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Preface to the Second Edition

The first edition of this book has been out of print for seven years. The ques-
tion as to whether a new edition should be produced was answered affirmatively
on many counts. I think that the considerations which led me to write this book
in 1949 are still valid (see Preface to the First Edition). Moreover, a description
of those areas of interest which together comprise the field of Mineralogy seems
to be more necessary than ever, because of the rapid advances which have been
made.

Due to the rapid extension of our knowledge, I did not dare again to treat
the whole field by myself. Accordingly, Professor ZEmaNN kindly agreed to
revise the first part of the book dealing with Crystallography. He made many
important corrections.

In Part II the basic question arose as to whether the physical-chemical
approach to rock forming processes, becoming more and more important, required
inclusive treatment of the fundamentals of physical chemistry in the book. I see
certain dangers in trying to produce a petrology text which is physical chemically
self-sufficient. Thus, I retain the same opinion which prevailed when I wrote the
previous edition; namely that the necessary basic knowledge should be acquired
in lectures and laboratory classes in physics, chemistry, and physical chemistry,
and with the help of standard literature dealing with these subjects. This back-
ground is, therefore, presumed and fundamentals are only referred to occasionally.

In considering which of the new data and areas of interest to include, I at-
tempted to keep in mind the introductory nature of the text and to select that
which seemed of fundamental importance for a student in his scientific work.
Thus, I deleted old material as well as adding new, in bringing the subject matter
up-to-date. Important additions were made particularly in sections dealing with
volatile constituents, metamorphic facies, and isotope geochemistry. These
changes resulted in no significantnet change in the size of the volume.

The appended tables have been rearranged, particularly in the case of sedi-
mentary and metamorphic rocks. Here the reader may locate detailed data which
could not be mentioned in the text. In particular this gives the reader the oppor-
tunity to familiarize himself with the variability of natural rocks, in contrast
to the simplified diagrams presented for comprehensive survey. I am indebted
to Professor Korrrnia for compiling again and revising the mineral tables. Along
with the tabulated rock data, they are an important supplement to the text.

Professor WEDEPOHL kindly read the proof for Part IT. Dr. SMyraTz-KroSS
compiled the indices. I am grateful to both of them for this valuable assistance.
My wife did most of the writing for me and assisted in reading proof.

Gottingen, July 1967 Carr W. CORRENS



Preface to the First Edition

To write an introductory text covering the entire field of mineralogy, including
crystallography, petrology, and ore deposits, may seem presumptuous to many
today. The fact that the author has taught this subject regularly through lectures
and laboratories for 22 years is not in itself sufficient reason in his view. The
motivation to do so arose out of the necessity to provide for students of this
science and sister sciences a single useful and comprehensive book. Previous
texts have been designed with subjects selected to conform to the courses taught
at German Universities. It is questionable whether this limitation is still or ever
was fortunate. Boundaries between the natural sciences have developed histori-
cally and should be maintained, in my opinion, only as practicality dictates, such
as in teaching. Each science is so intimately linked with its sister science that
boundaries tend to disappear. It is known that interdisciplinary approaches
frequently promote particularly successful research. Thus, also in the field of
mineralogy, the influence of the allied sciences has been of great importance. This
is particularly true of the influence of mathematics and physics on crystallo-
graphy and of geology on petrology. The changing emphasis on the one or the
other branches of our science, however, has not always been beneficial. For
example, it has resulted in judgments such as the following, attributed to the
renowned mineralogist A. G. WERNER, relative to HatU'y, one of the founders of
crystallography. The far-sighted geologist L. voN BUcH says in a letter of May 17,
1804 to D. G. L. KARSTEN: “No, I do not agree with WERNER’s judgment of
Haty. He says he is no mineralogist.” This book, on the other hand, attempts
to prove that crystallography, especially in its recent developments, is an in-
dispensible prerequisite to petrology, and conversely, the problems of petrology
offer many stimuli to crystallography. Important supporting sciences, in addition
to the examples already given, are chemistry and physical chemistry. Biology
is an important allied science to sedimentary petrology. Similarly, mineralogy
plays a role among allied sciences, supporting them as well. I do not deny that
it is not always easy for students of sister sciences or beginners to enter the field
of mineralogy. Practical teaching experience suggests several reasons why this is
so. Overstressing formal principles in crystallography, along with the great
number of technical terms, are probably the greatest obstacles. A certain amount
of knowledge of crystal forms is, in my opinion, indispensible and should be
acquired like the formula-language of the chemists. I have tried to keep within
bounds in this respect. The number of really necessary mineral and rock names
is small, certainly when compared to the profusion of specific names in the
biological sciences.

On the other hand, former as well as living authors have continued to formulate
new technical terms, mostly derived from the Greek, and these have been con-
tinuously introduced into later publications. I did not see it to be my task to
increase the quantity of technical terms or to replace existing ones by new ones.
I have tried to explain the most frequently used terms and, moreover, to use as
often as possible the terminology of the allied sciences.



Vi Preface to the First Edition

In this way the book attempts to lead to an understanding of mineralogy,
but is not intended to replace a systematic textbook. My first aim was to provide
the fundamentals for a genetic consideration of crystals and rocks. In order to
provide space to deal with these questions, much information is presented as
tables in the appendix. I believe that the 300 minerals (522 mineral names) will
be sufficient for the ordinary student and that the 93 rock types give him a
sufficient survey of variety.

The book results from the general lectures I have given since 1927 in Rostock
and Gottingen. In the literature index I have specified the sources of illustrations
and some statements, but many suggestions by others may have been forgotten
in the course of years. Results of my own investigation and reflection, which
would have been published separately in normal times, have also been incor-
porated. The diagrams of the 32 crystal classes are drawn according to NicaLi.
The crystal structures, unless otherwise specified, have been taken from the
Strukturbericht. I owe thanks for much assistance to the former and present
members of the Institutes in Rostock and Gottingen. In particular, the crystal
drawings were, for the most part, drawn anew by Mr. WALTER SCHERF, and
some by Dr.I. MEGGENDORFER, who also made the microscopic illustrations
using the Edinger drawing apparatus. She also drew the diagrams of close-
packed spheres as well as some others. Dr. K. JAsMuND provided the Figs. 230,
233—235, 277, and 350. Professor KoRITNIG compiled the mineral tables and
Dr. P. ScENEIDERHOHN the subject index. Both assisted in reading proof.

Foreign literature, as far as it was attainable at the end of 1947, was taken
into consideration. Some references were added even during the correction of
proofs.

April 1949 Carr W. CORRENS
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I. Crystal Mathematics

1. Introduection

We are all familiar with the subdivision of the natural world into the plant,
animal, and mineral kingdoms. Of these the realm of minerals is the study and
research area of mineralogy. A mineralogist uses the word mineral, however,
in a much more restricted sense than prevails with common usage. If we examine
a rock rather closely, we notice, for example, that a sandstone is composed of
individual quartz grains. When we examine a specimen of granite, we can recog-
inze feldspar, dark mica, and perhaps also hornblende, in addition to quartz.
From a specimen of certain ores, galena, chalcopyrite, and sphalerite all shine
forth brilliantly. Any such individual rock constituent is a mineral. Mineralogy
encompasses the study of these minerals and the manner in which they occur,
and includes the properties of all rock materials, which, in the sense used here,
embrace ore and salt deposits, as well as other useful mineral deposits.

Minerals occur as constituents of rocks not only in assemblage, but are found
also as separate individuals. Frequently these have the opportunity to develop
without restriction in cavities or in surrounding media which could yield to their
growth. Under these conditions they often develop into polyhedral forms called
crystals. These have from time immemorial attracted the attention of thoughtful
natural scientists as well as laymen.

Earlier all natural bodies with planar external boundaries were called crystals.
For example, A. G. WERNER, the patriarch of mineralogy, considered that basalt
columns were crystals, because of their somewhat polyhedral shape. Today the
concept of a crystal and a mineral is restricted to a homogeneous body, that is,
one composed of only one substance. Basalt columns, which are composed of
feldspar, augite, and other minerals, are not crystals in the modern sense. In
addition we know now that the regular outer form or morphology of a crystal
is neither the unique nor truly diagnostic characteristic of the crystalline state.
It is the regularity of the internal structure which determines the unique
characteristics of crystalline matter. As this knowledge developed during the
last century, it was further recognized that almost all solid bodies are crystalline.
Since the earlier studies of crystals involved almost exclusively natural products,
minerals, the study of crystals developed as a branch of mineralogy.

The regular internal structure of crystals determines their external geometric
form and is also manifest by other phenomena. If, for example, we strike a piece
of galena or rock salt, it always breaks along planes parallel to the surfaces of
a cube. The mineral hornblende on the other hand breaks or cleaves into four-
sided prismatic forms with prism angles of 124 and 56°. A property common
to many minerals is exemplified by kyanite, which also occurs as prismatic
crystals. Kyanite can be scratched with a steel needle in the direction of elongation
of the prism, but not perpendicular to it. Another interesting mineral is cordierite,
a magnesium aluminium silicate named after the French mineralogist CORDIER.
If a cube is cut from a cordierite crystal in the proper orientation and viewed
in each of the three perpendicular directions corresponding to the cube edges,

1*
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it will be noticed that the color is different in each direction, namely blue, lilac,
and yellow. Directional dependence of color has been established for many other
minerals also. If in addition we investigate the heat conductivity of quartz, we
can ascertain that it is about 40% greater in the direction parallel to a prism
edge, than perpendicular to it. This difference can be demonstrated very nicely
also in the case of gypsum. If a cleavage fragment is coated with wax or paraffin
and then probed with a hot needle, the wax melts around the source of the heat
clearly in the form of an ellipse, not a circle.

All of these observations lead to the conclusion that crystals are bodies for
which many properties, such as external shape, cleavage, color, hardness, and
heat conductivity, are dependent upon direction. This directional dependency
of geometrical and physical properties is called anisotropism (Greek. iso, equal;
tropos, direction; an, neg.). It is characteristic of every kind of crystal. Crystals
of very high symmetry show no directional dependence for certain physical
properties, such as the transmission of light, and are said to be isotropic. With
respect to other properties, such as tensile strength, the same crystal may be
anisotropic. Crystals are, therefore, first of all homogeneous substances, and
secondly they are anisotropic.

Very long ago the recognition of the directional dependence of properties
led to attempts at an explanation. The idea finally evolved that crystals were
constructed of tiny building blocks. Thus the Hollander, Car. HUYGENS in 1678
explained the cleavability, the directional variation in hardness, and the double
refraction of calcite, in terms of an arrangement and orderly grouping together
of very small and invisible flattened ellipsoidal units. In Sweden TORBERN
BereMaNN (1773) and in France REnN%E Just Haty (1782) introduced the
concept of ‘“‘integrating molecules”, of building blocks, whose shapes should
correspond to the shapes of cleavage fragments of crystals. As early as 1824,
SEEBER, in Freiburg i. Br., formulated a concept of the arrangement of points
in space quite similar to that which prevails today. So we see that the fundamental
property of a crystal, its directional nonequivalence, has led from the very
beginning directly to a concept of orderly arranged building units.

For some time mathematicians, mineralogists, and physicists have been
concerned with theoretical investigation of such regular repetitive arrangements.
As early as 1891 the mineralogist FEDOROV in Petersburg and independently
the mathematician ScHONFLIESS in Koenigsberg proved that there are only 230
symmetrically different ways of arranging points in space. These regular spatial
arrangements are called space groups. Since 1912 it has been possible to investigate
these space groups experimentally, thanks to the discovery by Max voN LAUE
of X-ray interference by crystals. This discovery has been of the greatest signif-
icance to crystal science. It has been learned since that the “centers of gravity”
of atoms, or ions and molecules, actually confrom to regular point group arrange-
ments. Their spatial relationships can be measured. The interatomic distances
are of the order of magnitude of 1 Angstrom (1078 cm = 1/100,000,000 cm).
Discussion of the methods of measurement will be reserved for a later chapter.
We shall next familiarize ourselves with space lattice relationships.

A disordered array of points also shows different relationships in different
directions, but only as long as we consider a region of few points within the total
array. If we integrate some property over long distances in the disordered point
system, we will encounter like conditions in all directions. The situation is quite
different in ordered point systems. It can be rather easily demonstrated that
there is no arrangement of points in space whose regular and periodic spacings
do not vary with direction. This would appear to be inconsistent with the concept
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of isotropism. Isotropism arises only statistically as the result of integration of
some property over long distances in a point array. The separation of lattice
particles from one another is so small, that over large distances we obtain only
average values with the usual methods of measuring properties. For example,
a gas in which particles are constantly in motion is isotropic, as is a fluid or a
glass, which is a fluid solidified as a result of supercooling. Such incompletely
ordered matter in the solid state is said

to be amorphous because it possesses no

tendency toward development of a char-

acteristic form. The most important char-

acteristic of a crystal, on the other hand,

is its regular atomic arrangement in space. // / / /

Thus the directional dependence of crys- N
talline properties can be understood.

A planar net or lattice is shown in Fig. 1. Along any particular set of parallel
lattice lines, points are distributed periodically. In different directions the spacing
of points differs. The arrangement is anisotropic.

What can we say about the homogeneity of such lattices ? As far as the small
portion in Fig. 1 is concerned, the structure is discontinuous, not homogeneous.

Fig. 1. Planar lattice
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Fig. 2a—e. Different arrangements of rod-shaped particles showing the transition from

amorphous (a) to nematic (b) (nema, Gr., thread) and smectitic (c, d) (smektein, Gr., salve)
mesophases and to a crystal (e)

A point array becomes homogeneous if we consider larger expanses of an unlimited,
extended array: that is to say, when each point possesses an infinitely large
number of corresponding or equivalent points in the extended arrangement
(BARLOW,1888). We can mark off a repetition of points in a straight line giving
rows. We can project these linear patterns within a plane creating planar point
nets, and finally we can stack and build these together in space producing a
space lattice. The only pre-requisite for real homogeneity is that the structure
be regular. The structural units are repeated periodically. Space lattices conform,
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therefore, not only to the property of anisotropism, but also to that of genuine
homogeneity. Crystals possess a corresponding atomic arrangement.

An amorphous body also possesses a sort of homogeneity. Like isotropism,
it is in this case statistically related. In a disordered array the constituent particles
are on the average similarly surrounded. In contrast to this statistical homo-
geneity, crystals have a three-dimensional periodic homogeneity to their space
lattices. Only that matter which possesses such a space lattice is denoted as
crystalline in this restricted sense. The deviations of real crystals from this
ideally ordered state will be dealt with later in the section on crystal chemistry.
Here let us refer only to the so-called “fluid crystals”, which are constructed
from one- and two-dimensional molecular arrangements. They form a sort of
transition to crystals and for that reason are also considered as mesophases
(Greek; mesos, medium). Fig. 2a—e illustrates the arrangement possibilities of
rod-shaped particles, ranging from the completely disordered to the crystalline
state. Here it is assumed that the rods are perfect cylinders. Departure from this
ideal shape would lead to different arrangement possibilities.

2. Descriptive Crystallography

Law of Constancy of Interfacial Angles. We shall be concerned above all in
the following sections with ideal crystals. Before we discuss the existing arrange-
ment possibilities, we must familiarize ourselves with the terminology and the
most elementary aids to crystal description. These have been developed for
macroscopic crystals with face development. The faces of a crystal correspond
to some planar net in the space lattice. From this fundamental fact we can
deduce directly the first and oldest law of crystal science: the angles between
the existing faces of like kinds of crystals are under like external conditions
(temperature, pressure) always the same. Today it is self-evident to us that the
angle between two planar nets of identical space lattices will always be the same,
and that for a particular structure it does not matter if we displace a lattice
plane parallel to itself. However, when the Danish scientist NIELS STENSEN
(latinized to NIicoraus STENO) in 1669 found that identical faces on quartz
crystals always included the identical angle, it was no foregone conclusion but
an important achievement, providing a clue to further understanding. This law
signifies that only the angles between faces are important, not the relative sizes
of the faces. If we observe a collection of quartz crystals from different localities,
it is easy to surmise the difficulty in discovering that they have in common
equal angles between corresponding faces (Fig. 3). In 1783 Rom% DE L'ISLE first
established the law of constancy of interfacial angles as a generally valid law,
applying to all crystals.

Angular Measurement. By measuring the interfacial angles on crystals it was
possible to reconstruct the ideal form of a crystal from the often very distorted
natural crystal, and then to reveal the conformity of crystal development to
fundamental principles. This led to further development of crystal science and
finally to recognition of the concept of space lattices. STENSEN’s discovery
initiated a long series of angular measurements of crystals. These have been
continued up to the present time, even though today they are considered by
some to be of less importance than X-ray methods. At first, simple devices held
in contact with a crystal were used for angular measurement (contact gonio-
meter). Since the beginning of the 19th century (WorrLasToN, 1809), optical
apparatus, the reflection goniometer, has come into use. With this the crystal
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Fig. 3a—d. Development of quartz crystals. (a) ideal crystal; (b) symmetry appears too
high as result of equal development of the r and z faces; (c, d) irregularly distorted crystals
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Incident
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Stafimary [\ Reflected
felescape U light beam

Fig. 4. Principle of the reflection goniometer. ABCDEF is the cross section through a

regular hexagonal prism. A light beam shining on the face 4 B is again reflected into the

telescope after rotation about the angle «=60° to the position 4 B’'C"D’'E’F’; « is the

external facial angle, equivalent to the angle between the face normals K B’ and HB'.
@ is the interfacial angle
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is mounted so that an edge or several parallel edges stand vertical. The crystal
is illuminated with a collimated light beam. When the crystal is rotated about
the external facial angle o (Fig. 4), a light reflection (signal) is observed each
time in the viewing telescope.

The “external” face angle which is measured is equal to the angle which the
face normals make with each other. These relations are readily apparent in Fig. 4.
AB and AF (AB' and AF' after rotation) each represent the outline of one
crystal face of a hexagonal prism. H B’ and K B’ are the face normals. With a
contact goniometer the ‘“‘internal” angle ¢ is measured («—-+ ¢ =180°). With
the original one-circle goniometer, it was necessary to remount and adjust the

Fig. 5. Two-circle reflection goniometer after V. GoLpscaMIDT by StOE, Heidelberg. One
graduated circle stands vertical, the other horizontal; both are read by magnifiers

crystal each time in order to measure angles between faces whose edges were
not parallel. The modern two-circle goniometer avoids this inconvenience. All
face normal angles can be ascertained with a single setting, since the two
graduated circles are mounted perpendicular to each other and can be moved
independently (Fig. 5).

Axial Intercepts and Indices. We come now to the description or naming of
crystallographic faces and edges (planes and directions). In crystallography, as
in geometry, a plane can be referred to a system of coordinate axes. When
dealing with space lattices, three lattice lines are chosen as coordinate axes. For
the general case, the plane cuts the three axes at different distances from the
origin.

The axial intercepts of a plane 4 BC shown in Fig. 6 are indicated by the
distances 04, OB, and OC. A different plane will cut off other segments of the
axes; for example, 0A4’, 0 B’, OC'. Let us choose one plane as the fundamental
or unit plane, and assign values of unity to each of its three intercepts; for
example, plane 4 BC. Since the intercepts of our unit plane are now 1, 1, 1, a
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second plane A’ B’ C' will have the intercepts 4, 2, 2. In this notation (4, 2, 2) the
first numeral represents the intercept of the forward projecting axis, the a-axis;
the second numeral, the b-axis, projecting from left to right; the third numeral,
the c-axis, projecting vertically. To describe the position of the intercept, ratios

X/ %

Fig. 6. Coordinate axes with the intercepts of different planes

Plane Intercepts Indices
4 B ¢ 1 1 1 111
4 B ¢ 4 2 2 122

4 B¢ 1 -2 2 211

4 B o 1 1 -2 221

4 BY o7 1 -2 -2 211

4B o 2 2 2 111
4”7 B" ¢ —2 -2 2 IT1

4" B o 2 2 _2 111

i sy 11

are used. We may therefore translate planes, as long as we do not change the
intercept ratios. That is, we can make the intercepts indivisible by a common
denominator, writing them in the case of plane A’ B’ C" as (2, 1, 1) instead of (4, 2, 2)

The equation for a plane in space can be used instead of intercepts to define

a plane: Az+By+Cz=K.
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Dividing by K and setting:
C
& =
then

h-x+k-y+1l-2=1.

The point of intersection of the plane 4 BC with the a axis, with intercept 04,
has the coordinates z =04, y=0, z=0. Therefore, 04 - h=1; 04 =1/h.

c o b
l
Ty
d
- z m
6
a a A
Fig. 7. Relations between face normals, Fig. 8. Top view of a barite crystal. [Pro-
coordinate axes, and direction cosines jected parallel (001)]

Similarly it follows: O B=1]k, OC =1/l. That is, the intercepts are the reci-
procals of the factors of the equation.

A third possibility for describing the position of a plane in space is by stating
its angular relationships, in terms of the angle between each of the coordinate
axes and the perpendicular from the origin to the plane. The perpendicular is
the plane normal. Angular measurements with the reflection goniometer give
the angles between these plane normals directly. The angles, y’, 9", v'" between
the normals and the coordinate axes, as Fig. 7 shows, are related to the axial

intercepts and the normal O P =d as follows:

cos v’ = i cos v’ = d . cos v'! = d
Y=o V=05 V=6
therefore
cos v : cosu'’ : cos ”’-—_]‘__._i_.L_h.k.l

These relationships are used to calculate the axial intercepts of the fundamen-
tal or unit plane. In the case of mutually perpendicular (orthogonal) coordinate
axes, cos? ¢’ + cos? '’ +cos? "' = L.

In this manner, as in the case of the equation for a plane, we end up again
with reciprocal values of the intercepts. Following the suggestion of MILLER
(1839), we generally use today these reciprocal values of the intercepts for
plane and crystal description. As units of measure on the three axes, the axial
intercepts of the unit plane are always used. By multiplication by a suitable
number k, k, I can be made integers. These h, k, I values are called Miller indices.
The indices for plane 4 BC (Fig. 6) are }:1:1, 111; for A'B'C" §:3:%, 122.
The indices in the octant discussed so far have positive values. In the other seven
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octants, some indices can be negative according to which axes are appropriately
intersected (see Fig. 6). The minus signs are placed above the index numerals.
Thus the indices of a plane can be represented, for example, as (122) read :one,
minus two, minus two. Planes parallel to an axis have the intercept oo and the
index 0. If the plane’s position is only partially or not at all known, the letters
h, k, 1 are used. The indices of a single plane are enclosed in parentheses (111);
those for an entire set of planes, a form, in curved brackets, { }, for example {122}.
That plane which is to serve as the unit plane is determined by trial. A plane is
chosen, so that the indices of the entire collection of faces are as simple as possible.
In spite of many attempts, rigid rules for the choice of the unit plane have not
been satisfactorily formulated. If the space lattice is known, the plane consistent
with lattice measurements should be chosen.

Crystal Calculations. We shall now calculate the indices of a crystal with the
help of angular cosine relationships. For this purpose we shall choose the barite
(BaSO,) crystal shown in top view in Fig. 8, keeping in mind the relationships
described above. An oblique view of the same crystal is illustrated in Fig. 48, p. 28.
As our later discussion of symmetry will show, we can base the barite lattice on
an orthogonal coordinate system. We shall choose the direction of the edge
between planes o and ¢ as the a axis, between [ and ¢ as the b axis, and between
b and m as the ¢ axis. Therefore, the ¢ axis is perpendicular to the plane of the
drawing and the plane ¢ is indexed (001). The angle between planes ¢ and o is
52°43’. Therefore, for o:

Yo=90° ;' =90°—52°43'=37°17", g,/ =52°43".
From the angle between face @, standing perpendicular to the plane of the
drawing, and m =39°11’, it follows that for m:
Yu=239°11", y; =50°49", y, =90°;
similarly for A from aA A=22°10":
P, =22°10", 9y =67°50", w;" =90°,
for 1, from aAl=68°4":

y, =68°4, = 90°, ' =21°56,
for d, from ¢Ad=38°52:

pa=>51°8",  yi =90 yy' =38°52".
for u, from cAu=>58°11":

Y, =31°49", g,/ =90°, p,  =58°11".
For face z, we calculate, from aaz=45°42"; 1y, =45%42"

from cAz=64°19"; 1y, =64°19
From cos? g’ 4 cos? '’ 4 cos? "' =1, it follows: v, =55°17".
Similarly, for face » we find, from cA7=46°6" and b r=62°55":
Y, =56°3", 1y, =62°55", g’ =46°6".
From aay=63°59" and ba y=44°21', it follows:
p,=63°59", g, =44°21’, y, =57°1".
From the relation

11 1
cosy’ " cosy”  cosy'”

=a:b:c (for the unit plane),
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we first calculate the axial intercepts, and, so that we can make b= 1, the ratios
are multiplied by cos . In this manner the values tabulated in Table 1 were
derived.

Table 1
Face cosy”’ .1. o8 "’ With 2 With r With y

cosy  cosy” as unit plane as unit plane as unit plane
azb:c hkl a:b:c hkl azb:c hkl
1] oo :1 :1,3135 oo:1 :1 011 oo:1 :2 021 oo:1 :1 011
m 0.8151:1 :00 1:1 :00 110 1:1 :00 110 1:2 :00 210
A 0.4077:1 :o0 1:2 :00 210 1:2 :00 210 1 :4 :00 410
la 2.6772:00:1.0780 4 :00:1 104 2 :00:1 102 2 :00:1 102
da 1.5936:00:1.2844 2 :00:1 102 1 :o0:1 101 1 :o0:1 101
ud 1.1754:00:1.8972 1 :00:1 101 1 :00:2 201 1 :00:2 201
2 0.8153:1 :1.3138 1:1:1 111 1:1 :2 221 1:2:2 211
r 0.8152:1 :0.6566 2 :2:1 112 1:1:1 111 1:2:1 212
Y 1.6303:1 :1.3138 2 :1:1 122 2 :1 :2 121 1:1:1 111

. ,, . cos p”’ cos p”’ 1 1 1
a Since cos p”” =0 instead of —:1: - We use e ———

cos Y cos Y cosp’  cosy cos Y

The indices of the individual faces are different, depending on whether the
face 2, r, or y was chosen as the unit face. Since in all three cases the complexity
of the indices is approximately equal, it is possible to be in doubt as to which of
the three faces actually represents the unit face. For characterization of barite,
it suffices to select the axial ratio 0.8153:1:1.3138, based on the choice of z as
the unit face. However, the axial ratios based on lattice constants determined
by X-rays is doubled in the a axis direction: ay:b,:¢,=1.627:1:1.311. Thus the y
face is consistent with the structurally determined unit plane.

Law of Rational Indices. As can be seen from Table 1, the derived intercepts
and indices can be expressed as whole numbers, including oo and 0. As early as
the time of HaUY it was recognized that the faces developed on crystals could
always be so simply indexed. A look at the space lattice shows us today that this
must be so, even though a century ago this was not self-evident. On the other
hand, HatY’s empirical studies did lead first to the postulation of such point
systems and finally to their discovery. As a general rule the intercept ratios and
Miller indices can be represented as small whole numbers. This does not follow
directly from space lattice structure. In order to explain the frequency of faces
with low indices on crystals, it is necessary to postulate that there must be quite
simple structurally important relationships, which are favored in the develop-
ment of growth and cleavage faces. BRavals proposed that the common simple
faces which develop on crystals contain particularly densely populated lattice
planes.

Zones. We have already utilized the edge boundaries of crystals in determining
axial directions. We speak of several faces whose edges are mutually parallel as
lying in a “zone”. The common direction to which these edges are parallel is the
zone axis. The symbols representing edges or zones are placed in brackets [uvw].
Their derivation is illustrated in Fig. 9, where we have the edge d passing through
the origin of the coordinate system. The relation of the coordinates of some
point P to the axes is established, u:v:w=[uvw]. The intercepts of the unit
plane again serve as the units of measure on the a, b, and ¢ axes. If the location
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of two faces is known, their intersecting edge, a zone, is also fixed. It is possible
to calculate the zone symbols from the indices of two faces from the following
considerations:

The equation of a plane with the intercepts 1/, 1/k, 1/l is hx+ky+1lz=1
(compare with p. 20). If a plane is translated parallel to itself so that it is made
to pass through the origin, the equation becomes
hx+ky+lx=0. Let us consider two planes with
the indices h kI, and hyk,l,; both are translated so
that each passes through the origin. The ratio of
the coordinates of some arbitrary point on the line
of intersection, the zone axis, gives the zone symbols
sought:

hy-u+ky-v4+1 - w=0
hy - u+ky-v+1, - w=0.
From this it follows:

wiviw= (kg ly— by 1): (- hy—ly - )i (hy - ey —hy- k). 16 9 Coordinates of

Conversely, two edges or zone axes determine the plane that lies between
them. The indices of the plane follow from the two equations of planes (hkl) with
different zone symbols, u,v;w; and uy,v,w,:

hik:l=(vy - wy—vy - wy):(wy - Uy — Wy - Uy): (Ug - Vg — Uy - V;).

The determinant form is convenient for the calculation:

by lby 4 By By U |V W U Y l Wy
>/ >/' \< NN\ N\
SNSN S NN
by |ky 1y hy Kyl 1, Uy | Vg Wy Uy Uy | Wy
| w v w | | » & 1 |

In this case particular attention must be paid to the signs. One can obtain all
possible faces on a crystal by proceeding from four faces which do not, to three
which do lie in a zone and determining first from these the zone directions or
zone symbols of the edges lying between these faces; from the zone directions
so obtained, possible new faces are denoted and from these new zones, ete. It is
a general rule that only those faces occur on a crystal which occur together in
zonal assemblages (zone law).

Axial Systems. The study of crystal edges allows us to choose coordinate
axes whose relations are quite simple. Study of many such crystals leads to the
conclusion that there are six unique axial systems. This was recognized in 1804
by Cur. S. WEIsS in an introduction to the German translation of the works of
HatY. In the case of three of these axial systems, the intercepts of the unit
plane are of different lengths along all three axes. In the case of the triclinic
system, none of the three axes intersect at right angles; in the monoclinic, two
form right angles; and in the orthorhombic, all three are mutually perpendicular
or orthogonal. In all three systems, in order to uniquely characterize a crystal,
the ratios of the axial intercepts of their unit faces a:b:c must be ascertained. In
order to define the triclinic coordinate axes, the angles between axes must be
defined also. The angle between the a and b axis is designated as y, that between
the b and ¢ axes as a, and between the a and ¢ axes as 8. The monoclinic coordinate
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axes are oriented so that the general angle lies between the ¢- and a-axes, and is
thus B, in the monoclinic. For the so-called tetragonal system, two of the three
axial intercepts are equal and the axes are orthogonal. Only the ¢:a ratio must be
determined to characterize a tetragonal crystal.

The hexagonal coordinate system consists of one vertical axis (¢ axis) and three
additional axes, @,, a,, and a;, perpendicular to it and intersecting each other at
120°. As shown in Fig. 10, the a; axis (running forward and to the right) is con-
sidered to be negative. For this axis the general index 1 is assigned, while the other
axes, @, and a,, are given the indices & and k. The order of the assigned indices,
varying from alphabetical, is hkil, corresponding to the a,, a,, a; and ¢ axes
respectively. These four combined indices are called the Bravais indices. The
ratio c:a, therefore, suffices to characterize hexagonal crystals.

*ay

Fig. 10. Calculation of indices with hexagonal coordinates

Since only three axes are required to define a plane in space, ¢ is related to
h and k and can be calculated from them. In Fig. 10 let 4 D E be the outline of a

plane and construct BD parallel to OE. Then A_O/A_§=OT/EB. Since BD
=0D= —1/i, it follows, if we substitute the indices:
1/h 1/k

Uh+1/i = —1fi ° i=—(htk).

The symbol ¢ is assumed here to have a negative value, although the minussign
is not indicated. Although many authors use the indices hkil(¢=h-+1) for
hexagonal crystals, the symbol ¢ is often replaced by an asterisk (hk*1I).

Finally, in the case of the isometric system, the axial intercepts of the unit
face are equal and the three axes are orthogonal.

Occasionally another coordinate system is made use of, the rhombohedral.
As in the isometric system, the three axes here are equal as are the interaxial
angles. However, they are not orthogonal as in the isometric system, but inclined
at some general angle o (see Appendix p. 350 and Fig. 391).

The Stereographic Projection. It is important to become familiar with an
additional descriptive aid, which permits us to reconstruct the crystal geometri-
cally from the measurement of crystal angles, and to illustrate clearly its angles,
faces, and edges as well as its symmetry. Thus we must introduce the stereo-
graphic projection.

Let us imagine a large sphere circumscribing a small crystal. Face normals
are extended from each face to the surface of the sphere (Fig. 11). We obtain a

1 This selection of orientation is arbitrary. In another possible orientation which has
found wide acceptance in recent years, the general angle is placed between the a- and b-axes,
and is therefore y.
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system of points on the surface of the sphere. The angular distances between two
points, measured along great circles of the sphere, are related to the interfacial
angles. If an edge common to two faces is extended to intersect the sphere, its

Fig. 11. Projection of a crystal through its face normals onto the surface of a sphere. The
face poles are connected by means of great circles

Zonal direction

face normal plane

Fig. 12. All face poles lie on a great circle; the zonal axis (parallel to the edge direction)
stands perpendicular to this circle

point of intersection must lie 90° from the intersections (poles) of all faces which
are parallel to the edgel. Therefore it follows that the poles of all faces with
parallel edges, that is those faces belonging to a zone, must lie on great circles.
They lie on the periphery of sectional planes through the center of the sphere;
the zone pole lies then 90° distant (Fig. 12). In this way a system of points and
great circles is obtained which permits the reading of angular, zonal, and symmetry

1 Of course the edges between two faces are situated so as to be displaced with respect
to the center of the sphere.
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relationships. In order to project this spatial array onto a plane, the stereo-
graphic projection is used. For purposes of clarity, we shall adopt the terminology
customarily applied to the earth, and focus our attention on the northern hemi-
sphere. Locations on the northern hemisphere are projected onto the equatorial

Fig. 13. Stereographic projection of face poles onto the equator (projection plane) by
connecting them to the south pole. Section through the projection sphere in the plane
containing three face normals

Fig. 14. Origin of the Wulff net

plane by connecting them with straight lines to the south pole. The intersection
of each line with the equatorial plane is the projection point. Angular and sym-
metry relationships are preserved in the projection. Of practical importance is
the property of the stereographic projection that circles on the sphere appear
as circles in projection. In particular the zone circles of the sphere form circles,
or more correctly, arcs in projection. Points in the southern hemisphere are
projected in like manner by linking with the north pole, and are differentiated
from northern points by utilizing different projection symbols. In Fig. 26ff. the
points in the northern hemisphere are represented by crosses, in the southern by
circles.
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Handling of the stereographic projection is simplified by utilizing the stereo-
projection of a grid system. A sphere scribed with longitude and latitude lines
is oriented so that the north and south poles lie in the projection plane. The
latitude and longitude grid is then stereographically projected (Fig. 14). In this
way the stereographic or Wulff net is derived. One is reproduced at the end of
this book. It should be torn out and pasted onto a piece of plywood or cardboard.
The meridians of longitude correspond to great circles, on which zonal assemblages
can be plotted. The parallels of latitude are not great circles, with the exception
of the equator, and serve only for reckoning angular values. The plotting of a
stereographic projection is carried out on a piece of tracing paper placed over the
Wulff net.

We will show the first steps in using the stereographic projection, using the
barite crystal (Fig.8 and Table 1) for which we earlier calculated the Miller

Fig. 15. Stereographic projection of the barite crystal in Fig. 8

indices (Fig. 15). Let us assume that by means of goniometric measurement, we
have ascertained that the angle a:m =239°11" and c:0=52°43". The faces @ and
m belong to a zone whose great circle projection is the primitive circle (the circum-
ference of the projection plane). The pole of face a is plotted. Then the pole of
face m is plotted 39°11’ from a on the primitive circle. The pole of face ¢ coincides
with the zone pole of the faces whose poles lie on the primitive circle. It lies in the
center of the net. Pole o lies 52°43’ from c, in the zone cob which turns out to be
perpendicular to ac. We project o onto the normal to ac. Then b is plotted on the
periphery. If we sketch the zones ao and mc as great circles, we find the pole of face
z at their intersection; z thus lies in both zones. It is only possible from Fig. 8 to see
that 2 lies in zone ayo. That z also lies in zone mc can be observed, however, by
further goniometric study. We could also find z by calculation of the angles ¢z and
az, noted on p. 11, in that we plot the angular distances as circles around ¢ and a.
At their intersection lies 2. We can now determine the angle vy, between b and 2
(see p.11) without further projection, since we can measure it on the great
circle bz. This zone bz furnishes the pole of face u at the intersection with zone ac.

2 Correns, Mineralogy
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If we find by means of further goniometric study that r lies in the zone from u
to o, we find the face pole r at the intersection of this zone with the zone mz.
From the zonal array we can further easily find d and y. The pole of face 7 is
obtained at the intersection of zone audc and the zone from y to the left o-face.
The existence of the last zonal assemblage is not apparent in Fig. 8, but requires
further goniometric investigation®. The position of face A on this crystal must be
determined by additional measurement.

The stereographic projection of the crystal gives us the angular relations and
represents the crystal in ideal form, undisturbed by growth influences. It enables
us immediately to recognize its symmetry relations. This is not always easily
discernible by cursory examination of natural distorted crystals.

With the help of the stereoprojection we can also construct an exact drawing
of the crystal. For drawing we need to know the edge directions. These are given
by the normals to the zone circles. In Fig. 8 the edge between d and r is parallel
to ac, from top to bottom, and that between « and a, parallel to ¢b, from left to
right. In this way we can construct a top view like that in Fig. 8 from the stereo-
projection. If we rotate the original pole sphere, it is possible to sketch other
views of the crystal. For example, when a stands at the center of the net, we get a
front view. Finally the axial intercepts and the indices can be graphically ascer-
tained. In addition to its use in pure crystallography the stereographic projection
is of use in crystal optics (p. 136), and in rock fabric studies. In the latter case,
however, another kind of spherical projection is generally used (p. 312).

3. Crystal Symmetry

Simple Symmetry Operations. We have become familiar thus far with the
most important rudiments of crystallographic terminology. For this purpose it

O O

Fig. 16. Simple space lattice

was necessary to accept the fact that the constituents of a crystal are distributed
regularly within a space lattice. In order to probe deeper into the understanding
of crystals, we must formulate an idea of the various kinds of space lattices. It
has already been mentioned on p. 4 that there are 230 symmetrically different
kinds of spatial point arrangements (space groups). In order to understand this
we must make ourselves familiar with the manner in which such regular arrange-
ments occur. We have already established (p. 5) that a point array is considered
to be genuinely homogeneous if each point possesses an infinitely large number
of correspondingly different points, whose positions in the array are equivalent.

1 Note that the edges zr and rl in Fig. 8 are not parallel; otherwise they would form a
zone z71.
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What do we mean by ‘“equivalent positions in the array”? How can we
demonstrate this ?

In Fig. 1 we observed a simple planar net. Here it is immediately clear that
the above stipulation for each point is valid, if we consider the lattice to be
infinitely continuous. We need merely to move from point to point. The
arrangement around each point is identical. Such parallel movements can be
carried out just as well in three dimensions in a space lattice (Fig. 16). Such
movements from point to point are called translations.

In the planar lattice illustrated in Fig. 17, we see another possibility for bring-
ing lattice points into coincidence. Here each point can be made to coincide
with another by rotation of 120°=360°/3. We speak in this case of a three-fold
axis of rotation. As shown in the same figure, we can also imagine the points
to be brought into coincidence by means of reflection across a mirror or symmetry
plane. Planes of symmetry are familiar to us in the organic world also. Every
individual possesses an imperfect plane of symmetry, although the two sides
of one’s body are always somewhat diffe-
rently developed. In the case of crystals
also, because of external influences dur-
ing growth, the symmetry is not always
easy torecognize. It can be easily ascer-
tained, however, if the angular relations

Fig. 17. Periodic pattern containing 3-fold Fig. 18. By joining regular pentagons it is
symmetry axes and symmetry planes not possible to completely fill planar space

rather than face development are considered. The stereographic projection plays
an important role in this respect, as we have seen.

Movements, by means of which points can be made to coincide, are called
symmetry operations. Examples are the translation, reflection across a symmetry
plane, and the 3-fold rotation, with which we have just become familiar. In
crystals we find other additional rotation axes. We shall neglect for the moment
the 1-fold rotation axis, which transforms a system into itself by rotation
through 360°. This is obviously an operation which can be performed with any
arbitrary asymmetrical body. Only 2-, 3-, 4-, and 6-fold rotation axes occur
in space lattices. 5-, 7-, and other multi-fold axes are excluded. With the latter
it is not possible to regularly divide up a planar area into equal units, as a trial
with 5- (Fig. 18) or 7-fold point arrays easily shows. Regular polygons bounded
by 5, 7, etc. sides cannot be joined together uninterruptedly, completely filling
planar space. Because they contain 5-fold axes, two of the five regular shapes
which have been known since antiquity do not occur as crystal forms. They are
the pentagonal dodecahedron, a twelve-faced form bounded by regular pentagons,
and the icosahedron, a twenty faced-form bounded by equilateral triangles. In

2%
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the organic world we are familiar with examples of five-fold symmetry; for
example, rose blossoms and star fish.

Inversion is an additional symmetry operation. In this case every point in
a pattern has an equivalent opposing point, as if repeated by inversion through
a simple lens. In crystals the inversion center is also called a center of symmetry.

Combined Symmetry Operations. If a point not lying on a symmetry axis is
rotated 180°, and immediately inverted through a point lying on the rotation
axis, again rotated 180°, etc. the same repetition of points results as with a
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Fig. 19. Four-fold rotoreflection axis Fig. 20. Periodic pattern containing glide
planes

symmetry plane perpendicular to the rotation direction. If a 3-fold axis is
combined in a similar way with inversion, the same distribution results as with
simultaneous presence of a 3-fold axis and a center of symmetry. By combining
a 6-fold axis with inversion as described above, symmetry results which can be
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Fig. 21. 4,-screw axis Fig. 22. 4;-screw axis Fig. 23. 42-screw axis together

with a two-fold rotation axis

Figs. 21—23. The three four-fold screw axes

described in terms of a 3-fold axis with a plane of symmetry perpendicular to it.
It is important that the combination of 90° rotation and inversion gives a point
distribution which cannot be described in terms of other rotational symmetry
combinations (Fig. 19). We meet the latter combination of symmetry elements,
the 4-fold rotoinversion azis in numerous crystals. One can derive the 4-fold
rotoinversion axis by means of another combined symmetry element—by
combination of 90° rotation, followed by reflection across a plane perpendicular
to the rotation axis (4-fold rotoreflection axis). We shall follow the common
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usage and refer to these as inversion axes rather than reflection axes. For
consistency the one-fold inversion axis is introduced also. It is obviously identical
to the symmetry center.

If a symmetry plane is combined with the translation operation, a glide plane
is produced (Fig.20). Combination of rotation axes and translation leads to
screw axes. The three varieties of 4-fold screw axes are illustrated in Figs. 21 —23.
It can be easily shown that there are only one 2-fold, two 3-fold, in short (n-1)
n-fold screw axes.

Altogether crystals exhibit the following kinds of symmetry:

Table 2. Forms of symmetry

1. Mirror plane 9. Translation

2. Two-fold 10. Glide plane

3. Three-fold} Rotation axes 11. Two-fold

4. Four-fold 12. Two different 3-fold

5. Six-fold 13. Three different 4-fold Screw axes
6. Center of symmetry 14. Five different 6-fold

7. Four-fold

8.

Six-fold } Inversion axes

We have now enumerated all of the kinds of symmetry compatible with a
space lattice. If we make use of all of these, either alone or in combination, we can
arrive at 230 possibilities in which they can be arranged together, the space groups.

Usually the following symbols are utilized to designate the symmetry elements.
For the 1-, 2-, 3-, 4-, and 6-fold axes the numbers 1, 2, 3, 4, and 6 are used; for
the corresponding inversion axes the numbers 1, 2, 3, 4, and 6 are used (these
symbols are read “bar 1, bar 2, etc.”’). We shall later meet again all the symbols
of the usual symmetry axes; of the inversion axes we use only the symbols
1, 3, 4, and 6. Screw axes are each designated according to the rotational repetition
of the axis and the amount of translation coupled with the rotation, using the
symbols 2,, 3, 3,, 4,, 45, 45, 6,, 6,, 6, 6, and 6; (the symbol 6,, for example,
is read “‘six ... two”’). Screw axes are not encountered or revealed by the macro-
symmetry of a crystal, since the translation is on the atomic scale. A symmetry
or mirror plane is designated by the symbol m; a glide plane—as in the case of
the screw axis, revealed only by the fine structure —each according to its direction
of translation with respect to a, b, ¢, n, or d; a, b, ¢, represent glide planes with
a b
2 2
diagonal; and d with a magnitude of one-fourth of the diagonal. The symbol 1
for a one-fold inversion axis is also used to designate a center of symmetry.

or -;— translation; n represents a glide plane translation equal to one-half a

4. The 32 Crystal Classes

If from all of the possible symmetry operations we consider only those which
apply to macroscopic crystals, that is, if we exclude translation and the symmetry
operations resulting from combination with translation, and, therefore, those
which are concerned with displacements of sub-microscopic magnitude (10-8 cm)
(examples 9—14 in Table 2), the number of symmetry groups is reduced to 32.
These are the 32 crystal classes which HesseL deduced for the first time in 1830
from symmetry studies.

The Triclinic Classes. In the following discussion we shall acquaint ourselves
with the various classes, deriving them by combining symmetry elements,
beginning with the lowest symmetry. The lowest symmetry class is obviously
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that one which possesses no symmetry at all. The edges and planes of a crystal
without symmetry can be related to a triclinic (Greek tris, triple; clinein, angle)
coordinate system. In this class the crystal faces are called pedions (Greek,
plain) (Fig. 24a). In all classes, any face or plane not related to another face
through symmetry is called a pedion. Following the example of P. GroTH, each
P = class is named after its most general form,

o ! that is, after that combination of faces
S \ {hkl}which are characteristic of the class.
1 This means that, in stereographic pro-

| jection, their projection points have

\ /  arbitrary positions and do no lie on sym-

\\ + 7 metry elements. We shall call the first

. S -7 class the pedial. It is given the symbol 1,

a b indicating that it has only a one-fold ro-

Fig. 24. (a) Pedion; (b) Stereographic pro- tation axis (which is of course always
jection of the pedial class 1 present) (Fig.24b). In nature such asym-

metric crystals of the rare mineral

strontian hilgardite (Sr,Ca),B;05(OH),Cl occur. In the laboratory one can pre-
pare crystals of calcium thiosulfate, CaS,0, - 6H,0, which crystallize in this class.
As members of the next class, we consider those crystals which possess only

a center of symmetry. Here each face is accompanied by an equivalent and
opposite parallel face. This is always the case no matter what its position on the
crystal. Such opposing and parallel pairs of faces are
called pinacoids (Greek, board) (Fig.25). The class

o
%
Fig. 26. Fig. 27. Anorthite. P (001),
Fig.25. Pinacoid with center Stereographic projection M (010), 77(110), T'(110),
of symmetry noted of the pinacoidal class I z(10I), y(20I), o(111)

is called the pinacoidal, and is designated by the symbol I (Fig. 26). In addi-
tion to many other minerals, the important plagioclase group of calcium-sodium
feldspars crystallize in this class. These are mixed crystals of Na[AlSi;Og]
(albite) and Ca[Al,S1,04] (anorthite). Their importance is indicated by the fact
that they constitute approximately 40% of the composition of the earth’s crust.
Fig. 27 shows an anorthite crystal with the conventional face symbols. The
characteristics of this class are shown also by one of the potassium feldspars
K[AISi;04], called microcline. Bright-green colored specimens are called amazonite
and are cut as semi-precious stones. In addition the important mineral kyanite
Al,0[Si0,] belongs to this class.
The two classes 1 and 1 constitute the triclinic system.

The Monoclinic Classes. The next class that we meet possesses one plane of
symmetry. In this class a plane or face occurring perpendicular to the plane of
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symmetry is a pedion as before. A plane parallel to the symmetry plane becomes
a pinacoid, whereas all other planar positions lead to ‘roof”’-shaped pairs of
planes called domes (Greek, doma, roof). The planes in this class are related to a
monoclinic coordinate system, with the non-orthogonal axes lying in the plane

Fig. 28. Dome Fig. 29. Stereographic projection of the
domatic class m

of symmetry. The symmetry of this and the two following classes is consistent
with the symmetry of such a coordinate system. Accordingly these three classes
will be grouped together into the monoclinic system. The crystal is usually
oriented so that the symmetry plane runs perpendicular to the observer, with
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Fig. 30a and b. Two-fold symmetry axis (a) and stereographic projection (b) of the sphenoidal

class 2

the @ axis inclined from back to front (Fig. 29). The class containing one symmetry
plane has the symbol m and is called the domatic class. Natural examples are rare,
but the mineral clinohedrite, Ca,Zn,(OH),Si,0, - H,0, belongs in this class.

Fig. 31. Sphenoid with two-fold axis noted Fig. 32. Sucrose

Crystals containing one two-fold axis constitute the next class 2 (Fig. 30).
Planes perpendicular to the rotation axis are again pedions; those parallel form
pinacoids. Other pairs of faces are called sphenoids (Greek, sphen, wedge)
(Fig. 31). We call this class the sphenoidal class. In this class the sugars, sucrose
(CiaH4,0y), and lactose (C,,H,,0,, - Hy,O) crystallize, as does tartaric acid
(H,C,H,0,) and many other organic substances.
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Now we shall combine together in pairs the three symmetry elements used
above. This has been done in Fig. 33a—c. In (a) we see a symmetry plane with
a two-fold axis perpendicular to it; in (b) a symmetry plane with a center of
symmetry; and in (c) a center of symmetry combined with a two-fold axis.

As can be seen the same face arrangement and symmetry appears regardless
of how the three elements are combined. If all three are combined, the same
symmetry results. This example serves to illustrate that the same symmetry
arrangement can be derived in different ways.

a b c

Fig. 33a—c. All combinations using two of the different symmetry elements already used
always give the symmetry of the prismatic class 2/m. (a) Symmetry plane with two-fold
axis. (b) Symmetry plane with center of symmetry. (c) Two-fold axis with center of symmetry

In the new class just created, the general form consists of four faces symmetri-
cally related, a form designated as the prism (Fig. 34a—c). A pair of parallel
faces lying perpendicular to the symmetry plane with face poles lying in the
symmetry plane and related to each other through the 2-fold axis as well as the
symmetry center, constitutes a pinacoid. Likewise, a pair of faces parallel to
the symmetry plane is a pinacoid.

a b c
Fig. 34a—c. Prisms of the class 2/m. (a) {hkl}; (b) {0kl}; (c) {hEO}

This class is called the prismatic and is given the symbol 2/m (Fig. 35). Many
important minerals crystallize in this class. Examples are gypsum, CaSO, - 2H,0
(Fig. 36), muscovite mica, KAl,(OH),[AlSi;0,0], and the pyroxene, diopside
CaMg[Si,04]. Especially important is potassium feldspar K[AlISizOg] which
occurs as the ‘“high temperature modification” called sanidine, and usually
also contains some sodium. Sanidine occurs in eruptive rocks, for example,
trachites, and is commonly tabular, parallel to (010). According to its morphology,
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the common K feldspar, orthoclase, is also monoclinic prismatic (see p. 75). It
is found in intrusive rocks or in conjunction with them. The forms P{001}
and M {010} are well-developed on its crystals, as are 7'{110} and y{201}
(Fig. 37). The potassium feldspar adularia occurs in fissures and veins and as

a b
Fig. 35a and b. Symmetry elements (a) and stereographic projection (b) of the class 2/m

a semi-precious stone called moonstone. Here the forms 7' and {101} frequently
predominate. Its crystals, therefore, sometimes look similar to rhombohedra
(see p. 26) (Fig. 38).

Orthorhombic Classes. We shall continue to utilize the same symmetry
elements as before, combining them with each other. If two planes of symmetry
are crossed perpendicular to each other, 2-fold axis is created, lying along

/
/

Fig. 36. Gypsum. {010}, {110}, {111} Fig. 37. Orthoclase. P(001), M (010), k(100),
T(110), T"(110), y(201), 2(130), n(021)

their line of intersection. In this case four faces or planes in general positions
combine to form a pyramid (Fig. 39). The cross section of the pyramid is a
rhombus, which gives the system, in which this and the next two classes fall,
the designation orthorhombic. Therefore, the name of this first class is the
(ortho )rhombic pyramidal, with the symbol mm2 (or mm) (Fig. 40). The three
orthorhombic classes are related to an orthogonal coordinate axial system,
which is compatible exclusively with their symmetry. In the class mm2, two of
the coordinate axes, the a- and b-axes, lie in the symmetry planes, whereas the
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c-axes coincides with the two-fold axis. The latter is polar, that is, different in
each direction. Faces intersecting the upper end of the c-axis have no correspond-
ing equivalent faces intersecting the lower end. In addition to pyramids two

Fig. 38. Adularia. P(001), «(101), 7'(110),
77 (110), n(021), n’ (021)

a b

Fig. 40a and b. Symmetry elements (a) and stereographic projection (b) of the orthorhombic
pyramidal class mm2

%

Fig. 41. Hemimorphite. {100}, {010}, {001}, TFig. 42. Orthorhombic disphenoid
{110}, {301}, {031}, {121}

pinacoids, pedions (001) and (001), domes, and prisms occur. The zinc silicate,
hemimorphite (hemi, half; morphe, form), Zn,(OH),[Si,0;] - H,0, crystallizes
in this class and usually shows clearly the development characteristic of this class.

If we consider two perpendicular 2-fold axes we see that a third axis must
appear, standing perpendicular to both of them. Each of these three 2-fold axes
is non-polar. All directions and their opposite directions are equivalent. In this
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new class we meet for the first time a closed form. It is bounded by four {hki}
planes and consists of two wedges or sphenoids symmetrically intergrown (Fig. 42).
This form is the disphenoid and the class is called the orthorhombic disphenoidal,
with the symbol 222 (Fig.43). The 2-fold axes are the coordinate axes. The
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Fig. 43a and b. Symmetry elements (a) and stereographic projection (b) of the orthorhombic
disphenoidal class 222

disphenoid can be considered as a distorted tetrahedron. With higher 4-fold sym-
metry it occurs again later as a tetragonal disphenoid (see p. 42). The regular
tetrahedron itself has even higher symmetry. In addition to disphenoids, prisms
and three pinacoids occur in this class. Epsomite, MgSO, - TH,0 (Fig.44) crystallizes
in the class 222 as do many organic compounds.

Fig. 44. Epsomite. {110}, Fig. 45a and b. Symmetry elements (a) and stereographic
{111}, {010}, {111} projection (b) of the orthorhombic dipyramidal class mmm

We have met for the first time in this crystal class a closed form. With it,
it is possible for a crystal in this class (and in many which we have yet to en-
counter) to consist of only one simple form. In the preceeding classes, all simple
forms were open forms. That is, no individual form completely enclosed the
crystal and accordingly the crystal had to consist of a combination of different
forms. Such combinations of different simple forms are very common, irrespective
of the crystal class. They are indeed the rule as the diagrams in this chapter show.

If we now combine two perpendicular 2-fold axes with a symmetry center,
or two perpendicular symmetry planes with a two-fold axis perpendicular to
one of them, or another symmetry plane perpendicular to both of the original
ones, we encounter the symmetry illustrated in Fig. 45. A horizontal symmetry
plane is illustrated in the figure by means of the solid circle. The general form
which we obtain, if the projection points do not lie on any special position such
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as a symmetry plane or axis, is, as Fig. 46 shows, a closed form with eight
faces —a double —or dipyramid. The class is called the orthorhombic dipyramidal.
The appropriate class symbol is 2/m 2/m 2/m, or abbreviated, mmm. In addition

Fig. 46. Orthorhombic dipyramid Fig. 47. Sulfur. {111}, {001}, {011}, {113}

to the dipyramid other forms occur. Those parallel to two axes are the pinacoids
{100}, {010}, and {001}. If parallel to only one axis, (with projection points on
the trace of the plane of symmetry) they are the prisms {0k}, {h0l}, {hkO0}.
Many common minerals crystallize in this class. Examples are sulfur (Fig. 47);
the anhydrous alkaline earth sulfates, anhydrite (CaSO,), celestite (SrSO,),
barite (BaSO,) (Figs. 8 and 48), and
anglesite (PbSO,); the carbonates ara-
gonite (CaCQO,), strontianite (SrCOy),
witherite(BaCQO,), and cerussite(PbCO;).

Fig. 48. Barite (oblique view); for indices TFig. 49. Topaz. {110}, {120}, {111}, {112},
compare with Table 1 (p. 12) {001}, {101}, {011}

In addition the rock forming mineral olivine (Mg, Fe),,[Si0,], the precious stones
topaz AL[F,Si0,] (Fig.49), and chrysoberyl Al[BeO,], and many other
chemical compounds produced in the laboratory belong here.

Significance of Class Symbols. The eight crystal classes to which we have
already referred are grouped together into three crystal systems according to
their coordinate axes: in the triclinic system we have met two classes 1 and 1;
in the monoclinic, m, 2, and 2/m; and in the orthorhombic, the classes mm2,

222, and mmm.
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The symbols 1, I, 2, and m need no further explanation; they indicate the
individual symmetry elements for the corresponding class (see p.21). The
symbol of the monoclinic prismatic class, 2/m (read ‘“two over m’’) indicates
that a 2-fold axis stands perpendicular to a symmetry plane. The symbols 4/m
or 6/m have fully analogous meanings. We shall refer to these classes later. In
listing the symbols in the orthorhombic classes, the symmetry axis in the direction
of the a-axis is first given, then in the direction of the b-axis, and finally in the
direction of the c-axis!.

A symmetry plane is always referred to with respect to that axis to which it
is perpendicular. Thus we can interpret the symbols 222, mm2, and 2/m 2/m 2/m.

The 19 classes which now follow contain one unique 3-, 4-, or 6-fold axis.
These are referred to in German as “wirtelig” (whorling) crystals. In designating
their class symbols, that symmetry axis parallel to the Wirtel or primary axis
is indicated first. In orienting the crystal this axis is placed vertical. Then those
symmetry axes follow which parallel the horizontal crystallographic axes (se-
condary axes) and are symmetrically equivalent. The symbol for those symmetry
axes which bisect the angles between the secondary axes finally follows (inter-
mediate axes). As in the case of the orthorhombic system, the symbol for a
symmetry plane is written, giving its location with respect to that axis to which
it is perpendicular.

The crystal class symbols which we have been using were first formulated
by C. HERMANN and CH. MAUGUIN and are now called the Hermann-Mauguin-
Symbols.

The 19 crystal classes which now follow are grouped into the trigonal, the
tetragonal, the hexagonal systems, depending on whether their primary axis is
three-, four-, or six-fold. We shall not treat these with the same thoroughness as
we have the preceding eight, but shall only refer in some detail to those classes in
which important minerals crystallize. We shall refer to the remaining classes
primarily by means of figures and in the summary in the Appendix, p. 342—349.
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Fig. 50a and b. Symmetry elements (a) and stereographic Fig. 51. Trigonal pyramid
projection (b) of the trigonal pyramidal class 3

The Trigonal Classes. We begin with that class which contains a 3-fold axis
as its only symmetry element (Fig. 50). In it the general form is a trigonal pyramid
(Fig. 51). This class is called the trigonal-pyramidal, and has the symbol 3. Nickel
sulfite, NiSO, - 6 H,0, is an important member.

If we then add a center of symmetry, six faces occur in general positions, with
three projection points lying in the upper hemisphere and three others rotated
60° with respect to them in the lower hemisphere (Fig. 52). The symbol of this
class is 3; face distribution is in accordance with a three-fold inversion axis (see

1 This indicates that in the class mm2, the 2-fold axis is the c-axis. Another alternative
crystal setting commonly used places the 2-fold axis parallel to b.
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p- 20). The general form is a rhombohedron, giving the class its name, rhombo-
hedral. When orienting a crystal, if a rhombohedral face faces upward and toward
the observer, so that its projection point lies in the forward sixth of the stereo-
graphic projection, the rhombohedron is designated as positive (Fig. 53). If the
face faces forward, but downward, it is then called a negative rhombohedron.
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Fig. 52a and b. Symmetry elements (a) and stereoprojection Fig. 53.
(b) of the rhombohedral class 3 Positive rhombohedron

When we consider the rhombohedron merely as a geometrical figure, it has
higher apparent symmetry, containing three symmetry planes. However, in the
crystal class 3 the rhombohedron as a physical body does not possess these
symmetry planes. This can be recognized by means of etch figures (Fig. 54),
which reveal that the faces have higher indices and, therefore, are in a more
general position. We shall deal with these later (page
177) when discussing the dissolution of crystals. Etch
methods are very important in assigning a crystal to
its proper class. For example, one can differentiate
calcite with its higher symmetry from the mineral
dolomite, CaMg(CO,),. The latter crystallizes in the
class 3. It was named after the French mineralogist
Deopar pE Doromiru (1750—1801), not after the
Italian Alpine mountains of the same name. Phenacite,
Be,[Si0,], willemite, Zn,[Si0,], and ilmenite, FeTiO;,
Fig. 54. Rhombohedron of belong - to thl§ class. . .
dolomite with etch figures. A 2-fold axis perpendicular to the 3-fold axis must
(It is to be noted that the evoke two additional equivalent 2-fold axes (Fig. 55),
3-fold axis does not run  giying rise to the trigonal-trapezohedral class, with the
from top to bottom, but .
emerges  approximately ~SYmbol32. The general form is called the trapezahedron,
from the center of the of which there are both left- (Fig. 56) and right-handed
diagram) (Fig. 57) forms. Three faces occur on the upper and
three on the lower ends of the crystal, but in this case
they are not displaced 60° with respect to each other, as in the case of the rhombo-
hedron, but at any general angle. The mineral quartz (SiO,) crystallizes in this class.
This is a very important and common mineral which makes up about 12% of
the earth’s crust. We shall note next the possible forms in this class. Faces whose
projection points lie at the intersection of a twofold axis and the primitive circle,
form a three-faced open form, a trigonal prism. If one of the faces faces to the
right and toward the observer (1120), the form is called a right-handed trigonal
prism; the other, for which the face has the indices (2110), is a left-handed prism.
If the projection point of this prism is moved from the primitive circle, along a
line connecting with the center of the projection, a new projection point results,
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representing a trigonal dipyramid. This form also has left- and right-handed
orientations. If we place the projection point on the primitive cricle, near to, but
not coinciding with, the intersection with the 2-fold axis, we obtain a ditrigonal
prism, also with left- and right-handed orientations. If we make the angular
distance between two points on the primitive circle equal to 60°, we create a
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Fig. 55a and b. Symmetry elements (a) and stereographic projection (b) of the trigonal
trapezohedral class 32

regular ““hexagonal” prism. This designation is usually given to this form, al-
though the six faces are not really related through a 6-fold repetition. One face
is obtained from the other through rotation around a 2-fold rather than a 6-fold
axis. Therefore, it can in reality just as well be considered a combination of
equally developed positive and negative trigonal prisms. If we move the pro-
jection point from this border position inward along the connecting line to the
center, either a positive or negative rhombohedron results. Faces represented by
a point lying at the center of the projection form a pinacoid {0001} with its parallel
opposing face.

Fig. 56. Left-handed trigonal trapezohedron  Fig.57. Right-handed trigonal trapezohedron

Quartz (Fig. 58) usually displays faces of the hexagonal prism m {1010},
the positive thombohedron {1011} and the negative z or 7" {0111}, the trigonal
dipyramids s{1121} and s'{2111}, (shown in Fig. 59 with s, and s,) and the
trapezohedron «{5161}. Fig. 59 shows the position of these points in stereographic
projection, designating positive and negative and right- and left-handed forms.
It the faces of both rhombohedra are equally developed, they give the
impression of a hexagonal pyramid. A very careful study of face development
usually shows that each set of three alternating faces belong together. Steep
rhombohedra whose projection points lie very close to the primitive circle, pro-
duce the common striations found on the prism faces of quartz. A rhombohedron
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whose projection points would fall on the primitive circle, would be a hexagonal
prism. The varied development of positive and negative rhombohedral faces can
be dependent upon growth or dissolution phenomena. The latter, in the case of
quartz, can be brought about artificially, either with caustic potash (Fig. 60) or
hydrofluoric acid. These figures show that two adjacent faces of the so-called

Fig. 58. Right-handed Fig. 59. Stereographic projection of the common faces of
quartz. m(1010), r(1011), quartz. @ positive, O negative, ~~ right, v~ left forms
2(0111), s(1131), =(51861)

hexagonal prism are not related to each other by a 6-fold axis. Etch figures are
also important technologically, because with their help it can be established
externally whether a crystal is homogeneous, or whether it consists of several
crystals intimately intergrown. Such intergrowths, called twins, will be referred
to later (p. 98).

—

" b)

Fig. 60a and b. Difference in the etch figures of (a) left-quartz and (b) right-quartz. Etching
agent is in both cases alkali carbonate. (After LiEBIscH)

As has already been noted, there are in this class both left- and right-handed
forms. The ability of a substance to form both left- and right-handed crystals is
called enantiomorphism. It is related to the symmetry of the crystal and is en-
countered only in those crystals which possess neither a center nor plane of
symmetry. In the case of quartz the Si and O atoms are spirally arranged, right-
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handed quartz having left-spiralling screw axes, and left-handed quartz, right.
The 2-fold axes are polar, that is to say, opposing directions are not equivalent.
Related to the symmetry are two additional properties of quartz, its optical
activity (p. 142) and piezoelectric behavior (p.118), both of which we shall
encounter later.

Quartz is a useful crystal on account of its piezoelectric behavior (oscillator
quartz) and is an important raw material because of its excellent transparency
in the ultraviolet (quartz spectrograph). Smaller crystals are used in the pro-
duction of quartz glass. Optically clear specimens are called rock crystal. Violet
amethyst, which was at one time considered as a protection from drunkedness,
finds use as a semi-precious stone. The word, probably of pre-Hellenic origin, is
related to the Greek word methyein, meaning to become drunk, and the negative
prefix a. Madeira topaz, quartz topaz, and genuine topaz quartz are names
for yellow to yellow-brown (Madeira wine) colored quartzes, usually produced
by heating amethyst or dark-colored smoky quartz. Chalcedony is quartz which
has grown in fibrous form perpendicular to the 3-fold axis, along the [1010] or
[1120] axes. Quartz, fibrous parallel to ¢, also occurs and is called quartzin.
Agate consists of chalcedony and finely crystalline quartz intermixed. In
addition to quartz the important mineral cinnabar, HgS, crystallizes in the class32.
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Fig.6laand b. Symmetry elements (a) and stereographic Fig. 62. Ditrigonal pyramid
projection (b) of the ditrigonal pyramidal class 3m

The next class which we shall study has a polar 3-fold axis. Accordingly,
electrical effects occur along this axis upon heating: the crystal becomes posi-
tively charged at one end, negatively at the other. The charged ends then attract
light particles. This pyroelectric effect (see p.118) was first discovered in the
mineral tourmaline, a sodium aluminum borofluorsilicate. This property led to
the Dutch designation of this mineral as ‘“Aschentrekker”. Plates cut perpen-
dicular to the 3-fold axis are also piezoelectric. The class exemplified by tour-
maline is derived by combining the 3-fold axis with a plane of symmetry so that
the axis lies in the plane (Fig. 61). This actually creates three equivalent symmetry
planes intersecting each other at an angle of 60°. The general form is a ditrigonal-
pyramid (Fig. 62). The class is called the ditrigonal-pyramidal, with the symbol
3m.

It is usually the case with tourmaline that several ditrigonal-prisms occur,
so that a cross section of a crystal resembles a triangle with convex-curved sides.
The polarity of the 3-fold axis is rendered observable in many specimens of
tourmaline by the form development (Fig. 63). The “red silver ores” proustite
Ag;AsS, and pyrargyrite Ag;SbS; also belong to this class.

The addition of 2-fold axes as the angle bisectors of the symmetry planes
of class 3m, leads to the ditrigonal-scalenohedral class, 32/m or 3m (Fig. 64). The

3 Correns, Mineralogy
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a b

Fig. 63. Tourmaline. Combinations of  Fig. 64a and b. Symmetry elements (a) and stereo-
{1010}, {1011}, {1120}, {0221}, {3251} graphic projection (b) of the ditrigonal scaleno-
hedral class 3m

Fig. 65. Scalenohedron Fig.66. Basicrhombohedron  Fig.67. Steep rhombohedron
{2131}, widely distributed r, widely distributed (Type M, widely distributed
(Type III KaLB’S) II KaLB’s)

Fig. 68. From Maderanertal. (After NicerL, Fig. 69. From St. Andreasberg. (After
KONIGSBERGER, PARKER) SansoNT)

common and form-rich mineral calcite (CaCQOg) crystallizes in this class. The
scalenohedron, to which the class owes its name, is a closed form in which the six
faces on the upper and bottom ends of the crystal lie together in pairs (Fig. 65).
Additional common forms and combinations are illustrated in Figs. 66 —71. While
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the examples in Figs. 65—67 show only simple forms, the calcite crystals in
Figs. 68—T71 consist of combinations of several forms. The general aspect of a

028281

Fig. 70. From St. Andreasberg. (After Fig. 71. From St. Andreasberg. (After
THURLING) THURLING)

Figs. 656—71. Forms of calcite. ¢{0001}, r{10I1}, a{1120}, m{10I0}, M {4041}, z{08RT7},
{8324021}

Fig. 72a and b. Symmetry elements (a) and stereographic ~ Fig. 73. Ditrigonal dipyramid
projection (b) of the ditrigonal dipyramidal class 6m2

crystal is usually referred to as its habif. Thus the habit of calcite in Fig. 68 is
tabular, in Fig. 69 is compact columnar, in Figs. 70 and 71 columnar to acicular.

The habit of crystals whose dimensions are approximately equal in all directions
is called isometric.

The elements As, Sb, Bi, as well as the minerals corundum (Al,0,) and
hematite (Fe,0y), crystallize in the class 32/m. Varities of blue corundum are
3‘
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called sapphire; the red variety, ruby. Fine-grained corundum is known as

emery.

If we now add a horizontal symmetry plane to the classes 3m or 32, we
derive the ditrigonal-dipyramidal class, 8m2 (Figs.72 and 73), in which only
the very rare mineral benitoite BaTi[Si;O,] crystallizes.

a

Fig. 74a and b. Symmetry elements (a) and stereographic
projection (b) of the trigonal dipyramidal class 6
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Fig. 76a and b. Symmetry elements (a) and stereographic
projection (b) of the hexagonal pyramidal class 6

Fig. 78a and b. Symmetry elements (a) and stereographic
projection (b) of the dihexagonal pyramidal class 6mm

Fig. 75. Trigonal dipyramid

Fig. 77. Hexagonal pyramid

Fig. 79. Dihexagonal pyramid

As mentioned earlier, theoretically one would expect a crystal class resulting
from the combination of a 3-fold axis and a perpendicular plane of symmetry,
but no representatives are known. The corresponding class would be called the
trigonal-dipyramidal, with the symbol & (Figs. 74 and 75).



The 32 Crystal Classes 37

The symbols of these last two classes (6m2 and 6) have been written using
a 6-fold inversion axis. Therefore, frequently they are not grouped with the
trigonal, but with the hexagonal classes. However, when we recall that a & axis
is equivalent to 3/m, and if, in the assignment of morphology we wish to empha-
size clearly and prominently the 3-fold symmetry, we will then place them among
the trigonal classes. However, this assignment is still arbitrary, and for a variety
of reasons one might prefer to group them among the hexagonal classes. This
concludes the discussion of the trigonal classes, and we can now proceed to those
containing 6-fold axes.

@
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a b

Fig. 80a and b. Symmetry elements (a) and stereographic projection (b) of the hexagonal
dipyramidal class 6/m

Fig. 81. Hexagonal dipyramid Fig. 82. Apatite

The Hexagonal Classes. The simplest hexagonal class is the hexagonal
pyramidal, 6 (Figs.76 and 77) containing only a 6-fold axis. Nepheline,
Na[AlSiO,], a common constituent of basaltic rocks, crystallizes in this class.
In nepheline about one-fourth of the sodium is usually replaced by potassium.

If we first add a symmetry plane parallel to the 6-fold axis, we create actually
six equivalent symmetry planes intersecting each other at an angle of 30°. This
is the dihexagonal-pyramidal class, 6mm (Figs. 78 and 79). A form of ZnS, wurt-
zite, crystallizes in this class.

If we combine a horizontal symmetry plane with a 6-fold axis, we derive the
hezagonal-dipyramidal class, 6/m (Figs. 80 and 81), in which the most important
phosphate mineral, apatite, Cay(F, OH, Cl) (PO,), (Fig. 82) crystallizes.

By combining a 2-fold axis perpendicular to the 6-fold axis, we derive the
hexagonal-trapezohedral class, 622 (Fig. 83). The hexagonal trapezohedron corre-
sponds to the trigonal one we met earlier, but has 2 X 6 rather than 2 x 3 faces.
Again right- (Fig. 84) and left-handed (Fig. 85) forms occur. “High” quartz,
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the SiO, modification stable between 575 and 870° C at atmospheric pressure,
belongs to this class according to most existing information. Upon cooling,
“high” quartz inverts into several individuals of “low” quartz without the
original crystal losing its integrity (twinning p. 96£f., also p. 62).

Fig. 83a and b. Symmetry elements (a) and stereographic projection (b) of the hexagonal
trapezohedral class 622

If we now add a center of symmetry to this last class or to the class 6mm, we
create the highest symmetry possible in the hexagonal system, the dikexzagonal-
dipyramidal class 6/m 2/m 2[m, abbreviated 6/mmm (Figs. 86 and 87). In this
class crystallizes the mineral beryl, BesAl,[SigOy,] (Fig. 88), known as the semi-
precious blue-green gem aquamarine, or as the green gem emerald. The green
variety of beryl has been especially highly prized since antiquity. In the Middle
Ages thin plates of beryl were used in the peepholes of holy shrines, explaining
the derivation from the German word, Brille, meaning eye glasses.

/]
Fig. 84. Right-handed hexagonal Fig. 85. Left-handed hexagonal
trapezohedron trapezohedron

The types of form occurring in this class are indicated and numbered in the
stereographic projection (Fig. 89) 1. pinacoid {0001}; 2. hexagonal prism, L. orien-
tation {1010}; 3. hexagonal prism, II. orientation {1120}; 4. dihexagonal prism
{hki0}; 5. hexagonal dipyramid, L. orientation {#0hl}; 6. hexagonal dipyramid,
II. orientation {kh2%1}; 7. dihexagonal dipyramid {hk:7}.

The last twelve classes (trigonal and hexagonal) are sometimes subdivided
in a different fashion. The classes 6, 6/m, 622, 6mm, 6/mmm, 8, and 6m2 are
sometimes grouped together into a hexagonal system, whereas the classes 3, 3,
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32, 3m, 32/m, are grouped together as the irigonal rhombohedral system. In the
latter either hexagonal or rhombohedral coordinate axes (p.14) are used. For
all twelve of these classes, when referred to hexagonal coordinates, it is sufficient
in characterizing axial parameters to denote the ratio a:c. In the case of rhombo-
hedral coordinate axes, it is necessary to indicate the angle which the three
axes make with each other.

Fig. 86a and b. Symmetry elements (a) and stereo- Fig. 87. Dihexagonal dipyramid
graphic projection (b) of the dihexagonal dipyramidal
class 6/mmm

The Tetragonal Classes. The next seven classes are distinguished by a 4-fold
rotation axis and are grouped together as the tetragonal system. A single 4-fold
axis is characteristic of the tetragonal pyramidal class 4 (Figs. 90 and 91), of
which wulfenite, Pb[MoO,], may be a member.

Fig. 88. Beryl Fig. 89. Stereographic projection of the forms of
the class 6/mmm. 1. {0001}, 2. {1010}, 3. {1120},

4. {hki0}, 5. {hORL}, 6. {hh2h1}, 7. {hkil}

If a horizontal symmetry plane is added, the tetragonal dipyramidal class,
4/m (Fig. 92) results. The mineral scheelite (CaWO,) (Fig. 93) is a member of
this class.

If the mirror plane is placed vertically, it is repeated again after 90°, in
accordance with the four-fold symmetry. As a result of the symmetry two addi-
tional symmetry planes occur midway between the former two. This class is
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called the ditetragonal-pyramidal, 4mm (Figs. 94 and 95). Thus pairs of faces
reoccur in tetragonal repetition. An example of this class is the laboratory pro-
duct AgF - H,O0.
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Fig. 90a and b. Symmetry elements (a) and Fig. 91. Tetragonal pyramid

stereographic projection (b) of the tetragonal
pyramidal class 4

If we combine the tetragonal rotation axis with a 2-fold axis at right angles
to it, a second equivalent 2-fold axis must occur at 90° to the first by virtue of
the symmetry. If we study the resulting symmetry, it is easily seen that two

Fig. 92a and b. Symmetry elements (a) and stereographic ~ Fig. 93. Scheelite, tetragonal
projection (b) of the tetragonal dipyramidal class 4/m dipyramid

additional 2-fold axes must occur, bisecting the angles between the first pair
(Fig. 96). The general form is called the tetragonal trapezohedron. In this case
also there are both left- (Fig. 97) and right-handed (Fig. 98) forms. The class is

Fig.94a and b. Symmetry elements (a) and stereographic Fig. 95. Ditetragonal
projection (b) of the ditetragonal pyramidal class 4mm pyramid

called the fetragonal trapezohedral and has the symbol 422. NiSO, - 6 H,O crystalli-

zes in this class.
If we add to the classes 422 or 4mm a center of symmetry, or to the class 4/m

a horizontal 2-fold axis, additional symmetry elements appear, resulting in the
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most highly symmetrical tetragonal class, 4/m 2/m 2/m, abbreviated 4/mmm, the
ditetragonal dipyramidal class (Fig.99). The general form is the ditetragonal
dipyramid {kki}, (Fig. 100), which possesses eight paired faces on the upper as
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Fig. 96a and b. Symmetry elements (a) and stereographic projection (b) of the tetragonal

trapezohedral class 422
;

Fig. 97. Left-handed tetragonal Fig. 98. Right-handed tetragonal
trapezohedron trapezohedron

©

Fig. 99a and b. Symmetry elements (a) and stereographic Fig. 100. Ditetragonal
projection (b) of the ditetragonal dipyramidal class 4/mmm dipyramid

well as on the bottom side of the crystal. In addition to these we find the followinyg
forms in this class, as illustrated in the stereographic projection in Fig. 101: the
pinacoid {001}; the prisms I. {110} and II. orientations {100}; ditetragonal
prism {hk0}; tetragonal dipyramids I. {hhl} and II. orientation {h0l}. Represent-
ing this class is the common mineral zircon (ZrSiO,), which is prized as a gem-
stone — especially the blue variety produced by heating the brown variety
(hyacinth) (Fig. 102). Other important minerals are vesuvianite, Ca, (Mg, Fe),Al,
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(OH),[Si0,]5[S8i,0,], (Fig. 103), rutile and anatase (both varieties of TiO,), and
cassiterite (SnO,).

Two additional classes are distinguished by tetragonal inversion axes. One
such axis alone (Fig.104) leads to a closed form consisting of four faces and

Fig. 101. Stereographic projection of the forms of the class Fig. 102.
4/mmm. 1. {001}, 2. {110}, 3. {100}, 4. {hkO}, 5. {khl}, Zircon. {100}, {111}
6. {hO1}, 7. {hkl}
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Fig. 103. Vesuvianite. {110}, Fig. 104a and b. Symmetry elements (a) and stereographic
{100}, {001}, {111}, {210}, {132} projection (b) of the tetragonal disphenoidal class 4

Fig. 105. Fig. 106a and b. Symmetry elements (a) and stereographic
Tetragonal disphenoid projection (b) of the tetragonal scalenohedral class 42m

called the tetragonal disphenoid (Fig.105), after which the class is named. The
class symbol is 4. A member of this class is the very rare mineral cahnite,
Ca,B(OH),[AsO,].
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If we add to the tetragonal inversion axis either a perpendicular 2-fold axis
or a symmetry plane parallel to the 4-fold axis, two mirror planes parallel to the
rotation axis and two 2-fold rotation axes perpendicular to it appear (Fig. 106).
The general form is the tetragonal scalenohedron in which, as in the trigonal
variety, paired faces above and below oppose each other rotated 90° with respect
to each other. As in the case of the rhombohedron, positive (Fig. 107) and negative
scalenohedra (Fig. 108) can be distinguished. In this tetragonal scalenohedral
class, 42m, are found disphenoids {khl} (Fig. 109 shows {111} and {332}), as
well as prisms I. {110} and II. {100} orientations, dipyramids II. orientation
{r01} and the pinacoid {001}. This class is represented by the mineral chalcopyrite
(CuFeS,) (Fig. 109), the most abundant copper mineral.

S

Fig. 107. Positive Fig. 108. Negative Fig. 109. Chalcopyrite ‘
tetragonal scalenohedron tetragonal scalenohedron

The Cubic Classes. All of the possible combinations of 2-fold rotation axes
and mirror planes with a single 3-, 4-, or 6-fold rotation axes have been exhausted
with the classes already enumerated. If we now attempt to combine with each
other several axes which have higher than two-fold symmetry, we note that this
is only possible when we arrange four 3-fold axes along the directions of the
corner diagonals of the cube. We observe further that a 4-fold axis occurs perpen-
dicular to each cube face of the same cube. Since each of these axes penetrates
two cube faces, there are in all three 4-fold axes. We shall now concern ourselves
with these arrangements. We shall group together the five remaining crystal
classes into the cubic system. The corresponding crystals are related to orthogonal
coordinate axes. The unit faces intersect all three axes equally so that no further
statement is necessary, other than to call the crystal cubic. » 1

The Hermann-Mauguin symbols for cubic crystals are formulated in the
following manner: the kind of symmetry axis parallel to the cube edge is de-
signated in the first position (it does not necessarily have to be a 4-fold axis,
as we shall see); in the second position the kind of symmetry axis parallel to the
corner diagonal of the cube (3 or 3); and in the third position the axes parallel
to the edge diagonals. The same symmetry plane notation suffices as with the
preceding crystal classes. We are able to recognize immediately from the Hermann-
Mauguin symbols that we are dealing with a cubic crystal when 3 or 3 occurs 1111
the second position. ‘

The lowest cubic symmetry occurs when only the four 3-fold axes along the
cube-diagonals are assumed. With this combination of 3-fold axes, three 2-fold
axes appear parallel to the edges of the cube and bisecting the angles between
the 3-fold axes. No 4-fold axes are found in the geometrical cubic shape itself.
Likewise neither symmetry planes nor a center of symmetry appear (Fig. 110).
The projection point of the general form occurs at 2 X 3 positions on the upper
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hemisphere with a like number on the lower hemisphere. The corresponding
form is a dodecahedron (Greek dodeca, 12; hedra, plane), called a pentagonal
dodecahedron (Fig.111). In order to distinguish it from other pentagonal
dodecahedra, we shall refer to it by another common name, tetartoid. In projec-
tion each of three pentagonal planes is arranged around the projection point
of the tetrahedron (see p.49). The symbol for this tetratoidal class is 23. In this
class belong the mineral ullmanite (NiSbS), very rarely occurring as well-devel-
oped crystals, sodium chlorate and sodium bromate, both of which are optically
active and piezoelectric (p. 142 and 118).

Fig. 110a and b. Symmetry elements (a) and stereographic Fig. 111. Tetartoid
projection (b) of the tetartoidal class 23

113.
projection (b) of the diploidal class 2/m3 (m3) Diploid (disdodecahedron)

Fig. 112a and b. Symmetry elements (a) and stereographic Fig.

If a horizontal symmetry plane is then added, the number of faces is doubled
and they appear on both the upper and lower ends of the crystal. At the same
time two additional mirror planes appear, and the 3-fold axis becomes a 6-fold
inversion axis (Fig. 112). A center of symmetry also occurs. The corresponding
general form is a disdodecahedron (Fig. 113), composed of 24 faces. In order to
differentiate it from other 24-faced forms, it is also commonly called a diploid,
referring to the occurrence of its faces in pairs. The 2/m3 or m3 class is named
after the diploid. In it crystallizes one of the most common minerals, pyrite
(FeS,), whose morphology was thoroughly described as far back as 1725 by
HENCKEL, in his monograph, ‘“Die Pyritologie’’. Because pyrite occurs in many
forms, and because crystals are readily found, we shall briefly enumerate its
possible forms (Fig. 114). In the diploid {hkl} three irregular four-sided faces
are distributed around each 3-fold axis. Depending on which of the 24 parts of
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the projection one starts from, either positive or negative forms (7+ or 7-) are
obtained. In the case of face location (6), we obtain again 24 faces, which are
trapezoids. This form is called, therefore, the trapezohedron (Fig.138). It is
illustrated by the form {hk [} with b <1.
Also in the case of face position (5),
we get 24 faces, but now these are isos-
celes triangles. The resulting form is call-
ed the trisoctahedron, {hhl} with h>1
(Fig. 136). Points lying on a symmetry
Plane (4) are repeated twelve times form-
ing a form bounded by pentagons and
called the pentagonal dodecahedron
{0} (Fig.131). This form is often called
the pyritohedron, because of its com-
mon occurrence on pyrite. The pentagons
are not regular, or else the body would
have 5-fold axes. In the case of the
pentagonal dodecahedron, positive (4+)
and negative (47) forms can be distin-
guished. If one places the projection
point at the center of the symmetry Fig. 114. Stereographic projection of! the
plane, that is to say,45° from the 2-fold forms in class 2/m3 1. {100}, 2. {111},
axis, a twelve-faced form (3) is obtained 3,;’”{11}?}’1 $ }%0}, 5. {hu}’t"’>is 6.
bounded by thombi. This form is the % A<b T (b} ~— symmeiry plancs
rhombic dodecahedron {110} (Fig. 130).

The positions of the points of emer-

gence of the 3-fold axes correspond to the octahedron {111} (2) (Fig. 134); the
points of emergence of the 2-fold axis, to the cube {100} (1).

Fig. 115. Pyrite cube with striations Fig. 116. Pyrite. {100} and {h %0}

In pyrite the combination of {100}, {110}, {111}, and {kkO0} is particularly
common. Often cubes are found whose faces are striated in the manner shown
in Fig. 115. The striations indicate that these crystals lack the 4-fold axes as
well as the diagonal symmetry planes, which are encountered in classes of higher
symmetry. The striations correspond to the directions of horizontal and vertical
edges of the pentagonal dodecahedra (pyritohedra) which result from alternating
growth after {100} and {hk0}, especially {210} (Fig. 116).

The combination of the pentagonal dodecahedron {210} and the octahedron
{111} (Fig. 117) gives a 20-faced body illustrated in Fig. 118, if the faces of both
forms are of the proper size. This looks very similar to the icosahedron, the
regular body with 5-fold axes. The twelve pentagonal dodecahedral faces, however,



46 Crystal Mathematics

Fig. 117. Pyrite. {111} and {210} Fig. 118. Pyrite. Pseudo-icosahedron, {111}
and {210} striated after {321}

Fig. 119a and b. Symmetry elements (a) and stereographic Fig. 120. Gyroid
projection (b) of the gyroidal class 432

Fig. 121a and b. Symmetry elements (a) and stereographic Fig. 122. Hextetrahedron
projection (b) of the hextetrahedral class 43m

are not equilateral, but rather isosceles triangles and frequently appear dull
from fine striations after {421}, while the equilateral triangles of the octahedral
faces are brilliant.

If we insert into the class 23 a diagonal 2-fold axis instead of the vertical
symmetry plane, this axis is repeated six times, three times around each 3-fold
axis. The three 2-fold axes of the class 23 become 4-fold axes (Fig. 119). The
general form is again a twenty-four-faced one bounded by pentagons, the
pentagonal icosotetrahedron (Fig. 120), more commonly called a gyroid and after
which the class is named. The class symbol is 432 or 43. The forms are the same
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a b
Fig. 123. Fig. 124a and b. Symmetry elements (a) and stereographic
Sphalerite. {111}, {100} projection (b) of the hexoctahedral class 4/m 3 2/m (m3m)
Fig. 125. Hexoctahedron Fig. 126. Galena. {100}, {110}, {111}

Fig. 127. Fig. 128.
Fluorite. Cube {100} with hexoctahedron Garnet. {110} and {112}

as in class m3, except that {hk0} is now also a twenty-four-faced form, the
tetrahexahedron (Fig. 132).

On the basis of their outward crystalline form some crystals of sal ammoniac
(NH,CI) belong to this class. On the basis of its inner atomic structure the
p form of manganese, which is stable between 150° and 850° C, is also a represen-
tative of this class.

If a diagonal symmetry plane is introduced into the class 23, it is repeated
six times. The 2-fold axes become 4-fold inversion axes (Fig. 121). The general
form after which the class is named is the heateirahedron (Fig. 122). The class
is called the heatetrahedral with symbol 43m. {111} is here the tetrahedron
(Fig. 133), {hhl} with h >1 the deltoid dodecahedron (deltohedron) (Fig. 135),
and {hhl} with h <1 the tristetrahedron (Fig. 137). Sphalerite (ZnS) (Fig. 123)
a common and the most important zinc-bearing mineral, belongs here.

b
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The introduction of a center of symmetry to class 43m or 432, as well as the
introduction of a diagonal symmetry plane to class m3, results in the highest
crystal symmetry obtainable by any combination of symmetry elements (Fig.
124). This class, which is represented by the 48-faced form, the hexoctahedron
(Fig. 125), has the symbol 4/m 3 2/m or m3m and is called the hexoctahedral.
In this class many metals such as gold, silver, and copper crystallize, as do many
important minerals. As examples we can mention magnetite (Fe;O,), which
forms octahedra and rhombic dodecahedra, and galena (PbS) which occurs as
cubes frequently modified by octahedra and rhombic dodecahedra (Fig. 126).

In all classes

Fig. 129. {100} Cube (hexahedron) Fig. 130. {110} Rhombic dodecahedron

In the classes:
23 and m 3 43m, 432 and m3m

—

{h 10}

Fig. 131. Fig. 132.
Pentagonal dodecahedron (pyritohedron) Tetrahexahedron

Figs. 129—138. Summary of the occurrence of special forms in the cubic system

Fluorite (CaF,), which usually crystallizes as cubes and always exhibits octahedral
cleavage, is occasionally modified by the hexoctahedron at the cube corners
(Fig. 127). Garnet, (Mg, Fe*2, Mn*2, Ca); (Al, Fe*3, Cr*?), [8i0,];, commonly
crystallizes as the rhombic dodecahedron or the trapezohedron (Fig. 128).
Diamond probably also belongs in this class. Leucite K[AlSi,O¢] crystallizes
usually with {112} as its diagnostic form.

All of the forms of the cubic system, with the exception of the general {hkl}
forms respectively of all five of the cubic classes, are enumerated diagramatically
in Figs. 129—138.

Additional Symbols and Names for the 32 Crystal Classes. In addition to the
Hermann-Mauguin symbols utilized here, there it another symbolism in use
that goes back to Schoenflies. We shall not deal with it further here, since today
the Hermann-Mauguin symbols are in most general use. Since it is necessary to
have some familiarity with them in order to understand the crystallographic
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literature, the reader is referred to Table 2 in Appendix A, in which the Schoen-
flies symbols are also tabulated.

In naming the 32 crystal classes, we have used the name of the most general
form, as recommended by GroTH. There are still other names in use whose
derivation is based on the reasoning that one can proceed in each crystal system
from the class of highest symmetry and systematically eliminate symmetry

In the classes:

23 and 43m m3, 432 and m3m
W {111}
Fig. 133. Tetrahedron Fig. 134. Octahedron
{hhi}
(h>1)
Fig. 135. Deltoid dodecahedron Fig. 136. Trisoctahedron
(deltohedron)

@ {hR1}
(h<<l)

Fig. 137. Tristetrahedron Fig. 138. Trapezohedron

elements, thereby decreasing the number of faces of the general form. The most
highly symmetrical class in each system is called the holohedral. Pertinent details
are again referred to in Appendix A in Table 2.

With these observations we have concluded the formal discussion of
crystallography. This is a field which frequently causes the beginner special
difficulty. Many people have a very poorly-developed three-dimensional per-
ception. Anyone who wants to concern himself seriously, however, with the
architecture of the solid state, that is, with crystal structure, must develop his
three-dimensional perception to a very high degree. This is accomplished only

4 Correns, Mineralogy
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through practice, particularly by using models from which recognition of symmetry
elements and the corresponding faces can be learned. Apart from its educational
value, the knowledge of the 32 crystal classes and their corresponding forms
constitutes the foundation for the description of minerals, for the investigation
of crystal growth, and for the understanding of physical phenomena, such as

N &

(a) Triclinic lattice (b) Monoclinic primitive lattice
(c) Orthorhombic primitive lattice (d) Tetragonal primitive lattice

[T

(e) Hexagonal lattice (f) Rhombohedral lattice  (g) Cubic primitive lattice
Fig. 139a—g. The seven simple primitive translation lattices

mechanical and optical behavior. The view that it is sufficient to know a little
bit about structure, but that it is unnecessary to become familiar with crystal
morphology, hinders deep penetration into these problems. The knowledge of
the crystal classes is a prerequisite for the understanding of crystal structures.

5. Space Groups

The 14 Translation Lattices (Space Lattices). The most convenient way to
build up a periodic point arrangement in space is to start with a point, and by
means of translations in three directions (which naturally may not lie in the
same plane), and repetition of this process to the newly created point, to produce
a simple lattice (see Fig. 16). Such a lattice consists as it were of parallelopipeds
stacked one upon the other, at whose corners points occur. Such a parallelopiped
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is called an elementary or unit cell. The magnitude of the three translations and
the angles between them can assume different values. Careful study leads to
the conclusion that only 14 symmetrically different point arrangements can be
obtained in this manner. Seven of these (Fig. 139), comprise the most highly
symmetrical unit cells, containing points only at their corners. Since each point
belongs equally to eight unit cells coming together at a common corner, each
unit cell contains only one point. The lattice is said to be simple primitive. In

uF

(¢) Orthorhombic side-centered lattice

(e) Tetragonal body-centered (f) Cubic body-centered (g) Cubic face-centered
lattice lattice lattice

Fig. 140a—g. The seven multiple translation lattices

particular cases space lattices are known in which the most highly symmetrical
unit cell contains two points. These are called doubly primitive (Fig. 140a—c,
e and f); in addition there are those which contain four points, called quadruply
primaitive (Fig. 140d and g).

Space lattices are classified as triclinic, monoclinic, orthorhombic, tetragonal,
hexagonal, rhombohedral, and cubic, based on their coordinate axes. In the case
of multiple primitive lattices, it is necessary to indicate whether the most highly
symmetrical unit cell is body centered, face-pair centered, or fully face centered.
In order to avoid confusion, it should be emphasized that those lattices which

4%
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are usually described as multiple primitive can be produced by means of three
translations of a primitive unit cell; the geometrical form of this cell has then,
however, a lower symmetry than the lattice considered as a point arrangement
in space. It is indicated in Fig. 140 how the point arrangement is obtained through
simple translation. The rhombohedral lattice can be considered as an inter-
penetration of hexagonal lattices and vice versa; then a triply primitive lattice
must be used. These 14 space lattices are also called Bravais lattices after
Bravars in France, who promulgated them in 1850. The German, FRANKEN-
HEIM, had concerned himself with these lattices as early as 1835, but their
complete derivation was first published by him in 1855.

The Way to the 230 Space Groups. These space lattices were historically the
first space groups. From their number alone it can be seen that they cannot
explain the symmetry of all 32 crystal classes. They represent rather the seven
most highly symmetrical classes of each system 1, 2/m, mmm, 4/mmm, 3 2/m,
6/mm m, m3m.

Fig. 141. Symmetry elements of a space Fig. 142. Symmetry elements of a space
group containing only 3 fold screw axes group with 3-fold axes, symmetry planes,
and glide planes

In order to build up point arrangements in space to which the lower symmetry
classes also correspond, one must turn to another constructional principle,
utilizing operations other than translations for the generation of repetition. To
this end one investigates the geometric possibilities of periodic two-dimensional
patterns (for example, wallpaper and fabrics). In so doing we meet again as
symmetry elements all of those which we already know from the macrosymmetry
of the crystal, and in addition screw axes, glide planes (see p. 21), and trans-
lations. Just as one can discern from the symmetry elements of the macrocrystal
only a finite number of combinations (the 32 crystal classes), so can we recognize
only a finite number of symmetry possibilities for spatial patterns—230 which
are called the space groups. These encompass the symmetry of all the crystal
classes. Usually several space groups constitute each crystal class. This cannot
be discerned macroscopically, since the magnitudes of the translations involved
in screw axes and glide planes are so small (order of magnitude: several A). As a
result these appear macroscopically like ordinary axes or symmetry planes.

Two examples of space groups are illustrated in Figs. 141 and 142. In Fig.
141 only 3-fold screw axes are indicated; in Fig. 142, 3-fold rotation axes,
symmetry planes, and glide planes. Particles which lie on a symmetry center,
a symmetry axis, or a symmetry plane must satisfy their symmetry; particles
which lie between the symmetry elements or on a screw axis or glide plane need
have no unique particle symmetry. As a result it is possible to build up highly
symmetrical arrangements from quite asymmetrical particles. The experimental
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investigation of crystals with X-rays, with which we shall later become acquain-
ted, has revealed, however, that the lattice constituents of crystals, at least,
very frequently possess high individual symmetry.

While the study of the symmetry of periodic three-dimensional arrangements
is quite modern (the first derivations of the 230 space groups were given by
FepEROV in 1890 and by ScHONFLIESS in 1891), mankind has, during that
period for which we have a historical record, concerned himself with two-dimen-
sional arrangements in the design of ornaments. The symmetry of these arrange-
ments can be systematically understood. There are only 17 planar space groups.
Two examples of old Egyptian designs (Figs. 143 and 144) show how strongly

__a___, ____9 -

Fig. 143. Ancient Egyptian design Fig. 144. Ancient Egyptian design
(after PRISSE D’AVENNES from Speiser) (after PRISSE D’ AVENNES from Speiser)

geometrical requirements are fulfilled and how great is their variation. Further-
more, planar symmetry is also important in the case of crystals. Not only the
symmetry of natural crystal faces, but especially the symmetry discerned by
the use of etch figures, is used to recognize the crystal class. We have already
noted this in the case of dolomite and quartz.

The symmetry details of the 230 space groups are amply described in numerous
reference works. A summary table is included here in the Appendix (p. 352). We
shall not concern ourselves with them here, but want only to learn the manner
in which they are described.

Space Lattice Description. We consider the 230 space groups as an enlargement
of the 14 Bravais lattices, that is, as if a group of points were derived from one
lattice point, or what is the same, from interpenetrating Bravais lattices. If we
want to describe such a space lattice we need first of all to know that principle
by means of which the translation is repeated. We need to know the parameters
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of the unit cell, that is, the lattice dimensions, a, b, ¢, and the interaxial angles
o, B, v, and its translation group. Secondly it is necessary to know the pattern
of points (motif) that replace the Bravais points. It must be specified how many
atoms occur in the unit cell and how they are arranged, by noting their coordinates
with respect to the coordinate axes of the unit cell. As with face indices, the
coordinates are written in order with respect to the a-, b-, and c-axes. Thus the
translation group alone is sufficient for describing the cubic body-centered
lattice. It can, however, also be described as two interpenetrating simple cubic
lattices, whose origins have the coordinates 0, 0, 0, and %, %, £. If one wishes
to describe the cubic face-centered lattice as simple penetrating cubic lattices,
a base of four points, 000, 03%, 0%, 430, is needed. The NaCl lattice
is a penetration of two cubic face-centered lattices with the origins for Na, 000,
and Cl 3 %. The following point positions are taken up with respect to a simple
cubic lattice.



II. Crystal Chemistry

1. Ionie Bonding

Ionic Radii. Our previous discussion has shown the symmetries which are
possible in point arrays and how they are related to crystal form. We are now
familiar with the geometric framework into which the collective crystal world
can be arranged. We now want to inquire further as to what relationships exist
between the kinds of particles — atoms or molecules — and their crystal structural
arrangement. Why, for example, do crystals of the three compounds BN, ZnS,
and NaCl each possess a unique structure and crystallize in different classes ?
Chemists and mineralogists have concerned themselves with these questions for
more than 100 years. In the beginning, attempts were made to establish some
universal generalities, by collecting data from as many kinds of crystals as
possible. This approach culminated in 1919 with the publication of P. von
GrotH’s ““Chemische Kristallographie”. His first volume was published in 1906.
This is a book which even today is an important reference work, especially in the
field of organic crystallography. In it is compiled all that was known at that time
about the crystal forms of the elements and their compounds. It was not possible
in this way, however, to organize the enormous volume of data according to
some unifying concept. An important principle was revealed around 1920, when
the first crystal structures were experimentally determined. Different investi-
gators, especially V. M. GoLpscHMIDT and H. G. GrimM, attempted to explain
the spatial arrangement of particles in terms of their volume requirements. They
recognized that crystal structure was dependent upon the size relationships of
the building blocks. They experimented systematically, synthesizing crystals,
substituting first one and then the other constituent atom. This proved to be
an extremely fruitful method. It was soon suggested that these particles, atoms
and ions, were essentially spherical, and that their ‘‘effective radii’’ could be
calculated. In the case of structures which consist of only one element it is possible
to calculate directly the atomic radii, if the arrangement is known and the as-
sumption made that the atomic spheres are in contact or as close together as
possible. It is more difficult to determine atomic radii in crystals composed of
several chemical elements. An important step forward was taken in 1922, when
WasasTIERNA first calculated from refractometric data that the ionic radii of
F1- and 02~ were 1.33 and 1.32 A respectively. These data were immediately used
by V.M. GoLpscHMIDT to derive empirically the ionic radii of many other
elements. As soon as the radius of oxygen became known, the radii of the metallic
ions could be calculated from the structures of their oxides. In 1927 Pauling
calculated another set of ionic radii on the basis of wave mechanics. Both sets of
ionic radii in most cases show very good agreement. In Table A 7, p. 358 in the
Appendix, GOLDSCHMIDT’S ionic and atomic radii are tabulated. With increasing
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atomic number, the atomic and ionic radii! decrease in the horizontal rows of the
periodic table; in the vertical rows on the other hand they increase. Thus it is
noted in Table A 7 that ionic radii decrease in the horizontal row from Na* (0.98A)
to S+6(0.344), but increase from Li*(0.784) to Cs*(1.65A). With increasing
positive ionic charge the radius decreases; for trivalent positively charged manga-
nese the radius is 0.91 A&, for tetravalent manganese 0.70 A, and for the septavalent
ion, only 0.52 A. Negative charge increases the radius, since electrons are added
to the original shells. Chemical bonding by means of electrostatic forces is called
tonic or heteropolar bonding.
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Fig. 145 Fig. 146

Fig. 145. Octahedral 6-fold coordination in cross section; above and below the dashed
circle are two additional spheres

Fig. 146. NaCl structure. Each type of ion is octahedrally coordinated

Radius Ratios and Coordination Number. With the help of this simple
representation of spherical ions, one can understand a surprising number of
phenomena in the crystal world. We begin with the question of how such oppo-
sitely charged particles group themselves. We start by assuming that ions are
rigid and that arrangement is energetically most favorable, when each ion is
surrounded by as large a number of neighboring ions as possible. In this way the
average distance between oppositely charged particles is kept as small as possible.
The likely arrangement depends then on the relative size of atoms in a compound
and on the relative numbers of ion species. The size relationships of two ions are
expressed by the radius ratios R /Ry, where Ry is taken as the radius of the
larger ion. Frequently chemical compounds with the same atomic proportions
are grouped together and related to a type compound. Thus the substances
NaCl, CsCl, MgO, ZnS, AsS, etc. are A B type compounds; CaF,, FeS,, Si0O,,
H,0, etc. are A B, types; the compounds CaCO;, PbCO,, CaTiO;, MgSiO, are
A B, types.

For a given radius ratio it is possible to arrange six B spheres around a sphere
A, as is shown in cross section in Fig. 145. The centers of the B spheres lie at the
corners of an octahedron with all of them in contact with 4. We say that the
coordination polyhedron around the A sphere is an octahedron. In general the
coordination polyhedron is that polyhedron formed by connecting the centers
of the coordination neighbors with one another. An example of a structure with

1 Here we are referring to ionic radii for the highest possible valence state, that is, for
example, S¢* and not S?-.
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octahedral coordination is NaCl (Fig. 146). For the case described above it
follows then:

Fig. 147 Fig. 148
Fig. 147. Central cross section of 8-fold cubic coordination parallel to {110}. Additional
spheres lie above and below the dashed circles. The ratio of the shorter side of the

rectangle to the diagonals is l:l/§
Fig. 148. CsCl structure

Fig. 149 Fig. 150

Fig. 149. Sphalerite structure. Both types of atoms are tetrahedrally coordinated. The cubic
unit cell is oriented with the 3-fold axis vertical

Fig. 150. Wurtzite structure

If the 4 atom is made smaller, maintaining the size of B, it can no longer be in
contact with six spheres. Another arrangement becomes energetically more
favorable, namely that one with four B’s around A, in which the centers of the
B spheres lie at the corners of a tetrahedron. The ideal value for the radius ratio
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in such a case is R,/ Rz = V% —1a0.22. If on the other hand 4 is increased in size,
the six B spheres remain in contact with it, but can no longer remain in contact
with each other. As soon as the radius of 4 is sufficiently large that eight spheres
can coordinate about it, 8-fold cubic coordination results. The radius ratio in
this case, as can be deduced from Fig. 147 is:

Ry 5 ~
= I3 —1~0.73.

Fig. 148 shows an example of this coordination in the CsCl structure. Octahedral
coordination is exhibited by the NaCl structure (Fig. 146), tetrahedral coordina-
tion in the sphalerite structure (Fig. 149). This last structure is not purely ionic
(see p. 82) and strictly speaking does not belong here. A very similar structure

e ) 2 S D (P
g 7 2 3 4 5A g 7 2 24

Fig. 151. Fluorite (CaF,) structure. Each Ca Fig. 152. Rautile (TiO,) structure
ion surrounded by eight F'; each F by four Ca

which likewise possesses fourfold coordination, is that of wurzite (Fig. 150).
Wourtzite is also a form of ZnS, crystallizing, however, not like cubic sphalerite,
but in the dihexagonal pyramidal class!. In the sphalerite structure the Zn atoms
and the S atoms each form a cubic face-centered lattice; in wurtzite each type of
atom forms a hexagonal lattice. No really pure ionic compounds crystallize with
either of these structural types. Perhaps most nearly approaching an ionic struc-
ture with tetrahedral coordination is BeO, which has the wurtzite structure.

We can assume, therefore, that the grouping together of ions obeys such
simple geometrical relationships. These determine the coordination mumber, the
number of nearest neighbors. The limiting radius ratios just deduced, are applic-
able naturally not only to 4 B-type compounds, but generally. In the caseof 4 B,
compounds, each A ion has twice as many neighbors as each B ion. If eight
B’s surround each 4, four 4’s surround each B. A is, then, cubically (8-fold) and
B tetrahedrally coordinated, as in the fluorite structure (Fig. 151). In a crystal
structure of the type 4 B,, if the 4 ion is octahedrally coordinated by 6 B ions,
each B ion must in turn have 3 4 neighbors.

One would expect that this would be realized ideally, by three octahedra
linked together at a common B ion and with 3 A ions around B forming an

1 Besides wurtzite there are still several other atomic arrangements for ZnS. Their differ-
ences from wurtzite are only trivial energetically. In all of the ZnS structures, the Zn is
tetrahedrally coordinated by four S atoms, and vice versa.
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equilateral triangle. Actually this ideal arrangement does not occur. Instead the
coordination in such a structure is always somewhat distorted. Such is the case
for the three TiO, modifications, rutile (Fig. 152), anatase, and brookite. Cassi-
terite, SnO,, has the same structure as rutile.

Important representatives of 4 B, compounds with tetrahedral coordination
about A, and 2-fold coordination about
B, are the SiO, modifications, quartz,
tridymite, cristobalite, coesite, and kea-
tite. The latter is known only as a syn-
thetic product. In these the SiO,-te-
trahedra are linked through corners,
so that each oxygen is shared between
two SiO,-tetrahedra. Linkage occurs,
however, only through corners — the
tetrahedra do not share edges! The
known SiO,-modifications differ from
each other only in the geometry of the
SiO, framework. The SiO, tetrahedra
are linked together in the same manner
in all of them? (see discussion of tecto-
silicates, p. 74). As an example, high
cristobalite is illustrated in Fig. 153. 7 7 7 A

Cuprite is another example of an
A B, compound. This structure can be  Fig. 153. High-Cristobalite (SiO,) structure
described as an interpenetration of a
body centered O- and a face centered Cu-lattice. A summary of the theoretical
coordination relationships for 4 B and 4 B, compounds is given in the following
Table 3:

Table 3. Coordination relations and limiting radius ratios

Arrangement, Limiting A B compounds A B, compounds
of B around 4 radius ratio

coord.-number example coord.-number example

Tetrahedral 0.22 4 ZnS 4 and 2 Si0,
Octahedral 0.41 (3 Na(Cl 6 and 3 TiO,
Cubic 0.73 8 CsCl 8 and 4 CaF,

Deviations from Theory. Let us now attempt to confirm these simple geo-
metrical considerations by arranging the X-ray determined structure types of
simple compounds according to increasing cationic and anionic radii. This has
been done in Table 4 for the alkali halides. It can be seen that strict conformity
to simple geometric principles is not adhered to.

The coordination relations of other compounds of divalent cations, are given
in Tables 5 and 6. Numerous exceptions to theory are noted here also. The reasons
are varied. The ionic radii used for calculation and those appearing in Tables 4, 5,
and 6 are valid only for 6-fold coordination. With 8-fold coordination, the effective
ionic radii become about 3% greater, asin the alkali halides. As noted in Table 6,

! The recently synthesized and discovered mineral stishovite, which forms at very high
pressure (above about 120,000 atm.), is a modification of Si0, in which the silicon is coordi-
nated octahedrally by six rather than the usual four oxygens. It has the rutile structure.
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Table 4. Coordination relationships of the alkali-halides

Li* 0.78 | Nat*0.98 K*1.33 Rb* 1.49 Cs* 1.65
F- 133 6 6 6 6 6
Cl- 1.81 6 6 6 8a 6 8 6b
Br-1.96 6 6 6 6 8
I- 2.20 6 6 6 6 8¢ 8
R, /Rp< 041 R,/Rp between 0.41 and 0.73 R /Rp>0.73
a At low temperatures (— 190° C).
b At temperatures above 445° C.
¢ At high pressures (4,500 kg/cm?; 25° C).
Table 5. Coordination relationships of divalent cations. Formula type A B
Be?* | Mg?* | Zn?* | Cd2* | Ca?* | Hg?* | Sr®* | Pb%* | Ba?* [ Ra?*
0.34| 0.78 (0.83 | 1.03 [ 1.06 | 1.12 |1.27 | 1.32 | 1.43 | 1.52
0 132 | 4 6 4 6 6 A 6 A 6
S2- 1714 | 4 6 |4;4'(4;4| 6 | 4;4 | 6 6 6 R,/Rp>0.73
Se2~ 191 | 4 6 4 [4;4"] 6 4 6 6 6
Te?- 2.03 | 4 4 4 4 6 4 6 6 6
R,/Rp<0.41 R,/Rp between 0.41 and 0.73
Table 6. Coordination relationships of divalent cations. Formula type A B,
Be2t | Mg?* | Zn2* | Cd?* | Ca®* | Hg?* | Sr2* | Pb%* | Ba?* | Ra?*
0.34 ] 0.78 |0.83 |1.03 |1.06 | 1.12 | 1.27 | 1.32 | 1.43 | 1.52
2F- 1.33| 4 6 6 8 8 8 8 |4;8*| 8 8
R, /Rp>0.73
2Cl1- 181 4 6s 4 6s [ 6de| @ 8 A A
2Br-1.96 6s 4 6s |6de | @ A A A
21— 2.20 6s 4 6s | 6s 4s 6s A
Ry /Rp<0.41 R,/Rp between 0.41 and 0.73

s Layer structure; 4’ wurtzite type; (2) Molecular structure; 4 special type; 6 d e distorted
rutile type; * only at high temperatures.

for the compounds of certain metals (Zn, Hg) and some anions, the disagreement
is especially bad. Here the influence of other types of bonding asserts itself. This
effect will be discussed later in more detail. In general, however, when considering
the same anion, coordination number around the cation increases with increasing
effective cation radius.

Pauling’s Rules. In the previous discussion we have used only the radius
ratio, that is the size relationships of rigid ionic spheres, in order to explain
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different structural types. This is naturally a very approximate procedure. The
more proper way to consider crystals with electrostatic bonding is to inquire
about the energy which is released when ions come together into crystals. Of all
the possible geometrical arrangements, that one occurs, at least at low tempera-
tures where vibrations and other motions of the crystal can be neglected, which
results in greatest release of energy. This is also the most stable arrangement.
One can calculate this released energy (electrostatic lattice energy, see p. 166),
but the procedure is usually very laborious. Often one can resort to PAULING’S
Rules (Pavring, 1929), which suggest qualitatively the requirements for electro-
static bonded atomic arrangements with most favorable energy relationships.
Because of their importance, they will be stated here:

1. Around every cation, a coordination polyhedron of anions forms, in which
the cation-anion distance is determined by the radius sums, and the coordination
number by the radius ratio.

2. In a stable coordination structure the total strength of the bonds which
reach an anion from all neighboring cations, is equal to the charge of the anion.

3. Sharing of edges, and especially faces, between two coordination polyhedra
lowers the stability of the coordination structure. This effect is large for cations
of high charge and small coordination number, and is especially large when the
radius ratio approaches the lower limiting value for the polyhedron.

4. In a crystal which contains different cations, those with high charge and
small coordination number tend not to share elements of their coordination
polyhedra.

5. The number of essentially different kinds of constituents in a crystal tend
to be small (Rule of Parsimony).

Pavrine’s first rule treats structures from the same view point as our previous
discussion. Rules 2—4 give the qualitative conditions for the energetically most
favorable linkage of such polyhedra. For rule 2 it is still necessary to explain
what is meant by the ‘““bond strength” between cations and anions. This is equi-
valent to the charge on the cation divided by the number of neighbors in the
coordination polyhedron. As an example, the fluorite structure (Fig.151) will
serve to make this clear. In CaF, each Ca?* is surrounded by eight F1- ions; the
bond strength is consequently 2=1. Since each F!- ion is surrounded by four
Ca*2? ions, 4 X{=1 “bond strength” contributions result, equal to the charge
on the F'~ ion.

Polymorphism. Since vibration of lattice constituents changes with tempera-
ture, an ionic arrangement which is thermodynamically more favorable at low
temperature need not be stable at higher temperatures. Thus CsCl, which, in
agreement with its radius ratio of 0.91, possesses at room temperature a structure
with 8-fold coordination, transforms at about 460° C into the NaCl-type structure,
with octahedral coordination. The nitrates, carbonates, and borates in Table 7
show very clearly that, with increase in cationic radius, a structural change
takes place, and that in the case of a single compound both structural types are
possible at the transition point. This structural change for a given compound
is called polymorphism, and the different structural types are called polymorphs
or structural modifications.

The calcite structure is most easily described as a deformed NaCl structure,
with one cube-diagonal (3-fold axis) standing perpendicular and with the Cl-
ions replaced by triangular CO, groups lying in planes perpendicular to the
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Table 7. Borate, carbonate, and nitrate structure types

Formula  Cation Formula Cation Formula Cation Structure
radius radius radius type
MgCO, 0.78
FeCO, 0.83
ZnCO4 0.83 Calcite
ScBO, 0.83 MnCO,; 091 LiNO, 0.78
InBO, 0.92 CdCO, 1.03 NaNO, 0.98
YBO, 1.06 CaCO, 1.06 KNO, 1.33
LaBO, 1.22 CaCO, 1.06 KNO, 1.33
SrCO,4 1.27 Aragonite
PbCO, 1.32
BaCO, 1.43

Fig. 154a and b. Projection of the Si atoms in the quartz structure on (0001) (a) below and
(b) above 575°C. The different atoms (white, cross-hatched, black) are distinguished by
different projection elevations; each about 1.80 A apart. (STRUNz)

3-fold axis. The aragonite structure is similarly derived from the NiAs structure
(p- 88) which will be described later. In the calcite structure the Ca?* ions are
surrounded by six oxygens atoms; in aragonite, by nine.

Polymorphism implies that with the same chemical substance, differences in
structural type can occur as a function of external conditions, such as pressure
and temperature. Depending on the magnitude of the geometrical variation, one
can differentiate the following: polytypism, in which different structural types
are met, as previously discussed; polysyngonism, in which only slight changes
in structure are encountered, as exemplified by the transition of high to low
quartz (Fig. 154)%; a third and less important subdivision, in which the structural
type is completely retained, but in which the structure still undergoes physical
change is called polytropism. The difference in physical behavior results from the
fact that chemically strongly bound complexes in the structure begin to rotate
(or at least distribute themselves statistically over several orientations) above

1 According to recent investigations by ArNoLD, high quartz is distinguished from low
quartz in that the former consists of the tiniest domains with the structure of low quartz,
which are twinned after the Dauphine law (see p. 98).
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a certain temperature. An example is the NO, group in NaNO; at 280° C (Fig. 155).
It is also manifest by lattice constituents exchanging places in the structure,
without changing structural type. Such examples are referred to later (p. 185).
According to the degree of structural change during such transformations, the
coherence of the crystal may be either preserved or lost. As can be observed with

Fig. 155. (a) Portion of the NaNOQ, structure at 25° C. NO; group sits within rhombohedron.
(b) Same view at 280° C. NO, group rotating around N. (After BARTH)

small crystals of K,Cr,0, under the polarizing microscope, the whole crystal
unfolds into a new structure upon heating to 237° C. The crystal can be observed
breaking up into several fragments. In the case of KNO;, on the other hand, the
aragonite structure transforms into the calcite structure upon heating to 128° C,
and the crystal disintegrates in the process. If a transformation results upon
cooling as well as heating, it is reversible or enantiotropic (Gr. enantioi, opposite;
tropos, direction). In the case of CaCO; at atmospheric pressure, only the trans-
formation from aragonite to calcite, taking place at approximately 400° C, can
be observed. In order to observe the transformation from calcite to aragonite,
higher pressures (approx. 3,000 atmospheres) are necessary. This can be accom-
plished very simply by grinding calcite powder vigorously and for a long time
in a mortar (BurNs and BrEDIG; DacHILLE and Roy). Transformation in the
solid state results as a rule in the production of individual nuclei of the new
modification, which then grow (solid state reaction). Additional discussion of
the influence of temperature and pressure on the occurrence of particular struc-
tural types will be given later in the discussion of one-component systems
(p- 183). Frequently in the case of polymorphic phases, the phase which is stable
under normal conditions is designated as the «-modification; that which is stable
at higher temperatures as the f-modification; then follows the y-modification,
etc. Since these designations are not completely universal, one often uses, for
substances with two modifications over different temperature ranges, the
appropriate expressions, high- or low-temperature modifications.

Isomorphism. Table 7 shows also, that the members of each of the two
carbonate groups have the same structure. The phenomenon of chemically
different substances possessing the same structure, as well as the concept of
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polymorphism, was discovered at the beginning of the 19th century by Emwmarp

MrrscHERLICH. Following the suggestion of BERZELIUS, he called this phenomenon
isomorphism. Until the introduction of X-ray structure investigation, this concept

Table 8. Camouflage

Element Ion radius  Element Ton radius
Get* 0.44 Sit+ 0.39
Gad* 0.63 A+ 0.57
Ni2+ 0.78 Mg2* 0.78
Hit 0,87 Zr*t 0.86

was based only on the similarity of external crystalline form, ascertained primarily
through angular measurements of crystals. Crystal structural determinations
have in many cases corroborated the views based on morphological studies, in
many cases not. Thus earlier, zircon, ZrSiO,, and rutile, TiO,, were considered
by GrorH to be isomorphous. As a matter of fact, by appropriate choice of
orientation, both crystal forms assume quite similar parameters, but their
structures are different. While in the rutile structure each Ti is surrounded by
six O, and each O by three Ti, in the case of zircon, Si has four and Zr eight O
as nearest neighbors.

Table 9. Capture

Element Ion radius  Element Ton radius
Tit* 0.64 Nbs+ 0.64
Ce?* 1.18 Th4* 1.10
Fe2+ 0.83 Scd+ 0.83
Na* 0.98 Ca?t 1.06
Ca2+ 1.06 Y3+ 1.06
Sr2* 1.27
Kr 1.33 { Ba?* 1.43

Miscibility in the solid state was once regarded as an especially certain
criterion of isomorphism. One referred also to ‘‘impfisomorphism” (induced
isomorphism) when one form of a crystal grew from another, and so this concept
became increasingly vague. Today the view is taken that even different structural
types, can be miscible, and so important distinctions must be suggested by
appropriate terminology. Two substances with the same structural type are
called isotypes; with similar type, homotypes; and with differing type, heterotypes.
Miscibility in the solid state infers the same completely random distribution of
constituents as does miscibility in fluids. Miscibility will be discussed more fully
later (p. 90 and 195). In the case of miscibility in the solid state, one differen-
tiates, as with fluids, between complete and limited miscibility. Independent of
the degree of miscibility, one speaks of isomorphic miscibility in isotypic structures,
homomorphic in similar structures, and heteromorphic in dissimilar structures.
An example of the latter is the complete miscibility of MgCl, and LiCl (see p. 91).

The representation of ions as rigid spheres also enables us to understand the
formation of mixed crystals. For the occurrence of isotypism it is sufficient that
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radius ratios are equal, but miscibility requires approximately equal absolute
values of jonic radii. Introduction of foreign ions into a crystal can only take
place if they fit rather well in the struc-
ture. The extent to which the radius of
the foreign ion can deviate from the
ideal depends on temperature and the
type of structure.

Camouflage and Capture. The accom-
modation of foreign ions into a crystal
structure plays an important role in geo-
chemistry. Many elements, like gallium,
form their own compounds only rarely.
They almost always fit into compounds
of other substances. When substitution
of equivalentionsisinvolved, the process
is referred to as “ camouflage”’. Table 8
shows some examples.

If a lower valence ion is replaced,
one refers to the ““ capture”’ of the higher
valence ion in the structure of the lower
valence one. Thus monazite, CePO,,
captures tetravalent thorium in place of
trivalent cerium. The charge balance
is maintained by substituting an equi-
valent amount of divalent Ca for Ce, or
by substituting [ SiO,]*~groupsfor a por-
tion of the [PO,]*~ groups. Some exam-
ples of pairs of elements with equal or o= ()=J
gimilar ionic radii, but with different —
valence, are assembled in Table 9.

We shall come back again later to Fig. 156. CdI, structure
this business of capture in the discussion
of multicomponent systems (p. 195). However, it may be mentioned here
that chemical laws, in addition to geometric considerations, must be fulfilled
in the construction of crystals

Fig. 157. Transition from ionic- to covalent bonding through polarization. (After K. Fasaxns
from Hedvall)

2. Transition to Other Bond Types

Polarization, Layer Lattices. The representation of ions as rigid spheres is
very appropriate and useful for many purposes, but it also has its limitations. As
we have already noted in the discussion of coordination number, bond types
other than ionic also assert themselves. As we have seen in Table 6, CdF,, along
with most of the series of alkaline earth halides, crystallizes with the calcium fluoride
structure. If in CdF,, with R,/Rp=0.77, the anion is replaced by I, the value
of R,/Rp becomes 0.47, and we should expect six-fold coordination, instead

5 Correns, Mineralogy
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Fig. 158. (a) Electron density in NaCl projected on (110) at 100° C. (From BriLL, GRIMM,

HEerMANN, PeTERs.) Numbers indicate number of electrons per sq. A. in the projection (b)

NaCl structure projected approximately parallel to [110]. The atoms designated as 4 and D

correspond to Cl-, those as B and C are Na; in (a) the former have maximum electron densities
of 22.31 e.A-2, — the latter 14.05 e.A~2

of eight-fold. Actually the Cd in CdI, has octahedral coordination. Even so this
compound does not crystallize with the rutile-structure, but with the atomic
arrangement shown in Fig. 156, as a typical “layer” structure. It is concluded
from this arrangement that the I'~ ions are not rigid, but are deformed. This
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phenomenon is called polarization. The polarization hypothesis was not originally
introduced in crystal chemistry to explain structural anomalies, but was discovered
much earlier in studies of liquids. As a result of polarization, the centers of ionic
positive charge are displaced with respect to the centers of negative charge.
The magnitude of the polarizability can be calculated from spectral or refraction
data. The degree of polarizability increases with ionic radius and is especially
strong in the case of ions with complex electron structure. Cd(OH), forms a
layer structure of the same type as Cdl,, although the “ionic radius” of (OH)-
is equal to that of F1-. One can imagine that a small cation such as Cd2+, when
it is brought near a large ion like I'~, with only weakly-bound outer electrons,
would pull the electron cloud of the larger anion toward itself. If the electrons
are so strongly attracted that they end up belonging equally to both ions, we pass
from strictly ionic bonding, to homopolar or covalent bonding (Fig. 157).

Ionic (heteropolar or polar) bonding depends on the electrostatic attraction
of oppositely charged particles, upon Coulombic forces. In pure ionic bonding
the electron density between two oppositely charged ions falls to zero. This
can be shown experimentally by means of electron density maps calculated
from X-ray data. Fig. 158 shows an electron density map for NaCl. Valence
bonding (homopolar or covalent bonding) depends on chemical valence forces,
and involves mutual sharing of electrons between atoms.

The layer structures represent, therefore, a sort of transition from ionic to
covalent structures. In such layer structures mechanical coherence between
atoms within the layers is stronger than between layers, so that the layers can
easily cleave apart. The micas are

typical and widely distributed minerals Table 10. Proportion of ionic bonding.

with layer structure. (After PauLING)
Transitions between ionic and cova-

lent bonds occur quite frequently. Paul- F 0 . Br 1

ing attempted to estimate the proportion
ofionic bonding in such intermediate sta-
tes. Table 10givessome of his valuesthat
are especially important for minerals.
Complex Ions. Intermediate states between ionic and covalent bonding are
especially common in complex ions. In these the individual constituents are

Al, Be 79 63 44 35 22
Si 70 50 30

Table 11. Shape of complex anions

Formula type Shape Examples
BX linear 0%-;CN-;
B;, BX,, BXY linear N3; CNO—; CNS-
angular ClO3; NO;
BX, planar C0%~; NOj »
trigonal pyramidal PO3-; SO3-; Cl10;
BX, tetrahedral 8i04-; AlOf~; AsOf-; PO}~; SO}~; BeF3-;
Cl03; MnOjy; BF;
MoO3-; WO2-; 103
planar Ni(CN)i-; PtCl13~; CuCl3-
BX, octahedral SiF3-; TiClZ-; PtCl3-; PbClZ-

a I{?itest investigations indicate that in Ba[NO,], the [NO,]~ group is distorted to a flat
pyramid.

b*
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predominantly covalently bonded together, while entire radicals are linked
ionically by means of cations. In Table 11 the shapes of these complex ions are
indicated.

Just as all carbonates and nitrates contain planar CO%- or NO}~ groups,
so the SO~ group occurs in all sulfates. In the latter, four oxygens are situated
at the corners of a tetrahedron, with the sulfur atom at its center. The S-O
distance measures about 1.48 4 0.024A.

Among the sulfate minerals, the structure of barite, BaSO,, has a certain
similarity to that of NaCl. Ba%* ions occur at the positions of the Nal'* ions in
Na(Cl, and the CI'- ions are replaced by the sulfate groups. Thus each Ba?* ion
is surrounded by six SO}~ groups at approximately equal distances. The
coordination number of oxygen around barium is twelve. The mineral celestite,
SrS0O,, is an isotype of barite. Anhydrite, CaSO,, crystallizes however, with a
different structure.

Crystal Chemical Formulae. In previous discussion we have already mentioned
the importance of coordination number in relation to the construction of crystals.
Consequently it is useful in crystal chemical discussions to include the coordination
numbers and other important features of the structure in a crystal chemical
formula. We shall follow the suggestions of MACHATSCHKI and write the coordina-
tion number in brackets to the right of and above each element; in addition we

place before the formula go, ozo, or olo, according to whether we are dealing with
a three-dimensional, a sheet, or a chain-structure. Following the formula, the
crystal system is abbreviated. Some examples of structures which we have
already discussed may clarify this. In NaCl, for example, each Na'* is coordinated
with six CI'~ and each CI'~ with six Na'* octahedrally. Linkage occurs in a like
manner in all three directions in space. The crystal system is cubic. The crystal
chemical formula thus reads:

o Nalel )¢

The following structural formulae are thus self-explanatory : o0 ZnHI Sl (sphaler-
ite), o Znl1SHIp, (wurtzite), o0 CsBICISle (cesium chloride), o Tils] 0,31z (rutile),
& il 0,2l¢rig (quartz), and o0 Cdle! Cl,81% (cadmium chloride). As a simplifica-

tion in the following discussion, oo will always be omitted, the type of linkage
only being indicated when we are dealing with a layer- or chain-structure. In
addition we shall usually designate only the coordination number around the
cations.

Structures of the Silicates. Structural research in the case of the silicates
finally brought organization to an extraordinary abundance of empirical informa-
tion. All silicate minerals contain SiO,-tetrahedra in which the Si-O distance
measures about 1.634-0.03 A. The SiO,-group has a —4 charge. Within this
group the Si-O-bonding is assumed to be about 50% ionic (see Table 10). In the
case of silicates, an oxygen of the SiO}- tetrahedra is rarely replaced by an
hydroxyl group. One such case is the rare mineral afwillite, Ca§)[Si4!O,(OH)], -
2H,0m.

?I‘he silicates are classified according to the manner in which SiO,-tetrahedra
are linked to one another. If the tetrahedra are independent, having no common
linking oxygen, and bound through cations to one another, as in the case of
zircon with Zr**, they are referred to as nesosilicates. Olivine, the mixed crystal
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Fig. 159. Olivine structure (nesosilicate)

series between Mg}1[SiO,]or and Felf![SiO,]or (Fig. 159), has such a structure.
Further examples are the garnets which are almost always mixed crystals of the
following end-members:

pyrope MgTALPI[Si0,]sc
almandine FelPIAIP [Si0,],¢
spessartite MnPAIPIS8i0,]sc
grossularite  Caf¥A18[Si0,];¢
andradite CalPlFel81[Si0,],¢
uvarovite Caf¥ICri®1[Si0,]5¢

Melanite is a Ti-bearing garnet, similar to andradite, in which the Ti¢* prob-
ably substitutes for Fe®* with simultaneous charge compensation e.g. by partial
substitution of Na'* for Ca2*.

Of the three modifications of Al,SiO;, kyanite and andalusite are quite clearly
nesosilicates. In both there are two kinds of AI3* ions; one-half is coordinated
octahedrally by six O; the other half in kyanite has likewise 6 fold-, but in anda-
lusite, 5 fold-coordination. Thus the structural formula for kyanite is AI®10
[SiO,]¢r., and for andalusite, AlS1AI10[SiO,]Jor. It should be noted that
5-fold coordination is very rare for Al3+*. In the structure of the third modification
of Al,Si0;, sillimanite, half of the aluminium is again coordinated by six oxygens;
the other half, however, has tetrahedral coordination, like silicon. The Si and Al
are not randomly distributed over tetrahedral sites, but are ordered. The crystal
chemical formula for this mineral, emphasizing the mutual tetrahedral association
of Si and Al, is:

oo AIGI[AIIS{HI0,Jor, or AISAIMIO[SiO,]or.

Additional nesosilicates are topaz, AlPIF,[SiO,]Jor, sphene, Cal”Til4l0
[SiO4]m, and staurolite. The latter very probably crystallizes monoclinic, but
with only very slight deviation from orthorhombic symmetry. Its structure,
which is closely retated to that of kyanite, gives the following formula, Fe2+4.
AlI¥10,(0H) [Si0,],m.

In silicates [Si0,]¢- tetrahedra can be linked also through oxygens. In minerals
linkage through tetrahedral ‘‘corners”, rather than ‘‘edges’ and ‘““faces”, is
known. If in this way small, discrete units occur in the structure, the silicate is
referred to as a group silicate (sorosilicate). Groups of two tetrahedra characterize
thortveitite, Sc,[Si,0;]m. Vesuvianite (idocrase) also contains such groups,
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as well as individual tetrahedra. Its structural formula is Ca, (Mg, Fe),Al,(OH),-
[SiO,]5[Si,0,],¢. According to recent structural determinations, the mineral
epidote is a further example. Its stoichiometric formula is Ca,(Al, Fe),HSi;0,,,
but, according to the structural determination, the crystal chemical formula is
written Ca3-*(Al, Fe)if10 (OH) [Si0,][Si,0,]m. As in vesuvianite, isolated SiO,-
tetrahedra are found along with Si,0, groups.

More often several silicate tetrahedra link together through corners forming
rings. Such silicates are called ring silicates (cyclosilicates). Rings of three tetra-
hedra, are found in benitoite, Balé-12ITil6][Si,0,]¢rig.

Fig. 160. Beryl structure with [SigO,4]'2~ rings

Beryl, AL¥1Be[!1[Sig0,5]%, (Fig. 160) is built from groups of six tetrahedra,
which likewise are joined into rings. Each tetrahedron shares an oxygen with
two adjacent ones, giving 18 oxygens instead of 24, in the silicate rings.

In tourmaline, a widely distributed mineral whose chemical composition is
quite complex, Sig0,s rings form the characteristic building motif. Its formula is
(Ca, Na) (Al, Mg, Fe?*, Fe3*, Mn, Li, Cr3*,...)}¥ [B®10,]; [Sig04] (OH, F), trig. In
a few rare minerals (Si, Al);,0,, groups are found, in which two SizO,4 rings are
joined together, forming a double ring, bonded through six oxygens.

Cordierite likewise contains hexagonal rings; their tetrahedral sites, however,
are only 2/, occupied by Si and /; by Al Its crystal chemical formula, emphasiz-
ing the ring structure, is (Mg, Fe2*)l® A1¥ISil4I[Si,AlL,0 5] or. Reformulation
as (Mg, Fe2+)[® [Si;A1,0,5]or, indicates that it can be classified also as a framework
structure (p. 74).

As the next silicate group we observe those with contiguous tetrahedra strung
out in rows into infinitely long chains and ribbons (inosilicates). Chains are formed
when each tetrahedra in a row shares an oxygen with a tetrahedron on each side.
These chains continue indefinitely to the terminal boundaries of the individual
crystal. In the case of the chains shown in Fig. 161 the X-ray measured distance
from one silicon to the silicon in the second adjacent tetrahedron is about
5%10~7 mm. Thus a fragment of a crystal 1 mm long would contain about
4,000,000 tetrahedra. The Si:O ratio rapidly approaches the value 1:3 with
growing chain length, as can be ascertained easily by simple calculation. Such

o0 [Si0, ]2 chains occur in minerals of the pyroxene group. Diopside, CaMg[Si;0q],
is a member in which the chains are bound together by Ca?* and Mg?* ions.
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Fig. 161. Diopside structure; projected on (010). Plain and hatched tetrahedra separated /2
from each other. (After ScaIEBOLD)

The pyroxenes can be subdivided into the following groups:
I. Monoclinic pyroxenes with very little or no Al in tetrahedral coordination:

diopside o Cals] Mgl®1[Si,04]m
hedenbergite o Cals1Fels1[Si,04)m
jadeite 3oNal®] All¢1[8i,04]m
aegirine o Nal*IFel6][Si,04]m

clinoenstatite o Mgl# [Si,04] m
spodumene  JoLil¢] All¢]1[Si,04]m

II. Augite: In this mineral up to one-fourth of the Si is replaced by Al, and it

is likewise a monoclinic mixed crystal of the general formula olo(Ca,, Na)i8]
(A1, Fe, Mg, Ti,...) ®1[(Si, Al),04]m.

III. Orthorhombic pyroxenes: mixed crystals between enstatite. oloMgg"]-
[Si;0g]or, and a hypothetical end member Fe,[Si,04] (““ferrosilite’). Mixed
crystals with about 20 mole percent Fe, [Si,0,] are common as the mineral called
bronzite. Iron-rich members (with about 50 mole percent Fe,[Si,04]) are called
hypersthene. Orthorhombic pyroxenes with a higher iron content are rather rare.

Earlier the names pyroxene and augite were used synonymously for the
entire mineral group. More recently, the name pyroxene has been adopted for
use as the group name, and augite to designate a sub-group of special pyroxenes,
as we have done above. '
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If two chains are linked together, so that one-half of the tetrahedra of each
chain share an oxygen with one-half of the tetrahedra of the other chain, ribbons
or double chains occur, which are characteristic of the important amphibole

group. The Si: O ratio is 4:11; and the formula for the silicate ribbon is o0 [Si,041%".
Within each of these silicate units the amphiboles contain in addition an OH-
group, which can also be replaced by F. There are numerous species distinguished
according to the linking cationic species present.

I. Monoclinic amphiboles with little or no Al in tetrahedral coordination:

tremolite o CafIMg®! (OH), [Siz0,,]m
actinolite o Calf) (Mg, Fe)!® (OH), [Siz0,,]m
glaucophane o Naf® Mg!® Al (OH), [SigOy]m
riebeckite o Na® Fe2+[8) Fed+6] (OH), [ Sig0yy]m

cummingtonite 6o (Mg, Fe)L# (OH),[Siz0,,]m

II. Hornblende: Monoclinic mixed crystals of the amphibole group in which
usually every fourth tetrahedron contains Al instead of Si.

III. Orthorhombic amphiboles: Mixed crystals of the two end members
Mg,(OH),[SigO,,] and Fe,(OH),[Sig0,,]; they are called anthophyllite. It should
be mentioned that, analogous to the pyroxenes, the names amphibole and horn-
blende were earlier synonymous. Today amphibole is generally used as a major
group name and hornblende in the restricted sense as defined above.

Hornblende proper frequently contains more than two ions of the size class
of Na'* and Ca?* per formula unit. These ‘“excess” cations, along with potassium
ions, are situated in interstices in the structure of Ca,Mg;(OH),[SigO,,].

Pyroxenes and amphiboles can be differentiated macroscopically by means
of their different cleavage. This occurs in both mineral groups parallel to {110},
but the angles (110)—(110) for pyroxenes and amphiboles are markedly different.
In addition the cleavability of amphiboles is clearly better than that of pyroxenes.
Fig. 162 shows, in cross section perpendicular to [001], how the cleavage is related to
structure.

A further example of a chain silicate is wollastonite, ;oCag“]Ca['”[SiGO,]tr.

The oo [SiO;]?~ chains in this case are quite different from those of the pyroxenes.
Only every fourth tetrahedron in a chain has the same orientation. Accordingly
the lattice constants in the chain direction have approximately one and one-half
times the value of pyroxenes. Wollastonite occurs primarily in contact meta-
morphosed limestones.

If chain after chain is joined together in infinite repetition in one plane, we
arrive at sheet structures or phyllosilicates. These two-dimensional articulated
six-fold rings are the building motifs for many common silicates. The Si:O ratio
is 2:5, with each tetrahedron sharing three of its oxygens with three other tetra-
hedra.

The most important members of the natural layer silicates are mica-like

2
minerals. The fundamental structural units are pseudo-hexagonal oo [Si0;]%~
layers, which contain also OH- or F-. Two major groups of layer silicates can be

differentiated. In the one case, two o OH [Si,0;]*- layers are bonded together

by a layer of octahedrally coordinated cations. In pyrophyllite, cfoAl[z“](OH)z-
[Si,0,0]m, this intermediate layer consists of Al ions, which are coordinated by
four O and two OH (Fig. 163). By the intercalation of water between such layer
silicate packets, the important clay mineral montmorillonite results, whose
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structure will be described later (p. 95). If, in the pyrophyllite structure, 3 Mg?*

occur in place of 2 AI3*, we arrive at the structure of talc, 00 Mg[®(OH), [Si,0,,]m.

If one fourth of the Si is replaced by Al in the tetrahedral sheet, the layer
packet Aly(OH),[AlSi;O,o]'~ becomes negatively charged. In the aluminous
mica, muscovite (Fig. 164), the packets are held together by K*-ions; in a like
manner, they are held together by Na* in paragonite. In phlogopite, three Mg2?*
occur in the octahedral layer in place of two AI3*. In dark-colored biotite, a part
of the Mg is replaced by Fe. In natural crystals, (OH) is partly replaced by F.
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Fig. 162. Relationship of cleavage to the structure of pyroxene and amphibole. Cross
section perpendicular to c-axis (from WARREN). According to the cleavage paths indicated
here the coordination polyhedra of the 6-fold-coordinated cations would be disrupted. It is
by no means certain that the cleavage takes this exact path
Fig. 163. Pyrophyllite structure. Montmorillonite is constructed from such layers, which are
superimposed along the c-axis without crystallographic orientation. Periodicity perpendicular
to layers varies from 10—20°A, depending on adsorbed water content

The formula for biotite is, therefore, % K(Mg, Fe)lf1(OH, F),[Si;AlO,y]m. Pure
fluorphlogopite is produced synthetically from a melt. As HENDRICKS has shown,
one can regard mica as an intergrowth of one or more silicate packets, rotated
or translated with respect to each other in different directions, but in a regular
manner, and stacked one upon the other. Several building motifs can be embodied
in a single crystal. Micas are elastically flexible. Chlorites and brittle-micas are,
on the other hand, plastically deformed upon bending. An example of a brittle-
mica is margarite, CaAl,(OH),[Al,Si,0,0], in which two Si are replaced by Al
and the alkali ions by alkaline earths.

In the chlorites, biotite-like {(Mg, Al, Fe)l® (OH),[(Si, A1)}*)0,, ]} double
layers, which as a whole are negatively charged, are held together by brucite-like

2
oo (Mg, Fe, A)F1(OH)Z* layers with positive charge.
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In the other major layer silicate group, only one tetrahedral and one octahedral

layer are combined together. Kaolinite, oo Al (OH),[Si,04]tr (Fig. 165), an
important clay mineral, belongs here. The quite rare minerals dickite and nacrite
have the same chemical formula as kaolinite, but differ structurally from this
mineral in the manner in which the ‘‘kaolinite’ layers are superimposed.
Serpentine, with a kaolinite-like structure, corresponds rather exactly to the

2

formula oo Mgl®! (OH),[Si,05]. Its relation to kaolinite is similar to that between
tale and pyrophyllite. Since, however, the ‘“magnesium hydroxide” layer does
not have exactly the same dimensions as the Si,O; layer, — it is somewhat too

o4
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Fig. 164. Muscovite structure, & KI6+61 Al{8 (OH), [A1Si;0;o]m

large — it is deformed, either into a tubular structure (in which case one speaks
of fibrous serpentine or chrysotile), or into the corrugated structure displayed
by platy serpentine or antigorite. The atomic arrangement of chrysotile is not
three-dimensionally periodic and accordingly does not correspond to a typical
crystal structure. In the case of antigorite well-ordered crystals are extremely
rare. Usually the structure is strongly distorted.

Finally, if, in a structure each tetrahedron shares each of its oxygens with
four adjacent tetrahedra, a framework structure or fecfosilicate results. The
(Si, Al):0 ratio is now 1:2. The most important representatives are the feldspars

which can be crudely subdivided into the K-feldspars, o?:K[Al[‘ﬂSi[s‘]OB], and
into the mixed crystal series plagioclase, with the end members albite,
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o0 Na[Al4ISil10,] and anorthite o0 Ca[AIMSilt10,]. In the case of the K-feld-
spars we can distinguish two modifications based on their structure and optics:
a monoclinic modification, sanidine (Fig.166), and a triclinic, but distinctly
pseudomonoclinic modification, microcline. The two forms of KAISi,O, differ
in construction primarily in that in sanidine the Si and Al atoms are randomly

YTy P——
r(s"“-O“"O"“ O‘““O

[T -9

34 OF O0 osial
Fig. 166. Sanidine structure (tectosilicate)

distributed over the centers of the tetrahedra, while in microcline they are ordered.
The lowering of symmetry from monoclinic to triclinic is connected with this
ordering. Sanidine is the high temperature modification (its stability field lies
somewhat above 700° C). Microcline is the low temperature modification (it is
stable at normal temperatures). The transition between the two modifications
does not take place, however, at a precise temperature, or as easily as the transition
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encountered in the case of quartz. On the contrary, the transition is exceedingly
sluggish. This is not surprising, since a much more drastic rearrangement in
structure is necessary than that encountered in the inversion between high and
low quartz. In order for sanidine to invert to microcline, or vice versa, the Si and
Al atoms in the framework must be able to change places, which requires a high
activation energy. Thus it is not surprising that the high temperature modification
of K-feldspar, sanidine, is preserved in rocks, whereas high quartz is not. This is
true, for example, in trachytes, where crystals were cooled too suddenly for the
transition to microcline to take place. Although microcline is found in rocks, it is
usually finely polysynthetically twinned, like plagioclase, after both the ‘“albite
and ““pericline” laws (see p.97). It has been inferred that the crystals first
formed as monoclinic and that later transformation took place which led to this
fine microcline grid twinning. This does not necessarily mean that the presence
of a particular feldspar is indicative that it formed within its stability field, for
example, above about 700° C. Under certain circumstances it may have grown
metastably at a lower temperature. This is very important to remember when
attempting to make genetic inferences. Orthoclase is an optically and morpho-
logically monoclinic species of K-feldspar which occurs in intrusive rocks. Accord-
ing to its form development and optical constants, it is a completely different
K-feldspar from sanidine. X-ray investigations have shown that orthoclase is
not a distinct phase, as are sanidine and microcline. From the structural stand-
point, it is a transition state between these two modifications, with intermediate
states of ordering of Si and Al and submicroscopic twinning.

With the plagioclases we must distinguish also, as with the K-feldspars,
between high and low temperature members. This was first recognized from
careful optical studies (for example, A. KoEHLER). Here also the high temperature
modification of plagioclase has a statistical distribution of Si and Al in its frame-
work, and the low temperature modification an ordered distribution. The relation,
ships here are still more complicated than with the K-feldspars. This is because-
in the plagioclase ‘“mixed crystal series’, the one end-member (anorthite),
relative to the other (albite), has a doubled unit cell. There occurs for NaAlSi;Og
below the melting point a third monoclinic high temperature modification
(monalbite) in addition to the triclinic low temperature modification (common
albite) and the triclinic high temperature modification (analbite). It is assumed
that in monalbite, as well as in analbite, the Si and Al are statistically dis-
tributed over the tetrahedral sites. Transformation from pure monalbite to
analbite takes place with the ease of high to low quartz inversion, and it can be
concluded that this is connected only with deformation of the lattice, not with
its rearrangement. As a result of the reversibility of this transformation, potassium
free monalbite does not occur as a mineral.

Mixed crystal formation between K-feldspar and anorthite is very limited
and of little mineralogical importance. On the other hand K-feldspar can accept
larger amounts of the albite ‘‘molecule” into its structure. There is at high
temperature a complete mixed crystal series between sanidine and monalbite. If
members of this series, whose compositions do not lie close to that of the end
members, are cooled slowly, unmixing to Na-rich and K-rich components takes
place in the solid state. Such unmixed or exsolved K-Na feldspars are called
perthites. Tt is customary to speak of these as perthites if, in one individual with
predominant K-feldspar (host), an exsolved Na-feldspar phase (guest) occurs
(‘“albite-spindles”’); in the corresponding opposite case one speaks of anti-perthite.

With the plagioclases also there is limited miscibility at low temperatures.
Unmixing can occur under certain circumstances (for example, sufficiently slow
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cooling). This leads not only to separation of two feldspars near to the end
members in composition, but also to other especially stable members.

Such an example is plagioclase with about 5—20% anorthite. One can
recognize ‘‘low temperature crystals’, which can be shown to be unmixed by
X.-ray investigation. One component is essentially pure albite, the other a
plagioclase with about 25% anorthite. The unmixing is always on an extremely
fine scale and frequently produces an iridescent play of colors. Such plagioclase
is referred to as peristerite.

The picture given here of the feldspars is still deficient in many points, but
should suffice for a first impression of the extent of the existing problems. That
the framework structure of the feldspars results from the three-dimensional
linkage of SiO, and AlQ, tetrahedra through the corners, was first recognized
by MACHATSCHKI on the basis of general silicate constructional principles.
Important studies by BarTH followed. The first structural determination of a
member of this mineral family, that of sanidine, was carried out by W. H. Tavror
in 1933. F. Laves and his co-workers, as well as others, have concerned them-
selves in recent years with the very important concept of order-disorder pheno-
mena in feldspars. Much of this discussion has followed his work.

The feldspathoids belong also to the tectosilicate group. These minerals occur
in place of, or frequently along with, the feldspars, in alkali and aluminum rich
eruptive rocks. The most important of these are the morphologically cubic leucite,

o KT[AISi,04] and the hexagonal-pyramidal nepheline, o0 Na[AlSiO,]%; in the
latter one-fourth of the sodium is frequently replaced by potassium, in such a
way that the Na* ions and K* ions are not randomly distributed, but lie ordered

in the cavities of the o [AISiO,]~ framework. The correct formula for this nepheline
is, therefore, 0 NayK[Si,AL,O;s]A.

Additional members of the tectosilicate group are pollucite, Cs[AlSi,0,]H,Oc,
a rare cesium silicate, and the zeolites, open-packed aluminosilicate structures

in whose pores in the structure, loosely bound water as well as alkali and
alkaline earth ions are situated (see p. 79). Examples of naturally occuring

zeolites are the fairly common minerals analcite, oo Na[AlSi,04] - HyOc¢ and
natrolite, 0 Nao[AL,Si,0,,] - 2H,007.

The various SiO, modifications also have three-dimensional framework
structures of SiO, tetrahedra. These are quartz, tridymite, cristobalite, and kea-
tite and the high pressure modification coesite. The stability fields of quartz,
tridymite, cristobalite, and coesite will be dealt with later (see p. 186).

The highest pressure modification of SiO,, stishovite, has a rutile-type

3
structure (see p. 51), not a oo [Sil4l0,]-framework structure.

A beautiful example, illustrative that the formula-type [(Si, Al)410,]*" does
not necessarily indicate a three-dimensional framework structure, is exhibited
by the hexagonal modification of Ca[Al{Y)Si{*]O,]. This phase has the same
chemical formula as anorthite. A structural determination has shown that the
Al as well as Si is tetrahedrally coordinated by four oxygens and that these are
linked through corners. However, the structure is not a tectosilicate, but is more
closely related to the micas. If one superimposes two Si,O; sheets, so that apical
oxygens are common to both sheets, a two-dimensional infinite double layer

2
oo [Sil40,] occurs. The hexagonal modification of Ca[Al,Si,05] contains such
double layers as its usual structural unit, except that one-half of the Si ions
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are replaced by Al. To maintain charge balance, Ca?* ions occur between these
double sheets, and link them together in a manner analogous to the micas.

Model Structures. It has often been mentioned that in silicates Si can be
replaced in part by Al, if corresponding additional cation substitution is provided
for to maintain electrical neutrality. There are also isotypes of silicate compounds
in  which all of the Si is replaced by Al or another element, in particular by
P and As. Thus xenotime, YBI[POQ,], has the zircon structure, triphyllite,
Li(Fe, Mn)PO,, the olivine structure, berzeliite, NaCa,Mg,[AsO,];, the garnet
structure, and berlinite, AIPO,, as well as AIAsO,, the quartz structure. Synthetic
aluminum and iron compounds, isotypic to garnet are known, such as
Y®IAIPI[A10,];¢ and Y¥'Felf) [FeO,],c. The possibility of compounds with very
different composition having the same or very similar structural types, can be
utilized to build model structures. Li,BeF, can serve as a model for Zn,[SiO,],
willemite. Table 12 shows that lattice parameters of these two compounds are

Table 12. Example of a model structure. (After V. M. GOLDSCEMIDT)

Zn,Si0, Li,BeF,
Tonic radii in A Zn** 0.83 Liv*  0.78
Sitt - 0.39 Be?* 0.34
0 132 F- 133
Lattice dimensions in A 8.63 A 8.154
(based on rhombohedral axes, a) 107°45’ 107°40’
Symmetry rhombohedral
Habit prismatic
Cleavage:
i bomrd g
Birefringence + rather low + very low
(~0.02) (~0.006)
Index of refraction ~ 1.7 ~13
Hardness 5.5 3.8
Melting point °C 1,509.5 ~ 470
Solubility in water insoluble eagily soluble

quite similar. Those physical properties of fluoroberyllates, such as melting
point, optics, and hardness, which depend on the charge of the lattice constituents,
are corresponding diminished with lower charge. Such models can be technically
useful. For example, in order to draw conclusions about compounds which might
have very high melting points, this approach has been fruitfully applied in cement
research. We shall at this point go no further into the relation between crystal
structure and physical properties, but shall refer to this later in the appropriate
discussion of crystal physics.

Structural (OH). In concluding our discussion of the silicates, we should
make mention of the hydroxyl and water content of crystals. Hydroxyl-containing
layers play an important role in many silicates. In our discussion of the CdI,
structure, we have already referred to the strong polarizability of the OH ion.
In most hydroxides, such as Ca(OH),, this leads to the formation of layer lattices.
Ca(OH), has a layer structure analogous to CdI, (see Fig. 156), in which the
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oxygen ions occupy the positions of the I atoms in CdI,. Hydrogen atoms have
been shown from neutron diffraction (see p. 160) to be only 0.96 A distant from
the oxygen nucleus and so arranged that they are as far distant as possible from
the calcium ions. In this way each oxygen is surrounded by the tetrahedral coordina-
tion of one hydrogen and three calcium ions from the CdI, type cation layer.
Many hydroxides of divalent elements, such as Mn(OH),, Co(OH),, Mg(OH),
(brucite) and others, have the same or at least very similar structure. In crystal
structures the hydrogen can cause oxygens to approach each other more closely
than is customary. Diaspore, All®!Q(OH) or (Fig. 167) is an example in which
hydrogen is located, practically on the connecting line between two oxygens
but not midway between them. The O—O separation is only 2.65 A, compared
to the 0—O distance in MgO of 2.98 A. Such an OH—O interaction is called
a hydrogen bond. Gibbsite (hydrargillite), Al®OH),m (Fig.168), a common
constituent of bauxite, in addition to the above mentioned hydroxides, possesses
a typical layer structure. So does the fibrous iron ore goethite, «-FeO(OH). The
rarer mineral lepidocrocite, y-FeO(OH), has a different orthorhombic structure.

Structural Water (H,0). The crystals with which we have been concerned
above are hydroxides or substances which contain hydroxyl groups and it would
be incorrect to write the formula for diaspore as AL O, - H,0. There are, however,
many crystals which contain water molecules as such. We can divide these into
two different groups.

R 1 1 1 | |
T 24 ('.r 2 7 ¢ 34 OWOM
Fig. 167. Atomic arrangement in diaspore. Fig. 168.
The light and dark circles are actually located Gibbsite (hydrargillite) structure

inseparate planes; the distance between these
planes is 1.42 A

In one group, water cannot be driven off without destroying the crystal
structure. This becomes evident microscopically from the development of turbi-
dity or opacity in the crystal. All of those compounds which are customarily
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designated as hydrous salts belong to this group. Examples are chalcanthite,
CuSO0, - 5H,0, and natron, Na,COy- 10H,0. One refers in this connection
to crystal water. Often all or at least a greater part of the crystal water is especially
strongly bound to the cation and called, therefore, cation water. An example is
bischofite, MgCl, - 6 H,0, in which the
six water molecules form an octahedral
complex with the magnesium. Therefore,
its crystal chemical formula should be
written [Mgl¢/(H,0),]Cl,m. In chalcan-
thite only four of the five water molecules
are cation water. These four form a
square planar complex with copper, giv-
ing thestructural formula [Cul4(H,0),]-
S0,-H,0¢r. In gypsum, CaS0,-2H,0,
each Ca?* is coordinated by six oxy-
gens of the sulfate groups and two water
molecules. The atomic arrangement
forms well defined layers parallel to
(010). This planeisalso a perfect cleavage
plane. The individual two-dimensional
layers have the same formula as the
Y ! complete mineral, CaSO, - 2H,0. The
i /,@%‘*‘j_: 15;_ ,1@0 layers are held together by means of
GC}F A T hydrogen bonds.
Fig. 169. Arrangement of H,0 molecules inice. In the other group of hydrous crys-
The distance between oxygen atomsis2.76 A.  tals, the water can be driven off without
(From PavriNe) the structure breaking down. Such crys-
tals are called zeolites. In them the water
is bound loosely to the walls of canals in a framework structure. The zeolites are
almost without exception silicates. In zeolites the water can be removed by
heating and can also be replaced by other molecules, such as alcohols, NHj,
and Hg. These fit into holes in the structure without essentially changing the
atomic arrangement of the framework. Many zeolites, because of this property,
are of technical interest as ‘“molecular sieves’’. In addition to the water in zeolites,
loosely bound cations, usually alkali ions or Ca?*, are situated in the canals. These
can be readily exchanged by other ions, giving them the important property of
cation exchange. We have already on page 77 become familiar with two examples
of zeolites.

In this connection a few words should be devoted to ice. Its structure is
illustrated in Fig. 169. We can describe the geometric arrangement of the oxygens
in ice, by indicating that in a wurtzite-type lattice (Fig. 150) the positions of
Zn as well as the S atoms are occupied by oxygen. Geometric similiarity also
occurs relative to the structure of tridymite. If we place Si at the positions of
the oxygen in ice and O at the positions of hydrogen (the latter being at the
same time moved to the midpoint between two Si atoms), we arrive at the ideal
tridymite structure. Ice forms a molecular structure containing the same H,0
molecules as in water or in water vapor. The O —H distance measures somewhat
less than 1.00 A, as it does in the OH group. The H—O—H angle is close to the
tetrahedral angle, namely 104°. While the arrangement of the oxygens is strictly
periodic, this is not the case for the hydrogen atoms, since the H,O molecules
are oriented randomly over different possible orientations. The H atoms lie on
or near the connecting line between two oxygen atoms, as shown in Fig. 169.
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3. Covalent Bonding

In the foregoing examples we have been concerned with ionic or predominantly
ionic bonding. We have, however, repeatedly mentioned that this form of

Fig. 170. (a) Electron density in diamond, in e.A-% projected almost parallel to [110] corre-
sponding to a temperature of 5,000°. (From BriLL, GRIMM, HERMANN, PETERS.) (b) Diamond
structure in analogous orientation near [110]

bonding does not always occur in its purest form, but that there are transitions,
especially to covalent bonding. We can say the same of homopolar or covalent
bonding. This form of bonding is displayed in its purest form by diamond,

goC[“]c. Its structure is that of sphalerite, in which the Zn as well as the S
positions are occupied by equivalent C atoms, each C atom being surrounded
tetrahedrally by four others. Accordingly the lattice constant a, decreases from
5.40 A (Zn8) to 3.57 A. Fig. 170a shows that the electron density is high between
the C atoms arranged in non-planar puckered six-fold rings. As indicated in
Fig. 1704, the electron density along the line from atom C to the underlying atom
does not decrease as much (namely to 4.90 e.A2 at point 4) as along the line
to the atoms above to the right and left (1.84 e.A-2 at point D). This is, however,

6 Correns, Mineralogy
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an effect of the projection, as can be readily seen by comparison with Fig. 170b.
In the void spaces in the structure the electron density drops off essentially to
zero. This structure and bonding is typical also of the other elements of the
fourth row of the period table, Si, Ge, and Sn (gray tin). The four valence
electrons are always distributed toward the corners of a tetrahedron, toward
neighboring atoms, so that two electrons are contributed for each atom. It is,
however, not necessary for an equal number of bonding electrons to be provided
by both atoms. It is sufficient that both together contribute four. An example
is sphalerite, ZnS, already mentioned on p. 58, in which the atomic positions
of the diamond structure are occupied half by Zn and half by S, so that each S
is surrounded by four Zn and vice versa. Additional examples are CuBr, ZnSe,
GaAs, Agl, CdTe, and InSb. In some of these compounds the influence of metallic
bonding is asserted, while others like sphalerite (see p. 67) form transitions to
ionic bonding.

We have already referred (p.68) to the contribution of covalent bonding
in complex ions or radicals. Covalent bonding is especially important in organic
chemistry, for it is this type of bonding which is effective within organic molecules.
In recent years very important contributions have been made by application
of X-ray structural investigations. We cannot go into these in detail here. In
addition to the exact determination of inter-atomic distances and angles, which
is just as critical in organic as in inorganic chemistry for elucidating questions
of bonding, crystal structure analysis is becoming also increasingly important
in the constitutional elucidation of organic molecules. The determination of
structural arrangements of extremely complex proteins has already been highly
successful.

4. Intermolecular Bonding

In many crystals forces are active, analogous to those which occur between
molecules in fluids. The resultant bonding is referred to as van der Waals or
tntermolecular bonding.

The elements of the VI and VII rows of the periodic table form inorganic
molecular crystals exhibiting intermolecular bonding. A rule has been established
for the structures of these semi- and non-metallic elements, which states that
each element has in its structure as many neighboring atoms in nearest coordina-
tion as there are electrons lacking in the octet of the outer electron shell. If the
number of electrons is n, then the number of neighbors is (8 —n). According to
this “octet rule” I should have only one neighbor, and in fact the I structure
is built of I, diatomic molecules. If we indicate the outer eight electrons by means
of dots, we obtain the picture:

Z.I.Zil

Each I atom is then surrounded by an octet of electrons as in the inert gases.
In the iodine molecule we are dealing with covalent bonding. These diatomic
molecules are held together in the solid state by means of intermolecular forces.

In the case of selenium and tellurium, where two electrons are lacking in the
octet, essentially infinite structural chains result:

1
in which each Se atom shares an electron pair with two others: oo [Sel2!] k. In
the case of orthorhombic sulfur, chains of eight members are bent into puckered
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Sg rings. In As, which has three missing electrons, a layer structure occurs. The
structure can be considered also as a simple cubic structure which has been stretched
along a cube diagonal. Of the six neighbors of each As atom, three are more
strongly bonded to it and hence form layers perpendicular to the three-fold

axis, that is, parallel to (0001). The crystal-chemical formula is o0 Asl3lp. The
same structure is less clearly expressed with antimony and bismuth. With four
missing electrons, we get a three-dimensional structure with four-fold coordina-
tion, like diamond, which can only be bonded together by covalent bonding.
This is the type -of bonding existing within the diatomic molecules, chains, rings,
and ribbons. These units are in turn held together by means of intermolecular
or van der Waals forces, which in the case of Se, Te, As, Sb, and Bi show
transition to metallic bonding.

5. Metallic Bonding

Pure Metals. We come now to another form of bonding, the metallic bond. It
has been concluded from the electrical conductivity of metals (RiEckE, 1898),
that essentially free and mobile elec-
trons occur between positive metal
ions in metal crystals. These free elec-
trons act as a kind of electron gas. Elec-
tron density determinationshave estab-
lished this hypothesis in the case of
Mg. Although metals play only a sub-
ordinate role as minerals, we shall briefly
discuss the types of metal structures
because of their great importance in
understanding the nature of crystals.
Let us recall the coordination struc-
tures of ionic compounds of the type
AB. There the highest coordination
number was eight, asin cesium chloride.
A higher mutual coordination is geo-
metrically impossible in 4 B-type com-
pounds. However, if the crystal is built
of only one type of element, a twelve- i
fold coordination can be a,tta,lne.d ’ 'Ijhe Fig. 171. Cubic closest packing, formed from
crystal structure with 12-coordination  jahar packed layers stacked along the
correspondsto the closest packing of like diagonals of a cube
spheres. A planar arrangement of close
packed spheres has each sphere in contact with six others. In order to propagate
closest packing in three dimensions, we must superimpose such closed packed planar
layers one upon the other so that spheres in one layer always lie in the depressions
in the adjacent layer. In superimposing a third layer one has two choices of orienta-
tion. We can place it either over those depressions which cause the spheres in
the third layer to lie directly over those of the first layer, or the third layer can
be placed over an alternate set of depressions. If, during the stacking of layers,
the fourth layer is the first to lie directly over the initial layer (Fig. 171), such
packing is called, cubic closest packing. It corresponds to a cubic face-centered
lattice (Fig.140g, p.51) which, because of our method of construction, stands with
one of its cube diagonals perpendicular to the layers. Fig. 172 shows that the

6*
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closest packed planar layers are parallel to the octahedral plane. In cubic closest
packing the coordination polyhedron is the cubooctahedron (Fig. 173).

Fig. 172. Cubic closest packing, showing the face-centered nature of the resulting lattice.

That arrangement, in which it is
the third superimposed layer which first
lies directly over the initial layer, is
called he xagonal closest packing(Fig.174).
By means of other repetitions of close
packed layers many ‘‘close packed”
types can arbitrarily be produced. The
cubic and the normal hexagonal closest

Fig. 173. Cubooctahedron Fig. 174. Hexagonal closest packing

packing are widely distributed in metals. The following metals crystallize in
cubic closest packing:

Ag, Al, Au, «Ca, aCe, aCo, Cu, yFe, Ir, fLa, «Ni, Pb, Pd, fPr, Pt, aRh, BSc, Sr, Th, «T1, Yb.
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Hexagonal closest packing can also be described as two interpenetrating
hexagonal lattices with the axial ratio ¢y:a, ~1.63. The following metals crystallize
with this arrangement:

Be, BCa, Cd, BCe, BCo, Cp, BCr, Dy, Er, Gd, Hf, Ho, «La, Mg, Nd, fNi, Os, «Pr, Re, Ru,
aSe, Tb, Te, aTi, fT1, Tm, Y, Zn, aZr.

Almost all of the remaining metals crystallize with a cubic body-centered
lattice (Fig. 1401, p. 51) with the coordination number 8:

Ba, «Cr, Cs, Eu, «Fe, K, Li, Mo, Na, Nb, Rb, SRh, Ta, fTi, V, W, pZr.

In the two types of closest packing, 74.1% of space is filled; in the cubic
body-centered structure it is somewhat less, but always more than in the simple
cubic atomic arrangements annotated in Table 13.

Table 13. Space filling of packing of spheres

Arrangement Shortest interatomic distance Space Coordination
(@ = lattice constant) fillingin % number

Cubic closest % 12 } 741 12

Hexagonal closest a(c:a=1.633)

Cubic body-centered % I3 68.1 8

Simple cubic a 52.4 6

Comparison of the packing arrangements of Table 13 with the structures of
metals indicates that there is apparently a tendency for the most highly symme-
trical structures to form and for space to be filled as completely as possible.

Alloys. Similar tendencies are also prevalent among the metal alloys, which
are technically so important. If two metals are melted together, the two metals
may not mix in the solid state, but instead separate into pure crystals of each
of the constituents (see p. 188). However, the original metals may not separate
out of the melt, but instead form alloys. In this case there are two possibilities.
The first is that mixed crystals form. These are to be expected when the atomic
radii are sufficiently similar and similar bonding properties prevail. Mixed
crystals have arbitrary and non-constant chemical composition and the two
constituents are randomly distributed in the structure. True mixed crystals are
formed, for example, when we melt together gold and silver. In nature gold is
almost always silver-bearing. If the silver content reaches more than 25%,
the natural alloy is called electrum. The other possibility of changing the
constituents of metals is by the formation of a compound between the two
partners. This is a common occurrence in the case of ionic crystals, such as salts,
because each compound corresponds to a definite stoichiometric composition.
In the case of metal compounds, in a certain sense transitional states occur
between compounds and mixed crystals, since the crystals which form often have
no exactly defined chemical formula, but vary in their composition, showing a
considerable latitude therein.

Following Lavgks, we shall refer in metallic systems to mixed crystals when
one of the partners accepts the other into its structure, and to a compound when
a new structure is formed. This is also a crystallographic and non-chemical
definition of a compound. Often a compound state exists only over a definite
temperature range. Gold and copper, for example, behave like true mixed crystals
in all proportions only at higher temperatures, and with random distribution of
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the two kinds of atoms in a cubic-face-centered lattice. Upon sudden cooling,
this arrangement is retained. If cooling takes place slowly, the atoms arrange
themselves into a phase with the composition AuCug, so that a ““superstructure”’
is formed with Cu at the cube corners and Au at the centers of the faces. AuCu,
is a compound and behaves electrically and mechanically quite different from
the suddenly cooled mixed crystal. Upon heating, and the addition of energy,
the energetically most favorable state disappears and the disordered state
corresponding to the mixed crystal appears. Such relations are common among
intermetallic phases. With ionic and covalent compounds, on the other hand,
the structural order is as a rule maintained up to the melting point.

The Hume-Rothery Rule. We shall now mention two important generaliza-
tions with regard to compound formation in metallic systems. The Hume-
Rothery rule states that the structural type depends on the ratio of the number
of valence electrons to the number of atoms in the compound. The metals of
the VIII group of the periodic table must be considered as having zero valence
electrons. The three structural types which occur are indicated in Table 14,
along with some examples.

Table 14. Hume-Rothery compounds

Lattice type Cubic body- Hexagonal Cubic, 52 atoms

centered closest packing in the cell
Metallographic designation p-phase e-phase y-phase
Valence electrons: atoms 3:2 7:4 21:13
Examples CuZn CuZn, Cu,Zng

CuBe Cu,Sn CuyAl,

AgMg Au,Sn Cu,, Sng

NiAl Ag,Al, Fe,Zn,,

Cu,Al Ni;Cd,,

Cu;Sn

The Hume-Rothery rule is not without exceptions, and it has as yet no
satisfactory theoretical explanation.

The diamond structure can be considered, from a purely formal standpoint,
as a special case of this rule. The ratio of valence electrons to atoms is 4:1.

Laves Phases. While the above-mentioned compounds depend upon the
number of valence electrons, other groups are formed exclusively by geometric
relationships. These are compounds of the type A B,, and are designated as
“Laves phases”. More than 60 such compounds are already known. Three types
may be differentiated having the MgCu,, MgZn,, and MgNi, structures. Of
these MgCu, merits detailed description (Fig. 175). The structure exhibits atomic
properties which, from an energetic standpoint, could not occur in normal ionic
compounds.

In MgCu, the Mg atoms are surrounded by twelve Cu atoms (four Mg atoms
are located at only about 4% greater distance). The structure is, however,
constructed so that each Cu atom has as nearest neighbors other Cu atoms, and
six additional dissimilar neighbors (Mg) are found at about a 17 % greater distance.
The Cu—Cu distance in MgCu, is 2.49 A, quite similar to that in elemental
Cu (2.55 A). Also the Mg —Mg distance is not very different from that in metallic
Mg. The geometric arrangement of the Cu atoms is like that in elemental Cu
except that a portion of the Cu atoms is missing. The structure has an additional
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noteworthy geometrical property: if one imagines it to be built of spheres which
are so large that they are in mutual contact, one obtains two separate assemblages
of spheres; namely, an assemblage of Cu spheres touching one another and a
second assemblage of Mg spheres touching one another. The Cu and Mg are

always in contact with like atoms, not
with each other. The structural formula

is goMg[IZ Cu+4MglCy[6Cut6Mel ¢ ; the coor-
dination polyhedron around the Cuisan
icosahedron (see Fig. 118, p. 46), whose
corners are occupied half by Cu, half by
Mg. This type of structure frequently oc-
curs in intermetallic compounds with
metallicradiusratios B,/ Ry &~ 1.20. Just
as the Cu arrangement in MgCu, is simi-
lar to cubic closest packing, so does
Mg Zn, possess analogous similarities to
hexagonal closest packing. Here the Zn
atoms possess in part this atomic ar-
rangement. MgNi, displays a sort of mix-
ed structure between MgCu, and MgZn,,.

Transition to Other Bond Types. Just
as there are transitions between ionic
and covalent bonding, there are also

G 7 2 7 ¢ 5A
Fig. 175. MgCu, structure. The array of
Cu-atoms is emphasized which occurs when
the Cu spheres are in ‘mutual contact.
The Mg spheres are in contact with each
other forming an arrangement with the
diamond structure

transitions between metallic and ionic or

covalent bonding. When metals of the first three groups of the periodic table
form compounds with those of the IV to VII groups, these show, in spite of their
metallic appearance, transition to ionic bonding. For example, these compounds
are soluble in liquid NH; and possess a noticeable electrical conductivity in
solution. They act in NHj as normal salts do in water. Examples of such compounds
are Mg,Sn and Mg,Pb, which crystallize with the fluorite structure. Thus they
are also structurally similar to ionic compounds.

A structural type which is not found among purely ionic compounds is that
of NiAs, niccolite. This structure can be most simply described as a hexagonal
close packing of As atoms in which the Ni atoms are intercalated in the inter-
stices. In a close packed array there are two kinds of interstices, those with

Fig. 176. Two superimposed close packed layers showing octahedral and tetrahedral interstices
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octahedral and those with tetrahedral coordination. As can be discerned
immediately from Fig. 176, the number of octahedral sites is equal to the number
of packed spheres; the number of tetrahedral sites is twice this number. In NiAs
all of the octahedral interstices formed from the hexagonal closest packing of
As atoms are occupied by Ni. While in cubic closest packing the atoms in octa-
hedral sites are arranged likewise in a cubic close packed array, in the structure
of NiAs the octahedral sites lie in chains in the direction of the hexagonal axis
(Fig. 177). It can be demonstrated that along this chain direction metallic
bonding occurs between Ni atoms, while the coherence between the As- and
Ni-atoms may be dependent predominantly upon covalent bonding.

Fig. 177. NiAs structure

Fig. 178. co Sb{¥ S, double chains in stibnite (schematic); a % S Sb g
the hatched Sb atoms lie above the plane of the drawing, T mYE 3
the non-hatched Sb below. The S atoms lie in the plane.

Actually the planes of the two oo Sb31S,-chains which form O-s O =5
the double chain are approximately perpendicular to each
other Fig. 178

This sort of accommodation of Ni atoms in the interstices of a close packed
network helps us to understand an unusual phenomenon exhibited by pyrrhotite,
FeS. It has long puzzled analytical chemists and mineralogists, that in this
mineral the stoichiometric ratio Fe:S is not exactly 1:1. Accordingly we find
in older mineralogical books, compositional descriptions such as Fe,,S;;, as well
as others. It was formerly believed that an excess of S could be accommodated
in the structure (to 6%), but X-ray investigations have indicated that a
deficiency of Fe actually occurs. The S packing, therefore, remains stable even
when not all the octahedral sites are filled with Fe. Unlike the NiAs type, stoichio-
metric FeS at room temperature is easily deformed and possesses a larger unit
cell. In addition, iron sulfides of composition Fe, .S (x <0.15) occur as super-
structures of the ideal NiAs structure, as a result of an ordered arrangement
of the Fe atoms and the vacancies in the structure.

Another important sulfide structure is that of stibnite, Sb,S;. Its structure
is very much more complicated than that of NiAs. We can best perceive its
structure if we first consider only those Sb—S distances which are less than
2.70 A. Each Sb atom is coordinated by three S atoms in a pyramid in which
the average S—Sb—S angle is 90°. The SbS; pyramids are linked together

into oo [Sbi*1S;] ribbons, as illustrated in Fig. 178. Two such ribbons lie together
in the structure in such a manner that one S; of one chain and two Sby; of
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a second chain always approach at a distance of 2.82 A. This is not much greater
than the greatest distance within the double chain itself (2.68 A) and certainly
must indicate weak chemical bonding. By emphasizing this additional bonding,
the structure can be viewed as consisting of quadruple ribbons in which one half
of the Sb atoms possess a pyramidal 3-fold S coordination and the other half
a (3 + 2) coordination. The antimony with [3 - 2] coordination sits approximately
at the center of the base of a square pyramid formed by S atoms. The crystal

1
chemical formula is, therefore, co Sbi8ISbl3+21S,0r.

Molybdenite, & Mol®lS,h, crystallizes with a typical layer structure, with
covalent bonding within the layer. The coordination polyhedron is, however,
not an octahedron, as we have always imagined 6-fold coordination, but a
trigonal prism.

The pyrite structure, Felé1[S,]¢, is geometrically derived from the NaCl
structure, in that Fe atoms are fitted into the positions of sodium ions and
dumbbell-shaped S, molecules into the positions of the chlorine ions. As a result,
the usual symmetry planes of the NaCl lattice are destroyed and only glide
planes parallel to the cube faces remain. Morphologically these appear as normal
symmetry planes. The bonding is predominantly covalent with a definitely
metallic contribution.

6. Summary of Bond Types

In summary we want to make clear again that there are not only the pure
ionic, covalent, intermolecular, and metallic bond types in crystals, but, as we
have seen, also various deviations therefrom. These deviations are manifest
in two different ways.

First of all there are transitions between the main bond types themselves.
For example, transitions between ionic and covalent bonding are found in the
Si—O bonding in silicates and probably in the Zn—S bonding in sphalerite.
Transitions between metallic and covalent or ionic bonding occur in NiAs,
niccolite, or in PbS, galena. The crystal structure of PbS corresponds to NaCl,
but the metallic luster of PbS shows that the bonding cannot be purely
ionie.

In addition to transitions between bond types, different bond types occur
in crystals at different locations within the same crystal. A distinct example of
this is displayed by orthorhombic sulfur. Within the Sg rings covalent bonding
prevails; between these rings, van der Waals bonding. In silicates we find that
the Si—O bond is transitional between ionic and covalent. Linking Si—O
assemblages together are cations which, in many cases (Nal*, K!¥, Mg2*, Ca2*,
Ba2*, as well as others) exhibit essentially electrostatic bonding. In pyrite, FeS,,
the S—S distance in the S, group is almost exactly the same as in the Sy molecule,
namely about 2.1 A, indicating that the S—S bond is covalent. Based on its
electrical conductivity it must be concluded that metallic bonding is prevalent
in the structure of pyrite.

The problems of chemical bonding are still far from being completely solved.
Unfortunately the usual structure determination gives only interatomic distances
and thus infers only indirectly the type of bonding. It is of great importance,
therefore, to combine crystal structural results with other physical methods
(electrical conductivity, absorption spectroscopy, magnetic measurements, etc.),
to discern the true nature of bonding within crystals.
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7. Crystal Structures as Packed Spheres

In our discussion of metals, as well as the NiAs-type structures, we have
referred to the closest packing of spheres. This concept can be put to good
advantage also to describe a number of other structural types, especially if we
allow a certain amount of distortion from ideal packing. The NaCl structure
can be described as cubic closest packed, in which all octahedral sites are occupied.
In the ideal case the A ions (atoms) would be in contact with the B ions (atoms)
and the B ions likewise in contact with each other. The radius ratio R,/R; would
be exactly 0.41. In NaCl itself the radius ratio is 0.54. The Cl ion packing is
expanded, contrary to the ideal case. In addition to a series of halides, oxides,
and sulfides (NaBr, MgO, MgS), TiC, TiN, ZrC and ZrN possess this type of
structural packing. In the latter, N or C is situated in the octahedral sites in the
cubic closest packed array of Ti or Zr. If only one half of the octahedral sites
are occupied and in layers parallel to an octahedral face, the MgCl,-type structure
results. The ““cubic close packing” of the anions is thombohedrally distorted in
this structure. In an analogous manner the CdI,-type structure is derived from
a hexagonal close packed array. Sometimes only a fourth of the octahedral
interstices are occupied, as in Mn,N and Fe,N. Formally the CaF, structure
can be described, by noting that the Ca2* ions form a cubic face centered lattice,
corresponding to cubic close packing, with the F~ ions situated in the tetrahedral
sites. It is to be noted, however, that the Ca2* ions cannot be in contact with
each other, since the F~ ions are much too large to fit into the interstices of a
close packed array of Ca?* ions. This description fits much better the structure
of Li,O, crystallizing analogous to CaF,, except that cations and anions have
exchanged places (antifluorite structure) giving the structural formula Lil2OBlc.
The small Li* ions sit in the tetrahedral interstices of a cubic close packed 02~
array. If, in a cubic close packed array, only one-half of the tetrahedral sites
are occupied, with retention of the highest possible symmetry, the ZnS (sphalerite)
structure results. In order to avoid misunderstanding, it should be expressly
stated that this arrangement, involving like size spheres in contact with each
other is not closest packing, but quite open packing. A hexagonal close packing
with half of the tetrahedral sites filled corresponds to the structure of wurtzite
(Zn8).

If both types of interstices in a cubic close packed array are occupied by
cations, we can arrive at the spinel-type structure, Mgi4lA1¥10,c. Here one-
eighth of the tetrahedral sites, corresponding to one-fourth of the oxygen ions,
are filled by Mg, and one-half of the octahedral sites by Al. It is noteworthy
that the smaller Al-ions are situated in the octahedral, and the larger Mg-ions
in the tetrahedral interstices.

Olivine, (Mg, Fe)®![SiO,]or, can be considered to a first approximation as
a somewhat deformed and expanded hexagonal close packed array of oxygen.
In it the densest packed planes lie in the plane (010). The Si atoms are found
in the tetrahedral sites, which are one-eighth occupied, and the Mg or Fe ions
occupy half of the octahedral sites.

8. Deviations from Ideal Crystals

Defects. While the geometric theory of 230 space groups pictures the crystal
as a completely ordered structure, the previous discussion of real structures, has
already shown that this ideal picture is not quite correct.
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In mixed crystals we have insisted that a random distribution of constituents
occurs. This alone implies disorder. The example, FeS, illustrates a further kind
of disorder, namely incomplete occupancy of equivalent lattice points. In this
structure the Fe atoms are not periodically repeated on the atomic scale. In the
spinels it has been shown that, in addition to the normal spinel mentioned earlier,
there is also a second type of cation distribution which has been found, for
example, in MgGa,0,. In this spinel one-half of the Ga3* ions are situated
in tetrahedral sites; the remainder along with the Mg?* ions are situated in the
octahedral sites, and indeed the two types of ions are not situated in definite
locations, but are randomly distributed. The appropriate crystal chemical

formula is as follows: oo Galtl(Ga, Mg)}¥10,c. The same phenomenon is found

with magnetite, o0 Fe3+4](Fe3*, Fe2*)[610,c. The spinels form mixed crystals
with the y-modification of AI2O This, like spinel, possesses cubic closest packing.
The unit cell contains 32 O ions. In place i
of the 24 cation sites per unit cell of N\

= g S e '1_ _./:
spinel (16 A18 Mg), in y-Al,0, there are O%C et |
211/, Al accommodated in the octahedral [ 4 |
and tetrahedral sites. In three unit cells l'*_ 3 NI I
only 64 of a possible 72 sites are occupied Of N4 \,—’ </
by Al, and purely at random without . ‘
geometric order. The solid solution be- . ‘
tween MgAl,O, and y-AL,O; is thus . Y
easily explained. Y \’_O/ ¢l O) )

The mixed crystals between MgCl,

and LiCl, already mentioned on p. 64, 2 J ¥ 3A

can likewise be considered as a cubic clos-  Fig. 179. Oan structure emphasizing the
est packjng of chlorine ions. In the Mg012 primative cubic arrangement of the F~ ions
structure half of the octahedral inter-

stices are unoccupied. By the addition of two Li in place of one Mg, mixed
crystals occur, until, upon sufficient replacement by Li, the crystal of formula
Li)Cl, results. Conversely the MgCl, structure can be visualized as being derived
by subtraction of two Li in Li,Cl,(LiCl) and replacement by one Mg.

Such view can also be taken of structures which are not close packed. As an
example, we can consider the mixed crystal between CaF, and YF,;. The CaF,
structure can be considered also as a simple cubic array of F ions, in which a
Ca ion is situated at the centers of alternate F cubes (Fig. 179). If the Ca2* is
replaced by Y?*, additional F appears in the empty alternate F lattices.

As these examples show, crystals which display disorder phenomena can be
classified into two types: those with disordered random distribution of constituents
throughout the entire crystal, substitution crystals; and those with disordered
vacancies. Both kinds of disorder can be simultaneously present in the same
crystal. The manner in which vacancies are produced can be classified still
further as taking place either by addition, MgCl,—~Li,Cl,, or by subtraction,
Li,Cl,—~MgCl,.

Another concept has been introduced by ScHoTTKY and WaGNER. They showed
that crystals with a clearly stoichiometric formula must have defects (vacant
sites) at all temperatures above absolute zero. Their number increases with
increasing temperature and diminishes with decreasing temperature. Here also
substitution, addition, and subtraction can be distinguished. These defects must
be postulated in order to explain certain optical and electrical phenomena and,
in part, also reaction in the solid state. To denote the magnitude of departure
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from ideality it is informative to mention MorT and GURNEYS’ conclusions,
based on measurements of electrical conductivity. In AgCl at 250° C, they find
that 0.02% of the ions are in interstitial lattice positions; at 350° C, 0.1%. The
effects of ScHOTTKY-WAGNER defects are in part identical with and indistinguish-
able from those of the above mentioned type. In the latter case we are dealing,
at least in part, with defects which are not stable at absolute zero.

The phenomenon of defects in crystals has been intensively studied in recent
years. Results already demonstrate clearly that the prototype of regularity, the
crystal, can also show gradation of random order. The proviso of the genuinely
homogeneous discontinuum is not strict, but on the atomic scale is only randomly
fulfilled.

Regular Intergrowths. Additional deviations from ideal construction are
manifest by the intergrowth of several individuals. For a mixed crystal we have
established the requirement that the distribution of atoms, ions, and molecules

Fig. 180 a—c. Distribution of black and white squares, (a) statistical (random), (b) Deviation from
random toward chess board pattern, (c) deviation toward segregation of larger black and
white domains. (From LavEs)

shall be random : components exhibit no preferential locations, and no segregation
of one or the other end members occurs. In addition to such true mixed crystals,
there are also certain cases in which the components segregate into larger domains,
a kind of tiny crystallite. Fig. 180a shows a random distribution of equal numbers
of black and white squares, such as would be obtained, for example, by throwing
dice. Fig. 180b shows a distribution which is non-random and approaches the
ordered pattern of a chessboard; in Fig. 180c¢ the non-random distribution
tends toward a segregation of larger black and white domains.

Intermixing of components can range from a random distribution to inter-
growths completely visible to the naked eye. In this case also it is informative
to illustrate the principle utilizing the concept of close packed spheres. As men-
tioned previously, in the structure of y-Al,O;, oxygens are cubic closed packed
and interstices are occupied by Al. If in addition we insert Mg ions in some of
the tetrahedral interstices, MgAl,O, occurs at a certain point, and a mixed crystal
between y-AlLO; and MgAl,0, is formed. Such mixed crystals, in which the
chemical formula as well as the structural type of the end member do not corre-
spond, are called anomalous mixed crystals. The name is poorly chosen because
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it does not properly imply the phenomenon to which it is related. If, in the
example just alluded to, ions in the tetrahedral and octahedral sites were randomly
distributed, one would speak, in spite of the different formula types of the end
members, of a homogeneous mixed crystal. When, however, larger domains are
formed which correspond to the end members, intercalation of one crystal
form in another results (see Fig. 180c). Frequently the intergrowth is oriented
crystallographically with respect to the host crystal. Intergrowths can occur
by unmixing in the solid state. However, it is not necessary that this happen.
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Fig. 181. Intergrowth of rutile
and hematite. (After SEIFERT)
B ) 7m0
Fig. 182. Overgrowth of potassium iodide ¢ % ’
on muscovite Fig. 182

For a long time it has been known that two different kinds of crystals can grow
together in a regular arrangement. Intergrowths of rutile and hematite (Fig. 181)
are very common. Beautiful overgrowths can easily be produced experimentally
by allowing a drop of aqueous KI solution to evaporate on a fresh muscovite
mica cleavage surface. The octahedral faces of the cubic KT and the corresponding
lattice plane possess trigonal symmetry, the mica cleavage plane, pseudohexagonal
symmetry. Since their dimensions are rather similar, the KI crystals grow with
the octahedral face oriented on the basal plane of the mica. In this way triangular
crystals are formed as a result of controlled crystallization. The triangular crystals
are oriented parallel demonstrating the preferred orientation of the regular inter-
growth.

Non-oriented intergrowths also occur very frequently. Here the relation of
the boundary surface tension (see also p. 244), determines whether a foreign body
is included or shoved aside during growth (““self-refining capacity”). Such
foreign bodies, be they different crystals, drops of fluid, or gas bubbles, are
called inclusions. They occur probably down to submicroscopic size also.

Imperfections. In addition to the defect phenomena already mentioned, a
series of observations leads to the far-reaching supposition that natural and at
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least many artificial crystals exhibit other imperfections. The *‘parketting”
of crystal faces has been known for a long time by crystallographers (Fig. 183).
This can sometimes be discerned by the naked eye. More often, during gonio-
metric measurements, it is noticeable by multiple or distorted signals. As early as
BECKE, the formation of etch figures was attributed to cracks and breaks in
crystal surfaces. VoN LAUE, only a year after his discovery of X-ray diffraction, had
expressed the opinion that the fluorite crystal investigated by himself and TaNk?!
was ‘‘ein Konglomerat vieler nicht mit der notigen Genauigkeit zusammen-
gesetzter Stiicke”’. Based onstrengthinvestigations, W. VoIar, as early as 1919, had
referred to the importance of thermal and mechanical inhomogenieties in
crystals. In 1920 GrirrITH attempted to explain the deviations of experimental
strength properties from those to be expected theoretically by external or internal
cracks. In the field of strength of mate-
rials, the question of imperfectionin crys-
tals has been considered often, especially
by SMEKAL. So much seems to be certain,
that even if we exclude cracks formed
as a result of mechanical action, crystals
still form from subindividuals. The size of
these constructional units varies from that
of the mosaic particles deduced by DAr-
wiN from X-ray reflections (107 to 1077
cm), to the parketting noticeable with the
naked eye. These sub-units are rotated
with respect to each other by trivial
S amounts, without being confined to a defi-
A 2 ¥ 73 % emn  nite direction of rotation. An appropriate
. o ' pictureis probably that of the branches of
Fig. 183. Fluorite with parkette surface  ; {100 which are tightly connected (Ver-
2wetgungs- or BUERGER’s lineage struc-
ture). The comparison suffers in as much as it cannot be demonstrated that the dia-
meters of the blocks decrease in any particular direction as do the branches of a
tree; the increase or decrease of the size of the blocks is irregular. The coherence
of such a lineage crystal is so great that, upon cleaving, the crystal does not break up
into individual blocks, but instead an almost smooth surface is produced in which, if
the dimensions are sufficiently large the building blocks, can be made visible by
means of reflection or interference phenomena. Imperfections have a great influence
on many strength properties (see p. 107 and 111) and on reactions in the solid state.
Such departures from ideal crystals are easily produced during natural
growth with its many accidents (see p. 171). In the laboratory it is possible to
suppress gross departures by means of suitable experimental methods. To what
extent it is possible within the sub-microscopic dimensions to purposely create
imperfections is still controversial. It must be noted in discussing these questions
that part of the phenomena ascribed to imperfections may be traced back to the
defect phenomena mentioned above. By especially careful elimination of all
sources of error, it appears possible to obtain crystals which are at least very
largely free of imperfections. Even so one must clearly recognize that natural and
most artificial crystals, are not without imperfections. The presentation which
was developed in the first chapter was, therefore, only an expedient, giving the
mathematically ideal relations. With each application we must consider how
far we may idealize. Because of the many departures from ideal crystals, it is
1*An aggregate of many pieces piled together without the necessary precision”.
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appropriate to speak of ‘‘real crystals”. However, it appears important to
distinguish as far as possible between defects and imperfections.

Disorder can become even greater and result in transitions to mesophases,
as mentioned on page 6. In the case of layer structures, the layers may be
superimposed one over the other in more or less disordered fashion. In the im-
portant clay mineral montmorillonite (Fig. 163, p. 73), layer packets are strati-
fied in a disordered fashion, so that only the (001) planes are parallel; more
general (hkl) lattice planes are rotated arbitrarily with respect to those in the
neighboring packet. The distance from the centers of contiguous layer packets
varies with increasing water content from about 10 to 20 A. Organic liquids can
produce still greater periodicities. These inner silicate surfaces lead to an ex-
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Fig. 184 Fig. 185

Fig. 184. Step dislocation. The region within the circle is strongly distorted. The dislocation
line runs perpendicular to plane of diagram

Fig. 185. Screw dislocation. Dislocation line emerges at A. At some distance from the dis-

location line, at about B—C the lattice is essentially undistorted. (From READ)

ceptionally high adsorption capacity for the mineral. In the kaolinite-group also
there are representatives with disordered stacking sequences; these are referred
to as ““fireclay’’ minerals.

Dislocations. In recent years variations from ideal crystal construction have
been revealed which are called dislocations. These are very important for a proper
understanding of many crystal physical phenomena (for example plastic defor-
mation, p. 101 and crystal growth, p. 162). In Fig. 184 a simple and also quite
theoretical example of this is given. It shows a primitive cubic lattice with the
plane of the drawing parallel to (001); the atoms of the planar net above and
below the plane of the drawing lie exactly above and below the indicated points.
It can be seen that in the upper half of the drawing, an additional lattice plane
has been included, which ends in the crystal at B. Around B the lattice is strongly
distorted and the distortion is continued perpendicular to (001) equally in both
directions. This is called a dislocation line. This is not a line in the mathematical
sense, but indicates the locus of greatest lattice distortion. This form of dislocation
is called a step dislocation.
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In addition to step dislocations, screw dislocations are important. In this
type of dislocation the lattice planes are so deformed that they are wound like
a spiral staircase around a dislocation line (Fig. 185). The pitch of the spiral is
sometimes only one or a few translation distances (therefore from a few to about
20 A), but may be up to several hundred Angstréms in magnitude.

Step- and screw dislocations represent cases in which the dislocation line is a
straight line. There are, however, frequent dislocations in which the dislocation
line is irregular and more difficult to characterize. Quite generally the dislocation
line delineates especially energetic regions in the crystal.

Twinning. In discussing imperfections in crystals, we assumed that the
growth results in almost parallel domains whose angular variation from the ideal
undistorted lattice is very slight. There is still another form of intergrowth of
crystals of the same substance. In these the mutual positions of the individual
crystal domains are quite dissimilar. They are, however, related by crystallo-
graphically oriented symmetry elements. Obviously these symmetry elements

Fig. 186. Albite twin. (After Raaz-Trrrscr)  Fig. 187. Quartz twin (Brazil law) (idealized)

may not coincide in kind and orientation with those characteristic of a single
crystal of the substance, since only a parallel repetition would result. Such regular
intergrowths of the same sort of crystal are called twins.

There are two kinds of such symmetrical arrangements which we can observe.
In the first case the individual crystals lie as if reflected across a simple crystal
plane, the twin plane. Often this plane is at the same time the growth plane, or
composition plane, as it is in the case of albite twinning (Fig. 186), tw§n plane (910).
Twinning after the albite law is not confined to albite itself, but is exceedingly
common among all members of the plagioclase group. In contrast to this example,
twins are known for which the twin plane and composition plane do not coincide,
but in which the latter is an irregular and bent and buckled surface. The two
contiguous crystals can even penetrate one another as in quartz twins (Fig. 187).
In this case the twin plane is a prism plane (1120), and the left- and right-handed
trapezohedra lie symmetrically with respect to it (Brazil law). In practice, the
Brazil twins of quartz are only rarely recognizable from the morphological
development. More frequently the individual twinned units alternate in layers,
as is seen clearly by optical study. It is noted that in Brazil twinning right and
left-handed quartz alternate with each other.
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In the second case the individual crystals are rotated 180° with respect to

each other around a simple rational edge direction, the twin axzis. An example
is offered again by albite twinned according to the pericline law (Fig. 188).

SE—

Fig. 188. Pericline twin

The twin axis is [010]; the composition plane is the so-called “rhombic section”.
This is a plane whose position does not correspond to rational indices, but rather
is determined by the dimensions of the crystal and the position of the twin axis.
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Fig. 189. Quartz twin (Dauphinée law). The |7 "_i"/" ™~o | | packing
boundaries of the individual domains are s —>
not indicated ® ?

Fig. 190. Twinning in gold. (After AMINOFF)

As is the case with the albitelaw, the periclinelawis common to all plagioclases. Since
the position of the ‘“rhombic section’ varies with anorthite content, it can serve
to denote the composition of the plagioclase. MTGGE was able to show in the case
of anorthite that the formation temperature of such minerals can be deduced
from the deviation of the position of the composition plane calculated theoretically

7 Correns, Mineralogy
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from the axial ratios and thus be used as a ““geologic thermometer”’. The basis
for this is that the axial ratios of the crystal change with temperature and with
it the position of the “rhombic section”. The latter is, however, established by
the formation temperature of twinning and cannot then be further changed.
Penetration twins frequently occur in quartz in which the twin axis coincides with

Fig. 191. Cassiterite twin Fig. 192. Spinel twin after (111). Fig. 193. Calcite
(““elbow twin”’) (After Raaz-TERTSCH) twin after (0001)

[00.1] (Dauphinée law, Fig. 189). These twins have, with ideal development, the
morphological symmetry 622, the symmetry aseribed to high quartz (see p.37).
In agreement therewith is the fact that, as shown in Fig. 189, the right trapezo-
hedral faces are repeated every 60° (not every 120°, as in low quartz).

L

Fig. 194. Staurolite twin after (032). Fig. 195. Staurolite twin after (232).
(After Raaz-TERTSCH) (After Raaz-TERTSCH)

The origin of twinning results essentially from two mechanisms. In the case
of growth twinning it may be assumed likely that some particles (ions, atoms, or
molecules) of the initial lattice structure do not continue the normal mode of
growth, but go on to build a related structure, so that at the transition point an
atomic arrangement occurs, that is energetically not quite the most favorable
for the regular further development of the structure. It corresponds, however,
to the next most favorable energetically and to that structure which is geo-
metrically best. As Fig. 190 shows, the transition layer between the two twins
can often be considered as a change in modification. Gold crystallizes, for example,
in cubic closest packing. The transition zone has the structure of hexagonal
closest packing which upon growth changes to cubic packing again. In 1911
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MteGE had considered the transition layer between individual twins as a thin
plate of a different modification. ,

From the formation of growth twins it is appropriate to single out the forma-
tion of polysynthetic twins, in which very small (frequently microscopic) twin
laminae occur, repeated over and over. They commonly form by the trans-
formation of a higher symmetry modification into one of lower symmetry, if
both modifications are structurally similar, often by cooling a crystal of a high
temperature modification.

We have already become acquainted with polysynthetic twinning in the
case of microcline (p. 76). The plagioclases also are twinned polysynthetically,
as a rule after the albite and pericline laws. The formation of polysynthetic twins
by mechanical deformation is dealt with later (p. 101).

Fig. 196. Orthoclase, Manebach twin. Fig. 197. Orthoclase, Baveno twin.
(After Raaz-TERTSCH) (After Raaz-TERTSCH)

Fig. 199. Aragonite triplet.
Fig. 198. Orthoclase, Carlsbad twin (After Raaz-TerTscH)

Twins occur frequently in nature. They are especially characteristic of many
minerals in addition to the feldspars and quartz already mentioned. For example,
cassiterite, SnO,, whose twinning was used by miners in the Middle Ages for
identification, forms the characteristic “elbow” twin shown in Fig. 191. The
twin plane is (101). Other examples are the spinel twin, twinned after the octa-
hedron in the class m3m (Fig. 192), and the common twinning in gypsum after
(100). In pyrite crossed twinning occurs with a rhombic dodecahedral plane as
the twin plane. In the 2/m3 crystal class of pyrite, no symmetry planes occur
parallel to {110}, as is the case on the other hand in the most highly symmetrical
cubic classes. Thus, this direction can serve as a twin plane in pyrite. Calcite
forms twins after the basal pinacoid (0001) (Fig. 193) and after the rhombohedron
(0112). Renowned are the cross-shaped twins of the class 2/m 2/m 2/m, exempli-
fied morphologically by staurolite [Fig. 194 after (032) and Fig. 195 after (232)],

*
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which gave rise in the past to legends concerning their origin. As the true
symmetry of staurolite, according to recent work, is monoclinic, although distinctly
pseudo-orthorhombic, the twinning in reality is very complicated. Important
for diagnostic purposes is the twinning of the feldspars. We have mentioned
already the pericline and albite laws for plagioclase (Fig. 188 and 186). In ortho-

Fig. 200. Schematic representation of the forms of intercalation in crystalline matter

clase, crystallizing according to its macrosymmetry in the class 2/m, the (010)
plane cannot be a twin plane, since it is a symmetry plane. Here we find the planes
(001) (Manebach law, Fig. 196) and (021) (Baveno law, Fig. 197) as twin planes.
Carlsbad twinning (Fig. 198) can be characterized just as well by the planar law
(100) as the axial law [001]. Not uncommonly, twinning produces an apparent
false symmetry. For example, in Fig. 199 the triplet of orthorhombic aragonite,
twinned after (110), appears almost hexagonal.

Summary. In summarizing these different modes of intercalation of foreign
and like individuals, we can illustrate them in the following schematic diagram
(Fig. 200).
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1. Plastic Deformation

General. Twinning of crystals occurs not only during growth, but can be
accomplished also by means of mechanical deformation. Thus we begin to concern
ourselves with the field of crystal physics, a borderline area between physics,
crystallography, and mineralogy in its most restricted sense. As is true of every
interdisciplinary field, the resulting overlap of ideas is desirable and beneficial.
The researcher who approaches the subject from pure physics is accustomed to
drastic simplification of concepts in order to work out fundamental relationships.
The mineralogist, on the other hand, who deals with natural crystals, must
always keep in mind the great variability which nature affords. The two ap-
proaches complement each other. In this introduction crystal physics will be
considered from the viewpoint of the mineralogist. We shall especially consider
and keep in the foreground of our interest those matters which are considered
important, either for the understanding of processes in the earth’s crust, or
in aiding us in the understanding of different kinds of crystals.

Mechanical Twinning (simple shear). If a calcite crystal is fixed in the
direction [12.0] between the jaws of a vice and carefully compressed, polysynthetic

AN
\ \

Fig. 201. Pressure twinning in calcite; the reference plane corresponds to (0112)

(0112) twins are formed. If a cleavage rhomb of calcite is carefully pressed on the
[12.1] edge with a knife, a portion of the crystal can be easily deformed without
breaking (Fig. 201). The angle of the cut does not influence the size of the notch
which is produced. The plane along which the gliding takes place is called the
glide plane; the direction of movement, the glide direction. Both are independent
of the direction of stress and both are characterized by simple indices. It is
characteristic of this form of deformation that the magnitude of the displacement
is proportional to the interplanar spacing of the twin plane.

Such deformation is called simple gliding. It occurs also in isotropic media
under definite types of stress and is, therefore, important in processes of rock
metamorphism. Many rocks can be considered as isotropic in a first approximation.
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Let us consider a sphere which is deformed through shearing into a triaxial
ellipsoid of equal volume!. In deformation to the triaxial ellipsoid, one diameter
of the sphere coincides with the ellipsoidal axis (c) and becomes shorter, a second
becomes longer () and a third (b) remains the same length. In Fig. 202 the latter
is oriented perpendicular to the plane of the drawing. The other two ellipsoidal
axes, @ and ¢, lie in the plane of the drawing. The shearing takes place from left
to right. If the volume and the magnitude of b do not change during deformation,
r2=a - ¢. In order to describe the shear-
ing process the following nomenclature
is used. Each triaxial ellipsoid has two
central circular sections. One is the glide
plane or the first circular section k.
The shear plane stands perpendicular to
it and parallel to the shear direction #,,
therefore lying in the plane of the draw-
- Simole  sh ) ing. The second circular section, k,, cuts
Fig o Single sheas, o et hisplane longth line 7, whih spcifis
ellipsoid ; k, trace of the glide plane of first that direction, of all possible directions
cireular section; 7, glide direction; k, trace  of deformation, which is most markedly
of second circular section; 7, direction of rotated from the initial position, that is
greatest angular change; S magnitude of  ;.5und the angle [180° —2y]; 7, and
the shear . - > "2
are symmetrical with respect to a, the
longest axis of the deformation ellipsoid.
The magnitude of the shear S is given by the distance traversed during deforma-
tion by a point at a unit distance from the plane ;. If p is the angle between the
two circular sections, tany=2/S.

In isotropic materials the circular sections assume different positions depend-
ing upon the pressure relationships. The amount of deformation (the magnitude
of §) varies with the magnitude of the mechanical stress. In the case of crystals,
on the other hand, definite glide planes occur in the lattice and deformation
takes place only along these planes. In addition, S does not depend on the applied
pressure. As soon as the applied stress becomes great enough for the deformation
mechanism to be initiated, the same value of 8 is assumed. Data for k,, k,, and
8 are tabulated for some metals and minerals in Table 15. Figs. 203 and 204
illustrate important differences between the positions of the glide planes in calcite
(0112) and in dolomite (0221). The traces of twin lamellae on the surfaces of a
cleavage rhomb of calcite (Fig. 203) run parallel to the edges and longer face
diagonals; in the case of dolomite (Fig. 204), on the other hand, they are parallel
only to the two face diagonals. These differences serve as important criteria in
distinguishing calcite and dolomite. The formation of pressure twinning can
be considered to be similar to twinning which results during growth. In both
cases the lattice is rearranged under external influences. In a transition zone
bordering the glide planes a different modification, or really another ordered
state, of the lattice is produced.

Translation Gliding. Glide twinning is one means by which plastic deformation
of crystals takes place. Another possibility is gliding that takes place in a manner

V4

1 A triaxial ellipsoid is a closed form in which any arbitrarily oriented cross-sectional
plane is an ellipse — in two special positions the ellipsoidal sections degenerate to circles. It
has the same symmetry as the orthorhombic dipyramidal class (see p. 28). The 2-fold axes
coincide with the three major axes. The equation for a triaxial ellipsoid, whose major axes

. z\2 y\2 2 \2
a, b, and ¢ coincide with the usual coordinate axes is (71_) + (?) + (?) =1.
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Table 15. Some examples of simple shear

Crystal Crystal class 1st circular 2nd circular ~ Amount
section, k, section, k, of shear S
a-Iron m3m (cubic (112) (112) 0.707
body centered)
Zine 6/mmm (hex. (1012) (1012) 0.143
closest packing

Arsenic 32/m (0112) (0111) 0.256
Antimony (0112) (0111) 0.146
Bismuth (0112) (0111) 0.118
Rutile, TiO, 4/mmm (101) (101) 0.908
(101) (301) 0.190
Dolomite, CaMg(COj3), 3 (0221) (0I11) 0.588
Calcite, CaCO, 32/m (0112) (0111) 0.694
Soda niter, NaNO, (0112) (0I11) 0.753
Hematite, Fe,04 (0001) (0221) 0.634
(1011) (1012) 0.205
Aragonite, CaCO, mmm 0.130
Saltpeter, KNO, (110) (130) 0.041
Carnallite, MgCl, - KC1 - 6 H,O 0.048
Anhydrite, CaSO, (101) (101) 0.228

Fig. 203 Fig. 204

Fig. 203. Orientation of pressure twin lamellae in calcite; the traces of the twin lamellae
parallel to the rhombohedral edges are not morphologically prominent; they can be observed,
however, under the polarizing microscope

Fig. 204. Orientation of pressure twin lamellae in dolomite

similar to the sliding of individual cards in a deck of cards one over the other.
This is referred to as mechanical translation, or translation gliding.

Parts of a crystal are displaced with respect to one another along a crystallo-
graphically defined plane, the translation glide plane. The glide direction is not
arbitrary in this plane, but the movement takes place only in certain crystallo-
graphically defined directions, the translation glide direction. The magnitude of
the translation depends not only on the mechanical properties of the crystal, but
also on the magnitude of the applied stress. Translation takes place only along
unique planes, so that the distance which an arbitrary point traverses in the
crystal, unlike twin gliding, is not proportional to the distance between glide
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planes. With translation gliding twinning does not occur, but instead the two
parts of the crystal always remain parallel, and crystal lamellae of varying
thickness are mutually displaced. Mechanical deformation by translation gliding
is more common than by twin gliding. Deformation by translation gliding can be
illustrated with reference to the halite (NaCl) lattice. Fig. 205 shows a view of
the NaCl lattice with the dodecahedral plane (110) indicated as the translation
glide plane. If one part of the crystal is moved relative to another in the direction
of the arrow [110], a Cl~ ion will always lie adjacent to a Na*ion. Therefore,
positive and negative ions always lie opposite one another and the unity of
the lattice is always maintained. On the other hand, if one attempts to deform

Fig. 205. Translation gliding and cleavage (sp.) in sodium chloride

the crystal perpendicular to the above direction, along translation direction
[001], the crystal cleaves, for now, during deformation, likecharged ions are
brought into juxtaposition. In NaCl (001) translation planes can occur also when
the glide direction coincides with a cubeface diagonal [110]. Octahedral (111)
planes can also serve as glide planes. Glide directions are always those which
allow Na*ions to “glide” on Cl~ ions. The migration of dislocations (see p. 95)
through a crystal plays an important role in the actual atomic mechanism of
translation gliding.

Sufficiently thin NaCl crystals (2—4 mm thick) can be deformed easily
by bending. In this case individual layers glide over one another in a manner
analogous to bending a ream of paper. Warming in hot water makes the crystal
sufficiently plastic to be deformed in this way. The water dissolves and heals
cracks which form, so that fracture does not so easily occur. The easy deform-
ability of NaCl was of considerable importance in the genesis of the north German
salt deposits. As a result of relatively slight tectonic pressure, layers of salt were
extensively squeezed into folds. Translation gliding plays a very important role
also in the deformation of metals. In sheet metal rolling, for example, the indi-
vidual crystals which form the sheet are deformed by gliding. Glacier ice also
flows slowly downhill, because the ice crystals are deformed under the pressure
of the overlying ice. The translation glide plane in the hexagonal ice crystal is
the (0001). In the case of kyanite, and especially in the case of BaBr, - 2H,0,
the glide direction is unidirectional, the translation taking place only in one
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direction and not in the opposite one. These examples are noted in Table 16,
which also gives a summary of translation gliding, in some metals and minerals.
It is important to note that in the case of most simple structures, translation
glide planes are the most densely populated lattice planes and the glide directions
the most densely populated lattice lines in the crystal. These are denoted by d
in Table 16. If several glide planes or directions occur, they are designated with
decreasing population density as d,, dy, etc. In simple ionic structures the lattice
rows which correspond to glide directions are usually occupied by like ions, as
was indicated above in the case of NaCl. In more complex structures these
generalizations break down because lattice rows of different population density
can occur parallel to one another.

Table 16. Examples of translation gliding

Substance Crystal class Translation

plane T' direction ¢

Aluminum
Copper m3m (cubic face T
Silver centered) (111)d [101]a
Gold
o Iron m3m (Cubic body (101)d
centered) (112) [111]d
(123)
Diamond m3m (111)d,2 [101]d
Magnesium
. 6/mmm (hex.
Z
C::icmium } close packed) (0001)d } [1120]4
Halite, NaCl (001)d,
} (110)d, } [110]d
m3m (111)d,
Sylvite, KCl (NaCl type)
Periclase, MgO
(110)d,
Galena, PbS (001)d [110]d
Ice I, H,O 6/mmmb (0001)
Dolomite, CaMg(COj3), 3 (0001) [1210]
Aragonite, CaCOs (010) [100]
Anhydrite, CaSO, (001) [010]
(001) [100] and [010]
Barite, BaSO, mmm (011) [0T1]
(102) [010]
(010) [100]
Stibnite, Sb,S, (010) [001]
Mica group (001) [110]
Gypsum, CaSO, - 2H,0 } 2/m (010) [001]
KClO,; BaBr, - 2H,0 (001) [100] unilateral
(100) [001] unilateral
Kyanite, AL,O(SiO,) I (100) [001] unilateral

a Most densely populated lattice plane is (110), but the layer packet of two (111) planes
is more densely populated, see Fig. 210.
b For statistical distribution of the orientation of H,0 molecules (see p. 80).
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Theory of Plastic Deformation. If we investigate the stresses which lead to
plastic deformation, say by stretching a metal crystal in a tensile test, and then
plot the stress as ordinate against the magnitude of the elongation as abscissa,
curves are obtained like those shown in Fig. 206. At low stress the deformation is
insignificant until, at some definite stress, very significant plastic deformation
sets in (shear stress law). This critical stress is called the elastic lsmit of the crystal.
It is, as Fig. 206 shows, strongly dependent on the orientation of the translation
glide planes relative to the tension direction. The amount of elongation (strain)
is always very much less in ionic crystals than in the case of the cadmium metal
crystal illustrated.
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Fig. 206. Initial portion of the tensile stress curves of two cadmium crystals (from ScEMID-
Boas); o is the angle between the translation glide plane and the direction of tension at the
start of the test; A initial cross section

Experimentally determined values for the elastic limit are always much lower
than those calculated from crystal lattice forces. This stems in part from the
fact that the theoretical values apply only at absolute zero. At higher tempera-
tures, as R. BEckErR and ORowAN have shown, energetically rich sites occur
locally in the lattice. As a result the additional tensile stress necessary for de-
formation is lower than that which is necessary at absolute zero. This is reminis-
cent of the phenomena associated with Schottky-Wagner defects (p.91) and
infers some interrelationship. This explanation is not sufficient, however, for
at very low temperatures, too, differences between calculated and observed
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stresses are still considerable. It must be assumed, that in addition, imperfections
influence the deformation process. An imperfect crystal possesses stresses at the
boundaries of the mosaic blocks, if we assume the branching structure proposed
by BUERGER. It can be demonstrated, following the suggestion of TAyLOR, that
by imposing an external tensile stress upon such local stresses, jumps of individual
atoms over their potential barriers are induced. Dislocations are propagated
from atom to atom in the lattice by a sort of chain reaction. A relatively small
impulse is necessary, of the order of 0.01 to 0.001 that of the stress calculated
from lattice forces. Then the dislocation migrates through the crystal until the
process comes to a standstill at a barrier (foreign atom, inclusion, other imper-
fection, mosaic block boundaries).

Imperfections, in particular dislocations, are also very important in explaining
the phenomenon of kardening which plays a particularly important role in metal
working. At the beginning of deformation the tensile stress is smaller than re-
quired by theory, but it increases during the course of deformation. The crystal
becomes hardened. During plastic deformation the imperfections are mobilized
and influence one another with commensurate increase in strength. If appro-
priate energy is supplied by heating, the strength decreases again since the initial
state is partially restored. Deformation at low temperature is called cold working,
at higher temperatures, hot working. In our later discussion of rock metamor-
phism (p. 319) we shall encounter similar processes involving rocks.

2. Strength Properties
Cleavage. Having dealt with the plastic behavior of crystals, we now want
to examine those processes which are related to cohesion of a crystal, and during
which its breaking point is exceeded.
ally dependent. In many crystals the loss Lol *’L
of cohesion takes place by fracturing -

Determination of compressive, tensile,
along definite, well-defined planes, that ;
| =

and bending strengths is technologically =
of considerable importance. In crystals

these strength properties are direction-

is, along cleavage planes. Cleavage planes B

in crystals always correspond to those 22
with small rational indices. Cleavability S

i
Tz

o=
is governed by symmetry. If a cubic T T R
crystal cleaves along (100), it cleaves 0 ? a4
just as well along (010) and (001). Fig. 207. Structure of graphite. The dis-

The cleavability of mica is fairly well tance between two adjacent C-atoms
known to all of us. In fact the technical ~ Within a_layer is 1.42 A; the distance
use of mica depends on the fact that between layers is 3.40 A
very thin cleavage flakes can be pro-
duced from it. We can easily rationalize the perfect cleavage of mica on structural
grounds, if we recall that mica has a layer-type lattice. In the case of a layer struc-
ture the coherence within layers is strong, for example, as a result of covalent
bonding; between the layers it is weak, resulting from intramolecular bonding.
It is easy to conclude that the excellent cleavage should take place between mica

units. Graphite, o Cl8lp (Fig. 207) also has such a layer-type lattice. The technical
utilization of graphite is also dependent upon its excellent cleavage. We are
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A (111) Sp

TFig. 209. Structure of fluorite showing cleavage planes (sp.)

able to write with a pencil on paper, because the graphite aggregate is easily
abraded into individual structural layers, which are left behind on the rough
surface of the paper. The use of talc as “powder” is related to the adsorption
of moisture on the very large surface area which results from the fine sub-
division of talc crystallites into tiny sheet-like cleavage particles.

With ionic crystals like NaCl, cleavability can be rationalized as was done
by J.STaRk, and as we have already done in discussing the phenomenon of
translation gliding (Fig. 205). It can be noted that, during deformation, posi-
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Fig. 211a—d. Cleavage traces in crystal cross sections

tively charged ions along the cleavage planes are continually brought into juxta-
position with other positively charged ions. In this way the coherence, which is
essentially due to electrostatic attraction, is destroyed. Whether the cleavage
mechanism is actually as depicted by this model, is by no means certain. It is
generally true, however, that almost without exception, ionic crystals cleave so
that the cleavage fragments formed are electrically neutral. This can be illustrated
easily, for example, in the case of NaCl with its {100} cleavage, or for sphalerite,
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which cleaves perfectly along {110} (Fig. 208). To explain the perfect octahedral
{111} cleavage of fluorite we refer to (Fig. 209). Here the atomic arrangement of
CaF, is illustrated, but in this case the diagram differs from Figs. 151 and 179
in that the cube diagonal is oriented vertically. It can be clearly seen that, parallel
to the octahedral planes, series of layers F-Ca-F, F-Ca-F etc. are repeated. Atomic
planes containing only negatively charged fluorine ions are continuous. Between
two such fluorine planes bonding is very weak. It is apparent, however, that the
prerequisite of electrical neutrality of cleavage planes does not provide a complete
solution to the problem of cleavage in ionic crystals. It can be noted that in
NaCl, separation along {110} also produces electrically neutral parts, yet NaCl
does not possess dodecahedral cleavage. There are similar discrepancies when
considering dodecahedral cleavage in fluorite. In diamond the cleavage does not
take place along {110}, as in sphalerite, but along {111} instead. In this purely
covalent lattice the minimum bonding forces are decisive (Fig. 210). The cleavage
planes are those planes which involve the smallest number of bonds per unit area.

Cleavage is an important diagnostic aid in the identification of minerals,
proving useful also in microscopic investigations. In Fig. 211a—d crystal sections
showing cleavage traces are illustrated for a few important crystals. In many
crystals cleavage is poorly developed. This is the case, for example, with quartz.
If one crushes a quartz crystal with a hammer, it is broken generally into small
pieces with conchoidal fracture. This is the manner in which glass is fractured.
Careful statistical studies by v. ENGELHARDT have shown in this case that definite
preferred fracture directions develop as would be expected for a crystalline
material. In the case of quartz these directions vary with temperature. At room
temperature the fracture surfaces lie in part close to the rhombohedron r, in-
clined 45—65° to the c-axis, and in part steeper faces are formed at 70—75°
inclination to the c-axis (see p. 32).

Compression-, Tensile-, and Bending-Strength. Compression-, tensile-, and
bending-strengths are likewise directionally dependent, as Table 17 shows. For

Table 17. Strength properties of quartz. (After BERNDT and NI1GGLI)

le Le
average maximum average maximum
kg/em? kg/em? kg/cm? kg/em?
Compression strength 25,000 28,000 22,800 27,400
Tensile strength 1,160 1,210 850 930
Bending strength 1,400 1,790 920 1,180

simple structures like NaCl, the tensile strength can be calculated from the
lattice energy (p. 166). The theoretical values lie around 20,000 kg/cm?, far above
the observed values, which vary between 20—200 kg/cm?2. These results have
led to lively discussion during the last 30 years. It is certain that imperfections
in the crystal cause the low strength values. The question as to whether they
are due to mechanical damage, grooves or real small-scale imperfections is still
not resolved, although in many cases probably all are involved. By dissolving
away the external surface of a crystal during or just before the tensile test, the
strength, based on the cross-sectional area, is increased. Very thin specimens give
experimentally the theoretical strength, as Fig. 212 shows.

Hardness. Our previous discussion of strength properties was concerned with
properties that have been clearly and quantitatively defined. The study of
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crystal hardness has been much more qualitative, in spite of its technological
importance. The metallograph measures hardness by making an imprint of a
rounded or pyramidal stylus on a plane surface, providing what is essentially a

measure of plastic deformation (e.g. in-

2

dentation hardness with Knoop indenter). ;%/ ;r;; -

Mineralogists, on the other hand, 20 000 |
have utilized a hardness scale established 100m -
by Mons in 1812. This is so conceived
that a mineral with a certain hardness so00 -
will scratch one of lesser hardness. This Sl
hardness scale (Table 18) is quite useful §’
in the identification of minerals. Since S/
gem stones are for the most part charac- g so0 b
terized by high hardness values, this pro-
perty can be useful for their identifica- 200
tion. Thus most true gems can be easily 0 -
distinguished from glass imitations if 2k
they can be scratched by quartz, which

1 | L .
200001 0000/ 000/ 00/ cm’
Cross sectional area

Fig. 212. Tensile strength of NaCl crystals

whose outer surfaces are etched away, in

relation to the cross sectional area. (After
STRANSKI)

is of inferior hardness to most gem min-
erals.

Scratching is accomplished by pene-
tration of the point of a crystal or crystal
aggregate into the face of another crys-
tal. In this way easily deformed material
will be plastically deformed, while brittle materials are broken or fractured.

Deformation and fracture can also occur consecutively. For a given mineral
the scratch hardness is different on different crystal faces, and is also dependent
on direction on a single face. For brittle crystals the influence of cleavage is often
clearly recognizable here. This is apparent in the data reproduced in Fig. 213a—c.
The scratch hardness can be measured with very simple apparatus (SEEBECK,
1833). The crystal is mounted on a small carriage so that the face under investi-
gation is oriented horizontally. A weighted stylus is placed in contact with the
crystal face. The carriage with the mounted crystal is pulled away from under
the stylus by means of a pulley with appropriate weights attached. The counter

Table 18. Scraich, indentation and abrasion hardness

Mineral Scratch hardness, Knoop indentation Abrasion hardness,
after Mous hardness (U.S. Bur. of after ROSIWAL
Standards)
Tale scratched by fingernail — 0.003
scratched by knife
Halite scratched by fingernail 32 1.25
scratched by knife
Calcite scratched by knife 135 4.5
Fluorite scratched by knife 163 5
Apatite 360—430 6.5
Orthoclase scratches window glass 560 37
Quartz scratches window glass 1 ¢ 710, | ¢790 120
Topaz scratches window glass 1,250 175
Corundum scratches window glass nat. 1,400—1,450 1,000
syn. 1,650—2,000
Diamond scratches window glass 6,200—6,500 9,000
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weight just necessary to cause the stylus to scratch is taken as the hardness value.
Such relative hardness values are indicated in Fig. 213a—c, as plotted on diffe-
rent crystal faces. The dependence of scratch hardness on cleavability infers that
a correlation exists between hardness and structure. Generally one might predict

P,

| v

(a) Halite. (After F. EXNER) (b) Fluorite. (After F. EXNER)

(c) Calcite. (After GrRAILICH and PEKAREK)

Fig. 213a—c. Dependence of scratch hardness on cleavage direction

such interdependence and expect that hardness would be greater, the closer the
atoms are to each other, and the higher their charge. Experience confirms this
assumption, as V.M. GoLpScHMIDT was able to show. We shall call attention
first to the relation between hardness and interionic distance for the alkali halides
crystallizing with the NaCl structure (Table 19).

Table 19. Dependence of scratch hardness on cation-anion separation

LiF NaF LiC1 LiBr NaCl NaBr KCl KI

Interionic distance (A) 2.02 231 257 275 281 298 314 3.53
Scratch hardness 3.3 3.2 3.0 2.5 2.5 24 2.3 2.2

We can see here clearly, that in cases of equal valence and structure, the
hardness decreases with increasing interatomic distance of the constituent
atoms. If we vary the valence, maintaining the same structural type and like
interatomic distances, the hardness increases with increasing charge (Table 20).

Finally we can observe the effect on hardness of different structures with
constant interatomic separation and equal valence (Table 21). Comparing pairs
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of such compounds it is noted that the substance with the sphalerite or wurtzite-
type structure is always less hard than the corresponding NaCl-type.

The scratch hardness of a mineral is always temperature dependent as would
be expected. The data in Tables 19—21 were obtained at room temperature.
Tce near its melting point has a scratch hardness of 13 —2; glacial ice from Green-
land, measured at —44°C, has a hardness of 4; at the temperature of solid carbon
dioxide (—78.5°C) the hardness is 6.

Table 20. Dependence of scratch hardness on valence (sphalerite structure, equal interatomic
distances)

CuCl  ZnS GaP Si-Si Cul ZnTe  GaSb

Valence 1 2 3 4 1 2 3
Interatomic distance (A) 2.34 2.35 2.35 2.35 2.62 2.64 2.64
Hardness 2.5 4 5 7 24 3 4.5

Table 21. Dependence of scratch hardness on structure (interatomic distances and valence constant)

Structure type Halite Sphalerite Wurtzite Valence
Substance NaF CuCl

Interatomic distance (A) 2.31 2.34 1
Hardness 3.2 2.5

Substance NaCl Agl

Interatomic distance (A) 2.81 2.81 1
Hardness 2.5 1.5

Substance CaO BeTe

Interatomic distance (A) 2.4 2.43 2
Hardness 4.5 3.8

Substance BaO CdTe
Interatomic distance (A) 2.77 2.80 2
Hardness 3.3 2.8

Abrasion Strength. A third form of hardness is abrasion hardness. This should
more properly be called abrasion strength (v. ENeGELEARDT). If different minerals
are abraded under completely identical conditions, different weight losses are
obtained, depending on hardness. Relative abrasion hardness values are given
in Table 18 for minerals of the hardness scale, along with the comparable scratch
hardness values. Abrasion strength is a quantitative measure of complex processes.
The emery or silicon carbide grains which are customarily used for abrasion
material cause plastic deformation, but in addition they penetrate the surface
of the crystal and tear out small fragments. Therefore, since work is carried on
in opposition to the surface tension, abrasion strength is also dependent upon the
abrasion fluid. Thus the abrasion hardness of quartz in octyl alcohol is only half
as great as in water. Abrasion hardness can, therefore, be used to measure the
relative surface energies of a crystal.

Percussion and Pressure Figures. A phenomenon based on plastic deformation,
but during which the strength modulus of a crystal is exceeded, is the formation
of percussion figures. If a needle is driven with a sharp blow into a cube face of
NaCl, the crystal splits along the face diagonals and forms in addition striations
parallel to the cube edges (Fig. 214). The cracks as well as the striations stem
from translation gliding along dodecahedral planes.

8 Correns, Mineralogy
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Even more complex are similar relationships exhibited by mica. If one presses,
with a well rounded glass probe of about 3 mm diameter, on a mica flake underlaid
by a pliable base, a flexure figure (Fig. 215a) is first formed. This is a triple-
rayed star within an approximately triangular border; the figure usually is
indicative of the monoclinic symmetry of the mica. If one presses harder, a
pressure figure (Fig. 215b) is formed. This is a six-rayed star, but is not always
clearly developed. The borders of the flexure figure correspond approximately to

Fig. 214. Percussion figure for halite a /b

Fig. 215. (a) Flexure figure; (b) pressure
figure; (c) percussion figure of micas

the directions of the rays in the pressure figure and are presumably associated
with translation gliding. The cracks of the flexure figure correspond to those of the
percussion figure and are probably fault cracks. While flexure and pressure
figures can only be produced with large mica flakes, percussion figures can be
obtained from mica crystals of only a few millimeters diameter. The percussion
figure, shown in Fig. 215¢, illustrates a six-rayed star, revealing the pseudo-
hexagonal structure of mica. The cracks run parallel to the edges which the
cleavage plane {001} makes with the prism {110} and the pinacoid {010}. The
crack developed parallel to {010} is usually somewhat longer and is called the
guide-ray. It runs parallel to the crystallographic @ axis and thus serves to estab-
lish crystallographic orientation of mica crystals, when no crystal faces are
present other than the cleavage face, as is usually the case.

3. Elastic Behavior

Free Thermal Dilatation. We shall discuss further some of those physical
phenomena in crystals which result in change in shape. In this case, however, the
shape is not permanently changed as in plastic deformation, but instead the
crystal recovers its original shape as soon as the distorting force is removed. A
simple example of this is free thermal dilatation, which is observed when a crystal
is uniformly heated or cooled. Although a spherical-shaped amorphous body
expands upon heating, its spherical shape is maintained. The expansion of a
crystal however, is directionally dependent (anisotropic), and generally a triaxial
ellipsoid is formed from a sphere. The symmetry of the space lattice is maintained.
Point rows remain point rows, and if they were originally parallel they remain so.
Only the distances between lattice points and the angles between lattice rows are



Elastic Behavior 115

changed (Fig. 216). Geometrically this form of deformation is called homogeneous
deformation.

Upon homogeneous deformation of a triclinic crystal, no relationship is found
between the orientation of the dilatation ellipsoid and the original crystallo-
graphic axes. In the case of monoclinic crystals, as a result of the preservation
of symmetry, one of the three axes of the ellipsoid must coincide with the two-
fold axis of the crystal or with the normal to its plane of symmetry. Following
conventional notation for monoclinic crystals, this axis is the b axis (see p. 14
and 22).

~N
\\
'\
~
N\
\\\
N
\0
~\,
\,
\\a

4 o -
/

/
tz z 5
/2 r[ / 4
L7 /"Z
. /’5' . /° . /°
A
/ / /
=L et
) & :

Fig. 216. Homogeneous deformation of a planar lattice

However, it is not possible to predict which of the ellipsoid axes this will be,
nor how the other two axes are oriented within the ac-plane. In the orthorhombic
system the three ellipsoid axes coincide with the three crystallographic axes,
giving rise to six possible orientations of the dilatation ellipsoid. In trigonal, tetra-
gonal and hexagonal crystals (see p.14 and 29), again in compliance with
symmetry, two or three major axes of the ellipsoid must be of equal length. Thus
the triaxial ellipsoid is actually a rotation ellipsoid, produced by the rotation of
an ellipse around one of its major axes. Finally, in the cubic system the symmetry
is so high that the triaxial ellipsoid degenerates to a sphere. During homogeneous
deformation, a cubic crystal behaves like an isotropic body.

In Table 22 and 23 some numerical values are given, representative of crystal
dilatation during heating. 4,, 4,, and 4; are the coefficients of expansion measured

Table 22. Linear expansion coefficients (1) and temperature coefficients (o)

Orthorhombic Ap-10° oy -10%8  A,-108 - 108 Ag+ 108 oy 108
crystals

Aragonite 9.90 0.64 15.72  3.68 33.25 3.36

Topaz 4.23 1.42 3.47 1.68 5.19 1.82

Hex. and tetrag. 20108 o;+10%  2,-108 o, 108 Cubic A-108  «-108
crystals crystals

Quartz 6.99 2.04 13.24 238 Diamond 0.6 1.44
Calcite 25.57 1.60 —5.7 0.83 Halite 38.59 448
Beryl —152 114 084 1.32 Sylvite 35.97 5.14
Brucite, Mg(OH), 4.7 11.0 Fluorite 17.96  3.82
Ca(OH), 334 9.8 Copper 16.17 1.82
Agl —2.26 —4.26 —0.10 1.38

Sb 17.3 1.34 83 —094

Bi 1537 3.1 1048  2.08

Mg 27 24

8*
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in the direction of the ellipsoidal axes. They indicate the relative increases in
elongation for a temperature increase of 1°C. A NaCl sphere of 1 cm radius
expands 38.59 - 1078 cm or 0.386 . with a 1° temperature increase. In the tetra-
gonal and hexagonal systems 4, is measured parallel to the 3-, 4-, or 6-fold axis
and A, perpendicular to it. Since the coefficients of expansion change with tem-
perature, temperature coefficients, o, o,, and oz, must be given also. If A9 is
the expansion coefficient at 0°C, then at ¢, A{=A-+«, * f. As indicated in the
table by means of minus signs, certain crystals contract upon heating, either in
all directions or along one major direction. Values not designated as negative
indicate expansion. The thermal expansion of a crystal is related to its structure.

Table 23. Some additional data for the expansion coefficients of low symmetry minerals

A+108
Anorthite 1 (001) 6.0
1 (010) 1.6
Mica (Phlogopite) 1L (001) 14.9
Diopside 1 (100) 6.6
1 (010) 155

Layer structures have smaller coefficients of expansion within the layers and
larger values perpendicular to them [Ca(OH),, Mg(OH),]. Close packed structures,
such as Mg, or approximately close-packed structures, like topaz, show little
directional dependence. Calcite has a greater expansion along the c-axis than
perpendicular to it. A more detailed discussion of structural control is still not
possible. Thermal expansion differs, depending upon the type of crystal and
direction within individual grains in a rock, and is important in considering
mechanical weathering of rocks (p. 243).

If a crystal is heated on a goniometer, it is observed that the interfacial
angles change. From such angular measurements it is possible to calculate the
axial ratios of the deformation ellipsoid. This was first pointed out by E. Mrt-
SCHERLICH in 1823. In addition to linear coefficients of expansion, one uses also
the ‘““cubic’, or better the volumetric coefficient, the increase, «, of the volume
¥, to volume ¥;, upon heating to 1°C.

n="{1+a).

Uniform (hydrostatic) Compression. It is possible to compress a crystal by
applying uniform pressure, just as it is possible to induce crystal expansion and
contraction by means of uniform heating or cooling. The same relationships apply
here as with free thermal dilatation. A spherical cubic crystal remains a sphere.
In the tetragonal and hexagonal systems a rotation ellipsoid is formed, and in
the remaining systems a triaxial ellipsoid. These ellipsoids differ from those for
thermal dilatation for all crystal classes in their dimensions; for monoclinic and
triclinic crystals also as to the orientation of the axes. Only in cubic crystals
can the thermal expansion be compensated completely by uniform pressure.
The measurement of compressibility is also expressed analogous to thermal
expansion through coefficients. If we designate ¥, as the volume of a crystal
under pressure P and V,,, as the volume under the pressure P--1, we obtain
the equation for the volume decrease per unit of pressure and the volumetric
compressibility coefficient %:

v,—V,
Vyrr=V,(1—k); k=prz’+1,
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Table 24. Some examples of volumetric compressibility coefficients; k - 108(0—30°C)

Li 8.6 Graphite <3.0 Feldspars 1.1-1.8
Na 14.2 Quartz 2.62 Calcite 1.36
K 23.2 Garnet 0.59 Aragonite 1.50
Rb 32.8 Olivine (fayalite) 0.87 Pyrite 0.70
Cs 36.4 Augite ~1.0 Marcasite 0.79
Au 0.577 Hornblendes ~13 Sphalerite 1.26
Cu 0.719 Mica 2.2 Wurtzite 1.31

Diamond  0.16

Table 24 gives a summary of some values for k. Here it is apparent that
compressibility correlates directly in the case of the alkali metals with their
atomic volumes. Among the silicates, the nesosilicates have the lowest values,
whereas framework and layer silicates, such as micas, give higher values. In the
case of polymorphic substances one would expect the least dense modification
to be the most compressible; in the case of calcite (d=2.71) and aragonite
(d=2.95 g/cm?), the situation is reversed.

The correlation between ionic radius, structural type, and compressibility is
especially noteworthy for the alkali halides listed in Table 25. Those salts with
the NaCl structure illustrate the correlation with ionic radius. The values for
CsCl, CsBr, and CsI are not directly com-

parable to the other values in the table, Table 25. Volumetric compressibility

since these three halides crystallize with  co¢fficients k-10°of thealkali halides at 30° C

the CsCl, rather than the NaCl structure. F al Br I
The dependence on structural type

is shown especially well by considering Li 1.50 334 423 589

linear compressibility. Although only a Ilga gg; gég2 égg gggﬁ

few data are available for minerals, such Rb ) 6.52 78 9.39

data are included in Table 26 along with
some values for metals and other com-
pounds. As was the case for thermal
expansion, the reference surface for tetragonal and hexagonal crystals is a rota-
tion ellipsoid; for triclinic, monoclinic, and orthorhombic crystals, a triaxial
ellipsoid.

The linear compressibility coefficients are either measured directly or calcu-
lated from elastic constants. In Table 26 the values given have meanings analogous
to those used for expressing thermal expansion. Therefore, if p is the value for

pressure, b=kgta-p.

k, represents, as before, values parallel to the major axes, k, perpendicular to it.

Cs 4.155 |5.829 6.918 8.403

Table 26. Linear compressibility coefficients for some tetrag. and hex. crystals
(mostly at 0—12,000 kg[cm?)

Bo10° oy -102  E,-108 - 10%2

Be 0.220 — 0.70  0.282 —1.67
Mg 0.9842 — 6.561  0.9845 —9.19
Zn 0.35 — 7.68 0.157 —0.75
Sb 1.648 —20.5 0.5256 —4.56
Bi 1.592 —11.1 0.6620 —4.30
NaNO, 2.436 —23.5 0.709 —5.88
Calcite, CaCO, 0.882 0.273

Quartz, SiO, 0.718 0.995

Rutile, TiO, 0.105 0.190
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Be and Mg, with hexagonal-close packing, show essentially no anisotropy; in
the case of Zn, with c:a=1.86 and representing a transition between a normal
and layered structure, the anisotropism is clear, and with Bi and Sb, which have
definite layer structures, very pronounced. NaNO, is much more compressible
perpendicular to the plane of the NO; groups than in the direction parallel to it,
in accordance with its structure.

Pyroelectricity. Upon homogeneous deformation the phenomenon of pyro-
electricity (pyr, Greek, fire) is encountered in crystals with a polar major axis.
When such a crystal is heated or cooled, alternate ends of this axis become
oppositely charged. We have already mentioned tourmaline (see p.33) as a
typical example. This phenomenon was recognized long ago by Linn# (1747) and
AEPINUS (1756). To demonstrate this property, one usually utilizes the fact that
oppositely charged ends of the crystal attract small, charged particles. If a
cooling crystal is dusted with a mixture of sulfur and red lead, which in turn
has been charged by passing it through a fine cotton sieve, the yellow sulfur
becomes negative from the friction, the red lead powder positive, and each is
attracted by electrostatic attraction to the appropriate end of the crystal. It is
also possible to measure the potential developed between the two ends of the
crystal by means of sensitive measuring instruments. This effect is confined to
the classes 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, and 6 mm. Detection of pyroelectricity
can be used to establish the appropriate crystal class in the case of crystals which
have imperfect morphological form development. It is necessary, however, to be
very cautious about such conclusions.

Piezoelectricity. If a crystal is not uniformly heated, stresses occur which
can cause the development of electrical charges. One can accomplish this also by
applying pressure along a polar direction. This direction need not coincide with
a polar axis of symmetry. This phenomenon is called piezoelectricity (piezein,
Greek, to press). It was discovered in 1880 by the brothers J. and P. Curie.
M. G. LippMANN concluded the following year that the opposite effect of alter-
nating contraction or expansion of a crystal must be effected by applying alter-
nating electrical potentials. For many crystals this property has attained great
technological importance. It is not confined to the classes that exhibit pyro-
electricity, but can occur in all those classes in which polar directions are possible,
that is those without a center of symmetry. Only the class 432 has such high
symmetry that in spite of the absence of a center of symmetry, no piezoelectric
phenomenon can occur. This was pointed out by W. Voiar long ago. To the
pyroelectric classes can be added also the classes 222, 4, 42m, 422, 32, 622, 8, 6m 2,
23 and 43m.

Quartz is technologically the most important naturally occurring piezoelectric
crystal. It exhibits this effect in the direction of its polar 2-fold axis. Since its
atomic arrangement is also polar in this direction, it can be demonstrated that
compression causes a predominantly positive charge to develop on one side, and
a negative charge on the other. As a result of left-right twinning the effect is
cancelled. Oscillator quartz is used for the control of radio transmission, as a
time and pressure measurer, and for the generation and reception of sound
waves of exceptionally high frequency (ultrasonic waves). It should be recalled
that a true pyroelectric effect cannot occur in the crystal class of quartz. Piezo-
electric investigations are of general importance in determining whether a crystal
has a center of symmetry.

Theory of Unilateral Stress. The theory of unilateral stress is considerably
more complex than that of uniform deformation. We can take as an example a
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crystal rod which is stretched. The elastic elongation is proportional to the stress,
for example, an attached weight (Hook’s law).

All—=ocS.

Here A1 is the elongation and ! the total length of the crystal rod, S the tensile
stress (force per unit area). « is a proportionally constant, termed the extension
modulus. Its reciprocal, 1/a=E, is the elastic modulus. In a crystal the elastic
modulus is likewise dependent upon direction. In order to describe the elastic
properties of a crystal, six equations are necessary which, in the general case of
the triclinic crystal, contain 21 constants. The higher the symmetry, the simpler
the equations. Even so, in the cubic system three constants are necessary for
complete characterization.

4. Crystal Optics of Visible Light

Introduction. For the mineralogist the most important area of crystal physics
is optics, involving the wave length range of visible light (“ordinary” light)
as well as X-radiation. Those phenomena which involve ordinary light are treated
from the point of view of a continuum, for in this way they are much more simply
described. We may use the notion of a continuum, because the wave lengths of
ordinary light are very large compared to the lattice distances in crystals. For
example, the wave length of red light is 6,400—7,500 - 10-8 cm, whereas the
distance between two C atoms in diamond is 1.54 - 108 cm. When considering
X-ray optics, the wave lengths are the same order of magnitude as the lattice
spacings. For example the wave length of Cu K, radiation is 1.54 - 10~8 ¢cm. Thus
in this case matter must be considered as a discontinuum. Both optical concepts
are indispensible tools to the mineralogist. Anyone who, like the chemist, wants
to study laboratory prepared erystals or, like the geologist and soil scientist,
wants to identify minerals accurately or, like the petrologist, to study the struc-
ture of rocks, must master the fundamentals of both optical concepts. In addition
these concepts are used in other sciences, especially metallurgy and structural
study areas. These concepts have been advanced through this work.

a) Optically Isotropic Substances

Refraction. We shall begin with ordinary light and consider refraction first.
In optically isotropic, weakly adsorbing media, such as gases, liquids, glasses,
and cubic crystals, like NaCl, sphalerite, and diamond, SNELL’S law of refraction
is applicable. According to this, the ratio of the propagation velocity of light in
a medium 4 to its velocity in a denser medium B which it encounters after
crossing an interface, is equal to the ratio of the sines of the angle of incidence ()
at the interface and the angle of refraction (8) in B.

Light velocityin4 __ sin«
Light velocity in B ~ sinfg °

The reciprocals of the light velocities, referred to the velocity of light in a vacuum,
are called the refractive indices, ny and ng. Therefore,

sin o ng

sin ﬂ nyq
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In the following discussion and diagrams, the light beam used in experiment
will always be represented by a single ray. Refraction studies are normally in-
vestigated with reference to air and, since m, is close to unity, (n,; =1.0003)
sin a/sin f§ gives the refractive index of the substance B.

Total Reflection. If we consider a case in which the light passes from the
medium B, with the higher refractive index, into 4, and gradually increase the
angle 8, a value of § is sooner or later reached, depending on the magnitude of
ng, at which no more light passes into 4. This value of 8 is called the limiting
angle of total reflection. Diamond owes a considerable part of its brilliance to the
phenomenon of total reflection. An appropriately cut diamond (brilliant cut),
because of its high index (2.4), totally reflects a great deal of light from the under-
side of the crystal (Fig.217). Accordingly the under surfaces of the diamond
appear mirrored, as if silvered.

Reflection. In addition to the light reflected internally by a diamond,
additional light is reflected from the surface. Together these produce the *brillian-
ce” of the skillfully cut diamond. That portion of the light reflected from the
surface is that which is only weakly absorbed in the case of colorless or weakly
colored substances. The greater the index of refraction of the reflecting substance,
the greater the reflectivity. Some data are given in Table 27. For perpendicular
incidence and weak adsorption the formula

_ (a—1p
= ety

applies. R is the relecting power and represents that percentage of the incident
beam which is reflected. For oblique incidence a more complex formula applies.
Luster. Luster is an important diagnostic property for mineral identification.

It depends, in the case of perfectly planar surfaces, on the reflecting power of the
crystal. With minerals one distinguishes between those with adamantine luster
(therefore, high index of refraction)
and wvitreous luster. Minerals which
strongly adsorb visible light reflect it
much morestrongly than diamond. They
\ are said to have metallic luster. An ex-
ample is silver, which reflects 95 % of the
light at perpendicular incidence. The
luster also depends on the detailed sur-
face structure, in addition to the index of
Fig. 217. Refraction of light in diamond refraction, and on the adsorption power,
(brilliant cut) giving rise to variations in luster de-

scribed as waxy, pearly, silky, ete.

s Violet
- Ked

7

Streak. In addition to luster the “streak” of minerals is used for identification.
A fine mineral powder is produced by rubbing the specimen on an un-glazed
porcelain plate. Colorless minerals give a white streak, resulting from complete
scattering of light. Colored minerals, especially those with metallic luster, fre-
quently give colored streaks, because tiny particles distributed in thin layers on
a white surface, still transmit light differentially for those wave lengths which
are not too strongly adsorbed.

Dispersion. Returning again to diamond, we notice that it has an additional

property which makes it especially popular as a gem stone, — its play of colors.
This is because the index of refraction of diamond is different for different wave
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lengths; that is, it exhibits dispersion. The difference between the indices of
refraction for wave lengths 1= 0.397 and 1=10.760 p. is 0.0628 for diamond. This
is approximately five times the dispersion

for water, and three times that for Table 27. Percent light reflected
ordinary glass. This dispersion is partic-
ularly noticeable if we consider the case  Angle of incidence 0° 70°

in which light emerges from the diamond .
into air as shown in Fig. 218a. The Dismond ~—(mp —223) 17 27
. R . rossularite (np =1.75) Y, 21
violet light (0.397 p) emerges, just graz-  Gjaes (np =1.50) 4 17
ing the surface, whereas the red light Water (np =1.33) 2 13
(0.760 ) emerges at an angle of 13°. The
angle of incidence here is 24°. By re-
ducing the angle to 20° (Fig. 218b), the dispersion of the two rays is now only
2°13’. Play of colors and brilliance together cause the characteristic “fire”’ of
diamond.

Index of Refraction Determination by the Immersion Method. Determination
of index of refraction by prism methods and by means of total reflection, as
discussed in many physics texts, will not be considered here. Likewise, it will
not be possible to go into the different
methods of producing monochromatic
light. Here we shall consider only that

method of index determination which has A %f
been adopted for microscope work and y Yiolet: 03

which has proven especially convenient
and accurate. This is the immersion
method.

If a fragment of a transparent, iso-
tropic crystal or glass is immersed in a
liquid of the same index of refraction, a b
it cannot be distinguished from the - . .

. . . ig. 218a and b. Dispersion upon emergence
surrounding medium, when using mono- ot white light from diamond into air.
chromatic llght, and if the surfaces of (a) Angle of incidence 24°. (b) Angle of
the fragment are very clean. In incandes- incidence 20°
cent (white) light, the indices of refraction
for all the different wave lengths are never exactly the same. As a result of dis-
persion the object appears with slightly colored borders. If the indices of refraction
of the object and the immersion medium are very different, the grain stands out
prominently, that is, it shows relief. This is because surface irregularities scatter
the light. In addition such a grain (under the microscope) exhibits a bright
border of light. If the barrel of the microscope is raised, the bright line
appears to migrate into the medium of higher index of refraction. This line
is called the Becke line after its discoverer. It provides us with a very convenient
means of determining whether the grain or the immersion medium has the higher
index of refraction. This behavior can be applied also to anisotropic crystals, as
will be shown later (p.130). To explain the Becke line let us observe Fig. 219,
which illustrates the refraction relationships for a fluorite cleavage fragment,
n=1.435, immersed in water, »=1.333. With perpendicular, as well as obliquely
incident light, the light is bent predominantly into the crystal, because of its
higher index of refraction. Total reflection occurs in part, but this is by no means
a necessary requisite, nor is it necessary that the interface be vertical. A complete
explanation of the phenomenon would require consideration of diffraction as
well as refraction. Increased illumination on the inner border of the higher-index
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medium results from the converging rays. As the focal plane of the microscope is
raised, it appears as if the Becke line migrates inward in this case; lowering it
moves the Becke line outward.

b) Optically Anisotropic Substances

The Discovery of Double Refraction. We have discussed thus far only simple
refracting or optically isotropic substances. The majority of crystals behave
differently, showing double refraction.
This was first observed by Erasmus
BArTHOLINUS, a descendent of a Dan-
ish academic family. His publication
dates from 1669, the same year in which
his countryman STENO published the
law of constancy of interfacial angles.
The first sentences of his treatise are so
characteristic of the genuine delight of a
scientist with a new observation, that
Fig. 219. Refraction conditions of a fluorite (1°Y Shall be quoted from the translation
fragment in water. I, 2, illumination by a by MIELEITNER:

parallel beam; 3, 4, illumination with a *Diamonds are reknown to all peoples and
convergent beam; 1, 3, 5 illumination of manifold are the joys which such treasures as

the left and 2, 4, 6 right edges with conver-  Precious gems and pearls bring, but they serve
gent, beam only for pomp and adornment of finger and

neck. On the other hand, he who prefers for

enjoyment the knowledge of rare phenomena

will, T hope, have no less joy in a new form of body, a transparent crystal which was brought

to us recently from Iceland, and belongs perhaps to the greatest wonders which nature has
created.”

He describes then a cleavage rhomb of calcite. If we also examine such a

piece, and allow a narrow beam of light to fall on it, we observe that within the
crystal the light is broken up into two beams. In 1679 CarisTiaN HUYGENS gave
a plausible explanation for this phenomenon, suggesting that two light waves
are transmitted in the crystal. HuvceNs thought in terms of longitudinal waves,
and thus could only explain a portion of the observed phenomenon. His wave
theory was not accepted because the Newtonian corpuscular theory was in vogue
at the time. Complete explanation on the basis of wave theory first came, when,
in the year 1808, MaLus looked through a calcite rhomb into an open window
of the Luxemburg Palace in Paris. He noted that the two images produced
change in brightness as the crystal is rotated. He concluded from this that the
light corpuscles were somehow one-sided or polar, and called the phenomenon
polarization. This observation of MaLus led the Englishman Youxe (first in a
letter to ARAGO in 1817) to establish a wave theory for light based on transverse
waves. Interference phenomena can be shown for longitudinal as well as trans-
verse waves, but only the latter can exhibit polarization perpendicular to the
direction of propagation. Polarization means then, that from a whirl of transverse
waves vibrating in all directions, those are ‘sifted” out, which vibrate only in
one direction. Thus some crystals exhibit two phenomena which are not charac-
teristic of amorphous bodies, like liquids or glass. These are double refraction and
polarization.

Wave Normals. As we observe the refracted light in anisotropic crystals, it
becomes apparent that SNELL’S law is not completely valid. For one of the
sin o Cy . . o s

- = —4 is no longer constant; indeed it is no
sin B Cp

refracted rays the expression
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longer necessary that the refracted rays lie in the plane of incidence. If we turn
our attention however, from propagation velocities in the direction of the light
rays, to directions of the wave normals, we find that SNELL’S law is in fact valid.
In isotropic bodies ray directions and wave normal directions coincide, but this

isnot generally the case in crystals. In an anisotropic medium, Sm — (Cah
sin (CB)w

applies

for wave normal velocities. Since in this case the wave normal transmission velo-

city in the crystal, (Cg),, is dependent on direction, —:;nn—a isno longer constant.
In optically isotropic media, refraction relationships can be illustrated, using
the representation of Huygenian wave fronts. For anisotropic crystals a more

complex surface must be substituted for the spherical wave front. Its form

Fig. 220. Refraction of monochromatic light at the air-calcite interface. A wave front of the
light incident at the right intersects the calcite interface earlier at A than at C, since the ray
at C must travel the additional distance BC. The drawing shows the optical relations at the
instant the ray reaches C. By this time at 4 the light, which has been broken up into two
components, has moved along paths defined by the ray velocity surfaces shown. The line
connecting the points of intersection of the two surfaces is the [00.1] direction. The dotted
extensions of the ray velocity surfaces in calcite have no significance in air. They are shown
only to assist in clarifying the shapes of the surfaces. At all points between 4 and C light
rays are scattered to develop ray velocity surfaces. These become smaller and smaller toward
C as the time interval becomes shorter. C ¥ and C'F represent the wave fronts of the ordinary
and extraordinary waves respectively. The directions of propagation of these waves are
perpendicular to their corresponding wave fronts. The directions of propagation of the corre-
sponding rays are A E and AF

depends upon the crystal symmetry, as well as other factors. For calcite it con-
sists of a sphere and an oblate rotation ellipsoid (an ellipse rotated around its
shorter axis) which coincide at two points. The line connecting these two points
coincides with the direction of the three fold axis in calcite. The refraction re-
lationships at the calcite-air interface are illustrated in Fig. 220. These optical
surfaces have a rather more complex form in crystals of lower symmetry (ortho-
rhombie, monoclinic, triclinic). Mathematically this surface is represented by a
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quadratic equation. There are always two wave fronts associated with each ray
direction, and vice versa (Figs. 221 and 222). Mastery of the optical processes in
crystals is easier, when we note the wave normal directionsinstead of ray directions.
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Fig. 221. The two wave normals (N; and Fig. 222. The two ray directions (8; and
N,) corresponding to the ray direction (S) S,) corresponding to the wave normal (&V,)

In this way we can describe all of the phenomena which are important to us. In
the following discussion, when we speak of direction of propagation, we shall
always be referring to the wave normal velocities and likewise to the refractive
indices of the wave normals.

The Indicatrix. The light associated with each of the two waves transmitted
in our calcite crystal is not polarized in the same directions. The vibration direc-
tions of the two waves are perpendicular to each other and both vibration direc-
tions are perpendicular to the wave normal. This is true of all double refracting
(anisotropic) crystals. In order to describe the behavior of light in such crystals,
we shall consider a graphical three-dimensional plot of the indices of refraction
in the vibration directions of the corresponding waves. This gives us, so to speak,
an orthogonal system of coordinate axes. One axis is represented by the wave
normal; the other two axes are the vibration directions. The lengths of the
vibration axes represent the indices of refraction of the two waves. If we insert
this axial system into the center of an anisotropic, transparent crystal and allow
the wave normal to assume all possible orientations, the ends of the index axes
describe a triaxial ellipsoid. This is a body which we have already encountered
(see p. 102) in discussing mechanical deformation of a sphere and free thermal
dilatation (p.114). In optics this solid figure is called an indicatriz or index
ellipsoid (Fig. 223). Cross-sectional planes in the indicatrix are generally ellipses.
Let us imagine now a crystal into whose interior the surface of the ellipsoid is
somehow engraved. If we remove an infinitely thin wafer perpendicular to a
wave normal, the lengths of the radii of the ellipse give the indices of refraction
of the two waves associated with the wave normal. The directions of the radii
represent their vibration directions.

The indicatrix has three principal sections, which are also its planes of sym-
metry. The intersections of the three planes define the longest, shortest and
intermediate axes and, therefore, the highest (n,), lowest (n,), and intermediate
(ng) indices of refraction!. If the wave normal coincides with the n, axis, the
elliptical section perpendicular to it contains n, and ng. The birefringence of this
plate is ny —n,. If we now incline the wave normal to the n, line, in the plane con-

1 The major indices of refraction n,, ng, and n, are also designated in the literature as
a, B, and y or as n,, n,, n,.
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Fig. 223. Biaxial indicatrix showing randomly oriented elliptical section

Fig. 224. Biaxial indicatrix showing circular sections and the two optic axes 04

taining n, and n, (Fig. 224), we obtain an ellipical perpendicular cross section.
One radius is again 7g; the other radius is now larger than n,, and continues to
increase with increasing inclination, until the wave normal finally attains a
position where it takes on the value of 7. The cross section is then no longer an
ellipse, but instead a circle with radius ng. Such a circular section would also
have been obtained if we had originally inclined the wave normal toward the
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opposite side in the n, —n, plane (Fig. 224). A circular section implies that the
two waves associated with the wave normal have the same index of refraction.
In the direction perpendicular to the circular section, no double refraction occurs.
The crystal behaves like an isotropic body. These two special directions are called
the opticaxes, and such crystals are called optically biaxial. The term ‘‘optic axis’is
unfortunate in that the beginner must always take care to distinguish between
optic axes and ellipsoidal axes. There is also some danger in confusing them with
crystallographic axes.

The orientation of the indicatrix (optic orientation) with respect to the
crystallographic axes depends on the crystal symmetry, as was mentioned earlier
in discussing the ellipsoid formed during free thermal dilatation (p.114). The
triaxial ellipsoid itself (p.115) has the symmetry mmm, with three mutually
perpendicular symmetry planes and three orthogonal 2-fold axes. In triclinic
crystals it is not possible to predetermine which optical orientation the indicatrix
will assume. The orientation will be governed by the symmetry restrictions, which
in this system is no more than a center of symmetry. In a monoclinic crystal
either the two-fold axis must coincide with an ellipsoidal axis or the symmetry
plane of the crystal with one of the principal sections of the indicatrix. It is easy
to see, that within these limits, an infinite number of optic orientations are
possible. In an orthorhombic crystal, however, there are only six possible optical
orientations, and one of these must be appropriate in an individual case. In
addition to optical orientation, note must also be taken of the form or shape of
the indicatrix, and, related to it, the angle between the optic axes. Both the shape
and optic angle change with wave length as well as with temperature. For mono-
chromatic red light, the optic angle is different than for blue light. In the trigonal,
tetragonal and hexagonal systems the triaxial ellipsoid becomes a rotation ellip-
soid. Thus only one circular section is present. The crystal is optically uniaxial,
that is, it behaves as if isotropic in only one direction. The optical axis coincides
with the major crystallographic axis (3-, 4-, or 6-fold) of the crystal. In the cubic
system, finally, the indicatrix is a sphere so that only one index of refraction is
necessary to characterize the crystal. There are no unique vibration directions.

For uniaxial crystals the major refractive indices are designated as w and &,
the Greek letters for the Latin expressions for ordinary (ordinarius) and extra-
ordinary (extraordinarius) waves. In order to understand this method of notation,
we shall consider once again a ray of light obliquely incident on the face of a
calcite cleavage rhomb (1011). The birefringence (double refraction) causes the
incident ray to be resolved into two rays within the crystal (Fig. 220). If we
rotate the crystal around the face normal, one of the two rays in the crystal
responds to this rotation as it would in an isotropic crystal. This ray and its
associated wave are called the ordinary. On the other hand the direction of
transmission of the other ray changes as the crystal is rotated, and indeed the
ray itself rotates around the ordinary. This ray and its associated wave are
called the extraordinary.In optically uniaxial crystals the index of refraction
of the ordinary wave is always constant. The indicatrix is a rotation ellipsoid
with an infinite number of symmetry planes passing through the rotation axis.
Each such plane is called a principal plane. The axes of the ellipse coinciding with
a principal plane represent the refractive indices @ and ¢. Depending on the shape
of the uniaxial indicatrix, two kinds of uniaxial crystals can be differentiated.
If the rotation axis is greater than the diameter of the circular section (Fig. 225),
that is, if ¢ >, the crystal is uniaxial positive. Quartz and rutile are examples.
Crystals for which ¢ <w (Fig. 226) are uniaxial negative. Calcite and apatite are
typical examples.
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Fig. 225. Uniaxial positive indicatrix
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Fig. 226. Uniaxial negative indicatrix

One distinguishes between optically positive and negative biaxial crystals also.
If the angle between optic axes (around #,) is less than 90°, the crystal is said to
be biaxial positive; when greater than 90°, biaxial negative. The index direction
which bisects the acute optic angle is called the acute bisectriz. That which bisects
the obtuse angle, the obtuse bisectriz. According to the definition of a biaxial
positive crystal, n, must be the acute bisectrix, and n, the obtuse bisectrix.
In negative crystals the situation is reversed; n, is the “acute bisectrix, n, the
obtuse. The angle between the optic axes is the optic angle and is des1gnated as
2V. By convention in biaxial positive crystals this is the angle around n,, in
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negative crystals, around n,, so that 2V is always less than, or at most, equal
to 90°. If by chance the optic angle is exactly 90°, the biaxial crystal is optically
neutral. The ng axis of the indicatrix is the optic normal. As the optic angle of a
positive indicatrix becomes smaller and smaller, the indicatrix approaches the
shape of a positive uniaxial indicatrix and the two circular sections merge into
one. As the angle about n, becomes smaller, the indicatrix becomes a negative
rotation ellipsoid whose rotation axis is n,.

The optic angle is also an important parameter for identification. It is more
sensitive than the indices of refraction to changes in the shape of the indicatrix.
The 2V is related to the major indices of refraction n,, n;, and n,, by the following
expression :

—nd
tan v = 2o |7
T My — ”§

For very low birefringence, the following expression can be used:

tan Vgll " "
n, '—‘nﬂ

In both cases the optic a,ngle about n, is calculated. If (n,—mn;) > (1 —mn,),
V <45° and the crysta,l is positive. If ( ng) < (mg—mny) 1t is negative. The
optic axes always lie in the n, n, plane. Thls plane is called the optic plane.

Polarizers. Up to now we have only considered crystal optics from the theo-
retical standpoint. Let us now take a look at the phenomena which are important
for the investigation of crystals by means of the polarizing microscope. Such an
instrument is different from an ordinary microscope in that devices are included
for producing polarized light. The simplest method of doing this is by reflection,
for example, from a glass plate. The light observed by MaLus in looking through
a calcite crystal was polarized by reflection. In 1815 BREWSTER showed that
polarization by reflection is most complete when the reflected and refracted rays
are perpendicular to each other. If « is the grazing angle and n the index of
refraction of the reflecting substance:

sin o

m:tz—ma:n.

The vibration direction of the reflected ray is in the plane perpendicular to the
reflecting surface (Fig. 227). Sets of glass plates were used as polarizers in the
Noerrenberg polarization apparatus, which was for a long time the only polarizer
available for light beams of large diameter.

A second way of producing polarized light is to utilize the double refracting
property of a crystal and eliminate one of the doubly diffracted rays produced
in some unique direction of propagation. This can be accomplished by differential
absorption. In strongly absorbing crystals the two waves are not only refracted
by different amounts, but they may be absorbed to a markedly different extent.
If, in a crystal plate, only visible light is transmitted in one vibration direction,
and only ultraviolet, for example, in the other direction, the crystal can serve as a
polarizer for visible light. In many tourmaline crystals the ordinary ray is com-
pletely absorbed and only the extraordinary rays are transmitted, somewhat
reduced in intensity. A tourmaline plate cut parallel to the 3-fold axis, lets only
the light of the extraordinary ray through. Its vibration direction lies parallel
to the optic axis, corresponding to the general optical properties of uniaxial
crystals. Earlier such tourmaline plates were actually used as polarizers. It is



Crystal Optics of Visible Light 129

possible to produce only very narrow beams of polarized light with these crystals,
since there are no large usable tourmaline crystals. In addition the extraordinary
ray is always colored. Even if it were possible to find a tourmaline crystal in
which the extraordinary ray was very slightly diminished, it would still appear

'

Fig. 227. Polarization of light by reflection and refraction in an isotropic medium

colored because both waves are important for the total impression of the absorp-
tion phenomenon. The adsorption properties of iodocinchonidine-sulfate, called
herapathite after its discoverer HERAPATH (1852), are more favorable than those
of tourmaline. From this substance it is possible to produce thin crystal plates
of several centimeters size. It is now possible to produce thin transparent sheets
of parallel oriented herapathite crystals embedded in plastic (polaroid). These
have such fine optical properties that they have essentially replaced the early
calcite polarizers for use in mineralogical microscopes.

T

Fig. 228. Ray paths in the Nicol prism

A third way to produce polarized light depends again on use of a double
refracting crystal. In this case the phenomenon of total reflection is used. For this
calcite is used. In Na-light the index of refraction of the ordinary wave is 1.658 and
the major index for the extraordinary wave is 1.486. A calcite prism is cut so
that the incident light produces extraordinary waves having the index ¢’ =1.54.
The prism is cut in half along a diagonal face and the two halves recemented with
Canada balsam, n ~1.54. The inclination of the faces was so chosen that the
ordinary wave, whose index is always equal to 1.658, is totally reflected in passing
from calcite into the Canada balsam, whereas the extraordinary wave passes
through this interface (Fig. 228). This form of polarizer was first described in
1828 by NicoL. Today other cutting orientations as well as other cementing agents
are used. The principle, however, remains the same.

9 Correns, Mineralogy
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An Anisotropic Plate in Parallel and Polarized Light. Let us now observe a
plate cut from a crystal in an arbritary orientation and illuminated by polarized
light. The elliptical section of the indicatrix gives the vibration directions of the
two waves and their indices of refraction, 7, and n, (n, <n,). In order to determine
the indices of refraction of the plate by means of the Becke line method (p. 121),
we must first orient n, with its vibration direction parallel to the vibration direc-
tion of the polarizer. Then only light vibrating in this direction passes through
the plate, and it has the index n,. To determine n,,, the procedure must be repeated,
reorienting the crystal so that n,, is parallel to the polarizer. This procedure can
be demonstrated, using an aggregate of aragonite crystals imbedded in Canada
balsam (n ~1.54). The aragonite crystals are elongated parallel to the ¢ axis
» (n,, parallel ¢c=1.530, ng, parallel a =1.682, n,, par-

, allel b =1.686). It is observed that in one orientation

ny aragonite has a significantly higher index than Can-

ada balsam; in the other direction it is a little lower.

ne g Using the Becke line method, one can estimate also

the differences in indices between two crystals of dif-

ferent minerals in contact, for example, quartz and

feldspar. To do this, the orientation of the indicatrices
of both grains must be taken into account.

An additional phenomenon very important for
mineral identification can be discerned by use of the
. . polarizer. This is pleochroism. In anisotropic crystals
Fig. 229. Wave amplitude  t}¢ 0 perpendicular vibrating waves are absorbed
in a birefringent plate illu- . . .
minated by polarized light PO Varying degrees. Thus all anisotropic crystals are
with vibration direction P  pleochroic to some extent, but the differences in ab-

and amplitude 4 sorption do not in all cases lie in the narrow spectral
region to which our eye is sensitive. An especially
beautiful example of pleochroism is exhibited by cordierite, as was mentioned
early in the introduction to this book. A cube of cordierite is cut with the cube
faces parallel to the three principal sections of the indicatrix. If we orient the
three major vibration directions parallel to the polarizer one after the other, we
see that when n, is parallel to the polarizer, the crystal appears yellow, when n,
is parallel it is blue, and when 7, green. Other minerals with strong pleochroism
are tourmaline, biotite, amphiboles and epidote.

We have considered thus far only the two cases in which one of the two
vibration directions in the plate lies parallel to that of the polarizer. We should
consider also the random rotation of the crystal plate with respect to the vibra-
tion direction of the polarizer. If 4 is the amplitude of the wave transmitted
through the polarizer, and ¢ the angle between the n,, direction and the vibration
direction of the polarizer, and g and a the amplitudes of the two waves in the

crystal plate (Fig. 229), then
g=Acos¢ and a=4sing.

It is seen at once that, when ¢ =0°, g=4 and a =0, and for ¢ =90°, a =4 and
g=0. Between these two extremes, which involve planar polarization, the two
waves combine by phase shifts to form elliptically polarized waves. The com-
bination of two waves of unequal amplitude vibrating perpendicular to one
another and with A/4 path difference to form elliptically polarized light is shown
in Fig. 230. Waves of equal amplitude combine under like conditions to form
circular polarized light (Fig. 231). The polarization state of light after passing
through polarizer and crystal plate depends, therefore, on the orientation of the
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plate relative to the polarizer. In addition the birefringence must be taken into
account. This is equal to the difference in the two indices of refraction, n, --n,.
In addition the thicker the plate, the greater the path difference of the two
waves. The product of the crystal thickness, d, and its birefringence (n, —n,) is
called the retardation.

Fig. 230. Combination of two transverse waves of unequal amplitude, vibrating perpendicular
to one another and with a path difference of 1/4. (From Posnr)

If we observe a crystal plate of uniform thickness (for example, a mica cleavage
sheet) which gives a phase difference of 1/4 in polarized light (Fig. 232), ellipti-
cally polarized light is produced by rotation between ¢ —=0° and ¢ =45°; at
¢ =45° circularly polarized light, and between 45 —90°elliptically polarized light

Fig. 231. Combination of two transverse waves of equal amplitude vibrating perpendicular
to each other and with a path difference of 1/4. (From PoHL)

is produced again. At 90° the ellipses degenerate to a straight line, and no light
vibrating in the n, direction comes through the plate. Only light vibrating in
the 7, direction, which is then oriented parallel to the polarizer, comes through.
In this experiment the relative amplitudes have been changed by rotating the
plate, and the phase difference has been kept constant. At ¢ =45° the amplitudes
of the two waves are equal. We shall now consider a case in which the phase
difference is varied. To do this a wedge-shaped quartz crystal, cut parallel to
its optic axis, is gradually inserted above the polarizer in the 45° position (Fig. 233).
The phase difference increases with increasing wedge thickness. Parallel polarized
light is produced at phase differences of 0, 1/2, 24/2, 31/2, 41/2, etc. and vibrates
perpendicular to the polarizer at uneven multiples of 1/2 and parallel to it at
even multiples.

A Birefringent Plate between Crossed Polarizers. Let us now consider an
additional polarizer, an “‘analyser”, installed above a crystal plate, with its

o*
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vibration direction perpendicular to that of the polarizer. Let us observe the
uniform crystal plate in monochromatic light as we did in the first example
above (Fig. 232). When the crystal plate with constant phase difference is rotated,
darkness occurs at ¢ =0° 90°, 180°, etc. The plate becomes dark four times
during complete rotation and is bright in between. Maximum brightness occurs

- '*’Ir'
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Fig. 232. Polarization state of planar polarized light after passing through a crystal plate

which produces a retardation of /4. The orientation of the plate with respect to the vibration

direction of the incident light is varied corresponding to the angle g. The heavy arrow gives
vibration direction of incident light
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Fig. 233. Vibration directions in a quartz wedge in polarized monochromatic light. By com-
parison with Fig. 234 the directions shown here correspond to red light with 1~656 my.

at ¢ =45° 135°, 225°, etc. When a quartz wedge instead of the uniform plate
is inserted between crossed polarizers in the 45° position, darkness occurs at the
places where the phase differences are 0, 4, 24, etc. The light, as it emerges from
the wedge, is vibrating perpendicular to the vibration direction of the analyzer.
At 2/2, 312, 51/2, etc., however, maximum brightness is observed. Here the
vibration direction of the wedge coincides with that of the analyser. These ob-
servations are described in the basic formula of FRESNEL:
A=A,sin 2¢ sin ni(nil_"“) .
0

A is the amplitude of light emerging from the analyser, 4, of the light from
the polarizer, ¢ the rotation angle which we have used already, d the plate thick-

ness, (n, —n,) the birefringence of the plate and 4, the wave length in vacuum
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(essentially equal in air). The formula is usually written in quadratic form,
since the light intensity is proportional to the square of the amplitude. It can be
seen at once from the formula that when ¢ =90°, 2¢ = 180°, etc., the amplitude 4
becomes zero. This is also the case when d(n, —n,) =21, 24, 34, etc. At ¢ =45°,
135°, etc., the value for sin 2¢ attains its maximum value, 1.

If the quartz wedge is illuminated with white light, the maxima of brightness
and darkness occur at different places for different wave lengths. This is illustrated
in Fig. 234 for blue, green, and red light. As a result of extinction of certain wave
lengths through ¢nferference, bright interference colors occur, which correspond
to those which are exhibited as Newton rings in thin films and which like them
are distributed in orders. In Fig. 235 interference colors exhibited by different
minerals in white light are shown and related to d and (n, —n,). The values of
birefringence of the minerals shown are based on (¢ —w) for uniaxial erystals and
(n,, —n,) for biaxial crystals for sodium light (1 =589 my). With the help of this

Fig. 234. The quartz wedge in white light, between crossed Nicols

2 Brightness for blue light 8 Brightness for green light

} A=5330 A

o Darkness for green light

N A=4341 4
A Darkness for blue light

E Brightness for red light
4=6563 A
= Darkness for red light

table (Fig. 235), the retardation can be determined from the interference color
of the crystal plate in the 45° position between crossed polarizers. If the bire-
fringence of the mineral in the direction of transmission is known, the thickness
of the specimen can be determined from the interference color. This approach is
used in the preparation of thin sections. A rock specimen is cut just thin enough
for the quartz which is present to show its maximum first order white inter-
ference color (the quartz exhibiting this color is cut parallel to its optic axis).
Under these conditions the thin section has the standard thickness of 30 .
Conversely, in a thin section of known thickness (determined from the maximum
interference color of quartz), the birefringence of a mineral can be estimated
from the interference color. This is an extremely important diagnostic aid in
petrography.

Determination of the vibration directions of n, and 7, in a mineral grain is
also important for identification. It is only necessary to rotate the specimen
between crossed polarizers until complete darkness is obtained. Then the vibra-
tion directions in the grain are parallel to those of the polarizer and analyser.
The ocular of the mineralogical microscope is equipped with cross-hairs which
serve to indicate these directions at a glance. The vibration directions of n, and n,,
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Fig. 235. Interference colors of minerals for maximum birefringence in relation to plate
thickness

are found during rotation to lie in the positions of darkness. These positions are
called extinction positions. A crystal of anhydrite, which cleaves along (100),
(010), and (001), always shows perpendicular sets of cleavage cracks. The crystal
shows extinction when the two cleavage directions parallel the vibration directions
of the crossed polarizers. It is possible to use anhydrite to test whether the vibra-
tion directions of the polarizers are parallel to the cross hairs of the ocular, and
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to adjust the microscope accordingly. All uniaxial crystals when lying on a prism
face show extinction parallel to the major axis. They are said to show parallel
extinction to this direction. Quartz crystals elongated along [00.1] or apatite
needles show this sort of parallel extinction. Parallel extinction with respect to
zonal or cleavage directions occurs also in biaxial crystals. Platelets of monoclinic
sanidine developed after P {001} exhibit parallel extinction relative to M {010}
cleavage traces. {110} cleavage fragments of clinopyroxenes exhibit inclined
extinction against [001]. It is important in describing extinction directions to
indicate the reference direction.

It is very important to be able to ascertain the high index vibration direction
in the crystal plate under consideration. To do this the crystal is oriented in the
45° position between crossed polarizers. A second accessory birefringent plate, for
which the directions of n; and =, are known, is placed in the 45° position be-
tween the crystal and the analyser. If n, of the specimen is parallel to n; of the
accessory plate, the retardation is increased and the interference colors rise toward
higher orders. The sample appears as if it were thicker. If n, and n,, are parallel, the
sample appears thinner and lower interference colors occur. It has proved especially
useful to use a cleavage plate of gypsum, which gives a first order red interference
color (retardation 550 my.). Such a gypsum plate causes samples with very low retar-
dation to exhibit a second order blue interference color as a result of addition.
By subtraction, first order yellow interference colors results. Since these are
very noticeable color changes and result from slight changes in retardation, the
gypsum plate is sometimes called the sensitive tint plate. With crystals of high
birefringence, a quartz wedge is used instead of the gypsum plate. By subtraction
the birefringence is compensated. When sample and quartz wedge both cause
the same phase difference, complete extinction occurs. It is possible to measure
the birefringence quantitatively with a calibrated quartz wedge if the thickness
of the sample is known. The rotation compensator is used almost exclusively
today for measurement of birefringence. The most distinctive of these is the Berek
compensator. It consists essentially of a plane-parallel plate of calcite cut perpen-
dicular to its optic axis. This is inserted into the accessory slot, located between
the objective and analyzer, in the barrel of the polarizing microscope. It is in-
serted in the 45° position. In addition the calcite plate can be rotated around an
axis in the insertion direction. This rotation direction lies in the plane of the
plate. Thus the plate can be oriented perpendicular to the microscope axis,
producing no phase difference, because the calcite is ““isotropic’” when viewed
along its optic axis. By inclining the Berek plate, increasing phase difference is
produced, and the birefringence of the sample can be compensated. The magnitude
of the rotation angle necessary to accomplish compensation is related to the phase
difference, and the compensator is calibrated accordingly.

The locations of vibration directions in a birefringent plate are given by the
major axes of the ellipsoidal ssction which the plane perpendicular to the wave
normal forms with the indicatrix. If the characteristics of the indicatrix are
known, the vibration directions of the waves associated with a specific wave
normal can be constructed very simply with the help of a stereographic projection.
The method was introduced by FRESNEL.

As an example, we will determine for a plagioclase of about 72% anorthite
the inclined extinction angle of M (010) cleavage traces on the plane P(001)
(Fig. 236). We place the pole of P(001) at the center of a stereographic projection
and plot the pole of plane M (010), as well as the optic axis directions 4, and 4,,
corresponding to independently measured values. The pole of the great circle
through 4, and 4, gives the vibration direction of n4, and the bisectors of the
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optic angles give the vibration directions of n, and n,. Since this plagioclase is
optically positive, n, is the acute bisectrix. According to the construction of
FRrESNEL, the vibration directions of the waves propagated perpendicular to P
are found as follows: P is joined to 4, and 4,. The bisector of the angle 4, PA,
gives the vibration directions sought. Therefore =, lies in that sector of the
projection in which #, lies, and #, in that which also contains n,. We now draw

Fig. 236. Fresnel construction of the vibra-
tion directions in stereographic projection

in the trace of the common edge between
P(001) and M (010), that is, the trace
of the M cleavage on P, which is the
normal to the zone M —P. The angle
which this direction makes with the
vibration direction of n, is the extinction
angle sought.

The observation of specimens in par-
allel polarized light, using only the polar-
izer, is sometimes incorrectly described
as ‘‘polarizers parallel” or ‘“‘Nicols par-
alle]”. This error is especially common
in labeling microphotographs. Two po-
larizers, oriented with vibration direc-
tions parallel, are not used in crystal
optics studies, except under very spe-
cialized circumstances. With the second

analyser, the two waves which pass through the crystal plate would be forced
to interfere, as they are also with crossed polarizers. Different interference colors
are obtained, however, which are complementary to those obtained with crossed

polarizers.

Fig. 237. Universal stage. (Firm Zeiss)
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The Universal Stage. A great deal of important information on optic orientation
of a crystal can be determined with the polarizing microscope. Much more in-
formation can be obtained, using a universal stage. Many rotation devices have
been used, especially by C. KLEIN in conjunction with the microscope. Although
v. FEDEROV described in 1893 the first universal stage suited for the study of
thin sections, only relatively recently has the universal stage been adapted for
generally wide usage. A variety of universal stages are manufactured by numerous
firms (Fig. 237), and with these a specimen can be measurably rotated around
3—5 axes. In this way the principal planes of the indicatrix can be oriented
perpendicular to the microscope axis. The orientation of the optic axes can be
determined by seeking the directions of “‘isotropism’. In the case of biaxial
crystals the optical angle can be measured then by suitable rotation. In a rock
thin section the directions of the optic axes of quartz grains, for example, and
their orientation with respect to rock structures, such as foliation, can be deter-
mined. Such information is especially important in petrofabric studies.

The Conoscope. The conoscopic method provides another approach to studying
the optical properties of a crystal plate in different directions. The strongest
possible convergent beam of polarized light is allowed to fall on the plate. A strong
condenser in the sub-stage illumination apparatus is used for this. A high-power
lens must also be used in the objective. Each of the light waves traveling through
the crystal in a conical bundle traverses a different path length. Accordingly
interference takes place like that which occurs with a quartz wedge. An inter-
ference figure, occurring in the upper focal plane of the objective, is observed
through the analyser. It is only necessary to remove the ocular of the microscope
to view this interference figure. In order to avoid the effects of disturbing scattered
light, a pin-hole aperture is inserted in place of the ocular. In many microscopes
an accessory lens is also used, which can be inserted into the optical path (Ber-
trand or Amici lens). This forms with the ocular a small microscope through which
the interference figure can be observed at low magnification. When the polarizing
microscope is modified in this manner it is called a conoscope (konos, Gr., cone).
In order to avoid a common misconception, it should be noted that the light
path of the conoscope is the same as in
the ordinary microscope (orthoscope) at
the same magnification. The only differ-
ence is that in one case an interference
picture of the light is observed, in the
other case a picture of the specimen.

If a plate of a uniaxial crystal cut per-
pendicular to the optic axisisilluminated
in the conoscope, using a monochromat-
ic cone of light, maximum brightness
occurs along those directions where phase
differences I'=1/2, 31/2, 51/2, ete.
prevail. The loci of these directions lie
on a set of coaxial concentric cones. In  Fig. 238. Conoscopic figure of a calcite
the focal plane of the objective the figures ~ Plate parallel to (0001) in monochromatic

. . light. The vibration directions of the
O'f equal phase difference are concentric polarizer and analyser run left and right
circles. Between the bright circles, at and up and down. (From LIEBISCH)
I'=0, 4, 24, etc., darkness occurs. The
thicker the plate and the greater its birefringence, the closer together the circles
lie. In this system of concentric circles ¢’ always vibrates radially, and o tangen-

tially to a circle. Wherever the two vibration directions are parallel to those of
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the crossed polarizers, darkness prevails, analogous to extinction positions in
orthoscopic work (p. 134). As a result the interference figure with monochromatic
light shows light and dark rings and a black cross, whose arms are parallel to the
vibration directions of the polarizers. The arms of the cross are narrow and sharp
near the center and become broader and more diffuse towards the edge of the
interference figure (Fig. 238). The arms of the cross are also called zsogyres.

In white light the dark cross is also formed, but the interference rings become
colored, with the interference colors rising from the center outward, in the se-
quence shown by the quartz wedge. As the specimen is rotated around the axis
of the microscope, the interference figure is not altered. By means of an accessory

% E Yellow | Blue Blue | Yellow
Q/ej Yettow Yellow | Blue

Fig. 239. Color distribution in an optic axis  Fig. 240. Color distribution in an optic axis
figure for a uniaxial positive crystal with 1st  figure for a uniaxial negative crystal with
order red gypsum plate inserted 1st order red gypsum plate inserted

plate it is easy to establish whether w or ¢’ has the greatest index of refraction
and thus determine the optic sign. The first order red gypsum plate is introduced
between specimen and analyser so that its vibration directions are at 45° to the
polarizer. In the case of a positive crystal, if the gypsum plate is introduced in
the NW quadrant of the field, n, of gypsum is parallel to ¢’ of the sample, and the
interference color rises to blue near the center of the figure, in the NE and SW
quadrants. In the other two quadrants a first order yellow interference color is
observed (Fig. 239). For optically negative crystals, the opposite effects are
noted (Fig. 240).

If a uniaxial crystal plate is not cut perpendicular to the optic axis, at small
angles of inclination the axial cross is observed to be displaced toward the edge
of the interference figure. At higher angles of inclination only the arms of the
cross are seen to migrate from time to time across the field of view during rotation.
Sections parallel to the optic axis exhibit an enlarged dark cross that breaks up
very quickly into two segments upon rotation of the specimen. This is, loosely
speaking, a biaxial interference figure with an “optic angle” of 180°.

With a biaxial crystal with small optic angle, in sections cut perpendicular
to the acute bisectrix, the same interference colors are observed around the
points of emergence of the two optic axes. These are the tsochromatic curves. Close
to the axes they are concentric circles but, with rising interference color they
change first to oval shaped curves and at some definite point! into a figure-eight
shaped curve, in which the crossover point of the “eight” intersects the point
of emergence of the acute bisectrix. At still higher interference colors, the iso-
chromatic curves are ‘‘dumbbell”” shaped. Fig. 241 shows the spatial distribution

1 This depends on the optic constants of the crystal and its thickness.
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of curves of equal phase difference for monochromatic light. The isogyre cross
is not shown. It appears only when g lies parallel to one of the vibration directions
of the polarizers (normal position). Contrary to optic uniaxial crystals, the two
arms of the cross are not equal. That one which parallels the vibration direction
ng is broader; the other arm is narrower and, in addition, is restricted at the

Fig. 241. Curves of equal path difference for ~ Fig. 242. Relationship of isogyre curvature

a biaxial crystal in monochromatic light be-  to optic angle (2¥) in biaxial optic axis

tween crossed Nicols with conoscopicillumi-  figure. (After WricHT, based on average
nation n=1.60)

points of emergence of the optic axes. If the crystal is rotated from the normal
position, the cross opens into two hyperbola, which converge again to a cross when
rotated a full 90°. The separation of the two axes can be measured with an optical
micrometer. This distance, in conjunction with an instrumental constant (MAL-
LARD’S constant) determined from a test crystal of known optic angle, can be
used to calculate the optical angle, 2E, in the air. The crystal optic angle 2V
is then found according to the formula
sin = S0E
"8

In sections perpendicular to one of the optic axes, the optic angle can be estimated
from the curvature of the isogyre as indicated in Fig. 242.

The optic sign of a biaxial crystal can be determined with the help of an
accessory plate in a manner similar to uniaxial crystals. To do this the optic
orientation of the crystal must be taken into account. Figs. 243 and 244 should
assist in these considerations for sections cut perpendicular to the acute bisectrix.

The differentiation of uniaxial and biaxial crystals by conoscope observation
of sections strongly inclined to bisectrices and optic axes is not always possible.
The combination of conoscope and universal stage is especially useful in this
respect (H. ScHUMANN, 1937).

As already mentioned (p. 126), there is an appropriate indicatrix for each
specific wave length and temperature. The dependence on wave length of the
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optic angle, and with it the form of the indicatrix, is especially well illustrated
by the extreme case of the orthorhombic mineral, brookite (TiO,). This mineral
frequently occurs in thin platelets developed after (100). If a brookite crystal is
placed under the conoscope and illuminated with blue and then with red light,
it is observed that the optic plane for red light is perpendicular to that of blue
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Fig. 243a and b. Biaxial positive crystal. (a) Orientation of the vibration directions in acute
bisectrix figure; (b) orientation of optic angle in indicatrix
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Fig. 244a and b. Biaxial negative crystal. (a) Orientation of the vibration directions in acute
bisectrix figure; (b) orientation of optic angle in indicatrix

light. Fig. 245 shows that brookite is “uniaxial” at 1~0.55p. The different
orientations of optic axes in relation to wave length is diagnostically important,
even when the effect is very much less than that exhibited by brookite. Dispersion
of the optic angle is indicated in the tables of appendix IIIB. r > v means that the
optic angle in red light is greater than in violet light. In this case the isogyres,
relative to the acute bisectrix, are bordered blue on the outside and red on the
inside, being complementary to the relationships of the optic axes.

The change with temperature of the optic angle of gypsum was studied as
early as 1826 by MITSCHERLICH. At room temperature the optic plane coincides
with the plane of symmetry of the monoclinic crystal. Upon heating, the optic
angle becomes smaller and smaller and at 90—91° C is zero for the visible wave
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lengths. For Na light (1=0.589 my) the arms of the isogyres close at 90.9° C
(Turron, 1913). For this special wave length and temperature gypsum behaves
like an optically uniaxial crystal. Upon further heating the optic angle opens
again, but now the optic plane is perpendicular to the plane of symmetry of the
crystal.

Strain Birefringence. Isotropic bodies can exhibit birefringence when they
are mechanically stressed. This can be easily demonstrated by bending a glass
rod between crossed polarizers. When the stress is released, the birefringence
disappears. This phenomenon is used
with models of engineering structures,

made of transparent isotropic materials lane (00!)

. . . 60° 1

such as glass or plastic, to investigate  ~ 0pfe

. . . . . S,40°
strain distribution caused by mechanical  § o
stress. Lenses in microscope objectives ~ {° |-
are sometimes so permanently strained < 00 T s
that they are birefringent and not usable §200 }L
for workinvolving polarized light. Stres- <% |
ses occur also during the rapid cooling o

of glass, causing birefringence. The bire-

fringence frequently shown by diamonds ~ Fig. 245. Change of optic angle and the orien-

; : tation of optic plane as related to wave length
is probably related to such strain .

. . . in brookite. (After data from Ar~NorLp.) The
birefringence. Certain gels, for example, acute bisectrix n,, is parallel to [010]

Si0, - #H,0, develop strain birefringence
upon drying.

A crystal, whose optical behavior does not correspond to its symmetry is
called optically anomalous. Included here are crystals, like leucite and boracite,
which sometimes occur as multiple twins of a birefringent modification exhibiting
the external form of a higher temperature cubic modification. Other crystals show
anomalies, caused by the inclusion of a mixed crystal component. In the case of
cubic crystallizing alum, birefringence can arise from mixing chromium alum
with potassium aluminum alum experimentally during growth. Whether the
resulting birefringence is always due to stress phenomena is not quite certain.
It could be that such inclusion, if regularly ordered, is caused by form birefringence.

Form Birefringence. Cylindrical or disk-shaped isotropic particles, whose
thicknesses and inter-particle separations are small in relation to the wave length
of light, can exhibit birefringence as a result of their arrangement alone. An
aggregate of parallel-arranged, isotropic rodlets behaves as if it were an optically
positive uniaxial crystal. A parallel stack of disk-shaped particles, behaves like
a negative uniaxial crystal. The magnitude of the birefringence depends on the
difference between the refractive indices of the particles and their enveloping
medium. This so-called form birefringence changes, therefore, with immersion
liquid. If we designate the indices of the particles and immersion medium as
n; and n, respectively, and their relative volumes as m, and m, (m; +my,=1),
the birefringence for rod-shaped particles is a follows:

e2=my n}+myng

0 z(ml—[—l)ni—l-mzni
=2 iy ) mg g nd

w

my my (nf —nj)*
(my+1) n§+myn}

22— d=
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For disk-shaped particles:
n} - n}
My 3+ my n}
w?=my n3+myn2
my My (nf — nj)?

2 2
2 —@2=— 121 2
my n§ +m, nf

et=

In the case of birefringent rod- or disc-shaped particles, their individual
birefringence is superimposed on the form birefringence. This is important for
some mineral aggregates. An example is chalcedony, which is composed of quartz
fibers which have grown perpendicular to the c-axis. Waves with the lower index
of refraction vibrate parallel to the direction of fiber elongation. Chalcedony,
therefore, exhibits a lower birefringence than quartz, because of the superimposed
form birefringence.

Crystal Structure and Birefringence. Form birefringence can be applied as a
very rough rule of thumb to crystals, in as much as they too, in a sense, are
composed of chains or layers of atoms. Thus layer lattices are in general optically
negative. There are exceptions, however, such as Mg(OH), (brucite) and Al(OH),
(gibbsite), as well as many chlorites. In these minerals the dipole character of the
OH groups apparently determines the birefringence. Carbonates and nitrates with
their COZ- and NO}~ groups, are optically negative when these groups lie parallel
to one another in the crystal structure. The higher index of refraction lies in the
plane of the complex group. Calcite, magnesite, aragonite, and others are such
examples. There are many crystals with chain structures, like selenium and
cinnabar (HgS). In cinnabar screwlike ... -Hg—S—Hg—S—... chains run
parallel to its 3-fold axis. This mineral, like most pyroxenes (especially the
Fe-poor varieties), is optically positive. The same is true of calomel in which
elongate Cl—Hg—Hg—Cl molecules are always preferentially oriented parallel
to the 4-fold axis of the crystal. Crystals which are close-packed in more than
two directions should exhibit weak or no birefringence. Very noteworthy ex-
ceptions are compounds of titanium (rutile, sphene) and iron (hematite, in con-
trast to corundum). The relation between structure and optical properties is
based on the idea that light is transmitted more slowly in the direction of densest
layering, but there are so many exceptions that strong a priori adherence is not
to be expected. It is possible though to calculate the birefringence in some cases
and this has been done especially by P. P. EwarLp, M. Borx and W. L. Brace.
Such calculations are tedious and lie beyond the scope of this introduction.

¢) Optieally Active Crystals

There is an additional property which sometimes complicates optical behavior.
In certain crystals, just as with some liquids, the vibration direction of the plane
polarized light is rotated a definite amount, proportional to length of the optical
path through the substance. The angle of rotation a increases regularly with
increasing optical path, d; o =% - d. This phenomenon is known as optical activity.
It occurs in the very common mineral quartz, as well as numerous others. For
quartz the rotary power has been determined to be o« =21°45'/mm for sodium
light. In order to explain the rotation it can be assumed that every linear polarized
vibration can be considered as the resultant of two circular polarized vibrations
with opposing sense of rotation. In optically active substances the indices of
refraction and, therefore, the transmission velocities of these two polarized waves
are different, that is, they show a sort of birefringence. Hence the resultant
vibration direction is rotated.
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This birefringence is best observed in “isotropic” directions; in quartz in
the direction of the c-axis, in monoclinic sucrose in the direction of the two
optic axes, and in cubic NaClO, in all directions. In directions inclined to the
optic axes the two waves are elliptically polarized with opposing vibration
directions. Since the magnitude of the rotation along the c-axis in quartz is
21°45’ /[mm for sodium light, optical activity cannot be observed in thin sections
which are only about 1/30 mm thick.

Optical activity can be observed in 15 of the 32 crystal classes. A crystal
must not possess a center of symmetry for it to occur. The classes in which
optical activity occurs are enumerated in Table 6 of the appendix IITA. It
should be noted further that it is possible for a substance to exhibit optical ac-
tivity in the crystalline state without exhibiting it in aqueous solution. NaClO,
is such an example.

d) Strongly Absorbing Crystals

Methods of Observation. The optical relationships of strongly adsorbing
minerals are considerably more complex than those of transparent crystals. The
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Fig. 246. Schematic optical path in opaque

illuminator with prism. (After SCHNEIDER-

HOHN-RAMDOHR.) B field iris diaphragm;

K, apertureiris diaphragm ; K, objectreflected

on K,; K, ocular aperture; Ok ocular; Obj
objective

Fig. 247. Schematic optical path in opaque

illuminator with glass plate. (After SCcHNEI-

DERHOHN-RAMDOHR.) B field iris dia-

phragm; K, aperture iris diaphragm; K,

object reflected on K,; K, ocular aperture;
Ok ocular; Obj objective

most important of the opaque minerals are the ore minerals, which are opaque
even in thin section. They are studied microscopically by using incident light.
With a small totally reflecting prism placed in the optical path, the specimen is
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illuminated vertically (Fig.246). In order to investigate very fine structure at
high magnification, a glass plate is used instead of the prism (Fig. 247). The
illuminating device is called an opague tlluminator, and it is mounted in the tube
of the microscope. Since the illumination passes through the opaque illuminator
and the microscope tube, a microscope is often used in which the sample is
focused, not by raising and lowering the microscope barrel, but by adjusting the
microscope stage. Such a microscope is called an ore microscope. In the last
40 years ore microscopy has become more important. It is based to a large extent
on studying the appearance of minerals and their behavior when polished and
etched. A great wealth of data has been collected, but we cannot discuss this in
any more detail here.

Theory. The determination of optical constants of opaque substances is still
in its infancy, because optical relationships for strongly absorbing bodies are
extremely complex. In addition to the refractive index, the absorption coefficient
plays a significant role. If 4, is the amplitude of the incident light of wave length
Ag in vacuum, and 4 the amplitude of light that has traversed a distance d in the
crystal, the following relationship applies:

d
A=Ay-e2mk 5,

k is a constant, the absorption coefficient. Occasionally the absorption index »x is
used. This is related to 4,, the wave length in the crystal. Frequently the product
of % and the index of refraction n is utilized. If x4, is substituted in the formula
for kfA,, since Ag/A,=m, n x=Fk. Through the involvement of the absorption
coefficients, a general second order surface, serves as a reference in place of the
indicatrix. The radial vectors of this surface are complex refractive indices, that
is, composed of real and imaginary numbers n’'=n—1i -k (¢ =J—1). We can no
longer deal with perceptual bodies like ellipsoids, but must deal with the appro-
priate optical phenomena purely by calculation.

Triclinie, monoclinic, and orthorhombic crystals have three major indices
of refraction and three major adsorption coefficients. Their directions do not
generally correspond. In the trigonal, tetragonal, and hexagonal classes, reference
surfaces of the refractive indices as well as the adsorption coefficients are rotation
ellipsoids, both having a common rotation axis. In cubic crystals both surfaces
are spheres. It must be expressly noted, however, that even in the cubic system,
S~ELL’s law is only valid when the light has perpendicular incidence. The index
of refraction n; is dependent on the angle of incidence, ¢, in air, according to the
following relationship:

n2=1 (n2 — k2 +-sin? i+ 4n? 24 (n2 —k? —sin? 7)3).

For reflection at perpendicular incidence, the reflecting power R, that portion
of the light reflected (BEER, 1854), is as follows:

R (n—1P+(kp
= Pk

e) Fluoreseence and Discoloration Halos

We shall conclude our discussion of optics involving visible light by con-
sidering briefly the phenomenon of fluorescence. This is important in mineral
identification and promises to be of even greater importance in the future. By
fluorescence, a substance radiated with short wave length light reemits light



X-ray Optics 145

of longer wave length. Ultraviolet light is used to demonstrate this property.
This is commonly produced by means of a mercury-quartz glass lamp, and
filtered through a screen transparent only to ultraviolet light. It is sufficient to
use an ordinary arc lamp with such a filter. Quartz optics are necessary for
transmission. Fluorescence of minerals is usually caused by impurities, which
usually occur in only trace amounts. Common examples are the inclusion of
small amounts of rare earths for Ca?* in fluorite or of Mn2* for Ca?* in calcite.
Their detection can have important geochemical significance, and is often used
in identifying locality of origin. Fluorescent substances can be detected in very
low concentrations. For example, as little as 0.00026 cm® of petroleum can be
detected in 1 cm? of sand.

Another interesting phenomenon is the occurrence of discoloration halos.
These occur frequently in biotite, and less often in amphiboles, cordierite, tour-
maline, fluorite, spinel, and garnet. Dark zones, which are disk-shaped in cross-
section, occur around inclusions of radioactive minerals such as zircon, monazite,
and orthite. They sometimes form distinct rings as in the fluorite from Woelsen-
dorf. The discoloration of the original mineral is the result of emission of alpha-
particles in the inclusions. From the ring diameter it is possible to determine the
radius of action of the alpha rays and from this the radioactive element. The
time duration of the effect can be estimated from the magnitude of the discolora-
tion and from this the age of the mineral. The discoloration halos of anisotropic
minerals are often pleochroic. These are referred to as pleochroic halos. They
are seen very distinetly around zircon inclusions in cordierite. The cordierite,
which is normally colorless in thin-section, is pleochroic in bright yellow tones
around the zircon inclusions.

5. X-ray Opties
Introduction. So far we have concerned ourselves only with that very narrow
range of wave lengths to which our eye is sensitive. Fig. 248 summarizes the
entire wave length region important to optics. Space does not permit detailed
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Fig. 248. Summary of the optical wave length region. (n and nx curves from PoHL)

10 Correns, Mineralogy



146 Crystal Physics

discussion of the phenomena associated with the ultraviolet and infra-red regions.
At the present time these are of relatively limited importance as far as mineralogy
is concerned, although absorption measurements in the infrared region are becom-
ing increasingly important. They provide significant information e.g. concerning
the bonding of hydrogen in crystals. We shall consider instead in some detail
the very short wave length region, the X-ray spectrum. X-rays are of fundamental
importance for the determination of crystal structures, as well as for the identi-
fication of minerals. X-ray methods have been especially useful in the study of
very fine-grained minerals not amenable to study by microscopic methods, and
are an important tool also for textural studies of rocks.

Fig. 249. Diffraction from a linear lattice

The Laue Equations. The X-ray interference in crystals was first discovered
in the year 1912 by v. LAUE. Simultaneously he proved the wave character of
X-rays and the existence of atoms and opened the way to the extremely impor-
tant and flourishing field of erystal structure analysis. Space does not permit us
to go into the methods of production of X-rays. Appropriate details can be
obtained from the standard physics references. In order to understand the
phenomenon of X-ray interference by crystals, we shall consider first of all
the case in which a monochromatic X-ray beam is incident upon a linear lattice
and is scattered by the individual lattice points (atoms) (Fig.249). The path
difference between the rays scattered at two adjacent points in some arbitrary
direction is B, B — B F,. In order that the individual waves constructively
reinforce one another in the direction selected, the path difference must be
expressed in whole multiples, %,, of the wave length, %, 1. The number %, indicates
whether the zero, first, second, third, etc. order of diffraction is being considered.
If the distances B, F, and P, P, are related to the repeat period a' and the
angle « of the scattered and angle «, of the incident beam, measured with respect
to the lattice direction, we obtain the following so-called Laue equation:

a(cos a —cos og) =hy A.

This equation is used also for visible light in grating spectroscopy, and from it 4
can be determined when the other parameters are known.

This Laue equation explains why in visible light no analogous interference
occurs with crystal lattices. The greatest path difference is obtained at angles
corresponding to grazing incidence and scattering. Then the path difference is
almost equal to 2(B, —B,) =2a; thus b, A < 2a. If a is equal to 2-1078 cm, then 1
may be no greater than 4 - 1078 cm, if at least the first order is to occur. As we
know visible light has much longer wave lengths (Fig. 248).

1 Tn this chapter we shall use a, b, and ¢ for identity periods (lattice constants) rather than
ay, by, and ¢, in order to simplify presentation of formulae.
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Fig. 250 is a three dimensional diagram indicating the different diffraction
cones produced by monochromatic X-rays at perpendicular incidence to the
linear lattice. Diffraction associated only with a one-dimensional lattice is not
of great importance from a mineralogical standpoint. One dimensional lattices
are not represented as minerals, although asbestos shows certain diffraction
effects which are one-dimensional in character.

Proceeding further, let us consider two linear point lattices, intersecting at
some arbitrary angle, say 70°. If they are radiated simultaneously by mono-
chromatic X-rays perpendicular to the plane defined by the two point rows, a
diffraction pattern as shown in Fig. 251 would be obtained on a film placed
perpendicular to the incident beam. This consists of two families of hyperbolae
which represent the intersections of the two sets of diffraction cones and the
recording film. If both the intersecting linear lattices are repeated by trans-
lations in a plane, a planar lattice or grating is produced. In the resulting diffrac-
tion pattern the intensities at the hyberbolae intersections (Fig. 251) are always
greater than between these points. Such grating spectra are obtained by electron
diffraction from thin mica sheets.

As a final step, if we stack the individual planar lattices one upon the other,
a space lattice is produced. If the direction of the incident beam in our experi-
ment coincides with the stacking direction, the point rows lying in this new
direction produce a third set of interference cones. These intersect a film placed
perpendicular to the incident beam in concentric circles. The two original point
rows again produce the two families of hyperbolae (Fig. 252). In the case illu-
strated in Fig. 252, the three families of curves never intersect at a common
point. Accordingly a three-dimensional periodic pattern (crystal lattice) with
monochromatic radiation produces cooperative scattering in only certain direc-
tions. These are those which by coincidence would correspond to the intersection
of three diffraction curves in Fig. 2562 at common points.

There are two experimental approaches for satisfying the conditions for
diffraction from space lattices:

1. The use of polychromatic (white!) X-rays. In this case, in experiments such
as those just described, for certain select wave lengths the three sets of curves
intersect occasionally, satisfying the conditions for cooperative interference. In
Fig. 253, this situation is illustrated using the analogy of visible light.

2. The use of monochromatic X-rays. The crystal must be rotated. Diffraction
takes place in certain specific orientations with respect to the incident X-ray beam.
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Fig. 250. Diffraction cones from a linear
lattice. (After BIsvoET) -7
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Fig. 251. Grating spectrum. (After EwaLD) ly—>

1 With reference to visible white light which is polychromatic.
10*
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Fig. 252 Fig. 253
TFig. 252. Diffraction phenomena from a space lattice. (After EwaLp)

Fig. 253. Intersection of the three diffraction cones of Fig. 252 for several wave lengths of
polychromatic light. For yellow light the three curves intersect at a common point. (After
EwaLbp)

Mathematically the diffraction directions for a three-dimensional lattice are
derived from the conditions for diffraction for each of three linear lattice rows.
The approach is to solve simultaneously three Laue equations, one for each of
the three linear lattices, in order to ascertain the conditions necessary for re-
inforcement of scattered waves from the three linear lattices. The following are
the three appropriate Laue equations:

a(cos & —cos ag) =hy A
b(cos B —cos fo) =hy A (1)
c(cosy —cos yo) =hy A.

b, B, B, and ¢, y, y, are analogous to the terms @, «, «, used above in the first
Laue equation. The lattice dimensions a, b, and ¢ are crystal constants. If 1 as
well as oy, B, and y, are held constant, generally «, 8, and ¥ do not give whole
numbers for h,, h,, and ks; the three equations are not simultaneously solved and
diffraction maxima are not produced. Only by varying A, can this happen.
v. Lavuz used X-rays with a broad range of wave lengths in his first experiments,
and thus obtained interference maximum, even with a stationary crystal. Fig. 262
on p. 158 shows a typical Laue photograph.

Fig. 254. Geometrical derivation of the Bragg equation. Note that AP =P B=dsin0
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The Bragg Equation. By using monochromatic rather than polychromatic
X-rays the angle of incidence and thus oy, f,, and p, can be varied and
brought into coincidence. In this way W. H. Brace¢ and W. L. Braca, soon
after LAUE’s discovery, determined the first crystal structures. They showed
that X-ray diffraction can be viewed as taking place by “reflection” from lattice
planes in the crystal. If d represents the interplanar spacing, and 6 the angle
between the lattice plane and the incident X.ray beam, the path difference,
I', from two scattering points, as shown in Fig. 254, is equal to 2d sin 6. Thus
in order for constructive interference to occur, the path difference must equal
whole multiples of the wave length, thus,

nA=2dsinf. 2)

From this Bragg equation it is seen that either A or f# must be varied if diffraction
is to occur from a given plane of atoms. By analogy with visible light optics the
angle 0 is frequently called the angle of reflection. If we imagine a crystal, radia-
ted by monochromatic X-rays, oriented with the incident X-ray beam essentially
parallel to the lattice plane, we see that no diffraction takes place from this
lattice plane. If we rotate the crystal about an axis lying in the lattice plane,
and perpendicular to the X-ray beam, a reflection occurs as soon as the Bragg
conditions are fulfilled for a value of n=1. Upon further rotation the reflection
is extinguished again until rotation brings the plane to an angle whose sine is
double the value of the sine of the angle at which the first reflection occurred.

A further reflection occurs when sin 6 =3 - te.

53 ©

Interrelation of the Bragg and Laue Equations. In order to relate these two
expressions, the interplanar spacing d of the Bragg equation is expressed in
terms of the lattice constant a, and the crystallographic (MrLLER) indices of the
reflecting plane. For a cubic lattice, the simplest case, which we shall only con-
sider,

a . Y Y rur e
= W « Therefore, sin = Sa ]/k2 + k2412,
or in quadratic form: sin2 6= %:2 [(n k)2 + (n k)2 + (n 1)2]. (3)

We obtain from the Laue equations for a cubic lattice, by squaring, and noting
that a=b=c and that cos? « + cos? f+ cos2y=1:

2 —2(cos a - cos &g - cos f§ - cos B+ cos y - cos 70)22—2' (B3 +-h3 -+ R3).

Within the parentheses on the left side, we can substitute cos x5 x is the angle
between the incident and diffracted X-ray beams. Therefore:

1 —cos y=2 sinZi,
so that,
N A R S TS T

sin® 5 = -5 (B +h3+ h3). 4)
This equation permits us to relate y to A and to the orders of diffraction, ,, k,,
and kg. If we now compare Egs. (3) and (4), we see that x4 =20; this is called the
Bragg angle. We can also conclude this from Fig. 254, if we extend the reflected
ray downward. The Laue indices are equal to the product of the Miller indices
(cleared of a common denominator) and the order of diffraction n of the Bragg
formula. Therefore:

hy=nh; hy=nk; hy=mnl.
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In structural studies, the Laue indices or the enlarged Miller indices are always
inferred when using the symbols 4, k, I. The beginner must make special note
of this. Fig. 255 clarifies this relationship further. In the cross section through
a space lattice, 2a and 3b are the intercepts of the trace of a macroplane through
p and q. Its Miller indices are therefore h=3 and £ =2. In the space lattice
additional parallel planes lie between the points of the coordinate axes, with
points which also scatter according to the Bragg relationships. It can be seen
that these planes cut the x-axis at intervals of a/3(=a/k) and the y-axis at
b/2(=0b/k). They likewise have the Miller indices A =3, k=2.

AN
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Fig. 255 Fig. 256

Fig. 255. Cross section through a space lattice; intercepts of the plane pg: Op = 2a; Og = 3b;
h=3; k=2; the family of planes repeat at distances a/h and b/k. (After BrsvoEt)

Fig. 256. Origin of a powder pattern

The Powder Diffraction Pattern. We now want to consider how diffraction
can be used for structure determination. Of the numerous X-ray methods we
shall describe only two in detail, namely, the powder (DEBYE-SCHERRER) method
and the rotating crystal method. In the powder method, a sample consisting of
many very small crystalline particles is exposed to monochromatic X-rays. The
crystals are randomly oriented, thus affording all possible angles of incidence
which correspond to the available interplanar distances. Because of the random
orientation, a given reflecting plane does not diffract in a single direction, but
instead its locus lies on the surface of a cone whose semi-apical angle is equal to
26 for that particular plane. This is very easily visualized, if one imagines a
reflecting lattice plane and rotates the crystal around an axis, represented by
the incident beam. This is indicated in Fig. 256 for a single lattice plane. All of
the additional lattice planes form cones of reflection also, as is true also for the
second and higher orders. On a photographic plate oriented perpendicular to the
incident beam at some definite distance from the specimen, a family of concentric
circles is produced. Usually a cylindrical film is used, with the sample under
study located in the axis of the cylindrical film. The sample (powdered) is fre-
quently placed in an X-ray transparent glass capillary. Using a cylindrical film,
and with the X-ray beam perpendicular to the axis of the film, the diffraction
pattern produced when the film is flattened after exposure consists of concentric
ellipses. With the very narrow film strips ordinarily used in X-ray powder cameras,
sections of the ellipses resemble arcs of circles symmetrically distributed with
respect to the 0° 260 reference point (where the undiffracted or primary beam
intersects the film). This arrangement of the film around the sample has the
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advantage that all diffracted rays are registered, including those in the back-
reflection region, that is, at 26 >90°. In order to determine the angle 0, the
distance 2D, between two corresponding diffraction arcs, is measured. D divided
by the camera radius R gives (Fig. 256) the angle 20 in radians. In degrees there-
fore:

D 360

" 2n 20
Frequently cameras are used with a diameter such that the D value in millimeters

is equal to the 6 value in degrees. If D is set equal to 0, it follows then that:
360/2n=2R=>57.33 mm.

In order to determine the parameters of the space lattice, the lattice constants,
from the measured values, the interplanar spacings of the Bragg equation must
be related to the indices of the corresponding planes. That is to say, the diffraction
pattern must be indexed. We shall consider the general case of a crystal with
orthogonal coordinate axes, that is, a crystal which is either cubic, tetragonal,
or orthorhombic. For the interplanar spacing d,;; of a plane (hkl) in the ortho-
rhombic system with lattice constants a, b, c;

1

Ay = .
h\2  [k\? 1\2
=G+ (2)
If this value for d is substituted in the Bragg equation, and the entire expression
squared, then:

cpp B (mR L wk |
sint 0= ¢ (" o+ T+ )

For a cubic crystal for which a=b=¢, the expression is simplified as follows:
. A
sin? 6 = vl (n? k24 n2 k2 ++n? 12).
If we set 12/4a? equal to m:
sin2 0 =m (n2 b2+ n2 k24 n2 [?).

The sin20 value for each line in the diffraction pattern is determined and the
common factor m is sought. The residual term must represent the sum of the
squares of the indices or their multiples. The interpretation of a powder pattern
of NaCl is explained in Fig. 257. From m=0.01865 it follows that for CuK,
radiation (1.54 A), a=5.64 A.

Use of Powder Diffraction Patterns. It is relatively easy to index and interpret
cubic crystals using powder patterns. It is only a little more difficult to do the
same with tetragonal and hexagonal crystals. With crystals of lower symmetry,
indexing and interpretation in this way is particularly unwieldy and difficult,
so that other methods are used. However, for all crystals the powder method

offers the advantage that the interplanar spacings d can easily be determined
from the sinf values (d = ﬁ) . By comparison with the powder patterns of
known minerals and artificial crystals, unknown crystalline substances can be
relatively easily and unequivocally identified. This is particularly important
when dealing with very fine-grained substances for which microscopic methods

are inadequate.
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Fig. 257. Interpretation of a powder pattern of NaCl (© here corresponds to 6 and k to m)

In this way it has been possible to obtain important information for the very
fine-grained mineral constituents of clays and soils. X-ray identification is also
used with advantage in the important field of mineral synthesis. In this case
very fine-grained reaction products are usually formed, and identification must
be carried out with very small amounts of sample. By means of the powder
method it is possible to distinguish mechanical mixtures, chemical compounds,
and mixed crystals. Mechanical mixtures of two oxides, for example, give the
superimposed diffraction patterns of each of the pure oxides. If a single chemical
compound occurs, however, it gives a characteristic diffraction pattern that can
be distinguished from those of the starting materials. In the case of mixed
crystals the diagram is representative of a single structure, whose d values and
lattice parameters lie intermediate between those of the two end members.

The powder method provided an additional very important contribution
soon after its introduction by DEBYE and SCHERRER in 1917. This was the in-
dication that some colloids are crystalline. Even today one finds a tendency to
equate the colloidal and the amorphous states, even though powder diffraction
studies have shown that there are crystalline as well as amorphous colloids. In
the mineral world, almost all colloids are crystalline. The natural globular-
shaped, so-called mineral gels are actually aggregates of crystals. The most im-
portant exceptions are the volcanic glasses and the silica gels. The latter, when
they occur in their present form as opal have often been transformed into more or
less very fine-grained, and often poorly ordered, cristobalite. An amorphous body,
a gas, liquid, or glass, gives only one or very few diffuse rings when irradiated with
X.-rays in the manner of the Debye-Scherrer method. This can be explained by con-
sidering the behavior of crystals during pulverization: as the particles in a powder
become smaller and smaller, the interference maxima become broader and more
diffuse, and the X-ray diffraction pattern approaches that of a truly amorphous
body.

From the line broadening the particle size can generally be calculated. For
very thin specimens and parallel X-ray beam, the following approximation is valid :

A
~ B-cos 6’
where 8 represents the angular width at half peak intensity, and 4 the edge
dimension of a cube-shaped particle.

The photographic method is not always used to register X-ray diffraction
patterns. Frequently, and to an increasing extent, a geiger counter or similar
device is employed.

A
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Fiber Diagrams. If a substance is not sufficiently pulverized, the circular
arcs on the diffraction pattern become spotted. By means of simple geometrical
considerations the non-random orientation of the crystallites can be determined.
Fig. 258 explains how this can be done. ¢ is the angle between the center line of

A
a>

8

Fig. 258. Determination of crystal orientation

Fig. 259. Fiber pattern of chalcedony from Olomuczan. Fiber perpendicular to X-ray beam,
CuK,, radiation

the X-ray photograph and the line joining the diffraction maximum with the
center of the pattern. J is the angle between the face normal to the reflecting
plane and the fiber direction. Accordingly, cos e = gg:g.
involved are found most easily with the help of a stereographic projection.

If the particles exhibit a preferred orientation, as do the crystallites in rolled
or extruded metals, the diffraction spots are not randomly distributed, that is,

The lattice planes
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the diffraction rings do not show uniform darkening throughout their length.
Instead regions of maximum darkening occur along the diffraction rings. Textured
rocks, such as slates, exhibit this sort of preferred orientation of their mineral
constituents. Mineral aggregates occur in nature in which one unique zone direc-
tion lies more or less parallel in all crystallites. An example is chalcedony, a sub-
parallel aggregate of quartz crystals which have grown fibrous along [11.0].
Fig. 259 shows an X.ray fiber diagram of such a crystalline aggregate. Fiber
diagrams are also produced by animal and plant fibers, stretched rubber, etec.

For all powder patterns, it is important to note that a specific wave length is
used. The radiation selected must be one which does not cause the specimen to
fluoresce by exciting its own characteristic radiation, as this produces a highly
undesirable background. In order to estimate the exposure time, it is important
to keep in mind that the scattering power of an atom is proportional to the
number of electrons it contains. When used wisely the powder method is ex-
tremely versatile and especially useful in petrography.

Structure Determination. In order to carry out a complete structure deter-
mination, the absolute size and shape of the unit cell must first be determined.
To do this rotating single crystal methods, as well as the powder method are used ;
the latter most frequently with cubic, tetragonal, and hexagonal crystals. The
latter method will be considered first. This we have already done for NaCl (p. 151
and Fig;&257). The constant m = A2/4a?=0.0186. Therefore for A=1.54 A,
a=>5.64 A.

In order to calculate the number of formula units per unit cell, it is best to
proceed as follows. It is basic that the mass of the unit cell must be a multiple
of the absolute mass of the chemical unit formula. Therefore,

V-o=MW - 1.660g- 102 .2,

V =TUnit cell volume in cm3
o = Density of crystal in g/cm3
MW = Molecular weight (in chemical sense)
1.660, - 10-2¢ = Factor to convert molecular weight to absolute mass units
Z = Number of formula units per unit cell.

For NaCl: V=a3=(5.64-108)3cm?® or (5.64)%-1072* cm3, p=2.16 g/cm?3,
MW = 58.45.
Therefore, for NaCl:

7— (5.64)3 - 10724 - 2.16

58.45 - 1.660, - 1021

~4.

There are four formula units in the unit cell of NaCl.

To proceed further with the structure determination, we make use of the
macroscopic symmetry as represented by the crystal class on the one hand, and
the intensities of the X-ray reflections on the other. These depend on different
factors. The scattering powers of the different elements are very different. As a
rule of thumb, it can be noted that the atomic scattering power is approximately
proportional to the number of electrons in the atom or ion. Thus for K* and Cl-,
the scattering factors are essentially equal; for Na* and Cl-, distinctly different.
The differences in intensities for individual reflections, which arise through
interference, are especially important in structure determination.

We shall consider first the CsCl structure. It can be considered as consisting
of two cubic primitive lattices, one consisting only of Cs*, the other of Cl- ions.
The two lattices are displaced with respect to each other by one-half the cube
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diagonal. This is equivalent to a displacement of one-half unit translation in all
three translation directions. If we place a Cs* ion at the origin of the unit cell,
the coordinates of the Cl-ion are #  %. The phase difference of the waves scattered
from the ‘‘Cs-lattice’ and from the ‘‘Cl-lattice”, with indices k%l measured in
radians, is 27 - 3 (b4 k--1). When (h4-k--1) is an even number the two waves
reinforce each other constructively. When (k1) is odd, the two waves
interfere destructively and subtraction occurs. Since the vibration amplitudes
of the Cs-scattered and Cl-scattered waves are not equal, at even values of
(h+k+1), the resultant wave has large amplitude, at odd values of (b k--1),
small amplitude. If we designate the amplitudes of the Cs-scattered waves as
fos and that of the Cl-scattered wave as fg;, then the resultant amplitude S is

S=fos+for for (h+k-+1) even
S—fos—fo for (h+k-+1) odd.

and

8§ is called the structure factor (also designated as F').

The structure of tungsten, which has a cubic body-centered lattice, can be
considered as also based on the CsCl structure. The sites of the Cs as well as the
Cl ions are occupied by W. The lattice constants are, of course, different. The W
atoms located at the two lattice points of the original CsCl lattice, have equal
scattering power. For planes for which (k4 k1) is even, S=2fy. For planes
for which (A4 k+1) is odd, S=fw —fw=0.

The cubic face-centered lattice can be considered as being composed of
four cubic primitive lattices. If one is chosen as the basic lattice, the other three
are derived by translating each of them one-half the face diagonal from the first.
If we place one of the sites of one primitive lattice at the origin, we obtain, as
with the body-centered lattice, the phase differences for the other three lattices
(in radians),

2.k (h+k); 2m-d-(k+D; 273 (4h).

Therefore, four waves with equal amplitudes combine and exhibit these phase
relations. If the three indices Akl are either all odd or all even for each of the four
waves, the phase difference is a whole multiple of 27 and constructive inter-
ference and large resultant amplitude arises. If the indices are mixed odd and
even, then two of the phase differences are an even multiple of 27, and two an
odd multiple, or vice versa. Thus extinction occurs. This can be summarized as

follows: 8=0 for A, k, I mixed,
S=4A4 forh,k,1 all even, or all odd.

The absence of reflections with mixed indices can be observed in the powder
photographs of all cubic face-centered metals.

We want now to consider a somewhat more complex case, the NaCl structure.
It can be described as one in which the Na* ions form a cubic face-centered
lattice and the Cl- ions likewise. The two lattices are displaced with respect to
each other by one-half the cube diagonal, as were the two lattice points in a
body centered lattice. Since it can be considered as a partial face-centered lattice,
reflections with mixed indices are absent. For the remaining reflections, with
hkl unmixed, the interference properties of the body centered lattice are appli-
cable. Therefore reinforcement occurs when (k% 1) is even, extinction when
(h+k+1) is odd. If we consider the NaCl pattern (Fig. 257) the data given in
Table 28 can be deduced from it. All reflections with mixed indices are absent.
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Multiplicity factors are listed in one column of Table 28. These are important
in determining intensities of X-ray reflections. Each crystal of the class m3m
possesses three equivalent sets of cube lattice planes, four sets of octahedral
planes, six sets of dodecahedral planes, twelve sets of trapezohedral planes, etec.

Table 28. Intensities, indices, and multiplicity factors for a NaCl powder pattern

Observed intensity Multiplicity ~ Indices Comments
factor
weak 4 111 diminished
very strong 3 200 intensified
very strong 6 220 intensified
very weak 12 311 diminished in spite of high mult.
factor
very strong 4 222 intensified
strong 3 400 intensified, low mult. factor
very weak 12 331 diminished, like (311)
very strong 12 420 intensified, high mult. factor
very strong 12 422 intensified, high mult. factor

Since each k&l lattice plane is parallel to the hk! plane of a form, the multiplicity
factor of a hkl lattice plane is only half as great as the number of faces of the
corresponding holohedral crystallographic form. The intensity of a reflection in
a powder pattern is proportional to the multiplicity factor of its lattice plane.
Both effects, the multiplicity factor and structure factor are superimposed. In
addition the intensities decrease systematically to  ~50° and then increase
again. Upon the two discontinuous intensity factors, structure factor and multi-
plicity factor, continuous factors related to changing 6 are superimposed,
influencing the intensity. In addition to the atomic scattering factors already
mentioned, these continuous functions are the polarisation, Lorentz, and tem-
perature factors. For an exact evaluation of intensities, these must be taken
into account. A detailed discussion of these is beyond the scope of this discussion.
There are additional geometrical and absorption factors which would have to be
considered also.

We have seen that in the case of a body-centered translation group (structure
of tungsten), all reflections with A4-k+1=2n -1 are missing; in the case of a
completely face-centered translation group, all reflections with mixed indices
are absent. These mathematically regular absences are called systematic extinc-
tions. They assist in determining not only the translation group (space lattice),
but also indicate the presence or absence of glide planes and screw axes, and
thus assist in determining the space group. Thus systematic extinctions are of
great importance in X-ray crystal structure analysis.

Rotating Crystal Methods. It is convenient to index diffraction patterns, in
the manner illustrated here for NaCl, only in the case of very highly symmetrical
crystals. It is more convenient and often imperative to use single crystal rotation
methods. In principle the same experimental arrangement can be used as for the
powder method. A single crystal is substituted for the polycrystalline powder,
and it is rotated around one of its zone axes, usually a crystallographic axis.
Each lattice plane in the zone is gradually brought into reflecting position at the
appropriate angle of incidence by rotation. Each produces a single diffraction
spot on the film. All of the reflections from planes in this zone lie on a line which
coincides with the intersection of a plane perpendicular to the rotation axis and
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the film. If the zone axis is the c-axis, all reflections from this zone will lie on this
layer line on the film and have the indices A%0. This line of intersection on the
film is called the equator or zero-layer line. The hkl reflections likewise form
series of spots on the film, distributed
on additional layer lines which extend
parallel to the equator at some definite
distance from it. Thus the k%2 reflections
lie on the 2nd layer line, etc. The identity
period in the rotation direction can be
determined from the distance between a
layer line and the equator. The rotation
method is illustrated schematically in Fig.
260. A rotation diagram of a garnet
crystal rotated around [001] is repro-
duced in Fig. 261. Several layer lines are
seen in addition to the equatorial line.
In order to find the repeat distance, a,
in the rotation direction, the following
equationisused: pis the distance between
the respective layer line and the equator, Fig. 260. Schematic diagram of a rotating
u is the layer line angle, h is the order crystal diffraction pattern
number (index) of the layer line and R

the camera radius:

h A
sinp *

tan,u:%; a=

Fig. 261. Rotating crystal photograph of pyrope, Mg;Al,(SiO,),, around [001] (reduced)

An example of such a calculation, using data taken from the original photo-
graph from which Fig. 261 was reproduced, is summarized in Table 29. The wave
length used was A= 1.539A.

If separate rotation patterns are taken around the three crystallographic
axes, the unit cell parameters are obtained. These values can then be more
accurately determined from calibrated powder patterns.

In the case of both powder and single crystal methods, some of the reflections
from different lattice planes coincide, because they have the same angle of
diffraction. A unique evaluation of X-ray extinctions is not always possible in
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such cases. For complete interpretation this must be known, however, in order
to determine the appropriate structure factors. For this reason X-ray gonio-
meters are used in which not only the crystal is rotated, but also the film is
simultaneously translated in a definite direction. In this way the diffraction

Table 29. Calculation of a, parameter from a single crystal rotation pattern. (Synthetic pyrope,
Myg,Al,(8i0,) around [001])

Layer line p (mm) tgu sin pu h-A
(order number #) 4= sin u
1 3.8 0.1326 0.1316 11.72 A
2 7.9 0.2757 0.2658 11.60 A
3 12.5 0.4363 0.3998 11.57A
4 18.1 0.6318 0.5340 11.55 A
5 25.8 0.9005 0.6691 1152 A
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Fig. 262. Laue photograph of garnet in [001] direction. In general each diffraction spot
originates from a different wave length

maxima are spread out so that each reflection corresponds to a single A%l plane,
and the resulting array of spots can be very easily interpreted. The X-ray gonio-
metric methods, using perpendicular or inclined incidence of the X-ray beam as
developed by WEISSENBERG, BUERGER, and MENZER are especially important.
We cannot treat them in further detail here.

In this summary it should further be stated that determination of crystal struc-
tures by X-rays alone is frequently extremely difficult. Therefore supplementary
information is of very considerable importance. Atomic and ionic radii, packing
densities, coordination schemes, the principle of electrostatic neutrality (lines of
force should be as short as possible), optical properties (indices of refraction,
birefringence), magnetic and cohesion properties, and other information provide
considerable assistance in crystal structure analysis.
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The Laue Method. The procedure used originally by v. LAUE involved a
stationary crystal irradiated by X-rays of different wave lengths. An array of
diffraction spots is produced (Fig.262). The Laue photograph gives a pattern
indicating the crystal symmetry in the direction of X-ray transmission and is
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Fig. 263. Relation between the unit cell lattice (solid lines) and the reciprocal lattice (dashed
lines). The reciprocal lattice continues in all directions
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Fig. 264. Conditions for diffraction from a reciprocal lattice

still used for symmetry studies of crystals. However, for crystal structure analysis,
monochromatic methods are much more suitable. Under usual circumstances
X-ray photographs indicate that a given lattice plane reflects equally from both
sides of the plane (G. FRIEDEL, 1913). The effect is to introduce an apparent
center of symmetry. Therefore it is not possible to ascertain by means of X-ray
diffraction alone whether a crystal direction is polar or not, that is, whether or
not a crystal has a true center of symmetry. The exception to this situation
occurs when the crystal contains atoms with an X-ray adsorption edge lying
near to that for the radiation used. Then the symmetry of crystals with enantio-
morphic forms can actually be determined. An example of such an enantiomorphic
structure is that of right and left-handed quartz. It has been shown that the
morphologically defined right-quartz contains left-spiralling screw axes (p. 32).
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The Reciprocal Lattice. In X-ray crystallography it is frequently convenient
to derive an imaginary lattice from the direct lattice of the crystal. The axes of
this imaginary lattice are parallel to the directions of the face normals of the unit
cell and the repeat distances along its axes are the reciprocals of interplanar
lattice spacings. This imaginary lattice is called a reciprocal lattice (Fig. 263).
The reciprocal lattice has been extensively used because with its help the diffrac-
tion relationships of single crystal diffraction patterns can be easily understood.
This is shown for a two-dimensional case in Fig. 264. It can be seen that the
real lattice plane is in a position to satisfy the Bragg diffraction conditions, when
its corresponding point in the reciprocal lattice (whose origin is at 0, 0, 0) lies
on a circle of radius 1/A (reflecting circle). In three dimensions we do not use a
circle of reflection but the corresponding Ewald sphere of reflection, of radius 1/A.

If the lattice planes in a crystal are not spaced periodically in one direction,
that is, if they have one-dimensional disorder, the X-ray reflections are not sharp
in all directions. Accordingly the reciprocal lattice points are smeared out perpen-
dicular to the disordered planes, sometimes continuously from one reciprocal
lattice point to the next.

Fourier Synthesis. The manner of crystal structure determination discussed
so far depends upon trial and error methods. After the lattice parameters and unit
cell symmetry have been determined and the number of formula units per unit
cell calculated, a structure compatible with the symmetry and intensity relations
is proposed. Fourier synthesis is an important resource in modern crystal structure
determination. It takes its name from the analysis of a periodic function by
Fourier series. It is possible by means of Fourier methods to determine extremely
complex structures and to do so with much greater accuracy than was possible
earlier with the methods previously described. By the use of special and very
careful methods of measurement, it is possible to determine the electron density
at all points in a crystal (see Figs. 158a and 170a).

Electron Diffraction. An additional diffraction method utilizes electron beams
to produce diffraction patterns. It has been known in theory since DE BROGLIE
(1924), and from experiments by Davisson and GERMER (1927), that electrons
can be diffracted like light waves. Electrons with mass m and velocity v behave

like waves with wave length 1= Whv“’ where b is PLANCK’s constant. If velocity is

expressed in terms of an accelerating potential in volts applied to the electrons,
we obtain the expression:
= l/ﬂ A.
v

At 63V, waves would be produced of wave length equal to that of CuK, radia-
tion. Usually much more energetic electrons are used.

The diffraction of electrons is fundamentally different from that of X-rays,
in that the electron beams are not only influenced by the electron shells of an
atom, but also by its nucleus. The diffracted intensity is about 108 greater than
with X-rays, but they are also much more strongly adsorbed. They are trans-
mitted through only very thin layers.

Neutron Diffraction. Excited neutrons are diffracted like other elementary
particles by crystal lattices. Neutrons produced in an atomic pile do not all have
the same velocity. Their wave lengths extend over a large range. “‘Thermal”
neutrons, which are those which through numerous collisions are in thermal equi-
librium with their surroundings, have their most frequent velocities corresponding to
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a wave length of 1.3 A. Thus in a continuous spectrum, the wave lengths of the
neutrons have a maximum at just that wave length most convenient for structural
analysis. For comparison we can recall that the most frequently used X-radiation
for structure determination is that of CuK, (A= 1.54 A). By means of reflection
from a crystal and appropriate collimation, a narrow beam of monochromatic
neutrons can be produced and used for diffraction experiments.

It is especially important from the mineralogical standpoint that the position
of hydrogen atoms in crystals can be accurately determined by neutron diffraction.
Because of the very low atomic scattering power of hydrogen, this is possible
by means of X-rays only when the other atoms present in the crystal have low
atomic numbers (to perhaps 20). Even in these favorable cases the hydrogen can
be only inaccurately located. Knowledge of the positions of hydrogen are of
fundamental importance to the crystal chemistry of hydroxides, OH containing
salts, and hydrated salts.

Electron Microscopy. We can only briefly mention the important field of
electron microscopy. It is an important supplementary aid for studying very
fine-grained minerals, such as the clay minerals. It reveals primarily information
about the size and shapes of small particles. It is possible to obtain electron
diffraction patterns from the same samples being viewed in the electron micro-
scope. Lattice contacts can be determined in much the same way as from X-ray
powder patterns.

11 Correns, Mineralogy



IV. Crystal Growth and Dissolution

1. Geometrical Relationships

Introduction. In the preceding discussion we have dealt with a series of
physical properties of crystals and have seen in the last chapter how the atomic
structure of crystals can be determined with the help of X-ray optics. We have
yet to discuss the most sensitive expression of crystal structure, the phenomena
of crystal growth and dissolution. The occurrence of natural planar bounded
bodies was the starting point of crystallography and the origin of such bodies
still remains one of its most important problems. In spite of all the research that
has been carried out, there is still much uncertainty about the mechanisms of
crystal growth.

Growth Velocities. The problem can be approached from different directions.
We will first consider the geometric approach. Why is it that a given cubic
crystal sometimes crystallizes as cubes, sometimes as dodecahedra and sometimes
as octahedra ?

The law of constancy of interfacial angles tells us that the faces of the crystal
can be displaced parallel to themselves. We shall assume that a crystal grows
by means of such parallel displacement of its faces and that each form has a
definite displacement (or growth) velocity, unrelated to its size and boundaries.
This growth velocity, for a given structure, is dependent only on external con-
ditions. These velocities can be measured on growing crystals in the laboratory.
SPANGENBERG determined the following values (Table 30) for potassium alum at
30° C and 0.5% supersaturation.

Table 30. Relative growth velocities during growth of potassium alum

Form (111} {110} {001} (221} (112} {012}
Growth velocity 1 4.8 5.3 9.5 11.0 27.0

If we want to study the concurrent development of all possible faces, a sphere
fashioned from a crystal is used as the initial body. It is observed during a growth
experiment that planar surfaces develop at certain places on the sphere. Other
points first remain curved or become rough until these points also gradually are
over-grown by the faces which first appeared. Simple geometric considerations
show that those faces survive which have the lowest growth velocities. In Fig. 265
the relationships are shown for alum in a section parallel to (110). The curved and
rough initial state is omitted, and the (hhl) forms indicated in Table 30 are
drawn tangent to the sphere so that they form a polyhedron. Several growth
stages are indicated after equal time intervals, corresponding to the growth
velocities given in Table 30. Already after the first stage, the faces (112) and (221)
are no longer present. Their growth velocities are so great that they would lie
far outside the crystal. By the second stage (110) has also disappeared. The
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face (001) becomes smaller and smaller. It would have disappeared by stage six
which, however, is not shown in the drawing.

Whether a face persists during growth or disappears depends upon the ratio
of its displacement velocity to that of the other faces. This will be illustrated by
the simple example of growth of a crystal consisting of a dodecahedron and a

0o 2

Growth stages

Fig. 265 /

Fig. 265. Schematic representation of growth of a /

potassium alum sphere. Central section parallel to
(110). 0—3 growth stages

Fig. 266 a—c. Growth of a cube and dodecahedron.
Section parallel to (100) through upper right octant.

(a) Y1) Y001y =2;  (b) V(o11):¥(001y=1.2;
(€) v(o11)* Vgory =)/2- Fig. 266a—c

cube. In Fig. 266a the velocity ratio, is v{011}:v{001}=2. The face (011) grad-
ually disappears. The lines connecting the face intersections converge. In
Fig. 266b they diverge, and in this case both faces persist upon further growth
and in fact enlarge. In this case the displacement velocity is v{011}:v{001} =1.2.
It is easy to see that parallel interfacial boundaries would occur when v{011}:
U{OOI}=V2. The size of (011) remains constant during growth. This case is illus-
trated in Fig. 266 c.

11*



164 Crystal Growth and Dissolution

Dependence on External Conditions. Definite forms whose growth velocities
are small survive as the end product of growth of a spherical crystal. These con-
siderations assist in explaining the characteristic forms of crystals, if the addi-
tional assumption is made that growth velocities are dependent upon external
conditions, especially the magnitude of supercooling and supersaturation of the
solution constituents, and perhaps also temperature and pressure. An example
showing the temperature influence was described by EAKLE for crystallization
of potassium iodate. It crystallizes as a monoclinic crystal, forming pseudocubic
forms. Between 10 and 20°C it grows as ““cubes”, but with increasing temperature
the cube is modified by ‘“‘rhombododecahedron” until, at 70°C, this form occurs
exclusively. To what extent the degree of supersaturation shares in this effect
requires further investigation.

NaClO; crystallizes as cubes from pure solutions at room temperature. How-
ever, if SO}~ ions are added to the solution, say by addition of Na,SO,, tetra-
hedra form. S,02" ions serve as even more effective solution constituents. Even
at concentration ratios of Cl03:S,0%™ as low as 1000/1 the cube is eliminated as
the growth form (BuokrLEy). Urea, CO(NH,), is another example, known for a
long time to be an effective ingredient for form modification of NaCl. While NaCl
crystallizes from aqueous solutions by evaporation in air (therefore at not too
great a supersaturation) exclusively in the form {100}, the addition of urea to
the solution causes octahedra to appear. At very small urea concentrations the
octahedra occur in combination with the cube; at higher concentrations the
octahedron occurs alone. Similar form modification is affected by additions of
CdCl, or PbCl,. A very large number of other inorganic and organic substances
have very little or no effect on form development of NaCl. Thus the property
involved here is very specific and as yet unpredictable for individual substances.

Fibrous Growth. Geometric consid-
erations lead also to an explanation of
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