken to specify the component i to which it refers, an elaboration not
required when the ‘‘true rate’’ dn=dt or dci=dtð Þ=mi is used.

In a closed system, an equilibrium state will exist at certain proportions of
reactants and products, as determined thermodynamically by the equilibrium
constant K ¼

Q
i aið Þmi ; where ai ¼ cici is the activity of the ith component and ci

its activity coefficient. At equilibrium the rate of reaction is zero. When the
departure from equilibrium is small, it may be expected that the rate of reaction
will be proportional to the degree of departure from equilibrium, giving the linear
thermodynamic relation

_n ¼ LkA ð3:4Þ

where _n ¼ dn=dt is taken as the rate of reaction, Lk is the phenomenological/
kinetic/thermodynamic coefficient, and A is a thermodynamic force (affinity)
driving the reaction, defined in chemical reactions at constant temperature and
pressure as A ¼ � oG=onð Þ ¼ �

P
i mili; where the li are the chemical potentials

of the components. In transformations at constant temperature and pressure, A is
simply the difference in chemical potentials of the untransformed and transformed
phases. In SI units, A is in J mol-1 and so Lk is in mol J-1 s-1; if the rate of
reaction is alternatively specified in terms of a rate of change of molar concen-
tration, then the phenomenological coefficient is in mol2 m-3 J-1 s-1. ‘‘Near to
equilibrium’’ can be usefully defined by the condition A� RT ; a condition that
can be rationalized on the basis of the theory of fluctuations or statistical ther-
modynamics using the approximation that exp A=RTð Þ is linear in A if A� RT :

3.2.2 Kinetic Approach

In empirical kinetics, relations are sought between the rate of reaction and the
concentrations of the components rather than between the rate of reaction and a
quantity (affinity) based on the chemical potentials of the components. The
empirical kinetic relations are therefore of the form

rate ¼ kf cið Þ ð3:5Þ

where the rate of reaction is specified by _n or, more commonly, by the rate of
change in concentration of one of the reactants, k is a parameter called the
empirical or kinetic rate coefficient or rate constant (an optional suffix can be
added to distinguish it from the Boltzmann constant, if necessary), and f cið Þ is a
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function of the concentrations ci of the components involved. The form of the
function f cið Þ is determined empirically. Usually, it is found possible to write it as
a product of the concentrations of the reactants only, each raised to a suitable
power (0, 1, 2…). In this case, the kinetics of the reactions are said to be of first
order if the corresponding power is unity, and so forth, the sum of the powers of
the terms involved being called the overall order. The concept of order is par-
ticularly used in connection with chemical reactions (Atkins 1986, Chap. 28), but
it can also be usefully applied to processes such as recovery and phase
transformation.

If the reaction rate is found to depend on the concentration of only one reactant
and to be first order in it, that is, f cið Þ ¼ c; where c is the concentration of that
component, and if the rate of reaction is specified by dc=dt; then we have the
particularly simple form

1
c

dc

dt
¼ k ð3:6Þ

where the rate coefficient k is identical to the specific rate of the process and has
the dimensions s-1. In the more general form (3.5), the dimensions of k depend on
the form of f cið Þ: The temperature and pressure dependence shown explicitly in
(3.1) and (3.2) are normally incorporated in the rate coefficient k as

k ¼ k0e�
Q

RT ð3:7Þ

where the pre-exponential factor k0 has the same dimensions as k; being again a
frequency in the simple case (3.6) or whenever f cið Þ has the same dimensions as n:

3.2.3 Statistical Approach to Thermal Activation

From a statistical thermodynamics point of view, the nature of a thermally acti-
vated reaction is often depicted as in Fig. 3.2, showing a change from an
assemblage of reactants 1 to an assemblage of products 2 via what is assumed in
transition state theory to be a thermodynamically definable intermediate state
corresponding to the energy peak. It is assumed that temperature and pressure are
the independent variables, so that Gibbs energies are used to define the states. The
forward change involves an activation barrier Gm and it is often useful to picture it,
in a simple-minded way, as being governed by a relation

_nþ ¼ fþ cið Þmþe�
Gm
RT ð3:8Þ

there being at the same time a corresponding tendency for the reverse change to
occur at the rate

_n� ¼ f� cið Þm�e�
GmþDGm

RT ð3:9Þ
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where the f cið Þ are now taken to represent an amount or concentration of potential
reaction species subject to fluctuations of energy, m is the frequency of the fluc-
tuations (the suffixes +,- distinguish the forward and reverse cases, respectively),
and exp �Gm=RTð Þ is the probability that a given fluctuation will reach Gm: Under
the assumptions that the ‘‘attempt’’ rates fþ cið Þmþ and f� cið Þm� in the two direc-
tions are the same (they must be so at equilibrium, when DGm ¼ 0;) the net rate of

reaction _n ¼ _nþ � _n� will be given by

_n ¼ _nþ 1� e�
DGm
RT

� �
ð3:10aÞ

(See Lasaga 1981 for a more satisfying derivation of 3.10 using transition state
theory). In the case DG� RT ; we then have

_n � _nþ
DGm

RT
¼ f cið Þ

DGm

RT
me�

Gm
RT ð3:10bÞ

or substituting (3.8) and dropping the suffixes, the rate coefficient, now also the
specific rate, is given by

k ¼
_n

f cið Þ
� DGm

RT
me�

Gm
RT ð3:11Þ

This case thus corresponds to the ‘‘near to equilibrium’’ linear case discussed
earlier in connection with (3.4).

The above argument is put on a somewhat sounder basis in transition state
theory, although still under the assumption that there is a thermodynamically
definable intermediate state, known as the activated complex, which is in equi-
librium with the reactants in a steady-state reaction. On statistical mechanical
grounds (Atkins 1978, Chap. 27; Christian 1975, Chap. 3; Flynn 1972, Chap. 7;
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Glasstone et al. 1941; Lasaga 1981), it is then calculated that the specific rate or
rate coefficient for the forward reaction will be proportional to kBT=hK 6¼; where kB

is the Boltzmann constant, h the Planck constant, and K 6¼ the equilibrium constant
for the equilibrium between the reactants and the activated complex, which can be
expressed in terms of the partition functions of the participating species including
the activated complex; the proportionality constant contains the activity coeffi-
cients of the participating species. The factor kBT=h (¼ 2:08� 1010T s�1) is a
‘‘fundamental frequency’’ that determines the dynamics of the process. Thus, apart
from numerical factors generally of the order of unity, we can identify m in (3.8)
and (3.12a) with kBT=h and K 6¼ with exp �Gm=RTð Þ: However, transition state
theory has many limitations and other approaches to a theory of reaction kinetics
have also been attempted (Christian 1975, Chap. 3; Flynn 1972, Chap. 7).

3.2.4 Stress-Assisted Thermal Activation

We now consider the rate of thermally activated events that are assisted by the
action of an applied stress on the entity involved. The existence of a mechanical
effect implies that energy can be transferred to the entity by a force acting on it
during a displacement in space. Therefore the appropriate reaction coordinate is a
distance in space. Figure 3.3 depicts the energy E of the entity versus the distance
coordinate x.

We are concerned with an activation event that results in the entity being
displaced from the position 1 to position 3 over the barrier 2. The frequency of
forward jumps will be

mþ ¼ m0 exp �DE� � Fdx�

kT

� �

and reverse jumps

x
E

Fig. 3.3 Energy E as a
function of distance x in the
presence of a stress
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m� ¼ m0 exp �DE� þ F dx� dx�ð Þ
kT

� �

where m0 is the attempt frequency, F the applied force (F ¼ �dE=dx in the absence
of the barrier), DE� the height of the barrier, dx�; dx the displacements from
equilibrium position 1 to peak 2 and to the next equilibrium position 3, respec-
tively, k the Boltzmann constant, and T the absolute temperature. The net forward
rate of jumping is then

m ¼ mþ � m� ¼ m0 exp �DE�

kT

� �
exp

Fdx�

kT

� �
� exp �F dx� dx�ð Þ

kT

� ���

ð3:12aÞ

The expression (3.12a) leads in particular cases to three well-known forms, as
follows:

(1) When dx� ¼ 1
2dx; that is, the equilibrium positions 1 and 3 are symmetrically

positioned about the barrier 2 (Fig. 3.3) we always have

m ¼ 2m0 sinh
Fdx

2kT
exp �DE�

kT

� �
ð3:12bÞ

(2) When 1
2 Fdx� 	 1

2 Fdx � kT ; that is, at relatively low stress and high tem-
perature, we have the approximation

m � m0Fdx

kT
exp �DE�

kT

� �
ð3:12cÞ

(3) When 1
2Fdx
 kT ; that is, at relatively high stress and low temperature, we

have the approximation

m � m0 exp �DE� � Fdx�

kT

� �
ð3:12dÞ

The main application of this formalism is in treating the thermally activated
motion of dislocations (Sect. 6.4).
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3.3 Changes in Crystalline Organization

3.3.1 General

We now consider some particular rate processes that may be viewed as simple
reactions, or transformations, involving only one reactant and one product. These
are the organizational processes affecting the atomic structure of the crystalline
grains and the granular structure of the polycrystalline body. Here it is useful to
distinguish, in general, between homogeneous and heterogeneous processes.
A homogeneous process is one that proceeds simultaneously in all parts of the
body concerned. A heterogeneous process is one that is, at any instant, localized at
certain discrete sites or along a discrete front, the location of the activity migrating
through the body with time in order to affect all parts. However, the distinction
may be to some extent a matter of scale; a process that is heterogeneous when
viewed at one scale may appear statistically homogeneous when viewed on
another scale.

In rock deformation studies, interest in organizational processes arises for
several reasons. First, there is a tendency for the structural disruption caused by the
deformation processes themselves to be restored, as in recovery and recrystalli-
zation processes. Second, there may be a tendency for the re-equilibration of a
body to changed environmental conditions involved with the deformation, leading
to phase transitions, precipitation, or other solid-state reactions that are coupled
with the deformation of the body. Third, the primary growth or dissolution of
crystals may be concerned, especially if a fluid phase is present in pores.

3.3.2 Recovery

The term recovery, in its original metallurgical usage, refers to the restoration or
change, without recrystallization, of physical properties such as indentation,
hardness, or electrical resistivity during the annealing of a body that has been
previously plastically deformed. It is now used more generally to refer to any more
or less homogeneous intracrystalline response to the presence of structural defects
in excess of an equilibrium concentration that have been introduced by plastic
deformation or other cause such as irradiation. Thus, the term is now used in a
mechanistic sense for a reorganization within the crystal with respect to structural
defects based on the original crystal structure, which may proceed either con-
currently with or subsequent to the deformation or other disrupting process.

The structural defects involved in recovery may be point defects or extended
defects. In the first case, recovery to an equilibrium state may be achieved in
available time if the temperature is sufficiently high. However, in the second case,
involving dislocations or stacking faults that would need to be completely elimi-
nated to achieve thermodynamic equilibrium, recovery is usually only partial.
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In the case of an excess of point defects, recovery involves their diffusion to the
surface or to internal sinks, or there may be mutual annihilation of complementary
defects. If only vacancy diffusion is required or the sinks are closely spaced,
recovery with respect to point defects can proceed relatively rapidly. Christian
(1975, p.137 et seq.) gives some discussion of the kinetic considerations in the
case of vacancies in metals.

The most important recovery in deformed crystalline materials involves dis-
locations, the density of which has increased during deformation. The thermally
activated migration of dislocations to a free surface or grain boundary sink is
normally too slow to be effective in eliminating dislocations but mutual annihi-
lation may be important in reducing the dislocation density. However, even if the
latter process proceeds as far as possible, there will usually be some excess dis-
locations of one sign remaining. These dislocations, as well as possibly many that
could potentially have been annihilated, tend to arrange themselves by glide and
climb at elevated temperatures into relatively stable configurations, often repre-
sented microstructurally by ‘‘polygonization’’, which minimize the strain energy
associated with the long-range stress fields around the dislocations. Recovery
involving dislocation climb is very important in high-temperature dislocation
creep and is discussed again in Sect. 6.5.3 where the kinetic aspects are dealt with.

3.3.3 Recrystallization

Recrystallization is a solid-state process whereby a new crystalline structure of the
same phase replaces that of the original crystal, the degree of reorganization being
such that the new crystals can no longer be regarded as structures based on the
original orientation of crystallographic axes. If the recrystallization occurs during
heat treatment subsequent to a relatively low temperature plastic deformation in
which substantial strain hardening has occurred, it is termed static recrystallization
(Poirier 1985, Sect. 2.4.7). Alternatively, if the recrystallization occurs concur-
rently with deformation at elevated temperatures, it is termed dynamic recrystal-
lization. Dynamic recrystallization is of particular interest industrially in ‘‘hot
working’’ processes. It is also the recrystallization process that is of most interest
in geological studies.

Broadly, there are two ways in which the original crystals can be reorganized in
recrystallization, one by grain boundary migration or bulging (migration recrys-
tallization) and the other by local rotation of the crystal structure (rotation
recrystallization):

• Migration recrystallization has been widely studied in static experiments. The
term ‘‘nucleation and growth recrystallization’’ was formerly used for this
process but is inappropriate since classical nucleation theory, based on thermal
fluctuations, does not apply to recrystallization (Cahn 1983; Christian 1975). To
obtain static recrystallization, certain minimum values of strain and temperature
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are required and the process is driven primarily by the ‘‘stored’’ energy asso-
ciated with the structural defects resulting from the prior deformation, especially
the dislocations. The recrystallization process is thought to involve the bulging
out of high-angle grain boundaries to generate strain-free crystal (Bailey and
Hirsch 1962). It is also an important process in dynamic recrystallization
(Poirier 1985, Sect. 6.3.1).

• Rotation recrystallization results from the progressive relative rotation of
subgrains until they can be viewed as distinct grains (Poirier 1985, Sect. 6.3.1).
It is only observed to occur during deformation as a dynamic recrystallization,
occurring concurrently with deformation at elevated temperatures. It seems to
have been first reported in quartz (Hobbs 1968) but has now also been recog-
nized in the hot working of metals (Sakai 1989). A model for the process has
been proposed by Shimizu (1998, 1999).

The overall extent of recrystallization, measured by the volume fraction of the
specimen recrystallized at constant temperature, can often be described by the
Avrami relation (Christian 1975, p. 19)

n ¼ 1� exp �ktnð Þ ð3:13Þ

where t is elapsed time, k, n are parameters, and n commonly being *3–4.
The new grain size upon completion of recrystallization can be greater or smaller

than the original grain size. Subsequent to recrystallization, further growth of some
grains may occur at the expense of others, resulting in a more of less uniform
coarsening of the grain structure. The driving force for this coarsening, termed grain
growth, is the reduction in grain boundary energy, generally a much smaller quantity
than the stored energy from plastic deformation. Grain growth is usually much
slower than recrystallization owing to this smaller driving force. Sometimes, how-
ever, continued heating after recrystallization of previously deformed materials
gives rise to high rates of selective growth of certain grains, to which the terms
‘‘exaggerated grain growth’’ or ‘‘secondary recrystallization’’ are applied. Such an
effect seems to occur in marble (Schmid et al. 1980), although in the case of metals it
is said to be only observed in sheet material (Christian 1965, p. 737). The kinetics of
grain growth can also be importantly influenced by the behavior of impurities
segregated in the grain boundaries since they affect the grain boundary energy. Thus,
there may be different rates of grain boundary migration depending on whether the
impurities migrate with the grain boundary or are left behind (Guillopé and Poirier
1979; Lücke and Stüwe 1971).

3.3.4 Solid-State Transformations and Reactions

Polymorphic phase transitions are relatively simple in that no long-range material
transport is necessary. In general, such transformations are heterogeneous and can
be classified into two types, distinguished mainly by whether the atom movements
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during growth of the new phase are individually uncoordinated (as in diffusion) or
are cooperative (as in mechanical twinning). In metallurgy, the terms ‘‘nucleation
and growth’’ and ‘‘martensitic’’ are commonly used for the two types, respectively,
while in mineralogy they are often referred to as ‘‘reconstructive’’ and ‘‘displa-
cive’’. The second type is commonly characterized by significant shape change,
leading to the term ‘‘shear transformation’’, and by the tendency for non-hydro-
static stress to play an important role. The label ‘‘diffusionless’’ is also used for the
second type (Zhang and Kelly 2009).

The formal kinetic theory of solid-state reactions is usually based on either a
nucleation and growth model, where a nucleation stage is identifiable, or on a
simple growth model where a nucleation stage does not enter, as in spinodal
decomposition. Nucleation is commonly heterogeneous, occurring at grain
boundaries, dislocations, etc.; see Flynn (1972), Christian (1975), and Kirkpatrick
(1981) for general theory on nucleation. Once an interface is established, the local
rate of growth is generally controlled either by processes at the interface itself
(interface control) or by the rate at which material is transported to the reaction site
(diffusion control). In the case of interface control, after a local steady state is
established, the growth tends to be linear with time. In spinodal decomposition
cases where a laminar structure grows by edgewise propagation, a linear growth
law also tends to apply. However, in common cases of diffusion control, as where
the reacting material reaches the interface through a thickening layer of product
material or the depletion of the reactants has to be taken into account, the growth
tends to be proportional to the square root of time (parabolic growth). Instability in
growth rate may also arise at an interface, with important results for the mor-
phology of product phases (c.f. dendritic structures). In a global view, covering
both nucleation and whatever type of growth control that pertains, it is often
possible, as in the case of recrystallization, to describe the overall kinetics by an
Avrami relation of the type (3.13) with a suitable choice of n, the value of which
may vary from less than 1 to more than 4 (Christian 1975, p. 542).

The mechanisms of the reactions or diffusion processes are important in
determining the actual kinetic coefficients. Crystal defects are usually involved,
point defects, dislocations, or planar defects (‘‘shear planes’’) having roles in
particular cases. The defects may play an important part in the formation of an
activated complex where such can be recognized or usefully postulated.

In solid-state reactions, two other factors also influence the kinetics to an
important degree. The first is local volume or shape change. This gives rise to
internal stresses, and the associated strain energy has to be taken into account as
work to be provided during the transformation. The magnitude of the internal
stresses will be influenced by whether the reaction products are crystallographi-
cally coherent with the matrix or not. The stresses may also directly interact with
the reaction mechanism if shearing is involved. The second factor is the
impingement of reaction zones associated with separate nuclei or sites of reaction.
The impingement may involve either a meeting of the actual reaction interfaces or
an overlap of the zones of depletion from which diffusion is recurring.
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For a selection of papers concerning kinetics of solid-state processes in
geological systems, see Hofmann et al. (1974) and Lasaga and Kirkpatrick (1981).

3.3.5 Dissolution and Crystallization

Many processes in rocks proceed more rapidly when a fluid phase is present
because of the faster transport of material either by diffusion or by bulk transport
in the fluid, and some are only defined in the presence of a fluid. An example of
fluid involvement is recrystallizing of dissolved material as new crystals or as
additional growth on existing crystals.

The kinetics of dissolution are simplified by the absence of a nucleation barrier
but, as with growth, the kinetics can still be either interface controlled or transport
controlled (Berner 1981). The kinetics of the interface processes may depend sen-
sitively on the presence of adsorbed impurities, occupying sites that might otherwise
be occupied by reactants, or by crystal imperfections that intersect the interface to
provide sites where bonding energies will be different; the latter effect is revealed in
etch pits located where dislocations or planar defects intersect the interface.

Crystallization is, in many aspects, the converse of dissolution although its overall
kinetics can be quite different because of the requirement of nucleation. Again,
interfacial imperfections can play an important part, as seen in the role of screw
dislocations in providing a persistent step at which growth occurs, revealed in spiral
growth patterns, and which obviates some of the nucleation difficulties (Burton et al.
1951). A review for igneous systems has been given by Cashman (1990)

The driving force for dissolution or crystallization derives from the difference
between the saturation concentration and the actual concentration of the crystal
species in the fluid, although the resulting rates sometimes vary as a high power of
this difference rather than linearly (Berner 1981). However, the saturation
concentration, or solubility, depends on the curvature of the solid–fluid interface. It
is determined thermodynamically through an equilibrium constant or solubility
product, K, based on the activities of the relevant components in fluid and solid
where K ¼ exp �DG=RTð Þ depends on the change in Gibbs energy DG per mole
crystallizing or dissolving under standard conditions of temperature and pressure.
There is also a contribution to G from the interfacial energy if the curvature of the
interface is changed. Thus, for a given distribution of solid particle sizes, the fluid
may be supersaturated with respect to some of the particles and undersaturated
with respect to others; the result is a trend for the smaller particles to dissolve and
the larger ones to grow, leading to a coarsening of particle or grain size, an
example of a so-called Ostwald ripening process (for example, Chai 1974).

The solubility can also be affected by the state of stress or the defect content in
the solid. It is especially affected by a stress component normal to the interface,
giving rise to the ‘‘pressure solution’’ effect (Lehner 1990; Paterson 1973; and
Thompson 1962). A number of natural structural features have been attributed to
pressure solution, although in some cases the influence of heterogeneity on the
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transport of material may have been more directly responsible, as in the case of
stylolites (Renard et al. 2004). Solution transfer processes in which pressure
solution may have played a part are potentially of importance in the deformation of
rocks containing pore fluids (Rutter 1983).

3.4 Transport Processes in General

Thermodynamically, the relationship between the variables describing any trans-
port process can, in general, be expressed in the form

j ¼ kX ð3:14Þ

where j is the flux density; X the thermodynamic driving force, and k a constant. The
flux density j is the amount of the extensive property or quantity, Z which passes
through a reference unit cross-sectional area in unit time, that is, j ¼ d=dAð Þ dZ=dtð Þ
where A is cross-sectional area, and t time. Some writers call j simply the flux but
since this term is used by others for the total flow, possible ambiguity is avoided by
calling j the flux density. The driving force X can be expressed as the negative
gradient of an intensive property or potential /, that is, X ¼ �d/=dx in a one-
dimensional situation where x is the space coordinate (/ can, in turn, generally be
expressed as the derivative of an extensive quantity with respect to another extensive
quantity see Chap. 2). As discussed in Chap. 2, the driving force X conjugate to the
flux j is so defined that jX correctly expresses the rate of dissipation per unit
cross-sectional area. In effect, this requirement determines the definition of X once j is
defined as needed to describe the transport process.

In the empirical approach, the same type of relationship (3.14) is used.
However, the quantity X to which j is related is now chosen, not for reasons of
thermodynamic necessity, but for empirical reasons of convenience, as some
quantity relatively easy to measure, which can be usefully correlated with j. For
example, whereas thermodynamically the driving force X for diffusion is the
negative gradient in the chemical potential, the concentration is more conveniently
measured and its negative gradient is used as X in empirical treatments of diffu-
sion. Apart from this point, however, the formulation of theory for the two
approaches is similar.

The parameter k represents a property of the medium that may be termed a
‘‘generalized conductivity’’. For simplicity, (3.14) is given in 1D form with k as a
scalar constant but, in general, j and X are vectors and k is a second rank tensor in
which is expressed the anisotropy of the medium. Constancy of k corresponds to
linear behavior thermodynamically, a property that is common in transport pro-
cesses, and k is then identical with the kinetic coefficient L in the thermodynamic
formulation (Chap. 2). The linearity can be rationalized as arising from the cir-
cumstance that over atomic distances, the scale on which the elementary transport
events occur, the change in driving potential, expressed as a molar energy, is small
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compared to RT : The value of k may, however, be found to depend on the actual
value of the potential / if measurements are made over a wide range of /.

Where the transport of discrete entities is envisaged, the flux density can be
expressed as j ¼ cNv where v is the velocity of the entities and cN their concentration
(number per unit volume) at the reference cross-section. We can now define the
mobility M of the entities as their velocity when unit force is acting on them, so that

v ¼ MX ð3:15Þ

Then we have k ¼ cNM and (3.14) becomes

j ¼ cNMX ð3:16Þ

In the case of a diffusing substance, the thermodynamically defined mobility is
the velocity of transport in unit gradient of chemical potential; this mobility can be
related to the diffusion coefficient D in the empirical treatment of diffusion by the
Einstein formula

M ¼ D

RT
ð3:17Þ

in the case of ideal solutions, as will be shown in Sect. 3.5, where non-ideality is
also discussed. Eq. (3.17) thus relates a thermodynamically defined quantity M to
an empirically defined quantity D. Formally, one could also take dcN=dx as a
‘‘force’’ and obtain an empirically defined ‘‘mobility’’ that would be equal to
D=cN ; however, in practice the concept of mobility is normally only used in
relation to thermodynamically defined forces.

In the practical analysis of transport processes, a distinction has to be made
between transient or evolving situations and steady states. The relationship (3.14),
which in terms of the potential / can be written as

j ¼ �k
d/
dx
; ð3:18Þ

serves to fully describe the steady state, in which the flux density and potential
gradient at any given point are unchanged with time. However, steady-state
measurements do not reveal all the properties relevant to transport in more general
situations; in particular, they give no information about the ‘‘capacity’’ of the
medium for the transported property, as defined by dZ=d/. Thus, in a transient
situation the amount per unit volume, qz; of the property Z at any given point is a
function of time involving this generalized capacity (z is the amount of Z per unit
mass and q the density). Consideration of the fluxes in and out of an elementary
volume leads to the continuity or conservation equation

o qzð Þ
ot
¼ � oj

ox
ð3:19Þ
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However, any change in qz is related to a change in / through D qzð Þ ¼ qcD/;
where c is a generalized specific capacity (capacity per unit mass) of the medium
and qc is the generalized volumetric capacity or amount of Z per unit volume that
can be accommodated in the medium per unit increase in /; thus we can write

o qzð Þ
ot
¼ qc

o/
ot

ð3:20Þ

Combining (3.18), (3.19), and (3.20) leads to the transient-state equation

o/
ot
¼ 1

qc

o

ox
k
o/
ox

� �
ð3:21Þ

If k can be taken as constant over the range of / concerned, (3.20) becomes

o/
ot
¼ a

o2/
ox2

where a ¼ k
qc

ð3:22Þ

The parameter a can be called a ‘‘generalized diffusivity’’ in analogy to the thermal
diffusivity in transient heat flow, for which (3.22) will be recognized as the gov-
erning equation when we put / ¼ T . Since (3.21) is homogeneous in / the gen-
eralized diffusivity always has the same dimensions (SI units m2 s-1) regardless of
the particular transport process concerned.

Alternatively to the above thermodynamic treatment of transport processes,
there is the empirical or experimental approach, as mentioned in Sect. 3.2.2. In this
approach, the flux is related to a conveniently measurable quantity as a proxy for
the gradient of the thermodynamic potential. Fick’s law for the treatment of dif-
fusion (Sect. 3.5.2) is an example of the empirical approach; the diffusive flux
density j is related to the gradient in concentration cN of the diffusing species, thus:

j ¼ �D
dcN

dx

where D is the diffusion coefficient.

3.5 Atomic Diffusion

3.5.1 General

A transport process of particular importance at relatively high temperatures is the
diffusion of atoms, or small groups of strongly bonded atoms, in a matrix of the same
or different material. The topic will be treated briefly both at the phenomological
level and in terms of atomic theory. For general references, see Shewman (1989,
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1963), Adda and Philibert (1966), Manning (1968, 1974), Flynn (1972), Christian
(1975), Crank (1975), Le Claire (1976), Anderson (1981), Kirkaldy and Young
(1987), Philibert (1991), Allnatt and Lidiard (1993), Wilkinson (2000), Mehrer
(2007), and Cussler (2009).

The region of space through which the diffusion occurs is normally 3-dimen-
sional but in cases of strong anisotropy or of interfacial or pipe diffusion it can be
essentially 2D or even 1D. In the following sections, the diffusion equations will
be written for 1D diffusion but they are readily generalized to 3Ds, in which case
the diffusion coefficient becomes a second rank tensor with symmetry properties
appropriate to the material.

3.5.2 One Mobile Component

We deal first with the elementary case of the diffusion of one mobile component in
a matrix. Since the change in energy in an elementary volume as a result of adding
substances to it while other variables are held constant is determined by the
chemical potential of the substance, it can be expected that under isothermal and
isobaric conditions, the diffusive flux of the component will be determined by the
gradient of its chemical potential and that the relationship will be a simple
proportionality if the gradient is not too steep (Sect. 3.4 and Chap. 2). Experience
supports this view and we therefore write, for isothermal and isobaric conditions,

j ¼ Ld
dl
dx
¼ �cM

dl
dx

ð3:23Þ

where j is the flux density, that is, the amount of substance passing per unit time
t through unit cross-sectional area in a defined frame of reference, l the chemical
potential, x the distance in the same frame of reference, and Ld a phenomeno-
logical, kinetic or transport coefficient, which can also be written as the product of
the amount-of-substance concentration c and the mobility M (in this section, for
convenience, we use c instead of cN for the concentration). So long as volume
changes can be neglected, the immobile matrix serves as a frame of reference. The
rate of diffusion of the substance in the matrix can then be described by the
parameter M.

In practice, however, information about the rate of diffusion is derived from
measurements of concentration profiles and is expressed in terms of a diffusion
coefficient D, defined as the ratio of the flux density of substance j to the negative
of the gradient of the concentration (the SI units of D are m2 s-1). This definition
stems from Fick’s first law (Fick 1855)

j ¼ �D
dc

dx
ð3:24Þ

Note that D may depend on the concentration c.
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For nonsteady-state conditions, combining (3.24) with an equation of continuity
(Sect. 3.4) leads to Fick’s second law,

oc

ot
¼ o

ox
D

oc

ox

� �
or

oc

ot
¼ D

o2c

ox2
ð3:25Þ

where the second form applies only for D independent of concentration. In the
latter case, it is identical with the heat flow equation, for which many solutions are
known (Carslaw and Jaeger 1959). It is to be noted, however, that, in contrast to
the case of heat flow, the conductivity parameter in (3.24) is identical to the
diffusivity parameter in (3.25), that is, in atomic diffusion, the diffusion coefficient
and the diffusivity are identical.

Equations (3.25) are commonly used in experimental studies. Starting from a
known distribution, the concentration profile is measured after a certain time and
compared with the appropriate solution of (3.25) in order to evaluate D (Crank
1975). In the case of a semi-infinite solid with zero initial concentration, placed in
contact with a reservoir that maintains a constant concentration c0 of the diffusing
species at the surface, the concentration profile at time t is given by

c x; tð Þ ¼ c0 1� erf x=2
ffiffiffiffiffi
Dt
p� �n o

where erf z is the error function. In this case, the value of c falls to about 0:5 c0 at
x �

ffiffiffiffiffi
Dt
p

and to 0:1 c0 at x ¼ 2
ffiffiffiffiffi
Dt
p

. It is, therefore, convenient in approximate
calculations to use

ffiffiffiffiffi
Dt
p

or 2
ffiffiffiffiffi
Dt
p

as a ‘‘diffusion distance’’.
The relationship between the mobility M and the diffusion coefficient D can be

obtained if we relate the chemical potential to the concentration through the
equation of state

l ¼ l� þ RT ln cc ð3:26Þ

where l� is the chemical potential in a reference state, c the activity coefficient,
R the gas constant, and T the absolute temperature. Substituting this relation into
(3.23) and comparing with (3.24) leads to

D ¼ RTM 1þ d ln c
d ln c

� �
ð3:27Þ

and hence to

j ¼ � cD

RT 1þ d ln c
d ln c

� � dl
dx

ð3:28Þ

The so-called thermodynamic factor 1þ d ln c=d ln cð Þ is unity for ideal mixing, as
in the case of low concentrations or self-diffusion, in which case, (3.27) becomes
the well-known Einstein relation D ¼ RTM:
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When the diffusing species is chemically distinct from the matrix and its dif-
fusion leads to significant change in chemical composition, D is called an impurity
or chemical diffusion coefficient. On the other hand, when an isotopic tracer is
used to study self-diffusion or diffusion in a case where the concentration of the
tracer is so low that it can be regarded as diffusing in a matrix of uniform chemical
composition, D is called a tracer diffusion coefficient and distinguished as D�: The
distinction between the two coefficients is seen to lie in the thermodynamic factor
which is unity in the tracer case, so that

D ¼ D� 1þ d ln c
d ln c

� �
ð3:29Þ

The relationship (3.29) only applies exactly for the case of one mobile com-
ponent. However, this case is somewhat artificial since there are commonly other
mobile species present, including vacancies, the movement of which also influ-
ences D to some degree. The temperature and pressure dependence can be
expressed in Arrhenius form as for other rate processes (Sect. 3.1.2),

D ¼ D0e�
Q

RT ¼ D0e�
Q0þpV�

RT ð3:30Þ

where D0 and Q, or D0; Q0; and V� are empirical constants.
There are additional terms in the diffusion Eqs. (3.24) and (3.25) when l in

(3.23) is generalized to include potential gradients additional to that associated
with the concentration, as through (3.26). Additional potential gradients may
include those in elastic or electric fields. See Shewman(1963, p. 25) for solution of
the diffusion equations in such cases.

For experimental methods of measuring diffusion coefficients, see the refer-
ences in Sect. 3.5.1. Computer simulation methods have also been developed in
recent times (Dohmen and Chakraborty 2007; Mantina et al. 2008, 2009;
Miyamoto and Takeda 1983; Watson and Baxter 2007). Some values for diffusion
coefficients in silicate minerals can be found.

3.5.3 Multicomponent Diffusion

When the diffusion of more than one component is considered, the phenomeno-
logical Eq. (2.9) of Chap. 2 apply as a generalization of (3.23). However, while
these equations give a fundamental description of the diffusion, suitable for
relating to other thermodynamically based considerations, the gradients in
chemical potential cannot be directly measured. Practical diffusion studies are
based on measurements of the gradients in chemical or isotopic composition,
which can be described in terms of the generalization of Fick’s first law proposed
by Onsager (1945). For a system of n components under isothermal and isobaric
conditions we write
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j1 ¼ �D11
dc1

dx
� D12

dc2

dx
� � � � � � � � D1n

dcn

dx

j2 ¼ �D21
dc1

dx
� D22

dc2

dx
� � � � � � � � D2n

dcn

dx

..

.

jn ¼ �Dn1
dc1

dx
� Dn2

dc2

dx
� � � � � � � � Dnn

dcn

dx
ð3:31Þ

where, for each component i (i ¼ 1; 2; . . .n), ji is the flux density in terms of the
chosen concentration units with respect to a suitable frame of reference and dci=dx
is the gradient in concentration with respect to the same frame; the n2 coefficients
Dij then specify the diffusion properties of the system and are sometimes called the
practical diffusion coefficients. Quantities relating to the nth component can be
omitted in (3.31) if the frame of reference is chosen, so that there is no net flux
with respect to it and provided the system is closed, thus making the nth quantities
dependent.

There is, in general, no a priori reason to assume that the matrix D½ � of the Dij is
symmetric in a given frame of reference or that any of its components will be zero,
although the off-diagonal terms (i 6¼ j) are commonly smaller than the diagonal
terms (i ¼ j). However, it is in general possible to transform the frame of reference
so as to diagonalize D½ �, making all Dij (i 6¼ j) equal to zero and so relating the
diffusion coefficient for each component uniquely to its concentration gradient in
this frame; this property follows from the Onsager reciprocal relations (Cooper
1974). It follows immediately that, in a binary system (n ¼ 2;) only one diffusion
coefficient is needed to describe the interdiffusion of the two components in a
frame of reference for which there is no net flux. However, in a ternary system
there are not only two independent coefficients (D11; D22) relating the diffusion of
a given substance to its own concentration gradient, but there are also coupling
coefficients (D12; D21) relating this diffusion to the concentration gradient of the
other independent component. It should also be borne in mind that over a sub-
stantial range of compositions of a given chemical system the values of Dij can, in
general, be expected to be concentration dependent.

We cannot pursue here the manifold ramifications of multicomponent diffusion;
see, for example, Brady (1975a, 1975b), Anderson and Graf (1976), Lasaga
(1979), Anderson (1981). However, attention may be drawn to the following
points of principle:

(1) A choice of the chemical components considered to constitute the system has
to be made in the light of the physics of the situation and the applications in
mind. From a thermodynamic point of view, the components will in general be
molecular species for which chemical potentials can be defined. In practice,
concentration gradients for ionic or isotopic species may be measured and
analyzed, but constraints such as electrical neutrality and stoichiometric bal-
ance tend eventually to reduce the essence of the situation to the diffusion of

52 3 Rate Processes



molecular components (Brady 1975b; Lasaga 1979; Lasaga et al. 1977).
Crystal defects such as vacancies must also be represented among the com-
ponents when it is implicit that the crystal lattice is conserved in the diffusion.

(2) A choice must also be made of a reference frame for the fluxes and the
concentration gradients, bearing in mind that, with different components dif-
fusing at different rates, volumes may be changing or centers of mass or
volume moving relative to external axes and that the values of the diffusion
coefficients will depend on the choice of the reference frame (Anderson 1981;
Brady 1975a; Crank 1975; De Groot and Mazur 1962). The following are
some of the possibilities:

(a) Laboratory frame, such as a notional grid fixed to one end of the specimen.
While commonly the initial choice for representing measured concentra-
tion profiles, it is often not the most appropriate for subsequent analysis
where the movement of components relative to each other is of interest.

(b) Velocity-fixed frames which move with the mean displacement of volume,
mass, substance, or a particular component of substance relative to the
laboratory frame—called, respectively, a volume-fixed, mass-fixed,
molar-fixed, or nth component-fixed frame. The volume-fixed frame is
particularly appropriate when the volume of the system remains constant
while the center of volume moves relative to the laboratory frame. Dif-
fusion coefficients measured relative to a volume-fixed frame are some-
times called ‘‘standard diffusion coefficients’’ (Hooyman et al. 1953). The
nth component-fixed frame is often also called the solvent-fixed frame. If
the terms involving the nth component are omitted in (3.31), it is implicit
that an appropriate velocity-fixed frame is used.

(c) Inert marker frame based on inert markers embedded in the system or, in the
case of crystals, notionally attached to the lattice or unit cell (lattice-fixed
frame). This frame is used when it is desired to eliminate from consideration
any bulk flow of substance, that is, common displacement of all compo-
nents. Diffusion coefficients referred to an inert marker frame are sometimes
called ‘‘intrinsic diffusion coefficients’’ (Hartley and Crank 1949) since they
relate to the intrinsic mobility of the individual component relative to a
section through which no bulk flow occurs. For a binary system, the inter-
diffusion coefficient DV referred to a volume-fixed frame is related to the
‘‘intrinsic’’ diffusion coefficients DM

1 ; DM
2 of the two components, 1, 2 by

DV ¼ x1DM
1 þ x2DM

2 ; where x1; x2 are the respective mole fractions.

(3) Since the practical measurement of diffusion coefficients is usually done under
nonsteady-state conditions, a generalization of Fick’s second law is also needed,
obtained by combining (3.31) with an equation of continuity. In cases involving
chemical diffusion coefficients, where concentration dependence is likely to
arise, methods of solution are more complex than for concentration-independent
cases such as tracer diffusion, as is illustrated in the Matano treatment of inter-
diffusion in a binary system; see Crank (1975) for analysis in binary systems and
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Anderson (1981) for extension to ternary systems. The practical difficulties
increase greatly with more components and attention has therefore been given to
methods of estimating diffusion coefficients using ionic conductances or trace
diffusion coefficients (Anderson 1981; Lasaga 1979).

3.5.4 Atomic Theory of Diffusion

We turn now from the macroscopic or phenomenological approach to consider the
atom movements involved in diffusion, which are the basis of the atomic or kinetic
theory of diffusion. In any material, diffusion arises essentially from the tendency
for an atom to move randomly relative to its neighbors. In crystals, this movement
involves displacements at a certain jump frequency between structural or inter-
stitial sites. Many mechanisms have been proposed, taking into account any
necessary rearrangements to accommodate the atom in its new position. Basically,
the various mechanisms involve (1) more or less direct exchange of structural
sites, (2) exchange with a defect (especially a vacancy), or (3) movement via
interstitial sites (Howard and Lidiard 1964; Manning 1968, 1974).

If the probability that a given atom will jump to a neighboring site is inde-
pendent of the direction of that site and of the previous jump history, then it can be
shown (Flynn 1972, Chap. 6; Manning 1974) that the resultant random walk motion
can be expressed through a diffusion coefficient that is the sum of terms of the form
ad2C; where d is the jump distance, C the jump frequency, and a a numerical factor
of order unity (a ¼ 1=6 for a simple cubic crystal), the sum being taken over all
combinations of the different types of sites between which jumps can occur,
weighted according to probability of occupation. However, a given jump may be
influenced by the previous jump; for example, in the case of a vacancy mechanism
there is a bias in favor of a reverse exchange with a vacancy with which an
exchange has just occurred. This effect can be allowed for by multiplying the
previous terms by a correlation factor f. The factor f will in general be a tensor,
depending on diffusion mechanism and on temperature, but for simple crystal
structures with one type of jump it is a scalar constant, the calculation of which is
given in most treatments of the kinetic theory of diffusion; for example, f ¼ 0:78
for diffusion by a simple vacancy mechanism in f.c.c. crystals and f ¼ 1 for
interstitial mechanisms (Manning 1968). Thus, under the assumption that other
factors (drift forces) affecting the relative probabilities of forward and backward
jumps are absent, we obtain the theoretical result that the tracer diffusion coefficient
D� for a single mobile component having a single type of site should be given by

D� ¼ ad2f C ð3:32Þ

In other cases, the diffusing atom may be subject to a drift force F affecting the
relative probabilities of forward and backward jumps and giving rise to a drift
velocity vF proportional to F. The flux can then be written as

54 3 Rate Processes



j ¼ �D�
dc

dx
þ vFc

Thus, defining the single component chemical diffusion coefficient D through
j ¼ �D dc=dxð Þ; we have

D ¼ D� � vFc
dc

dx

� ��1

ð3:33Þ

This quantity can be identified with the intrinsic diffusion coefficient defined
earlier since the position of a site can be taken as fixed relative to an inert marker
or lattice frame.

A drift force arises from a gradient in the nonideal part of the chemical potential
(note that in the case of ideal mixing there is no drift force, even where there is a
concentration gradient, and the tracer and chemical diffusion coefficients are then
identical, the diffusion being driven entirely by the gradient in entropy of mixing).
A drift force may also arise from an electric field when the diffusing species is
charged, from a gravitational potential, or from the presence of a gradient in
temperature (thermal diffusion), pressure, stress, or concentration of another
component. Taking dc=dx to be negative, (3.33) indicates that with a sufficiently
large drift force in the backward direction (negative vF), D can become negative,
giving ‘‘uphill’’ diffusion.

Kinetic theory is thus concerned primarily with calculating the jump frequen-
cies C and the responses vF to particular drift forces F. Although quantum-
mechanical tunnelling may exist for light atoms at very low temperatures (Flynn
1972, Chap. 7), the jump frequency for a particular type of jump can generally be
obtained from transition state theory as

C ¼ me�
E
kT ð3:34Þ

where m is the ‘‘attempt’’ frequency of the order of atomic vibrational frequencies
(*10 -14 s-1) and exp �E=kTð Þ is a Boltzmann (‘‘success’’) factor, E being the
energy barrier to be surmounted, k the Boltzmann constant, and T the absolute
temperature (Lasaga 1981). When the mechanism requires the formation of a
particular type of defect, E is the sum of the energies of formation and of migration
of this defect. To give a jump frequency of 1 s–1, a temperature of about 100 �C is
required if E is 100 kJ mol-1 (*1 eV atom-1), and temperatures of about 500,
1,200, and 2,000 �C, respectively, are required for values of E of 200, 400, and
600 kJ mol-1.

The effect of the drift force F is to lower the barrier E for forward jumps and to
raise it for backward jumps (Fig. 3.3). Since the change in the barrier is generally
relatively small (Fd � kT) the effect can be expressed approximately through

D ¼ D� 1� Fc

kT

dc

dx

� ��1
( )

ð3:35Þ
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(Manning 1968, 1974). In the case of one component chemical diffusion, F is
equal to �kT d ln c=dcð Þ; thus leading back to (3.28). In a multicomponent system,
there will be additional terms relating to the concentration gradients of the other
components; in general, these terms will appear as cross-terms Dij i 6¼ jð Þ in (3.30)
but where only one additional species is involved the coupling effect may con-
veniently be expressed as an additional factor in the primary diffusion coefficient,
as is done for the ‘‘vacancy wind’’ effect in simple cases of diffusion by a vacancy
mechanism (Flynn 1972, Chap. 8; Manning 1968, 1974).

From (3.35), it is seen that the main part of the temperature dependence of D, as
expressed in an experimental activation energy Q, (3.29), lies in D�. Through
(3.32) and (3.34), Q will therefore contain mainly contributions from E but it may
also include a contribution from the temperature dependence of f in more complex
crystals. Often it is possible to distinguish a higher temperature, ‘‘intrinsic’’
regime, where diffusion involves thermally generated defects and Q reflects con-
tributions from both defect formation and migration terms in E, from a lower
temperature, ‘‘extrinsic’’ regime where defects already present are involved and
Q is lower due to there being no defect formation term in E (this concept of an
intrinsic regime should not be confused with the intrinsic diffusion coefficient
mentioned earlier).

The pre-exponential term D0 in (3.30) is correspondingly seen to be of the order
of d2m exp DS=kð Þ if a and f are taken to be of the order of unity and TDS is the
entropic part of E. If DS is small and d * 0.1 nm, D0 will be roughly of the order
of 10-6 m2 s-1; however, it is difficult in general to estimate DS and reported
values of D0 range many orders of magnitude either way from 10-6 m2 s-1.

When the diffusing species is ionized and an electric field E is present, the drift
force F is equal to zeF where z is the effective charge number and e the elementary
charge so that, in (3.33), vF ¼ uzeF where u is the electric mobility of the charged
species. Through the Einstein relation Dr ¼ ukT=ez (Atkins 1986, p. 675), a
theoretical diffusion coefficient Dr can be obtained from electrical conductivity
measurements that give u. The ratio D=Dr is known as the Haven ratio (Le Claire
1976), the determination of which is helpful in identifying the diffusion mecha-
nism (for example, the Haven ratio is equal to the correlation factor f in the case of
a simple vacancy mechanism). Another aspect of ionic diffusion is that the dis-
placement of entities of one sign only sets up an internal electric field, known as a
diffusion or Nernst potential (Manning 1968, Chap. 7), which acts on the oppo-
sitely charged species. This potential tends to rise to a level sufficient to maintain
equal fluxes in opposite directions for identically charged species or equal fluxes in
the same direction for oppositely charged species, thus preserving stoichiometry
and neutrality. For this reason, it is often more appropriate in a macroscopic
treatment to view the neutral components as the diffusing species. However, the
problem then arises of relating the diffusion coefficient of the molecular species to
the diffusion coefficients of the constituent ionic or atomic species, which may be
more easily measured, for example, by isotopic tracer methods.
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We approach this problem by considering the diffusion of a simple ionic sub-
stance of formula AaBb in a matrix. We assume that the substance is fully ionized
into charged species Abþ and Ba�: If one species tends to diffuse faster than the
other, a Nernst field will build up, as just mentioned, which will slow down the rate
of diffusion of this species. The effect of the Nernst field can be taken into account
by using the full electrochemical potential ~l in (3.23), where ~l ¼ lþ zF/, l
being the chemical potential defined without taking into account the interaction
between the charge and an electric potential, z the charge number of the species,
F the Faraday constant, and / the electric potential. If, following Howard and
Lidiard (1964), we ignore coupling terms, we can use (3.23) to write the fluxes of
A and B as

jA ¼ �LA
d~lA

dx
¼ �LA

dlA

dx
� bFE

� �
ð3:36Þ

jB ¼ �LB
d~lB

dx
¼ �LB

dlB

dx
þ aFE

� �
ð3:37Þ

where E ¼ �d/=dx is the Nernst electric field and LA; LB are the phenomeno-
logical coefficients. In order to maintain stoichiometry and electrical neutrality, we
also have

bjA ¼ ajB ð3:38Þ

The three Eqs. (3.36–3.38) enable us to eliminate E in the expressions for jA and
JB and to obtain the total molecular flux j as

j ¼ jA
a
¼ jB

b
¼ �LALB

b2LA þ a2LB

dl
dx
¼ �L

dl
dx

ð3:39Þ

where l ¼ alA þ blB is the chemical potential of the molecular species and L is
the phenomenological coefficient relating it to the total molecular flux. Using
(3.23) and (3.27) and restricting consideration to the ideal case so that c ¼ 1; we
can put L ¼ cD=RT ; LA ¼ cADA=RT and LB ¼ cBDB=RT ; where c, cA; cB and D,
DA; DB are the amount-of-substance concentrations and the diffusion coefficients
of the molecular species and the ions A, B, respectively; also we can put
c ¼ cA=a ¼ cB=b: Using these relations in (3.39), then leads to the expression

D ¼ DADB

bDA þ aDB
ð3:40Þ

for the diffusion coefficient for the molecular species in terms of the diffusion
coefficients of the constituent ions. This expression applies to the ideal case, which
includes the tracer diffusion and self-diffusion cases, DA and DB being measured
independently as tracer diffusion coefficients by, say, radioactive tracer methods.
More generally, the values of Di for the species i in (3.40) have to be divided by
the appropriate factors 1þ d ln ci=d ln cið Þ from (3.27). From (3.40), it follows that
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when one ion tends to diffuse much more slowly than the other, the diffusion
coefficient for the molecular species is essentially equal to that for the slower ion.

An attempt has been made to calculate the diffusion coefficient from assumed
atomic interaction potentials and Eyring rate process theory (Miyamoto and
Takeda 1983). In spite of assuming fixed atom positions and thus neglecting the
important relaxations that can be expected as the diffusing atom passes, rough
agreement with observed values in olivine was obtained, encouraging the sug-
gestion that diffusion coefficients too low to be measured, as for example, in
pyroxenes, could be estimated in this way.

3.5.5 Polycrystal Diffusion and High Diffusivity

So far we have considered diffusion in a 3D homogeneous body. When the body is
a polyphase composite, the average or bulk diffusivity will depend on the diffu-
sivities in the individual phases, on their volume fractions and on their shape and
connectivity (Crank 1975, Chap. 12). Also in polycrystalline bodies there are
potentially important high-diffusivity or short-circuit paths which are in effect
heterogeneities of relatively small volume fraction but high diffusivity. These
paths may be interfaces (phase or grain boundaries or free surface) or linear
regions (pipes, including dislocations and liquid-filled triple-grain junctions, which
can be viewed as distinct narrow regions with a certain effective thickness or
diameter d and a characteristic diffusion coefficient Dsc much higher than the
diffusion coefficient DV in the volume of the grains.

When the diffusion distance is much greater than the spacing of interfaces or
pipes, the apparent or bulk diffusion coefficient D will be

D ¼ DV 1� xð Þ þ DSC

� DV 1þ DSC

DV
x

� �
for x� 1

ð3:41Þ

(Le Claire 1976) where x is the mole ratio of the amount of the diffusing species in
the high-diffusivity regions to that in the remaining volume (this ratio may be very
different from the volume fraction of the high-diffusivity region in the case of a
chemically different species on account of segregation). If d is the spacing of the

interfaces or pipes, then x is of the order of d=d for interfaces and d=dð Þ2 for pipes.
Thus, since d is likely to be *1 nm or somewhat less for grain boundaries or
dislocations, for example, d for NiO was found to be 0.7 nm (Atkinson and Taylor
1981), we have x 10�6 for a grain size of 1 mm or a dislocation spacing of 1 lm;
similarly, x 10�6 for triple-grain junctions if d * 1 lm and d * 1 mm. In these
cases, we need DSC=DV  106 in order that the short-circuit diffusion and volume
diffusion give equal contributions to the bulk diffusion; such a ratio DSC =DV is
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typically observed for both dislocations and grain boundaries (for example
Atkinson and Taylor 1981).

When the diffusion distance is not large compared with the spacing of interfaces
or pipes, the analysis is more complicated because of having to take into account the
lateral diffusion from the high-diffusivity regions into the grains. However, such
analysis is important in the practical determination of the short-circuit diffusion
coefficients, although generally only the value of the product DSCd can be directly
obtained. For details and further references, see Adda and Philibert (1966, Chaps.
12, 13), Le Claire (1976), Martin and Perraillon (1980), Peterson (1980, 1983).

Owing to the greater degree of disorder in interfaces or pipes, the jump fre-
quency can be expected to be much higher than within the grains due to a lower
value of E. This observation is consistent with the observation of lower values of
Q, typically about one-half to two-thirds that for volume diffusion in case of grain
boundary diffusion in metals and a similar ratio may be expected on nonmetals, for
example, 0.7 in case of NiO (Atkinson and Taylor 1981). Consequently, in a given
polycrystal, while the volume diffusion through the grains tends to dominate the
bulk diffusion at high temperatures, short-circuit diffusion through grain bound-
aries and dislocations becomes relatively more important as the temperature is
decreased and may even become predominant at relatively low temperatures (or
when there is a connected network of liquid-filled triple-grain junctions). There is
also some suggestion that diffusion is faster in moving than in static grain
boundaries; see Peterson (1983) for references and comment. For the influence of
the segregation of solute atoms, see Gupta (1977), Bernardini et al. (1982),
Cabané-Brouty and Bernadini (1982) and Guiraldenq (1982). The space charge
associated with the impurities may also play an important role (Yan et al. 1977).

3.6 Fluid Permeation

The transport of a fluid through a porous solid in response to a pressure gradient in
the fluid has some formal similarity to diffusion but it involves the relative
movement of two phases rather than the relative movement of components within
a single phase. The formal analogy lies in the basic law of Darcy (1856), com-
monly expressed as

q ¼ Ki ð3:42Þ

where q is the flow rate, that is, the volume of fluid passing through unit cross-
sectional area of the porous body in unit time, i is the hydraulic gradient
(qgi ¼ �dp=dx where q is the density of the fluid, g the acceleration of gravity,
and p the pressure in the fluid as a function of the coordinate x in the direction
normal to the defined area), and K is a constant called, in engineering usage, the
hydraulic conductivity or coefficient of permeability and having dimensions
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length/time (Bear 1972; Hubbert 1956). For our purposes, it is more convenient to
express (3.42) in a form free of gravitational connotation that corresponds more
obviously to Ficks’ first law, namely

q ¼ �K 0
dp

dx
ð3:43Þ

where K 0 ¼ K=qg is another conductivity constant expressing the rate of perme-
ation per unit pressure gradient. The relations (3.42) and (3.43) only apply for
relatively low fluid velocities (Hubbert 1956).

The different roles of the solid and fluid phases are commonly distinguished,
under the assumption that they are independent of each other, by writing the
conductivity constant K 0 as the product of the fluidity 1=g of the fluid (g is the
dynamic viscosity) and a constant k characterizing the solid, called the perme-
ability or the intrinsic permeability. Thus we have

k ¼ K 0g ¼ Kg
qg

ð3:44Þ

The permeability k has dimensions (length)2 and hence the SI unit m2. Another
widely used unit is the darcy: 1 darcy & 10-12 m2. The permeability k is thus a
geometric property of a rock and it can be measured in the laboratory or in the
field; see, for example, Brace (1980, 1984). The ranges of typical values for
laboratory specimens of various types of rock are given in Fig. 3.4. It should be
noted, however, that at pressures below a few megapascals in a gas, when the
mean free path becomes comparable to the dimensions of the connected pores or
cracks, the distribution of flow within the pores is no longer the same as at high
pressures and the values of K and K 0 will vary with pressure if Darcy’s equation is
used (von Engelhardt 1960, p. 127). Also the permeability is reduced, becoming a
function of fluid content, when the pores are not fully saturated with the fluid, as in
the case of soils partially saturated with water (Bear 1972, Chap. 9).

Various models have been proposed as bases for calculating the permeability of
a porous solid (Bear 1972, Chap. 5; Scheidegger 1960, Chap. 6). In one widely
accepted and intuitively evocative model, the fluid movement is viewed as a flow
through an equivalent channel or parallel set of channels of mean length le per
length l of porous solid traversed (Fig. 3.5). In analogy with the Poiseuille formula
for flow in a pipe of diameter 4R;

q ¼ � 1
2

R2

g
dp

dx
;

one can then write for the flow in a porous solid

q ¼ �C
/

le=lð Þ2
R2

g
dp

dx
ð3:45Þ
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where R is now generalized to be the ‘‘hydraulic radius’’ of the channel (i.e., the
ratio of the pore volume to the solid–fluid interfacial area, which serves to a first
approximation as a measure of the equivalent channel cross-sectional dimension; it
is one quarter of the diameter for a uniform circular cross-section, one-half of the
narrow dimension for a slot-shaped channel, and /d=6 1� /ð Þ for an assemblage
of spheres of diameter d having porosity /); C is a dimensionless ‘‘shape factor’’
which is somewhat less than the value 1/2 that applies for a circular cross-section
in the Poiseuille formula and which in effect allows for the error involved in the
use of the hydraulic radius as the equivalent channel cross-sectional dimension in
the Poiseuille analogy; the porosity / enters to allow for the fact that the equiv-
alent channel does not occupy the whole of the cross-sectional area of porous solid
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Fig. 3.4 Typical values of permeability k in laboratory specimens of various rocks. The data in
this figure are derived from Brace (1980)

3.6 Fluid Permeation 61



to which q is related; and le=lð Þ enters twice in order to take into account, first, that
the local velocity in the channel is increased by the ratio le=lð Þ relative to that in a
channel parallel to the direction of bulk flow and, second, that the pressure gra-
dient along the equivalent channel is less than in the direction of bulk flow
(Sullivan and Hertel 1942). The derivation of Chapman (1981, Chap. 3), which

leads to le=lð Þ3 in the above equation appears to be in error because of using
/ le=lð Þ instead / of for the cross-sectional area factor since this factor relates to
flow in the direction for which q is defined, not the local flow direction. From
(3.45), one therefore obtains the following expression for the permeability,

k ¼ C/R2

le=lð Þ2
ð3:46Þ

The quantity le=lð Þ2 is often called the tortuosity and designated by T, although

this name and symbol are variously used also for le=lð Þ and l=leð Þ2 in the literature.
The relative length le=lð Þ will depend on the porosity and can be expected to
increase as the porosity decreases and the paths followed by the fluid become more
tortuous, but it is difficult to obtain a direct measure of it. It is therefore common to
approach its evaluation indirectly by invoking an analogy with electrical con-
ductivity and introducing the ‘‘formation resistivity factor’’ F, which is the ratio of
the electrical resistivity of the saturated porous body to that of the pure fluid, it
being assumed that the fluid is electrically conducting and the solid parts of the
body are not, and that the electric current and the fluid flow will follow identical
paths (Archie 1942). From Ohm’s law, the electrical equivalent of Poiseuille’s
law, we have

j ¼ �j
dV

dx
¼ � j

jf
jf

dV

dx
¼ � 1

F
jf

dV

dx
ð3:47Þ

where j is the macroscopic current density, dV=dx the macroscopic voltage gra-
dient, j the conductivity of the saturated porous body, and jf the conductivity of
the fluid. Then, by applying to the analogous model of an equivalent electrical
conduit similar arguments to those used to generalize Poiseuille’s law to (3.45), we

obtain 1=F ¼ /= le=lð Þ2which contains a factor/= le=lð Þ relating to the cross-sec-
tional area of the conduit and a factor 1= le=lð Þ relating to its length. This rela-
tionship can then be used in (3.46) to give

k ¼ CR2

F
ð3:48Þ

The same result can be obtained by noting, in comparing (3.45) and (3.47) for
the equivalent channel model, that the conductivity jf in the electrical case is the
analog of CR2=g in the fluid flow case. If we now insert in (3.48) the Archie
empirical relation F ¼ /�m; we obtain

k ¼ C/mR2 ð3:49Þ
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In the Archie relation, m ¼ 1:3 for sand-like granular media and m ¼ 2 for a
wide range of rocks with porosities 0.001–0.1 (Brace et al. 1965; Gonten and
Whiting 1967).

The equivalent channel model on which (3.45) to (3.49) are based is obviously
oversimplified and does not take fully into account the variations in cross-section
of the pore space along the fluid paths or branching or any lack of connectivity in
these paths, and the electrical analog may not be an exact one. However, the
relations (3.48) and (3.49) can be useful for practical purposes. Thus, they are
found to give a reasonably good fit to observations on fairly porous rocks (see
Paterson 1983 for a reappraisal of earlier observations). They probably also apply
at least approximately to microcracked rocks such as granite; thus, analysis of
measurements by Brace et al. (1968) and Brace (1977) in these terms indicates that
increase in confining pressure produces a decrease in hydraulic radius, presumably
reflecting a decrease in the mean crack opening width (Paterson 1983). Also, the
empirical observation that k / F�1:5 (Brace et al. 1968) indicates that R / 1=

ffiffiffiffi
F
p

for granite under varying confining pressure. In the case of granular media, it has
been found empirically that the permeability is well described by k ¼ 0:0006d2

A
R

E
A

 A

d 
º
 4

R

l

l e

Fig. 3.5 Equivalent channel model for permeability
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where d is the grain size (Bear 1972, p. 133; Hubbert 1956; Rumer 1969).
Comparing this expression with (3.49) indicates that the hydraulic radius in
granular media is approximately proportional to the grain size since the factor C/m

does not vary markedly; putting C ¼ 0:4; / ¼ 0:4 and m ¼ 1:3 shows that the
expression corresponds to taking the hydraulic radius to be approximately d=14:

It is possible that in general the permeability can be expressed in the form

k ¼ Cf /ð ÞR2 ð3:50Þ

where f /ð Þ is a function of / that becomes more sensitive to variation in / as the
value of / decreases, especially when connectivity begins to decrease significantly
(Bernabé et al. 1982). The fall in permeability toward zero as connectivity is lost is
related to similar connectivity effects in electrical conductivity in rocks (see, for
example, Waff 1974 for the case of partial melting). This limit is analogous to the
percolation limit in resistor networks (Chelidze 1982; Kirkpatrick 1973) or to the
critical point in phase transitions. It has been treated by the theory of renormal-
ization groups (Allègre et al. 1982; Madden 1983).

The approach to fluid permeation through Darcy’s law with a constant per-
meability does not apply when local flow velocities become high enough for
inertial or turbulent effects to become significant (Scheidegger 1960, Chap. 7).
Limitations due to molecular effects in gasses at low pressures have already been
mentioned but complications can also arise from ionic effects in the flow of
electrolyte solutions, especially if clays are present (Scheidegger 1960, Chap. 7).
Finally, external stress applied to the porous medium influences its permeability
but the effect depends on both confining pressure and pore pressure and can be
related to an effective pressure (see Walsh 1981 for the case of fracture
permeability).

For nonsteady-state flow in the Darcy-law regime, the governing equation,
analogous to Fick’s second law and the heat flow equation, is

op

ot
¼ o

ox
D

op

ox

� �
or

op

ot
¼ D

o2p

ox2
ð3:51Þ

where the second equation applies when D is independent of p. In analogy with the
thermal diffusivity, the fluid diffusivity D has the form

D ¼ K 0

b0
¼ k

gb0
ð3:52Þ

where b0 is the fluid storage capacity per unit volume of the porous body, given by

b0 ¼ /bþ be � 1þ /ð Þbs ð3:53Þ

b being the compressibility of the fluid, bs the compressibility of the solid parts of
the body, and be the macroscopic compressibility of the porous body with zero or
constant pore pressure (Brace et al. 1968); for a summary of the elasticity of
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porous bodies, see Paterson and Wong {2005, Sect. 7.3.1, where K ¼ 1=be and
Ks ¼ 1=bs}.

From the solution of (3.51) for a semi-infinite medium with constant D and a
given fluid pressure applied at the surface, the penetration distance in time t is of
the order of

ffiffiffiffiffi
Dt
p

or the time to penetrate a distance x is of the order of x2=D. In the
case of a gas such as argon or water vapor as pore fluid, b * 10-5 Pa-1 near
atmospheric pressure and b * 10-9 Pa-1 at pressures of the order of 100 MPa,
while g *30.10-6 Pa s (this value is not very sensitive to pressure in macroscopic
flow, although where the pressure is low, g may be effectively higher because of
the mean free path effect mentioned earlier). Using the approximation b0 ¼ /b; the
time needed for a small pressure pulse to penetrate 10 mm into a rock having
k = 10-19 m2 and /=0.01 would be of the order of one hour when the fluid
pressure is near atmospheric pressure or one second when the fluid pressure is near
100 MPa, respectively; these intervals suggest timescales for the re-equilibration
of pore pressure in a laboratory specimen of such a rock after a small perturbation.
In the case of large pressure changes, D can no longer be taken as constant because
of the large change in b with pressure and a solution for variable D must be sought.
For numerical solution of (3.51) in this case, see Lin (1982).

Another effect that may sometimes be of interest is the hydrodynamic dispersion,
represented by the spreading or mixing of a tracer solute introduced at a point in the
system (Bear 1972, Chap. 10). The effect can be described in terms of a coefficient
of hydrodynamic dispersion which is a function of the velocity of the fluid, the
molecular diffusion coefficient of the solute in the fluid, and a geometrical property
of the porous solid known as its dispersivity, related to but not solely determined by
the permeability.

References

Adda Y, Philibert J (1966) La diffusion dans les solides. Press University, Paris, 1285 pp
Allègre CJ, Le Mouel JL, Provost A (1982) Scaling rules in rock fracture and possible

implications for earthquake prediction. Nature 297:47–49
Allnatt AR, Lidiard AB (1993) Atomic transport in solids. Cambridge University Press,

Cambridge 572 pp
Anderson DE (1981) Diffusion in electrolyte mixtures. In: Kinetics of geochemical processes.

Mineral Soc Am, pp 211–260
Anderson DE, Graf DL (1976) Multicomponent electrolyte diffusion. Annual Rev Earth Planet

Sci 4:95–121
Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir

characteristics. Trans AIME 146:54–62
Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohzucker durch

Saüren. Zeitschrift für physikalische Chemie 4:226–248
Atkins PW (1978) Physical chemistry. Oxford University Press, Oxford, 1018 pp
Atkins PW (1986) Physical chemistry, 3rd edn. Oxford University Press, Oxford, 857 pp
Atkinson A, Taylor RI (1981) The diffusion of 63Ni along grain boundaries in nickel oxide. Phil

Mag A43:979–998

3.6 Fluid Permeation 65



Bailey JE, Hirsch PB (1962) The recrystallization process in some polycrystalline metals. Proc
Roy Soc (London) A267:11–30

Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York 764 pp
Bernabé Y, Brace WF, Evans B (1982) Permeability, porosity and pore geometry of hot-pressed

calcite. Mech Materials 1(173):183
Bernadini J, Gas P, Hondros ED, Seah MP (1982) The role of solute segregation in grain

boundary diffusion. Proc Roy Soc (London) A379:159–178
Berner, R A, 1981, Kinetics of weathering and diagenesis. In: Kinetics in geochemical processes.

Min Soc Am 111–134
Brace WF (1977) Permeability from resistivity and pore shape. J Geophys Res 82:3343–3349
Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci

17:241–251
Brace WF (1984) Permeability of crystalline rocks: new in situ measurements. J Geophys Res

89:4327–4330
Brace WF, Orange AS, Madden TR (1965) The effect of pressure on the electrical resisitivity of

water-saturated crystalline rocks. J Geophys Res 70:5669–5678
Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys

Res 73:2225–2236
Brady JB (1975a) Reference frames and diffusion coefficients. Am J Sci 275:954–983
Brady JB (1975b) Chemical components and diffusion. Am J Sci 275:1073–1088
Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of

their surfaces. Phil Trans Roy Soc London Series A 243:299–358
Cabrané-Brouty F, Bernadini J (1982) Segregation and diffusion. J de Phys 43 Colloq C6: C6-

163–C166-171
Cahn RW (1983) Recovery and recrystallization. In: Physical metallurgy, 3rd edn. North-Holland

Publ Co, Amsterdam, pp 1595–1671
Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford,

510 pp
Cashman KV (1990) Textural constraints on the kinetics of crystallization of igneous rocks. Rev

Mineral Geochem 24:259–314
Chai BHT (1974) Mass transfer of calcite during hydrothermal recrystallization. In: Geochemical

transport and kinetics pp 205–218
Chapman RE (1981) Geology and water. an introduction to fluid mechanics for geologists.

Martinus Nijhoff/Dr W Junk Publishers, The Hague, 228 pp
Chelidze TL (1982) Percolation and fracture. Phys Earth Planet Int 28:93–101
Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, Oxford 973 pp
Christian JW (1975) Transformations in metals and alloys part I : equilibrium and general kinetic

theory, 2nd edn. Pergamon Press, Oxford 586 pp
Cooper AR (1974) Vector space treatment of multicomponent diffusion. In: Geochemical

transport and kinetics. Carnegie Institution of Washington, Washington, pp 15–30
Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford, 414 pp
Cussler EL (2009) Diffusion—Mass transfer in fluid systems, 3rd edn. Cambridge University

Press, Cambridge, 654 pp
Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris
De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North Holland, Amsterdam

510 pp
Dohmen R, Chakraborty S (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change of

diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine.
Phys Chem Min 34:409–430, errata 597–598

Fick A (1855) On liquid diffusion. Phil Mag 10:30–39
Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. In: Lasaga AC,

Kirkpatrick RJ (eds) Geochemical processes. Reviews in Mineralogy, vol. 8, pp 171–209
Flynn CP (1972) Point defects and diffusion. Clarendon Press, Oxford 826 pp

66 3 Rate Processes



Glasstone S, Laidler KJ, Eyring EH (1941) The theory of rate processes. Mc-Graw Hill, New
York 611 pp

Gonten D, Whiting RL (1967) Correlations of physical properties of porous media. J Soc Petrol
Eng 7:266–272

Guillopé M, Poirier J-P (1979) Dynamic recrystallization during creep of single-crystalline halite:
an experimental study. J Geophys Res 84:5557–5567

Guiraldenq P (1982) Diffusion intergranulaire et largeur des joints de grains. J de Phys 43 Colloq
C6:C6-137–C136-145

Gupta D (1977) Influence of solute segregation on grain-boundary energy and self-diffusion. Met
Trans 84:1431–1438

Hartley J, Crank J (1949) Some fundamental definitions and concepts in diffusion processes.
Trans Faraday Soc 45:801–818

Hobbs BE (1968) Recrystallization of single crystals of quartz. Tectonophysics 6:353–401
Hofmann AW, Giletti BJ, Yoder HS, Yund RA eds. (1974) Geochemical transport and kinetics.

Conference at Warrenton, Virginia, June 1973, Carnegie Institution of Washington Publ No.
634, 353 pp

Hooyman GJ, Holtan H, Mazur P, De Groot SR (1953) Thermodynamics of irreversible processes
in rotating systems. Physica 19:1095–1108

Howard RE, Lidiard AB (1964) Matter transport in solids. Reports Progress Phys 27:161–240
Hubbert MK (1956) Darcy’s law and the field equations of the flow of underground fluids. Trans

AIME 207:222–239
Kirkaldy JS, Young DJ (1987) Diffusion in the condensed state. The Institute of Metals, London

527 pp
Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588
Kirkpatrick RJ (1981) Kinetics of crystallization of igneous rocks. In: Kinetics of geochemical

processes. Reviews in mineralogy. Min Soc Amer 8:321–398
Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim

Acta 43:455–469
Lasaga AC (1981) Transition state theory. In: Kinetics of geochemical processes. Reviews in

mineralogy, vol. 8, Min Soc Amer 135–169
Lasaga AC, Kirkpatrick RJ (1981) Kinetics of geochemical processes. Reviews in mineralogy,

vol. 8, Min Soc Amer 398 pp
Lasaga AC, Richardson SM, Holland HR (1977) The mathematics of cation diffusion and

exchange between silicate minerals during retrograde metamorphism. In: Energetics of
geological processes, Springer, New York, pp 353–388

Le Claire AD (1976) Diffusion. In: Treatise on solid state chemistry. Reactivity of solids, vol 4.
Plenum Press, New York, pp 1–59

Lehner F (1990) Thermodynamics of rock deformation by pressure solution. In Deformation
processes in minerals, Ceramics and Rocks. Unwin Hyman, London, pp 296–333

Lücke K, Stüwe H-P (1971) On the theory of impurity controlled grain boundary motion. Acta
Metall 19:1087–1099

Lin W (1982) Parametric analysis of the transient method of measuring permeability. J Geophys
Res 87:1055–1060

Madden TR (1983) Microcrack connectivity in rocks: a renormalization group approach to the
critical phenomenon of conduction and failure in crystalline rocks. J Geophys Res 88:585–592

Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand, Princeton 257 pp
Manning JR (1974) Diffusion kinetics and mechanisms in simple crystals. In: Geochemical

transport and kinetics, vol 634. Carnegie Institute of Washington Publication,Washington,
pp 3–13

Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C (2008) First-principles
calculation of self-diffusion coefficients. Phys Rev Lett 100:5901–5904

Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion
coefficients. Acta Mater 57:4102–4108

References 67



Martin G, Perraillon B (1980) Measurements of grain boundary diffusion. In Grain boundary
structure and kinetics. 1979 ASM materials science seminar, Milwaukee, Metals Park, Ohio,
Am Soc for Metals, pp 239–295

Mehrer H (2007) Diffusion in solids: fundamentals methods materials, diffusion-controlled
processes. Springer, New York, 654 pp

Miyamoto M, Takeda H (1983) Atomic diffusion coefficients calculated for transition metals in
olivine. Nature 303:602–603

Onsager L (1945) Theories and problems in liquid diffusion. Ann N Y Acad Sci 46:241–265
Paterson MS (1973) Nonhydrostatic thermodynamics and its geologic applications. Rev Geophys

Space Phys 11:355–389
Paterson MS (1983) The equivalent-channel model for permeability and resistivity in fluid-

saturated rock—a re-appraisal. Mech Mater 2:345–352
Peterson NL (1980) Grain-boundary diffusion-structural effects, models, and mechanisms. In:

Grain-boundary structure and kinetics. 1979 ASM materials science seminar, Milwaukee,
Metals Park, Ohio, Am Soc for Metals, pp 209–237

Peterson NL (1983) Grain-boundary diffusion in metals. Int Met Rev 28:65–91
Philibert J (1991) Atom movements, diffusion and mass transport in solids, English edition:

(trans: Rothman SJ). EDP Sciences, 580 pp
Poirier J-P (1985) Creep of crystals. High-temperature deformation processes in metals, ceramics

and minerals, Cambridge Univ Press, New York 260 pp
Renard F, Schmittbuhl J, Gratier J-P, Meakin P, Merino E (2004) Three-dimensional roughness

of stylolites in limestones. J Geophys Res 109(B03209):002512. doi: 03210.01029/
02003JB002555

Rumer R, (1969) Resistance to flow through porous media. In: Flow through porous media,
Academic Press, New York, pp 91–108

Rutter EH (1983) Pressure solution in nature, theory and experiment. J Geol Soc London
140:725–740

Sakai T (1989) Dynamic recrystallization of metallic materials. In: Rheology of solids and of the
earth, Oxford University Press, Oxford, pp 284–307

Scheidegger AE (1960) The physics of flow through porous media, 2nd edn. University of
Toronto Press, Toronto, 313 pp

Schmid SM, Paterson MS, Boland JN (1980) High-temperature flow and dynamic recrystalli-
zation in Carrara marble. Tectonophysics 65:245–280

Shewman PG (1963) Diffusion in solids. McGraw Hill, New York 203 pp
Shewman P (1989) Diffusion in solids, vol 2. TMS Publications, 246 pp
Shimizu I (1998) Stress and temperature dependence of recrystallized grain size: a subgrain

misorientation model. Geophys Res Lett 25:4237–4240
Shimizu I (1999) A stochastic model of grain size distribution during dynamic recrystallization.

Phil Mag A 79:1217–1231
Sullivan RR, Hertel KL (1942) The permeability method for determining specific surface of fibers

and powders. In: Advances in colloid science, vol 1. Interscience Publishers, New York,
pp 37–80

Thompson J (1962) On crystallization and liquefaction. As influenced by stresses tending to
change of form in the crystals, Proc Roy Soc (London) A11:473–481

von Engelhardt W (1960) Der Porenraum der Sedimente, Springer, 207 pp
Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle

and implications for geothermometry. J Geoph Res 79(4003):4010
Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J

Rock Mech Min Sci 18:429–435
Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253:

307–327
Wilkinson DS (2000) Mass transport in solids and fuids. Cambridge University Press, Cambridge

292 pp

68 3 Rate Processes



Yan MF, Cannon RM, Bowen HK, Coble RL (1977) Space-charge contribution to grain-
boundary diffusion. J Am Ceram Soc 60:120–127

Zhang M-X, Kelly PM (2009) Crystallographic features of phase transformations in solids. Prog
Mater Sci 54:1101–1170

References 69



Chapter 4
Mechanical Fundamentals

4.1 Introduction

There are some very broad distinctions that can usefully be made in classifying
types of mechanical behavior and the approaches to their study. The first of these
distinctions is between brittle and ductile behavior. We can define brittleness as
the liability to gross fracturing without substantial permanent change of shape in
response to loading beyond the elastic range. Conversely, ductility is the capacity
for substantial permanent change of shape without gross fracturing. In this context,
‘‘gross’’ means on the scale of the whole body or region under consideration and
the use of the terms brittle and ductile is only meaningful with proper reference to
scale. For the study of brittle behavior, see Jaeger (1969), Paterson and Wong
(2005), and Jaeger et al. (2007). In this chapter, we are mainly concerned with
ductile behavior or plastic deformation.

A second distinction is that between athermal and thermal regimes of behavior.
These terms refer to the degree of sensitivity of the flow behavior to change in
temperature and are to be regarded as relative only. Thus, in an athermal regime,
the behavior is relatively insensitive to change in temperature and can often be
treated as being independent of temperature, although temperature effects may not
be absent altogether. Also, athermal behavior cannot be associated uniquely with
relatively low temperatures and thermal behavior with relatively high tempera-
tures. Rather, there is a tendency for there to be three regimes of behavior:

1. Low-temperature thermal
2. Athermal
3. High-temperature thermal

These regimes are depicted schematically in Fig. 4.1 in a plot of the flow stress
against temperature (the flow stress is the stress needed to bring about plastic flow).
The scheme of Fig. 4.1 derives originally from the observed behavior of body-
centered cubic metals, but it seems to have a wider applicability (Di Persio and

M. S. Paterson, Materials Science for Structural Geology,
Springer Geochemistry/Mineralogy, DOI: 10.1007/978-94-007-5545-1_4,
� Springer Science+Business Media Dordrecht 2013
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Escaig 1984). However, all three regimes are not necessarily found in a particular
material. For example, in copper, the athermal regime seems to extend down to
absolute zero (no significant low-temperature thermal regime), while in pure dry
quartz, the low-temperature thermal regime seems to extend more or less to the
melting point. In other materials such as germanium and silicon, low-and high-
temperature thermal regimes appear to overlap in such a way that no significant
athermal regime is defined. In pure metals, the high-temperature regime can often be
usefully defined as that above about half the absolute melting point but no such
general rule can be applied to the wider spectrum of materials, including minerals and
rocks. However, within given chemical classes of materials, it may be possible to
define similar homologous temperature rules, the homologous temperature being
taken as relative to some reference temperature at which a change of state occurs that
involves the same components as are taking part in the mechanical process of
interest, this reference temperature not necessarily being the melting point, espe-
cially where incongruent melting is concerned.

Third, a broad distinction can be made between phenomenological and mech-
anistic aspects of deformation. The phenomenological view is a global one, dealing
with a body of material as a whole or as a continuum. It is only concerned with
macroscopic variables such as stress, strain and temperature, and with establishing
empirical relationships among them. The nature of the material is represented by
empirical constants or parameters (elastic modulus, activation energy, etc.) that
appear in these relationships. Variations in the state of the material may be rep-
resented by additional parameters (internal variables), such as grain size, in the
empirical relationships but the material is still treated as a continuum from the
mechanical point of view. In contrast, the mechanistic view attempts to recognize
the local processes contributing to the global behavior. It therefore tends to con-
centrate on the microscopic rather than the macroscopic scale. The aim is to
describe the processes or mechanisms in terms of re-arrangements of fundamental
structural units and to develop models for the global behavior in terms of these
processes. Ideally, this approach eventually gives a rationalization for the empir-
ical relationships established in a phenomenological approach, and further pro-
vides a basis for establishing the range of validity of such relationships in the light
of structural observations.

In this chapter, we mainly survey the phenomenological aspects of deformation,
those aspects that can be represented as the properties of a homogeneous continuum,
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taking no account of what might be happening on the microscopic scale. The
microscopic aspect of deformation will be touched only in the final section, forming a
transition to the three Chaps. 5–7 on mechanisms of deformation.

4.2 Phenomenological Approach

In the phenomenological approach to plastic deformation, the primary mechanical
variables are the stress r and the strain e: These are tensorial quantities, normally
fully representable by six independent components (see texts such as Jaeger 1962;
Means 1976 for simple introductions to stress and strain; also see texts such as Nye
1957; Reid 1973).

In general, stress is a measure of the intensity of force acting on a 3-dimensional
(3-D) element of the body. Its complete description requires nine components, six
of which can be shown to be independent. The full specification of stress is
therefore in the form of a symmetrical second-rank tensor r ¼ rij; i; j ¼ 1; 2; 3:

The stress r can often usefully be viewed as consisting of two parts, one
representing the hydrostatic aspect of behavior and relevant to changes in volume,
and the other representing the non-hydrostatic aspect and relevant to changes in
shape. Formally, the stress tensor rij can always be written as the sum of a
hydrostatic component 1

3rii and a deviatoric component rij � 1
3rii: However, in

experimental studies and in geology, it is often convenient to use a slightly dif-
ferent resolution of the stress tensor, which we shall exemplify here in the case of
an axisymmetric stress state, the one most commonly involved in experimental
work. The principal components of the axisymmetric total stress tensor, r1; r2; r3

are then written as

r1 ¼ pþ r

r2 ¼ p

r3 ¼ p

ð4:1Þ

where p is the ‘‘confining pressure’’ and r is the axial stress difference or ‘‘differential
stress’’. The hydrostatic component of the stress is now pþ r

3 ; pþ r
3 ; pþ r

3

� �
and

the deviatoric component is 2r
3 ; � r

3 ; � r
3

� �
: In experimental work with axisym-

metric stress, the components r2 and r3 are normally generated by applying a
hydrostatic pressure p to the faces of the specimen parallel to the 1 axis through the
agency of a fluid or weak solid. This pressure is properly called the confining pressure
and is to be distinguished from the hydrostatic component of the stress. It is con-
ventional in rock mechanics to designate compressive stresses as positive, in contrast
to engineering convention where tensile stress is positive.

In general, strain consists of the displacement of points in a 3-D space relative
to a 3-D reference frame. Its complete description therefore requires nine com-
ponents, six of which can be shown to be independent. Therefore, the complete
specification of strain is in the form of a symmetric second-rank tensor e ¼
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eij; i; j ¼ 1; 2; 3: ‘‘Engineering’’ components of strain are commonly used in
reporting experimental work. Thus, normal strains e are given as relative elon-
gation or shortening based on the original length l0 (e ¼ �Dl

l0
; using the rock

mechanics convention that shortening strain is positive). Shear strains are given by
c ¼ tan h ¼ s

l0
where s is the shearing displacement and l0 is the reference length

normal to the shearing displacement. However, when specifying finite deforma-
tions, the engineering definition of normal strain has the disadvantage that a given
increment of strain has different physical significance as the actual length changes.
Therefore, for theoretical discussion, it is better to define the strain by integration
of strain increments each of which is the relative elongation based on the current
length. This leads to the definition of the so-called natural strain e ¼ � ln l

l0
(in the

convention of shortening strain being positive). Similarly, in finite deformations,
the reference area for normal stresses changes with the deformation and it is
desirable to specify the normal stress components as ‘‘true stress’’ calculated on
current rather than original cross-sectional area.

The primary environmental variable is normally the temperature T: However, it
is also often convenient, when relating the stress difference r to the deformation in
axisymmetric deformation, to treat the ‘‘pressure’’ as a distinct environmental
variable, specifying it as the confining pressure, p; or the hydrostatic component of
the total stress, pþ r

3 ; as appropriate. Other environmental variables that may be
relevant at times are the pore pressure and the activities of chemical components in
reservoirs available to the specimen.

The other quantities that enter into any relationship describing the mechanical
behavior are the material parameters representing the characteristic properties of
the particular material. In practice, they are defined in a largely empirical way,
dictated by the forms of relationship between the mechanical variables that are
found best to describe the observed behavior. Also, particular parameters may be
needed to describe different structural states of a given type of material (for
example, grain size).

We now consider some general relationships between the mechanical variables
that apply in the intermediate athermal and high-temperature thermal fields depicted
in Fig. 4.1. In practice, the boundary between these fields may be rather diffused but
for highly ductile materials such as metals it can commonly be taken as being roughly
one-half of the absolute melting point for materials that melt simply.

4.3 The Athermal Field

4.3.1 The Stress–Strain Curve

For simplicity, we initially only consider behavior in a simple compression or
tensile test, with or without superposed confining pressure p: The state of stress can
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be then described by the stress difference r and the strain by the relative change of
length e or the natural strain e; as defined in Sect. 4.2.

Athermal or temperature-insensitive ductile behavior is characterized by a
stress–strain relationship r ¼ r e; _e; T ; . . .ð Þ where the dependences on strain rate
_e; temperature T ; etc., are relatively weak. The main aspects of athermal behavior
are therefore represented in the stress–strain curve, where it is convenient to treat
the strain as the independent variable, following the usual testing procedure. There
is usually a fairly distinct initial elastic region, terminated at a more or less well
defined level of stress called the initial yield stress ry: Unloading beyond this point
will reveal that the specimen has undergone permanent or plastic strain. On
reloading, a stress of approximately the same level as previously reached must be
applied before yielding again occurs and plastic flow continues; hence, the stress at
any point on the stress–strain curve beyond the initial yield stress can be called the
flow stress. Commonly, the flow stress increases as straining progresses, a phe-
nomenon called strain hardening or work hardening, characterized by the slope
c ¼ or=oe of the stress–strain curve. If c ¼ 0 or c\0; the material is said to be
perfectly plastic or strain softening, respectively. The existence of strain hardening
or softening indicates that there is continual change within the material during
plastic straining whereby its ability to support stress is changed.

The initial states are commonly not at thermodynamic equilibrium, nor is the
strain-hardened state, and so there is very limited scope for thermodynamic dis-
cussion of plastic behavior in the temperature-insensitive field. If the deformed
material is subsequently heated sufficiently, that is, annealed, the strain hardening
is removed, partially in the case of recovery (Sect. 3.3.2) or more or less fully in
the case of recrystallization (Sect. 3.3.3).

4.3.2 Low Temperature Creep

Although the main interest in the athermal field centers on the stress–strain curve
and time or rate effects play a secondary role, the latter effects are sometimes of
interest, as in the case of creep in bodies held under stress for long periods of time.
In the creep test, the strain e is measured as a function of elapsed time t at constant
stress. In the relatively low-temperature field, the creep relation e ¼ e tð Þ is widely
found to have the form

e ¼ e0 þ a ln 1þ mtð Þ ð4:2Þ

where e0 is the initial strain and a; m are constants that depend on stress and
temperature. Such behavior is called logarithmic creep. As indicated by mea-
surements on various rocks by Misra and Murrell (1965) under conditions for
logarithmic creep, typical values of a are 10-4 to 10–6 and of m are 10–2 to 1s–1 and
sometimes larger. Thus over most of the time span of creep experiments, at least
after a few minutes, mt� 1 and the relation (4.2) can be written in the form
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e ¼ e0 þ a ln t ð4:3Þ

where the a ln m term has been subsumed into the constant (a ln m; in fact, tends to
be negligible compared with the elastic strain). This is the form of logarithmic law
originally proposed by Phillips (1905) and widely used (for example, Griggs
1939). On the other hand, the relation of Lomnitz (1956), often quoted by seis-
mologists, is equivalent to (4.2). Other relationships for low-temperature creep
have been proposed with more parameters or more terms but need not be elabo-
rated here (Benioff 1951; Griggs 1939; Jeffreys 1958; Michelson 1917, 1920).

Time-dependent strain can also occur in elastic vibrations, the theoretical
analysis of which in turn also implies specific forms of creep relation that may be
relevant at very small stresses and low temperatures. Thus, the theory of the
‘‘standard linear solid’’ (Zener 1948, p. 43) leads to a relation of the form

e ¼ e0 þ et 1� e�t=t0
� �

ð4:4Þ

where t0 and et are constants (in this linear theory, e0 ¼ r=Mu and et ¼ r=MRð Þ � e0

where r is the stress and Mu; MR are the unrelaxed and relaxed elastic moduli,
respectively).

4.4 The Thermal Field

4.4.1 Stress-Strain-Time Relationships

In temperature-sensitive mechanical behavior, the variables elapsed time t and
temperature T assume the same degree of importance as the stress r and strain e:
The basic relationship to be sought is then of the form

e ¼ e r; t; T; y; . . .ð Þ

involving the four variables just mentioned as well as independent structural
parameters (or internal variables) y; such as initial grain size or concentrations of
impurities. Experimentally, this multivariable situation is normally approached by
observing the relationship only between two of the variables while the others are
held at fixed, known values.

The simplest practical test from the point of view of interpretation is the creep
test in which one measures e ¼ e tð Þ at constant r; T; y: The approach, normal at
low temperatures, of measuring the stress–strain curve at constant _e; T . . . is very
useful in exploratory work when it is not known what stress levels are of most
interest but interpretation may be more difficult since the role of time is not fully
represented in the strain rate (for example, static recovery effects may be occur-
ring). Therefore, our discussion here will be in terms of the creep test (note also
that, unless otherwise specified, we shall take r to be the ‘‘true stress’’, based on
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current cross-sectional area, and e to be natural strain, Sect. 4.2). In a creep test, it
is convenient to distinguish four stages (Fig. 4.2), characterized as follows:

1. The instantaneous strain e0: This is the strain that occurs during the application
of the stress and in the interval before practical strain measurements as a
function of time are begun. It corresponds more or less to the strain determined
in a short-term stress–strain test but of course it depends on the rate at which the
stress is applied and it includes some strain that might be counted as creep
strain in the initial stages of an ideal creep test in which the stress were applied
strictly instantaneously and strain recording begun immediately.

2. Primary creep. The first stage of the recorded creep curve in which the strain
rate normally decreases continuously but at a diminishing rate, as shown in
Fig. 4.2. However, in some cases, there may be an incubation period of little or
no creep followed by an acceleration in strain rate before the stage of dimin-
ishing strain rate is entered, giving an overall sigmoidal shape to the creep
curve in the primary creep stage.

3. Secondary creep. A stage in which the strain rate reaches its minimum value
and during which the rate of change of strain rate is relatively small or sensibly
constant.

4. Tertiary creep. A final stage of accelerating creep, representing the onset of
some sort of instability leading to failure; less commonly met in compression
tests than in extension tests.

Leaving aside the consideration of tertiary creep and of any initial incubation
stage, it is commonly assumed that the creep curve can be represented as the sum
of three terms, comprising the instantaneous strain e0 and two time-dependent
forms, a transient creep term B tð Þ; and a steady-state term _est (_es a constant), as
follows:

e ¼ e0 þ B tð Þ þ _est ð4:5Þ

Strain
ε

Primary Secondary

Time T

Tertiary

ε0

Fig. 4.2 Stages of a creep
test
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The transient creep term B tð Þ tends to predominate in the primary stage of the
creep test. A number of empirical forms have been used for B tð Þ: These include:

1. B tð Þ ¼ a ln 1þ mtð Þ or a ln t; analogous to the form mentioned above for rep-
resenting the whole of the time-dependent strain in the athermal field. This
form has not found much application at high temperatures.

2. B tð Þ ¼ btm; where b and m are constants (m\1). The transient creep behavior
of a wide variety of materials can be fitted to a rough approximation with
m ¼ 1=3: The term Andrade creep is often then applied to this form, after
Andrade (1910), although Andrade actually proposed B tð Þ ¼ ln 1þ bt1=3

� �
;

which is equivalent to bt1=3 for small transient creep strains (i.e. \\1). By
allowing both parameters b and m to vary, better fits can, of course, be
achieved, in which case values of m varying from 0.03 to nearly 1 are found
(Garofalo 1965, p. 16). The variation with stress can often be expressed by
putting b / rn0 ; so that B tð Þ ¼ C0rn0 tm where n0 and C0 are constants. Differ-
entiation then leads to a primary creep rate of

_e ¼ Crne�p

where C ¼ m C0ð Þ1=m; n ¼ n0m and p ¼ 1=m� 1: These expressions are commonly
used in engineering design, being also treated as covering the whole of the creep
strain when there is no marked secondary or tertiary stages. Both the logarithmic
and btm forms of B tð Þ have the property that the ‘‘transient’’ creep component of
the strain increases indefinitely as t increases.

3. B tð Þ ¼ et 1� e�t=t0
� �

; where et and t0 are constants. This is identical to the
anelastic form (4.4), but now applied to substantial plastic strains. It often gives
better fits than the btm form (Garofalo 1965, p. 16). It also implies that there is
an upper limit to the contribution of the transient creep term, represented by the
constant et: The constant t0 can then be viewed as an empirical relaxation time
for the transient creep. Studies on high-temperature transient creep in metals
(Amin et al. 1970) suggest that, in the absence of significant grain boundary
sliding, the influence of stress and temperature is mainly reflected in the
parameter t0 and that the product t0 _es is a constant of the order of 100, not
varying greatly from one material to another.

The steady-state creep term _est in (4.5) tends to predominate in the secondary
stage of the creep rate. It should be emphasized that the observed minimum creep
rate is not necessarily equal to the steady-state creep rate _es but only represents an
upper limit to it since there may still be some contribution from the transient creep
term up to the onset of tertiary creep; however, in the absence of a tertiary
instability, the expression (4.5) represents a total strain rate that decreases con-
tinuously with increasing time and asymptotically approaches the steady-state
creep rate _es:
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Although it is of practical and conceptual convenience to identify linearly
additive instantaneous, transient and steady-state terms in the creep function (4.5),
this procedure may eventually prove to be an artificial, and even possibly invalid,
one from a theoretical or mechanistic point of view. Thus, as Amin et al. (1970),
Mukherjee (1975), and Poirier (1976) point out, the primary creep stage, the
behavior in which is normally treated as being dominated by the transient creep
term B tð Þ in (4.5), should probably be regarded more accurately as a transitional
stage of structural evolution in which the mechanisms of deformation are being
established. The nature of these mechanisms may well not change fundamentally
during the course of the deformation, but the strain rate that they contribute may be
expected to change as the structural details evolve until some sort of dynamic
equilibrium or saturation is reached at the steady state. Moreover, the nonelastic
strain occurring prior to the recorded primary stage is somewhat artificially
divorced from it by experimental limitations and probably should be treated
separately from the elastic strain calculated using a dynamically determined,
unrelaxed elastic modulus (cf. Eq. 4.4). Any fully developed theory is therefore
more likely to yield, in addition to the elastic strain, a single unified creep function,
probably of complex form and representing within itself the several aspects of
preliminary nonelastic strain, the measured primary stage and the asymptotic
approach to a steady state to be expected in the secondary stage if a tertiary stage
or instability is sufficiently delayed.

The concept of steady-state creep calls for brief comment at this point. At the
present experimental or empirical level, it embodies the notion of behavior that is
independent of the strain. Care should be taken in any attempt to attribute deeper
significance to it than this, for two reasons. On the one hand, the experiments are
often limited to moderate amounts of strain and the demonstration of the constancy
of creep rate is an approximate one, described as such for convenience in analysis
but which might not be justifiably so designated if a larger strain interval were
explored (as in torsion experiments, Paterson and Olgaard 2000). On the other
hand, one may be tempted to infer from the existence of a steady-state creep rate
that, under the given values of the independent macroscopic variables, the spec-
imen is now in a stationary state in the sense used in the thermodynamics of
irreversible processes (for example, Prigogine 1967, Chap. 6) and that this state
would correspond to the optimization of a dissipation potential or entropy pro-
duction rate (for example, Ziegler 1977, Chap. 15). However, Rice (1970) has
concluded that, except in special cases, ‘‘no firm basis… is available for a sta-
tionary creep potential’’, such as would give the steady-state strain rate when
differentiated with respect to the stress; that is, in general, the steady-state strain
rate cannot be expected to be a function of state that is determined completely by
the instantaneous values of the macroscopic variables, independently of history,
but that additional internal variables (such as uncontrolled structure parameters)
will be needed to define fully the state of the specimen.

In spite of a lack of fundamental significance for a steady state in creep
deformation, the concept has been widely used in discussions of the rheology of
rocks in geological contexts. It simplifies theoretical analysis by eliminating one
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variable, enabling one to concentrate on _es ¼ _es r; T ; y; . . .ð Þ instead of e ¼
e r; t; T ; y; . . .ð Þ in the thermal field. Consequently, experimental work has been
commonly concentrated on determining the steady-state strain rate as a function of
stress and temperature, that is, establishing a ‘‘flow law’’. Often this aim has been
pursued, not through the creep test itself, but through experiments at constant
strain rate, taken to strains sufficient for the rate of strain hardening to become
sufficiently small, so that the specimen can be regarded as deforming at a stress
and a strain rate that are both sensibly constant; it is then assumed that this
combination represents a steady state, independent of the testing history and
therefore equivalent to what would eventually be reached in a creep test, in the
absence of a tertiary stage.

4.4.2 Analysis of ‘‘Steady State’’ Deformation

We now consider the relationship commonly sought in triaxial tests for the steady-
state creep rate in the form

_es ¼ _es r; T; p; yð Þ;

where an explicit distinction is made between the stress difference r and the
pressure p; as explained in Sect. 4.2; y serves as an internal variable covering any
structural factors to be taken into explicit account. In a first approximation, it
greatly facilitates analysis to assume that the dependence of _es on each variable can
be considered separately.

The temperature dependence of the steady-state creep rate is normally well
represented over limited ranges of temperature by an Arrhenius form _es /
exp �Q=RTð Þ; where R is the gas constant (8.32 J K–1 mol–1), T is the absolute
temperature, and Q ¼ �Ro ln _es=o 1=Tð Þ is a measure of the degree of temperature
sensitivity, called the apparent or empirical activation energy (see Sect. 3.1.2). It
should be recognized that in fitting the experimental results, in this way, all aspects
of the temperature dependence are lumped together and Q may not represent an
actual activation energy for a particular elementary process. For example, a part of
the temperature dependence may arise from variations in elastic modulus with
temperature (which may eventually prove not even to be of exponential form) and
another part from the temperature dependence of a diffusivity (Bird et al. 1969;
Poirier 1976, p. 47), in which case the apparent activation energy for steady-state
creep could not, on the above analysis, be identified exactly with the activation
energy for diffusion. It may also be remarked that, at this level of discussion, the
apparent activation energy Q cannot be given a specific thermodynamic desig-
nation, such as enthalpy or Gibbs free energy, until the thermodynamic system has
been adequately defined (Poirier 1976, pp. 37–38 and 98–106).

The stress dependence of _es can generally be represented over limited ranges of
stress either by _es / expðr=r0Þ or by _es / rn; where r0 and n are constants. The
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exponential form tends to be found at relatively high stresses (where it can
alternatively be represented as _es / sinh r=r0ð Þ), while the power law tends to give
better fits at lower stresses. A two parameter representation, _es / sinh r=r0ð Þ½ �n;
has been proposed to give a wider range of fit with one expression, covering both
exponential and power law behavior (Garofalo 1965), but this in turn can be
inadequate over the full range of interest, and so it would seem better for empirical
representation to use several single parameter expressions that give best fits in
limited ranges of stress, especially if these regimes can be correlated on micro-
structural evidence with changes in mechanism. Sometimes an exponential stress
dependence is represented in the form _es / exp �rV 0=RTð Þ with a view to rep-
resenting the role of stress in assisting thermally activated processes as contrib-
uting an energy rV 0; where the constant V 0 has the dimensions of volume.

For the pressure dependence of _es; the form _es / exp �pV�=RTð Þ is used, with
an implication that its role is through influencing thermally activated processes, as
in diffusion. The degree of pressure dependence is thus measured by the constant
V�; called the activation volume and defined as V� ¼ �RTo ln _es=op: There is
potentially some confusion in terminology here since the quantity V 0 representing
the stress dependence of _es; introduced in the previous paragraph, is also com-
monly called an activation volume, especially in the metallurgical literature.
Sometimes this ambiguity is resolved by writing V 0 ¼ Ab (b being the Burgers
vector for given dislocations in the crystals) and calling A the activation area.
However, it is simpler to distinguish V 0 and V� as activation volumes for stress and
pressure dependence, respectively.

The concept of structure dependence, represented by a term in y; calls for some
preliminary comment. Rheological behavior clearly involves microstructural
aspects such as mobility of crystal defects, processes at grain boundaries and the
presence of impurities, and creep rates may be influenced by the changes in
concentration of these entities, which are covered by the generic term ‘‘structure’’.
However, in discussing the role of structural factors one must distinguish, at least
in principle, between those which play the role of independent variables, under the
control of the experimenter and those which are dependent or uncontrolled.
Quantities specifying structural features that persist unmodified through the range
of strain under consideration can be treated as independent variables; examples
are: the initial grain size in cases where recrystallization is absent or minor, a
concentration of crystal defects that is continuously equilibrated with respect to an
externally controlled environment (for example, a fixed oxygen fugacity), the
concentration of an impurity in solid solution or forming a separate phase, and the
relative amounts of the phases in a multiphase material. In contrast, variables such
as mobile dislocation density, subgrain size, and recrystallized grain size in situ-
ations where the dislocations, subgrains, and grains have been generated during the
deformation are, in general, dependent variables. Only those quantities that can be
considered as independent variables in a given test are covered by the symbol y in
this section. An example of a structure dependence is given by the dependence of
the steady-state creep rate on grain size d which is observed at high temperatures
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where relative grain sliding is significant, in the so-called superplastic regime; it is
found that _es / dx and the sensitivity to grain size is then specified by the constant
x ¼ o ln _es=o ln d: However, when attention is not specifically directed to struc-
tural, or any other, variables, their influence is subsumed in a ‘‘constant’’ factor A
included as a multiplier in the empirical steady-state creep law.

Recapitulating, in the simplest or first analysis, the steady-state creep behavior
is commonly and conveniently represented in the form

_es ¼ Af rð Þ exp �Q=RTð Þ ð4:6Þ

where f rð Þ ¼ exp r=r0ð Þ or rn according to which gives the better fit to the
observations, and A is a multiplier to be treated as a constant when only variations
of r and T are concerned or to be expressed as an appropriate function A p; yð Þ
when independent variations of pressure or structure are considered. When no
expression of form (4.6) with a single set of constants can be found to fit the
observations over the whole range of the variables, it is usual to consider this range
in several parts or regimes within each of which the observations can be fitted to an
expression of form (4.6) with a single set of constants. Such a definition of distinct
steady-state rheological regimes is, of course, an empirical procedure and may
initially appear rather arbitrary but it can take on more physical significance if the
change from one regime to another can be shown also to involve microstructural
changes suggestive of change in the deformation mechanism or in factors con-
trolling the deformation. The microstructural study may, alternatively, lead to the
postulation of models for the deformation mechanism that imply rheological laws
different in form from (4.6) which it will then be desired to test for fit.

4.5 Instabilities and Localization

So far we have taken it for granted that a specimen will undergo a uniform
deformation when loaded under conditions of uniform stress. However, this is not
always the case and rather restrictive conditions may have to be satisfied before
uniformity of deformation can be expected. When these conditions are not met,
heterogeneity of deformation can develop, giving rise to structural patterns on
various scales, apparently analogous in many cases to the geological features
studied by structural geologists.

In considering instability, it is often convenient to distinguish between shape or
external geometrical instability and material or internal instability (Drucker 1960);
(Biot 1965, pp. 192–204) (Paterson and Weiss 1968), although the distinction is
not always a clearcut one, however, and in some cases may simply refer to two
different aspects of the same unstable behavior. The first category is typified by the
necking instability in a tensile test specimen or by the Euler buckling of a slender
column in compression, while the second is typified by the development of
Lüders’ bands in the deformation of mild steel or of kink bands in crystals
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compressed parallel to a unique slip plane. The latter effects can be described
without reference to the boundaries of the specimen or system while the bound-
aries are involved in an essential way in describing the former.

In mechanical testing, one can generally regard the combination of specimen
and loading rams as a system subject to prescribed displacements or loads applied
at certain boundaries. The precise behavior within this system may involve either
of the types of instability just distinguished. Thus, in compression tests there is, on
the one hand, the possibility of a shape instability in which the initial alignment of
loading ram and specimen is replaced by a buckled configuration (for creep
buckling, see Hoff 1958) and, on the other hand, even if the gross alignment is
preserved, the distribution of deformation within the specimen itself may become
heterogeneous due to material instability, as in the formation of localized shear
zones. In extension testing, there is no question of buckling instability but necking
can occur when the loss of strength due to a virtual reduction in cross-sectional
area locally is less than the gain due to strain hardening associated with the locally
increased strain or strain rate. The corresponding shape instability in compression
is local bulging (Jonas and Luton 1978), (Jonas et al. 1976) but it tends to be less
important than buckling, especially when the deformation is strain-rate sensitive,
and it is less frequently observed than shearing instability in the material itself. The
analysis of the necking or bulging instability has been developed by many writers
since the classical paper of Considère (1885), especially in recent years in con-
nection with ‘‘superplasticity’’, the phenomenon that is defined macroscopically by
the ability of a specimen to undergo exceptionally large elongations without
failure resulting from excessive necking (see, for example, Hart et al. 1995);
(Jonas et al. 1976; Reid 1973, pp. 38–43). Of particular, interest in the latter
connection is the role of the strain rate dependence in determining the rate at which
necking develops; superplasticity depends more on the slowness of development
of a neck than on inherent instability against any necking at all.

Shearing instability within a deforming body is of potential importance in all
types of mechanical testing as well as in natural situations involving complex
stresses. It involves the localization of strain within a zone parallel to a surface of
pure shear or zero extensional strain, that is, to a characteristic or slip surface in the
sense of the mathematical theory of plasticity (Hill 1950); (Prager and Hodge
1951); (Hoffman and Sachs 1953). There have been many analyses of instability
based on the work done on a deforming specimen (Argon 1973; Backhofen 1972;
Evans and Wong 1985; Poirier 1980). However, such analyses do not take into
account the development of local heterogeneity of deformation during the onset of
instability and can fail to account for observations in torsion tests (Paterson 2007).
A full analysis needs to be based on continuum mechanics and perturbation theory,
such as set out by Fressengeas and Molinari (1987) and Shawki and Clifton (1989).
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4.6 Failure Criteria and Flow Laws for General Stress States

So far, we have discussed deformation behavior in situations involving a simple
homogeneous state of stress, usually specified by a single component of stress
(uniaxial stress state), with possibly the superposition of a hydrostatic component
to be taken into account. However, in practical applications, it is frequently nec-
essary to deal with general states of stress (complex, triaxial, or multiaxial stresses)
in which all three principal components and their orientations have to be taken into
account, as well as their variation from point to point. The problem then arises of
how to generalize the stress–strain–strain rate relationships so far discussed, that
is, to establish general constitutive relations; see Malvern (1969, Chap. 6), Kocks
(1975), Rice (1970), 1975), and Kestin and Bataille (1980) for general consider-
ations on constitutive relations and their extension to time-dependent plasticity,
including the question of memory effects and the use of internal variables. There
are two distinct approaches to the problem, one being a generalization of the
treatment of viscous fluids and the other an extension of the mathematical theory
of plasticity, on which we shall now comment briefly.

The simplest approach through the theory of viscous flow is to retain the normal
treatment based on isotropic Newtonian or linear viscosity but to assign to the
dynamic viscosity an effective or equivalent value, given by g ¼ r=3_e where r; _e are
the normal stress and strain rate, respectively, measured in a uniaxial experiment
carried out to steady state within the ranges of stresses that is of interest (Griggs 1939;
the factor three arises naturally from the constitutive equations for isotropic linear
viscous flow with zero bulk viscosity). However, this procedure is only suitable for an
approximate treatment of the broad aspects of the flow and it automatically
suppresses any characteristic features arising from the actual nonlinear nature of the
viscosity. The alternative is to solve the equations of viscous flow with a viscosity
that is no longer a constant but is itself a function of stress. Difficulties associated both
with establishing the form of this function and of solving the nonlinear equations
have largely inhibited development along these lines.

The theory of plasticity, as developed in its simplest form for isotropic metals at
low temperatures, generalizes the uniaxial stress–strain relations in terms of
‘‘effective’’ stresses and strain increments, these being scalar functions of the
actual stress and strain increment components that serve to describe the
mechanical behavior in the same form as in the uniaxial case (not to be confused
with the ‘‘effective stress’’ in situations involving pore pressure, Paterson and
Wong 2005, p. 148, although the general concept is the same in that we seek to
specify that aspect of the stress state that is effective in the particular situation).
Following von Mises (Hill 1950, p. 26), the effective stress r� is taken to be

r� ¼ 1=
ffiffiffi
2
p� �

r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2
h i1=2

where r1; r2; r3 are the principal stresses. The corresponding effective plastic
strain increment de� is taken to be
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de� ¼
ffiffiffi
2
p

=3
� �

de1 � de2ð Þ2þ de2 � de3ð Þ2þ de3 � de1ð Þ2
h i1=2

where e1; e2; e3 are the principal plastic strain increments. Von Mises’ yield cri-
terion for a perfectly plastic material then states that yielding occurs whenever the
effective stress r� reaches a certain value k; a constant for the material. This
criterion is observed to be widely applicable for metals when the hydrostatic
component of the stress is not large compared with the effective stress, although
some metals follow more closely the Tresca criterion according to which yielding
occurs when the maximum shear stress r1 � r3ð Þ=2 reaches a fixed value for a
given material. It seems likely that the von Mises criterion could also be useful for
rocks where nondilatant ductile behavior is involved at low temperature and
moderate pressure, and that the strain-hardening extensions of the theory could
even be useful at higher temperatures where steady state is not reached. However,
there are few observational data for testing this application (see, for example
Robertson 1955, for marble).

In extending the approach of the theory of plasticity to creep, it is often
assumed, following Odqvist (1935), that creep under general stress states can also
be expressed in terms of relationships between the effective stress r� and the
effective plastic strain rate _e�;

_e� ¼
ffiffiffi
2
p

=3
� �

_e1 � _e2ð Þ2þ _e2 � _e3ð Þ2þ _e3 � _e1ð Þ2
h i1=2

(_e1; _e2; _e3 are the principal plastic strain rates), that are similar in form to the
relationships found between r and _e in uniaxial tests; however, in some cases the
maximum shear stress and maximum shear-strain rate are found to be more
suitable as ‘‘effective’’ stress and strain rate, and in other cases more elaborate
forms have been proposed (see brief review by Finnie and Abo el Ata, 1971). An
example of this approach is that of Nye (1953) for the case of high temperature
steady-state creep of ice, which may also be applicable to rocks in particular
circumstances, such as where the range of pressure is not great and solution
transfer effects are not involved. Nye assumed that there is a universal steady-state
relationship _e� ¼ f r�ð Þ of the same form as that established in a uniaxial experi-
ment, namely, _e� ¼ A r�ð Þn; where A and n are constants (note that the effective
strain rate and stress used by Nye differ by numerical factors from those given
above). This universal relationship is then incorporated in an application of the
theory of plasticity analogous to its extension from perfectly plastic material to one
with isotropic strain hardening for which a universal stress–strain curve is intro-
duced (Malvern 1969, p. 364); the position- and time-dependent scalar multiplier
dk of the theory of plasticity now becomes dk ¼ 3f r�ð Þ=2r�: It has also been
suggested that such a procedure can be extended to cover transient creep as well,

and general relationships such as e� ¼ C r�ð Þn
0
e�ð Þ�p; _e� ¼ C0 r�ð Þn/ tð Þ; and _eij ¼

rijF J2ð Þ/ tð Þ have been proposed, where C; C0; n; n0; p are constants, / tð Þ is a
function of time, equal to unity for steady-state creep, F J2ð Þ is a function of
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J2 ¼ 1=3ð Þ r�ð Þ2 and _eij; rij are components of the general plastic strain rate and
stress tensors, respectively (see, for example, Johnson et al. 1962; Smith and
Nicolson 1971). However, little has been done to extend these approaches to
anisotropic materials.

The procedures just described, which assert in general that the flow behavior is
determined entirely by the shear or deviatoric stress components, are based on
many observations showing that the mean stress or hydrostatic component has
little influence in plastic deformation. These observations have been mainly on
metals and mainly at low temperatures. However, even with metals it is known
that there is a small increase in flow stress with increase in mean stress, which
becomes more obvious when the mean stress is large compared with the shear
stresses. Further, it has been observed that a significant influence of mean stress
can appear in high-temperature creep of metals when cavity growth occurs (Dyson
et al. 1981; Lonsdale and Flewitt 1977; Needham and Greenwood 1975). Similar
pressure effects have been observed in polymers and glasses, where they are often
rationalized in terms of a concept of ‘‘free volume’’ in the structure. Finally, in
granular flow of soils and cataclastic flow of rocks, it is always necessary to take
account of the role of the pressure component, this is being covered in the simplest
case by the Coulomb failure criterion (Jaeger and Cook 1976, p. 95; Paterson and
Wong 2005, p. 24). The factor common to all these cases is that effects associated
with volume change during the flow can no longer be neglected. This situation
tends to occur in a number of situations with rocks, so that the hydrostatic com-
ponent of the stress will often have to be taken into account in treating flow under
general states of stress, as in: (1) low-temperature cases where some cataclastic
component of flow is involved, as already indicated; (2) cases involving changes in
porosity which may include generalized types of high-temperature cavitation, even
under predominantly compressive conditions when fluids are present; (3) situations
in the lower crust and mantle of the earth where the hydrostatic component of the
stress becomes very large relative to the deviatoric components and influences the
elastic constants significantly.

The role of pressure is commonly incorporated in the failure criteria and flow
laws for general states of stress at high temperature by assuming that it can be
expressed through an exponential multiplying factor exp �pV�=RTð Þ as in uniaxial
tests (see Sect. 4.4.2). This multiplying factor can be applied respectively to the
equivalent viscosity and to the universal strain rate versus stress relationship in the
two simple approaches for general stress states, mentioned above. More generally,
in the plasticity theory approach, the pressure dependence can be allowed for by
postulating a form of yield surface which, instead of being a cylinder parallel to an
axis equally inclined to the three principal stress axes in stress space, is a cone that
opens in the direction of increasing compressive stresses in a way expressing the
appropriate linear (Coulomb), exponential, or other form of pressure dependence.
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4.7 Mechanistic Approach

In the following chapters, we turn from the macroscopic or continuum view of
deformation to the microscopic or discontinuum view. We shall now consider the
elementary processes whereby the deformation takes place physically, that is, the
deformation mechanisms. The study of mechanisms is involved with the real
structure of the material, that is, with the nature of the building blocks or ele-
mentary structural units of which the material is made, the way in which these
units are assembled and interact, and the way in which the assemblage is affected
by the deformation.

In practice, there is a hierarchy of structural units at different scales to be
considered but for a particular deformation mechanism we can usually distinguish
structural units at a particular scale that can be regarded as the fundamental flow
units for that mechanism. Depending on the scale, there are three general cate-
gories of flow units (Paterson 1979):

1. Atomic: individual atoms or molecules.
2. Intragranular: especially the intracrystalline blocks or glide packets that slide

over each other in crystallographic slip.
3. Granular: individual grains, clastic fragments or particles.

The identification of the principal flow units and their pattern or relative
movement defines the microgeometry of the deformation.

The microdynamics of the deformation involves the dynamical interactions
between the flow units. These interactions can generally be analyzed in terms of
processes in the zones of contact between the flow units, for which it is sometimes
useful to introduce finer-scale structural entities, such as dislocations or other
crystal defects. Thus, the microdynamical treatment may variously concentrate on
such effects as friction at particle contacts, the dynamics of dislocation multipli-
cation and propagation, the accommodation of geometrical impediment between
flow units, or the kinetics of diffusion or solution and redeposition, and it will
entail establishing which is the rate controlling process in a particular situation.

The variety in types of flow units and of interaction between them naturally
leads to there being a wide variety of possible deformation mechanisms. However,
in dealing with rocks and minerals, this range can be usefully divided into three
categories corresponding to the categories of flow units listed above:

1. Atomic transfer flow: This may involve solid-state diffusional flow as in change
of shape by material transfer by inter- or intra-crystalline diffusion, or viscous
flow in amorphous material; point defects may be important for the diffusion
process. Alternatively, it may involve solution-transfer processes, involving
change of shape by material transfer via a fluid phase, at high or at low
temperature.

2. Crystal plasticity: Intragranular deformation by slip and twinning, much studied
in metals and other ductile materials over a wide range of temperatures;
involves crystal dislocations in a variety of ways.
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3. Granular flow: This may occur with low cohesion between the flow units as
typically in soils and poorly cemented sedimentary rocks at low temperatures
and includes cataclastic deformation of rocks; inter-particle interference and
friction, fracturing of particles and dilatancy are important factors. Alterna-
tively, it may occur where there is relatively high cohesion between the units,
typically at high temperature, and including ‘‘superplastic’’ behavior and, at
least in a geometric sense, some materials with small amounts of partial melt;
accommodation mechanisms that satisfy intergranular strain compatibility are
important.

The following chapters deal in turn with these three categories.
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Chapter 5
Deformation Mechanisms: Atomic
Transfer Flow

5.1 A General Model

In this category of deformation mechanisms we are concerned with processes in
which individual atoms or small groups of associated atoms are removed from
certain interfaces or discontinuities within the structure of the body (sources) and
are transferred to other interfaces or discontinuities (sinks) in such a way that the
overall shape of the body is changed, that is, the body undergoes macroscopic
strain. The sources and sinks may be dislocation cores, planar crystal defects, grain
boundaries or free internal or external surfaces, and the transfer may take place by
a variety of mechanisms, including solid state diffusion (intra- or intergranular)
and transfer via a fluid phase (in case of a porous or partially melted body). The
overall kinetics may be controlled by the kinetics of the transfer process or by the
kinetics of the detachment and re-attachment processes. We have used the term
‘‘atomic transfer flow’’ in introducing this class of mechanisms in order to
emphasize that the transfer occurs more or less atom by atom rather than by the
movement of relatively large blocks of atoms; however, the term ‘‘diffusion creep’’
is commonly used in the same sense, especially when it is wished to emphasize
diffusion as the transfer process or as being rate controlling.

Atomic transfer flow is essentially a solid state process in that the atoms
detached or re-attached belong to solid grains, even though the transfer may in
some cases occur via a fluid medium. This type of flow is therefore to be distin-
guished fundamentally from viscous flow in fluids where, although individual
atom movement is again involved, the atoms do not have defined sites in sources
and sinks and the resistance to flow derives from the process of momentum
transfer as the atoms move about. In Newtonian viscous flow in a fluid, the flux of
stream momentum is proportional to the gradient in stream velocity of the particles
and so the stress, deriving from the rate of change of momentum, is proportional to
the strain rate (Cottrell 1964, p. 26). The viscosity associated with momentum
transfer in the diffusive movement of atoms in a solid would be enormous and so
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flow in a solid by a process analogous to that in a viscous fluid is normally
negligible.

As might be expected for a process that involves the relative displacement of
individual atoms rather than large groups of atoms, atomic transfer flow tends to be
more important at relatively low stresses, insufficient to initiate the displacement
of the large groups but sufficient to bias the motion of the individual atoms. It will
be seen later that atomic transfer flow can be of practical importance at high
temperatures when solid-state diffusion is the transport mechanism and at mod-
erate or low temperatures when fluid transfer is involved.

The various types of atomic transfer flow can be classified according to the
nature of the sources and sinks and of the transfer process. Several that may be
relevant for rocks are set out in subsequent sections. However, underlying all is a
common theoretical framework that we first set out.

We consider the macroscopic strain of a body that result from the transfer of
material from source to sink via a well-defined path under uniaxial stress
(Fig. 5.1). The model is defined in terms of the following elements and symbols:

1. The stress-supporting part of the body is considered, at least for preliminary
discussion, to consist of a single component of molar volume Vm:

2. The sources and sinks, regarded as surfaces of area As, are characterized by a
rate constant ks governing the rate of any reaction required to effect detachment
or re-attachment of material and a numerical parameter as representing the
fraction of surface sites in source or sink at which the detachment or re-
attachment reaction can occur. (The suffixes ‘‘so’’ and ‘‘si’’ are used to dis-
tinguish source and sink, respectively).

3. The transfer path, of cross-sectional area At; is assumed to consist of a medium
in which the species being transferred has a diffusion coefficient D and solu-
bility c (c ¼ 1=Vmwhen no other substance exists in the path).

SOURCE
AREA ASD

ALTENATIVE
TRANSFER
PATHS

SINK
AREA ASL

d

σ3

σ1
Fig. 5.1 Schematic
representation of a single
domain consisting of one
source-sink pair undergoing
shape change by atomic
transfer flow
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The relative shortening of the body, represented by that of the domain in Fig. 5-1,
is of the order of nVm=V where n is the amount of substance transferred (in moles) and
V is the volume of the domain. The macroscopic strain rate _e in the direction of r1 is
then given by

_e ¼ C1
Vm

V

dn

dt
ð5:1Þ

where C1 is a dimensionless geometrical factor, generally[1, that takes into account
the actual orientations of sources and sinks and the actual relative movements of the
domains required to fit them together again after transferring the material.

The overall thermodynamic potential difference �Dl driving the transfer of
material is given by �Dl ¼ C2Vm r1 � r3ð Þ where l is the chemical potential and
C2 is another dimensionless geometrical factor, generally \1, taking into account
the actual orientations of the sources and sinks (see Sect. 3.2 on sign of �Dl), and
r1 � r3 is the applied stress difference. The quantity �Dl is made up of three parts
(Fig. 5.2), the potential differences �Dlso and �Dlsi required to drive any reac-
tions involved in releasing or attaching material at source and sink, respectively,
and the potential difference �DlD required to drive the diffusion in the transfer
path. Thus, we can write

�Dlsoð Þ þ �Dlsið Þ þ �DlDð Þ ¼ C2Vm r1 � r3ð Þ ð5:2Þ

We now relate dn=dt separately to the reactions at source and sink and to the
diffusion in the transfer path. In the case of the reactions a formulation analogous
to (3.5) can be used under the assumption that the reaction will be first order, with
a rate proportional to the number of sites in source or sink at which atoms or

SOURCE

QSO

QSI

−ΔμD

−ΔμSO

−ΔμSI

−Δμ σ1− σ2

TRANSFER PATH

SINK

=C2 Vm (         )

Fig. 5.2 Components of thermodynamic potential difference driving transfer of material from
source to sink
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molecules can potentially be readily detached or attached, respectively; that is, we
assume

dn

dt
¼ asAsb

Vm
ks ¼

Ask

Vm
ð5:3Þ

where b is the thickness of a monolayer, and ks is the rate coefficient at the
potential site. We can write asbks ¼ k since it is only this product that is directly
measured. Tsai and Raj (1982b) introduce a rate proportional to the molar con-
centration of the diffusing species instead of to the number of reaction sites but, as
they point out, only the product of this term with the rate coefficient is measurable
and so empirically the two models cannot be distinguished from deformation
experiments alone.

Returning to (5.3) and using an argument analogous to that used in deriving
(3.12), we can now write

ks ¼
�ks �Dlsð Þ

RT

under the assumption that �Dls � RT ; here the �ks are of the form A exp �Q=RTð Þ
where the A are constants with dimensions of frequency and the Q’s are activation
energies for the reactions. Then the (5.3) become

dn

dt
¼ basoAso

�kso

VmRT
�Dlsoð Þ ð5:4aÞ

dn

dt
¼ basiAsi

�ksi

VmRT
�Dlsið Þ ð5:4bÞ

at source and sink, respectively. In the case of diffusion, (3.28) can be used to give,
in the ideal case,

dn

dt
¼ jAt ¼ At

cD

RT

�DlDð Þ
l

or, using (5.2),

dn

dt
¼ cD

At

l

C2Vm r1 � r3ð Þ � �Dlsoð Þ � �Dlsið Þ½ �
RT

ð5:5Þ

Two situations must now be considered:

1. If Dlso and Dlsi can be treated as dependent variables, they can be eliminated
from (5.4) to (5.5) and the resulting value of dn=dt substituted in (5.1) to give

_e ¼ C0VmcD

1þ VmcD At
bl

1
asoAsokso

þ 1
asiAsiksi

� �
At

lV

Vm r1 � r3ð Þ
RT

ð5:6Þ
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where C0 ¼ C1C2 is a dimensionless constant. In order to bring out the physical
content of (5.6) it is simplest to consider the two limiting cases.

a. Diffusion-controlled case. When the rate coefficients ks are sufficiently large
relative to the diffusion coefficient D that the bracketed term in the
denominator sum can be neglected, the diffusion in the transfer path is rate
limiting and the creep rate is

_e ¼ C0Vmc
D

lV=At

Vm r1 � r3ð Þ
RT

ð5:7Þ

Expressing l; Vand At in terms of grain and grain boundary dimensions leads to
Nabarro-Herring, Coble and fluid transfer diffusion creep laws, as will be shown
later.

b. Reaction-controlled case. When the diffusion coefficient is sufficiently large
relative to the rate coefficients so that the bracketed term in the denominator
sum of (5.6) is much greater than unity, the reactions are rate controlling and
the creep rate is

_e ¼ C0
bk

V=As

Vm r1 � r3ð Þ
RT

ð5:8Þ

where we have, for illustration, assumed that the reaction at one of the source-sink
pair is much slower than at the other and we have written k ¼ as

�ks; an effective
rate coefficient with the dimensions of frequency.

2. If the Dls have independently fixed values, (5.4) and (5.5) must be indepen-
dently substituted in (5.1) to calculate virtual strain rates, the minimum of
which will be the realizable strain rate. It immediately follows that a positive
strain rate can only be obtained if

C2Vm r1 � r3ð Þ [ �Dlsoð Þ þ �Dlsið Þ

that is, that there will be a threshold stress for creep since �Dlsoð Þ and �Dlsið Þ
must both be positive for source and sink to function as such (cf. Ashby 1969).
At stresses immediately above the threshold stress the diffusion will be rate
controlling because of the relatively small value of �DlD but at stresses above
a certain higher level the reaction rate at source or sink will become rate
controlling and the strain rate will become independent of further increase in
stress.

Before proceeding to consider more specific models of atomic transfer flow,
attention should be drawn to some general aspects of this class of deformation
mechanisms:

1. In the case of ionic substances or multicomponent bodies the individual ions or
components may possibly travel along different transfer paths and tend to have
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different transfer rates. However, if no compositional change or segregation
occurs, then from a macroscopic or thermodynamic point of view only the
molecular species or an average substance need be considered, to which an
effective diffusion coefficient can be attributed. If, on the other hand, the
deformation accompanies a segregation or differentiation of the body, as may
well happen in geological deformations, then the diffusion of the individual
components has to be considered separately and the flow equations adapted
appropriately.

2. In the expressions (5.6–5.8) the stress dependence is linear or Newtonian as
long as there is no stress dependence in the other parameters. However, non-
linear stress dependence could, in principle, arise if any of the dimensional
parameters l; At; a; As associated with the diffusion path or reaction zones were
to be stress dependent. Also steady state behaviour, or constancy of strain rate
at constant stress, will only appear to the extent that these dimensional
parameters remain constant over the duration of the flow.

3. It is insufficient to discuss only the transfer of material from sources to sinks
without considering how the parts of the body fit together after the transfer, as has
already been indicated in defining the constant C1 in (5.1). We must therefore now
consider the nature and implications of these compatibility constraints.

5.2 Compatibility Considerations

In general, the sources and sinks will need to constitute a more or less continuous
system of interfaces that will define the parts or domains of the body (commonly
the grains of a polycrystal) the fitting together of which will have to be maintained
during the deformation if constancy of volume is to be maintained. In addition,
both a correlation in the relative rates of material removal or emplacement at
different points in the source/sink system and a correlation in the relative motion of
the parts of the body that accompany the material transfer are required to maintain
the fitting together of the parts. These constraints on the geometry of the source/
sink system and on the correlations in the transfer and relative displacement
constitute the compatibility conditions for the deformation mechanism. The gen-
eral framing of appropriate compatibility conditions does not yet seem to have
been set out formally for diffusion creep although the qualitative requirements are
fairly obvious. In the formal framing, generalized dislocation notions may be
useful, involving Burgers vectors with components normal to the source or sink
interfaces, representing the material transfer, and components parallel to the
interfaces, representing sliding at the interfaces required to satisfy the compati-
bility conditions. The details of the consequences of the compatibility constraints
will depend on the specific models but where grain boundaries are the source/sink
system some sliding at grain boundaries will be entailed.
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Compatibility conditions will normally contain a presumption of constancy of
volume apart from elastic effects. Failure to meet the compatibility conditions will
tend to lead to the formation or elimination of voids, that is, to volume changes and
hence to a much stronger pressure dependence in the flow law than might other-
wise appear (the diffusion coefficient would normally introduce only slight pres-
sure dependence, although appreciable pressure dependence may arise from the
reaction rate in case of reaction-controlled flow where, for example, solubility in a
fluid is a parameter in the reaction kinetics).

Unless the geometry of the source/sink system is suitably specialized, compati-
bility conditions will require local variability in the rate at which material is trans-
ferred; for example, where an asperity or change in orientation tends to obstruct
geometrically necessary sliding on a grain boundary, the rate of transfer will need to
be accelerated locally in order to accommodate the sliding. Such variability is
unlikely to be consistent with a homogeneous stress distribution, in which the only
variation in normal stress component across given sources and sinks arises from
variations in orientation, and therefore the stress distribution will necessarily be
heterogeneous on the domain or grain scale and on finer scales. If the local strain rate
is linear in the stress difference, a theoretical treatment in terms of a homogenous
stress, such as given in this and subsequent sections may represent a suitable aver-
aging procedure for many purposes but it could contain more serious error in non-
linear cases or in describing specific local aspects of linear cases.

It is also to be emphasized that the maintenance of fit between domains through
the compatibility conditions imposes such an intimate interdependence between
the shape changes of the individual domains and the relative displacements of the
domains that these two effects must be regarded as two aspects of the same basic
process. The sliding at interfaces is thus an integral part of the atomic transfer
deformation process, which can be viewed equally as based on the material
transfer or the relative domain displacement aspects. This equivalence has been
stated particularly clearly by Lifshitz (1963) and by Raj and Ashby (1971).

5.3 Nabarro-Herring Creep

The model for atomic transfer or diffusion creep first put forward was that based on
grain boundaries as the sources and sinks and on volume diffusion through the
grains as the transfer mechanism, with diffusion control, propounded by Nabarro
(1948) and Herring (1950). The Nabarro-Herring creep law can be obtained from
(5.7) by taking the volume of the grains, V; to be or order d3 and the cross-
sectional area and length of the diffusion path, At and l; to be of order d2 and d;
respectively, so that lV=At� d2: Then, with c ¼ 1=Vm; (5.7) becomes

_e ¼ CNH

VmDv

RT

r1 � r3

d2
ð5:9Þ
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where the numerical constant CNH now contains also the proportionality constants
relating V; At and l to the powers of d and DV is the bulk or volume diffusion
coefficient. Values of CNH of around 12–14 have been calculated for particular
grain geometrics by Herring (1950), Raj and Ashby (1971) and others; for a
summary, see Poirier (1976, 1985) who also discusses the alternative presentation
of the theory in terms of shear strain rate and shear stress, in which case CNH is
multiplied by 3.

As an illustration of the typical application of (5.9), _e � DV=d2 if we assume Vm ¼
10�4 m3; T ¼ 1200 K and r1 � r3 ¼ 10 MPa: If, further, DV ¼ 10�18m2s�1; then
_e ¼ 10�6s�1 for d ¼ 1lm and _e ¼ 10�12s�1 for d ¼ 1 mm:

For metals it is common to formulate the theory in terms of vacancy diffusion
(Poirier 1976, 1985), which presumes a vacancy diffusion mechanism for the
atomic transfer process. In the case of compound substances, however, as in
minerals and rocks, it would seem more appropriate to discuss the transfer process
directly in terms of the compound itself. Several atomic species may be involved
but, except where chemical segregation or differentiation is occurring, the creep
rate is to be related to the total molecular flux. The relevant diffusion coefficient
and molar volume in (5.9) will then be those of the molecular species of which the
material consists. In the case of ionic compounds of form AaBb; and since for a
pure substance it is the self-diffusion that is involved, the diffusion coefficient of
the molecular species will be given by the expression (3.40), that is, by

D ¼ D�AD�B
bD�A þ aD�B

ð5:10Þ

where D�A and D�B are the self-diffusion coefficients of the cation and anion,
respectively; thus, if D�B\\D�A, then D � D�B=b and the creep rate will be
determined essentially by the self-diffusion coefficient of the anion. In the case of
ceramics, such as beryllium oxide, it has been deduced that the anion diffusion
tends, in fact, to be rate-controlling in Nabarro-Herring creep (Gordon 1973,
1975).

In more complex systems, where more than one component is to be recognized, it
is possible that a certain amount of creep can occur by selective diffusion of the more
mobile components, leading to a differentiation or segregation. However, more
complicated compatibility requirements will arise in such cases in connection with
accommodating the immobility of the more sluggish components and the selective
transport of the others. Such segregation effects have long been used to aid in
recognizing diffusion creep, the classic case being that of magnesium -1/2 % zir-
conium alloy in which the re-deposited material is relatively devoid of the slower-
diffusing zirconium, as shown by the distribution of zirconium hydride precipitates
after hydrogen treatment (Squires et al 1963); also see Poirier (1976, 1985) for this
and other examples.
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5.4 Coble Creep

If the grain boundaries act as the transfer paths as well as being the sources and
sinks for diffusion creep in a polycrystalline material, with the diffusion rate-
controlling, the mechanism is referred to as Coble creep (Coble 1963). The Coble
creep law can be obtained from (5.7) in a similar way to the Nabarro-Herring law
(5.9), with V � d3 and l� d but now with the cross-sectional area of the order dd
where d is the effective width of the grain boundary for grain boundary diffusion,
so that lV=At � d3=d. Then with c ¼ 1=Vm, (5.7) becomes

_e ¼ CCO

VmDGBd
RT

r1 � r3

d3
ð5:11Þ

where DGB is the grain boundary diffusion coefficient and CCO is a numerical
constant differing somewhat from CNH in (5.9) because of the different geometry
of the transfer path, CCO being about three times greater that CNH: Values of CCO

of around 45 have been calculated by Coble (1963) and by Raj and Ashby (1971)
for particular assumed geometries meeting compatibility requirements.

As an illustrative example for comparison with the previous Nabarro-Herring
example, again taking Vm ¼ 10�4m3; T ¼ 1200 K and r1 � r3 ¼ 10 MPa and
assuming d ¼ 1nm; a value of DGB ¼ 10�12 m2s�1 would give _e � 10�3s�1 for
d ¼ 1lm and _e � 10�15s�1 for d ¼ 1mm: Thus laboratory experiment on fine-
grained materials will tend to emphasize Coble creep even where Nabarro-Herring
creep might be more favoured with coarser grain sizes geologically.

Since both the material transfer and the relative grain movements associated with
the two types of diffusion creep are additive, the total creep rate can be obtained by
summing (5.9) and (5.11) in cases where both are contributing significantly. For the
contributions of Nabarro-Herring and Coble creep to be similar, DGB has to be about
three orders of magnitude greater than DV in the case of 1 lm grain size, or six orders
of magnitude greater in the case of 1 mm grain size, if d is of the order of 1 nm.
Diffusion measurements (Sect. 3.5.5) indicate that a ratio of six orders of magnitude
between DGB and DV is realistic but the ratio will depend on temperature, dimin-
ishing at higher temperatures because of lower activation energies for grain boundary
diffusion. It has been noted that the cation diffusion is often rate controlling in grain
boundary diffusion and hence in Coble creep, in contrast to the control by the anions
in Nabarro-Herring creep (Gordon 1973, 1975).

5.5 Fluid-Transfer Diffusion Creep

If material is transferred from sources to sinks by diffusion through a fluid phase
existing in intergranular cavities or cracks, and if the transfer process is rate
controlling, the creep relation should be of the same form as for Coble creep,
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(5.11), except that now d becomes the mean thickness of the intergranular film
(or d=d is replaced by the volume fraction / of fluid) and DGB is replaced by
VmcDF where c and DF are the molar concentration and diffusion coefficient,
respectively, of the material in the fluid (Vmc is the volume fraction of the fluid
phase occupied by the diffusing material, here Vm is, strictly, the molar volume of
the material in solution rather than in the solid phase but in the present approxi-
mation we shall ignore the distinction). Thus for diffusion-limited fluid transfer
creep we have the relation

_e ¼ CFT

V2
mcDFd
RT

r1 � r3

d3
ð5:12Þ

where the value of the numerical constant CFT is similar to that for Coble creep.
Relations of this form or equivalent to it have been derived by Weyl (1959),
Stocker and Ashby (1973), Rutter (1976, 1983), Elliott (1973), Raj and Chung
(1981), Raj (1982).

Two limitations on the applicability of (5.12) can be foreseen. First, if the fluid
itself is moving through the porous body, the material transfer rate may be
modified in a way that depends on the direction and rate of the fluid flow relative to
the principal stress directions. Second, because of the more rapid diffusion in
liquids or, particularly, the more rapid transport in a moving fluid, the transfer
kinetics are less likely to be rate controlling in fluid transfer creep than are the
interface kinetics at source and sink. We now consider the situation where the
latter are rate controlling.

5.6 Reaction-Controlled Creep

Each of the specific models in the previous three sections has been treated under
the assumption that the diffusion from source to sink is the rate-controlling step.
We now consider the parallel cases in which the creep rate is controlled by the rate
of reaction involved in the release and/or absorption the diffusing species at the
source and/or sink, respectively, as first discussed by Ashby (1969) and Green-
wood (1970) and subsequently by Raj and Chyung (1981) and others. If the
chemical potential difference driving the reaction is determined by the flux from
which the strain rate derives, then the general expression (5.8) can be applied. The
diffusion path no longer enters into consideration; only the source-sink geometry
and the reaction rate are involved.

Taking the sources and sinks to be grain boundaries in all three cases so that
V � d3 and As� d2, then V=As� d in (5.8) and we obtain the creep equation

_e ¼ CR
Vmbk

RT

r1 � r3

d
ð5:13Þ
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In order to use such a relationship the rate coefficient k must be independently
known (see Tsai and Raj 1982b for a calculation of a creep rate using an inde-
pendently determined rate coefficient). It will be noted that, provided k and the
grain size d are independent of the stress, the creep rate is linear or Newtonian in
the stress and is inversely proportional to the grain size, in contrast to the d�2 and
d�3 dependence of Nabarro-Herring and Coble creep, respectively.

The relationship (5.13) has been developed further by Burton (1972, 1983)
under the assumption that, in the absence of fluid phases and chemical reactions,
the rate coefficient k is determined by a spiral dislocation growth mechanism
within the grain boundaries, according to which k / D r1 � r3ð Þ=Ed where D is
the diffusion coefficient, and Ed the energy per unit length of the grain boundary
dislocations. The equation (5.13) then becomes

_e ¼ CB
VmbD

EdRT

r1 � r3ð Þ2

d
ð5:14Þ

where CB is a new dimensionless constant incorporating CR and the proportionality
constant in k. This equation illustrates how a non-Newtonian flow law can arise
from stress dependence in the kinetic factors.

The numerical constant CR might be expected to be of similar order to the
constants for the Nabarro-Herring and Coble formulae because of similar com-
patibility requirements, although the formulae of Raj and Chyung (1981) implies
that it is of order unity; the most appropriate value does not seem to have been
investigated closely. In Burton’s model the constant CB incorporates a factor
specifying the density of jogs on the grain boundary dislocation, Burton’s estimate
of which leads to CB� 1=10; Burton also estimates Ed to be one-tenth that for
intragranular dislocations, giving Ed � 10�9Jm�1:

Using CR ¼ 10; Vm ¼ 10�4 m3mol�1 and RT ¼ 104 Jmol�1; (5.13) becomes _e ¼
10�6s�1 at r1 � r3 ¼ 10 MPa and d ¼ 1 lm if k ¼ 10�12 ms�1 (a measurable rate,
falling within the range of those determined in a ceramic system by Tsai and Raj
(1982a, 1982b); such a creep rate is comparable to that for Nabarro-Herring creep
under these conditions. From (5.6) and using the assumptions underlying (5.9) and
(5.13), the cross-over from reaction control at relatively small grain sizes to diffusion
control at larger grain sizes is, in fact, to be expected at d�D=k, that is, at d� 1 lm
when D ¼ 10�18 m2s�1 and k ¼ 10�12 ms�1: Alternatively, if Burton’s model is
applied, with CB ¼ 1=10; b ¼ 1 nm and Ed ¼ 10�9 Jm�1; and hence k ¼
10�18 r1 � r3ð Þm2s�1; the cross-over is to be expected at d ¼ 100= r1 � r3ð Þm
when D ¼ 10�18 m2s�1; that is, at d ¼ 10 lm if r1 � r3ð Þ ¼ 10 MPa; below this

stress _e / r1 � r3ð Þ2 and above it _e / r1 � r3ð Þ until dislocation creep with high
stress exponent (Sect. 6.6.6) takes over, thus giving one possible explanation of the
sigmoidal shaped log strain rate versus log stress plots sometimes observed around
the ‘‘superplastic’’ regime (Burton 1972).

The numerical illustrations given in the previous paragraph are most likely to be
relevant to single phase systems without a fluid phase and indicate a marginal
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importance for reaction control at finer grain sizes and lower stresses. However, in
geological systems with fluid phases present, multiple phases and potentially more
complicated reactions, reaction control may be relatively more important.

5.7 Dislocation Climb Creep

Dislocations (Chap. 6) can also, in principle, serve as sources and sinks for atomic
transfer creep. The addition or removal of material at the dislocation cores cor-
responds to climb of the dislocations, which can be viewed as the removal of
material from, or addition to, the ‘‘extra half plane’’ associated with the edge
component of the dislocation. However, dislocations acting as sources must have
different Burgers vectors from those acting as sinks in order that the material
transfer be effective as a strain mechanism, so there must be a multiplicity of
Burgers vectors present. Also the dislocation lines must be of such orientations
that they have at least some edge character. Dislocation arrays meeting these
requirements will, in general, be three dimensional networks, with the dislocations
either more or less randomly distributed or organized into subgrain boundaries.

Theories of dislocation climb creep have, in general, assumed diffusion control.
In applying (5.7), the transfer path length l can be taken as being of the order of the
average mesh dimension of the dislocation network, that is, q�

1
2 where q is

the dislocation density, the domain volume V can be taken as of the order of
the average mesh volume q�

3
2, and the transfer path cross-sectional area At as of the

order of q�1 if volume diffusion is involved. Then, with c ¼ 1=Vm, (5.7) becomes

_e ¼ CDC

VmDVq
RT

r1 � r3ð Þ ð5:15Þ

where DV is the volume diffusion coefficient. The numerical coefficient CDC will
depend on mean values of the angle between the dislocation lines and the stress
direction as well as on other geometric factors similar to those arising for Nabarro-
Herring creep. However, the compatibility requirements are somewhat different in
character from where grain boundaries are involved as sources and sinks, and grain
boundary sliding will no longer contribute to the strain. To achieve an arbitrary
strain within a crystal by dislocation climb at least six Burgers vectors must be
independently involved (Groves and Kelly 1969, Sect. 6.8.2) and this requirement
therefore must probably also be met in polycrystalline deformation, although there
will tend to be some heterogeneity in behaviour from grain to grain and within
grains. However, the independence of the activity of the climb systems of different
Burgers vectors may be put in question, firstly, by any tendency for long range
stress fields to build up and lead to interaction between the different groups of
dislocations and, secondly and more seriously, by the pinning of dislocations at the
nodes of the network.
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The last effect will tend to limit severely the amount of strain that can be
produced at the initial rate given by (5.15), making the dislocation climb creep a
transient effect. However, if a certain threshold stress is exceeded the dislocation
segments between the pinning points can act as Bardeen-Herring climb sources for
dislocation multiplication (Bardeen and Herring 1952) and unlimited amounts of
climb can be produced. The dislocation spacing will still be limited by the need for
the externally applied stress to balance the internal stress arising from mutual
repulsion of like dislocations. These internal stresses are proportional to the

spacing between the dislocations and hence inversely proportional to q
1
2; leading to

the dislocation density being of the order of r1 � r3ð Þ2= Gbð Þ2: Using this rela-
tionship in (5.15) leads to

_e ¼ CN
VmDV

RT

r1 � r3ð Þ3

Gbð Þ2
ð5:16aÞ

or, with Vm � Lb3;

_e ¼ C0N
bDV

G2RT
r1 � r3ð Þ3 ð5:16bÞ

which is the formula of Nabarro (1967); G is the shear modulus, b the Burgers
vector, L the Avagadro constant and CN ; C0N numerical constants of order 0.01 and
0.01/L respectively.

If the transfer process is pipe diffusion along the dislocation cores, we have
At� b2 instead of q�1 in (5.7), where b is the Burgers vector, and hence instead of
(5.15) we have the initial strain rate

_e ¼ CDC=P
VmDPb2q2

RT
r1 � r3ð Þ ð5:17Þ

where DP is the pipe diffusion coefficient and CDC=P is a numerical constant, again
probably of the order of magnitude of unity to ten. Dislocation multiplication

leading to a steady state dislocation density of the order of r1 � r3ð Þ2= Gbð Þ2
would correspondingly yield the further formula of Nabarro (1967) for the case of
pipe diffusion,

_e ¼ C0N=P

bDP

G4RT
r1 � r3ð Þ5 ð5:18Þ

again with C0N=P of the order 0.01.

If we use the parameters CN ¼ CN=P ¼ 0:01; Vm ¼ 10�4 m3; T ¼ 1; 200
K, G ¼ 50 GPa and b ¼ 0:5 mm, and we consider a stress r1 � r3 ¼ 10 MPa, the
Nabarro formula (5.16b) gives a strain rate of the order of 10-10 s-1 for dislocation
climb creep sustained by Bardeen-Herring dislocation multiplication if we assume
material transfer by volume diffusion with DV ¼ 10�18m2s�1: Alternatively, (5.18)
gives a strain rate of the order of 10-11 s-1 if we assume transfer by dislocation core
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diffusion with DP ¼ 10�12 m2s�1: Comparison with cases of Nabarro-Herring creep
calculated for similar conditions indicates that the two types of diffusion creep give
comparable strain rates at 10 MPa stress when the grain size is of the order of
100 lm. However, owing to its stronger stress dependence, the dislocation climb
creep can be expected to predominate down to smaller grain sizes at higher stresses.
Also, for a given DP=DV ratio, the core diffusion mechanism can be expected to be
relatively more important as the stress is increased. However, these predictions rest
on the presumption that the compatibility requirements are met and that the climb
multiplication process is effective. In practice, with minerals, the number of Burgers
vectors available may often be insufficient for the dislocation climb mechanism to
operate exclusively and so climb creep may more commonly appear as a contributing
mechanism, complementary to others.

Harper-Dorn creep (1957) is another type of creep process that is often thought
to involve dislocation climb at very low stresses but with dislocation density that is
independent of stress, giving rise to linear stress dependence (Nabarro 2000;
Poirier 1985, pp. 114–117).
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Chapter 6
Deformation Mechanisms: Crystal
Plasticity

6.1 Basic Geometry of Slip and Twinning

The deformation mechanisms of the greatest importance in the intragranular
plastic deformation of crystalline materials are slip and twinning. In these
mechanisms, the strain or change of shape is achieved by the relative movement of
blocks of atoms rather than by the more or less independent movement of indi-
vidual atoms that characterizes the atomic transfer mechanisms considered in the
previous chapter. Deformation of means of the slip and twinning mechanisms is
commonly referred to as crystal plasticity. It can be effective at all temperatures
but is of overriding importance in the athermal regime (Sect. 6.6.1).

Macroscopically, the basic process in both slip and twinning consists of a more
or less uniform simple shear (in the continuum mechanics sense, Means 1976,
p. 146). The shearing occurs parallel to a well-defined crystallographic direction
and, in most cases, on a well-defined crystallographic plane (Fig. 6.1). When the
crystallographic orientation remains unchanged relative to the direction and plane
of shearing, the process is known as crystallographic slip or translation gliding.
When the orientation changes to a crystallographic twin orientation, the process is
known as mechanical twinning or twin gliding. For brevity, we refer to the two
processes as slip and twinning, respectively.

Slip. Close examination of the slip process shows that it is not homogeneous on
the microscopic scale. The blocks that slide over each other can often be distin-
guished through the steps produced in a bounding surface at the loci of sliding.
These steps may be visible microscopically as fine lines if the surface has been
previously polished (Fig. 6.2). Such lines, which can be seen in the optical
microscope, are known as ‘‘slip bands’’. The electron microscope (Heidenreich
and Shockley 1948) reveals that they tend to be of multiple structure, consisting at
the near atomic scale of finer steps called ‘‘slip lines’’, although this term is
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Fig. 6.2 Slip bands resulting
from glide on a {100} plane
in a \001[ direction in a
galena crystal compressed
vertically normal to an {011}
plane (width of specimen
5 mm). The concentration of
slip bands constitutes a
‘‘deformation band’’ (a copy
of Fig. 27 from Lyall 1965)

(a) Unole formed

[h
kl

]

(b) Deformed
      by slip

(c) Deformed
      by twinning

Fig. 6.1 Representation of the distinction between deformation by gliding and deformation by
twinning. The arrow represents a crystallographic direction ½hkl�
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commonly used more comprehensively also to cover the features seen optically;
these ‘‘slip lines’’ should not be confused with the trajectories of maximum shear
stress of the mathematical theory of plasticity, which are also known as ‘‘slip
lines’’ (see Jaeger and Cook 1979, p. 120). In any case, it is clear that, funda-
mentally, the slip process consists of the translation of one part of a crystal relative
to the remainder at a surface that is more or less atomically sharp, and without loss
of cohesion at that surface.

Macroscopically, slip is characterized by a slip direction, a slip plane (or other
surface), and an amount of shear. Taken together, the combination of direction and
plane is known as the slip system or glide system (the term ‘‘glide’’ is used
interchangeably with slip in this context). When there is no clearly defined slip
plane, as in ‘‘pencil glide’’, the process can be resolved into two or more simple
shears with a common slip direction, the slip direction always being well defined.
The slip direction and, when well defined, the slip plane usually have low crys-
tallographic indices. An important property of the slip process is that more than
one slip system may operate in a given crystal; the slip systems then intersect each
other and the combination is referred to as ‘‘multiple slip’’. The intersecting slip
systems may or may not be crystallographically equivalent.

The mechanics of the slip process are most simply described with reference to
the slip system. If a crystal is subjected to a uniaxial normal stress r in a direction
inclined at angles k to the slip direction and v to the slip plane normal (Fig. 6.3)
then the shear stress s acting on the slip plane in the slip direction, the so-called
‘‘resolved shear stress’’, is given by

s ¼ r cos v cos k ¼ Sr ð6:1Þ

where S ¼ cos v cos k is known as the Schmid factor. Similarly, the increment of
resolved shear strain dc is related to the corresponding normal strain increment de by

dc ¼ de
cos v cos k

¼ de
S

ð6:2Þ

The relations s ¼ Sr and c ¼
R

S�1de can then be used to obtain the values of
resolved shear stress s and resolved shear strain c from measurements of r and e.
The quantities s and c are the most important quantities for describing the oper-
ation of the slip system.

Schmid’s law states that slip will occur when a certain critical resolved shear
stress is exceeded (Schmid 1924; Schmid and Boas 1936, 1950). Schmid’s law is
applicable mainly in the athermal regime (Sect. 6.6.1) but it is sometimes extended
to steady-state creep in the high-temperature thermal regime in the sense that a
characteristic resolved shear stress will be required to produce a specified resolved
shear-strain rate. Although Schmid’s law is very useful as a first approximation
and is widely invoked, it should be borne in mind that in practice it does not
always apply strictly and at times can break down seriously, for example, in body-
centered cubic (b.c.c.) metals (Louchet 1979; Puls 1981). An important factor
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causing departure from Schmid’s law is latent hardening, which is the increase
in critical resolved shear stress on a given slip system due to the activity of an
intersecting slip system.

Twinning. Mechanical twinning is distinguished from slip in that:

1. It is essentially homogeneous down to the unit cell scale, each equivalent
atomic layer being translated by the same amount with respect to the one
immediately adjacent to it (Fig. 6.4).

2. The amount of this translation is fixed and such that the crystal structure is
transformed into a structure identical to the original.

In practice, especially in the grains in polycrystalline aggregates, twinning
tends to occur in discrete bands due to the fortuity of its nucleation and to the
constraints of strain compatibility between grains. Under given constraints, the
twin bands tend to be narrower when the twinning shear is higher.

The characteristic geometric elements of mechanical twinning (Fig. 6.5) are the
two circular sections K1 and K2 of the strain ellipsoid and the two directions g1 and

F

A

λ

χ

σ AF=

Fig. 6.3 Depicting a single
crystal under an axial force
F ¼ rA (r = axial stress; A =
cross-sectional area), with a
slip plane whose normal is at
an angle v to the axis of the
stress and whose slip
direction is at an angle k to
the axis of the stress
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Fig. 6.4 Artificial twinning
of calcite parallel to plane
ð01�12Þ produced by forcing a
knife-edge into a cleavage
rhomb at point a (derived
from the sketch in Fig. 516,
p. 210, from Dana 1932)

K1

K2

g
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h
2

h
1

Fig. 6.5 Section of strain
ellipsoid for mechanical
twinning. Section is normal to
intermediate principal strain
axis, a direction of no strain.
The plane of the drawing is
known as the ‘‘shear plane’’.
K1 and K2 are the circular
sections or planes of no
distortion
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g2 in which the shear plane intersects K1 and K2, the shear plane being defined as
the plane containing the normals of K1 and K2 and itself being normal to the
intermediate principal strain axis, that is, the plane of the circular section most
nearly parallel to the longest dimension of the deformation twin in the shear plane;
it is, in general, parallel to the composition plane, the plane across which the two
twin individuals would join with best fit or least interfacial energy to form a
so-called coherent boundary.

In crystals of relatively low symmetry, either K1 and g2 have rational crystal-
lographic indices and K2, g1 are irrational (defining type I twins), or K2, g1 are
rational and K1, g2 irrational (type II twins). In the case of type I twinning, the twin
individuals are related by a reflection with respect to K1 or by a twofold rotation
about the normal to K1. In the case of type II twinning, the symmetry relationship
is a twofold rotation about g2 or a reflection with respect to the plane normal to g2.
However, in higher symmetry crystals, all four elements K1, K2, g1, g2 can be
rational and the four types of symmetry relationship just mentioned become
equivalent, giving rise to so-called compound or degenerate twins, in which the
composition plane can then also be always referred to as the twinning plane. In all
cases, the twinning is fully specified by either K1 and g2 or K2 and g1, as
appropriate. However, a convenient alternative, often used, is to specify the
twinning in terms of the plane K1, the direction g1 and the magnitude of the shear
c ¼ 2cot/ ¼ 2cos/ (Fig. 6.5).

For further discussion of the geometry and crystallography of mechanical
twinning, see Cahn (1953, 1954), Hall (1954), Pabst (1955), Klassen-Neklyndova
(1964), Christian (1965, Chap. 20) and Hirth and Lothe (1982, Chap. 23).
It should be borne in mind that some treatments in the metallurgical literature refer
only to relatively high symmetry crystals and do not make some of the distinctions
in terminology that are appropriate for lower symmetry crystals.

Martensitic or displacive phase transformations constitute a more general class
of shear deformation processes related to mechanical twinning. In these, instead of
the crystal structure being restored as in twinning, albeit with a new orientation, a
new structure is produced by the shearing, namely, that of a polymorphous phase.
Mechanical twinning is thus a special case of this more general class of trans-
formations. Ideal kinking (Orowan 1942; Paterson and Weiss 1966) can also be
regarded as having some analogy to twinning and it has even at times been
described as ‘‘irrational twinning’’ but it is better viewed as a special type of
deformation band, that is, a particular heterogeneous distribution of slip (see
review by Cahn 1953).

At the atomic scale, slip and twinning and displacive transformation take place
by the movement of dislocations, the properties of which we now consider. Later
in the chapter (Sects. 6 and 7) we consider slip and twinning in terms of dislocation
motion.
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6.2 Properties of Dislocations in Crystals

6.2.1 Theoretical Shear Strength and the Concept of a Dislocation

The simple translation of one layer of atoms of a crystal over another with the
simultaneous breaking and restoration of all the interlayer bonding would, theo-
retically, require a very high shear stress parallel to the layer. This stress, known as
the theoretical shear strength, has been estimated as being around 1/15–1/10th of
the elastic shear modulus of a crystal, within perhaps a factor of two (Hirth and
Lothe 1982, p. 5; Kelly 1966, p. 12). In practice, plastic flow is commonly
observed at stresses that may be several orders of magnitude below this level. The
discrepancy can be explained by supposing that the breaking and restoration of
bonding is done sequentially at a ‘‘front’’ that moves over the plane on which the
translation is occurring; that is, at any given instant, bonds are only being broken
along this ‘‘front’’ and so a much smaller total force and, hence, smaller macro-
scopic stress need be applied. This ‘‘front’’ or linear crystal defect is known as a
dislocation. A dislocation can thus be regarded as the boundary between the
slipped and unslipped parts of the plane or surface on which translation is
occurring and its motion in the plane or surface represents the spreading of the
slipped patch (Fig. 6.6). The macroscopic plastic strain results from the movement
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Fig. 6.6 Depicting a dislocation as the boundary of a slipped patch A in the slip plane EFGH, in
which the columns of atoms crossing the slip plane are displaced by the amount of the Burgers
vector b, as shown by the Burgers circuit BC

6.2 Properties of Dislocations in Crystals 113



of a large number of dislocations distributed through the crystal. The dislocation is
thus the basic entity at the atomic scale underlying the mechanisms of slip and
mechanical twinning. Brief histories of the notion of a dislocation are given by
Nabarro (1967, Chap. 1), Jouffrey (1979) and Hirth (1985).

The idea of the propagation of dislocations as the mechanism of slip in crystals
was first put forward independently in 1934 by Orowan (1934), Polanyi (1934) and
Taylor (1934). This picture has been abundantly verified observationally since the
1950s (Hirth and Lothe 1982, p. 9) and a very large body of literature on both
observation and theory has appeared. A comprehensive account of the theory of
dislocations in crystals cannot be attempted within the scope of the present volume
but the principal properties will be summarized in the following sections. For
general accounts of dislocation theory, the classic texts are Cottrell (1953), Friedel
(1964), Nabarro (1967) and Hirth and Lothe (1982), while succinct accounts will
be found in Weertman and Weertman (1964, 1992), Nicolas and Poirier (1976),
Haasen (1978) and Poirier (1985) and in many other books and reviews in
materials science. Groh et al. (1979) have also published a useful compilation of
papers in French on a broad range of dislocation topics.

Figure 6.6 depicts the type of dislocation with which we are concerned here and
which has been called by Nabarro (1967) the Burgers type to distinguish it from
the more general types associated with the names of Weingarten, Volterra and
Somigliana. Such a dislocation is a line that that can be thought of as the boundary
of a surface in which the body is imagined to have been cut and across which the
material on one side is imagined to have been translated homogeneously relative to
the material on the other side before repairing the cut to restore continuity of the
material. The virtual translation vector b is known as the Burgers vector. In the
case of crystals, b is normally equal to a translation vector of the crystal lattice, in
which case the dislocation is called a perfect dislocation; the minimum possible
value of b is thus the minimum lattice parameter except when a nonprimitive unit
cell is chosen. If b is not a translation vector of the lattice, the dislocation is known
as a partial dislocation, which necessarily bounds a surface of faulting in the
crystal structure. Where a dislocation line is normal to the Burgers vector it is said
to be of pure edge character and, where parallel to the Burgers vector, of pure
screw character; otherwise, it is of mixed character.

The essential nature of a dislocation is revealed by considering a Burgers
circuit, which is a notional path through a sequence of lattice sites forming a
closed loop around the dislocation. If a path is followed through a corresponding
sequence of lattice sites in a perfect crystal, this path fails to close and the vector
required to close the gap is the Burgers vector of the dislocation. Taking the sense
of the Burgers vector to be positive when going from finish to start of the circuit
(FS), a sense or sign can then be attributed to a given segment of dislocation line
such that the Burgers circuit is seen to be performed in a clockwise sense when
looking in the positive direction along the dislocation line (RH). Conversely, if one
first chooses a positive sense for the dislocation line, the positive sense of the
Burgers vector can be defined by the reverse argument. This FS/RH sign con-
vention is, however, not always followed and an opposite convention is also
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common in the literature (see discussion and references in Hirth and Lothe 1982,
pp. 17–24). The important point to make is that, whatever the sign convention,
parallel positive and negative dislocation segments having the same Burgers vector
are mutually annihilating if brought together.

It follows from the nature of a dislocation that there is always an internal stress
field associated with it in the crystal. In the approximation that the material is
taken to be elastically isotropic, with shear modulus G and Poisson ratio v, the
stresses around a dislocation in an infinite crystal, expressed in cylindrical coor-
dinates r, h, z with z parallel to the dislocation line, are as follows for pure screw
and pure edge dislocations (Hirth and Lothe 1982, Chap. 3):

Screw dislocation:

rrr ¼ rhh ¼ rzz ¼ 0

rhz ¼
Gb

2pr
; rzr ¼ rrh ¼ 0 ð6:3aÞ

Edge dislocation:

rrr ¼ rhh ¼
Gb sin h

2pð1� vÞr ; rzz ¼ 2vrrr

rrh ¼
Gb cos h

2pð1� vÞr ; rhz ¼ rzr ¼ 0 ð6:3bÞ

(Note that the sign convention of compressive stress being positive has been
used, leading to the signs of rrr; rhh and rzz being opposite to those usually given
in textbooks; also for edge dislocations, h is taken to be zero when r coincides with
b. For the corresponding elastic displacements, see Hirth and Lothe (1982, Chap.
3).

The importance of dislocations in crystal plasticity lies in the slip or twinning
that is brought about when they are moved through the crystal. The direction of the
Burgers vector can then be identified with the slip direction and the plane con-
taining the Burgers vector and the dislocation line is the slip plane (corresponding
glide elements are defined in the case of twinning). If q is the total length of
mobile dislocation line per unit volume (that is, the dislocation density) and s is the
average distance moved by the dislocation line in the slip plane, then the mac-
roscopic resolved shear strain resulting from the dislocation motion is

c ¼ qbs ð6:4aÞ

where b is the magnitude of the Burgers vector. This relationship or its kinetic
equivalent

_c ¼ qbv ð6:4bÞ

where _c is the strain rate and v the dislocation velocity, is known as the Orowan
equation.
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The movement of a dislocation line out of the slip plane is called climb. Since
climb generally requires the removal or supply of substance along the dislocation
path, it is referred to as nonconservative dislocation motion, in contrast to the
conservative motion in slip. The volume DV of substance added or removed during
the climb of a dislocation segment of length l through a distance s normal to the
slip plane is given by

DV ¼ lbs sin h ð6:5Þ

where b is the magnitude of the Burgers vector and h its inclination to the slip line
in the slip plane. In the case of a pure screw dislocation, for which the directions of
Burgers vector and dislocation line are parallel, no unique slip plane is defined and
so the dislocation can move conservatively in any plane; this motion is referred to
as cross-slip when the plane is not the primary slip plane.

The application of stress to the region containing a dislocation has a mobilizing
tendency that is equivalent to applying a force normal to the dislocation line. From
work considerations it follows that the component of this force in the slip plane,
the glide force, Fg; is

Fg ¼ sbl ð6:6aÞ

where s is the resolved shear stress in the slip plane, b the magnitude of the
Burgers vector and l the length of the dislocation segment concerned. Corre-
spondingly, the component of the force in the plane normal to the slip plane, the
climb force, Fc; is

Fc ¼ rbl sin h ð6:6bÞ

where r is the deviatoric normal-stress component parallel to the Burgers vector
and h the angle between the slip line and the Burgers vector. Thus, the climb force
arising from the stress component r is rbl for a pure edge dislocation and zero for
a pure screw dislocation. For a more general treatment of the force acting on a
dislocation, see Weertman and Weertman (1964, pp. 54–61) and Hirth and Lothe
(1982, Chap. 3).

6.2.2 The Energy of a Dislocation

The energy of a dislocation can be considered in two parts, associated with the
core and the long-range elastic stress field, respectively. The core is the cylindrical
region of radius r0 immediately surrounding the dislocation line, within which the
crystal structure is disrupted or distorted beyond the limits of linear elasticity; r0 is
usually taken to be several times b in magnitude. The region of the long-range
elastic stress field is taken as extending from the cylinder of radius r0 to the surface
of the crystal or, more usually, to a radius R beyond which the internal stress field
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is to be regarded as belonging to other dislocations (R� q�1=2 where q is the
dislocation density). Within the region of the long-range stress field, the distortion
of the crystal structure is within the linear elastic range and the classical theory of
elasticity can be applied, while within the core region the energy can only be
calculated using considerations at the atomic level.

The energy Eel in the long-range stress field of a segment of length l of a
straight dislocation is approximately Gb2l if the dislocation density is low, where
b is the magnitude of the Burgers vector and G is the shear modulus in the
approximation of isotropic elasticity (the value of which is probably best obtained
by Reuss averaging of the actual anisotropic elastic properties: Hirth and Lothe
1982, p. 424). More exactly, the energy depends somewhat on the character of the
dislocation line and on R=r0; according to

Eel

l
¼ aGn2

4p
ln

R

r0
� 1

� �
ð6:7Þ

where a ¼ cos2 hþ sin2 h
1�m , h being the angle between the dislocation line and the

Burgers vector and v the Poisson ratio; the factor -1 arises when the surface at
radius R is taken to be stress free (for derivation, see Hirth and Lothe 1982, Chap.
3). When full account is taken of the actual anisotropic elasticity of the crystal (for
example, Steeds 1973) (Hirth and Lothe 1982, Chap. 13), a more complicated
function K of the elastic constants replaces aG in (6.7). However, the effect on the
calculated energy is usually not very great. Thus, Heinisch et al. (1975) showed
that for olivine and orthopyroxene the isotropic approximation gives energies that
are mostly within 10 % of those calculated on anisotropic elasticity, while in the
more anisotropic cases of quartz and calcite the differences do not exceed about
30 % or so. The change in energy when curvature of the dislocation is taken into
account is also usually relatively small. Thus, the elastic energy per unit length for
a dislocation loop of radius Rl is approximately ðGb2=2pÞ lnðRl=r0Þ, giving a
similar value to (6.7) except for very small loops (Nabarro 1967, p. 75).

In the long-range linear elastic field around any dislocation with an edge
component there are regions of volumetric expansion and contraction on opposite
of the dislocation. These effects closely compensate each other so that the overall
elastic dilatation is close to zero. This also applies for a screw dislocation, which,
to the first approximation, has no dilatational components in its long-range elastic
field, However, due to anharmonic effects in or near the core, there is actually a
small net volume increase, of the order of b2l for a dislocation segment of length l,
for both screw and edge dislocations (Hirth and Lothe 1982, p. 231; Poirier 1985,
p. 152; Seeger and Haasen 1958).

The core energy, which depends on the structural arrangement and bonding
energies of the atoms in the core region, is more difficult to estimate (Hirth and
Lothe 1982, Chap. 8). Earlier calculations based on assumed interatomic potentials
of conveniently simple form, such as the well-known Peierls–Nabarro model, can
be regarded as little more than illustrative. However, ab initio molecular orbital
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calculations have made some progress and recent calculations based on more
realistic potentials and structural relaxation procedures appear to yield results that
are useful approximations, especially in simple ionic crystals (Puls 1981). For
example, Bucher (1982) has calculated the core energy to be approximately
0.7 9 10-9 J m-1 (1.2 eV per length b) for edge dislocations in sodium chloride,
while Heggie and Jones (1986) have obtained approximately 1 9 10-9 J m-1

(3 eV per length b) for a basal 60� dislocation in quartz, to be compared with
values of Gb2 of about 2 9 10-9 and 11 9 10-9 J m-1, respectively. The general
indication is that, at least for simple structures, the core energy does not exceed a
few tenths of Gb2 per unit length, that is, that rather less energy is associated with
the core than with the long-range stress field. Also the core energy may be reduced
by structural changes in the core such as the incorporation of impurity atoms.

In summary, the total energy of a dislocation can be taken as being of the order
1
2 Gb2 to Gb2 per unit length, the greater part of which is normally associated with
the long-range stress field. For a typical mineral with b * 0.5 nm and
G * 50 GPa, the dislocation energy is therefore of the order of 10-8 J m-1

(or *30 eV per length b). It follows that, at a dislocation density of 1012 m-2, the
contribution of the dislocations to the internal energy of the crystal will tend to be
rather less than 1 J mol-1, and even at extremely high dislocation densities of
1015–1016 m-2 the contribution will not exceed the order of 1 kJ mol-1

(cf. measurements of stored energy in heavily cold-worked calcite by Gross 1965).
The energy that we have been considering so far is the increment in the Gibbs

energy of the crystal due to introducing an individual dislocation segment (it is
Gibbs energy because temperature and pressure, or stress, have been taken as the
independent variables, Sect. 2.2). This energy will include a �TDS term involving
entropy DS that can be associated mainly with the thermal vibrations of the atoms,
and hence is expressed in the temperature dependence of the elastic constants.
When we now consider an assemblage of dislocations, there is an additional
configurational entropy to be taken into account, but it can be shown that the
corresponding �TDS term is relatively small and so the increment in the Gibbs
energy of the crystal due to the presence of an assemblage of dislocations will be
slightly smaller than the sum of the contributions of the individual dislocation
segments as calculated above (Cottrell 1953, p. 39; Friedel 1964, p. 73; Nabarro
1967, p. 683). If the assemblage is viewed as consisting of a number of dislocation
loops (or independent segments) and the equilibrium concentration of loops is
calculated by minimizing the Gibbs energy of the assemblage, the concentration is
found to be negligibly small at any temperature below the melting point unless the
loops are exceedingly small (Friedel 1964, p. 74, 1982). That is, the introduction of
dislocations into a crystal normally increases its Gibbs energy and so the dislo-
cation content of a crystal at equilibrium in respect of its defect structure at any
given temperature and pressure will be negligibly small. This argument has also
been extended to form the basis of a theory of melting, according to which the
melting point is the temperature at which there is an abrupt transition from a state
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in which the dislocation content at equilibrium is zero to a state in which it is very
large (Nabarro 1967, p. 688).

Since the energy of a dislocation line is increased or decreased by increasing or
decreasing its length, respectively, the line can be regarded as being under tension,
the derivative of the energy with respect to the length being known as the line
tension. The line tension is identical with the energy per unit length, as given by
the sum of (6.7) and the core energy per unit length, and hence is of the order of
Gb2; with the dimensions of force. However, analogy with a string under tension is
not an exact one because there is interaction between the parts of a dislocation
(Sect. 6.3.4) and so the line tension depends on the dislocation configuration (Hirth
and Lothe 1982, p. 174).

6.2.3 The Peierls Potential

In considering the mobility of a dislocation line in the absence of the influence of
thermal agitation or extrinsic factors such as interaction with other dislocations or
the presence of impurities, it is the fluctuation in the dislocation energy with
position in the crystal that is of primary importance rather than the absolute value
of the energy. The fluctuating component of the energy, which is associated with
the crystalline periodicity and has maxima at spacings equal to the Burgers vector
or submultiples of it, arises entirely within the core energy and is known as the
Peierls energy or Peierls potential since Peierls (1940), at the instigation of
Orowan, was the first to attempt to calculate it (Hirth and Lothe 1982, p. 217).

In view of the difficulty of modeling the dislocation core, it is conceptually
useful to begin by assuming an empirical expression for the dislocation energy Ed

of the form

Ed ¼ E0 þ Ep sin2 pnx ð6:8Þ

where E0 is the non fluctuating part of Ed and includes the energy of the long-
range elastic stress field, Ep is the amplitude of the Peierls potential, xb is the
displacement of the dislocation core from a position of minimum energy, and n is
an integer (usually 1 or 2) that allows for different forms of the Peierls potential
(Hirth and Lothe 1982, Chap. 8). The force needed to move a straight segment of
dislocation line over the Peierls barrier Ep; the Peierls force, is then given by the
maximum slope of the potential Ed; that is, by ð1=bÞðdEd=dxÞMax ¼ pnEp: From
(6.5), the corresponding stress, the Peierls stress sp; is ðpn=b2ÞðEp=lÞ: If we write
pnðEp=lÞ ¼ bGb2; we obtain

sp ¼ bG ð6:9Þ

where b is an empirical numerical constant. If we also write ðE0=lÞ ¼ aGb2 where
a� 1

2 to 1 (Sect. 6.2.2), then b ¼ apn Ep=E0
� �

is of the order of the ratio of Ep to
the total dislocation energy.
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On the basis of interpretation of experimental observations and of a few cal-
culations, it is generally accepted that the value of b varies from the order of 10-4

or less for close-packed metals (for example, copper and basal slip in zinc) to a
maximum of the order of 10-2 for covalent crystals such as germanium and silicon
(Haasen 1978, p. 256; Hirth and Lothe 1982, p. 241). The best calculated values
for b for NaCl, KCl, and MgO are in the range (1–3) 9 10-3 (Hirth and Lothe
1982, p. 232), corresponding to a Peierls stress of around 50 MPa for the alkali
halides and 150 MPa or more for MgO. The value of the Peierls stress for dry
quartz deduced by Blacic and Christie (1984) from extrapolation of experimental
observations, namely, about 3,000 MPa, corresponds to a value of b of about
6 9 10-2 and to a value of Ep somewhat less than 1 eV per length b. Thus, it is
seen that the fluctuating component of the dislocation energy is always a small
fraction of the total.

Simple theoretical models indicate that the Peierls stress depends sensitively
(for example, exponentially) on the width of the dislocation, as defined by the zone
within which atoms are displaced by more than a certain fraction of the Burgers
vector from an ideal structural site. In close-packed metals the width of the dis-
locations is many times the Burgers vector, that is, their cores are very smeared
out, and the Peierls stress is small, while in covalent crystals the dislocation cores
tend to be very narrow and the Peierls stress relatively high. Theoretical models
also predict that, in general, the Peierls stress will tend to decrease as the inter-
planar spacing increases, promoting the occurrence of slip on low-index planes,
and that the Peierls stress for edge dislocations will tend to be less than that for
screw dislocations (Hirth and Lothe 1982, p. 240). A high value of the Peierls
potential is manifested microscopically in a tendency for dislocation lines to be
straight and crystallographically well defined.

Two remarks are appropriate at this point. First, it is implicit in relating the
Peierls stress to dislocation motion that the additional potential energy acquired by
the dislocation at the Peierls ridge is mainly dissipated during movement into the
next valley and so is not available to assist in surmounting the following ridge.
Second, the Peierls considerations so far refer primarily to the situation at absolute
zero temperature and to the properties of straight segments of dislocation lines.
Relaxing either of the latter constraints leads to easier dislocation movement and
introduces some more complex considerations. Thus, if the dislocation line has a
step or kink in it, whereby one segment is in advance of an adjacent segment by
one lattice spacing, the kink can behave as a sort of second-order dislocation in the
linear structure of the parent dislocation, which can move along the dislocation in
displacement increments equal to the lattice spacing in that direction. This motion
can be expected to occur at a lower applied stress than the uniform motion of the
whole dislocation line. However, in its motion along the dislocation, the kink has
to surmount potential barriers analogous to the Peierls barrier for motion of a
straight dislocation line through a crystal and so the resistance to kink motion can
be expressed as an analog of the Peierls stress. Hence, the terms ‘‘secondary
Peierls potential’’ and ‘‘secondary Peierls stress’’ are sometimes used for this
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potential barrier and the stress for motion of a kink, respectively. The secondary
Peierls barrier is only likely to be substantial in the case of narrow dislocations, as
in covalent solids, but, as long as the crystal is at absolute zero temperature, it will,
in any case, be of little importance since, once the kink has traversed the dislo-
cation line, the line will then tend to move forward as a whole at the Peierls stress
itself, in the absence of the thermally activated nucleation of kinks at a lower
stress.

Raising the temperature above absolute zero will first have the effect of flat-
tening somewhat the profile of the Peierls potential, and hence reducing the Peierls
stress. However, this effect is unlikely to be a very marked one (Friedel 1964,
p. 67) and it will eventually be overshadowed by the much more important effect
of the thermally activated nucleation of kinks on the dislocation, rendering the
Peierls considerations for straight segments of dislocations no longer relevant. We
therefore now have to consider kinks more seriously, especially in relation to their
thermally activated behavior.

6.2.4 Kinks and Jogs

As mentioned in the previous section, if a dislocation line in a given slip plane lies
partly in one Peierls valley and partly in the next, the crossover is called a kink. If
there is a second crossover nearby bringing the dislocation back into the first
valley, the combination is called a double kink or, better, a kink pair (Seeger 1984)
(Fig. 6.7). Kinks are only sharp or narrow, and usefully distinguished as entities,
when the Peierls potential is relatively high.

Although propagating a kink along a dislocation gives the possibility of
advancing the dislocation under lower stress than is needed in the absence of
kinks, the continuing motion of the dislocation in this way requires the continuing

(a)

(b)

Fig. 6.7 Depicting a a single
kink and b a double kink. The
heavy line is the configuration
of the dislocation; the light
line represents the Peierls
potential peaks and the
dashed lines represent the
Peierls troughs
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nucleation of new kinks. The new kinks are necessarily nucleated as kink pairs
unless the nucleation occurs where the dislocation ends at an interface or junction,
or unless the kink is produced by intersection by another dislocation of the same
Burgers vector moving on another slip plane. The latter two origins for new kinks
are probably, in general, of minor importance for dislocation mobility in materials
of high Peierls stress, the dislocation mobility in these being thought rather to
depend strongly on the thermal nucleation of kink pairs, at least in certain ranges
of temperature.

The energy of a kink, Ek; can be expressed approximately as

Ek �
2b

np
2

E0

l

Ep

l

� �1
2

ð6:10Þ

(Hirth and Lothe 1982, p. 254) where n;E0 and Ep are as defined by (6.8) for a
length l of dislocation line. Putting ðE0=lÞ ¼ aGb2 and ðEp=lÞ ¼ ðb=npÞ Gb2 as in
Sect. 6.2.3, we obtain

Ek �
2a
np

� �
b

1
2Gb3 ð6:11Þ

That is, Ek is of the order of ð1=5Þb1=2Gb3 within a factor of two or three, where
b is the same numerical parameter as in (6.9). The value of Ek can thus be expected
to vary from less than 0.1 eV for the close-packed metals to the order of 1 eV for
covalent crystals. A more refined calculation indicates that Ek is several times
larger in screw dislocations than in edge dislocations (Hirth 1982, p. 256, where
the relationship between Ek and the width of the kink is also discussed). The
energy of a kink pair is almost 2Ek for all but very small separations of the
individual kinks.

When the kink energy is relatively large, it is necessary to raise the temperature
quite substantially in order to make possible a significant rate of kink pair
nucleation by thermal activation and so facilitate dislocation glide in face of a high
Peierls barrier. This situation is presumed to explain why plastic deformation is
only achieved at elevated temperatures in materials such as germanium and silicon
and it probably also underlies the difficulty of deforming minerals such as quartz
and the framework silicates. Raising the temperature in these cases may also
facilitate the surmounting of the secondary Peierls barriers along the potential
ridge, promoting the mobility of the kinks thus nucleated. For further review of the
role of kink nucleation and mobility, see Hirth and Lothe (1982, pp. 532–545),
Philibert (1979) and Guyot and Dorn (1967).

A jog consists also of a unit step in an otherwise straight dislocation line but,
instead of the step lying within the slip plane as for a kink; it now has a component
normal to the slip plane. A jog is probably commonly formed in a dislocation as a
result of intersection by another dislocation having a Burgers vector inclined to the
slip plane of the first dislocation (intersection by a dislocation with Burgers vector
lying in the slip plane of the first dislocation would produce a kink in it; see Hull
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(1975, Chap. 7) on the geometrical aspects of kinks formed by intersection). A jog
is in effect a short segment of dislocation having the same Burgers vector as the
main part of the dislocation line but having, in general, a different slip plane. If this
second slip plane is not one for easy slip, the presence of the jog will have a
dragging effect on the main part of the dislocation. The dragging effect will be
especially marked if the jog has to undergo nonconservative motion in being
displaced with the main part of the dislocation, as in the case of a jog in a screw
dislocation when this displacement of the jog necessary leaves a trail of vacancies
or interstitials (in the case of compounds, the ‘‘vacancies’’ or ‘‘interstitials’’ would
need to consist of the whole repeating group of atoms, making jog dragging
especially difficult in screw dislocations in a crystal of complex structure and
suggesting that in such a case a precondition for the easy glide of a segment of
screw dislocation would be for it to be cleared of jogs by moving them conser-
vatively along the dislocation). Jogs are also thought to be important in the climb
of dislocations, providing sites for more ready attachment or detachment of the
diffusing atoms (for example, Nabarro 1967, p. 351). At elevated temperatures the
jogs may be formed thermally. For the energetics of jogs, see Hirth and Lothe
(1982, pp. 495–497, 569–585).

6.2.5 Zonal, Extended and Partial Dislocations

The changes in linkage or interrelationship between neighboring atoms brought
about during the passage of a dislocation need not be concentrated on a single
structural site or confined to a single structural plane at any instant but can be
distributed over a small region. Correspondingly, during the shearing process
individual atoms may move in directions not parallel to the slip direction
(a movement called ‘‘shuffling’’) and different patterns of movement may occur on
adjacent structural layers, the only constraint being that the net bulk displacement
of one part of the crystal relative to the remainder corresponds to the Burgers
vector and that the original structure be left unchanged after the passage of the
dislocation. When the nonparallel atomic movements are confined to a single pair
of structural layers, the term ‘‘synchro-shear’’ is applied to the movement pattern
(Kronberg 1961) and sometimes, by extension, to the dislocation itself (Amelinckx
1979, p. 393). In more general cases where several layers are simultaneously
involved, the term ‘‘zonal dislocation’’ can be used (Amelinckx 1979). In effect, in
a zonal dislocation the topological disruptions in the core region can be envisaged
as extending over several adjacent structural sites. Thus, in the dislocations
envisaged in aluminum oxide (corundum) two adjacent atomic layers are involved
in a synchro-shear, while in ½1�123�ð1�1�22Þ slip in zinc zonal dislocations involving
three layers are thought to be involved (Amelinckx 1979). Similar enlarged core
regions may be expected to be not uncommon in minerals. However, in zonal
dislocations the long-range elastic stress field can still be regarded as being
determined by a sole singularity represented by the Burgers vector; it is the core
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energy itself that is minimized by the complex motions or reorganization in the
core zone. However, the amplitude of the Peierls potential, and hence the Peierls
stress, need not be reduced and in fact may be increased by the core spreading,
rendering the dislocation less mobile (Vitek 1985).

If the discrete structural or topological disruptions in the core of a dislocation
are distributed over a region of sufficiently large dimensions that the long-range
stress field can no longer be regarded as deriving from a single linear singularity,
then the dislocation can be called an extended dislocation. Such a dislocation can
generally be regarded as made up of component partial dislocations separated by
ribbons of planar defect or fault (Sect. 6.2.1). Any perfect dislocation with Burgers
vector b

¼
can be dissociated into a set of j dislocations having Burgers vectors b

¼j

such that b
¼
¼
P

b
¼j

without affecting the displacements at distances large com-

pared with the spacing of the new dislocations. However, if b
¼

is already a mini-

mum or primitive lattice translation, the components bj
¼

will not generally be lattice

translations and so will give rise to partial dislocations. Further, provided that
b2

1 þ b2
2 þ . . .þ b2

j \b2 and that the spacings of the partial dislocations are dis-
tinctly larger than their core diameters, the total elastic energy will be reduced by
the dissociation from approximately Gb2 toward

P
j Gbj as the spacing of the

partial dislocations becomes large. However, additional energy must be provided
for the ribbons of planar defect separating the partial dislocations, in proportion to
the area of the ribbons. There will therefore be an equilibrium spacing corre-
sponding to the minimization of the sum of the elastic and planar defect energies.
In practice, the equilibrium spacing can be used to estimate the surface energy of
the planar defect or fault ribbon; typical values are in the range 0.01–0.1 Jm-2

(Amelinckx 1979; Carter 1984). The terms glide dissociation and climb dissoci-
ation are often used to distinguish the cases where the partial dislocation lines and
fault ribbons lie in a plane that, respectively, contains the Burgers vector of the
parent perfect dislocation (Fig. 6.8) and is inclined to their Burgers vector. In the
case of screw dislocations, the distinction disappears, at least geometrically, since
some sort of distinction may still, in principle, be made dynamically in terms of
planes of easy and difficult glide. The glide and climb motion of dissociated
dislocations involves a coupling between the individual partials through the energy
of the strip of stacking fault joining them. Processes such as cross-slip appear to
require a temporary recombination of the partials, while, in the case of climb, the
nucleation of jogs is thought sometimes to involve local loop formation (for
example Carter 1984; Cherns 1984).

In an ordered structure (Sect. 2.), the actual periodicity is that of the superlattice
and so, strictly, the Burgers vector will be a multiple of the Burgers vector for the
disordered structure. In practice, dislocations in ordered structures are commonly
still described with reference to the lattice defined for the disordered structure.
A unit dislocation in the ordered structure is then referred to as a superdislocation.
The superdislocation can be, and is likely to be, dissociated into a pair of normal
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dislocations separated by a strip of antiphase boundary and, further, the normal
dislocations can themselves be dissociated into partial dislocations (Amelinckx
1979).

6.2.6 Dislocation Reactions

The dissociation of a perfect dislocation into partials (Sect. 6.2.5) is one example
of a more general class of dislocation reactions which may occur when dislocation
lines are brought together or dissociated into separate dislocations (Weertman and
Weertman 1964, Chap. 4). In all dislocation reactions, a principle of conservation
applies according to which the vector sum of the Burgers vectors must remain the
same. This rule applies, in particular, at nodes of the three-dimensional network of
dislocations in a real crystal, where it can be expressed in the form that, if the
Burgers vectors are given senses according to a consistent rule (Sect. 6.2.1),
the vector sum of the Burgers vectors of all the dislocations issuing from a node
must be zero (Friedel 1964, Chap. 1).

The potential importance of dislocation reactions can be illustrated with the
frequently discussed reaction in face-centered cubic(f.c.c.) crystals which leads to
the formation of a sessile dislocation known as a Lomer–Cottrell lock. Consider
two perfect dislocations, one of Burgers vector 1

2 01�1½ � in the (111) plane and one of

(a) (b)

Fig. 6.8 Schematic representation of glide dissociation of an edge dislocation a, giving rise to
partial dislocations separated by a stacking fault b
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Burgers vector 1
2 101½ � in the ð11�1Þ plane (the notation 1=n uvw½ � denotes the vector

in the uvw½ � direction having the length 1/nth of the vector uaþ vbþ wc where
a; b; c are the unit vectors defining the unit cell, and 111ð Þ½01�1� is the usual slip
system for f.c.c. crystals such as copper). These dislocations can dissociate
according to

1
2
½01�1� ¼ 1

6
½�12�1� þ 1

6
½11�2�

1
2
½101� ¼ 1

6
½2�11� þ 1

6
½112�

leading to two pairs of partial dislocations with fault ribbons between each pair. If
the two extended dislocations are then moved toward the intersection of their slip
planes, the leading partial dislocations can react according to

1
6

�12�1½ � þ 1
6

2�11½ � ¼ 1
6

110½ �

with reduction in total elastic strain energy. The product is a partial dislocation
with Burgers vector 1

6 110½ � and line direction ½1�10�, which together define a slip
plane (001) that is not a normal slip plane in f.c.c. crystals. The 1=6 110½ � dislo-
cation is also linked by two inclined fault ribbons to the 1=2 11�2½ � and 1=6 �112½ �
partial dislocations in the (111) and ð11�1Þ planes, respectively, and hence is
sometimes called a stair-rod dislocation. Its sessile character follows from the
immobility of these fault ribbons in the (001) slip plane.

6.2.7 Electric Charge on Dislocations

Dislocations in an insulator can, like other crystal defects, be electrically charged;
see review by Whitworth (1975), and sections in Hirth and Lothe (1982, Chaps. 12
and 14). This effect has potential implications for the mobility of the dislocations
and for the transport of charge during deformation. There are two ways of viewing
the charging, depending on whether the covalent or the ionic aspect of the bonding
is being emphasized.

In the first case, the charging can be viewed as arising electronically by the
transfer of electrons or holes to or from electron energy levels associated with the
dislocation or with kinks or jogs in the dislocation. In the case of edge dislocations
the extra levels can be associated with ‘‘dangling bonds’’, but additional energy
levels can also possibly be associated with distortions in the crystal field in screw
dislocations and so these can also, in principle, be charged. This view of dislo-
cation charging has been developed for the semiconductors (Haasen and Schröter
1970; Labusch and Schröter 1975; Mataré 1971).

In the second case, the charging of dislocations can be viewed as arising ion-
ically from a lack of charge balance among ions located within the dislocation

126 6 Deformation Mechanisms: Crystal Plasticity



core, including at kinks and jogs. It may result from the imbalance of positive and
negative ions along the boundary of the ‘‘half-slab’’ that terminates in the core of a
dislocation with an edge component in a pure crystal (intrinsic charging) or from
the presence of impurity ions of different charge (extrinsic charging). Straight
dislocations of orientations that would involve intrinsic charging will tend not to
occur because of the high associated electrostatic energy (leading to bowing-out
instability) but intrinsic charging at jogs, kinks, and points of emergence may still
arise in dislocations that would be intrinsically neutral if perfectly straight (for a
detailed discussion of intrinsic charging of dislocations in the NaCl structure see
Amelinckx 1979, p. 379). Extrinsic charging, at least in alkali halides, often
appears to arise by a ‘‘sweeping up’’ of charge during the movement of the dis-
location, in addition to any initial charge from bound point defects (Whitworth
1975). In the alkali halides, in which there tends to be a preponderance of cation
vacancies due to their formation energy being lower than that of anion vacancies,
the dislocation charge is generally negative in both nominally pure crystals and in
those doped with divalent cations, but positive charge can arise in other cases and
it is possible that an isoelectric point may exist at which there is a changeover from
negative to positive charge with increase in temperature.

The presence of charge on dislocations can give rise to various effects in the
electric properties of a crystal, such as transient changes in electric conductivity
during plastic deformation because of charge transport. Also the formation of a
compensating charge cloud around a charged dislocation will tend to pin the
dislocation and lead to hardening but, at least in alkali halides, the magnitude of
this effect in the flow stress is thought to be negligible (Whitworth 1975). Very
little is known about charge on dislocations in ionic crystals other than the alkali
and silver halides, but charging may be expected to be a widespread effect.

6.2.8 Dislocations in Minerals

Since chemical bonding in minerals is generally of a character intermediate
between ionic and covalent, it is to dislocations in ionic and covalent compounds
that one looks for guidance on the likely characteristics of dislocations in minerals,
rather than to metals, except for those properties for which the character of the
bonding is not of importance. The latter situation can be expected to hold where
the long-range elastic strain energy is the principal determining factor in the
behavior of the dislocations, but the nature of the bonding tends to enter impor-
tantly where the core properties are playing a determining role.

The following factors tend to be of importance in characterizing the disloca-
tions in minerals (Nabarro 1984a; Paterson 1985):

1. Commonly the unit cell is fairly large and contains many atoms of several
kinds, resulting in large Burgers vectors (0.5–1 nm typically) and complex
structure of the dislocation cores, with dissociation or zonal spreading expected
to be a common feature.
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2. Partially covalent character of bonding may be of significance especially where
Si–O and Al–O bonds are involved, associated with high Peierls stresses.

3. Chemical substitution and non stoichiometry may be common, involving a rich
variety of structural defects.

4. Many mineral structures are of low symmetry, resulting in low multiplicity of
slip systems and hence in difficulty of meeting intragranular strain compati-
bility requirements in rocks.

Requirements deriving from covalent bond character or electrostatic repulsion
of ions of unlike charge are factors additional to the long-range elastic strain
energy (dependent purely on the Burgers vector and the elastic constants) in
determining the most favored slip direction and slip plane in minerals. Thus, the
metallurgical rule that slip occurs in the direction of closest packing (shortest
Burgers vector) is less strictly followed in minerals. For example, in calcite the
most commonly observed slip direction \�2 021[ is that of the third-shortest
Burgers vector (length 0.81 nm, compared with 0.50 nm for the shortest repeat
distance, that in the a axis direction).

Frank (1951) suggested, on the basis of a simplistic thermodynamic argument,
that when the Burgers vector exceeds a value of the order of 0.5–1 nm there will
be a tendency to form a hollow core in the dislocation of diameter Gb2=4p2c; or
somewhat smaller when nonlinear elasticity near the core is taken into account,
where G is the shear modulus and c the surface energy: see Nabarro (1984a, b) for
the case of anisotropic crystals. Little direct evidence for such an effect has come
so far from electron microscopy of minerals and possibly other types of core
response meet the situation. However, the existence of such a tendency may
conceivably be a factor favoring such phenomena as the segregation of impurity
atoms in the core, the fast diffusion of atoms along the core or the formation of a
non crystallographic core as proposed for ice (Di Persio and Escaig 1984, Perez
et al. 1975).

6.3 Dislocation Interactions

So far, we have dealt with the properties of an isolated single dislocation in an
otherwise perfect crystal. We now consider the interaction of dislocations with
other types of crystal defect, including boundaries, and the mutual interaction of
dislocations. These interactions, together with the interactions with the crystal
itself (as discussed in Sects. 6.2.3–6.2.7), are very important because of their
influence on the mobility of dislocations and hence on the plastic deformation of
crystals. Such interactions have to be taken into account in developing theories of
the flow resistance of crystals under external stress (Sect. 6.6), much of the
complexity of which arises from the variety of the interactions. The magnitude of
interaction can, in principle, be expressed as the change DE in the energy of the
dislocation in the presence of the entity with which it is interacting. The force
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acting on the dislocation will then be oDE=ox where x is the coordinate in the
direction of the motion.

6.3.1 Interaction with Point Defects

Many deformation effects are controlled by the interaction of dislocations with the
structural perturbations associated with vacancies, self-interstitials, and impurity
or solute atoms, referred to conveniently as point defects (Sect. 1.2.2). The
interaction being a mutual one, the local concentration of point defects will also
tend to be influenced by the presence of the dislocation. The actual local con-
centration will depend on whether or not equilibrium has been established and, in
case of equilibrium, will be determined by considerations of entropy as well as of
the local atomic interaction energies.

It is useful to distinguish three aspects of the interaction of point defects with a
dislocation:

1. Atomic bonding interactions at the scale of the dislocation core (chemical
aspect).

2. Elastic interactions with the linear elastic stress field of the dislocation (elastic
aspect).

3. Electrostatic interactions between charges that may exist on the dislocations
and point defects (electrostatic aspect).

In the next three paragraphs, we elaborate a little on the nature of these aspects
of interaction (for general references, see Friedel 1964, Chap. 13; Hirth and Lothe
1982, Chap. 14; Nabarro 1967, Chap. 6).

Because of the gross structural distortion in the core of a dislocation it may be
expected that site occupancy, compared with the normal topological arrangement
of atoms for the perfect crystal, may be seriously modified, for example,
by substitution of impurity atoms, by changes in the concentration of solute atoms
in solid solutions (such as Mg/Fe ratio in olivine), or by nonoccupancy of normally
occupied sites. That is, relative to a local singularity in structure produced simply
by reuniting the two surfaces of a hypothetical cut after their relative translation by
the Burgers vector, a modification or reconstruction of bonding relationship may
often be expected in the core since its energy would be thereby reduced, and
segregation or redistribution of impurity or solute atoms may be involved in the
modification. The actual core structure can, in principle, be obtained from ab initio
or similar quantum mechanical calculations but, in practice, a more rudimentary
approach in terms of interaction with vacancies and solute or impurity atoms is
usually taken, expressed in terms of binding energies for the interaction, deter-
mined more or less empirically (Hirth and Lothe 1982, p. 512). The effect of the
segregation of vacancies or solute atoms to the dislocation core will be to modify
the Peierls potential, decreasing it in case of attractive interaction; if the Peierls
valley is thereby deepened and its walls steepened, the effect will be accompanied
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by an increase in Peierls stress. If the dislocation is dissociated, segregation to the
fault strip between the partial dislocations (Suzuki atmosphere) will have a similar
effect. However, unless the Peierls stress is sufficiently high to dominate the dis-
location behavior, the role of the binding interaction with the point defect in the
core will be less important than the elastic interaction since most of the dislocation
energy tends to be in the elastic field.

The interaction of point defects with the long-range elastic stress field is dis-
cussed in terms of the elastic distortion associated with the point defect. In the
more refined treatments, the point defect is not regarded as a rigid inclusion to be
accommodated volumetrically in an elastic matrix but it is viewed as also
undergoing elastic distortion itself, with elastic constants different from those of
the matrix. The size misfit aspect is then sometimes referred to as a paraelastic
interaction and the modulus difference aspect as a dielastic interaction (Haasen
1983). The elastic interaction energy (negative for attractive interaction) can be
shown to be finite for both edge and screw dislocations. In the case of screw
dislocations, in which there is no dilatancy to first order in the elastic field, the
interaction arises through the dielastic effect involving the shear modulus, as well
as to some extent through second-order elastic effects. For the cases in which the
temperature is high enough for redistribution of point defects to occur, their
equilibrium concentration in the neighborhood of the dislocation can be calculated
taking into account the elastic interaction energy per defect and any necessary
formation energy for the defect. Thus, an atmosphere of point defects can be
established around the dislocation, giving a pinning effect. This atmosphere is
known as a Cottrell atmosphere in the case of an enhanced concentration of solute
atoms. If the total energy of interaction of the atmosphere with the dislocation can
be calculated as a function of the displacement of the dislocation, then the inter-
action force between the dislocation and its atmosphere can be obtained.

Finally, electrostatic interaction will occur between a charged dislocation and
charged point defects, a situation that might be expected to be particularly relevant
in nonmetallic compounds. However, it is not known, in general, how important
this type of interaction is in practice. In the case of alkali halides, at least, it is
thought to be of negligible importance mechanically compared with the elastic
interactions (Sect. 6.2.7).

The mechanical implications of the interactions between point defects and
dislocations depend in general, on the extent to which the distribution of point
defects is at equilibrium with the dislocation configuration initially present and on
the rate at which redistribution can occur during dislocation motion. The effects
are mainly of significance where the defects are solute atoms. Three particular
situations may be selected for comment:

1. If, following introduction of the dislocations, the temperature has been suffi-
ciently low that redistribution of point defects in the neighborhood of the
dislocations has not occurred, then during deformation the dislocations move
through a more or less random but fixed assemblage of centers of interaction
which represent local potential barriers to be overcome by the applied stress in
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moving the dislocations. This situation gives rise to an overall resistance to
dislocation motion, known as solute or solid solution hardening when the point
defects are solute atoms. Theoretical studies suggest that the solute introduces a

strengthening proportional to c
1
2; at low concentration c, to c

2
3; at medium to

high concentration, with a proportionality constant that contains the interaction
force or ‘‘obstacle strength’’ with a power somewhat greater than unity (see
further Sect. 6.6.3).

2. If, however, solute segregation has occurred, either in the core or nearby, so as
to tend to pin or lock the dislocations in their initial positions but the test
temperature is too low for diffusion of the solute to occur at an appreciable rate,
then in order to initiate plastic deformation a relatively high stress is at first
needed, higher than the stress needed to maintain the dislocations in motion
once they are freed from their locking atmospheres. In this case, there is a
tendency for the stress to fall in the early stages of a stress–strain test, after
initiation of plastic deformation, an effect commonly referred to as a ‘‘yield
point’’ (Fig. 6.9).

3. Alternatively, if the temperature is high enough that the segregating species can
keep pace with the dislocation movement by diffusion, then the interaction
between solute and dislocation leads to a viscous drag force on the dislocation.
This effect will tend to give rise to linear (Newtonian) viscous behavior in
which the velocity of the dislocation is proportional to the resolved shear stress
acting in the region of the crystal containing the dislocation. The constant of
proportionality will vary directly with the diffusion coefficient of the solute and
inversely with the mean solute concentration, as well as depending on the
interaction potential governing the distribution of the solute around the dislo-
cation. (See further, Sects. 6.4.1 and 6.6.5).
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Fig. 6.9 A ‘‘yield point’’ in a
stress-strain curve
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6.3.2 Interaction with Dispersed Second Phases

Dispersed second phases, commonly formed as fine precipitates, can play a very
important role in obstructing dislocation motion. The effects are widely exploited
technologically for the strengthening of materials.

The resistance to the motion of a dislocation presented by a distribution of small
second phase particles may be expected to resemble in some respects that pre-
sented by immobile atoms in solid solution but the individual interactions will, in
general, be much stronger. The actual interaction forces will vary widely
according to the natures of the particles and of the processes whereby the dislo-
cation cuts through the particles or circumvents them. The latter distinction, of
cutting or bypassing, is important in determining the overall nature of the inter-
action and its consequences for the macroscopic mechanical behavior. The
behavior may also involve quite different considerations at low and high tem-
peratures, depending on whether thermal activation is playing a significant role in
assisting the cutting or bypassing. (See further, Sects. 6.6.3 and 6.6.7).

The particle size is a very important variable in determining the nature and
intensity of the influence of a given dispersed second phase. The respective bar-
riers to a dislocation cutting through particles and circumventing them are com-
monly such that there is a maximum hardening effect at an intermediate particle
size (often submicron) in the range of practical particle sizes (see Sect. 6.6.2).
Eventually, at large particle sizes, the second phase can be regarded as simply
providing boundaries with which dislocations in the matrix phase interact, as we
shall next discuss.

6.3.3 Interaction with Boundaries

The energy of a dislocation, which, as already pointed out, consists mainly of the
elastic strain energy in the long-range stress field, is modified when the dislocation
is situated sufficiently near a boundary that part of the long-range stress field is
located on the other side of the boundary. If the latter region consists of an
elastically softer material or of free space, the dislocation near the boundary will
have a lower energy than one further away and hence will be subject to an image
force attracting it toward the boundary. Conversely, if the second region consists
of elastically harder material, the image force will be a repulsive one. For the
theory of image forces, Friedel (1964, p. 44), Nabarro (1967, Chap. 5), Haasen
(1978, p. 252) and Hirth and Lothe (1982, Chaps. 3 and 5) can be consulted. The
image force tends to deflect a dislocation line as it approaches to intersect a
surface. Thus, it may influence the configuration of dislocations in the thin foils
viewed in transmission electron microscopy if the dislocations are sufficiently
freely mobile.

There is also a short-range interaction of a dislocation with a boundary since the
boundary has to be cut to produce a step or shear discontinuity when the
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dislocation crosses the boundary (Friedel 1964, p. 46; Nabarro 1967, p. 282). This
interaction does not greatly impede the dislocation emergence at a free surface
when only surface energy has to be supplied in forming the step (no effect at all
would be expected for a screw dislocation in this case). However, when there is
strong material on the other side of the boundary that also has to take part in the
step formation, there may be a large resistance to the emergence. This effect could
be important in affecting mechanical properties when surface films are present on
specimens. In the case of ionic crystals, there may also be charge effects where
dislocations emerge at surfaces, and in any material the point of emergence tends
to be a preferred site for chemical activity.

Even within an imperfect crystal, planar defects such as faults and antiphase
boundaries (surfaces at which there is an ordering discontinuity in an ordered
structure) may act as boundaries to interact with a dislocation. There will in
general be no image forces involved but some resistance to passage of the dis-
location will arise from the creation of additional boundary energy through the
formation of a step (in the case that the dislocation has an edge component) or of a
shear discontinuity (in case of a screw component).

When a sufficiently large repulsive interaction exists, the dislocation will be
arrested at the boundary and so prevent subsequent dislocations on the same slip
plane from reaching the boundary. This effect leads to a pile-up of dislocations of
like sign in the given slip plane. The dislocations themselves interact repulsively in
the pile-up. We therefore now consider the mutual interaction of dislocations.

6.3.4 Mutual Interactions Between Dislocations

Mutual interactions between dislocations are thought to underlie much of the
observed plastic behavior of crystals in both athermal and thermal regimes,
especially where strain hardening is involved and Peierls stress effects are not
dominant. The variety of effects, both observed and envisaged in theories, is very
large and has given rise to a large and confusing literature, the most complex in
dislocation theory. Here, and in Sects. 6.6.3 and 6.6.6, we can only attempt to
indicate the essential elements in this theoretical plethora.

Broadly, the mutual interaction can be a long-range effect arising from the
overlap of the long-range elastic stress fields of the dislocations, or a short-range
effect involving intersection or reaction. The long-range interactions tend to be
more important for dislocations that are more or less parallel to each other and the
short-range for those more nearly normal to each other.

Parallel dislocations may either attract or repel each other, depending on their
relative positions and Burgers vectors and on their edge or screw character. The
attraction or repulsion is determined by whether, when superimposing the stress
fields, as given by (6.3a, b) or a combination of these for mixed dislocations, the
total elastic strain energy is, respectively, less or greater than the sum of the
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separate elastic energies. Consideration of specific cases indicates that, for a given
Burgers vector and for isotropic elasticity:

1. Parallel screw dislocations always attract or repel each other, depending on
whether they are of unlike or like sign, respectively.

2. Parallel edge dislocations of like sign attract or repel each other if the plane
joining them is inclined at greater or less than 45� to the slip plane, respec-
tively; these interactions are reversed for unlike signs.

More general rules can be found for mixed and inclined dislocations and for
those of different Burgers vector (Hirth and Lothe 1982, Chap. 5; Weertman and
Weertman 1964, Chap. 3). The repulsive effect determines the spacing of suc-
cessive dislocations of like sign in a pile-up in a given slip plane in which the
leading dislocation is immobilized. The attractive effect underlies the stability of
dipoles, which are pairs of parallel dislocations of opposite sign lying close to each
other in parallel slip planes, and of tilt subgrain boundaries, which are arrays,
normal to the slip plane, of edge dislocations of like sign.

In the case of dislocations steeply inclined to each other, the long-range elastic
interactions may lead to some local distortion of the dislocations but, on the whole,
they may be of less importance than short-range interactions and the effects of the
actual mutual intersection of the dislocations. Relative to a given dislocation
moving in its slip plane, the inclined dislocations crossing the slip plane are
commonly described as forest dislocations and their intersection by the moving
dislocation as forest cutting. Two short-range interaction effects may be specially
mentioned. The first is the formation of an attractive junction due to the moving
and forest dislocations being locally deviated into parallelism and then reacting to
form a product dislocation segment of lower energy; the result is to tend to pin the
moving dislocation at the junction and to contribute to the building up of a three-
dimensional network. The second effect is to introduce an offset in each of the
dislocation lines as a result of their intersection, each offset being identical with the
Burgers vector of the other dislocation and constituting either a kink or a jog which
may influence the future mobility of the dislocation cut. The intersection process
may be thermally activated since the formation of the kinks or jogs requires energy
which may be in part provided by thermal fluctuation.

6.4 Dislocation Velocity

Since crystal plasticity arises from the motion of dislocations, it is important to
understand the factors affecting their velocity, especially in relation to creep.
The dislocation velocity is focussed upon as one of the primary quantities in the
microdynamical approach to the theory of crystal plasticity, but it may well be
involved in any rate-dependent aspects of deformation.

Since it is the glide of dislocations that usually accounts for most of the strain,
the glide velocity is the dynamical aspect most studied. However, cross-slip and
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climb velocities can also be important, especially as rate-determining factors when
obstacles to glide in the primary slip plane have to be bypassed. We shall therefore
consider briefly all three aspects of dislocation velocity.

6.4.1 Glide Velocity

In the absence of energy dissipation, an isolated dislocation would tend to
accelerate indefinitely under applied stress were it not for a relativistic limitation to
the velocity of sound. A direct extension of the elastic theory of dislocations
predicts that, as the velocity of the dislocation increases, not only does a kinetic
energy term appear in its total energy but the self energy of the dislocation also
increases in a way that can be described roughly as relativistic (Hirth and Lothe
1982, Chap. 7). The self energy approaches infinity and the stress field undergoes a
relativistic contraction in the direction of motion as the dislocation velocity
approaches the velocity of sound (the velocity for transverse or longitudinal
waves, vs or vp; respectively, applies depending on whether screw or edge dislo-
cations are concerned). However, in practice, there are many dissipative processes
that generally limit the velocity to the sub-relativistic domain (Hirth and Lothe
1982, Chaps. 7, 15, 16; Weertman and Weertman 1980).

Some of the dissipative processes are intrinsic effects, applying to an isolated
dislocation in an otherwise perfect crystal. One such process is the scattering of
phonons associated with the thermal vibrations in the crystal, which becomes
important at high velocities, perhaps generally in excess of about 10-3 vs or
1 ms-1, and which gives rise to a viscous drag on the dislocations (Granato 1984,
and other references therein; Hirth and Lothe 1982, p. 211; Kocks et al. 1975,
p. 85). However, when there is a significant Peierls potential, this gives rise to a
more important viscous drag on dislocations, effective at much lower velocities
and treatable in terms of kink mobility (Hirth and Lothe 1982, Chap. 15). Hirth and
Lothe (p. 545) deduce a relationship which, in the approximation that the spacing
of the Peierls valleys and the jump distance for kink migration are each equated to
the Burgers vector b, can be written as

v � 2sb4m
kT

exp �ðEkn þ EkmÞ=kTf g ð6:12Þ

where s is the resolved shear stress, m the attempt frequency (of the order of the
atomic vibration or Debye frequency, say, *1013 s-1), and Ekn;Ekm the activation
energies for kink nucleation and migration, respectively. The term sb4m=kT can be
written as bm0 where m0 has the character of a vibration frequency of the dislocation
line under stress s (in effect, sb3 ¼ hm0 and kT ¼ hv; where h is the Planck con-
stant). In addition to the linear stress dependence introduced in this term, there is
also a stress dependence in the activation energy. Thus, the kink nucleation energy
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Ekn; although depending in form on the form assumed for the Peierls potential, can
commonly be approximated as

Ekn ¼ Ek 1� s
sp

� �3
4

( )4
3

ð6:13aÞ

according to Kocks et al. (1975, p. 187), where Ek is the kink energy (Sect. 6.2.4)
and sp the Peierls stress. A value for Ekm seems to be more difficult to estimate
(Hirth and Lothe 1982, p. 534); it is probably somewhat less than Ekn but may still
be quite significant (Hirsch 1985). Further development of the theory needs to take
into account the finite lengths of dislocation segments between nodes that limit the
free run of kinks (Hirth and Lothe 1982, p. 545). For a discussion of the role of
kinks in the dislocation velocity in germanium and silicon, see, for example,
Louchet and George (1983) and Jones (1983).

In the majority of situations, the intrinsic behavior just considered will probably
be masked by the influence of extrinsic factors affecting dislocation velocity.
These factors may include any of the dislocation interactions listed in Sect. 6.3
which have a local pinning effect on the dislocation. The treatment by Hirth and
Lothe (1982, Chap. 16) of the velocity of jogged dislocations provides an approach
to the treatment of a wider range of local pinning effects.

More generally, if the glide velocity of a dislocation is determined by rate of
thermally activated crossing of barriers of any sort, and if we express the velocity as

v ¼ ðDA=lÞm ð6:13bÞ

where A is the area swept out by a dislocation segment of length l in a single
activation event, and m is the frequency of such events, given by (3–12 g), then we
obtain

v ¼ 2v0DA

l
sinh

sbDA

2kT
exp �

DE� � sb DA� � 1
2 DA

� �

kT

� �
ð6:14Þ

where, in addition to DA and l just defined, v0 is the attempt frequency (now of the
order of the vibration frequency for a dislocation segment, say, 1010–1011 s-1

Friedel 1964), DE� the activation energy and DA� the activation area.
In practice, it is usually difficult, a priori, to assign values to the parameters

l; DA; DA� and DA� in (6.14) and so it is common to adopt a more empirical
approach and attempt to fit experimental observations to expressions that are
analogous to the approximate forms in Eqs. (3.12d) and (3.12e) in Sect. 3.2.4,
namely:

m ¼ A0s
m exp � Q

RT

� �
ð6:15Þ

and

m ¼ m0 exp �Q� sbDA�

RT

� �
ð6:16Þ
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where A0; v0 are empirical constants, Q is an empirical activation energy
(enthalpy), m and DA� are the empirical parameters ðolnv=olnsÞT and
ðRT=bÞðolnv=osÞT ; respectively, and R is the gas constant (note that DA� and m are
formally related by m � sbDA�=RT). In Eqs. (6.15) and (6.16) the activation area
and activation energy have been multiplied by the Avogadro constant, relative to
the values in (6.14), and the entropic part of the energy has been subsumed under
v0;A0.

Following Sect. 3.2.4, (6.16) should be the more appropriate form to use when
sbDA� 2RT : This situation tends to arise at relatively high stress and low tem-
perature, when there are important viscous drag effects such as the Peierls resis-
tance or the analogous low-temperature drag on screw dislocations in iron, thought
to arise from the extension of core into a zonal structure in three intersecting
planes (Hirsch 1960; Hirth and Lothe 1982, p. 369; Louchet 1979; Mitchell et al.
1963). Alternatively, if viscous drag effects are still controlling the dislocation
velocity at relatively low stress and high temperature with sbDA	 2RT ; then the
form in (6.15) should be the more appropriate and m could be expected to be close
to unity.

Turning to the experimental situation, there have been various direct mea-
surements of mean dislocation velocity in glide as a function of stress and tem-
perature, using etching, X-ray topography or transmission electron microscopy for
tracking the dislocations (for reviews, see Alexander and Haasen 1968; Gilman
1969; Haasen 1978, Chap. 11; Sprackling 1976, Chap. 9). The stress to which the
velocity is related is commonly, and logically, taken to be the ‘‘effective stress’’ se

acting locally on the dislocation. The effective stress is estimated as the applied
stress minus the internal stress si arising from other dislocation, si being taken to
be equal to aGbq1=2 (when a is a numerical constant near to unity, G the shear
modulus, b the Burgers vector, and q the dislocation density; a rationalization for
this expression will be given in Sect. 6.6.2). When the experimental results are
fitted to the form (6.15), the exponent m is found to vary widely, from values of
approximately unity for silicon and germanium to values of 100 or more for
copper. The value of m can also vary markedly with effective stress, so that several
velocity/stress regimes can be distinguished as the stress is increased, commonly
with m * 1 at very low or very high velocities and with higher values of m at
intermediate velocities (Haasen 1978, p. 263).

Observed values of m � 1 are consistent with a predominance of viscous drag
effects, and determinations of activation area may help to identify the controlling
factor. Thus, in the case of germanium and silicon where a value of m � 1 is found
at around 700–1,000 K and applied stresses of 10–100 MPa (still a relatively low-
temperature regime for these materials), the activation area, calculated from
DA� ¼ mkT=sb; is of the order of a few times b2 (Louchet and George 1983). This
result is suggestive of the dislocation motion being controlled by a local effect in
the core, such as kink nucleation or migration. In contrast, measurements on most
metals and ionic crystals at relatively low temperatures, analyzed in a similar way,
tend to give values of m much greater than unity and values of DA� large compared

6.4 Dislocation Velocity 137

http://dx.doi.org/10.1007/978-94-007-5545-1_3


with b2; indicating that there is some factor other than a viscous drag involving a
simple core interaction controlling the motion (for data, see Sprackling 1976,
Chap. 9). Values of m substantially greater than unity suggest that the population
of sites of effective thermal activation is also stress dependent and perhaps
evolving with dislocation motion, an understanding of which depends on detailed
microstructural study.

Transmission electron microscope observations in situ in metals (for example,
Caillard and Martin 1983) reveal, in fact, behavior that is in marked contrast to the
picture of a steady viscous drag. The observed motion tends to be unsteady on a
relatively large scale in that periods of no motion alternate with periods during
which relatively large areas are swept out in rapid motion; that is, the dislocation
advances in spurts. This behavior can be explicitly taken into account by
expressing the mean velocity v as:

v ¼ Ds

t0 þ tg
or v ¼ DA

lðt0 þ tgÞ
ð6:17Þ

(Kocks et al. 1975, p. 93; Philibert 1979; Poirier 1985, p. 94),, where Ds is the
distance or DA the area swept out by a dislocation segment of length l in a typical
interval of time consisting of t0 spent waiting at an obstacle and tg spent in actual
motion. In view of the possible variety of obstacles and drag processes and, hence,
variation in the relative importance of the t0 and tg terms, a complex phenome-
nology can be expected, preventing simple interpretation of the empirical
expressions in Eqs. (6.15) and (6.16) and making theoretical prediction difficult,
although some attempt has been made by Morris and Martin (1984a, b).

6.4.2 Cross-Slip Velocity of Screw Dislocations

For undissociated dislocations, motion in the cross-slip plane will be controlled by
the same factors as that in the primary slip plane, apart from the effects of change
in the resolved shear stress and of any change in the Peierls stress or other crys-
tallographically controlled factor in cases in which the cross-slip plane is not
equivalent crystallographically to the primary plane. However, when dissociation
of the screw dislocations occurs, the relative case of their movement into or within
the cross-slip plane may be strongly affected. Effects of this kind have been
especially studied in metals (see Vitek 1985, for a recent review) but they are
probably widespread; for example, Poirier and Vergobbi (1978) suggest such an
effect in olivine.

Thus, if the dissociation yields a partial dislocation having a Burgers vector
nonparallel to the cross-slip plane, then separate movement of this partial dislo-
cation in the cross-slip plane would be very difficult and result in forming a high-
energy fault surface. In order for movement to occur in the cross-slip plane, the
partial dislocations in such a case need to be recombined locally during the

138 6 Deformation Mechanisms: Crystal Plasticity



cross-slip motion through the formation of a constriction in the extended dislo-
cation. Such a process can be thermally activated and models have been proposed
by Schoeck and Seeger (1959), Seeger et al. (1959) and Wolf (1960), on the one
hand, and by Friedel (1959, 1964, p. 164) and Escaig (1968a, b), on the other hand,
for situations where the dislocation is less or more dissociated in the cross-slip
plane than in the primary plane, respectively (see also Schoeck 1980; see also
Vanderschaeve and Escaig 1979). The theoretical discussions have centered
mainly on estimating the activation energy for the dislocation motion in the cross-
slip plane, predicting that in some cases the activation energy will depend on the
stress and in other cases not.

In the case of only slightly dissociated dislocations, the energy barrier associ-
ated with the constriction mentioned above can be viewed formally as a sort of
Peierls barrier and the motion of the constriction as analogous to the migration of a
kink. This view is particularly appropriate in cases where the dissociation is dif-
ficult to resolve but the core can be regarded as being extended somewhat outside
the cross-slip plane, as in a zonal dislocation (cf. b.c.c. metals: Hirth and Lothe
1982, p. 369; cf. b.c.c. metals: Louchet 1979; Vitek 1985).

6.4.3 Climb Velocity of Edge Dislocations

We consider only the case of a pure edge dislocation under the influence of a
normal stress r applied parallel to its Burgers vector (for the case of a mixed
dislocation and a general stress, see Hirth and Lothe 1982, p. 562). The first
estimate of the climb velocity v can be made using the formalism of Sect. 3.2.4 if
we regard the mobile entity as a dislocation segment of length equal to the
structure repeat distance b1 parallel to the dislocation and we write v ¼ b2v where
b2 is the structure repeat distance in the direction of climb and m the jump fre-
quency. From relation (6.6b) the climb force on such a segment is rbb1; which can
be written in molar terms as rVm where Vm is the molar volume. In the case of
relatively low stresses such that rVm 	 RT , we can then apply (3.12d) to obtain

v ¼ b2 v ¼ b2Vmrm0

RT
exp �DG�

RT

� �
ð6:18Þ

where DG� is the molar activation energy. If the thermally activated event is
essentially one of volume self-diffusion, we can treat v0 expð�DG�=RTÞ as the
diffusional jump rate C which, from (3.32), is equal to D=afb2

3 where D is the
diffusion coefficient, af a numerical factor of order unity, and b3 the jump distance.
Thus, in the approximation that af is put equal to unity and b2; b3 equal to the
Burgers vector b, (6.18) becomes

v � DVmr
bRT

ð6:19Þ
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An alternative approach, analogous to that used in Chap. 5 (especially Sect. 5.7),
is to suppose that, during the climb, material is transported to or from a reservoir
consisting of the surface of a cylinder of radius R, R being the average distance to
neighboring dislocations or other structural discontinuities or surfaces that can act
as sinks or sources. The steady-state solution of the transport Eqs. (3.18) and (3.22)
in such a case is

J=l ¼ 2pkDl
InðR=rÞ ð6:20Þ

(Carslaw and Jaeger 1959, p. 189), where J is the flux from a length l of dislocation
when the driving potential difference between the cylinder surface and the dislo-
cation is taken to be the difference in chemical potential Dl (assuming r and T as
independent variables), r the effective radius of the dislocation core, and k the
quantity M=Vm where M is the mobility of the diffusing material and V its molar
volume (see Sect. 3.4). The flux J is related to the climb velocity v through J ¼
vbl=Vm; which substituted in (6.20) leads to

v ¼ 2p
InðR=rÞ

MDl
b

ð6:21Þ

or

v ¼ MDl
b

ð6:22Þ

The mobility M in (6.22) is related to the diffusion coefficient D by the Einstein
relation (3.27), M ¼ D=RT : The value of Dl is obtained from the change in the
work term in the chemical potential as Dl ¼ Vmr if there is no potential barrier at
the source or sink. Substituting these quantities in (6.22) leads again to

v � DVmr
bRT

ð6:23aÞ

or, in the approximation that Vm � Lb3; where L is the Avogadro number, to

v � Db2r
kT

ð6:23bÞ

The two results in Eqs. (6.19) and (6.23a) are, of course, equivalent apart from
minor differences in the approximations due to slight differences implicit in the
posing of the two climb models.

In applying (6.23a) to elements, Vm and D are the molar volume and self-
diffusion coefficient for the atomic species. In the case of compounds, Vm is the
molar volume of the molecular species constituting the crystal, and D is the
effective self-diffusion coefficient for this species, which can be obtained from
the self-diffusion coefficients of the constituent atomic species.
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Although direct experimental testing of (6.23a) would be difficult, it is widely
accepted for application to problems such as climb creep and the growth of
prismatic loops when it is thought that pipe diffusion is negligible.

6.5 Dislocation Populations and Their Evolution

In a real crystal undergoing plastic deformation, the dislocations tend to be neither
uniformly distributed nor equally mobile, and the density of the dislocation
assemblage and its configuration tend to evolve during straining. These structural
and behavioral factors have to be taken into account in any microdynamical theory
of flow. Microstructural observation therefore plays a vital part in guiding the
proper development of an adequate theory of macroscopic flow. Observations are
required both at the optical microscope scale, to reveal deformation banding,
subgrain formation, etc., at this scale, and at the submicroscopic scale, to reveal the
actual dislocation configurations, the formation of pile-ups, dipoles, loops, tangles,
cellular arrangements, etc., often described as ‘‘substructure’’.

Even a crude description of the dislocation population must, in general, take
account of two aspects, which may be designated as the mean density and the
‘‘cellularity’’ (Kocks 1985a). These two aspects will be dealt with in the first two
subsections to follow, and the more profound microstructural reorganizations
involved in recovery and recrystallization will be touched upon in the third
subsection.

6.5.1 The Configuration of the Dislocation Assemblage

The configuration of individual dislocation segments can reflect the nature of the
barriers to dislocation motion and of the interactions between dislocations. This
configuration can be revealed by transmission electron microscopy (TEM). When
the crystal is oriented in the electron beam so that a Bragg diffraction condition is
near to being satisfied, the slight variations in orientation due to the variation in
distortion in the long-range elastic stress field give rise to local increase or
decrease in the intensity of diffraction near the dislocation core compared with
elsewhere, and hence to the dislocation being imaged by the diffraction contrast
effect Figs. 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16).

The observation of long straight dislocation lines of simple crystallographic
orientation points to a strong interaction between the dislocation and the structure
itself. This interaction may consist of a large amplitude of the Peierls potential in
the case of a nonextended dislocation, or it may involve an effective deepening of
the Peierls valley by extension of the dislocation core into planes other than the
slip plane, as in the case of climb dissociation (Sect. 6.2.5). Examples of straight
dislocations suggesting structural control are shown in Figs. 6.10a and 6.11a,
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Fig. 6.10 a Straight dislocations in quartz crystal deformed at 575 �C. b Wavy dislocations in
quartz crystal deformed at 800 �C (copies of Figs. 5.10 and 5.20, respectively, from Morrison-
Smith 1973)

Fig. 6.11 a Straight screw dislocations in olivine (supplied by Dr. J. D. Fitz Gerald).
b Dissociated dislocations in dolomite plagioclase (from Stünitz et al. 2003)
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while the curved characters of the dislocations illustrated in Fig. 6.10b suggests
that structural control is unimportant in this case. Dissociation of dislocations can
also be revealed in TEM images (Fig. 6.11b).

The effect of localized obstacles on the motion of dislocations can be seen in
TEM images such as Fig. 6.12a. However, special techniques may have to be used

Fig. 6.12 a Effect of an obstacle on the motion of dislocations (a copy of Fig. 9 from McLaren
et al. 1989). b Dislocation cell structure in quartz (copy of Fig. 7.4 from Morrison-Smith 1973)

Fig. 6.13 Dislocation
structure in a low-angle tilt
boundary (supplied by Dr.
J. D. Fitz Gerald)
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in order to obtain an image of the dislocation configuration as it actually exists
while the crystal is under internal stress, as will be discussed further later in this
subsection.

Passing from the individual dislocation line to the spatial distribution of the
dislocation assemblage, the primary observation is that there is commonly a
marked heterogeneity in this distribution, which may take different forms. On the
one hand, there may be a variation in dislocation density without obvious variation
in the organization of the dislocations relative to each other, giving rise to a cell
structure such as illustrated in Fig. 6.12b, in which the walls defining the cells
consist of tangles of dislocations. On the other hand, the dislocations may be
organized into walls which consist of orderly arrays containing one or more sets of
parallel dislocation lines of given sign, forming what are called subgrain bound-
aries, because of the small change in orientation across them (Fig. 6.13). Subgrain

Fig. 6.14 a Subgrains revealed in optical microscopy in plane-polarized light in naturally
deformed olivine (scale: the long edge is 1 mm) (supplied by Dr. J. D. Fitz Gerald). b Dislocation
structure marking the boundaries of a subgrain in experimentally deformed quartz (copy of Fig.
3c in Fitz Gerald et al. 1991)

Fig. 6.15 Deformation
lamellae in synthetic quartz
revealed in plane-polarized
light with x10 objective; the
trace of (10�10) is marked
(copy of Fig. 4a from
McLaren et al. 1970)

144 6 Deformation Mechanisms: Crystal Plasticity



boundaries may form for reasons of energy minimization, their formation being a
process that occurs more readily at higher temperatures and probably usually
involves some climb of the dislocations. However, although an energy minimi-
zation argument for cell formation can be given (Weertman and Weertman 1983a,
p. 1292), cell structure may also form for kinetic rather than energetic reasons
(Kocks 1985a). Geometric constraint may also be an influential factor in dislo-
cation distribution, especially in requiring an excess of dislocations of given sign
in order to accommodate imposed bending; such dislocations are sometimes called
geometrically necessary dislocations.

When there is a well-defined substructure, the dislocations in the cell walls or
subgrain boundaries are sometimes referred to as ‘‘bound’’ dislocations and those
lying within the cells or subgrains, often forming themselves a three-dimensional
network, as ‘‘free’’ dislocations. However, it cannot be concluded without further
evidence that these two sets of dislocation are immobile and mobile, respectively.
In fact, the reverse may be the case, as shown for example, by Martin and coworkers
in careful TEM studies on various metals undergoing creep, using techniques both
of pinning the dislocations before releasing the applied stress and of direct obser-
vation during deformation in the electron microscope (Caillard and Martin 1982a,
b, 1983; Clément et al. 1984; Kubin and Martin 1980; Morris and Martin 1984a, b).
They showed that the mobile dislocations in these materials traverse the subgrains
very rapidly after breaking away from subboundaries in which they reside for most
of the time (t0 � tg in expressions (6.17)). The breakaway process probably
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Fig. 6.16 a Dislocation source initiated as a dislocation 0 pinned at point P; the subsequent
positions 1, 2, 3,…of the dislocation line represent increasing length of the dislocation,
augmenting the dislocation density of the crystal. b A ‘‘two-armed’’ source, known as a Frank-
Read source
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involves thermally activated cross-slip or climb, or in alloys, escape from solute
pinning. Also the mobile dislocations may eventually traverse many subgrains, the
spacing of the dislocation sources being greater than the subgrain size, and the
subboundaries themselves may have some mobility, contributing a minor compo-
nent to the strain. Martin and coworkers also show that there is an internal stress
field extending some way into the subgrain interior from the subboundary dislo-
cations, which are therefore not fully mutually compensating in respect of their
long-range elastic stresses (not in ‘‘equilibrium’’ in the sense of Frank 1955). In
minerals, insofar as mutual interaction of dislocations on multiple slip systems is
important, there may well be similar behavior.

The parameter most frequently used to characterize the cellularity of the dis-
location substructure is the cell or subgrain diameter. However, depending on
ideas of what most influences the flow strength, other parameters have also been
used, especially the dislocation link length within sub boundaries or sub boundary
mesh size (Ardell and Przystupa 1984; Lin et al. 1985; Morris and Martin 1984a;
Öström and Ahlblom 1980; Öström and Lagnerborg 1980).

Coarser-scale structure reflecting heterogeneity in deformation behavior is seen
at the microscopic or grain scale. Microscopically visible slip bands (Sect. 6.1;
Fig. 6.2), themselves representing a heterogeneity in dislocation activity, are often
distributed heterogeneously, especially in grains in polycrystals, giving rise to
various sorts of deformation bands. These bands may be defined by differences in
the amount of activity of a primary slip plane, by the localized activity of a
secondary slip system, by the alternation of active slip systems, and so on, and they
form regions of corresponding heterogeneity in distribution of dislocations. At
higher temperatures and lower strain rates, subgrain formation may also become
evident, the optical observations detecting coarser-scale subgrains than the
submicroscopic.

Optical or scanning electron microscope (SEM) observations on slip band
structures generally require careful polishing of the specimen prior to deforma-
tion. The distribution of the dislocations themselves, such as those defining sub-
grain boundaries, can also be revealed by suitable etching after the deformation
provided the dislocation density is relatively low; for techniques see Wegner and
Christie (1985a, b). The optical transparence of minerals permits further tech-
niques of observation in transmission optical microscopy, not available for metals,
which exploit birefringence and stress-optical effects. For example, small orien-
tation changes revealed by observation of thin sections between crossed polarisers
permit subgrain boundaries to be located (Fig. 6.14), and other optical features
such as ‘‘lamellae’’ (Fig. 6.15) reveal the presence of localized concentrations of
dislocations or other local heterogeneities (Christie and Ardell 1974; McLaren
et al. 1970). At low dislocation densities, the dislocation configuration itself can
also be revealed by decoration techniques (Kohlstedt et al. 1976). For further
information on observation techniques, see Nicolas and Poirier (1976), and Hobbs
et al. (1976).
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6.5.2 Dislocation Density and Multiplication

During plastic deformation, very marked increases can occur in the dislocation
density q, specified as the average total length of dislocation line per unit volume.
For example, commencing with a dislocation density of around 1010 m-2 or so,
such as might typically be found in annealed or as-grown metallic and ionic
crystals of ordinary quality, the density can increase by several orders of magni-
tude with 10 % strain. Such marked growth in density is generally thought to arise
from the presence of specific, persistent dislocation ‘‘sources’’ that can produce a
succession of new dislocation segments which augment the total population.

Dislocation growth or multiplication results from the differential movement of
parts of an existing dislocation line. A persistent source is formed when the parent
dislocation line is pinned at a certain point by an obstacle or by the deviation of the
line into another plane in which it is immobile. The adjacent freely moving seg-
ment of the dislocation line will tend to sweep circularly around the pinning point,
forming an ever-lengthening spiral of dislocation line which is added to with each
additional revolution at the source (Fig. 6.16a). Various versions of this basic
multiplication process have been proposed, including climb sources.

Thus, if the mobile segment is bounded by a second pinning point at which
spiraling in the opposite sense occurs, the two spirals annihilate where they meet
and so outwardly expanding loops can be formed (Fig. 6.16b). Such a ‘‘two-
armed’’ source is known as a Frank–Read source and is often invoked for dislo-
cation multiplication. However, the presence of a second suitable pinning point
within a field of view that is not obscured by additional substructure may well be
generally rather fortuitous, as is indicated by the observation of Caillard and
Martin (1983) that in aluminum ‘‘one-armed’’ sources can be identified but not
Frank–Read sources. Other types of dislocation source are discussed by Bilby
(1955).

A spontaneous generation of a dislocation loop in its slip plane with the aid of
thermal fluctuations is highly improbable (Cottrell 1953, p. 53). However, in the
presence of high internal stresses in the neighborhood of precipitates, it is evi-
dently possible to generate a prismatic dislocation loop in climb in the absence of
pre-existing dislocation, as shown by loops generated at bubbles in quartz
(McLaren et al. 1983).

If the number of dislocation sources were assumed to be proportional to the
length of dislocation line already present, then, in the absence of annihilation
processes, we would expect the dislocation density to increase at a rate propor-
tional to the existing density and to the rate of straining, that is, dq / qdc; leading
to the relation

q ¼ q0 expðc=ceÞ ð6:23cÞ

between the dislocation density q and the shear strain c, where q0 is the dislocation
density at c ¼ 0 and ce is the strain needed for an e-fold increase in q (cf. Haasen
1978, p. 269). If, alternatively, the density of sources were proportional to the

6.5 Dislocation Populations and Their Evolution 147



density of network links, that is, to q3=2 (see Ardell and Przystupa 1984) so that
dq / q3=2dc; then the exponential relationship would be replaced by

q ¼ q0= 1� ð
ffiffiffi
e
p
� 1Þðc=ceÞ=

ffiffiffi
e
p	 
2 ð6:23dÞ

which increases catastrophically as c!
ffiffiffi
e
p

ce=ð
ffiffiffi
e
p
� 1Þ: In either case, the ten-

dency for exponential or catastrophic growth in dislocation density with strain will
be moderated by two factors: (1) the circumstance that the dislocations may not be
all equally mobile and (2) the occurrence of a certain rate of elimination of
dislocations by escape at or incorporation into boundaries or by recovery or
recrystallization. As a consequence the dislocation density will tend to level off
eventually but a quantitative description of its behavior is very difficult to obtain.

6.5.3 Recovery and Recrystallization

(see also Sects. 3.3.2 and 3.3.3)
When the temperature is high enough for dynamic recovery processes to be

thermally activated, the build-up in dislocation density due to multiplication
during straining is counteracted by the mutual annihilation of dislocations, pos-
sibly at a rate that is proportional to q2 (Ardell and Przystupa 1984; Johnson and
Gilman 1959). There is then a tendency for a steady dislocation density to be
approached. The occurrence of recovery also involves the reorganization of the
remaining dislocations into lower energy configurations, especially into well-
organized subgrain boundaries (it may be noted, in passing, that the analogous
process in static recovery, observed as polygonization at the microscopic scale by
Cahn (1949, 1951), is sometimes regarded as the first experimental evidence for
the existence of dislocations). The presence of well-organized walls of disloca-
tions, such as shown in Fig. 6.13, is therefore widely taken as evidence that
recovery has occurred.

As in the case of static recovery, the quantitative treatment of dynamic recovery
requires a measure for the recovery. Since the changes in structure are difficult to
document fully even if relevant parameters such as mean dislocation density,
subgrain size, and subboundary mesh size can be identified, the integrated effect of
the structural changes as expressed in change in the flow stress is commonly used
in specifying the recovery. However, it should be recognized that the use of such a
measure is an empirical expedient which does little to elucidate the processes at
the dislocation scale. Following Mitra and McLean (1966, see Poirier 1985,
p. 105), the rate of dynamic recovery r can then be determined from stress drop
tests, at least in situations where the flow stress is governed primarily by mutual
dislocation interaction (athermal regime; Sect. 6.6.1), as

r ¼ lim
t!0

Ds
Dt

ð6:24Þ
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where Ds is a small drop in applied stress from s to s� Ds and Dt is the time
interval before straining is observed to recommence after the drop. This quantity
tends to be markedly higher than similar measures of static recovery, indicating
that the stress itself is assisting the recovery processes (for example, through the
action of the climb force, Sect. 6.2.1). There is thus the possibility that the tem-
perature dependence of r, expressed as an activation energy, may include a stress
term as well as the expected activation energy for self-diffusion.

Dynamic recrystallization (Sect. 3.3.3) is a further process that may modify the
build-up and structure of the population at elevated temperature. In the case of
rotation recrystallization, its occurrence may not have an obvious mechanical
effect because the new grains are formed in an apparently continuous transition
from the earlier formed subgrain boundaries. For example, in the experimental
deformation of marble at 1,000–1,300 K and constant strain rate, no abrupt
changes in flow stress are observed to coincide with the appearance of new grains
evidently formed by rotation recrystallization (Griggs et al. 1960; Schmid et al.
1980).

In contrast, the onset of migration recrystallization, often observed in hot
working of metals, can have a marked mechanical effect, usually a softening,
sometimes cyclic (McQueen 1977; Mecking and Gottstein 1978; Roberts 1984;
Sellars 1978). For this type of recrystallization to occur, a sufficient build-up in
stored energy associated with the dislocation substructure is necessary and high
angle boundaries must be sufficiently mobile. Thus, factors that inhibit recovery
(such as low stacking fault energy in f.c.c. metals) are favorable to its occurrence.

Where both types of recrystallization are observed in the same material, two
distinct domains of behavior are found, with rotation recrystallization tending to
occur at lower temperatures and strain rates (or stresses) than migration recrys-
tallization, presumably due to inhibition of grain boundary mobility by impurities
in this domain (Guillopé and Poirier 1979; Tungatt and Humphries 1981, 1984);
Fig. 6.17. A succinct review of dynamic recrystallization is given by Poirier (1985,
pp. 179–190).

6.6 Dislocation Theories of Flow in Single Crystals

6.6.1 Introduction: Athermal and Thermal Models

In preceding sections, we have discussed the factors governing both the motion of
the individual dislocation and the collective properties of the population of dis-
locations in a deforming crystal. We now combine these considerations in dis-
cussing how the macroscopic flow stress is determined during a deformation that
occurs primarily by dislocation glide. This procedure leads to the establishment of
theoretical flow laws for crystal plasticity.
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The macroscopic flow behavior is governed by two complementary
considerations:

1. The requirement of a certain instantaneous flow stress to bring about the plastic
straining.

2. The modification of the structure as a result of the straining, leading in turn to a
modification of the flow stress. (The term structure is to be understood as
covering all aspects of the actual configuration of the dislocation assemblage
and the distribution of other entities such as point defects, solute atoms and
dispersed phases). The progress of the deformation is then determined by the
simultaneous interplay of these two factors and can be simulated by an iteration
if suitable quantitative expression can be given to them.

Because of the many factors that may influence the resistance to motion of
individual dislocations and the many aspects of structure that may influence the
integration of these resistances to determine the macroscopic flow stress, there
exists in the literature a rather bewildering array of models for explaining the
plastic behavior of crystals, covering various types of materials and different
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Fig. 6.17 Boundary between rotation and migration recrystallization in NaCl deformed in creep
(after Fig. 6.13 from Poirier 1985)
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temperature and strain-rate regimes. Only a bare outline will be attempted of these
models here, not only for reasons of space but also because, until there is an
adequate observational basis for the structural and mechanistic assumptions
required for particular theories, there is little practical point in their elaborate
development beyond what is useful for guiding further experimental work. This
observational basis for theoretical development is still very inadequate, on the
whole, for most minerals.

In attempting to classify the theoretical models in a broad view, two types of
distinction in behavior can be made. The first concerns temperature sensitivity,
distinguishing between:

1. athermal regimes—weak temperature dependence
2. thermal regimes—strong temperature dependence.

The second type of distinction concerns the predominant sort of dislocation
interaction determining the flow stress, distinguishing between:

1. models in which the mutual interaction between dislocations plays the main
controlling part

2. models in which the interaction of the dislocation with other structural entities
is dominant.

The second distinction can also be expressed as one between population control
and glide control in the sense that, in the former case, the control depends in an
essential way on there being a multiplicity of dislocations while, in the latter case,
factors of a different kind are exerting control on the glide behavior of individual
dislocations.

Before considering particular groups of models, it is interesting to look, in a
general way, at the implications of the existence of the athermal and thermal
regimes of behavior. As pointed out in Chap. 4, it is often observed that there are
both low-temperature and high-temperature regimes, separated by an athermal
regime, although among particular materials the actual temperature ranges of the
regimes may vary widely relative to some characteristic temperature such as the
melting point. In the light of the present chapters on deformation mechanisms, this
tripartite tendency (Fig. 6.18) is seen to apply particularly where dislocation
mechanisms are involved. In the thermal regimes, the temperature sensitivity of
the flow stress can here be presumed to reflect the existence of thermally sur-
mountable barriers controlling dislocation movement, of which there is potentially
a wide range, as we have seen in earlier sections. However, the existence of two
separate thermal regimes would seem to imply that there are two distinct classes of
such barriers, reflected in two ranges of values of the activation energy E, as
follows:

1. Values of E small relative to the binding or cohesive energy per atom, say, less
than 1 eV (100 kJ mol-1). Such values may be typical of the Peierls energy,
the kink nucleation energy or the solute interaction energy in many materials,
especially metals or simple ionic crystals. Since the rate at which barriers are
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surmounted by thermal activation becomes significant when kT reaches a cer-
tain fraction of E, processes involving these relatively small values of E will
tend to be important only at relatively low temperatures.

2. Values of E comparable with the binding energy per atom, generally greater
than 1 eV. Such activation energies are typical of the formation or migration
energies of point defects such as vacancies or Schottky or Frenkel defects that
may be involved in, for example, diffusion. The rates of processes involving
such energies will only become important at relatively high temperatures.

A distinction between low-temperature and high-temperature thermal regimes
might thus be rationalized in terms of two such ranges of E values for the con-
trolling deformation mechanisms. Insofar as there is actually a clear separation of
the two ranges of E values, there is then also the possibility of having an inter-
mediate, athermal regime in which the barriers involved in the low-temperature
thermal regime are no longer effective but in which the temperature is not yet high
enough for processes characteristic of the high-temperature thermal regime to be
activated at a significant rate, thus explaining the existence of the three regimes
distinguished in Sect. 4.1 and Fig. 6.18. However, the rationalization in terms of
two ranges of activation energies may be an oversimplification since other factors,
such as whether the activation area DA� in (6.16) corresponds to the involvement
of few or many atoms, or whether the tg or t0 term in (6.17) predominates in
determining the dislocation velocity, may also be relevant in characterizing the
different regimes.

low temperature
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high temperature
thermal regime

athermal
regime
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Fig. 6.18 Schematic representation of temperature and strain-rate dependence of flow stress in
dislocation flow. _e1 and _e2 are strain rates (_e2 [ _e1)
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In the following subdivision of models into athermal and thermal groups, it is
convenient not to distinguish initially between low-temperature and high-
temperature regimes, allowing the relevance to one or other regime to emerge as
the analysis proceeds. However, it is useful to make a preliminary distinction
between three general types of barriers to dislocation motion (Fig. 6.19), the
nature and distribution of which are basic to the character of the deformation
behavior, as follows:

(a)

order
of b

order of precipitate
etc. spacing

order
of   -½

Dislocation displacement

(b)

Potential
barrier E

(c)

ρ

Fig. 6.19 Types of potential barriers to dislocation motion. a Barriers related to the Peierls
potential. b Discrete obstacles to dislocation motion such as dispersed phases. c Barriers deriving
from interaction with other dislocations
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(a) The barriers are spaced on a scale of the order of the Burgers vector b and arise
from the Peierls potential, possibly with modifications due to the presence of
point defects such as solute atoms. Insofar as it can be separately distin-
guished, the contribution of these barriers to the flow stress will be designated
sp (it should be made clear that sp here is not being used in strictly the same
sense as in Sect. 6.2.3 where the definition of the Peierls stress applied pri-
marily at absolute zero temperature).

(b) The barriers consist of obstacles such as dispersed phases and the misfit elastic
fields around solute atoms, the dimensions and spacings of these barriers being
large compared with b. Their distinguishable contribution to the flow stress
will be designated sf ; signifying a frictional or viscous drag.

(c) The barriers are the interactions with other dislocations, which are often
represented by an internal stress field si made up of the long-range stress fields
of the dislocations but which, as will be discussed in Sect. 6.6.3, can be
interpreted in other ways also. The contribution of these barriers to the flow
stress will be here designated as sd.

The magnitudes of the activation energies DE* and activation areas DA* for
particular cases can thus vary widely, leading to corresponding variations in the
characteristics of the mean dislocation velocity (Sect. 6.4) and eventually, through
the Orowan relation (6.4a), being reflected in the macroscopic flow behavior.
However, it must be borne in mind that the stress dependence of the flow rate may
reflect a role of stress in the mean dislocation density as well as one in the
dislocation velocity.

Insofar as separate components of the flow stress can be related to the particular
classes of barriers to dislocation motion listed above, the macroscopic flow stress s
can be viewed as a summation of these components,

s ¼ sp þ sf þ sd

However, such linear additivity may not always apply, as in the case of solid
solutions for which the strain-hardening effects that would normally be treated as
increases in the component sd are observed to depend on the presence of the
solute, the effect of which would otherwise be treated as a contribution to the
component sf (Kocks 1984, 1985b).

We first consider athermal models. Since the flow stress component sp is
normally rather sensitive to temperature, it is not of primary concern in the
athermal regime, where attention focusses on the components sf and sd; treated in
the next two subsections.

6.6.2 Athermal Models Based on Discrete Obstacles

If the moving dislocations have to cut through or circumvent fixed structural
obstacles without much aid from thermal fluctuations, the applied stress itself must
supply the force that is required locally for overcoming or circumventing the
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obstacles. In this case, the obstacles will give rise to an athermal, frictional
resistance to the dislocation motion (the term ‘‘frictional’’ is used in analogy with
ordinary sliding friction in the sense of being relatively rate insensitive, but it is
not fully analogous because of the absence of the strong normal-stress dependence
characteristic of ordinary friction). It is the objective of the models treated in this
subsection to calculate the stress component sf that must be applied to the crystal
in order to bring about a macroscopic plastic deformation by dislocation motion in
the presence of the more or less athermal frictional resistance from the discrete
obstacles.

In practical terms, two categories of athermal obstacle models can be usefully
distinguished, namely, those of solute hardening and of particle hardening (or
strengthening). Both are based on heterogeneities in the crystal but at different
scales, as distinguished in Sects. 6.3.1 and 6.3.2. For general reviews, see Brown
and Ham (1971), Kocks et al. (1975), Gerold (1979), Martin (1980), Haasen
(1978, Chap. 14, 1983), Strudel (1983), Ardell (1985), Humphreys (1985), Kocks
(1985b) and Nabarro (1985). Haasen (1983) also considers the effects of long-
range ordering in solid solutions.

Solute hardening. Solid solution effects can be athermal when the temperature
is moderately low and the solute atoms are effectively immobile or only slightly
mobile. The various ways in which solute atoms can impede the motion of dis-
locations and thus increase the flow stress are listed in Sect. 6.3.1. We shall be
concerned here mainly with the elastic interactions since the effect of core inter-
actions will tend to be more strongly thermally activated (Sect. 6.6.5).

It was noted in Sect. 6.3.1 that prior segregation of solute at pre-existing dis-
locations will tend to lock them so that a higher applied stress may be required to
initiate dislocation movement than to sustain it later, giving rise to an initial yield
drop in the stress–strain curve. We are here considering the effect of the solute on
the dislocations when they are in motion, an effect that dominates the flow stress at
small strains in many alloys of low initial dislocation density and low Peierls
stress. Although thermal activation may be important at very low temperatures, as
shown by a marked decrease in flow stress with rise in temperature, there tends to
be a temperature range, around room temperature for common metals or ionic
compounds, in which the flow stress at small strains is almost independent of
temperature, a range known as the plateau hardening regime. Because the plateau
hardening effect is relatively insensitive to strain rate, it can be referred to as a
frictional effect rather than as a viscous drag. It is to the plateau hardening regime,
therefore, that the main athermal solute hardening theories are directed.

The basic theoretical problem is to calculate, given a distribution of obstacles, the
number of them per unit length that are interacting effectively with a given dislo-
cation segment at any instant and to determine the applied stress needed to overcome
the combined effect of the interactions. Two limiting cases are commonly considered
(Haasen 1978, p. 327, 1983; Hirth and Lothe 1982, p. 681). The first, Friedel–
Fleischer theory, envisages the dislocating line being forced by the applied stress
against point obstacles of given strength, while the second, Mott–Labusch theory,
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envisages the line lying in a minimum energy configuration determined by the
potential fields around diffuse obstacles.

The Friedel–Fleischer theory applies for relatively strong obstacles in dilute
concentration and predicts a solute hardening component of the flow stress of

sf ¼
x
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where x is the mole fraction of solute, F the maximum interaction force per solute
atom or molecule (for estimates, see Kocks 1985b), T the line tension or energy
per unit length of the dislocations (2T � Gb2 from Sect. 6.2.2), G the shear
modulus and b the Burgess vector. The Mott–Labusch theory applies to weak,
diffuse obstacles in higher concentration and predicts a solute hardening compo-
nent of the flow stress of
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where w is the ‘‘obstacle width’’ or interaction range for the solute and a is a
numerical factor of order unity deriving from the form of the interaction potential.
Both square-root and two-thirds power (or stronger) dependence on solute con-
centration have been observed for the flow stress at small strains in metallic solid
solution alloys; for details and references, see Haasen (1983) who also reviews the
effect of solutes on the form of the stress–strain curve for various classes of materials.

In spite of the agreement with observed concentration dependence, just noted,
reviews have emphasized that other observations indicate that, in interaction with
dislocations, the solute atoms can seldom be regarded as discrete entities or point
obstacles as in the Friedel–Fleischer theory, except possibly at very low concen-
trations (Kocks 1985b; Nabarro 1985). Rather, the effect of the solute atoms is
generally more smeared out, providing a series of extended potential troughs in the
path of the dislocation. This effect is recognized in some degree in the Mott–
Labusch approach but is emphasized more strongly in terms of a ‘‘trough model’’
by Kocks (1985b) who also recognizes a limited amount of solute mobility already
within the plateau hardening regime.

Particle hardening. The effect of precipitates or second phase particles depends
on the size and physical characteristics of the particles as well as on their spacing.
According to the nature of the interaction with the dislocations (Sect. 6.3.2), there
are two types of situation, distinguished by whether the dislocation cuts through
the particle (by common convention, covered by the term precipitation hardening)
or bypasses it (dispersion hardening):

1. In the particle-cutting case, the theory of the flow stress involves the same sort
of statistical considerations as in the case of solute hardening effects, the dif-
ference lying in the obstacle now being larger and possibly stronger. So long as
the spacing of the particles is sufficiently large relative to their effective
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dimensions, the Friedel–Fleischer relation in (6.25) can be applied; rewriting
this relation in terms of the spacing l of the obstacles in the slip plane, using

l ¼ bx�
1
2; we obtain an estimate of the flow stress component due to precipi-

tation hardening as

sf ¼
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[An analogous expression can be obtained from (6.26) for the case of diffuse
precipitates interacting over a range comparable to their spacing but it is probably
of more limited applicability; see discussion by Ardell (1985)]. The evaluation of
F depends on the nature of the dislocation-particle interaction and may involve
coherency, surface energy, ordering, stacking fault, and elastic modulus effects
(Ardell 1985; Gerold 1979; Martin 1980, pp. 53–60). If F is taken as being
proportional to dn; where d is the width or diameter of a particle, and we introduce
the volume fraction xv of particles through xv � d2=l2; then (6.27) leads to

sf / x
3n
4
v l

3n
2�1 ð6:28Þ

indicating that, for a given volume fraction of particles, the flow strength will
increase as the precipitate coarsens, provided n [ 2=3.

2. In the bypassing case, the theoretical model envisages that the dislocation line
bows around the particles, leaving residual loops (‘‘geometrically necessary
dislocations’’) as it proceeds further. This process requires a flow stress com-
ponent corresponding to the Orowan bow-out stress

sf ¼
aGb

l
ð6:29Þ

(Embury 1985; Haasen 1978, p. 250; Martin 1980, p. 62) where G; b; l are as
defined for Eqs. (6.25) and (6.26) and a is a numerical factor of the order of unity.
Such a relation is found to fit experimental observations on initial yield stress quite
well in metals with varying concentrations of dispersed hard particles, especially if
l is taken as the distance between grain surfaces rather than between their centers
(Martin 1980, p. 63).

The opposite dependences of (6.28) and (6.29) on the spacing l (provided
n [ 2=3) indicate that during particle coarsening at constant volume fraction,
known as ‘‘Ostwald ripening’’, (Haasen 1978, p. 207) a critical size and spacing of
particles will tend to be reached beyond which bypassing becomes easier than
cutting, this size corresponding to a maximum in the precipitation hardening of the
material. The decrease in strength upon ‘‘over-aging’’ of age-hardening alloys is
commonly attributed to such an effect, although this explanation is questioned by
Ardell (1985).
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With increasing plastic strain there are several possible effects consequent upon
the accumulation of residual dislocation loops around bypassed particles that lead
to more complex strain-hardening behavior in the bypassing case than in the
particle-cutting case (normal strain hardening accompanying dislocation multi-
plication will be discussed in the next section). The residual loops themselves
become involved in mutual dislocation interactions, or the accumulating internal
stress around the particle may lead to prismatic punching (possibly initiated by the
reorientation of the Orowan loop itself through cross-slip or climb) which also
increases the dislocation density, or secondary slip systems may be activated in the
vicinity of the particles. These various processes, reviewed by Martin (1980, p. 72)
and Strudel (1983), are additional to the normal dislocation multiplication effects,
as observed in pure metals and which are effective in a similar way in precipitation
hardened materials. Thus, the strain hardening of particle-bearing materials
through the effects of internal stress, over and above the precipitation hardening
effect, tends to be a very complex phenomenon, leading to predicted shapes of
stress–strain curve varying from linear to quadratic—see Strudel (1983) who
discusses at some length the concept of internal stress as applied in the theory of
the flow stress for particle-strengthened materials.

Order hardening. Where short-range ordering exists, there is a local resistance
to the motion of a dislocation having a Burgers vector of the disordered structure
because of the work done locally in destroying the ordering across the slip plane.
An additional local stress of c=b is then needed, where c is the antiphase boundary
energy per unit area, and so the crystal shows an effect analogous to a precipitation
hardening in which the force F for cutting through the barriers derives from this
local stress (Friedel 1964, p. 383).

When long-range ordering exists (Sect. 1.2.3), the independent movement of
ordinary dislocations having a Burgers vector of the disordered structure will tend
to be difficult and super dislocations (Sect. 6.2.5) will move much more readily,
unless a high Peierls stress intervenes. The properties associated with the motion
of the super dislocations will be analogous in many respects to those of extended
dislocations except that the joining strip of antiphase boundary can more readily
exist in arbitrary planes compared with the stacking fault strip in extended dis-
locations. Although the super dislocations may be able, in principle, to move
locally without resistance from order destruction, there will be some hardening
associated with the domain structure of the ordering, corresponding to an addi-
tional stress component of the order of c=a; or somewhat less when the finite
thickness of domain walls is taken into account, where a is the domain size and c is
of the order of SDE=b2; S being the Bragg–Williams order parameter defined by
(1.1) and DE the reduction in energy per unit cell due to the ordering (Friedel
1964, p. 384; Haasen 1983, p. 1392; Hirth and Lothe 1982, p. 685). Also various
yield point and aging phenomena can appear, for example, due to segregation
effects, and the hardening may tend to peak before complete ordering is reached
(Haasen 1983).
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6.6.3 Athermal Models Based on Mutual Dislocation
Interaction

These models have occupied a dominating place in metallurgical writings, in spite
of involving great theoretical difficulties. They have been developed especially in
connection with the strain hardening of fairly pure metals. However, a wider
relevance may be expected wherever dislocations can move freely and multiple
slip systems operate, facilitating dislocation interaction and multiplication and the
development of a three-dimensional network of dislocations.

Mutual interaction models have been developed most fully in attempting to
explain the stress–strain curves of the pure f.c.c. metals (for reviews, see Basinski
and Basinski 1979; Mecking 1981a; Nabarro et al. 1964; Weertman and Weertman
1983a). However, the same considerations have been found to be applicable to
f.c.c. alloys, b.c.c. and close-packed hexagonal metals, ionic crystals of NaCl
structure, and diamond-structure covalent crystals (see also Alexander and Haasen
1968; Haasen 1983; Sprackling 1976, Chap. 13). Three stages of strain hardening
are widely recognized. These are illustrated in Fig. 6.20 and are characterized as
follows:

Stage I: Microscopical observations indicate that in stage I the dislocation
motion is mainly confined to a single slip system (the system for which the
resolved shear stress is a maximum) and that the dislocations travel large dis-
tances, comparable to specimen or crystal dimensions. The extent of this stage,
known as the ‘‘easy glide’’ region, tends to be greater at lower temperatures.
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Fig. 6.20 Depiction of the three stages of strain hardening in NaCl (after Fig. 11.7 from
Sprackling 1976)
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Relatively few dislocation sources are active and the dislocation density does not
increase markedly with strain, a trend with which the low strain-hardening rate of
the order of 10–4 G is correlated.

Stage II: This stage begins with the onset of more obvious activity of secondary
slip systems intersecting the primary system. The primary system continues to
contribute most to the strain but with much shorter distances of travel of the
individual dislocations, as deduced from the lengths of slip traces at the surface,
and with a much increased rate of strain hardening, now of the order of G/300 to
G/200. The dislocation density increases markedly during this stage with the build-
up of the three-dimensional dislocation network. As a result of dislocation reac-
tions the network may contain many sessile segments. The flow stress in stage II
shows very little dependence on temperature but its extent depends on the stacking
fault energy (see stage III).

Stage III: As higher stresses are reached, the linear hardening regime of stage II
gives way to a further stage of more or less parabolic shape in which the strain
hardening rate steadily decreases toward values of the order of 10–3 G or less. In
this third stage, the build-up of the dislocation network begins to be moderated by
dynamical recovery processes that relieve dislocation pile-ups or that lead to the
annihilation of dislocations or the sharper development of cell-like structures
(Sect. 6.5.1). The most important step in such recovery processes in metals at low
to moderate temperatures is widely thought to be cross-slip, which is evidenced in
the appearance of wavy slip traces. Since dissociated dislocations must recombine
to undergo cross-slip, a dependence on stacking fault energy can be introduced
into the stress–strain curve at this stage, as well as some temperature dependence;
in particular, the onset of stage III is earlier, and hence the length of stage II
shorter, for higher stacking fault energies. At higher temperatures, dislocation
climb becomes a potentially important dynamical recovery mechanism, intro-
ducing a stronger temperature and time dependence (Sect. 6.6.6).

In attempting to explain this athermal or only mildly temperature dependent
behavior in terms of mutual dislocation interaction two views have been taken of the
predominating characteristic of the interaction (Sect. 6.3.4). In the first, emphasis is
put on the role of the long-range elastic stress field associated with the dislocation
network. In the second, the short-range forest-cutting effect is emphasized.

According to models based on the effect of the long-range stress field, the flow
stress s is that which is required to counteract the internal stress si due to the
dislocation network. Assuming that the interactions between parallel dislocations
are the most important and that the stress fields of all except the nearest dislocation
cancel to zero at a given point, and noting that the relevant shear stress at a point
due to a dislocation at a distance r is of the order of Gb=2pr (Sect. 6.2.1), then,

putting r ¼ q�
1
2; we obtain the Taylor estimate of the internal stress,

si ¼ aGbq
1
2 ð6:30Þ

(Taylor 1934; Weertman and Weertman 1983a, p. 1281), where G is the shear
modulus, b the Burgers vector, q the dislocation density and a a numerical constant
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near to unity (theoretical estimates of a vary from 1/2 to 1/3, while measurements
on copper suggest a ¼ 1=3; as quoted by Haasen (19781, p. 25); see also Basinski
and Basinski (1979), The flow stress is then obtained by putting s ¼ si:

In models based on the forest-cutting effect, an account is taken of the work
required for a moving dislocation to cut through the dislocations that cross the slip
plane, involving mainly short-range interactions (Sect. 6.3.4). Since the stress
needed will be proportional to the number of such intersections per unit distance

traveled, the flow stress can again be expected to be proportional to q
1
2 (at least

insofar as dislocation networks of different densities are self-similar or q is now
taken to be the density of the forest dislocations). The proportionality factor will
presumably depend on the nature of the impediment to dislocation movement
arising from the intersection, for which there are a number of models (see sum-
mary by Weertman and Weertman 1983a, Sect. 5.5). Also, if there is significant
thermal activation of the intersection process, some temperature dependence may
be introduced in addition to that deriving from the shear modulus G.

An alternative to the forest-cutting view is to place emphasis on the ‘‘mesh
length’’ or ‘‘link length’’ of the three-dimensional network of dislocations that
builds up during activity of the various slip systems (see, for example, Burton
1982b; Kuhlmann-Wilsdorf 1985). Again, the average mesh length is inversely

proportional to q
1
2 and so the formal theoretical implications tend to be the same.

Thus, regardless of whether long-range or short-range effects are involved, a
flow stress determined by mutual dislocation interactions can be expected to have
the form

s ¼ aGbq
1
2 ð6:31Þ

where q is a dislocation density, which may refer to the total dislocation popu-
lation or to some significant part of it, and a is a numerical factor of the order of
unity. The particularities of specific models enter through the way in which the
quantity q is expressed in terms of resolved shear strain c in order to obtain a
stress–strain relation sðcÞ: The central aim of the models is to predict the strain-
hardening rate

h ¼ ds
dc
¼ aG

2
b

q
1
2

dq
dc

� �
¼ aRG

2
¼ bG ð6:32Þ

where R ¼ b=q1=2
� �

ðdq=dcÞ and b ¼ aR=2 is a constant insofar as R is a constant.
h thus reflects the value of dq=dc at a given value of qðcÞ and hence involves the
problems of dislocation multiplication (Sect. 6.5.2). Given (6.32), the stress–strain
relation can then, in principle, be obtained by integration.

As pointed out by Hirth and Lothe (1982, Chap. 22) there has been little
progress in developing fundamental theories of the flow stress and strain hardening
on the basis of the properties of mutual dislocation interaction without introducing
ad hoc assumptions about the characteristics of the dislocation population; that is,
the form of development of the actual dislocation substructure cannot yet be
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predicted from first principles. All models of the flow stress and the strain hard-
ening so far proposed have therefore been in some degree phenomenological in
that they are based on assumptions about the basic parameters characterizing the
dislocation population and are therefore in that degree descriptive rather than
predictive. Although there is a large literature on such models, we can here only
indicate their broadest aspects.

The dimensionless quantity R in (6.32) is essentially an expression of the ratio
of dislocation storage to dislocation travel. This ratio is widely represented in the
various models as a function of the ratio of two parameters observable or definable
in terms of the microstructure. Thus in the often-quoted long-range model of
Seeger for stage II hardening, R is expressed, apart from a numerical factor of

order unity, as nb=LDcð Þ1=2 where n is the number of dislocations released by a
given source, as determined from the slip step height nb, at the surface, L is the
mean free path of dislocations, as measured by the length of the slip traces on
the surface, and Dc is the resolved shear strain in excess of a reference strain of the
order of the strain at the onset of stage II; see brief treatments and references in
Haasen (1978, p. 274) and in Weertman and Weertman (1983a, p. 1285). We-
ertman and Weertman (1983a, p. 1284) further describe a model for stage I
hardening in which R is written as d=L where d is the active slip plane spacing and
L is as before; however, they also quote the view of Hirsch that no really satis-
factory model has yet been advanced for stage I hardening.

In a survey of the effects of mutual dislocation interaction in relation to the flow
stress and the strain hardening, Kocks (1985a) has emphasized that the deforma-
tion should be viewed in terms of the two-dimensional motion of dislocations in
the slip plane as a percolation process, rather than one-dimensionally as in the
previous paragraph. As relevant microstructural parameters in what is essentially a
forest-cutting model he has used the quantities l, the average spacing of the
obstacles to dislocation motion (of order q1=2), and k, the average spacing of ‘‘hard
spots’’ in the slip plane which are not penetrated during the ‘‘percolation’’ of the
dislocation line across the slip plane as it surmounts the penetrable obstacles (‘‘soft
spots’’); k is in some way related to the scale of the cell structure (Sect. 6.5.1) that
becomes obvious in stage III. Kocks then derives an expression for the strain

hardening which is equivalent to that given by putting R equal to ðl=kÞ2 in (6.32).
The observed hardening rate in stage II is then obtained if k � 10 l.

Although it is generally agreed that, in stage III, dynamical recovery effects are
causing the strain hardening to fall below the maximum rate reached in stage II
(sometimes called the athermal hardening rate), the phenomenology of stage III is
not fully understood and satisfactory models are still lacking. As already indicated,
it is widely considered that cross-slip is an important factor in the dynamical
recovery, but this view has been disputed (for example, Kuhlmann–Wilsdorf 1985)
and there may be other factors involved. Thus, Kocks (1985a) has pointed to a
possible role of the breaking of attractive junctions involved in the forest effects, a
process that would also introduce a sensitivity to stacking fault energy and a
greater temperature sensitivity, such as is observed. The formation of a more
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clearly defined cell structure in the dislocation population is also a feature of stage
III and at least two structural parameters will therefore still be required, but they
may have to be treated as being independent rather than as a single parameter
through their ratio, as has been done for stage II (see, for example, Mecking
1981a).

At very large strains (�1), the strain-hardening rate becomes small. In some
cases, it appears to approach zero, corresponding to a ‘‘saturation’’ state, but, in
other cases, no saturation limit is apparent up to strains of at least 10 (Hecker and
Stout 1984). It has been suggested that the presence of solutes is important in this
connection since they may retard dynamical recovery and so prevent the attain-
ment of the balance between hardening and dynamical recovery that is implied in a
saturation limit (Hecker and Stout 1984; Kocks 1984). See further discussion on
large strains in Sect. 6.8.5.

6.6.4 Creep in the Athermal Regime

Under this somewhat self-contradictory heading we consider the time-dependent
or thermally activated contributions to the deformation which have been ignored in
the previous two sections as being of secondary importance relative to the more or
less instantaneous, athermal deformation that occurs under an applied stress
greater than the yield stress. We now consider the occurrence of further straining at
a finite but decaying rate that may be observed if the stress is maintained at the
same level and measurements are made with sufficient sensitivity. This transient
creep in the athermal regime usually obeys a logarithmic law (Sect. 4.3.2).

The athermal part of the deformation can be imagined to have terminated with
the dislocations being forced against barriers (internal stress and/or other obsta-
cles) that are too high to be overcome by the applied stress. However, some of
these barriers will be only slightly too high and, with the passage of time, may
subsequently be surmounted with the aid of thermal fluctuations, leading to a
contribution to deformation that will appear as transient creep. The decrease in the
creep rate with time can be attributed either to a progressive elimination of the
situations where a dislocation is resting against a relatively low barrier (exhaustion
effect) or to a progressive raising of the barriers as a result of the strain hardening
accompanying the additional strain (hardening effect). The exhaustion hypothesis
was early explored by (Mott and Nabarro 1948) but the hardening hypothesis has
become more favored (Friedel 1964, p. 305; Mott 1953; Weertman and Weertman
1983a).

Theories of logarithmic creep are commonly based on an expression for the strain
rate _c such as may be obtained from Orowan’s equation _c ¼ qbv; using (6.13b),
putting v ¼ ðDA=lÞm; substituting (3.12f) for v for the case sbDA� kT applicable

for relatively high stress and low temperature, and finally putting l ¼ q�
1
2:

This approach leads to
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_c ¼ q
3
2bDAv0 exp �ðDE� � sbDA�Þ=kT½ � ð6:33Þ

where q is the dislocation density and the other symbols are as used in Sect. 6.4.1
and Fig. 6.19. The quantity DA� is viewed as increasing progressively according to
the exhaustion or hardening effect just discussed. In the hardening case we can
write

DE� ¼ DsdbDA� þ U ð6:34Þ

where DsdbDA� represents the work needed to overcome the local fluctuation in
mutual dislocation interaction that is holding up the dislocation, and U is any
additional barrier (such as a Peierls or other short-range barrier) that must also be
overcome when moving the dislocation (note that the activation area DA� in (6.34)
has been taken as being identical with that in (6.33), but it is possible that in some
cases a distinction will need to be maintained). On the view that the mutual
dislocation interactions can be described in terms of an internal stress (Sect. 6.6.3),
Dsd is the local fluctuation in internal stress si to be overcome by thermal acti-
vation. We now suppose that the mutual dislocation interaction effect increases
linearly with strain, putting Dsd ¼ hc; where h is the strain-hardening coefficient
and c is the creep strain. In this case, the relationship (6.33) can be integrated at
constant stress to give the creep law

ctot ¼ cinst þ c0lnð1þ mtÞ ð6:35aÞ

(Friedel 1964, p. 306; Haasen 1978, p. 277) {Weertman 1983 #7385, whose
expression for v lacks an explicit stress dependence}, where ctot and cinst are the
total and instantaneous (elastic plus plastic) strains, respectively, and c0; v are
given by

c0 ¼
kT

hbDA�
ð6:35bÞ

v ¼ q
3
2bDAm0

c0
exp �U � s� cinsthð ÞbDA�

kT

� �
ð6:35cÞ

The relation in (6.35a) leads to a creep rate

_c ¼ c0m
1þ vt

ð6:35dÞ

Therefore, the initial creep rate is predicted to be c0v and the creep rate becomes
c0=t for vt � 1.

The model just described is still a phenomenological one in that the parameters
h;DA� and DA have not been given precise physical meaning in microstructural
terms, but it serves to illustrate the essential nature of logarithmic creep, which, in
this model, derives from the linear strain dependence of the activation energy DE�

through (6.34).
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Empirically, the determination of an apparent activation energy Q directly by
temperature stepping procedures should indicate a continual increase in Q during
the progress of logarithmic creep. However, because of the limited range over
which creep rates can be measured, the observed values of Q at a given stress will
fall in a limited range at any given temperature, even though a wide range of
activation energies may exist; also the values typical of the observable range may
be expected to increase with temperature, as can be seen by writing (6.33) as

DE� � sbDA� ¼ kT lnðq3
2bDAm0= _cÞ and noting that the In term will be effectively

nearly constant(Weertman and Weertman 1983a).
Before concluding this section it is appropriate to emphasize the distinction

between logarithmic creep and anelastic creep. Whereas logarithmic creep is
observed in situations where the yield stress has been exceeded and some athermal
plastic deformation brought about, anelastic creep is observed under small stresses,
below the macroscopic yield stress, and is not limited to the athermal regime.
Anelastic deformation is defined as reversible, time-dependent strain that is line-
arly related to the stress in the sense that the Boltzmann superposition principle is
obeyed in summing the contributions to the current strain rate due to all the past
stress history (Jackson 1986; Nowick and Berry 1972; Zener 1948). Models for
anelastic dislocation creep involve the movement of dislocation segments within
finite limits set by insurmountable barriers (see discussion of amplitude-inde-
pendent internal friction from dislocation motion in Sect. 2 of Fantozzi et al.
1982).

6.6.5 Thermal Models Based on Viscous Drag

This first category of models for temperature-sensitive dislocation flow is con-
cerned with situations in which the flow rate is determined primarily by the rate at
which dislocations move against viscous drag forces that act more or less uni-
formly on them. Thermal recovery processes (Sect. 6.5.3) play a relatively minor
role and so the term glide-controlled creep is sometimes applied (Poirier 1985,
p. 101). It is a category that is especially relevant in the low-temperature thermal
regime (Sect. 6.6.1), in cases in which the dislocation velocity is strongly influ-
enced by Peierls or similar atom-scale barriers that are thermally surmountable in
this temperature range and which tend to be largely of an intrinsic nature. A cross-
slip controlled deformation might be included in here. However, the category also
has application in the high-temperature thermal regime where effects such as
solute drag are important; these tend to be extrinsic effects. Thus, it is a category
that is potentially of importance in minerals in either thermal regime.

The two prototype models of the category are the microdynamical models of
(Weertman 1957) and of (Haasen 1964). Both models are based on the Orowan
equation for the strain rate,

_c ¼ qbv ð6:36Þ
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Appropriate expressions for the dislocation velocity v and the mobile disloca-
tion density q are derived and inserted in (6.36). In this way, the strain rate is
obtained directly and the stress–strain curve is obtained by integrating (6.36), in
both cases taking into account the dependences of q and v on the strain c as well as
on stress s, temperature T, etc. Expressions for q and v have been discussed in
general in Sects. 6.5.3 and 6.4.1, respectively.

The model of (Haasen 1964) (see also Alexander and Haasen 1968), developed
for application to silicon and germanium and similar materials, takes into account
strain hardening by assuming that the stress s acting at a dislocation, designated
the ‘‘effective stress’’ seff , is equal to the applied stress sappl minus an internal
stress or ‘‘back stress’’, imagined to arise from the long-range stress fields of the
other dislocations or otherwise to express the effect of their interaction. Then, from
(6.30) or (6.31),

s ¼ seff ¼ sappl � aGbq
1
2 ð6:37Þ

Haasen also uses the velocity relation in (6.16) and a development of (6.23a) for
the dislocation density in which c�1

e / vseff : The stress–strain curve or creep curve
is then obtained by numerical iteration using these three relationships together
with (6.36).

One of the interesting features of Haasen’s model is that it reproduces the
striking yield drop that is often observed in stress–strain tests in silicon, germa-
nium and other nonmetallic materials having a low initial dislocation density. This
effect can be attributed to a softening arising from the circumstance that, as the
dislocation density increases with straining, the dislocation velocity required for
achieving the specified strain rate decreases and so the required stress falls; on
continuing to larger strains strain hardening eventually takes effect and the
required stress rises again. In a creep test the corresponding phenomenon is the
generation of a sigmoidal creep curve. This type of behavior has been observed in
quartz (Fig. 6.21) and the application of the Haasen model to quartz has been
explored by Hobbs et al. (1972) and Griggs (1974). Such a yield drop effect is to be
distinguished from that arising from the Cottrell solute locking effect (Sect. 6.3.1
and Fig. 6.9), tending to give a less sharp stress drop than in the latter case.

The model of Weertman (1957) is developed in a somewhat similar way. An
expression for the dislocation velocity analogous to Eqs. (6.12) with (6.13a) and
Ekm ¼ 0 is used and the dislocation density is treated as depending on a given
density of sources and on the existence of pile-ups, for which certain parameters
are assumed (see also Poirier 1985, p. 119). The microdynamical models can be
applied in cases of viscous drag effects such as solute drag or jog drag by using an
appropriate expression for the dislocation velocity derived from (3.15). Thus, if the
mobility M of a dislocation segment that is dragging a solute atom is taken as equal
to the mobility of the solute atom, that is, D=kT ; where D is the diffusion coef-
ficient of the solute in the crystal, and if the force acting on the dislocation segment
is, from (6.6a), seffbl; where seff is the effective stress (6.37) and l is the length of
dislocation line per solute atom being dragged, then we have
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v ¼ FM ¼ Dblseff

kT
ð6:38Þ

(Brion et al. 1971; Burton 1982a; Takeuchi and Argon 1976, 1979; Weertman
1977). See (Poirier 1985, p. 123) for a discussion on the appropriate choice of
diffusion coefficient D in applications to concentrated solid solutions. It should be
noted here, however, that there is a view (Kocks 1984) that solute drag is of
negligible importance at high temperatures and that the role of solute hardening is
effective through its influence on mutual dislocation interactions (Sect. 6.6.6).
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Fig. 6.21 Compression stress-strain curves for synthetic quartz crystal S1 under 300 MPa
confining pressure at various temperatures, showing yield drop phenomenon (After Fig. 4 in
Hobbs et al. 1972, 352 pp)
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The microdynamical models of the type considered in this subsection are
limited to transient or primary creep so long as dislocation multiplication is
envisaged to continue indefinitely without counterbalancing annihilation or
immobilization. However, if a counterbalance is introduced, for example, in the
form of a recovery process, the models have wider application, especially at high
temperatures, and steady state creep can be simulated. Thus, Weertman (1975)
introduced recovery effects in the form of the climb of dislocations out of the pile-
ups, and Alexander and Haasen (1968) introduced an empirical, stress-dependent
recovery term in the dislocation density. The resulting steady-state creep rate tends
to be more highly stress dependent than a linear or Newtonian creep since, even
though the velocity term in the Orowan equation may be linearly dependent on
stress, additional stress dependence can be introduced in the mobile dislocation
density term which incorporates both the multiplication and the recovery effects
(Weertman 1975). However, recovery processes involving climb no longer rep-
resent aspects of viscous drag control of the dislocation dynamics and the models
incorporating recovery thus take on a hybrid character, sharing their recovery
aspects with the models of the next section. In practice, there may often be a
transition from viscous drag or glide control to recovery or climb control with the
approach to steady state.

6.6.6 Thermal Models Based on Mutual Dislocation Interaction

This category of models includes, and is to a large extent comprise of, models that
are commonly referred to as models of recovery-controlled creep. These models
have been discussed mainly in connection with secondary creep or steady state
behavior. However, we shall attempt to introduce them in a slightly more general
context.

Insofar as the mutual dislocation interaction that supports the applied stress and
controls the movement of the gliding dislocations is athermal (Sect. 6.6.3), the rate
control in time-dependent deformation arises mainly through the thermally acti-
vated modification (recovery) of the density and configuration of the interacting
dislocation network. In this case, the role of the thermal activation is more indirect
than in the models of the previous category (Sect. 6.6.5), in which the primary
rate-controlling factor was the viscous drag in the thermally activated movement
of the gliding dislocations; that is, in recovery-controlled creep, the thermal
activation promotes the lowering of the barriers to dislocation motion rather than
the surmounting of given barriers.

The notion of dynamical recovery has already been invoked in discussing stage
III of the stress–strain curve in the athermal regime (Sect. 6.6.3). In that regime,
the recovery is envisaged as being primarily a function of strain although it may
also involve a minor degree of temperature sensitivity from thermal activation. If a
saturation hardening is attained, it is only after very large strains (�1). However,
on entering the thermal regime at higher temperatures, the dynamical recovery
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processes become more strongly temperature dependent, possibly with a transition
in mechanism, such as from cross-slip control to climb control, and the recovery is
now envisaged as being primarily a function of time. A steady state condition is
then more readily achieved, often after quite small strains (*0.01–0.1). We
therefore begin by discussing in a general and largely phenomenological way the
deformation kinetics when time-dependent recovery is important, taking the case
of creep, for simplicity, and generalizing the treatment of Sect. 6.6.4.

As in Sect. 6.6.4, we assume that the applied stress is supported primarily by the
mutual dislocation interactions, as represented by the flow stress component sd;
and that sd tends to increase due to strain hardening during creep. We now assume,
in addition, that sd tends to decrease due to recovery as time progresses, and that
the resultant effect can be written as

Dsd ¼ hc� rt

and hence (6.34) becomes

DE� ¼ bDA� hc� rtð Þ þ U ð6:39Þ

where c is the plastic strain, t the elapsed time, and the parameters h, r, respec-
tively, the strain-hardening rate and the recovery rate. Both h and r can, in prin-
ciple, be determined empirically, h by carrying out a stress–strain test at a
relatively high strain rate at the conclusion of the creep test and r as set out in Sect.
6.5.3 (Poirier 1985, p. 105). Using the above expression for Dsd in (6.34) and
following the same procedure as in deriving (6.35a) the following relation for the
strain is obtained:

ctot ¼ cinst þ c0 ln 1þ msr e
t

tr � 1
 �h i

ð6:40aÞ

where ctot and cinst are the total and instantaneous (elastic plus plastic) strains,
respectively, and c0; s and m are given by

c0 ¼
kT

hbDA�
ð6:40bÞ

sr ¼
kT

rbDA�
ð6:40cÞ

m ¼ q
3
2bDAm0

c0
1� exp � sbDA

kT

� �
exp �U � bDA� s�hcinstð Þ

kT

� �� �
ð6:40dÞ

For the case sbDA� kT ; (6.40d) reduces to (6.35c) and for the case sbDA	
kT (and therefore also sbDA� 	 kT), (6.40d) becomes

m ¼ q
3
2sb2 DAð Þ2m0

c0
exp �U þ hcinstbDA�

kT

� �
ð6:40eÞ
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In these expressions the symbols are as used in Sect. 6.4.1 and Fig. 6.19. The
relation (6.40a) leads to a creep rate

_c ¼ vc0e
t

tr

1þ vsr e
t

tr � 1
 � ð6:41Þ

The initial creep rate (t ¼ 0) is therefore again c0v and the creep rate approa-
ches c0=sr ¼ r=h as t!1: The latter result,

_cs ¼
r

h
ð6:42Þ

for the steady-state strain rate _cs in recovery-controlled creep is the well-known
Bailey-Orowan equation (Bailey 1926; Orowan 1946). It is usually derived more
directly by equating hDc and rDt in the steady state. It should be reiterated here
that the Bailey–Orowan equation for the steady-state creep rate rests on the view
that the strain hardening or dislocation multiplication aspect is dependent only on
the strain and the recovery or dislocation elimination aspect dependent only on the
elapsed time through thermal activation; this extreme view has been criticized as
overlooking the possibility of strain-driven recovery or strain softening effects, the
incorporation of which would require a different approach (see summary of these
views in Roberts (1984)).

The quantity sr can be viewed as a sort of relaxation time for primary creep.
When t� sr; (6.40a) approximates the form

ctot ¼ cinst þ c0 ln vsr þ
r

h
t ð6:43Þ

where the term c0 ln vsr represents an additional contribution to the strain during
primary creep above what would have been contributed in steady-state creep
alone. In principle, the evaluation of this term, of the initial creep rate c0v; and of
the steady state creep rate c0=sr enables the three parameters c0; v and sr in Eqs.
(6.40a) and (6.41) to be determined experimentally. However, it must be borne in
mind that the underlying theoretical model of a deformation controlled primarily
by mutual dislocation interaction is one in which the concepts of strain hardening,
recovery, and the thermally activated surmounting of the dislocation interaction
barriers have been incorporated in a more or less phenomenological way. Attempts
to interpret these concepts more mechanistically have been largely confined to the
case of steady-state creep, (6.42), to which the remaining discussion here will be
restricted, concentrating on the quantity r while assuming the form of (6.32) for h,
that is, h ¼ bG with b constant.

On the mutual dislocation interaction model the flow stress s is taken to be

equal to sd ¼ aGbq
1
2 and so r is given by

r ¼ os
ot

� �

c

¼ 1
2

s
q

oq
ot

� �

c

ð6:44Þ
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If we now assume a first order kinetics of recovery in which ðoq=otÞc is propor-
tional to the dislocation density q itself and to the dislocation climb velocity vc;
and inversely proportional to the climb distance needed to bring about annihila-

tion, say half the dislocation spacing, 1
2 q�

1
2; then

oq
ot

� �

c

¼ a0qvc

q�
1
2

¼ a0vcq
3
2

where a0 is a numerical constant. Inserting this expression in (6.44) and recalling

s ¼ aGbq
1
2 leads to

_cs ¼
r

h
¼ a0

2ab
s2vc

G2b

In the case of diffusion-controlled climb, we can, from (6.23a), put vc �
2Db2s=kT (assuming r ¼ 2s) to obtain finally

_cs ¼ b0
GbD

kT

s
G

 �3
ð6:45Þ

where b0 � a0=ab is a numerical constant.
The form of the creep relation (6.45) suggests that in recovery-controlled creep

the steady-state strain rate can be expected to depend fairly strongly on the stress.
The cube stress exponent can be arrived at in a number of ways and has been
described as the ‘‘natural’’ exponent for a high-temperature creep law (Weertman
1975). While various materials do conform approximately to (6.45) in their stress
dependence, many others show a stronger stress dependence in high-temperature
creep, leading Dorn to propose the semiempirical law

_cs ¼ A
GbD

kT

s
G

 �n
ð6:46aÞ

where A and n are empirical constants, found to be related according to

A � 1025ð Þn�2:7 ð6:46bÞ

(Brown and Ashby 1980; Poirier 1985, p. 85). Various theoretical strategems
have been proposed for rationalizing values of n [ 3; based on more sophisti-
cated recovery models (for example Poirier 1985, p. 110; Weertman 1975).
It may also be noted that n ¼ 3 in (6.45) derives, in part, from an assumption of
linear strain hardening and that the alternative of a parabolic athermal strain
hardening would immediately lead to n ¼ 4: However, it has been found to be
difficult to rationalize values of n greater than 5 and doubt has been expressed
that a power-law representation of the creep behavior is the most appropriate in
such cases (Poirier 1985, p. 111)

In Eqs. (6.45) and (6.46a) the temperature dependence of _cs derives mainly
from the temperature dependence of the diffusion coefficient D, which, in the case
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of compounds, will be the effective diffusion coefficient for the molecular species
(Sect. 3.5.3). The activation energy obtained from an Arrhenius plot for the steady-
state creep rate would in this case be expected to coincide with that for self-
diffusion. Such an equality has indeed been widely observed at high temperature in
pure metals (Poirier 1985, p. 44; Weertman and Weertman 1983b) as well as in
various other materials, but it is not always found. For example, in olivine the
experimental activation energy for high-temperature creep is higher than that
found for the diffusion of any of its atomic components (Jaoul et al. 1981).

Thus, insofar as high temperature, steady-state creep by dislocation glide is
recovery controlled, which it probably almost always is in some sense, the rate-
controlling process may often be the volume self-diffusion involved in climb, as
assumed for (6.45), but it is evidently not always so. Several alternatives may be
mentioned. Thus, at intermediate temperatures it is possible that pipe diffusion
along dislocation cores may be important, leading to a lower activation energy.
Alternatively, and again at intermediate temperatures, the recovery process may be
cross-slip controlled, for which the activation energy would probably also be lower
than that for self-diffusion; the possible importance of cross-slip control has been
the subject of controversy (Poirier 1976, 1978, 1979; Sherby and Weertman 1979).
The observed tendency for the experimental activation energy for steady-state
creep to decrease as the temperature decreases could thus correspond to a tran-
sition to either of these two situations; in the case of pipe diffusion the stress
exponent n might also be expected to increase by 2 {Evans 1979}. Even if the
recovery is climb controlled, the climb process itself may not be entirely diffusion
controlled, but may depend also on the rate at which the diffusing material can
be attached or removed at the dislocation core. The attachment/removal can be
expected to occur mainly at jogs in the dislocation and so the climb rate could be
limited by the jog nucleation rate if the latter were relatively low. Since the climb
rate will be proportional to the product of the probability of an atom arriving/
departing by diffusion at the dislocation and the probability of a jog being present
at which to attach/detach the atom, the activation energy for climb will be the sum
of the activation energies for diffusion and for job nucleation. A negligible value of
the activation energy for jog nucleation is thus a prerequisite for the activation
energies of steady state climb-controlled creep and diffusion to be equal. However,
even with zero jog nucleation energy, a further source of inequality of the acti-
vation energies could arise in the case of compounds through there being a
chemical reaction type of barrier involved in the attachment/detachment of atoms
at the dislocation core; this barrier would derive from there being transitory higher
energy configurations at the jog as individual atomic components of the compound
are attached/detached.

Further theoretical development thus requires more specific assumptions about
mechanisms at the microstructural scale, where many possibilities arise and where
further developments in the future could follow from new understanding of mutual
dislocation interaction mechanisms (Sect. 6.6.3). The archetype of climb-
controlled recovery models is that of Weertman (Weertman 1955, 1957, 1968; see
also Weertman and Weertman 1983b) but many variants of such a model have
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been put forward (for example, Burton 1982a; Gittus 1975; Sherby and Weertman
1979; Spingarn et al. 1979). Other creep models could be imagined to arise from
forest-cutting or cell-wall-trapping views of mutual dislocation interaction (for
example, Caillard and Martin 1982b; for example, Caillard and Martin 1982a,
1983) where thermally activated intersection or reaction could play a rate-
controlling role. The latter role would be (Morris and Martin 1984b) akin to a
quasi-viscous drag control, as considered in Sect. 6.6.5. Composite models that
incorporate an element of viscous drag control as well as mutual dislocation
interaction have been proposed by Gibbs (1966), Ahlquist et al. (1970), Lagneborg
(1972) and others (see Gittus 1975, Chap. 3). In general, more definitive theoretical
developments require a more specific basis in microstructural observations and
models, taking into account where appropriate the organization of dislocations into
cell or subgrain structures and its stress dependence (although Weertman and
Weertman (1983b) make the point that an n ¼ 3 power law tends to be predicted
regardless of model details if the dislocation structures at different stress are self-
similar in the sense that micrographs are superposable with change of magnification
only). In particular, postulates about internal stress fields lack real validity until
supported by observations such as those of Morris and Martin (1984a, b). In con-
clusion, it must be emphasized again (cf. Poirier 1985, p. 114) that the determi-
nation of rheological parameters such as the stress exponent n and the experimental
activation energy Q gives poor constraint on the microscopic mechanisms of
deformation in the absence of microstructural observations.

6.6.7 Thermal Models for Precipitate and Particle Effects

The presence of fine precipitates or dispersed hard particles, especially with sub-
micron dimensions, can profoundly increase the creep strength of materials,
leading to important technological applications, as, for example, in the use of
nickel-based ‘‘superalloys’’ in gas turbines, or the development of the oxide-
strengthened metals such as sintered aluminum powder (SAP) and thoria-dispersed
(TD) nickel. Such materials can show peculiarities in creep behavior such as
difficulty in establishing a steady-state creep rate or a tendency for the appearance
of a marked tertiary or accelerated creep stage (the latter effect commonly arises
from instability of the material, for example, the re-solution of precipitates at
elevated temperature). Especially notable is the common tendency for the exper-
imentally determined stress exponent in power-law creep to be abnormally high
(values of 7–40 or more are reported), and the experimental activation energy may
also be abnormally high, substantially exceeding the activation energy for self-
diffusion. Because of these peculiarities, models for these cases are here dealt with
separately from the other models for behavior in the thermal regimes. Reviews of
creep in fine precipitate or particle-bearing materials have been given by Martin
(1980), Haasen (1983) and Strudel (1983).
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As in the athermal case (Sect. 6.6.2) we need first to make a broad distinction
between situations in which the precipitates or particles can be sheared through by
the passage of dislocations at stresses below the Orowan bypass stress and situ-
ations in which the particles remain undeformed. For this purpose, we shall des-
ignate the particles as shearable particles and hard particles, respectively, using the
term particle now to refer both to the precipitates and to particles introduced in
other ways, as in fabrication by sintering.

Creep deformation in the presence of shearable particles involves a viscous
drag on the motion of the dislocations when the deformation is viewed at a scale
larger than the particle spacing; that is, the deformation is of the type discussed in
Sect. 6.6.5. At stresses below the level for athermal cutting of the particles
(Sect. 6.6.3), there can still be a certain rate of cutting as a result of thermal
activation and hence a certain dislocation velocity and strain rate. Kocks et al.
(1975, pp. 147–163, 196–225) have discussed in considerable detail the kinetics of
such a cutting process and have proposed that, if the strain rate is represented in the
form

_c ¼ c0v0 exp �E sð Þ
kT

� �
ð6:47aÞ

where c0 is a term containing the mobile dislocation density and the area swept out
following each successful activation event (cf. (6.33)) and v0 is the attempt fre-
quency (Kocks et al. 1975, p.124 estimate v0 to be of the order of 1010–1011 s–1 in
this situation). Then, the activation energy E can be represented in the form

E ¼ E0 1� s
s0

� �p� �q

ð6:47bÞ

where s is the applied stress, s0 the threshold stress for athermal flow, E0 the
(Gibbs) energy needed to cut through the particle in the absence of thermal acti-
vation, and p, q numerical factors (0
 p
 1; 1
 q
 2; typically
p ¼ 2=3; q ¼ 3=2). Such a particle-shearing model is probably most relevant at
stresses not markedly below the threshold for athermal flow.

In practice, experimental studies in metal-based systems involving particles that
are shearable at certain stress levels show that significant creep rates can also be
observed at substantially lower stresses than those envisaged in the previous
paragraph. In these cases, the particles are probably not being sheared and pro-
cesses of particle circumvention involving diffusion are thought to be rate con-
trolling, as in crystals with hard particles.

The creep of crystals containing hard particles can be approached in two ways.
On the one hand, if the resistance to deformation is viewed as arising from the
presence of an internal stress—a rather phenomenological approach—then the
creep can be discussed in terms of recovery in which this internal stress is reduced
by thermally activated processes, allowing further deformation in the course of
time, as in Sect. 6.6.6. The theoretical development of this approach requires the
identification and treatment of the rate-controlling recovery processes taking place
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in the complex configuration of dislocations that presumably exists in the neigh-
borhood of the particles. On the other hard, a more direct and mechanistic
approach in terms of the dislocation dynamics can be taken, the creep rate being
related directly to the climb rate of the mobile dislocations as they circumvent the
particles. However, again the concept of an internal stress tends to enter in
determining the local driving stress for the dislocation motion. In either case, the
concept of there being an internal stress can be used to rationalize the high values
of the observed stress exponent n and activation energy Q. Thus, if, instead of
writing the observed strain rate as

_c ¼ Asn exp � Q

RT

� �
ð6:48Þ

in terms of the applied stress s, where A is a constant and

n ¼ o ln _c
o ln s

� �

T

; Q� R
o ln _c

o 1=Tð Þs

� �
; ð6:49Þ

we relate the observed strain rate to the local processes by writing

_c ¼ A0sne
e exp � Qe

RT

� �
ð6:50Þ

where se ¼ s� si (si is the internal stress), A0 is a constant and

ne ¼
o ln _c
o ln se

� �

T

; Qe ¼ �R
o ln _c

o 1=Tð Þ

� �

se

; ð6:51Þ

then it can be shown, following Saxl and Kroupa (1972), that

n ¼ nes
1� osi

os

� �
T

s� si
ð6:52Þ

Q ¼ Qe � neRT2
osi
oT

� �
s

s� si
ð6:53Þ

It follows that the experimental quantities n and Q can be substantially larger than
the quantities ne and Qe that are effective locally.

The two approaches outlined in the previous paragraph for the case of hard
particles correspond more or less, on the scale of the crystal, to the recovery and
viscous drag models of creep discussed in Sects. 6.6.5 and 6.6.6, respectively.
However, the distinction may ultimately prove to be an artificial one because of the
common dependence on dislocation climb, generally agreed to be the rate-con-
trolling process (Strudel 1983). It seems that climb can be especially rapid in
the neighborhood of hard particles, presumably due to short-circuit diffusion at
the particle interface or some sort of coordinated pipe diffusion on the scale of the
particles. It has even been suggested (Strudel 1983) that the climb activity may be
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so intense that it contributes significantly to the strain itself, as a diffusion creep
mechanism (Chap. 5). However, in other cases, diffusion is thought to be inhibited
in the neighborhood of particles (Martin 1980, pp. 167–180). In any case, the
activation energy may be relatively high because of the additional need to elim-
inate attractive junctions (Guyot 1980).

6.7 Dynamics of Mechanical Twinning

Mechanical twinning is generally viewed as taking place by the orderly propa-
gation of a partial dislocation, with some mechanism such as the pole mechanism
of Cottrell and Bilby (1951) and Thompson and Millard (1952) for ensuring that
the twinning dislocation progresses from plane to adjacent plane with each sweep.
The motion of the twinning dislocation will be impeded by similar interactions to
those involved for slip dislocations but, as (Friedel 1964, p. 176) has pointed out,
these interactions can be much weaker than for slip dislocations because of the
smaller Burgers vector of a partial dislocation, resulting in lower Peierls potential,
lower energies of interaction with solutes and other obstacles, etc.; also the
twinning dislocation is not subject to strain-hardening interactions with a growing
dislocation density. Consequently, it is often observed that twinning can proceed
rapidly at relatively low stresses, as, for example, in calcite at room temperature.
For a general discussion of mechanical twinning in terms of dislocations, see Hirth
and Lothe (1982, Chap. 23).

Although twinning can propagate easily, there can be considerable nucleation
barriers against its initiation. Friedel (1964, p. 176) suggests that the initiation
stress needed should be of the order of c=b, where c is the energy per unit area of
the stacking fault generated by the twinning dislocation and b its Burgers vector.
For metals, this quantity is often of the order of 1 % of the shear modulus. Hirth
and Lothe (1982, pp. 757, 825) deduce similar or somewhat higher nucleation
barriers from a consideration of the thermally activated nucleation of partial dis-
locations. Therefore, local stress concentrations can be expected to play an
important part in the initiation of twinning. The existence of an initiation stress
that is high relative to the propagation stress would provide an explanation of
various phenomena that are common in twinning, such as sharp stress drops or
serrated stress–strain curves and acoustic effects (‘‘twinning cry’’, as observed in
tin). Some particular dislocation processes that may be involved in the nucleation
of twins in the common metals are discussed by Mahajan (1981) and references
given to others.

Mechanical twinning is more widely observed at relatively low temperatures.
This observation is consistent with twinning being essentially an athermal process
in most respects, initiated more readily when the thermal activation of slip is at a
minimum and applied stress at a maximum. However, the sensitivity of the
nucleation to structural imperfections probably rules out there being a well-defined
critical shear stress for twinning. As a result of the generally athermal character,
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there has been little discussion of the role of twinning in deformation in thermal
regimes. However, under the assumption that the nucleation will be rate-control-
ling, Frost and Ashby (1982, p. 10) have proposed a rate equation for twinning,
analogous to (6.47a), which can be written in the form

_c ¼ c0m0 exp �EN 1� s
s0

� �
=RT

� �
ð6:54Þ

where c0 is a term containing the density of nucleation sites and the strain resulting
from each nucleation event, m0 an attempt frequency, EN the (Gibbs) activation
energy for nucleation, s0 the stress needed to initiate the twinning athermally, and
s the applied stress; _c is the strain rate, T the temperature, and R the gas constant.
Such an expression can only be expected to be relevant where thermally activated
nucleation of twinning is significant, for example, possibly when the Burgers
vector of the twinning dislocation is very small. An extensive discussion of
thermal and athermal twin nucleation is given by Christian (1965, p. 777 et seq.).

Shear transformations, such as orthoenstatite–clinoenstatite, can be expected to
involve similar factors to those involved in mechanical twinning. However, in
addition, the dynamics of shear transformation will be influenced by the change in
Gibbs energy accompanying the phase change. The influence of the latter will
presumably be equivalent to the superposition of an internal stress assisting the
process of transformation (or opposing it if the thermodynamic conditions still fall
in the stability field of the first phase), but the magnitude of this effect will also
depend on the value of the shear stress itself if the equilibrium boundary is affected
by nonhydrostatic stress (Coe 1970).

Because of the finite plastic strain in a twin or transformation lamella, there may
be elastic accommodation strains required to maintain continuity with the sur-
rounding untwined or untransformed material, depending on the geometry involved.
These requirements are especially obvious in the grains in a polycrystalline aggre-
gate, the general consideration of which follows in the next section (Sect. 6.8). One
of the consequences of the compatibility requirements is seen in the commonly
lenticular shape of mechanical twins in polycrystals, the aspect ratio of the lenticles
being higher the larger the twinning strain. A case of interlamellar stresses arising
from shear transformation in feldspar is discussed by Yund and Tullis (1983).

6.8 Crystal Plasticity in Polycrystalline Aggregates

6.8.1 Introduction: The Compatibility Problem

Having considered at some length the various aspects of the crystal plasticity of
individual crystals, we now discuss the deformation of polycrystalline aggregates
in which the constituent grains are deforming by crystal plasticity processes. The
deformation properties of the aggregate cannot be derived by a simple averaging
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of the properties of the grains, treated as separate individual crystals with their
orientations taken into account, because of two factors:

1. the requirement of compatibility of strain from grain to grain, so that the con-
tinuity of the polycrystalline aggregate is maintained during the deformation

2. the influence of the presence of the grain boundaries on the behavior within the
grains.

These are two separate factors since the strain compatibility requirement
depends primarily only on the relative orientations of the grains and not on their
dimensions, whereas the grain boundary effects introduce a grain size dependence
into the behavior of the polycrystalline aggregate. We shall first consider the strain
compatibility aspect.

Although it is well known that the individual grains of a polycrystalline
aggregate do not deform homogeneously even when the macroscopic deformation
of the aggregate is statistically homogeneous (Barrett 1943, p. 325; Boas and
Hargreaves 1948), it is useful initially to view the stress and strain in each grain as
being effectively homogeneous to a first approximation. Taking this view, there are
two classical models for relating single crystal to polycrystal behavior, which
serve as limiting cases or bounds to the actual behavior:

1. The model of Sachs (1928), in which it is assumed that the stress in each grain
is equal to the macroscopic stress (as if the grains were loaded in series).

2. The model of Taylor (1938), in which it is assumed that the strain in each grain
is equal to the macroscopic strain (as if the grains were deformed in parallel).

Strictly, neither model is physically realistic since the Sachs model leads to
violation of the equations of continuity at the grain scale due to misfit at grain
boundaries, while the Taylor model leads to similar violation of the equations of
equilibrium. A physically valid model has to incorporate some degree of hetero-
geneity in both stress and strain at the grain scale, and we now consider ways in
which this aim has been approached.

The actual departures from a state of homogeneous stress can be represented in
terms of an internal stress, by postulating that the actual local stress results from a
superposition of a uniform applied stress and a locally varying internal stress. The
internal stress may give rise to a residual stress when the macroscopic stress is
removed and so be, in principle, measurable. The internal stress will, of course, be
a function of the strain unless a steady state is established. Its mean value will be a
measure of the amount by which the applied stress has to exceed the flow stress of
an average individual grain in order to achieve macroscopic flow. For use of the
notion of internal stress in the polycrystal context, see Leffers (1981) and Ber-
veiller et al. (1981).

Heterogeneity of strain within the grains of a polycrystalline aggregate has
often been modeled by postulating a core and mantle structure for the grains. In
this view, the core of the grain is regarded as undergoing a more or less homo-
geneous strain, approximating the macroscopic strain, while the complicated
intergranular adjustments are concentrated in a mantle region in the vicinity of the
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grain boundary. Such a model is sometimes treated as a two-phase view of the
polycrystalline aggregate (Mecking 1981b). In a careful analysis in core and
mantle terms, the strain in the core region must be acknowledged as itself
departing from the macroscopic strain by a small amount that is related to the
internal stress discussed above (see, further, Sect. 6.8.4). The mantle region is
distinguished from the core by a more pronounced development of multiple slip
and lattice rotation and, in metals, is reported to be of the order of tens of
micrometers in thickness (Leffers 1981). The core and mantle distinction has been
especially emphasized by some writers in relation to high temperature creep (for
example, Gifkins 1974, 1978) but it is not clear how widely useful the concept is.
Another approach to the description of the heterogeneity of deformation and its
accommodation is in terms of geometrically necessary dislocations (Ashby 1970,
1971; Mecking 1981b).

6.8.2 Multiplicity of Micromechanisms: The von
Mises Criterion

If two grains, initially in contact along a common boundary, are individually
subjected to simple shearing on planes that are not parallel between one grain and
the other, then after the deformation the grains will no longer fit together at a
common boundary without further adjustments in shape or rotation. In order to
maintain continuity at the grain boundary it is necessary, in general, that adjoining
grains of different orientation undergo deformation by a combination of shears that
gives the equivalent of more than one simple shear in each grain.

In attempting to answer the question of how many microshear mechanisms are
required to operate within a grain in order to achieve strain compatibility in an
aggregate, it is usual to start by enunciating the criterion of von Mises (1928).
Viewing the micro mechanisms as interpenetrable or superposable simple shears,
von Mises showed that, in order to achieve an arbitrary homogeneous strain, five
independent shears are required (independent in the sense of making possible
certain deformations that cannot be achieved with any combination of the other
available shear mechanisms). Applying this criterion to deformation by multiple
slip in an aggregate of randomly oriented grains in which the strain in each grain is
the same as the macroscopic strain (homogeneous strain or Taylor model), it
requires that, in general, five independent slip systems must operate in each grain.
Methods for determining the number of independent systems in a given set of
crystallographic slip systems, and some results, are set out by Groves and Kelly
(1963), Kocks (1964) and Paterson (1969).

It is to be noted that, for symmetry reasons, the number of independent slip
systems within a given set of crystallographically equivalent slip systems may be
substantially less than the multiplicity of the set. For example, there are 12
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110f g 1�10h i slip systems in holohedral cubic crystals but only two are indepen-
dent; the activity of a third system does not make possible any deformation that
cannot be achieved with the first two. The inadequacy of the 110f g 1�10h i slip
systems for producing a general deformation is illustrated by the impossibility of
achieving change of length parallel to any 111h i direction with such systems.

The von Mises criterion of five independent slip systems has been widely
evoked as a necessary condition for the ductility of polycrystalline aggregates.
Thus, in polycrystalline NaCl-structure materials, the transition from brittleness to
ductility at elevated temperatures has been correlated with the onset of 100f g 1�10h i
slip in addition to the normal 110f g 1�10h i slip, an addition which raises the total
number of available independent slip systems from two to five (Copley and Pask
1965; Groves and Kelly 1963; Pratt 1967). The criterion is, of course, not in itself a
sufficient condition for ductility since there must also be adequate mobility of the
dislocations and interpenetrability of the slip activity.

The von Mises criterion refers to a deformation that is homogeneous at the
microscopic or grain scale. When the heterogeneity of deformation at this scale is
taken into account, the question arises as to how far the criterion can be relaxed as
a result of the additional scope for maintaining the mutual fit between grains
through compensating local deformations. Thus, if grains of a particular small
range of orientations were incapable of undergoing the required strain for lack of
suitable slip systems, the remaining majority of grains might be able to undergo
additional compensating deformation so that the undeformable grains could be
accommodated as hard inclusions. The possibility of such an effect has been
demonstrated by Hutchinson (1977) in a self-consistent numerical treatment of a
polycrystalline aggregate of hexagonal material having active basal and prismatic
slip systems (which comprise four independent slip systems) but lacking the
pyramidal slip systems that would permit normal strain parallel to the c axis (see
Sect. 6.8.4). Thus, it can be concluded that, in practice, not more than four
independent slip systems are necessary for the deformation of a polycrystalline
aggregate solely by intragranular slip. Whether this requirement can be reduced to
three is not clear but the calculation of Hutchinson (1976) for NaCl-structure
materials (discussed further in Sect. 6.8.4) suggests that this may not be possible.
Nevertheless, intuitively, it would seem that with three independent slip systems
active, the amount of activity needed of any fourth, accommodating micro
mechanisms would, at least, be relatively small.

In many nonmetallic materials, especially in rocks, the grains are often of
relatively low crystallographic symmetry and the number of available independent
slip systems is therefore often small. For example, olivine has only three inde-
pendent slip systems and one of these is relatively strong, while feldspars probably
have even fewer (quartz and calcite do not present the same problem provided that
more than one of their known sets of slip systems is active). Nevertheless, these
substances can be deformed in polycrystalline form, suggesting that other micro
mechanisms are active. Some possibilities for the latter are:
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1. At sufficiently high temperatures, climb of dislocations may be important. Its
role in compensating for a lack of slip systems is discussed by Groves and
Kelly (1969). They show that, acting alone, six independent climb systems are
required for a general, nondilatational strain, and that six different Burgers
vectors, not necessarily crystallographically nonequivalent, are required to
provide this set of climb systems. They also point out that, for dislocations of a
given Burgers vector, climb motion produces two independent strain compo-
nents additional to those due to glide in a specific plane, although the new strain
components are not necessarily independent of those contributed by other
active glide systems, and so further examination is needed to establish to what
extent the climb increases the number of independent strain components
overall. If dislocations can glide on any plane as well as climb, then a general
strain is possible if there are three noncoplanar Burgers vectors (as in olivine).

2. Also at sufficiently high temperatures, sliding on grain boundaries introduces
another mode of relative displacement in the aggregate. The extent to which
this sliding can be counted as contributing to the available independent modes
of deformation is not easy to see and would seem to depend on the nature of the
mechanisms accommodating the sliding (see Sects. 5.2.2 and 7.1.3 on the
interdependence of the sliding and accommodation processes). In the case of
accommodation by diffusion, there can be an independent contribution to the
overall deformation if the accommodation involves components of strain that
cannot be produced by available climb or glide systems. However, in the case
of accommodation by plastic deformation within the grains, the requirements
on availability of slip systems for the accommodation of the sliding will be
identical to the requirements for compatible deformation of grains in the
absence of sliding and so the occurrence of slip-accommodated sliding at grain
boundaries does not introduce any additional independent modes of deforma-
tion. Thus, on this view, sliding at grain boundaries only introduces additional
independent modes of deformation insofar as it involves atom transfer mech-
anisms for accommodation which in themselves are independent mechanisms.
Grain boundary migration is not a mechanism of deformation and so does not
enter into the present kinematical considerations although it may have impor-
tant dynamical consequences through its effect on the stresses needed to operate
the various mechanisms.

3. Dilatancy of the aggregate permits accommodation by the development or
elimination of voids. Void formation may consist of cavitation, as occurs in
creep of metals at high temperature at atmospheric pressure, of microcracking,
as in the deformation of rocks under confining pressure at any temperature
(Paterson 1969), or of variation in pore space in an already porous rock
(cf. deformation of sand). Whenever dilatancy is involved, a significant
pressure dependence of the flow stress can be expected, as was observed, for
example, in magnesium oxide by Paterson and Weaver (1970).

4. Twinning mechanisms may contribute in appropriate cases, although the single-
sense property of the twinning shear makes twinning a less effective accom-
modation mechanism than slip. Kinking can also contribute in a similar way to
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twinning if sufficiently penetratively distributed (Paterson 1969) but often it is
probably better viewed as a special type of heterogeneity of deformation
associated with the slip system on which it is based, contributing somewhat to a
reduction in the number of slip systems required.

5. Minor accommodation requirements may be met by elastic strains accompa-
nying variations in stress within the grains.

In the discussion, so far it has been implicit that the crystallographic orientation
distribution of the grains is more or less random and the shape roughly equiaxed.
When strong preferred orientation is introduced, such as through large strain or
recrystallization, the accommodation requirements are relaxed gradually as the
single crystal limit is approached. Also accommodation requirements become
somewhat less stringent as the grain shape becomes highly anisotropic, another
factor that may be significant in highly deformed, foliated or lineated materials
(Kocks and Canova 1981; Mecking 1981b).

6.8.3 Grain Boundary Effects and Grain Size Dependence

In a homogeneously deforming polycrystalline aggregate or in an aggregate in
which the heterogeneity scales with the grain size, there would not necessarily be
any grain size dependence of the flow stress. Even the presence of the geometri-
cally necessary dislocations need not lead to a grain size dependence (Mecking
1981b). However, in practice, it is widely observed that the flow stress tends to be
higher for small grain sizes in aggregates deforming by intragranular crystal
plasticity, especially in the athermal regime. This effect indicates that the presence
of the grain boundaries has itself a strengthening influence, apart from any effect
associated with the occurrence of multiple slip.

The grain boundary strengthening effect is usually attributed in some way to the
accumulation of dislocations in the neighborhood of the boundary, presumably due
to there being an impediment to the accommodation of the dislocations in this
region because of the influence of the contiguous grain or to there being interaction
with other dislocations already accumulated there. The effect is commonly
expressed through an additive term in the flow stress r; as follows:

r ¼ r0 þ kd�m

where r0 is the contribution to the flow stress of the aggregate purely from the
multiple slip within the grains, d the grain size, and k, v constants. The value of v is
commonly put as 1

2; following Hall (1951) and Petch (1953); see other references in
Friedel (1964, p. 267). However, this value is often not well defined experimen-
tally owing to the practical difficulty of keeping other factors constant while
preparing specimens of different grain size, and a value of m ¼ 1 is said to be
equally valid in many cases (for example, Dollar and Gorczyca 1981; for example,
Kocks 1970; Mecking 1981b).
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A model involving the pile-up of dislocations at the grain boundaries is usually
used to rationalize the value m ¼ 1

2 (Hall 1951; Nabarro 1950; Petch 1953),
although a model involving emission of dislocations from the grain boundary has
also been proposed (Li 1963). The value m ¼ 1 has been rationalized using a core
and mantle model (Kocks 1970; Mecking 1981b) and an intermediate case has
been treated by Armstrong et al. (1962), while Ashby (1970, 1971) has given a
treatment in terms of geometrically necessary dislocations. In the pile-up model

for m ¼ 1
2; k is predicted to have the value rcl

1
2 where rc is the stress required to

initiate flow in a second grain, adjacent to the boundary against which the pile-up
is occurring, and l is the mean dislocation spacing within the grains (Friedel 1964,
p. 268; Haasen 1978, p. 282). It follows that the grain size sensitivity will be most
pronounced at small grain size and low dislocation density. For common metals,
values of k of 0.1–1 MPa m-1/2 are found when m ¼ 1

2 is used (Armstrong et al.
1962). In the case of the core and mantle model for m ¼ 1; k is predicted to be 4tDr
where t is the width of the mantle region and Dr is the increase in flow stress in the
mantle above r0 (Kocks 1970; Mecking 1981b). In Ashby’s model, with m ¼ 1

2;

k ¼ aG bcð Þ1
2 where a is a constant, G the shear modulus, b the Burgers vector and c

the shear strain in a grain. See further discussion on the value of k by Hansen
(1983, 1985).

In passing from the athermal deformation regime to the thermal regime at
higher temperatures, the grain size sensitivity tends to be reduced, that is, the value
of m smaller, because of thermal recovery effects in the grain boundary neigh-
borhood (Mecking 1981b). Eventually, with further increase in temperature, grain
boundary weakening associated with the change from crystal plasticity to atom
transfer and grain boundary sliding mechanisms begins to enter, leading finally to
the strong inverse grain size dependences discussed in Chaps. 5 and 7.

6.8.4 Relation of Single Crystal to Polycrystal Flow Stresses

The quantitative problem in the theory of the flow of polycrystalline materials by
crystal plasticity is to relate the macroscopic flow stress r of the aggregate to the
flow stress of the single crystal, expressed as the resolved shear stress s on an
active slip system; that is, to evaluate the numerical factor M in the relation

r ¼ Ms ð6:55Þ

In an athermal regime, s is the resolved shear stress after a given strain and, in a
steady-state thermal regime, s is the resolved shear stress for flow at a specified
strain rate. In order to obtain the macroscopic stress–strain (r� e) curve from the
plot of resolved shear stress s versus resolved shear strain c for the single crystal, a
similar numerical factor, which we take for present purposes to be again M, has to
be used to relate c to e (cf. Eqs. (6.1) and (6.2)), so that finally the strain-hardening
rate becomes
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dr
de
¼ M2 ds

dc
ð6:56Þ

For stricter definition of the factor M, see Kocks (1970). The polycrystal factor
M is, in general, a tensor but we consider here only the case in which the stress r is
taken to have only a single nonzero component and in which M can be treated as a
scalar. This case applies to uniaxial tension and compression tests, as well as to the
usual axisymmetric triaxial tests of rock mechanics. In the latter case, if r1 and r3

are the greatest and least principal stresses, the stress difference r1 � r3 is to be
taken as r since the superposition of a hydrostatic pressure has no effect in the
theory.

Under the athermal, perfect plasticity assumption that slip in a given system
obeys Schmid’s law (Sect. 6.1), that is, occurs at a critical resolved shear stress
regardless of the shearing rate, the Taylor and Sachs models (Sect. 6.8.1) provide
upper and lower bounds for M, namely, the Taylor factor MT and the Sachs factor
MS, respectively. The Sachs factor MS is calculated simply as the mean, over all
grain orientations, of the reciprocal of the maximum Schmid factor for the indi-
vidual orientations, since only one slip system is assumed to operate in each grain.
In calculating the Taylor factor MT , the minimum set of five slip systems that will
operate to give the prescribed strain in a grain of a given orientation must first be
selected. This is done through an optimization procedure, consisting either of
minimizing the internal work skdck summed over the available slip systems k
(Taylor 1938 #2695) or of maximizing the external work rde (Bishop 1953, 1954;
Bishop and Hill 1951), these extremum conditions being implicit in the formu-
lation of the perfectly plastic model (Chin and Mammel 1969; Kocks 1970; Lister
et al. 1978). Then, from the stress state corresponding to the optimal set of slip
planes, the component parallel to r can be determined and averaged over all grain
orientations to give the macroscopic stress r, from which MT can be determined.
Strain hardening can be taken into account by changing the value of s incre-
mentally as the strain is incremented, still under the assumption of athermal
behavior. Certain uniqueness problems can be overcome by introducing a degree
of rate dependence in the single crystal stress–strain relationship (Asaro and
Needleman 1985).

The calculation of the value of M has been explored most extensively for the
f.c.c.cubic crystal structure, with a single set of 12 crystallographically equivalent
slip systems 111f g 1�10h i; capable in themselves of satisfying the von Mises cri-
terion. Proceeding as just described, the upper bound or Taylor factor MT is found
to be 3.06 for simple extension or compression (principal stresses r, 0, 0) and 1.656
for shear (principal stresses r, �r, 0 and putting r ¼ Ms) (Bishop and Hill 1951).
The lower bound or Sachs factor MS is 2.24 for simple extension or compression
and 1.12 for shear (Cox and Sopwith 1937; Sachs 1928). The value MT ¼ 3:06 also
applies for the b.c.c. structure with active slip systems 110f g 1�11h i; decreasing
toward 2.75 as pencil glide comes into effect (Kocks 1970).

The resolved shear stress needed to operate a given slip system is, in practice,
affected by slip occurring on intersecting slip systems, an effect known as latent
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hardening, which is not taken into account in the formulation of Schmid’s law.
Therefore, Kocks (1960, 1970) has proposed that an appropriate single crystal
curve to choose as the basis for calculating the polycrystal curve on the Taylor
model is that for a symmetrical or ‘‘polyslip’’ orientation in which several slip
systems operate simultaneously. Alternatively, a constitutive relation for the single
crystal that explicitly takes into account the latent hardening can be introduced
(Asaro and Needleman 1985). In contrast, the Sachs model assumes single slip in
the grains and so, logically, a single crystal curve for single slip should be used for
it. If these respective procedures are followed, it is found that the measured
polycrystal stress–strain curve for f.c.c. and b.c.c. materials tends to fall much
nearer to the calculated curve for the Taylor model than that for the Sachs model
(Kocks 1970). However, the Sachs model is patently defective in not recognizing
that in practice the grains mostly deform by some degree of multiple slip. It has
therefore been proposed that in applying the Sachs model, a single crystal curve
for a polyslip orientation should also be used. Such a ‘‘modified Sachs model’’
predicts a polycrystal stress–strain curve much nearer to the measured curve
(Leffers 1979, 1981).

In spite of this approximate agreement between observation and the predictions
of the Taylor and modified Sachs models (see Asaro and Needleman 1985 for a
review of recent developments of the Taylor model), the theoretical situation
cannot be accepted as being very satisfactory on at least two grounds:

1. Both models are conceptually defective in that they entail physically unac-
ceptable discontinuities in either force or displacement at the grain scale.

2. There remain severe difficulties in application to lower symmetry materials in
which the von Mises criterion is not met even with the operation of several
crystallographically nonequivalent slip systems, for example, in hexagonal
close-packed materials with basal and prismatic slip feasible but pyramidal slip
too difficult to operate, or in olivine with only three independent slip systems,
all nonequivalent and one rather difficult to operate.

It is desirable, therefore, to develop some way of allowing for heterogeneity of
deformation at the grain scale, while meeting local continuity and equilibrium
requirements. Two approximate methods that aim to meet this need are the self-
consistent and finite-element approaches.

In the self-consistent approach, the individual grain is viewed as an inclusion in a
matrix, the properties of which are assumed to be identical with the macroscopic
properties. The local departures of stress and strain in the individual grain from some
initially assumed macroscopic values are calculated for all grain orientations and
averaged toobtainanewsetofmacroscopicvalues,whichcan thenbeused torefine the
calculated local departures in the grains, and so on iteratively. The applications to
athermal plasticity by workers such as Hutchinson (1970) and Berveiller and Zaoui
(1978, 1981) are developments of earlier applications to elastic–plastic problems
by Kröner (1961), Budianski and Wu (1962) and Hill (1965). An important extension
to creep problems was made by Hutchinson (1976, 1977), from whose papers most of
the following comments are derived.
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The first conclusion from self-consistent theory is that the polycrystal factor M
in (6.55) for athermal plastic deformation of f.c.c. materials falls very near to the
upper bound calculated on the Taylor model, thus justifying the use of the Taylor
model where five independent slip systems are available and the flow stress is
insensitive to strain rate. However, the self-consistent results tends to fall signif-
icantly below the athermal upper bound when strain-rate sensitive flow is con-
cerned, and increasingly so as Newtonian flow (power-law stress exponent n ¼ 1)
is approached. In the Newtonian case, which is formally analogous to the elastic
case, the self-consistent result is found to fall between the upper and lower bounds
of Hashin and Shtrikman (1963), suggesting that the self-consistent theory gives a
fairly accurate estimate of M.

As already pointed out (Sect. 6.8.2), the self-consistent calculations show that
deformation in a polycrystal can be achieved with four independent slip systems
when heterogeneity of deformation on the grain scale is allowed, as revealed for
the hexagonal close-packed case for sc !1: However, the result for NaCl-
structure materials with n ¼ 1 leads to r!1; indicating that the three inde-
pendent 100f g 1�11h i slip systems alone are insufficient for plasticity even on the
self-consistent model. There is still some reservation in applying this conclusion to
real materials since in the self-consistent model the grains are still treated as
deforming homogeneously within themselves, even though differently from one to
another, and so there may be a little more freedom of accommodation by heter-
ogeneity of deformation in a real material. Peirce et al. (1982) have, for example,
made a beginning in treating heterogeneity of deformation within grains but their
approach has not yet been applied to the polycrystal problem.

For examples of the application of finite-element numerical modeling, see Abe
and Nagaki (1981) and Peirce et al. (1982, 1983).

So far, we have been considering the relation of the single crystal to poly-
crystalline flow stresses at given strains without taking into account the effects of
the evolution of the structure, except for passing reference to strain hardening. We
next consider the effects of large strains and of the preferred orientations, both
crystallographic and in grain shape that may exist initially or develop during the
deformation.

6.8.5 Preferred Orientations and Large Strains

The local strain compatibility requirements in a polycrystal depend on the grain
shape. The considerations set down in the previous subsections apply primarily to
grain shapes that are more or less equant. When grains of very inequant shape are
involved, fewer independent slip systems are required (four for rod-shaped and
three for disk-shaped grains) because the compatibility requirements at the
boundaries of small area (edge of disk or end of rod) affect only a small fraction of
the volume of the grain and so can be neglected (Honneff and Mecking 1978;
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Mecking 1980; Kocks and Canova 1981). This effect may be important when large
strains (say, [0.3–0.5) lead to inequant grain shape or when grains tend to form
initially in platy or needle-like form, as in the case of minerals such as mica and
sillimanite. The effect has been explored in copper by Tomé et al. (1984), who
show that it may lead to a geometric softening at large strains.

Another effect of plastic strain is to produce a crystallographic preferred orien-
tation. When this effect is strongly developed, the properties of the aggregate
approach in some degree those of a single crystal and again the requirement on the
number of independent slip systems may be reduced to some extent. The pattern of
preferred orientation can be calculated by direct extension of the calculation of the
stress–strain curve (previous subsection), proceeding incrementally, with the
weighting of the distribution of orientations being updated at each increment. Such
calculations, using the Taylor model applied to cases of geological interest, were
carried out by Lister and coworkers (Lister et al. 1978, Lister and Paterson 1979,
Lister and Hobbs 1980); for recent papers on the measurement and analysis of
crystallographic preferred orientation, see Wenk (1985). Asaro and Needleman
(1985) set out a more sophisticated development of the Taylor model, based on single
crystal constitutive relations formulated by Peirce et al. (1982, 1983) and aimed at
treating large deformations with arbitrary histories and predicting preferred orien-
tations. They demonstrate another form of geometrical softening of the aggregate,
which is associated with the development of crystallographic preferred orientation
and which is additional to the effect of Tomé et al. (1984), mentioned previously.

Structural inhomogeneities or instabilities have been observed to develop in
polycrystals at large strains, generally in the form of ‘‘shear bands’’, that is, regions
in which large shear strains have been concentrated (for example, Grewen et al.
1977; Hatherly 1978; Hatherly and Malin 1979; Gil Sevillano et al. 1980; Hecker
and Stout 1984). The development of these features is usually related to a lack of
the stabilizing effect of strain hardening, arising both from a saturation in local
strain hardening within the grains and from geometric softening effects (Asaro and
Needleman 1984, 1985; Mecking 1980, 1981a; Tomé et al. 1984).

Dynamic recrystallization (Sect. 6.5.3) is another important process in poly-
crystals deformed at higher temperatures. It has been studied especially in hot
working of metals at strain rates greater than, say, 10-3 s-1; see review by Roberts
(1984) but it can also occur in creep. It has, of course, important consequences for
preferred orientation development.

6.8.6 Polyphase Aggregates

In this subsection, we are concerned primarily with polyphase materials in which
the grains of the individual phases are comparable in size and volume fraction and
more or less equiaxed in shape. The influence of small volume fractions of finely
dispersed particles or precipitates on the crystal plasticity of the enclosing matrix
has already been considered in the context of single crystal behavior (Sects. 6.6.2
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and 6.6.7). Linear structures, such as those in fiber-reinforced materials, and
lamellar structures, such as are produced in eutectic and eutectoid systems, will not
be considered specifically (see Kelly 1966; Kelly and Nicholson 1971; Le Hazif
1979; Piatti 1978).

We first mention some structural aspects of polyphase materials, restricting
consideration mainly to two-phase materials for the sake of simplicity in bringing
out the essential points, although analogous properties will generally apply also to
materials of more than two phases. A preliminary point to note is that, in order for
a more or less equiaxed grain shape of the phases to persist, the interfacial energies
between the phases must not differ greatly from the grain boundary energies in the
pure phases; otherwise, depending on the relative volumes of the phases, there will
be a tendency to effects such as the spreading of one phase along three-grain edges
or the grain boundaries of the phases (Smith 1964; Waff and Bulau 1979).

Given an equiaxed grain structure, one of the phases in a two-phase material
can always be expected to be continuous. However, continuity in the second phase
will only exist if its volume fraction is more than about one third. Of course, the
second phase can be continuous at much smaller volume fractions in case of
nonequiaxed grain structure or nonrandom distribution, as illustrated in the con-
nectivity of pore space at low porosities. For the analysis of geometrical mea-
surements of two-phase structures, see Underwood (1970), Exner (1983) and
Exner and Hougardy (1988). A simple ‘‘law of mixtures’’

X ¼ XAvA þ XBvB þ . . . ð6:57Þ

relating an aggregate property X to the phase properties XA . . . and volume frac-
tions vA . . . which is applicable to properties such as density, cannot be applied to
mechanical properties without further considerations. The mechanical properties
depend on the distribution of the phases, which influences the boundary conditions
applicable to the individual grains, and therefore a structure of the aggregate also
has to be specified. However, limits on the mechanical behavior of the aggregate
can be obtained by reference to two extreme cases of ‘‘parallel’’ and ‘‘series’’
arrangement of the phases (Fig. 6.22). These arrangements correspond, respec-
tively, to the uniform strain case

r ¼ rAvA þ rBvB þ . . .. . . ð6:58Þ

and the uniform stress case

e ¼ eAvA þ eBvB þ . . .. . . ð6:59Þ

where r, e are the macroscopic stress and strain, respectively, for the aggregate and
rA; eA; vA; are the local stress, strain, and volume fraction for the phase A. . .

Application of Eqs. (6.58) and (6.59) to linear elastic deformation leads to the
Voigt and Reuss limiting cases, respectively, for the elastic constants of the
aggregate:

E ¼ EAvA þ EBvB þ . . .. . . ð6:60Þ
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1
E
¼ vA

EA
þ vB

EB
þ . . .. . . ð6:61Þ

where E; EA; EB; . . . are the elastic constants (that is, the stiffnesses, such as the
Young moduli) of the aggregate and the phases A, B, …., respectively. Similar
bounds apply to the viscosity in linear viscous deformation. In both cases, closer
limits can be estimated by the method of Hashin and Shtrikman (1963) based on
energy arguments rather than on a law of mixtures. It may be noted that in the case
of a dilute suspension of undeformable particles in a viscous matrix of viscosity g0;
while the expression in (6.60) leads to infinite viscosity as an upper limit to the
bulk viscosity, the expression in (6.61) leads to an approximate lower limit of
g0 1þ vð Þ where v is the volume fraction of the particles; this result may be
compared with the Einstein (1906) value g0 1þ 2:5vð Þ, which, in turn, is lower
than the values observed in concentrated suspensions (Jeffrey and Ascrivos 1976).

The expressions given in Eqs. (6.58) and (6.59) should also provide bounding
estimates for the flow stress of a polycrystalline aggregate. In particular, (6.58)
gives an upper limit corresponding, in principle, to the Taylor limit for poly-
crystals (Sect. 6.8.4). Observations on an iron-silver alloy in the athermal regime
indicate a variation of flow stress with composition that falls rather below this
upper limit (Le Hazif 1980); curiously, these measurements also indicate only
slight dependence of the flow stress on the volume fractions in the middle range
where both phases are expected to be largely continuous. For a better estimate,
self-consistent or finite-element calculations are required. The latter have been
carried out in the case of the iron–silver alloy, leading to a satisfactory prediction
of the observed behavior and showing that, although the actual strength falls
significantly below the upper bound, it is still closer to that bound than to the lower
bound (Durand and Thomas de Montpreville 1990; Le Hazif and Thomas de
Montpreville 1981; Thomas de Montpreville 1983). The departure from the upper
bound implies that there is significant heterogeneity of strain between the phases.

(a) (b)

Fig. 6.22 a ‘‘parallel’’ and
b ‘‘series’’ arrangement of
phases in an aggregate,
relative to a direction of
loading indicted by the
arrows
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This heterogeneity has been observed directly in, for example, alpha–beta brass
and nickel–silver alloys (Honeycombe and Boas 1948; Petrovic and Vasudevan
1978). Such a strain heterogeneity has also been observed in the thermal regime in
oolitic limestone in which the finer-grained oolites are weaker than the coarser-
grained matrix (Schmid and Paterson 1977) and finite-element calculations have
been made for such cases (Ankem and Margolin 1982; Horowitz et al. 1981).
A self-consistent scheme for treating multiphase materials has been given by
Berveiller et al. (1981).

6.9 The Role of Pressure

6.9.1 General

Since plastic deformation is primarily a change of shape of a body without
appreciable change of volume, only work terms involving shear stress are expected
to be important in determining plastic behavior. Accordingly, plastic flow criteria
for multiaxial stress states, such as the von Mises and Tresca criteria (Sect. 4.5),
are expressed in terms of deviatoric stresses, with omission of any influence of the
hydrostatic component of the stress. There is a similar omission in the Schmid law
for the yield of single crystals (Sect. 6.1). Such a view is well supported experi-
mentally in situations in which the hydrostatic component of the stress does not
markedly exceed the deviatoric components. However, when the hydrostatic
component of the stress is large or when second order effects are being considered,
the influence of the hydrostatic component must also be taken into account and the
associated changes in volume, or dilatancy, discussed. This topic is commonly
referred to as the influence of the pressure on plastic flow and will be dealt with in
its athermal and thermal aspects in Sects. 6.9.2 and 6.9.3.

In the ensuing discussion, the term ‘‘pressure’’ should, strictly, be taken as
referring to the hydrostatic component of the stress, that is, the mean stress, since
the effect of the pressure is associated, in a thermodynamic sense, with work done
in volume changes. However, in practice, especially in the literature on experi-
mental rock deformation and in geophysical applications, the term is commonly
identified, somewhat loosely, with the confining pressure (Sect. 4.2) or the litho-
static pressure at a given depth in the Earth. The error incurred in this identification
becomes less serious the larger the ‘‘pressure’’ is relative to the stress difference or
the deviatoric component of the stress.

In the case of single crystals, the theoretical questions center on the influence of
pressure on the various interactions that impede dislocation motion and on the rate
of growth of dislocation populations. In the case of polycrystals, similar effects
arise within grains and at grain boundaries. In addition, the initial structure of a
polycrystal may be modified by the application of pressure, with further influence
on the deformation behavior. This modification may involve effects associated
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with heterogeneity or anisotropy, such as the closure of cracks or pores, and the
generation of internal stresses due to heterogeneity in elastic compressibility from
grain to grain or to anisotropy of linear compressibility in adjoining grains of
different orientation.

6.9.2 Pressure Effects in the Athermal Regime

In single crystals the influence of pressure on the flow stress in the athermal regime
results primarily from changes in the elastic modulus. On the basis that the flow
stress s can be expressed as aGbq

1
2 (Sect. 6.6.3) and that the term bq

1
2 will not vary

with pressure at a given dislocation content since it is dimensionless, it follows that
for a given dislocation density, the influence of pressure p on the flow stress will be
given by

1
s

ds
dp
¼ 1

G

dG

dp

and hence

s ¼ s0 exp

Z p

0

1
G

dG

dp
dp

� �

where s0 is the flow stress at zero pressure (or other reference pressure). For
relatively small variations in G with p, we thus have

s ¼ s0 exp a1
p

G

 �
� s0 1þ a1

p

G

 �
ð6:62aÞ

where

a1 ¼
dG

dp
ð6:62bÞ

In these expressions, the elastic isotropy approximation is assumed in speci-
fying the shear modulus G. The value of dG=dp is between 1 and 2 for most
materials, thus giving a 1–2 % increase in flow stress on raising the pressure by
500 MPa if G is 50 GPa. In the case of solute and particle hardened materials
(Sect. 6.6.2), since the interaction force F in expressions such as Eqs. (6.25) and
(6.26) can be expected to be proportional to G, the flow stress can again be
expressed as the product of G and a dimensionless term, so that the pressure
dependence of the flow stress is still represented by (6.62).

The pressure effect represented in (6.62) applies only for a given dislocation
configuration. It should apply to the stress at a given strain as determined in an
instantaneous pressure step test, but it does not necessarily apply to the comparison
of complete stress–strain curves determined at different pressures since the pres-
sure may also influence the evolution of the dislocation density q with straining,
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and thus the strain hardening. Since the introduction of a dislocation assemblage of
density q leads to a small relative volume increase, of the order of qb2 (Sect.
6.2.2), there should be some increase in the strain hardening rate under pressure for
a given rate of increase of q. This effect can be estimated by equating the extra
work done by the stress, ds � dc, to the work done in relative volume increase,
dV
V ¼ b2dq where dq is the increment in dislocation density and ds the extra

increment in stress during the strain increment dc: It follows from the internal
work expended per unit volume of the specimen,

dW ¼ s dc� p dV ¼ s dc� pb2dq

that the strain-hardening rate will be

h ¼ ds
dc
¼ ds0

dc
þ pb2 d2q

dc2
ð6:63Þ

where s0 ¼ dW=dc is the stress in the absence of a superposed hydrostatic pressure
(the pressure dependence of G is not being taken into account at this point). If, to
gain some idea of the relative values of the terms in (6.63), we put s0 ¼ aGbq

1
2 and

q ¼ q0 exp c=ceð Þ from Eqs. (6.31) and (6.23a), we obtain

h ¼ ad
2

G 1þ 2d
a

p

G

� �
ð6:64Þ

where d ¼ bq
1
2=ce: Putting b� 10�13 m; q� 1012 m�2 and ce� 10�2 suggests a

value of the order of 10-2 for d, which, with a� 0:3, would give a strain-hardening
rate consistent with that observed in stage II and early stage III of stress–strain
curves at atmospheric pressure (Sect. 6.6.3). Thus, (6.64) indicates that the extra
strain hardening associated with the dilatancy from dislocations is negligible in the
normal experimental range of pressures. It can be concluded that, in the athermal
field, the pressure effect in the stress–strain curve will derive almost entirely from
the pressure effect on the shear modulus G in the absence of effects associated with
dynamical recovery at larger strains.

With the onset of dynamical recovery, other pressure effects may arise. Thus, it
has been observed that in stage III of the stress–strain curve the effect of pressure
can be to reduce the flow stress, as, for example, in NaCl (Aladag et al. 1970). The
reduction has been attributed to an increase in the stacking fault energy with
increase in pressure, facilitating the constriction of dissociated dislocations as
required for cross-slip, although this explanation has also to be questioned (Puls
and So 1980). See Poirier (1985, pp. 155–156) for further discussion and
references.

The effects described in the previous paragraphs should apply for both single
crystals and polycrystals. However, additional pressure effects are possible in
polycrystals through intergranular interaction effects associated with anisotropic or
inhomogeneous properties of the grains and through volume changes associated
with porosity. Thus, if the linear compressibility (the relative change in linear
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dimensions per unit pressure change) is anisotropic in the grains, then pressur-
ization may give rise to intergranular stresses large enough to cause yielding in the
grains, and thus increase the dislocation density before the specimen is subjected
to the macroscopic stress in the stress–strain test. A similar effect can arise in the
presence of a second phase of different elastic properties (for example, Bullen
et al. 1964). If there is a change in pore volume during the deformation, there will
be an associated increment in the flow stress of p=Vð Þ dV=deð Þ and in the strain-

hardening rate of p=Vð Þ d2
V

de2

 �
, where V is the specimen volume and e the axial

strain in an axisymmetric triaxial test (Edmond and Paterson 1972).

6.9.3 Pressure Effects in the Thermal Regime

We consider first the case of viscous drag control in single crystals (Sect. 6.6.5),
expressed in _c ¼ qbv; assuming the dislocation density to be sufficiently low that
the effective stress acting on the dislocations can still be taken as being equal to the
applied stress s. In order to gain some idea of the magnitude of the pressure effect
and of what are the important factors likely to affect it, we consider a specific
model based on the expression (6.14) for v for the case of relatively low stress,
which gives the approximation

v ¼ m0bDA2s
lkT

exp �DEG

kT

� �
ð6:65Þ

and leads, through _c ¼ qbv; to

s ¼ seff ¼
_clkT

v0qb2DA2
exp

DEG

kT

� �
ð6:66Þ

where the symbols are as in Sect. 6.4.1 and DEG is the activation energy for

dislocation glide. If we assume that v0 / Gbð Þ1
2 and l=DA2 / b�3, noting that qb2

is dimensionless and therefore independent of pressure for a given dislocation
content, and we write DEG ¼ DEGð Þ0þpDVG where DEGð Þ0 is the activation
energy at zero pressure and DVG is the activation volume for dislocation glide,
then we obtain for a given dislocation configuration and strain rate,

1
s

ds
dp
¼ � 1

2G

dG

dp
� 7

2b

db

dp
þ DVG

kT
ð6:67Þ

Integrating, and putting ð1=bÞðdb=dpÞ ¼ �1=3 K; where K is the bulk modulus,
we obtain finally, in analogy to (6.63)

s ¼ s0 exp a1
p

G

 �
ð6:68aÞ
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where

a1 ¼ �
1
2

dG

dp
þ 7

6
G

K
þ GDVG

kT
ð6:68bÞ

The first two terms in a1, representing the effects of pressure on the shear
modulus and on the specimen dimensions, respectively, are each of the order of
unity. They are the only terms taken into account in considerations such as those of
Seeger and Haasen (1958) and Jung (1981). However, in the case of viscous drag
control, it is possible that they may be less important than the third term, repre-
senting the effect of the dilatancy associated with the activation event; for
example, if we put DVG = 0.01 nm3, the order of an atomic volume, and
G = 50 GPa, then GDVG/kT = 30 at T = 1,200 K

In this case (6.69) becomes

s � s0 exp
pDVG

kT

� �
ð6:69Þ

When the dislocation density is high enough that the mutual dislocation
interactions cannot be neglected, then the applied stress s is given by

s ¼ seff þ si

where seff is given by the expression (6.66) and si ¼ aGbq
1
2. In this case

ds
dp
¼ dseff

dp
þ dsi

dp
ð6:70Þ

which, with Eqs. (6.63) and (6.67), leads to the parameter a1 in (6.68a) becoming

a1 ¼
3si � s

2s
dG

dp
þ s� si

s
7
6

G

K
þ GDVG

kT

� �
ð6:71Þ

The two limiting cases correspond to the simple cases already discussed:

1. si ¼ 0 : the pure viscous drag model with low dislocation density, discussed in
the previous paragraph.

2. si ¼ s : the pure athermal case, discussed in the previous subsection, for which
a1 ¼ dG=dp.

It is thus to be expected that the pressure sensitivity of the flow stress will be
much greater when the flow is controlled mainly by viscous drag on the dislocation
motion (Peierls force, etc.) rather than by mutual dislocation interaction, provided
the activation volume DVG in the former case is at least of the order of an atomic
volume.

It is to be reiterated that the pressure sensitivities represented by Eqs. (6.69) and
(6.71) apply only under the condition that the dislocation content of the crystal
does not change, that is, that qb2 is constant, elastic volume changes being taken
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into account. Such effects are therefore properly measured in instantaneous pres-
sure step tests, from which a1 is obtained as

a1 ¼ G
D ln s
Dp

� �
;

or DVG as

DVG � kT
D ln s
Dp

� �

q

where bulk elastic effects are neglected. When stress–strain curves, each measured
entirely at a given constant pressure, are to be compared, additional pressure
effects may enter through the evolution of the qb2 term. Then, using (6.70) with
Eqs. (6.63) and (6.67) it can be shown that a term

3si � 2s
2s

G

q
dq
dp
� 2

3
G

K

� �
ð6:72Þ

has to be added to (6.71), where q is now the dislocation density developed during
straining at a given pressure p up to the strain at which the flow stresses are
compared. Taking (6.72) into account in the respective extreme cases of si ¼ 0 and
si ¼ s (or, equivalently, considering individually the expressions in (7.67) and
si ¼ aGbq

1
2 ab initio) shows that if the rate of growth of dislocation density up to a

given strain is reduced at higher pressure (dq=dp\0 in (6.72)), then the effect of
increasing the pressure will be to raise the stress–strain curve in the viscous drag
case and to lower it in the athermal case and to introduce corresponding transients
in a step test. In the case of polycrystals, the additional pressure effects mentioned
in the previous subsection may also come into play.

We now turn to the case of thermal models based on mutual dislocation
interaction (Sect. 6.6.6). We also here restrict consideration to steady-state flow
and, specifically, to the particular simple recovery-controlled creep model
expressed in the flow law in (6.45), which leads to

_cs / G�
3
2b

7
2s3 exp � pDVD

kT

� �
ð6:73Þ

when it is assumed that D / Gbð Þ1
2b2 exp �pDVD=kTð Þ from Eqs. (3.31) and (3.33),

putting v0 / Gbð Þ1
2 from Sect. 3.2.4 and putting DED ¼ DEDð Þ0þpDVD for the

activation energy, where DEDð Þ0 is the zero pressure activation energy and DVD

the activation volume for the diffusion that is required for the dislocation climb. In
a creep test, the pressure effect can then be expressed through

1
_cs

d _cs

dp

� �

s

¼ � 3
2G

dG

dp
þ 7

2b

db

dp
� DVD

kT
ð6:74Þ
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Integrating and putting 1=bð Þ db=dpð Þ ¼ �1=3K; where K is the bulk modulus,
we obtain a steady-state strain rate of

_cs ¼ _cs0 exp �a1
p

G

 �
ð6:75Þ

and

a1 ¼
3
2

dG

dp
þ 7

6
G

K
þ GDVD

kT
ð6:76Þ

Alternatively, if the pressure effect is expressed as 1=sð Þ ds=dpð Þ _c for a constant
strain-rate test, a similar argument leads to a steady-state flow stress of

ss ¼ ss0 exp
a1

3
p

G

 �
ð6:77Þ

where ss0 is the steady-state flow stress at zero pressure and a1; is again given by
(6.77).

When DVD is of the order of an atomic volume or more, the third term in (6.76)
tends to be large compared with the other two terms, leading to the commonly used
expression

_cs ¼ _cs0 exp � pDV

kT

� �
ð6:78Þ

The quantity DV in this expression corresponds to an experimentally deter-
mined or apparent activation volume DV� (Sect. 4.4.2), which can then be
expected to be approximately, but not exactly, equal to the activation volume for
diffusion DVD.

When effects such as viscous drag and cross-slip of dislocations are introduced
in more realistic thermal models of flow, the interpretation of the experimentally
determined activation volume for steady-state flow may be more complex. Only
when such effects are relatively minor compared with the diffusion-controlled
recovery effects can the empirical activation volume be expected to approximate
the diffusion activation volume DVD.

Even if a steady state has been attained at a given pressure, there will, of course,
tend to be transient effects when a step change is made in the pressure (Fig. 6.23).
The relationships in Eqs. (6.75) and (6.77) can only be applied to the strain rate
and the stress measured after the transient effects have given way to a new steady
state. For the simple recovery-controlled model underlying (6.73), an instanta-
neous change in stress given by (6.63) could be expected after a step change in
pressure in a constant strain-rate experiment, but this stress jump may be difficult
to resolve if the recovery rate is high. When the steady-state flow stress includes a
viscous drag component, a larger instantaneous effect is to be expected, corre-
sponding to (6.71) replacing (6.63).

Relatively few measurements have been made of pressure effects in either creep
or diffusion in minerals or related materials. See, for example, Ross et al. (1979),
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Kohlstedt et al. (1980), Heard and Kirby(1981), Green and Borch (1987), Li et al.
(2004).

In view of this paucity of relevant measurements, some semiempirical proce-
dures for estimating DVD in the intrinsic diffusion region (pure crystals, high
temperature) have been given by Sammis et al. (1981) and Poirier (1985,
pp. 162–166) with a view to their use in estimating pressure effects in steady-state
creep. It must also be borne in mind, for applications at very high pressures in the
Earth, that activation volumes can be expected to decrease as the pressure
increases in the range of nonlinear elasticity (Karato 1981a, b; Poirier 1985,
pp. 166–167).

P2

P1

g

g

t

t

-DP

P2

P1
+DP

(a)

(b)

Fig. 6.23 Depicting the
effect of a a step down in
pressure from p2 to p1

(p2 [ p1) and b a step up in
pressure from p1 to p2 and the
associated transient behavior
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Chapter 7
Deformation Mechanisms: Granular Flow

7.1 Basic Concepts: Kinematics, Compatibility, Dilatancy

7.1.1 Introduction

In the previous two chapters we have considered deformation processes that
involve the relative movement of individual atoms or molecules (Chap. 5) or of
different parts of a given crystal or crystalline grain (Chap. 6). In this third chapter
on deformation mechanisms we shall consider flow by the relative movement of
more or less macroscopic entities, which may be whole grains or groups of grains
such as particles of fractured rock. These entities can perhaps best be referred to
generically as granules and their assemblage be said to constitute a granular body.
The flow by relative movement of granules can then be called granular flow.

In considering the mechanisms of granular flow we shall take the somewhat
unusual step of treating, under this same heading, both the nearly temperature
independent phenomena of low temperature particulate and cataclastic flow and
the strongly temperature sensitive phenomena of high temperature granular flow
(‘‘superplasticity’’) involving viscous or other accommodation processes. This
approach derives from the view that the underlying kinematics of all these pro-
cesses are similar, being based on the relative movement of granules as entities,
even though the dynamics or rate control may depend on widely different pro-
cesses, ranging from local friction or fracturing to atomic diffusion. The concern of
this chapter will be with the various mechanisms of granular flow and no attempt
will be made to expound the macroscopic flow theory, which is part of continuum
mechanics.

The granules involved in the flow of the granular material are understood to be
entities that persist identifiably for at least the duration of the deformation incre-
ment being considered. However, they may undergo some gain or loss of sub-
stance by diffusive exchange or fracturing, or they may themselves undergo
deformation. They are described above as being macroscopic only in the sense of
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being large compared with atomic dimensions; their scale may still be such as
would require microscopical observation.

For the sake of simplicity, discussion will, in general, be restricted to materials
containing only one kind of solid granule. However, the granules will often not
fully occupy the total volume of the material. In this case the granular material can
generally be considered as consisting of two ‘‘phases’’ of extremely or even
infinitely contrasting strength. The granules themselves will constitute the strong
phase and the interstitial medium between them will constitute the weak phase,
which may be just void space or a fluid or even a relatively weak solid. In order to
define the granular material as a solid in the macroscopic sense, it is then necessary
that there be three-dimensional connectivity through the contacts between the
grains of the strong phase. Indeed, the distinction between a suspension and a
granular solid may be expressed in terms of the existence of such a continuous
‘‘skeleton’’ of granular contacts through which shear stress is supported. However,
the volume fraction of the granular phase may vary widely, from as low as 0.2 in
unconsolidated sediments (Hamilton 1976) to unity in fully dense polycrystalline
materials; that is, the porosity, defined as the volume fraction of interstices, may
vary from around 0.8 to zero.

In the following subsections we shall attempt to set out a suitable kinematical
framework in terms of which to discuss the mechanisms of granular flow and the
factors that determine the dynamics of the flow. It will be useful to distinguish two
aspects of the kinematics, as follows:

(1) the pattern of relative grain translations that eventually determine the mac-
roscopic strains

(2) the questions concerned with the extension and boundaries of the grains,
involving the overlaps or gaps that tend to develop and the rotations of the
grains.

The main emphasis here is on the physics rather than the quantitative theory
which is, in any case, still not well developed.

7.1.2 The Pattern of Relative Translations of Granules

In this first aspect of the kinematics we consider the relative movement of a
granule viewed as a featureless entity of undefined volumetric extent. That is, in
place of the real granule we consider only a representative point within it, and so,
of the total geometry of the granular assemblage, only the arrangement of the
representative points is at first taken into account. The only constraint that need
be placed on the choice of the representative point is that it fall within a part of the
original granule that persists as such during the deformation increment under
consideration (it may be helpful at times to think of it as the centroid of the
granule). The relative motions of the granules can then be described in terms of the
displacements of the representative points relative to a set of external coordinates,

210 7 Deformation Mechanisms: Granular Flow



the origin of which may conveniently be chosen to coincide with the representative
point of one of the granules. However, this description will differ from that for a
continuous medium, familiar in the classical theories of elasticity and plasticity,
because the constraints of continuity, whereby neighbouring points remain
neighbouring, no longer apply. Indeed, it is an essential part of the mechanics of a
granular material that granules can change neighbours in the course of the
deformation.

The practical description of the relative translations of granules thus firstly
involves the question of the scale of the local heterogeneity of movement leading
to neighbour exchange. At the macroscopic scale the pattern of relative grain
translations will be statistically homogeneous, more or less by definition, but this
statistical aspect of the pattern contains little information about the local hetero-
geneities that essentially characterize the granular flow mechanism. The latter
involves the individual relative translations of the granules. Thus a question that
arises in relation to the description of the mechanism is how large a sample or
elementary representative group of granules is required to define the essentials of
the mechanism, the macroscopic strain being obtainable from the averaging of the
deformations of these groups

In choosing an elementary representative group of granules it is necessary to
take into account that the movement pattern may be continually changing. At any
instant, relative movement of granules may be concentrated in certain locations,
and these locations may change from one instant to another. Such a situation does
not readily lend itself to very neat analysis. However, two aspects of the behaviour
can be brought out by considering specific model situations, as follows:

(1) Neighbour-exchange aspect. The essential character of a neighbour-exchange
process is illustrated in the notional, two-dimensional model of Fig. 7.1; here,
grains 1 and 3 are initially separated by grain 2 but become immediate
neighbours through the deformation, while grains 1 and 4 become separated.
Since the relative translations to the new configuration are shown in the figure
as occurring as directly as possible, it is evident that the amount of strain
required for completion of a neighbour exchange is quite large, of the order of
at least 0.3–0.4 natural strain (cf. Ashby and Verrall 1973). Thus deformation
to fairly large strains is required in the observation and study of the neighbour-
exchange process.

1 4

52

3 6

1 4

52

3 6

1 2 4

563

Fig. 7.1 Depicting how an array of spheres can undergo macroscopic shape change by exchange
of neighbours
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(2) Localized shearing aspect. The relative granular displacement events such as
idealized in Fig. 7.1 are unlikely to be distributed uniformly in space or time
because of the irregularity and evolving character of the real granular struc-
ture. At any given instant, certain local structural configurations will be more
favourable to relative granule movement than others, and, for reasons of
movement compatibility, these relative movements will tend to occur as local
shears extending through quite large groups of granules. That is, at any instant,
the granular body will appear to be undergoing local shearing at isolated local
sites, as depicted in Fig. 7.2 but the pattern or distribution of the local activity
will tend to change with time. Such a continually changing kinematic picture
has been emphasized by Rowe (1962) and (Horne 1965). Sometimes it may be
useful to view the local shears as resulting from the passage of dislocations
but, due to the absence of a long range periodic structure in the granular
medium and to the continually changing pattern of local flow events, such
dislocations will tend to be of an ephemeral nature.

So far, we have only considered the relative translations of the granules, or,
specifically, of their representative points, insofar as these translations give rise to
macroscopic change of shape, expressible in terms of deviatoric strain compo-
nents. However, the relative translations may also contribute a macroscopic
change of volume, or dilation, expressible in terms of a change in the mean

Fig. 7.2 Depicting how a
granular body can be
undergoing local transient
shearing events, the pattern of
which will be changing with
time
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spacing of the representative points. Further, even if the mean spacing were to
remain constant (steady flow; no macroscopic dilation), there may be local dila-
tions (positive or negative) associated with the local shearing events mentioned
above, which would have dynamical implications, especially if a relatively
incompressible interstitial phase were present.

For some attempts to give quantitative expression to the micro-geometrical or
kinematic aspects of granular material deformation and to relate them to phe-
nomenological theory, see Cambou (1982), Nemat-Nasser (1982, 1983), Oda
(1982), Satake (1982), Cambou (1993).

7.1.3 Granule–Granule Relationships at their Boundaries

We now consider the actual geometry of the granules and their contacts rather than
just the locations of the representative points. This geometry involves both the
extension of the granules in space and their orientations (the latter can be defined,
for a given granule, by the orientation relative to external coordinates of two
material line segments intersecting in the representative point).

If two granules are initially in contact over a certain area of granule boundary,
this contact will, in the absence of granule deformation, be preserved during an
increment of aggregate deformation only if the relative translation vector for the
granules is parallel to the contact area, and, in the case of non-spherical granules, if
there is no relative rotation of the granules. Otherwise, the two granules will tend
either to separate at the initially common boundary or to interfere there. In a real
deformation in which three-dimensional connectivity is maintained, these two
tendencies have to be limited in one or more of the following ways:

(1) the establishment of a self-consistent set of relative granule translations that
are as far as possible both instantaneously parallel to the contact surfaces and
yet such as will give rise to the required neighbour exchange.

(2) insofar as the relative granule translations are not parallel to the contact sur-
faces, the maintenance of sufficient granule contact for connectivity and
control of dilatancy through the transfer of material by processes such as
diffusion or fracturing and rearrangement of the fragments; in general cases,
material may be introduced into or removed from the body itself in an
exchange with the environment.

(3) alternatively to (2), the maintenance of connectivity and control of dilatancy
through intragranular deformations; such deformations may become reversed
in subsequent stages of the flow and, in any case, should sum algebraically to
substantially less than the macroscopic strain (otherwise the deformation
should be classified under Chap. 5 or 6)

The first of these three aspects of the deformation is of a primary nature, being
an essential part of the granular flow process, while the second and third have a
secondary or accommodation role, meeting the connectivity and dilatancy
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requirements (homologous with the compatibility constraints discussed in Sects.
5.2.2. and 6.8.1.

In contrast to the negligble or very small volume change during deformation of
pore-free polycrystalline aggregates by crystal plasticity (Chap. 6), dilatancy is
often an important aspect of deformation by granular flow mechanisms. Assuming
that the solid volume of the granules themselves remains constant, the dilatancy
derives from variation in the interstitial volume during the deformation. This
variation can occur for two essentially different reasons, associated, respectively,
with the contact stresses in the granules and with the pressure in the interstitial
medium:

(1) as an accommodation mechanism associated with the relative translation of
granules, as discussed above; thus, a looser packing of granules locally may be
required to permit them to pass one another in the neighbour-changing process.

(2) as a direct response to a difference between the pressure in the interstitial
medium (for example, pore fluid pressure) and the mean total macroscopic
stress, assuming that the former pressure is independently controlled.

In the case in which the material of the granules can also be transported into or
out of the specimen, there may be an additional dilatation or compaction associ-
ated with the net transfer.

7.1.4 Fabric and Memory

On general symmetry principles (Curie 1894; Paterson and Weiss 1961) it can be
expected that in a granular body undergoing deformation the structural arrange-
ment of the granules will be in some way anisotropic. The appropriate description
of the structural arrangement, usually called a texture or fabric, will depend
somewhat on the nature of the deformation mechanism, that is, on the dynamical
factors governing the deformation. In the case of the low-temperature deformation
of particulate media such as unconsolidated sediments, the fabric may be specified
in terms of the contact normals between the particles; see, for example, Field
(1963), Brewer (1964), Oda (1972a, c), Nemat-Nasser (1982) and Satake (1982).
Thus, while a random dense packing of spheres may model some aspects of such a
granular medium, the random character will lack the essential anisotropy of the
medium actually undergoing deformation. In the case of polycrystalline material
undergoing high-temperature granular (‘‘superplastic’’) flow, the most important
element of the fabric may be the configuration of the grain boundaries at which
sliding is occurring.

Since the anisotropy of the fabric reflects the nature of the deformation process,
the fabric serves as a ‘‘memory’’ of this process. However, as in the case of the
crystallographic preferred orientation resulting from deformation by crystal plas-
ticity, where later phases of a complex deformation history can overprint and
obliterate the effects of the earlier phases, so in granular materials the fabric can be
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expected to constitute only a ‘‘fading memory’’. Nevertheless it may be a valuable
source of information concerning the nature of the deformation processes.

7.2 Granular Flow Controlled by Frictional and Cataclastic
Effects

7.2.1 Introduction

So far in this chapter we have considered purely kinematical or geometrical
aspects of granular flow. We now introduce dynamical aspects, considering the
factors that determine the resistance to flow under applied stress. This step
immediately enables us to distinguish two broad categories of granular flow.

In the first category (microbrittle granular flow), considered in the immediately
following sections under Sect. 7.2, the dynamics of the flow are controlled by
frictional factors, including any local fracturing necessary to allow relative sliding
of granules, that is, by local factors that are characteristic of the brittle field. In the
second category (microplastic granular flow), considered in subsequent sections
underSect. 7.3, the dynamics are controlled by local factors that are characteristic
of the ductile field, involving either crystal plasticity within the granules (cf. Chap.
6) or atom transfer (cf. Chap. 5) or both. The distinction between these two
categories is sufficiently profound that it is unconventional to consider them
together in the same chapter. Yet they are logically related through the kinematical
aspects considered under Sect. 7.1. In practice, their fields of application tend to be
distinct because the first type of flow arises mainly at relatively low temperatures
and the second at higher temperatures (although, in the case of solution transfer
effects on the geological timescale, the temperature need not be very high).

In elaborating the first category further, it is useful to separate the case of pure
particulate flow, involving only friction between intact granules, and the case of
particulate flow with accompanying local fracture processes. We now consider
these cases in turn, as well as touch on the question of what is meant by cataclastic
flow and on the roles of temperature and pore fluid pressure.

7.2.2 Pure Particulate Flow

The simplest and, in many respects, archetypal model for granular flow is that of a
cohesionless assemblage of rigid particles that remain intact during the flow. Such
a model is often invoked in soil mechanics in connection with the flow of a
cohesionless dry sand. It can also be taken as a reference case in developing more
complex models in which additional physical processes are incorporated. We shall
refer to it as the model of ‘‘pure particulate flow’’.
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The basic physical premise of the pure particulate flow model is that the only
source of energy dissipation is the friction between the granules/particles at their
contacts during their relative movement. Such a model could therefore also be
described as one of pure friction-controlled granular flow. The friction is taken in
the simplest case to be described by the Amonton law according to which the
tangential, frictional force component at the contact is proportional to the normal
force component. In general, however, incomplete knowledge of the geometry of
both the individual granules and their spatial arrangement makes it difficult to
formulate a detailed micromechanical model for pure particulate flow. This
problem has been discussed by Vaišnys and Pilbeam (1975) who identify several
approaches which have been or, in principle, can be taken. If a sufficiently simple,
regular array of granules is assumed, an analytical approach can be taken.
Otherwise, alternative approaches are needed to cope with situations that may be
either too complicated to analyse completely (‘‘computation-limited’’) or lacking
in a full specification of all details (‘‘information-limited’’). See comments in Myer
et al. (1992) on a stochastic approach for clastic rocks.

The analysis of the behaviour of regular arrays of equal-sized rigid spheres
brings to light certain elementary properties that may apply more generally
(Deresiewicz 1958; Feda 1982, Sect. 4.3; Parkin 1965; Rennie 1959; Thornton
1979; Thornton and Barnes 1982; Thurston and Deresiewicz 1959; Trollope 1968).
Starting with the contact forces between the spheres and calculating the corre-
sponding macroscopic stresses, it can be shown that, for predominantly com-
pressive stress states, deformation is initiated when the ratio of the extreme
principal stresses, r1=r3; exceeds a critical value, which, in the case of a close-
packed cubic array shortening in the (111) direction, is

r1

r3
¼ 2

1þ l
1� l

ð7:1Þ

(Feda 1982, p. 152). Recast in Coulomb form (Paterson and Wong 2005, Sect. 3.3
), this expression leads to a coefficient of internal friction of the form

tan /i ¼
1þ 3l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� l2ð Þ

p ð7:2Þ

It is to be noted that tan /i has a finite value, 1=2
ffiffiffi
2
p
� 0:35; even when the

contacts are frictionless (l ¼ 0:) This result re-emphasizes the distinction between
the nature of tan /i and a physical coefficient of friction (Paterson and Wong 2005,
p. 25). It expresses the fact that tan /i covers the structural or interlocking aspect
of the shearing strength as well as the truly frictional aspect. These two aspects of
the strength can also be associated with non-dissipative and dissipative compo-
nents of the deformation, respectively (Thornton and Barnes 1982). Thornton and
Barnes have also analyzed the cases of lower-symmetry regular arrays, in which
they show that the normality condition (Sect. 4.5) is not obeyed. Such results for
regular arrays of spheres suggest similar properties for less regular arrays.
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Since a regular array is too artificial a model to represent fully a real granular
aggregate, it is important also to consider irregular packings and, eventually,
mixed sizes and shapes of granules and the possibility of rolling as well as sliding
at contacts. There are several approaches that may be taken. They include purely
statistical, computer modelling and semi-empirical approaches.

In contrast to the analysis of a regular array, for which a specific description of
the geometrical arrangement of the granules is assumed, in the statistical approach
it is assumed that the granules are randomly arranged, although still being spheres
of equal size in the simplest case. The geometry may be expressed in terms of the
number of contacts on individual granules or of the variation in local porosity
(Feda 1982, Sect. 4.3.2). In either case, it can be expected that at least two
parameters will be needed for an adequate description of the array, for example,
the mean porosity and the standard deviation of the local porosity, and so the way
is opened for introducing two geometrical parameters into constitutive relations for
granular aggregates. For further consideration, including the use of the thermo-
dynamics of irreversible processes and observations on arrays of steel balls, see
Feda (1982, Sect. 4.3.2), Mogami (1965, 1969) and Mogami and Imai (1967,
1969).

There is a total lack of specific information about the behaviour of individual
granules in relation to their neighbours in a statistical model. In contrast, the
situation at each granule in a finite array is available in computer modelling
experiments (Cundall 1986, 1988a, 1988b, 1989; Cundall, et al. 1982; Cundall and
Strack 1979a, 1979b, 1983; Hart et al. 1988; Thornton and Barnes 1986a). Since
there appears to be a paucity of relevant physical observations on real granular
materials at the microscopic scale, apart from a few studies on photoelastic models
(Allersma 1982; Drescher 1976; Drescher and de Josselin de Jong 1972; Konishi,
et al. 1982, and earlier references given by them; Oda and Konishi 1974a, 1974b),
the computer modelling experiments provide a valuable source of ideas about the
micromechanisms of granular flow, confirming and extending those from the
photoelastic models. The granular material has most commonly been simulated by
arrays of discs (for two dimensions) or spheres (for three dimensions), often of
several sizes and arranged initially in more or less random ways. In the compu-
tation, specific assumptions are made about the nature of the interactions at the
contacts (elastic and/or frictional).

The main conclusions about the mechanisms of pure particulate flow in a
granular material from the model studies are the following:

(1) The forces are mainly transmitted through chains of aligned granules, inclined
at relatively small angles to the maximum compressive principal stress, the
other granules being more lightly loaded (Fig. 7.3).

(2) The shearing processes are concentrated amongst the lightly loaded granules,
roughly defining domains within which there is less relative movement and
more concentration of forces through chains.

(3) The granules rotate relatively to each other in a fairly coordinated fashion,
thereby minimizing the total amount of frictional sliding and contributing in a
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major way to the deformation. Thus the granules along a chain tend to rotate
alternately in opposite senses, leading to the eventual destruction of the chain
and transfer of load. The rotations may be exaggerated in certain locations,
giving a hinge-like effect with the appearance of a local strain discontinuity.

(4) During straining the number of contacts tends to decrease, especially in the
direction of the least compressive principal stress, accompanied by the
development of dilatation and anisotropy. The dilatation seems not to depend
immediately on the intergranular friction, although this will have an eventual
effect through its influence on the development of fabric.

(5) Upon unloading, residual stresses tend to remain, due to locked-in shear forces
at contacts.

We now come to the microdynamical problem of integrating up from the
behaviour at the grain scale to the macroscopic behaviour of the aggregate, that is,
of deriving a constitutive relation or flow law from a given set of grain–grain
forces. Such a step involves not only the mathematical difficulties arising from the
complexity and variability of the pattern of contact forces and their proper
description, but also the structural or geometrical problems of what this complex

Fig. 7.3 A computer model of the distribution of forces between particles in a granular
assemblage after 3 % shear strain. The lines represent the orientation of forces between particles
and the thickness of the lines represent the magnitudes of the forces (copy of Fig. 3 in Thornton
and Barnes 1986b)
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pattern actually consists of on a sufficiently large scale to correspond to an ele-
mentary representative group of granules that is typical of the macroscopic scale
(Sect. 7.1.2). So far, the derivation of a flow law in physical terms from grain–
grain forces, without artificial assumptions, has not been achieved. Instead, one
can only point to a number of approaches that have been made by various workers
which attempt to construct macroscopic theories that incorporate some elements of
what is understood of the microscopic processes, with such additional assumptions
as are thought to be rational or to be required in order to achieve a correspondence
with macroscopic observations.

In considering the various theories it must be borne in mind that particular
theories may be aimed only at describing particular aspects of the mechanical
behaviour. The most important distinction is that between steady flow, in which the
flow stress and the state of the aggregate are unchanged from one strain increment
to the next, and unsteady flow, with simultaneously evolving structure and in
which hardening or softening occurs, accompanied by dilatation or compaction.
Because of the interdependence of flow stress and structure, any valid flow law can
be expected to contain parameters (internal variables) that represent the structural
factors, although some of these may not appear in the case of a steady flow. Some
aspects of the problem of deriving a flow law for the aggregate from the inter-
granular contact forces as revealed in modelling experiments have been discussed
by Cundall and Strack (1983). They suggest that the internal variables can be, at
least in some degree, represented by ‘‘partitions’’ of the macroscopic stress. They
show that, for example, the intergranular shear forces contribute only to the de-
viatoric components of the stress tensor, the isotropic part deriving solely from
normal forces at contacts. Further, they show that the deviator can be partitioned
into components that, respectively, represent the shear forces at actively sliding
contacts (associated with the energy dissipation), the angular distribution of con-
tacts (representing the fabric anisotropy), and the variation in magnitude of normal
contact forces with angle (as a measure of the tendency of the ‘‘chains’’ to buckle).
They also introduce the notion that the strength will depend on the structure in a
way that can be measured by a ‘‘constraint ratio’’, defined as the ratio of the
number of constraints (actual physical situations involving some relationship
between a local force and a displacement resulting from it) to the number of
degrees of freedom (independent relative translations or rotations of granules that
are possible). However, further development is needed for a complete physical
theory.

In the absence of a fully physically-based theory, there have been many theories
that attempt to incorporate physical notions in some degree but supplement them
with more or less empirical assumptions. Here we shall distinguish two broad
groups of such theories.

The first semi-empirical group is typified in the theory of Rowe (1962, 1963, 1964
and 1972) and Horne (1965, 1969); see also Barden (1971), Proctor (1974) and
Proctor and Barton (1974). This approach starts with the physical picture of granules
sliding over each other against frictional resistance. It recognizes that the sliding
tends to be localized at the boundaries of large groups of granules and it assumes that
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rolling at the contacts plays no significant role. The orientations of the contacts at
which active sliding occurs are chosen so as to minimize the energy dissipation by
friction. With the aid of this assumed principle, a ‘‘stress-dilatancy’’ relationship is
derived which, in the case of a triaxial compression test, is of the form

r1

r3
¼ 1þ 1

v
dv
de1

� �
tan2 p

4
þ

/l

2

� �
ð7:3aÞ

or
r1

r3
¼ 1þ d/

de1

� �
tan2 p

4
þ

/l

2

� �
ð7:3bÞ

where r1 and r3 are the axial and radial principal stresses, respectively (com-
pression positive; in case of pore pressure, r1 and r3 are taken to be the con-
ventional effective stresses), v is the specimen volume, e1 the axial strain
(shortening positive), / the porosity, and /l the friction angle at the sliding
contacts. Horne (1965) proceeds further and relates the dilatancy factor, 1þ
d/=de1 for the triaxial compression test, to a fabric anisotropy measure which is
viewed as changing in the course of the test and so accounting for the various
stages in a test (initial hardening or softening and subsequent constant volume
stages). However, direct microscopial observations have not been used in testing
the theory. Oda (1972b, 1974) has attempted to combine microscopical fabric
observations with mechanical and he has developed a theory along similar lines to
Rowe and Horne, resulting in an expression analogous to (7.3a) but with a fabric
factor in place of the dilatancy factor.

It is interesting to compare the form (7.3b) with the purely empirical Coulomb
relationship for a cohesionless material

r1

r3
¼ tan2 p

4
þ /i

2

� �
ð7:4Þ

where /i is the angle of internal friction (Paterson and Wong, 2005, p. 25). It is seen
that /i [ /l during dilation and /i\/l during compaction. In soil mechanics
studies situations have often arisen where the observations do not appear to fit the
form (7.3) when the real interparticle coefficient of friction tan /l is used and so
another angle /i is introduced in place of /l (for example Rowe 1972). However,
although an attempt is made to rationalize such a step in terms of a supposed physical
model, the theory takes on a more or less purely empirical character at this point.
Indeed, at no stage can the Rowe-Horne theory be regarded as one fully based on the
microscopical observation of the flow mechanisms. Although there is reference to
groups of grains sliding relative to each other, there is no recognition of the separation
between the ‘‘chains’’ of main load-bearing contacts and the actual sites of sliding
contacts, as revealed in the photoelastic and computer modelling experiments
mentioned earlier, nor is any account taken of the possibly important role of the
rotations of granules or groups of granules. Thus such an approach does not seem to
be very promising from the point of view offurther physical insight into mechanisms.
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The second semi-empirical group is typified in the theories of Mandle (1947,
1966), de Josselin de Jong (1959, 1971, 1977), Spencer (1964, 1982), Mandl and
Fernandez Luque (1970), Rudnicki and Rice (1975), Mehrabadi and Cowin (1978,
1980), Anand (1983) and Nemat-Nasser and coworkers, for example, Nemat-
Nasser (1983, 1986); Christoffersen et al. (1981); Mehrabadi and Nemat-Nasser
(1983); Lance and Nemat-Nasser (1986). Most of these theories have been
described as ‘‘double slip’’ theories. They can be regarded as having a physical
basis insofar as it is assumed that frictional sliding occurs on conjugate surfaces
inclined at � p=4� /f =2

� �
to the maximum principal compressive stress, but little

attempt has been made to identify the sliding surfaces with microscopically
observable features, and /f is treated as an empirical material parameter. In the
more developed theories, the concept of a dilatation normal to the sliding surfaces
is also introduced and described by a second material parameter m or /m while, in
any case, the sliding on the surfaces is assumed to be controlled by a Coulomb
criterion which specifies a limiting shear stress of s0 þ r tan /i (where r is the
normal stress across the sliding surface) incorporating two further material
parameters, the angle of internal friction /i and the cohesion s0 (which is zero in
the case of the pure particulate flows considered in this subsection). With up to
three adjustable parameters apart from the cohesion parameter, such theories have
considerable flexibility and can incorporate the observed non-axiality of principal
strain rate and stress tensors and non-normality of strain rate direction and yield
surface (Sect. 4.0.0). However, again, the development of these theories does little
to aid physical insight into the deformation mechanisms and they can be regarded
as essentially phenomenological.

A third group of theories that might also be viewed as being semi-empirical,
although again distantly so, stem from attempts to combine concepts of real
structure, such as granular structure, with those of continuum mechanics in
treatments of so-called structured continua or Cosserat continua; for an intro-
duction to this field, see Jaunzemis (1967, Chap. 11). In such theories, the inter-
actions between granules that involve couples can be represented by couple
stresses, and the granule dimension can be introduced as an absolute scaling
parameter when specifying quantities such as the width of a shear band. As an
example of such an application, see Mühlhaus and Vardoulakis (1987).

The role of pore fluid pressure also needs to be incorporated in granular flow
theories. It is usually assumed that the influence of the pore fluid pressure is ade-
quately dealt with by substituting conventional effective stresses rij � pdij for the
actual macroscopic stresses rij (where p is the pore fluid pressure and dij the
Kronecka delta), as for the case of brittle fracture (Paterson and Wong 2005, Chap.
7). This view largely derives from experimental studies in soil mechanics, especially
those on flow in sand at low effective pressures. However, insofar as the resistance to
flow arises from Amonton-type friction at elastically deforming contacts between
granules, the conventional effective stress law could also be expected theoretically
since the normal contact forces between granules would be proportional to the
difference between the confining pressure and the pore fluid pressure.
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7.2.3 Cataclastic Granular Flow

In the models of pure particulate flow (Sect. 7.2.2) it has been assumed that the
granules or particles remain intact throughout the flow (except presumably for
some wear on the surfaces, associated with the frictional sliding). Such a situation
can only be assumed to apply at relatively small stresses, such as those commonly
involved in soil mechanics or in the handling of particulate matter. In practice,
grain crushing becomes significant when the mean normal stress exceeds a certain
level which depends on mineralogy and grain size but for medium-grained sand is
of the order of 1 MPa (Chaplin 1971; Hettler and Vardoulakis 1984; Vesic and
Clough 1968).

We now consider the case of granular flow in which the intergranular forces are
sufficiently large to lead to gross fracture of the granules. Such flow is here
described as cataclastic granular flow, taking ‘‘cataclastic’’, from its etymological
origins, to mean ‘‘pertaining to breaking down by fracturing’’. In the case of
extensive fracturing, the term ‘‘comminutive granular flow’’ might alternatively be
used. There are two distinct ways in which cataclastic effects can be of relevance
to granular flow:

(1) In the first case, as in that of an initially more of less intact rock, the occur-
rence of cataclasis is a precondition to the possibility of granular flow, in that
the cataclasis reduces the body to an assemblage of granules which can then
move relative to each other in producing a granular flow. In geological rock
mechanics, this combination of cataclasis and granular flow is commonly
referred to as ‘‘cataclastic flow’’, without distinguishing between the two
aspects. Often such a process is only one, possibly minor, component in a
deformation that also involves crystal plasticity. In the latter case, if the
fracturing is insufficiently pervasive to reduce the rock effectively to an
assemblage of separate granules, the main contribution of the cataclastic
component to the deformation will be dilatational rather than distortional.

(2) In the second case, that in which the body is initially already in a particulate
state, the cataclasis may not only have a direct effect, in which the relative
movement of groups of granules is facilitated by the fracturing or interlocking
grains, but also an indirect or structural effect of changing the size distribution
and packing density of the granules and hence influencing the potential ease
with which further relative movement can occur. Thus, the fracturing of
granules is important in relation to compatability or accommodation require-
ments and, consequently, to dilatancy.

The clearest example of the role of cataclastic effects is provided by the
development and deformation of fault gouge in rocks, and its study serves to
illustrate the principal aspects of cataclastic granular flow. The first of these
aspects concerns the nature and the progressive comminution of the granular
material that constitutes the gouge. From a study by Sammis et al. (1987) and
earlier papers quoted by them, the following properties appear to apply to gouge:
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(1) The fracturing of the granules consists largely of diametral splitting in
response to compressive loading at contacts with granules of similar size and
so is strongly influenced by the size distribution of neighbouring granules.

(2) The size distribution that develops is self-similar with respect to change in
magnification, constituting a fractal distribution with a fractal dimension D of
about 2.6. This observation suggests that the fragmentation process is scale
invariant (Turcotte 1986).

(3) Assuming that each fracture event is accompanied by a local relative shearing
displacement b (b = actual displacement divided by granule diameter), and
using the averaging procedure of Molnar (1983) the mean macroscopic shear
strain in the gouge is deduced to be about 6b in the case of D = 2.6. Applying
this relationship gives quite large values of b, of the order of 10 or more,
indicating that the amount of sliding and/or rolling that accompanies each
fracture event must be quite large. Also the latter contribution possibly
increases at larger strains relative to that of the local displacements associated
with the fracturing itself (Biegel and Sammis 1988). These considereations
give some idea of the local kinematics that may be involved in the mecha-
nisms of cataclastic granular flow.

The second aspect of such flow on which one might seek guidance from studies
on gouge is the dynamics. The dynamics of cataclastic granular flow can be
expected to be dominated by some combination of friction and fracture effects.
Since the friction itself will tend to reflect fracturing of asperities, the overall or
macroscopic flow behaviour can thus probably be expected to follow a Coulomb-
type law, analogous to that for macroscopic shear fracturing (Paterson and Wong
2005, Sect. 3.3) but with perhaps somewhat lower values for the coefficient of
internal friction if rolling of granules is a significant factor. However, from the
existing experimental literature, it is difficult to draw general conclusions and to
develop a clear physically-based theory of cataclastic granular flow. The obser-
vations on gouge layers often refer to sliding at the gouge-slider interface (for
example, Shimamoto and Logan 1981b). Even if the main body of the gouge is
involved, as it tends to be at very large relative displacements (Blanpied et al.
1988), the deformation is often concentrated in Riedel shears (for example, Logan
et al. 1981). Therefore, the stability of the deformation is likely to figure as a major
aspect in any comprehensive theory. Complementary experimental observations
relevant to cataclastic granular flow are also offered by studies on porous rocks,
such as sandstones, with porosities of the order of 0.1 or higher (Borg et al. 1960;
Hadizadeh and Rutter 1982, 1983; Handin and Hager 1957, 1958; Handin et al.
1963; Hirth and Tullis 1988). In such experiments, there tends to be a preliminary
phase of deformation during which cataclasis associated with pore collapse con-
tributes a component to the deformation. As noted in Sect. 7.1.2, large strains are
needed for complete neighbour exchanges in granular flow and therefore steady-
state conditions can generally only be expected at very large strains; transient
behaviour, involving either strain hardening or strain softening, tends to be
characteristic for the normal range of strains explored in axisymmetric tests. Such
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behaviour therefore needs to be an important part of theoretical studies, as well as
the role of pore fluid pressure.

7.2.4 Cohesive Granular Flow

We now return to the consideration of granular flows in which the granules are
envisaged as remaining intact during flow, but consider the situation in which the
resistance to relative movement of granules includes a component other than the
simple Amonton-type friction at contacts considered in Sect. 7.2.2. Two cases
might be distinguished in respect of the source of the additional resistance.

In the first case there may be a cohesive interaction between the granules at their
contacts. Such a type of interaction could arise from the presence of an intergranular
film having finite shearing strength or viscosity, from electrical interactions
between charged particles (especially important in clays), from long-range surface
forces such as those studied by Israelischvili and coworkers (Israelachvili 1992),
or from surface energy effects associated with variation in areas of interfacial
contacts.

In the second case, there may be a finite shearing strength in the intergranular
phase, which has to be overcome in accommodating the intergranular movements.
A sandy sediment with a clay interstitial filling would be an example of such a
case.

In the absence of a well-developed physical theory of the mechanism of pure
particulate flow (Sect. 7.2.2), little can be added theoretically concerning the
cohesive case. The simplest theoretical step would presumably be to replace the
intergranular friction law Ft ¼ lFn by one of a form such as

Ft ¼ F0 þ lFn ð7:5Þ

(Jaeger 1959), where Ft; Fn are the tangential and normal intergranular forces,
respectively, and F0 and l (¼ tan /l) are material constants. It will be noted that
the friction law (7.5) is formally equivalent to the Coulomb failure law

s ¼ s0 þ r tan /i ð7:6Þ

commonly used to describe the macroscopic behaviour, s0 and tan /i being
macroscopic material constants and s; r the shear stress and normal stress,
respectively, acting on a notional plane inclined at p=4� /i=2 to the maximum
compressive principal stress; however, in the absence of an adequate theory, the
empirical constants s0 and tan /i cannot be immediately related to the more
physically meaningful constants F0 and tan /l.

Pore fluid pressure would be expected to have an effect through its modification
of the normal forces at intergranular contacts, in which case it should be possible
to use conventional effective stresses again to express the effect, insofar as the pore
fluid is chemically neutral. However, the presence of a pore fluid may also
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influence the values of the cohesion and, possibly, the friction parameters if the
fluid is chemically active, as may well be the case if it is water.

If clays are present, it may be relevant, further, to distinguish between ‘‘free’’
pore water and adsorbed water (for example, Bombolakis et al. 1978).

7.2.5 Effect of Temperature: Creep

In the cases of pure particulate flow and of cataclastic granular flow the relative
movement of the granules can be expected to be generally rather insensitive to
temperature because of the relatively temperature-insensitive natures of the pro-
cesses of friction and fracture. However, there are some temperature effects that
can be measured and that can be of practical importance, and there is scope for
additional temperature effects in the case of cohesive granular flow.

In general, there are two ways in which a deformation mechanism can be
affected by a change in temperature. On the one hand, insofar as the process
involves the local elastic distortion of the crystal structure, it will tend to depend
on temperature in the way in which the elastic modulus depends on temperature,
and no time-dependent or rate effects need be involved. On the other hand, insofar
as the process involves the local disruption of the atomic bonding structure, it is
likely to depend on thermal activation and so a time or rate dependence will be
involved; in this case, the process will be characterized as a thermally-activated
one and the possibility of creep or strain rate effects arises. The effects that we
shall discuss in this section will be mainly of this second type.

In the case of models of pure particulate flow, the main physical parameter is
the friction, and so temperature and time effects would be expected to have their
origin in the temperature and sliding rate sensitivities of friction, which are gen-
erally relatively small. There are three main physical models for the origin of
friction (Paterson and Wong 2005, Sect. 8.4.3):

(1) The adhesion theory of Bowden and Tabor (1950; 1964), which is based on the
local plastic deformation of welded or adhering junctions.

(2) The dilatational work theory according to which the irreversible work done
against the normal load through the dilatational component of the displace-
ment (references in Paterson and Wong 2005, Sect. 8.4.3).

(3) The asperity fracture theory of Byerlee (1967) based on the local brittle
fracture of interlocking asperities.

The asperity fracture model is probably the more widely applicable to rocks, at
least at low to moderate temperatures, and in this case the temperature and time
dependence would be similar to that for brittle fracture in rock and so be relatively
unimportant (Paterson and Wong 2005, Sect. 3.4). However, there may be some
high temperature or other situations in which the component minerals can readily
deform plastically and in which the adhesion model of friction is therefore more
relevant; temperature and time effects similar to those for plastic deformation
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might then be expected, although such a granular body may also be approaching
the sintering threshold. In practice, the temperature and time aspects of pure
particulate flow do not appear to have been much studied.

In modelling cataclastic granular flow, crack propagation within the granules
plays an important role in addition to that of friction at their surfaces and may even
become the rate controlling factor. The temperature and time effects would then be
expected to be similar to those observed in crack propagation studies. While such
effects are still relatively minor compared with similar effects in crystal plasticity
and atom transfer flow, they are nevertheless readily observable and have been
extensively studied in connection with static fatigue and subcritical crack growth
(Anderson and Grew 1977; Atkinson 1984; Atkinson and Meredith 1987; Costin
1987; Hasselman and Venkataswaran 1983; Kranz 1979; Kranz 1980, 1983;
Martin 1972; Ohnaka 1983; Scholz 1968, 1972; Swanson 1984). However, the
application of such studies in the modelling of cataclastic granular flow has been
less well developed.

The main application of the studies on the kinetics of crack-growth has been to
so-called brittle creep, that is, the small-strain creep that is commonly observed as
a precursor to macroscopic brittle fracture or to gross slippage on an already
existing fault surface (Carter et al. 1981; Carter and Kirby 1978; Cruden 1970,
1974; Kranz 1980; Kranz and Scholz 1977; Lockner and Byerlee 1977a; Scholz
1968; Wu and Thomsen 1975; Yanagidani, et al., 1985). One description of
deformation of this type has been as ‘‘elastic creep’’, on the grounds that it can be
regarded as resulting from a decrease in the elastic modulus of the material
because of the crack proliferation (for example, Hasselman and Venkataswaran
1983). However, this description, which seems to imply that the cracks close again
on removal of the deviatoric stress, does not adequately cover the permanent
strains (non-dilational as well as dilational) that may accompany the crack pro-
liferation. There has been considerable progress in the understanding of the phe-
nomenology and of the processes involved in brittle creep, such as its
predominantly transient or primary character, with a relative lack of steady state
behaviour but a strong tendency to a tertiary or failure stage, its relatively low
temperature and strain-rate sensitivity, reflected in a low activation energy if
suitably defined (generally less than 100 kJ mol-1), and the importance of crack
interaction; in addition to references already given above, see Price (1964),
Robertson (1964), Lockner and Byerlee (1977b; 1980), Sasajima and Itô (1980),
Ohnaka (1983), Segall (1984), Costin (1985)and Ortiz (1985). However, the the-
oretical basis for modelling brittle creep is still not well developed in a fully
integrated way, incorporating both slow crack growth and evolving crack inter-
action aspects.

The other main aspect of cataclastic granular flow, complementary to the small-
strain brittle creep, is the large-strain behaviour, typified in the deformation of fault
gouge or of cataclasites or in phenomena such as hill creep. It seems likely that such
cases will also commonly involve aspects of cohesive granular flow, especially when
clays are present. Thus, whether the nature of the time and temperature dependences
will be similar to those in small-strain brittle creep is questionable. Probably a
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complex mixture of basic flow mechanisms will be involved, the characterization of
which has not yet been adequately achieved. Therefore, we shall not attempt to define
models for the time and temperature dependence of granular flow in these situations.
For a selection of studies on the time and temperature dependent aspects of flow in
fault gouge and similar materials, see Summers and Byerlee (1977), (Bombolakis
et al. 1978), Wu (1978), (Moody and Hundley-Goff 1980), (Wang et al. 1980),
(Logan et al. 1981), Shimamoto and Logan (1981a, b), Teufel (1981), Chu and Wang
(1982), (Morrow et al. 1982), (Moore et al. 1986), Raleigh and Marone (1986) and
Rutter et al. (1986).

Closely related to such behaviour are the time and temperature dependent
aspects of friction. These also often involve gouge to a greater or less extent and
have been considerably studied in connection with stick–slip movement between
sliding surfaces and its application to earthquakes. The variations in frictional
resistance with displacement and with velocity have been of particular interest and
may eventually have some application in modelling strain rate and temperature
dependence in friction-controlled granular flow. For a selection of friction studies,
see Dieterich (1972, 1978, 1979, 1981), Stesky et al. (1974), Stesky (1978),
Johnson (1981), Dieterich and Conrad (1984), Wecks and Tullis (1985), Lockner
et al. (1986), Tullis and Weeks (1986), Rudnicki (1988), Tullis (1988) and Rundle
(1989).

7.3 Granular Flow Controlled by Thermally-Activated
Processes

7.3.1 Introduction: superplasticity

Following the trend in materials science, the term ‘‘superplasticity’’ is taken here
to be primarily a phenomenological one rather than a term referring to a particular
deformation mechanism (Gilotti and Hull 1990; Paterson 1990). The term was
originally used in metallurgy to refer to the development in tensile tests of very
large elongations, often of the order of ten-fold (natural strains of 2 or more), and it
has been used in the ceramics literature in the same sense (for example, Chen and
Xue 1990, referring to natural strains in extension of 0.5–1 in many cases). The
essential properties that promote large ductility in high temperature extension tests
are a high strain rate sensitivity of the flow stress, which inhibits necking (Hart
1967), and the absence of processes such as microcracking and cavitation that lead
to premature fracture. In practice, two other groups of properties are also observed
to be associated with this behaviour:

(1) The flow stress depends strongly on the grain size and the superplastic regime
is limited to grain sizes below a certain level, commonly of the order of
1–10 lm under experimental conditions (hence the terms ‘‘fine-grain super-
plasticity’’ and ‘‘grain-size-sensitive flow’’)
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(2) The grain shape tends to remain approximately equant rather than reflect the
macroscopic strain, with no strong development of crystallographic preferred
orientation; but there is a marked tendency for grain growth.

These properties have been established by many observations on metallic and
ceramic materials (Baudelet and Suery 1985; Chen and Xue 1990; Edington and
Melton 1976; Padmanabhan and Davies 1980; Paton and Hamilton 1982; Stowell
1983).

The term ‘‘superplasticity’’ has also been applied in situations where consid-
erable ductility and/or a marked decrease in flow stress are exhibited under con-
ditions close to those at which a phase transformation occurs or under which large
internal stresses are generated. Such behaviour has been referred to as ‘‘transfor-
mational’’ or ‘‘environmental’’ superplasticity (Edington and Melton 1976; Sam-
mis and Dein 1974; Sherby and Wadsworth 1990). We shall not consider
transformational superplasticity here.

In rock deformation studies, where the uniaxial tensile test is little used and
predominantly compressive stress regimes are normally involved, it is useful to
extend the usage of ‘‘ superplasticity’’ to embrace the general case of flow with
high strain rate sensitivity, under the presumption that, where this condition
applies, similar physical processes are involved and a potential for high ductility
exists. Thus, in the following sections, superplasticity is taken to be defined by a
high strain rate sensitivity of the flow stress, as measured by d ln r

d ln _e ¼ 1
n, where r is

the stress, _e is the strain rate and n may typically have a value between 1 and 2
(Paterson 1990); note that Gilotti and Hull (1990) prefer a definition in terms of
‘‘continuous’’ deformation to very high strains, which is less restrictive in terms of
strain rate sensitivity and of implications for mechanisms. Superplasticity in this
sense has been observed experimentally in calcite, anhydrite, olivine and feldspar
aggregates by Schmid (1976), (Schmid et al. 1977), Schwenn and Goetze (1978),
(Mueller et al. 1981), Vaughan and Coe (1981), Brodie and Rutter (1985), Chopra
(1986), Ji and Mainprice (1986), Karato et al. (1986), Rutter and Brodie (1988),
Stretton and Olgaard (1997), Walker et al. (1990). It has also been frequently
proposed as being geologically important, at least in the sense that the flow stress
is grain-size-sensitive and therefore low in fine grained rocks (for example,
Boullier and Guéguen (1975), Guéguen and Boullier (1976), Twiss (1976), White
(1976), Etheridge and Wilkie (1979), Evans et al. 1980), Schmid (1983), Behr-
mann (1985) and (Gilotti and Hull 1990).

7.3.2 Mechanisms of Temperature-Sensitive Granular Flow

The view is taken here that mechanistic models for superplastic flow can be based
appropriately on the concept of granular flow (Sect. 7.1.1),. In particular, the
approach in terms of granular flow is preferred to that of atom transfer models such
as Nabarro-Herring or Coble creep (Chap. 5) for the following reasons:
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(1) The granular flow model readily allows very large strain to be achieved
without concomitant change in grain shape, as is observed, and it gives ready
explanation of observed effects such as grain-neighbour switching and cavi-
tation. In the case of atom transfer models, an extraordinary amount of grain
boundary migration would have to be invoked and rationalized in order to
explain retention of equant grain shape while increasing or decreasing the
number of grains in a cross-section.

(2) The stress–strain rate relations are often non-Newtonian (Chokshi and Lang-
don 1985), in contrast to the Newtonian Nabarro-Herring or Coble models, an
observation more readily accommodated in granular flow models.

(3) When the shear strength of grain interfaces is low, for reason of high tem-
perature, partial melting, or the presence of a wetting phase, sliding on the
interfaces can be expected to be the primary response to applied shear stress,
although the accommodation processes brought into play by compatibility
requirements are likely to be rate controlling.

As for atom transfer models (Chap. 5), the accommodation processes that are
necessary for maintaining strain compatibility must, however, be seen as an
inseparable aspect of the deformation process. The distinction emphasized here is
that the relative grain movements play the primary role, in the sense of defining the
overall deformation, and that the accommodation processes are brought in only to
the extent necessary to maintain compatibility, whereas the reverse of this hier-
archy of roles was envisaged in the atom transfer models. The accommodation
processes can be either of an atom transfer type (any of the processes in Chap. 5)
or of a crystal-plastic type (Chap. 6).

In the spirit of this approach, we shall attempt first to develop a general
deformation model that is analogous to the temperature insensitive granular flow
models of Sect. 7.2 but with thermally-activated processes playing the essential
roles of accommodation and rate control. In this context, we shall then review a
number of the more specific models for superplastic flow that have been proposed
from time to time.

As a preliminary, certain aspects of the physics of superplastic deformation
need closer examination. In particular, the concept of sliding on a migrating grain
boundary and the constraints on accommodation processes present conceptual
difficulties. However, there is a paucity of microstructural evidence reflecting these
physical processes. This lack may be due, in part, to the inadequacy of the con-
ventional observational methods, which are more appropriate to intracrystalline
plasticity, and, in part, to there being actually fewer microstructural features
remaining because of an increased tendency for them to be annealed out at the
higher temperatures and smaller grain sizes generally involved. Dislocation den-
sities tend to be low and substructures absent, while grain boundaries tend to be
straight or only gently curved (for example, Ball and Hutchinson 1969; Kaibyshev
et al. 1978; Padmanabhan and Davies 1980, pp. 91–95; Parayil et al. 1990).
However, much more microstructural study in association with experimental work
is clearly needed.
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It is widely observed that pronounced grain growth occurs during deformation
in the superplastic regime unless there are factors such as the presence of second
phases, to inhibit it (Clark and Alden 1973; Suery and Baudelet 1973, 1980; Watts
and Stowell 1971; Wilkinson and Cáceres 1984). It seems therefore that within a
given phase there is some sort of coupling between the sliding on grain boundaries
and their migration. Possibly, during the relative movement of the contacting
grains, there are increased opportunities for the boundary atoms belonging to one
grain to enter low energy sites belonging to the other grain, thereby promoting the
migration of the boundary. On such a view, there might exist independently a
driving force for the migration, deriving for example from interfacial energy
decrease, and the grain boundary sliding would simply serve to accelerate the
kinetics of the migration. However, it is possible that sometimes a driving force for
migration may derive from the deformation, if there is an increase in the possibility
of grain boundary sliding through bringing adjacent boundaries into coplanar
configuration.

As far as granular flow itself is concerned, the only kinematic quantity of
importance is the instantaneous relative movement of the main part of one grain
relative to the main part of its neighbour, as reflected in the relative motion of the
centres of mass existing at the instant. However, because of the grain boundary
migration, what constitutes the grain has to be redefined from instant to instant.
This circumstance should not present a conceptual problem if the deformation is
viewed as a summation of successive increments, each taking place at one such
instant and involving the grains as they exist at that instant.

The actual movement pattern of the grains in superplastic flow is not well
known although observations have confirmed neighbour exchange (Ashby and
Verrall 1973; Duclos 2004; Rai and Grant 1983). By analogy with pure particulate
flow (Sect. 7.2.2), it could be expected that there would be both substantial short-
range coordination of relative grain displacements and considerable irregularity.
Associated with this pattern, the stress distribution could be expected to be highly
irregular on the grain scale. Some groups of grains would be subjected to higher
local stress than others and there would be pronounced stress concentrations or
diminutions where relative grain movements tend to produce interference or create
voids. These stress heterogeneities would provide the driving forces for the
accommodation processes, whether diffusional or crystal-plastic.

If the accommodation is by diffusional transfer of material, the principles of this
have been set out in Chap. 5. If it is by crystal plasticity, the processes are
discussed in Chap. 6. The principal problem in either case is to elucidate and
quantify the actual grain-scale driving forces and the detailed geometries of the
processes.

In polyphase materials there are further constraints. Thus, grain growth may be
limited for various reasons: for example, for geometric or topological reasons,
depending on the proportions of the phases; or for surface energy reasons if a
finely dispersed phase is distributed along the grain boundaries of another phase.
Where accommodation by diffusive mass transfer is involved, the chemical
identity of the phases must be retained by appropriate constraints on the fluxes of

230 7 Deformation Mechanisms: Granular Flow

http://dx.doi.org/10.1007/978-94-007-5545-1_5
http://dx.doi.org/10.1007/978-94-007-5545-1_6


the individual components. Further, there may be differences in the diffusivities of
these components along interphase boundaries and along grain boundaries in the
same phase, the former being sometimes higher than the latter.

7.3.3 A Semi-empirical Theoretical Approach

In order to circumvent the difficulty of giving specific quantitative descriptions of
the complex patterns of relative grain movements, we assume initially that the
integrated effect of the accommodation processes is to prevent the dilatancy that
would otherwise occur if the body behaved as an aggregate of unyielding grains of
the same fixed shapes but zero inter-granular cohesion, and we assume that this
dilatancy can be estimated approximately from the observations on densely-
packed particulate masses (Sect. 7.2.2) (Paterson 1995a, 1995b, 2001). The
dilatancy is expressed as

dev

de
¼ tan w ð7:7Þ

where ev is the volumetric strain, e the linear strain, and w the so-called dilatancy
angle (Paterson and Wong 2005, p. 252). It is implicit that the actual deformation
by granular flow occurs at constant volume under a sufficient confining pressure.

On the dynamical side, we assume that the intrinsic resistance to sliding on the
grain boundaries is negligibly small and that the rate of sliding is therefore
determined by the rate of accommodation at the sites of interference. Support for
the assumption of negligible shear strength of grain boundaries at high temperature
comes from observation on bicrystals (Ashby 1972) and from experience of
practical failures such as filaments of light bulbs where they are crossed by grain
boundaries (Koref 1926). The concept of such a low-strength regime corresponds
to the early notion of the ‘‘equi-cohesive temperature’’, above which grain
boundaries become weak relative to the grains (Jeffries and Archer 1924; Ro-
senhain and Ewen 1912) although, in rocks, the weakening may be achieved by the
agency of fluids as well as by temperature alone.

Under the first assumption above, we take the quantity dev in (7.7) to be the
relative volume of material on average to be displaced in a grain in the accom-
modation process. This displacement, which involves a change of shape of the
grain, can alternatively be expressed as a linear strain dea given by

dev ¼ C1dea ð7:8Þ

where C1 is a geometric constant of order unity. Thus, from (7.7) and (7.8), and
changing to strain rates, we have

_e ¼ C1

tan w
_ea ð7:9Þ
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The local accommodation strain rate _ea will be determined by the local stresses
brought into play and by the accommodation mechanism.

The local stress r1 � r3ð Þa driving the accommodation strain rate _ea will derive
from the macroscopic applied stress r1 � r3; subject to a degree of stress con-
centration, so that

r1 � r3ð Þa¼ C2 r1 � r3ð Þ ð7:10Þ

where C2 is the stress concentration factor, C2 [ 1: The relationship between
r1 � r3ð Þa and _ea will then be determined by the nature of the accommodation

mechanism. Of the various possible cases, we select the following for
consideration:

1. Accommodation by diffusion along grain boundaries, diffusion controlled. This
accommodation mechanism corresponds to Coble creep (Sect. 5.4), the local
accommodation strain rate _ea being governed by

_ea ¼ CCO
VmDgbd

RT

ðr1 � r3Þa
ðd0Þ3

ð7:11Þ

in the notation of Sect. 5.4, where d0 is now the average distance between source
and sink, related to the grain size d by d0 ¼ C3d; the constant C3 will be sub-
stantially less than unity because the accommodation adjustments do not involve
the whole extent of the grain (cf. Ashby and Verrall 1973). From (7.9), (7.10) and
(7.11) we then obtain the macroscopic flow law

_e ¼ C1C2

C3
3 tan w

CCO
VmDgbd

RT

ðr1 � r3Þ
d3

ð7:12Þ

This result is similar to that of (Raj and Chyung 1981); Wakai (1994) has
developed an alternative theory based on the notion of migrating steps on the grain
boundary from which higher stress dependence is possible.

2. Accommodation by solution transfer along grain boundaries, solute diffusion
controlled. In the notation of § 5.5 the accommodation strain rate is now
controlled by

_ea ¼ CFT
V2

mcDf d
RT

ðr1 � r3Þa
ðd0Þ3

ð7:13Þ

where d0 ¼ C3d; C3\1 as for (7.11). From (7.9), (7.10) and ( 7.13) we obtain

_e ¼ C1C2

C3
3 tan w

CFT
V2

mcDf d
RT

r1 � r3

d3
ð7:14Þ
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Rutter (1983) has proposed a similar relationship but that of Pharr and Ashby
(1983) has a more complicated stress dependence.

3. Accommodation by solution transfer along grain boundaries, reaction con-
trolled. In the notation of Sect. 5.6 the accommodation strain rate will be

_ea ¼ CR
Vmbk

RT

r1r3ð Þa
d0

ð7:15Þ

where again d0 ¼ C3d; C3\1 as for (8.11), leading,through (8.9) and (8.10), to

_e ¼ C1C2

C3 tan w
CR

Vmbk

RT

r1 � r3

d
ð7:16Þ

4. Accommodation by dislocation glide. The absence of subgrain structure in su-
perplastically deforming materials suggests that any dislocation sources will tend
to be within the grain boundaries (the subgrain size being, in effect, greater than
the grainsize). Therefore, the density of dislocation sources and hence the mobile
dislocation density q may reasonably be assumed to be proportional to the grain
boundary area or the square of the grain size d. The mobile dislocation density
may, in addition, depend on the rate at which dislocations can be extracted from
the grain boundaries, as from a potential trough; that is, at low stresses (Sect.
3.2.4, Eq. 3.12d with F ¼ sblÞ; q may also be postulated to be proportional to the
local stress r1 � r3ð Þa, then the Orowan relation 6.4b leads to

_ea /
r1 � r3ð Þa

d2
r1 � r3ð Þa

or _ea ¼ C4
r1 � r3ð Þ2a

d2
exp

�Q

RT

� � ð7:17Þ

where Q is the sum of the activation energies for dislocation nucleation and
dislocation motion and C4 is a constant of dimensions m6 N-2. If the motion were
limited by the rate of climb of the dislocations in the receiving grain boundary,
dissipating pile-ups there, then the second part of the activation energy could be
equal to that for grain boundary diffusion, making Q somewhat greater than for
grain boundary diffusion. However, there are obviously other possibilities and no
firm predictions about the level of the activation energy can be made at this stage.
Substituting (7.17) and (7.10) in (7.9) leads to the macroscopic flow law

_e ¼ C1C2

tan w
C4 exp

�Q

RT

� �
r1 � r3ð Þ2

d2
ð7:18Þ

The exact value of the stress exponent in (7.18) is somewhat problematical
because of the tenuous nature of the assumptions made above about the stress
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dependences of dislocation nucleation rate and velocity. However, the interesting
point is that a stress exponent greater than unity can be rationalized, since observed
values are often around 1.5–2.5. The stress exponent might also vary with strain
rate or temperature if the nature of the factors limiting the dislocation velocity
were to vary.

The above formulae (7.12)–(7.18) should be regarded as being of a generic
nature, illustrating the general character of possible granular flow mechanisms
rather than displaying all the properties of deformation in specific situations.
However, some semi-quantitative conclusions can be arrived at through consid-
eration of possible values of the constants C1 to C3 and tan w; as follows:

C1 The volumetric strain ev required for accommodation is most simply
achieved by the displacement of a layer of relative thickness ea from one
side of the grain to the other, in which case, from 7.8, C1 ¼ 1

C2 This can be expected to be less than typical elastic stress concentration
factors because of the non-elastic deformation involved: We make the
subjective choice of C1 � 2

C3 In the cases 1, 2 and 3, it may suffice to postulate the diffusive transfer of
material from one grain interface to an adjacent one; then d0 in (8.11),
(8.13) and (8.15) will be approximately equal to the diameter of a grain
interface, that is, for a typical 12-faced grain, of the order of 1

� ffiffiffi
6
p� �

d; or

C3 � 1
� ffiffiffi

6
p

and C3
3 � 1

15
tan w The dilatancy that would occur in the granular flow of a low-porosity

polycrystalline body in the absence of accommodation processes could be
expected to be similar to that in dense sand, for which a typical value of
tan w is around 0.7 (see Fig. 6.20c in Wood 1990). An alternative estimate
is obtained by supposing that a transition from close packing of equal
spheres (porosity &0.26) to loose random packing {porosity &0.38;
Cargill 1984} requires a strain of about half that for complete neighbour
exchange (Sect. 7.1.2), that is, about 0.2, leading to a value of tan w of
(0.38–0.26)/0.2 = 0.6. We therefore choose tan w ¼ 2=3 as a typical value

Using the above estimates, we therefore obtain values for the first terms in
(7.12), (7.14) and (7.16) of:

C1C2

C3
3 tan w

¼ 45 and
C1C2

C3 tan w
¼ 7

The strain rate predicted for the grain-boundary-diffusion-accommodated
granular flow model (7.12) is thus around 45 times that for the classical Coble
creep model (5–11), a large factor in favour of the granular flow model, as was first
noted by Ashby and Verrall (1973). A granular flow view is similarly favoured in
the case of diffusion-controlled solution transfer accommodation (7.14), and, to a
lesser extent, in the case of the reaction-controlled accommodation (7.16).
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There is no obviously simple way of estimating the quantity C4 in (7.18) and so of
assessing, at this generic level, the relative rates of granular flows with accommo-
dation mechanisms involving atom transfer and dislocation glide, respectively.
However, both types of model need to be borne in mind and their distinction will
require extensive microstructural and rheological study, especially in respect to
stress and grain size exponents. An example of such an analysis is that (Schmid et al.
1987) who establish a role for f-slip as an accommodation mechanism in the
superplastic deformation of fine-grained calcite aggregates.
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